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Abstract 

Hydrologic models are often relied upon to inform decisions in hydrology and water resources 

applications. Typically, hydrologic models are validated (i.e., deemed fit-for-purpose) using the split-

sample test introduced by Klemeš in 1986, where a model is shown to reproduce historical data that 

was not used in training the model. However, simple history matching is a necessary but insufficient 

condition to show reliability in decision-making, and there are many examples in the literature of 

models with excellent diagnostic metrics but insufficient skill for informing decisions. Furthermore, 

the current methods of model validation and uncertainty estimation are not easily understood by non-

modellers, and decision-makers are often handed model outputs that are not in a readily usable form 

to inform decision-making. There exist many calls in literature for both the development of rigorous 

model validation methodologies, and techniques to address the gap between scientists and decision-

makers. 

As a response to the gap in literature for new model validation methodologies and ways of 

improving communication between scientists and decision-makers, this thesis introduces Decision 

Crash Testing (DCT), which is capable of directly evaluating a model’s performance in a decision-

making context. The DCT framework uses a series of synthetic reality experiments to recreate the 

model-building process and test whether the model correctly informs the decision in a set of 

hypothetical realities. These provide a baseline estimate of the difficulty of the decision and the 

probability that the model is capable of informing the correct decision, which is much more easily 

interpretable by decision-makers. 

The DCT framework is demonstrated using two case studies derived from reservoir management 

applications in an Ontario watershed. The development of the hydrologic models that underlie both 

case studies is a deviation from the typical approach of using level-pool routed inflow estimates for 

model calibration; instead, the observed stage data is calibrated to directly, and the reservoirs are 

explicitly represented in the hydrologic model. This method avoids some of the pitfalls of calibrating 

to estimated inflows with known numerical artefacts. The two case studies illustrate the ability of the 

DCT framework to assess the decision-making ability of the evaluated model, to provide a framework 

within which to meaningfully assess improvements the evaluated model for specific decision-making 

applications, and to test the impacts of various decision formulations on the ability of the model to 

inform decision-making.  
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Chapter 1 

Introduction 

Models are useful tools in many applications, and can be used to perform experiments and analyses 

that would not be possible or feasible in the real world. In hydrology, models are used for a number of 

applications, including flood forecasting, watershed planning, source water protection, and reservoir 

management. Thus, understanding how the performance of hydrologic models can be evaluated, and 

building a trust in the models that we use, is of fundamental importance. 

The methods by which hydrologic models are evaluated as fit for use in these applications is an 

open question which has not seen much development, generally speaking, since the 1980s. The 

existing methods for validation of hydrologic models are long established but inconsistently applied, 

and even more rarely are the limitations and uncertainties in models effectively communicated to 

non-modellers. Despite the widespread use of models to inform decision-making, there exists a gap 

between the information presented by modellers and the information that is useful for decision-

makers. There are many reasons for this, including the difficulty in communicating uncertainty, the 

complexity in understanding the large number of hydrologic models that exist, and the variety of 

applications in which the models are deployed. Furthermore, surprisingly few methods exist that 

validate models specifically for decision-making applications, which is a non-trivial matter but would 

facilitate improved understanding of model outputs between modellers and decision-makers. 

This thesis introduces a method called Decision Crash Testing (DCT), which is a framework with 

which to validate models for use in specific decision-making applications. This method builds on 

various concepts that exist in the literature, and is inspired by the crash testing analogy of 

Andréassian et al (2009), which encourages modellers to stress test models to their breaking points to 

reveal their limitations. This novel method is discussed at length and is illustrated with two reservoir 

management case studies. 

The development of the hydrologic models used to support the reservoir management case studies 

is also presented in this thesis. The development and calibration of hydrologic models involving 

reservoirs is a non-trivial task, particularly when there is a lack of data and/or a lack of knowledge of 

upstream reservoir operations. Typically, reservoir inflow forecasting models are calibrated using 

inflow estimates rather than measured data, which can cause models to match spurious peaks from the 

inflow estimates without distinction from real events, among other issues. A novel application of a 
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new method is presented for the calibration of hydrologic reservoir models, which uses only the 

available data in calibration and avoids some of the issues with existing methods.  

1.1 Goals and Objectives 

This thesis has two main goals. The primary goal of this thesis is to demonstrate the gap that exists 

in the literature for hydrologic model validation methods that address the application of models in 

decision-making, then to present the DCT framework as a potential solution to this gap in literature, 

and illustrate its use with two detailed case studies. The secondary goal of this thesis is to present a 

novel method for calibrating hydrologic models involving reservoirs, which overcomes some of the 

data availability issues with conventional approaches. This thesis includes the first known application 

of this method to a North American watershed.  

This thesis has three main objectives that follow from these goals. 

1. To develop, evaluate, and apply a novel method for the development and calibration of a 

hydrologic model in support of reservoir management, which is deployed in building the case 

studies in this thesis. 

2. To present a full description of the DCT framework, highlighting how it fills the gap that 

exists in literature, and how it can be improved in future work.  

3. To illustrate the efficacy and utility of the DCT framework by applying it to two reservoir 

management case studies in Ontario. 

1.2 Thesis Organization 

This thesis is organized into 6 chapters, the first of which serves as this introduction to the thesis. 

Chapter 2 provides relevant background information on hydrologic modelling, the current state of 

hydrologic model validation, and the application of environmental models to decision-making. The 

need for both improved validation methods and a bridging of the gap between modellers and 

decision-makers is illustrated, providing the motivation for the DCT framework.  

Chapter 3 discusses the methodology relevant to this thesis. This chapter provides a full description 

of the DCT framework, discussing the methodology, the ways in which DCT can be deployed, the 

limitations of DCT, and a comparison of DCT to existing methods in literature. This chapter also 

presents the development of the hydrologic models supporting the case studies in this thesis, which 
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includes a description of the novel method for calibrating reservoir models. The contribution to 

literature from this method are illustrated in this chapter. 

Chapter 4 introduces the site-specific application of DCT to a decision regarding the adjustment of 

seasonal reservoir operations. The details of the DCT setup, with respect to the modes of deployment 

in Chapter 3, are discussed. The insights gained from decision crash testing are discussed, and a 

number of additional experiments in model improvement and alternative decision formulations are 

demonstrated. 

Chapter 5 details the second application of DCT to a data gauging decision to support reservoir 

management. The results and implications from the DCT experiments are highlighted. 

Chapter 6 summarizes the major contributions to literature from this thesis work, namely the novel 

method for reservoir model calibration, and the further development and application of the DCT 

framework. The main conclusions of the case studies and directions for future research, including 

potential future improvements to the DCT framework, are also presented. 
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Chapter 2 

Background 

The background chapter of this thesis will provide the reader with the necessary background to 

understand the significance of the research. A general overview of hydrologic models is discussed, 

the current state of hydrologic model validation is discussed, the types of methods available for using 

models in a decision-making context are reviewed, and the gap that exists in decision-making 

between modellers and decision-makers is illustrated. 

2.1 Hydrologic Modelling 

This section provides an introduction to hydrologic modelling, including the purposes and types of 

hydrologic models and the steps involved to build a hydrologic model. 

2.1.1 What is a hydrologic model? 

The study of hydrology refers to, in basic terms, the study of the movement of water in the 

environment. The definition from the United States Geological Survey defines hydrology as, “the 

science that encompasses the occurrence, distribution, movement and properties of the waters of the 

earth and their relationship with the environment within each phase of the hydrologic cycle” (USGS, 

2016). A hydrologic model is a numerical model that approximates a real system with various 

schemes for representing hydrologic processes, such as infiltration, runoff, evapotranspiration, etc. 

This can also be extended to include man-made processes and structures, such as reservoir outflow, 

tile drains, water extractions, etc. Once built, models are used to predict or emulate the behaviour of 

watershed systems. Hydrologic models have a broad application in the literature and otherwise, 

including water balance models, reservoir management, watershed management, groundwater studies, 

etc. Hydrologic models can also be coupled with water quality models for applications such as 

nutrient management and contaminant transport studies. 

2.1.2 Classifications of Hydrologic Models 

There are a few different categories by which hydrologic models can be classified. The first 

distinction is made in the purpose of the model, which influences the level of complexity and amount 

of data required to build and run the model. The purpose of the model can be broadly classified as 

either forecasting, simulation, or scientific. A forecasting model is used to produce some hydrologic 
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variable(s) (usually river flows) into the future using forecasted forcing data, while a simulation 

model produces some hydrologic variable(s) for the same period as the data supplied (Klemeš, 1986). 

A scientific model is used to advance the state of hydrologic science via hypothesis testing and 

confirmation of conceptual models, and may not be useful in forecasting or simulation. Klemeŝ 

(1986) notes that forecasting models can be validated continuously as new measured data is captured, 

while simulation models cannot be validated in the same way. The validation of scientific models has 

the goal of verifying that the model produces the correct output for the right reasons (Biondi et al., 

2012). This is not a strict requirement of forecasting models, which can have adequate forecasting 

capabilities without being scientifically correct. Forecasting models can be relatively simple and still 

perform well for their intended purpose, and in fact, complex models have not been shown to provide 

a large improvement over simpler models in terms of forecasting ability (Pagano et al., 2014). The 

comparison to observed data cannot be made with simulation models, which may be asked to project 

into futures that will never happen. In any case, the purpose of the model is one of the most important 

distinctions to make prior to its validation and use. 

Another distinction is made in the spatial representation of the study area, which generally 

categorizes models as lumped, semi-distributed, or distributed models, in increasing levels of finer 

spatial discretization. A lumped model treats the entire study area or basin as a single unit, in which 

all state variables are represented with an average value across the entire basin. A distributed model 

makes predictions that are distributed in space by dividing the basin into distinct units using a 2D or 

3D grid (or mesh); the hydrologic processes are simulated separately within each grid cell (Beven, 

2012), and water must be transported or routed between grid cells. Semi-distributed models divide the 

basin into distinct subbasin units, generally using elevation data that can be used to identify surface 

water drainage areas. The behavior within each subbasin unit can be further discretized using 

hydrologic response units (HRUs), which are defined as units with unique hydrologic responses to 

precipitation, radiation, and other forcings. HRUs are constructed using common groupings of spatial 

data within each subbasin, including landuse, soil types, vegetation cover, terrain type, and 

management policy (Flügel, 1997). The HRU concept is similar to definitions of other units in 

hydrology, such as the Representative Elementary Area (REA) (Wood et al., 1988), the Grouped 

Response Unit (GRU) (Kouwen et al., 1993), the Representative Elementary Watershed (REW)  

(Reggiani et al., 1998), and hydro-landscape units (Dehotin and Braud, 2008).  
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Semi-distributed models are an intermediate level of discretization between lumped models and 

distributed models, since they allow a finer level of discretization than a lumped model without 

creating as many units as a distributed model. The pictorial representation of each of the three levels 

of discretization is shown in Figure 1. 

 

Figure 1. Three types of spatial discretization in hydrologic models (Jones, 1997) 

The decision in the level of discretization to use in a model is a tradeoff between the accuracy of 

the model in representing the heterogeneity of the basin, and the larger number of model parameters 

(and amount of computation) that are needed with increasing levels of discretization. There is a 

general notion that models with more parameters at finer discretizations are more physically realistic 

than models with fewer parameters, but due to the difficulty in properly building a model with many 

parameters, studies have found that distributed models can only marginally outperform or even 

underperform lumped models (Grayson et al., 1992, Reed et al., 2004). 

Another distinction is made in deterministic models and stochastic models. Deterministic models 

always produce the same output for a given set of inputs. On the other hand, Stochastic or 

probabilistic models incorporate randomness or uncertainty in some component of the model, and can 

therefore produce different outputs from the same set of inputs. The majority of models used in 
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hydrology are deterministic, although this distinction is not always clear (Beven, 2012). Deterministic 

models can be run using varied inputs or varied parameters to produce stochastic outputs. It is also 

possible to generate a distribution of model outputs using a set of different models with varied model 

codes, inputs, and parameterizations; this set of models is called an ensemble (Refsgaard et al., 

2014a). 

2.1.3 Model Building Procedure 

The general model building procedure is presented in Figure 2, which is adapted from Refsgaard et 

al (2007) and Gupta et al (2008). This includes steps that are common in hydrologic modelling, 

although in practice the overall process is iterative, and some steps may be combined or otherwise 

vary from the sequence presented. 

 

Figure 2. Model building steps adapted from literature 

The process begins with a Model Study Plan, in which the purpose of the model, the requirements 

of the model (in terms of output and level of accuracy), the resources available to build the model, 

and the parties involved in building the model are defined (Refsgaard et al., 2007). The initial 

definition of the purpose of the model is an important and often overlooked step, particularly if the 

model is to be used in a decision-making context (Liu et al., 2008), where there may be conflicting 

priorities in the desired use of the model. 
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The Data and Conceptualization step involves the collection of all relevant knowledge about the 

area to be modelled, as well as a development of a plan for modelling the area (Refsgaard et al., 

2007). This includes specifying the resolution of data to be used, the sourcing of data, and an initial 

overview of the types of processes that will need to be included in the model. 

The perceptual model is defined as the modeller’s mental understanding of the key processes in the 

study area (Refsgaard and Henriksen, 2004), which is influenced by their knowledge and previous 

experience (Gupta et al., 2008). This is followed by the development of the conceptual model, defined 

as a model with a clear set of descriptions for model elements, such as model assumptions, boundary 

conditions, required inputs and outputs, process representations, etc. (Gupta et al., 2008, Liu et al., 

2008, Refsgaard and Henriksen, 2004). In some literature, the perceptual model and the conceptual 

model are considered as one step (Liu et al., 2008, Refsgaard and Henriksen, 2004). 

The next step is the numerical model, in which the site-specific model is implemented (using some 

kind of computer program) as a numerical approximation of the real system (Gupta et al., 2008, 

Refsgaard et al., 2007). A distinction can be made between the model code, a generic computer 

program that can be used to implement a conceptual model, and the site-specific model, which is built 

for the particular study area (Refsgaard and Henriksen, 2004). 

Following the completion of a functional numerical model, the model undergoes calibration and 

validation. In these steps, the model’s performance is optimized via parameter adjustments in 

calibration, and then is tested for accuracy and reliability using independent data via validation 

(Refsgaard et al., 2007). This step is the focus of the research in this thesis, and is thus discussed in 

greater detail in section 2.1.4 and section 2.2. 

The final step is Simulation and Evaluation, in which the model is used for its intended purpose. 

This may be for simulation, forecasting, scientific investigations, and/or for use in decision-making. 

An uncertainty analysis of model outputs may also be included in this step to assist in the evaluation 

of model results (Refsgaard et al., 2007). 

2.1.4 Model Calibration and Validation 

Two key steps in the model-building process are model calibration and validation. Calibration 

refers to the process by which the model is trained or ‘tuned’ to be able to replicate a set of observed 

data. Since hydrologic model parameters are generally unknown (or imprecisely known), calibration 

is typically used to estimate parameter values that provide a good match of observed data. In other 
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words, calibration is performed to optimize the model parameters for history matching (Refsgaard et 

al., 2014a). Calibration can be done manually, in which a modeller adjusts parameter values 

themselves, or automatically, which makes use of an algorithm to estimate parameter values. Often 

the modeller will use a combination of both manual and automatic techniques to calibrate a numerical 

model (Boyle et al., 2000). The topic of automatic calibration for hydrologic modelling is a large 

research area, and many different calibration algorithms have been deployed, e.g., see Ostrich 

Optimization Software Toolkit documentation (Matott, 2016). 

Model validation in hydrology is generally considered the step in the model-building process where 

the model is analyzed and evaluated for performance (Biondi et al., 2012), generally using data which 

is independent from that used in calibration. The validation step is done as a check on the model to 

ensure it is fit for purpose, and does more than just match the historical data provided in calibration. 

A poor result in model validation generally means that the model will not perform well in future use, 

and would warrant some iteration of other steps in the model-building procedure, ranging from re-

calibrating the model to reconsidering the conceptual model. 

Model validation is less well-defined than model calibration, and both the definition and possibility 

of validation has been the subject of debate in many articles. This is discussed further in the following 

section. 

2.2 Critical Evaluation of the Concept of Validation in Hydrologic Modelling 

This section discusses the various philosophical approaches to validation from literature, the 

current state of validation methods in the literature, and the call for improved validation methods. 

2.2.1 Philosophy of Validation 

Model validation is a commonly performed task, however it is worthwhile to ask the question, ‘Can 

a hydrologic model be validated?’ This question has been discussed in literature at length. The first 

common reference in this discussion is to Popper, who promoted the view that models cannot be 

validated, only invalidated (Popper, 1959). Konikow and Bredehoft agreed that hydrologic models 

cannot be validated, and that ‘validation’ should be abandoned as term because it misleads the reader 

into believing that the model has more predictive power than it actually does (Konikow and 

Bredehoeft, 1992). Orsekes et al stated that models should be evaluated in relative terms, and not in 

an absolute sense (Oreskes et al., 1994). Klemeŝ argued that validation should refer to the testing of a 

model’s “operational adequacy” for applied purposes (such as forecasting), and that models used to 
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advance hydrology as a science cannot be verified (Klemeš, 1986). This is echoed by Rykiel, who 

stated that validation is “certainly possible”, as long as (1) the purpose of the model, (2) the 

performance criteria required of the model for acceptable use, and (3) the context that the model will 

be used in, are specified (Rykiel, 1996). Rykiel also discussed ‘engineering validation’, and remarked 

that model validation cannot prove scientific theory. A more recent article by Refsgaard et al (2014) 

stated that, “it is not possible to carry out model verification or model validation if these terms are 

used universally without restriction to domains of applicability and levels of accuracy”. Other articles 

also distinguish between validation for the purpose of model performance and validation of scientific 

models (Biondi et al., 2012), and state that models must be evaluated in the context of their objectives 

(Jakeman et al., 2006). 

The general conclusion drawn from the literature is that models can only be validated for 

acceptable performance in a limited application, and not in the more general sense, which is distinct 

from what happens in practice. This emphasizes the need to validate models for a specific purpose 

and levels of accuracy, and the inadequacy of applying validation concepts to models for general use. 

2.2.2 Current Validation Practices in Hydrology 

The classic paper by Klemeŝ (1986) defined a hierarchy of four main validation methodologies 

with application to hydrologic models, which remains the standard for validation procedures to this 

day. The methodologies are summarized below. 

1. Split-sample test: The data are split into two segments, one of which is used for calibration 

and the other for validation. The model should only be acceptable if the model performance 

and error characteristics are similar in both calibration and validation. Klemeŝ 

recommended splitting the data 50/50 between calibration and validation if the data period 

was ‘sufficiently long’, else a 70/30 split between calibration and validation. Typically in 

practice, this test is the only one applied for validation, likely because it is the easiest to 

apply and only one dataset is required (Refsgaard et al., 2014b). 

2. Proxy-basin test: A model is calibrated using data from one basin and validated using data 

from a second basin, and vice-versa. This is considered a test for the transposability of the 

model to other regions, particularly for ungauged basins (defined as basins with 

“inadequate records of hydrological observations to enable computation of hydrological 

variables” (Sivapalan et al., 2003)). 
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3. Differential split-sample test: The data is split into two sets based on a differential 

characteristic, for example, into wet years and dry years. The model is then calibrated to 

one data set and validated on the other. This test was requested by Klemeŝ to be required 

whenever a model is to be used under conditions different from those in the flow record, 

since this method tests the model’s ability to perform under conditions that are not 

observed in calibration data. 

4. Proxy-basin differential split sample test: This combines the proxy-basin and differential 

split sample test, and is considered the most rigorous of the four methodologies proposed 

by Klemeŝ. The data from two basins would be collected, say basins A and B, and in each 

basin the data would be split according to the differential split-sample test, for example as 

wet years denoted set 1 and dry years denoted set 2. Then the model would be 

calibrated/validated from data in different basins and data groupings, for example, wet 

years in basin A (A1) and validated on dry years in basin B (B2). The reverse of this would 

also be done, i.e., the model calibrated to dry years in basin A (A2) and validated using wet 

years in basin B (B1). 

These methodologies proposed by Klemeŝ have been applied a few times in the literature, e.g.,  

(Donnelly-Makowecki, 1999, Refsgaard and Knudsen, 1996, Seibert, 2003, Xu, 1999). Coron et al 

also presented a generalized split-sample test, in which overlapping periods are used for generating 

multiple calibrated models, and these models are then validated in every other available independent 

data period (Coron et al., 2012). Outside of these few examples from hydrology, the methods 

proposed by Klemeŝ have not found wide use in earth science disciplines (Refsgaard et al., 2014b); 

only split-sample tests are commonly applied, and the other three (more rigorous) levels of testing are 

rarely applied  (Andréassian et al., 2009). 

2.2.3 Call for Improved Validation of Hydrologic Models 

The recent literature presents a renewed call for an improvement in the validation tests used for 

hydrologic models, and cites the lack of interest in developing new tests since Klemeŝ (1986) 

(Refsgaard et al., 2005). The split-sample test is considered a weak one and is inadequate for climate 

change studies in particular, while the differential split-sample test is more appropriate although not 

commonly used (Kirchner, 2006, Refsgaard et al., 2014a). Other authors argue for the development of 

improved evaluation methods altogether (Gupta et al., 2008), and state that further development of 

suitable testing schemes is a major challenge (Refsgaard and Henriksen, 2004). Andréassian et al call 
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for the development of more rigorous and demanding testing of hydrologic models, analogous to 

crash tests in the automotive industry, in order to test the limits of models and to help improve the 

models (Andréassian et al., 2009). Other authors also call for more rigorous testing of hydrologic 

models (Biondi et al., 2012, Jakeman et al., 2006, Refsgaard et al., 2005).  

One suggested reason that an agreed upon and rigorous validation procedure has not yet been 

proposed is due to the difficulty in developing a procedure that can be used generally for the large 

number of different types of hydrologic models that exist, and remain general across many different 

applications of hydrologic models (Biondi et al., 2012). Whatever the reason for the lack of uptake on 

rigorous validation methods, the call for the development and adoption of rigorous validation 

methods is clearly documented in the literature. 

2.3 Decision-Making in Hydrology 

This section presents background on the application of hydrologic models to decision-making. This 

section begins by giving a brief review of the decision-making process and the types of 

computationally-based decision-making methods that have been deployed in the hydrologic literature. 

Subsequently, this section discusses how uncertainty in modelling is incorporated into the decision-

making process, illustrates the gap that exists in the literature, and ties the concepts of model 

validation and decision-making together to provide the motivation for the main work done in this 

thesis. 

2.3.1 Decision-Making Process 

The decision-making process is generally defined as the process through which a decision is 

scoped, evaluated, and executed in practice. The particular steps included in the decision-making 

process vary both in the literature and in practice, depending on the particular application. A generic 

decision-making approach in which a computational hydrologic model is used to support the decision 

is presented below (Liu et al., 2008, Refsgaard et al., 2007, Walker et al., 2003).  

1) Problem Formulation: The initial problem and goals of a decision are explicitly stated, as 

well as the limitations of the potential decisions to make. A list of decisions to evaluate, or a 

single decision to test, is defined. The questions of ‘why is modelling required?’, ‘what level 

of accuracy is required?’, and ‘how will the model be used to support decision-making?’ 

should be answered in this step. This step will also identify the key parties involved in the 
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decision-making process (i.e., the modellers, the decision-maker(s), the stakeholders or 

members of the public, policy experts, collaborators, and perhaps external reviewers). 

2) Data Collection and Model Development: Any data that is required to support model 

development and/or decision-making is identified and collected, and a computational model 

is built to replicate the real system. This step encompasses the development of the initial 

conceptual model of the complex system, the detailed model-building steps, the calibration 

and validation of the model for decision-making, and the linking of the hydrologic model to 

any other models that may be required (e.g., economic models, climate models, etc.). 

3) Model Simulation and Decision Identification: In this step, the model is used to generate 

predictions of system behaviour that inform the selection of one or more preferred decisions 

or course of actions for the future. This step encompasses activities related to scenario 

development (i.e., formulation of plausible future states of the world for evaluating the 

performance of decisions), decision assessment, decision modification or adjustment, etc. 

This step is likely to be iterative and involve collaboration between modellers, policy experts, 

and stakeholders in determining the preferred decision. Ultimately, the decision-maker uses 

the insights from the computational model(s) and other parties to make a decision. 

4) Decision Implementation: Once a decision is selected by the decision-maker, the decision 

may be implemented. This involves the communication of the decision to the relevant parties 

(including uncertainty analysis results, if performed), and a continuous collaboration between 

parties to ensure the decision is implemented correctly and efficiently. 

5) Monitoring, Evaluation, and Follow-up: The impacts of the decision are monitored and 

evaluated to ensure success. If the decision is unsuccessful, or one or more key assumptions 

have been found to be untrue, then the process may be repeated or the decision may be 

adjusted.  

While there is a wide variety in decision-making approaches in the literature, many steps are 

common between methods. There is also a general agreement in literature that the decision-making 

process is typically iterative. Each step in the decision-making process can also be iterative, and 

involve review with stakeholders, modellers and policy experts. 

The case studies in this thesis will focus on the first three steps, in which the plausible decisions are 

identified, the model to support the decision is developed, and the model is used to inform the 
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decision. The decision implementation and post-monitoring are outside the scope of this thesis, since 

the focus is on the evaluation of the model itself. The distinction between informing a decision and 

making a decision is highlighted; a model may inform a decision by producing predictions and/or 

simulations that illustrate the preferred decision, however the decision-maker must still make the 

decision, using the information from both the model and other sources. In relation to the process 

above, the model supports the decision by informing it in Step 3, and the decision is made in Step 4 

by the decision-maker, which may or may not be the same as the decision informed from the model. 

2.3.2 Decision-Making Example in Hydrology 

To put the decision-making process in context for hydrologic applications, an example of a 

decision to build a reservoir is presented. This example is discussed for the first three steps of the 

decision-making process to be consistent with the focus of this thesis, i.e., the use of a model to 

inform the decision. 

1. Problem Formulation: The decision is formulated as a binary decision in terms of 

whether to build a reservoir at a specific location to mitigate flooding, or to not build a 

reservoir. The decision is based on what the expected peak flow is over the next 10 years, 

and whether the cost of building the reservoir offsets the potential damage from a large 

flood. To simplify this tradeoff, the decision is set up such that an expected peak flow 

greater than X m3/s suggests that the reservoir should be built, and vice-versa, where the 

threshold is calculated based on a cost-benefit analysis of flood damage versus cost of 

reservoir construction. It is decided that a model is required to estimate the peak flow over 

the next ten years. 

2. Data Collection and Model Development: The relevant data is collected to build the 

hydrologic model, and the model itself is built to support the decision. To build a 

hydrologic model for reservoir management, the required data may include: soil maps, 

topography, vegetation types, upstream drainage area, etc. The historical streamflow data 

would also be collected for calibration and validation of the model. Once the data is 

collected, the model is built and tested in its ability to predict peak flows. 

3. Model Simulation and Decision Identification: In this step, the model is actually run to 

predict peak flows in the next ten years, and the results are used to inform the decision. For 

example, if the model is run and the estimated peak flow does not exceed the determined 
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threshold of X, the decision to not build the reservoir is identified by the model as the 

preferred decision. 

Following this step, decision to build or not build the reservoir would be made by the decision-

maker, which would likely be the same as the model-informed decision. The peak flows would be 

monitored to ensure that the model was in fact capable of predicting peak flows accurately, and 

ensure that the selected course of action does not need to be altered.  

In this example, the model may have informed the decision by proposing that the reservoir not be 

built, based on the provided decision formulation and threshold for peak flow. However, the decision-

maker may still make the decision to build the reservoir. For example, if the peak flow predicted by 

the model is close to the threshold, the decision-maker may take the conservative decision to build the 

reservoir anyway, given the uncertainty present in the model. Other factors may also play a role; for 

example, the decision-maker may decide to build the reservoir due to high public pressure to do so, 

regardless of the modelling results. 

As is typical with real-decision making, the process may be iterative. For example, if the decision 

is reached to not build a reservoir, the initial problem could be reformulated to consider building a 

hydroelectric generating station with the reservoir. The generating station may be expected to recover 

sufficient cost to offset the cost of construction, and thus the decision may be selected to build the 

reservoir.  In terms of the decision setup, a recovered cost would reduce the threshold of expected 

peak flow required to justify building the reservoir, thus potentially changing the decision if the 

expected peak flow was within that range. 

2.3.3 Methods, Frameworks and Sensitivity Analysis in Decision-Making  

There exist a number of methods in the literature for using a computational model, or a set of 

computational models, for decision-making applications in the field of hydrology. The methods can 

be broadly classified based on their approach to defining the preferred decision from a set of 

alternatives. One class of methods focuses on an optimality approach, in which a metric is presented 

for evaluating the performance of a given decision, and the preferred decision is selected based on the 

best metric in a likely future state. For example, multi-criteria decision analysis (MCDA) uses 

multiple objectives to evaluate a set of decisions, and selects a preferred decision from a tradeoff 

curve, e.g., (Ahmadisharaf et al., 2016, Matrosov et al., 2015, Yu et al., 2016). Methods also exist that 

incorporate some concept of ‘robustness’ into their optimization for selection of the preferred 
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decision. Robustness is defined here as satisfying some minimum performance criteria across a range 

of plausible future states rather than being optimal in the most likely future state. For example, in a 

water supply problem, overdesigning the water treatment and supply facilities for a larger-than-

expected capacity is not optimal in the most likely future state (due to an increase in cost), but it is 

much more robust to a plausible high demand scenario, whereas the ‘optimal’ solution is more likely 

to be inadequate in the high demand scenarios. Examples of these types of methods includes Robust 

Optimization (Gorissen et al., 2015) and Info-Gap Decision Theory (Ben-Haim, 2010). Uncertainty 

can also be incorporated into decision-making using Bayes theorem, which is done in the literature 

with Bayesian Decision Analysis (Davis et al., 1972, Varouchakis et al., 2016) and Bayesian 

Networks (Carmona et al., 2013, Pang and Sun, 2014). In these cases, the probabilities of given 

events are described statistically and thus the expected value of a decision can be computed and used 

to select an optimal decision under risk. A specific application of Bayesian decision analysis is 

applied to linking climate models with risk assessment in water resources in ‘decision scaling’ 

(Brown et al., 2012). 

A different philosophy in decision-making is to use models to explore the conditions under which a 

decision can fail and focus on selecting or designing a better decision in the face of uncertainty, rather 

than selecting the optimal best decision from a given set. These methods tend to be more iterative in 

their procedures, as they require rebuilding a decision and re-evaluating under what circumstances the 

current preferred decision may fail. In these methods the concepts of robustness and adaptivity, the 

latter defined as leaving options ‘open’ for future adjustments as more information is known, are 

commonly discussed. These methods tend to use elements of Exploratory Modelling Analysis (EMA) 

(Bankes, 1993), which uses models as experiments to explore various assumptions or scenarios about 

a system. Examples of these robustness- and adaptivity-seeking methods include Robust Decision 

Making (Groves and Lempert, 2007, Matrosov et al., 2013), Real-Options (Steinschneider and 

Brown, 2012), and Dynamic Adaptive Policy Pathways (Haasnoot et al., 2013, Kwakkel et al., 2015, 

Kwakkel et al., 2016). 

Several tools for supporting decision-making also exist. One such example is Scenario Discovery 

(Bryant and Lempert, 2010), which is tool to analyze scenarios and identify key scenarios to inform 

decision-making. The method involves examining the performance of scenarios and classifying them 

based on failure criteria, which can be done using a number of classification algorithms, e.g., Self-
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Organizing Maps, Patient Rule Induction Method, etc. (Bankes et al., 2013). Scenario Discovery is 

often used to support Robust Decision Making in its analysis of scenarios. 

Aside from decision-making methods which use a computational model to inform a decision, there 

exists a much smaller body of literature on methods that evaluate a model in a decision-making 

context, or provide insight into the use of a model for decision-making applications. There are two 

sensitivity-based methods in this category, one of which is the Management Option Rank 

Equivalence (MORE) method (Ravalico et al., 2010). The MORE method explores the simulation 

model parameters in decision space to find what is called the rank-equivalence boundary, where a 

change in parameter value would change the decision selection outcome. Using a Pareto optimization 

approach to explore parameters in decision space, various solutions to the minimum required changes 

in parameter values to change the preferred decision (conditional on the values of other parameters) 

can be reported, and used to determine which parameters are most critical in the model for decision-

making applications (Ravalico et al., 2009). This method is similar to previous studies, such as the 

local or one-at-a-time sensitivity analysis performed for decision-making under climate change 

(Dessai and Hulme, 2007).  

The other sensitivity-based method is the de Novo planning framework (Kasprzyk et al., 2012), the 

key feature of which is a global sensitivity analysis performed on the decision variables with respect 

to performance criteria, which is used to iteratively test formulations of the decision rules. In this 

method several decision formulations can be tested, and the preferred decision formulation can be 

identified. 

Another method for evaluating a model in decision-making, not based on sensitivity analysis, is the 

Iterative Closed Question Modelling (ICQM) approach (Guillaume et al., 2015). ICQM is a general 

methodology for making decisions under uncertainty, and uses the formulation of boundaries in 

decision space to draw conclusions about decision-making. The boundaries formed in the ICQM 

methodology include the epistemic knowledge of the plausible scenarios, defining assumptions of 

what is plausible in the physical system, and normative boundaries, defining the different types of 

plausible decisions to be made. The explicit mapping of plausible decisions and scenarios helps to 

define which decisions will meet the objectives, which plausible scenarios are of concern, etc. The 

method offers little guidance on making a decision explicitly; ideally, the iteration of incorporating 

more knowledge to adjust the epistemic boundary, and the inclusion or exclusion of decision 

possibilities to adjust the normative boundary, eventually concludes when only one feasible decision 
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remains. This method is likely more useful as an exercise to learn more about the state of knowledge 

and plausible options available for decision-making than a decision-making method itself. 

2.3.4 Uncertainty in Hydrology and Decision-Making 

Since decision-making is an endeavor that generally involves individuals and organizations of 

varying backgrounds, areas of expertise, and technical language, a clarification of what is meant by 

‘uncertainty’ is warranted. There is a divide in the treatment of uncertainty by natural scientists and 

decision-makers in terms of how uncertainty is discussed and incorporated into the decision-making 

process. For example, in the natural sciences the term ‘uncertainty’ often refers to statistical 

uncertainty, while the decision-makers’ interpretation tends to pertain to the balancing of conflicting 

objectives (Walker et al., 2003). Decision-makers will tend to take a risk-based approach to decision-

making and focus on system vulnerabilities, while scientists tend to focus on reducing uncertainties 

(Höllermann and Evers, 2017). These differences are important to consider in bridging the gap 

between scientists and decision-makers. 

Perhaps one of the most comprehensive classifications of model-based decision support is the 

article by Walker et al (2003), in which uncertainty is defined generally as, “any deviation from the 

unachievable ideal of completely deterministic knowledge of the relevant system”. The framework 

for classifying uncertainty proposed by Walker et al has been revisited by several articles (Brugnach 

et al., 2008, Refsgaard et al., 2007), and was formally updated in 2010 (Kwakkel et al., 2010). 

Uncertainty in these articles is described by three dimensions: location, level, and nature. The 

location of uncertainty refers to the component of decision support where the uncertainty lies, 

whether it be in the system description and problem formulation, in the model structure or 

implementation, and/or the inputs to the model. For example, the uncertainty in output from a 

hydrologic model typically comes from a combination of: uncertain measured inputs (e.g., 

precipitation, temperature), uncertain conceptualization of the model (bucket storage model vs. 

detailed Richards equation), unclear completeness of the process representations, and the parametric 

uncertainty from calibration to uncertain and limited observation data. The level of uncertainty refers 

to a spectrum of the magnitude of uncertainty, ranging from deterministic (known with certainty) to 

statistical, to total ignorance (we do not know what we do not know). The nature of the uncertainty 

refers to three main categories: epistemic uncertainty, variability uncertainty, and ‘ambiguity’. 

Epistemic uncertainty is due to imperfect knowledge, and can thus be reduced with more study. As an 

example, the spatial distribution of rainfall could be reduced with more gauges, and could thus be 
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considered a mostly epistemic uncertainty. Variability uncertainty is inherent uncertainty due to 

random behaviour, and thus cannot be reduced further (this is also known as aleatory uncertainty in 

the natural sciences (Beven, 2008, Beven, 2013)). Finally, ambiguity refers to the interpretation of the 

nature of uncertainty by multiple heterogeneous stakeholders and decision-makers. In other words, 

the framing of the decision can be a source of uncertainty as well. For example, the framing of a 

groundwater extraction issue can be set as “excessive water consumption” by the ecologist, “illegal 

water extraction” by policymakers, and “insufficient water supply” by a farmer (Brugnach et al., 

2008). This would lead to a different discussion of uncertainty depending on the framing, and various 

components of uncertainty (e.g., regional groundwater storage) may be highly relevant to one party 

and of no concern to another. An examination of decision-making from the practitioner perspective 

also adds the dimension of procedural uncertainty (Höllermann and Evers, 2017), which is related to 

the actual decision-making process and implementation of a decision. This can include uncertainties 

in steps required to make and implement a decision, such as the competency of parties involved in 

decision-making, and the political or social acceptance of a proposed decision. 

There is also the concept of deep uncertainty, which is frequently used in the robust decision 

making and adaptive management literature (Bryant and Lempert, 2010, Groves and Lempert, 2007, 

Haasnoot et al., 2013). Deep uncertainty describes, in basic terms, a situation where the system model 

and its components cannot be adequately described statistically, and the uncertainty creates a 

condition where traditional optimality-based approaches are not sufficient in decision-making 

(Groves and Lempert, 2007). 

The inclusion of the various kinds of uncertainty in a model-based decision-making framework is a 

difficult problem, and is further complicated by differences in perspective of modellers and decision-

makers. The identification of how what kind of uncertainty to consider, and how important it will be 

in the model and decision-making process, is an important first step to set reasonable expectations of 

accuracy and performance (Jakeman et al., 2006). The inclusion of uncertainty in decision-making, 

and how it is treated by relevant parties in the decision-making process, is explored more in the 

following section. 

2.3.5 Linking Hydrologic Models and Decision-Making 

Environmental models are used extensively in decision-making (Bennett et al., 2013), and there is a 

general trend of increased use of models to support decision-making and management in the 

environmental sciences (Gupta et al., 2008, Jakeman et al., 2006, Liu et al., 2008, Refsgaard and 
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Henriksen, 2004). This emphasizes the need for ensuring that computational models can reliably 

provide value in decision-making contexts. The incorporation of uncertainty from hydrologic 

modelling into decision-making is a recognized difficulty. For example, uncertainty bounds on model 

outputs (e.g., the 5th and 95th percentiles of the output quantity of interest) are the most common 

means of describing model uncertainty, despite the difficulty that practitioners experience in 

incorporating the uncertainty bounds into a decision (Höllermann and Evers, 2017). It has been 

suggested that uncertainty in modelling exercises cannot be understood by decision-makers or by the 

public (Pappenberger and Beven, 2006), with some evidence that this is the opinion of scientists and 

water managers alike (Höllermann and Evers, 2017). In a more general sense, information that is 

critical for the decision-maker is not always provided by scientists in a form that is understandable to 

decision-makers (Isendahl et al., 2009, Liu et al., 2008), leaving non-modellers to interpret the quality 

of the modelling results without the proper experience to do so (Jakeman et al., 2006).  

A few methods explicitly map the model results into a decision to handle uncertainty, e.g.,  

(Brown et al., 2012, Guillaume et al., 2015), which would help to translate the uncertainty into terms 

that decision-makers can find useful. However, these methods are limited both in the literature and in 

their application, and these methods do not assess the ability of the model itself to support decision-

making explicitly. 

Suggestions to improve the understanding of models to inform decision-making have been made in 

literature. The concept of participatory modelling, in which models are developed in direct 

consultation with stakeholders, has been shown to improve the decision-making process, e.g., 

(Carmona et al., 2013, Xue et al., 2016). Various studies have agreed that cooperation with 

stakeholders and transparency in the decision-making process are important for improving the 

acceptance of decisions supported by models (Carmona et al., 2013, Höllermann and Evers, 2017, 

Jakeman et al., 2006). Scientists have a tendency to skip to the numerical modelling step with only a 

general idea of the future use of the model (Liu et al., 2008), which fails to establish the purpose of 

the model and can reduce the model’s credibility in a decision-making context. Providing a clearly 

defined model purpose and an explicit conceptual model early in the process can help to make the 

model more transparent and bridge the gap between modellers, decision-makers and stakeholders (Liu 

et al., 2008). To this end, there is also a call in the literature to include criteria for model evaluation 

other than performance, such as fitness for purpose, flexibility to transient management needs, and 

transparency to stakeholders (Jakeman et al., 2006).  
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Other suggestions have included the reframing of uncertainty as risk to allow decision-makers to 

focus on vulnerabilities (Höllermann and Evers, 2017), which is much more readily understood in 

decision-making than uncertainty. A similar type of thinking has suggested that uncertainty can be 

incorporated into decision-making via scenario analysis, which is frequently used by decision-makers 

(Liu et al., 2008). It has also been suggested that binary decisions are preferred by decision-makers 

(Höllermann and Evers, 2017), thus framing decisions as binary where possible may improve the 

usefulness of models for decision-making.  

The call for improved communication between scientists and decision-makers in environmental 

decision-making is ubiquitous and a subject of increasing interest (Keur et al., 2010, Liu et al., 2008). 

The linking of hydrologic model outputs to the decision-making process remains a challenge 

(Höllermann and Evers, 2017), and in general the integration of environmental science into decision-

making is regarded as one of the most difficult challenges of environmental management (Liu et al 

2008). 

2.4 Linking Hydrologic Model Validation to Decision-Making 

There are no existing methods known to the author that directly validate a hydrologic model in a 

simulation (versus forecasting context) explicitly for a decision-making purpose, only methods (such 

as the ones discussed in section 2.3) which inform the decision-making process generally, or inform 

ability of a model to perform in a decision-making application only indirectly. In addition, the current 

methods of evaluating model performance and uncertainty are framed in a manner that is not 

necessarily useful for decision-makers, as discussed in section 2.3.1. The call in literature for new 

developments in validation methodologies is also discussed in section 2.2.3. 

This thesis addresses these gaps by presenting a method for rigorously validating hydrologic 

models in a manner that is directly useful for decision-makers, i.e., directly in a decision-making 

context. The thesis methodology is presented in the following chapter. 
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Chapter 3 

Methods and Model Development 

This chapter contains an explanation of the methodology behind decision crash testing, the focus of 

this thesis, which ties together the discussions of validation and decision-making in Chapter 2. The 

second half of this Chapter will describe the model development used to support the two case studies 

in this thesis. The method of model development for hydrologic models involving reservoirs 

discussed in this chapter is considered a contribution to the literature on its own merit, and is thus 

described in sufficient detail.  

3.1 Decision Crash Testing 

Decision Crash Testing (DCT) is a novel method for evaluating the ability of a model to inform 

decision-making. The DCT framework was developed by Dr. Bryan Tolson and Dr. James Craig at 

the University of Waterloo and first reported in Tolson and Craig (2016), is further developed and 

expanded upon in this thesis. This section will introduce the DCT methodology, discuss the 

advantages of DCT, illustrate how DCT fills some of the existing gaps in literature, and discuss how 

it is different from existing methods. 

3.1.1 DCT Methodology 

DCT was inspired by the crash test analogy of Andréassian et al (2009), which was in turn inspired 

by the classic paper on model validation methodologies of Klemeŝ (1986) (XXX Tolson and Craig 

2016). In a situation where one wishes to use a model to inform a particular decision, DCT is 

intended to estimate the ability of that model to provide the correct decision by evaluating it in a set 

of hypothetical scenarios. This is an answer to the call in literature to both (a) provide more rigorous 

testing of hydrologic models in validation, and (b) bridge the gap between the uncertainty in 

hydrologic models and their interpretation in decision-making. An explicit outcome of this method is 

a measure of how likely the model is to inform the correct decision in a specific decision-making 

context, which is much more interpretable for decision-makers than other commonly used measures 

relaying model skill. 

The following is a summary of the main steps in DCT evaluation. 

1) A decision-making problem for the evaluated model to inform is formulated quantitatively. 

This includes the specification of a decision quantity (a value computed based on the 
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numeric output from the model on which the decision depends) and a set of rules for 

making a decision based on the decision quantity.  

2) A synthetic reality or ‘truth’ model is generated, which is taken as a plausible 

representation of the natural system, and is somehow different from the base model being 

evaluated. The relevant state variable(s) and/or fluxes are extracted from the synthetic 

reality and supplied to the model undergoing evaluation for model building and/or 

calibration. In other words, the synthetic reality provides these ‘observations’ as a proxy 

for the real measurements required in building the model.  

3) A correct decision is determined for the synthetic reality (i.e., if the synthetic reality was 

the real system, what would the correct decision be?) The decision must be consistent with 

the decision formulation rules in Step 1. This decision is assumed to be the correct decision 

only in this instance of the synthetic reality, and based on the decision rules defined in Step 

1. 

4) The model undergoing evaluation is calibrated to the ‘observed’ data generated from the 

synthetic reality in Step 2. Note that the ‘model’ here refers to both the numerical model 

and the methods involved in the model-building procedure; all of the choices involved in 

this process, including the calibration choices, may be evaluated in DCT. This step results 

in a complete model that can be used to select a decision. 

5) The model built in Step 4 is used to solve the decision-making problem in Step 1. The 

corresponding decision is conditional on the model building procedure and supplied 

observed data.  

6) The decision informed by our built model in Step 5 is compared to the ‘correct’ decision 

from the synthetic reality in Step 3 by means of the computed decision quantities. If these 

two decisions are the same, the decision informed by the model is recorded as a correct 

decision; otherwise, the decision is recorded as an incorrectly informed decision (since it is 

not consistent with the synthetic reality decision). 

7) Steps 2 through 6 are repeated N times to create a statistical sample of size N. In each 

iteration, a new synthetic reality or ‘truth’ is assumed, synthetic observation data are 

generated, a new model is built, and the decision of the model is checked against the 
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synthetic reality decision. The result of each iteration is recorded and various post-

processing diagnostics can be computed. 

To provide a context for the above steps, the methodology is demonstrated with an example. Here, 

a binary decision on whether to build a reservoir as a function of expected peak flow is demonstrated. 

Let us assume that in this case, ten years of data from the real system are available to build a model, 

after which we must predict flows ten years into the future and decide whether to build a reservoir for 

flood mitigation if the expected future peak flow exceeds a given threshold. The DCT methodology 

would be setup as follows. 

1) The decision is formulated as to build a reservoir if the peak flow in the ten years of the 

model prediction period exceeds some threshold, i.e., max(Q) > Qthresh (decision A). 

Otherwise, do not build the reservoir (decision B). In this example, the future peak flow in 

the next 10 years is the decision quantity, since this is the model output that dictates how 

the decision will be made. 

2) A synthetic reality model is generated in which the flow values during the twenty-year 

period are considered as known (see section 3.1.3 on details for synthetic reality 

generation). The first ten years will be extracted as ‘observed data’ to build the model, and 

the next ten years of flows will be used to define a correct decision if all flow values were 

known. 

3) The correct decision is based on the second ten-year set of flow values in our synthetic 

reality. Let us say that the maximum flow in the second ten-year set of synthetic flows was 

larger Qthresh, meaning that the correct decision is to build the reservoir (decision A). 

4) The model being evaluated is calibrated to the first ten-years of synthetic observation data. 

For simplicity let us assume that we cannot change our discretization and model structure 

(or have good reason not change them), and we would just like to test the calibration 

methodology of our modelling procedure. The calibration is performed on the first ten 

years of synthetic flows until the allocated calibration budget is consumed. By the basic 

procedure assumed here, the model is now considered ‘ready’ for use in decision-making. 

5) The decision from our model built in Step 4 is evaluated. The model is run for the second 

ten-year set to predict peak flows in that period, and a decision based on the exceedance of 
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Qthresh in that period is made. Let us say that the model does not predict any flow to exceed 

Qthresh, thus the model-based decision is to not build a reservoir (decision B). 

6) The correct decision, defined by the synthetic reality, and our model-based decision are 

compared. Since the synthetic reality decision (or correct decision) was to build a reservoir 

(decision A) and the model-based decision was to not build one (decision B), the decision 

is recorded as incorrect. The decision quantity (i.e., peak flow) from the synthetic reality 

and built model are also recorded. 

7) Steps two through six are repeated N times, for example with 100 iterations. 

From the iterative comparison of the model decision to the synthetic reality, inferences can be 

drawn on the ability of the model to inform the decision correctly. For example, the number of times 

the model proposed the correct decision out of 100 represents, in some sense, as an estimate of the 

likelihood that the model will inform the decision correctly in the real application.  This estimate is 

actually representative of an upper bound on the decision-making skill of the model given the critical 

(but easily defendable) assumption is that informing the correct decision is easier for the model in this 

synthetic experiment than when the model is calibrated to real-world, non-synthetic data (i.e., the 

synthetic reality is easier to represent than actual reality). The decision formulations and details of 

analyses within the DCT framework are presented next. 

3.1.2 DCT Similarity and Decision Models 

In a mathematical formulation of the DCT framework, let us denote the decision quantity as 𝜙.  

The correct (or true) decision quantity for synthetic reality iteration n will be denoted as 𝜙𝑛, and the 

model decision quantity will be denoted 𝜙̂𝑛, as an estimate of 𝜙𝑛. Note that 𝜙𝑛 and 𝜙̂𝑛 are paired, 

since DCT produces one modeled decision quantity per synthetic reality generation. 

The sample of synthetic realities will produce a distribution of decision quantities, 𝜙𝑛, with an 

associated probability density function, 𝑓(𝜙𝑛) (in the limit as 𝑁 → ∞, where N is the number of 

synthetic reality samples). In the case of a binary decision there exists a single decision quantity 

threshold, denoted 𝜙∗, which divides the decision space into two plausible decisions (denoted 

decision A and decision B). These quantities are depicted in Figure 3. 
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Figure 3. Decision quantity distribution from synthetic reality generations for binary decisions 

In a simple example where we produce ten synthetic reality generations and thus ten pairs of 𝜙𝑛 

and 𝜙̂𝑛, we can plot the results of 𝜙𝑛 and 𝜙̂𝑛 and visualize how the DCT diagnostics are computed. A 

sample plot for N=10 points is shown in Figure 4. 

 

Figure 4. Decision quantity pairs from synthetic reality generations (𝝓𝒏) and model outputs (𝝓̂𝒏) 

Figure 4 shows the ten pairings of 𝜙𝑛 and 𝜙̂𝑛 in one-dimensional decision space, with the decision 

quantity threshold at 𝜙∗, and a metric known as model skill denoted Δ𝜙𝑛. The model skill is the 

difference in decision quantity of the model and the synthetic reality, and is expressed mathematically 

as 𝛥𝜙 = 𝜙̂𝑛 − 𝜙𝑛 for a given trial. In each of the ten instances, the model correctly informs the 

decision if 𝜙𝑛 and 𝜙̂𝑛 are in the same region of decision space (i.e., on the same side of the decision 

quantity threshold 𝜙∗). The model fails to inform the correct decision if 𝜙𝑛 and 𝜙̂𝑛 are on opposite 
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sides of the decision quantity threshold. From the example in Figure 4, the model fails to inform the 

correct decision for DCT iterate (or DCT observation number) n=4 and n=5 but informs the correct 

decision in all other trials, thus the percentage of correctly-informed decisions, called the similarity 

score, is 0.8 (i.e., model informed the correct decision 80% of the time). Generally, the similarity 

score is calculated as: 

 
𝑆𝑠 =

#{(𝜙𝑛 − 𝜙∗) ⋅ ( 𝜙̂𝑛 − 𝜙∗) > 0}

𝑁
  (1) 

where 𝑆𝑠 is the similarity score, N is the number of trials, and the # is the number of elements in the 

set where the product of the two terms is greater than zero (i.e., the modelled and synthetic reality 

decision quantity are on the same side of the decision quantity threshold). 

The similarity score can be compared to the probability of informing the correct decision purely by 

chance. In our example, a binary decision has a 50% chance of being made correctly at random; thus, 

a similarity score of 55% would mean that our model building procedure is about as good as a coin 

flip in making decisions, and 80% could be considered a fair bit better than a coin flip; how much 

better than random chance the model is required to be in order to be considered ‘good’ depends on the 

nature of the decision. Statistical tests on proportions can be applied to determine if a similarity score 

is significantly different than 0.5 in the binary case.  

An additional analysis that can be applied to the DCT results is a contingency table, which has been 

used for analyzing probabilistic hydrologic forecasts in the literature (Biondi et al., 2012). A 

contingency table provides additional insight on whether the ability of the model to inform the correct 

decision is independent of the decision generated by the synthetic reality. For the simple binary 

decision from Figure 4, the contingency table is shown in Table 1. 

Table 1. Contingency table example for binary decisions 

  

Synthetic 

Decision 

 

 

  A B Total 

Model 

Decision 

A 5 1 6 

B 1 3 4 

 

Total 6 4 10 
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The contingency table allows us to inspect the proportion of correct decisions made as a function of 

the synthetic reality generated. Ideally, the proportions of correct decisions informed by the model, 

separated by what the synthetic decision was, would be approximately equal, indicating that the 

model’s ability to inform the decision is not a function of the synthetic reality generated. A large 

difference in these proportions would indicate a bias as a function of the synthetic decision, which is 

likely to negatively impact the ability of the model to inform the correct decision. In this example, the 

model correctly informs the decision 5/6 times for decision A and 3/4 times for decision B, which 

does not suggest any particular systematic bias from to the synthetic reality generated, although we 

would likely want more than 10 trials prior to drawing any conclusions here. Formal statistical tests to 

determine if the difference in proportions is significant are also available. 

The individual model skill is the difference in decision quantity of the model and the synthetic 

reality, or expressed mathematically as 𝛥𝜙 = 𝜙̂𝑛 − 𝜙𝑛 for a given trial. A smaller model skill means 

that the model decision quantity is closer to the synthetic decision quantity in a given trial, which can 

be discussed in average terms over the entire DCT experiment as well. Over a set of N trials, the 

histogram of model skill can be generated, as depicted in Figure 5. This distribution of model skill is 

referred to as the discrepancy distribution, since it characterizes the discrepancy between synthetic 

reality decision quantities and model-based decision quantities. 

 

Figure 5. An example discrepancy distribution which is just the sample distribution, or histogram, of 

model skill from a DCT experiment 
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The discrepancy distribution is discussed here in terms of only mean and standard deviation for 

ease of explanation, although no assumption is made on the nature of this distribution. The 

discrepancy distribution is characterized by a mean value, 𝜇Δ𝜙, and a deviation, 𝜎Δ𝜙, which are 

analogous to model bias and model precision in a decision-making context, respectively. Ideally, the 

discrepancy distribution will have (a) a mean value that is close to zero, representing a small bias in 

the decision quantity prediction of the model, and (b) a small deviation from the mean, representing a 

small variation between the synthetic decision quantity and the model-produced decision quantity in 

any given trial. In a decision-making context, a skilled model will be both unbiased and precise if 

both 𝜇Δ𝜙 and 𝜎Δ𝜙 have near-zero values. A skilled model will also be represented by a near zero 

value in the mean absolute model skill, 𝜇|Δ𝜙|. 

Finally, a metric called decision difficulty is presented, which encapsulates the relative difficulty of 

the decision at hand. For a binary decision, the decision difficulty may be formulated as: 

 
𝐷𝑑 =

1 − |𝐴 − 𝐵|

1 + |𝐴 − 𝐵|
 

(2) 

where 𝐷𝑑 is the metric for the difficulty of the decision, 𝐴 is the proportion of synthetic samples 

where decision A is the correct decision, and 𝐵 is the proportion of synthetic samples where decision 

B is the correct decision (Craig, pers. comm., 2017). This is determined for the theoretical distribution 

as 𝑁 → ∞. In practice, 𝐴 can be computed as: 

 
𝐴 =

#{𝜙𝑛 < 𝜙∗}

𝑁
 

(3) 

where #{𝜙𝑛 < 𝜙∗} is the number of synthetic decision quantities less than the decision threshold 

(𝜙∗), and 𝑁 is the number of synthetic reality samples. Similarly, 𝐵 can be computed as: 

 
𝐵 =

#{𝜙𝑛 > 𝜙∗}

𝑁
 

(4) 

The decision difficulty is bounded between 0 and 1, where 0 represents an easy decision in which 

decision A or B is the correct decision in each synthetic reality sample, and a value of 1 represents the 

most difficult decision, where the proportion of synthetic samples for decision A and decision B is 

equal. This is a useful metric specific to nature of the decision problem only (not the model being 

evaluated) to consider when discussing the required model skill. It is possible for the model skill to be 

poor but still achieve a high similarity score if the decision is an easy one, implying that the model is 
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still adequate. The opposite is also possible, where the model skill is relatively good but the similarity 

score is poor, if the decision is a difficult one. 

One limitation of the decision difficulty metric is that it does not take into account the distribution 

of the synthetic decision quantities with respect to the model skill required of the model. This means 

that the decision difficulty metric cannot distinguish the decision difficulty between, for example, a 

uniform distribution of decision quantities and a normal distribution, with a decision quantity 

threshold at the centre of each distribution. The uniform distribution would have a larger number of 

decision quantities farther from the decision quantity threshold than a normal distribution and thus 

represent an easier decision; however, this would not be reflected in the decision difficulty metric. 

This may be overcome by computing the average maximum allowable model skill (AMAMS), as the 

average distance from the decision quantity to the decision quantity threshold. This may be calculated 

as: 

 

𝐴𝑀𝐴𝑀𝑆 = 
1

𝑁
∑|𝜙𝑛 − 𝜙∗

|

𝑁

𝑛=1

  (5) 

where 𝜙𝑛 is the synthetic reality decision quantity, 𝜙∗ is the decision quantity threshold, and 𝑁 is the 

number of trials. This metric can be interpreted as the maximum absolute model skill that the 

evaluated model must be capable of before it fails to inform the correct decision, on average. This is a 

useful metric to present alongside the decision difficulty in order to account for the distribution of the 

synthetic decision quantities, and for setting a reference model skill for later interpretation of DCT 

results. Since the AMAMS is computed using the absolute values of model skill. In the interpretation 

of the AMAMS it may be more useful to compare the mean absolute model skill, 𝜇|Δ𝜙|, rather than 

the mean model skill, 𝜇Δ𝜙.since the AMAMS is itself computed using the absolute values of model 

skill. 

3.1.2.1 DCT Similarity and Decision Models in Non-Binary Decisions 

The metrics presented in the previous section can be generalized for non-binary decisions. In the 

non-binary case for 𝑘 plausible decisions, 𝑘 − 1 decision quantity thresholds can be defined to divide 

the decision space into 𝑘 sections. This is shown in Figure 6 for the case of 𝑘 = 3. 
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Figure 6. Decision quantity distribution from synthetic reality generation for non-binary decisions 

The similarity score for the non-binary case is calculated as: 

 
𝑆𝑠 =

𝐶

𝑁
 (6) 

where C is the number of occurrences in N trials where 𝜙
𝑛
 and 𝜙̂

𝑛
 are in the same region of 

decision space, i.e., where they result in the same decision. In this more general case of k decisions, 

the similarity score could be compared to a value of 1/k, i.e., the chance of informing the correct 

decision purely by chance in k decisions, if all decisions have equal probability of being selected. The 

threshold for considering a similarity score to be acceptable would depend on discussions between 

decision-makers, stakeholders, and modellers. 

The more general formula for decision difficulty, in a case with k discrete decisions in the set of 𝐴 

(i.e., plausible decisions 𝐴1, 𝐴2, … , 𝐴𝑘), is presented below. 

 
 𝐷𝑑 =

(𝑘 − 1) − ∑ |𝐴𝑖 − 𝐴𝑗|𝑖

(𝑘 − 1) + ∑ |𝐴𝑖 − 𝐴𝑗|𝑖
  𝑖 ≠ 𝑗, 𝑗 ∈ [1…𝑘] 

(7) 

This formulation allows the decision difficulty to remain bounded between [0,1] for any case of k 

discrete decisions. The computation of the AMAMS is also adjusted from the non-binary case, and is 

calculated as:  

 

𝐴𝑀𝐴𝑀𝑆 = 
1

𝑁
∑|𝜙𝑛 − 𝜙𝑖

∗
|

𝑁

𝑛=1

,   min {|𝜙𝑛 − 𝜙𝑖
∗
|},   𝑖 ∈ {1…𝑘}  (8) 

where 𝜙𝑖
∗ is the nearest decision quantity threshold to 𝜙𝑛 in decision space. Note that the model skill 

definition does not change for non-binary decisions since the model skill is calculated independent of 

the number of decision quantity thresholds. 
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The next section provides a discussion of other considerations in the DCT framework, which are 

applicable to both binary and non-binary decisions. 

3.1.3 DCT Considerations 

The computational implementation of DCT warrants the consideration of specific choices that need 

to be made in deployment. These choices, each outline in the following sections, include the: 

• method of generating synthetic realities, 

• analysis of synthetic realities prior to use in the DCT experiment, and  

• convergence of DCT metrics. 

These considerations are discussed further in the following sections. 

3.1.3.1 Synthetic Reality Generation 

The generation of synthetic realities is one of the main steps in the DCT framework. The synthetic 

realities can be generated by any feasible means, such that each synthetic reality generation: 

1. Includes sufficient information to determine the ‘correct’ decision, using the established 

decision formulation, and  

2. Generates the synthetic observed data required for building the evaluated model. 

There are a few methods for generating the synthetic realities, and more are likely to be developed 

in future work. A few examples of methods for generating synthetic realities include: 

• the perturbation of historical observed data, 

• the use of random parameters in an existing hydrologic model, or 

• the use of perturbed forcings to an existing hydrologic model. 

The perturbation of historical data can be done to create multiple stochastic generations of synthetic 

observation data, all of which would be relatively similar to the observed data. This technique would 

only be applicable if the decision formulation is based on the same observed data, such as streamflow 

measurements. Perturbation of the historical data can be done by (a) adding random error to the 

existing data directly, or (b) fitting the data with a time series or similar model for random generation. 

The disadvantages of the perturbation approach are that (a) only the time series of historical data can 

used in the DCT experiment and used to build the evaluated model, (b) there is no obvious method of 
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determining whether the resulting perturbed synthetic reality is hydrologically plausible, and (c) the 

range of synthetic realities generated by the perturbation may be limited to those that are relatively 

similar to the supplied data. Some of these challenges are overcome by use of a perturbed model for 

generating synthetic realities, rather than perturbed data alone. 

In using a model to generate synthetic realities, the use of random parameters and/or perturbed 

forcings can be used to generate model outputs, which serve as synthetic observed data for the 

evaluated model. For example, the potential evapotranspiration correction parameter could be 

randomly varied in the model to produce drier or wetter years of synthetic realities. Alternatively, the 

relative weighting of meteorological gauges could be randomly varied to produce stochastic forcings 

and model outputs, e.g., (Sgro, 2016). The advantage of a model-based approach is that (a) the 

outputs produced are more hydrologically consistent than simply perturbing a time series, and (b) the 

model can generate multiple outputs simultaneously for use in building the evaluated model (e.g., 

snow depth and streamflow). It is likely also easier to produce a wider range of plausible synthetic 

realities by perturbing the model rather than the time series directly since there are more controls over 

the output series. A check is recommended for each generation to ensure that the model outputs are 

plausible as a synthetic reality; for example, ensuring that the annual flow volume is within the 10th 

and 90th percentiles of the observed data, or ensuring that snow is present in the model for a given 

number of days during winter months for a model of central Ontario, may be reasonable checks on 

synthetic reality generations. 

Since the synthetic reality is ultimately a substitute for reality, which is infinitely more complex 

than a model, it is more rigorous of a test to use a more complex model than the evaluated model for 

synthetic reality generations. The use of a more complex model also removes the possibility of 

matching the synthetic reality state with the model exactly. In the real application of the evaluated 

model, the data used to build the model will come from a much more complex system (reality) than 

the one represented in the model, thus the use of a more complex model to simulate reality is 

recommended. However, the use of a more complex model is not strictly required, since (a) in some 

cases, building a more complicated model than the evaluated model may not be possible or practical, 

(b) it may not possible to judge the relative complexity of two models if they are not nested in 

structure, and (c) the use of a simpler model for synthetic reality generations can still provide useful 

information via DCT, even if the test is somewhat less rigorous. However, the use of a more complex 
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model than the evaluated model is recommended for synthetic reality generations where plausible and 

practically feasible. 

3.1.3.2 Analysis and Pre-screening of Synthetic Realities 

Once the synthetic realities have been generated, they can be analyzed prior to use in the DCT 

experiment. Typically, the generation of synthetic realities is much less computationally intensive 

than the model-building portion of the DCT experiment, thus the prior evaluation of synthetic realities 

is a logical step. 

The entire set of synthetic realities generated may be examined and the distribution of decision 

quantities can be plotted prior to the model evaluation, from which the decision difficulty and 

AMAMS can be computed. These visualizations, along with the metrics, can provide a useful 

interpretation of the synthetic realities. Ideally, the decision difficulty is a non-zero value, with some 

synthetic decision quantities generated on either side of the decision quantity threshold. One way to 

adjust the synthetic realities is to resample them with a different distribution, which will result in a 

new decision difficulty. A simpler way to adjust the difficulty of the decision is to adjust the decision 

quantity threshold, although this may be limited by the physical interpretation of the decision quantity 

threshold and the method by which it was originally established. 

While there are no strict requirements on the desired distribution of the synthetic realities, a 

uniform distribution is likely the best distribution to achieve to ensure a wide range of conditions are 

tested in the DCT evaluation. The synthetic realities may be resampled to any distribution, including a 

uniform one, if a sufficient number of excess realities are generated. A simple way to sample the 

distribution uniformly is by: 

1. Fitting the distribution of synthetic realities with a known distribution, such as a gamma or 

normal distribution. 

2. Obtaining the density function of the fitted distribution. 

3. Resampling the synthetic realities, where each has a probability of being sampled equal to 

the inverse of its density. 

Regardless of the resampling technique, the resampled distribution can be re-examined to ensure it 

is of an acceptable distribution prior to use in the DCT experiment. These manipulations of the 
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synthetic realities may be iterated several times to achieve a desired distribution prior to the DCT 

experiment. 

3.1.3.3 Convergence of DCT Metrics 

Another consideration is the evaluation of convergence of the DCT criteria, such as the similarity 

score and decision difficulty. Ideally, the metrics produced by DCT have converged after a sufficient 

number of iterations such that the metrics would not change significantly with additional trials, i.e.: 

  𝑆𝑠
𝑁  ≈ lim

𝑛→∞
𝑆𝑠

𝑛 (9) 

where  𝑆𝑠
𝑛 is the similarity score produced after n trials. The same convergence can be considered for 

any of the DCT metrics with N trials. In many computational methods, this is determined with some 

convergence criteria based on a threshold for change in value from trial N-1 to N. For example, if the 

computed similarity score changes by an assigned threshold value of 0.1% from trial N-1 to N, the 

similarity score would be considered converged and DCT trials could stop. Convergence is a 

consideration in many Monte-Carlo based methods (such as Markov-Chain Monte Carlo), and various 

convergence assessment methods exist (Gentle, 2009). Since the sampling of synthetic realities can be 

done independently of the model evaluations, this could first be computed for the decision difficulty 

metric before evaluating the convergence of the similarity score. 

3.1.4 Applications of DCT 

Thus far, DCT has been presented as a framework for evaluating the ability of a model to inform 

decision-making. This is the main motivation and use of the DCT framework, as essentially a 

rigorous model validation method specifically designed for model evaluation in the context of 

decision-making. However, this section will provide a broader scope of the potential applications of 

DCT beyond this basic purpose. These potential applications include: 

• Direct evaluation: is the model good enough to inform our decision? 

• Model failures: under what conditions does the model tend to fail in informing the correct 

decision? 

• Model improvement: how can the model be improved for informing decision-making? 

Which approach is better? 
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• Decision formulation: how should the decision be posed? What are the impacts of 

forming the decision one way versus another? 

These applications can be used not only for testing individual models and decisions, but to generate 

rules of thumb for model deployment in general. Another direction of research has the potential to 

explore the implementation of the DCT method itself, including the impacts of choices made in the 

DCT evaluation and generating rules of thumb for deployment of DCT as a framework. This section 

will illustrate that DCT is a much more comprehensive framework with broader applications than 

model validation alone.  

3.1.4.1 Direct Evaluation of the Hydrologic Model for Decision-Making 

The direct evaluation of the model for decision-making is the primary application of DCT, which 

provides a baseline evaluation of the model. However, as discussed in section 3.1.3.2, the synthetic 

realities generated can be adjusted prior to use in the DCT experiment, with the potential of changing 

the decision difficulty substantially. Two main approaches are introduced for the direct evaluation of 

a model for decision-making with a single decision formulation: 

1. Generate synthetic realities that are representative of random deviations from normal 

conditions, with a moderately difficult decision, or 

2. Generate two sets of synthetic realities, one generated with a low decision difficulty and 

another with a maximally difficult decision (i.e., decision difficulty approximately equal to 

1), with the purpose of using both sets and bounding the model performance. 

The choice of which approach to utilize depends on the risk involved with the decision; for general 

model performance in decision-making the first approach is appropriate, while a decision with large 

consequences (such as flood prediction) would likely warrant a bounding on the model ability. In 

practice, both approaches can be used and the model can be evaluated for three different sets of 

synthetic realities with increasing levels of decision difficulty, which would provide a better bounding 

on the model skill in a decision-making context than a single experiment. It is important to note that 

any assessment of the model skill in a decision-making context is still likely an upper bound on the 

model’s ability, since the expectation is that the use of the model against reality is more difficult than 

against the most complex model output. However, this bounding would serve as a useful exercise in 

the direct evaluation of the model.  
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In the direct evaluation of a model, the interpretation of the similarity score is most informative 

when the similarity score is close to 1, indicating a well-performing model, or less than what would 

be expected with random chance (e.g., close to 0.50 or worse for a binary decision), indicating that 

little value is added by use of the model. Interpreting similarity scores between these two bounds is 

more subjective, since it depends on the specific application of the model and the similarity score 

desired by the decision-maker. However, any relative changes to the similarity score can safely be 

interpreted as improving or worsening the ability of the model to inform decision-making.  

3.1.4.2 Model Failure Analysis 

A more specific application of direct model evaluation is to use the DCT framework to investigate 

under what conditions the model fails to inform the decision correctly. This would be particularly 

important if the decision is one with a high consequence, such as one related to flood prediction or 

dam failure. While the model will, in any test, likely fail to inform the correct decision on some 

occasions due to random chance, the purpose of this application would be to investigate any 

systematic reasons that a model fails to inform the correct decision. 

The general approach to determine the links between model failures and their causes (or at least 

correlations) to elements of the model-building procedure would be similar to that of Scenario 

Discovery (Bryant and Lempert, 2010), where a decision itself is iterated and modified until it 

becomes robust to failure, based on one or more performance criteria. Here, the same approach could 

be applied to the failures of a model to inform the correct decision. 

During the DCT process, an additional step required for this type of application is the collection of 

metadata during the experiment. For example, the model parameters of both the synthetic reality 

models and/or the calibrated models undergoing evaluation would be collected, such that any link 

between poor estimates of model parameters and model failures could be identified. Any other 

elements of the model-building process that are determined during the DCT experiment should also 

be collected. 

The Scenario Discovery approach could, for instance, make use of clustering algorithms to 

categorize the model results into failure and non-failure scenarios. A similar technique could be used 

on the model skill from a DCT experiment, since a large model skill is typically connected to a failure 

to inform the correct decision. Once the cluster of failure ‘scenarios’ is identified, the analysis would 

identify commonalities between these scenarios and determine how the decision can be adjusted to be 
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more robust to those scenarios. In the DCT application, the cluster of evaluated models with large 

model skills would be analyzed for commonalities in order to determine how the model-building 

procedure could be adjusted to reduce the incidence of those poor model skills. For example, if this 

step identifies that the built models with poor model skills tend to underestimate a particular 

parameter, then the parameter range for that parameter could be adjusted in calibration to avoid a poor 

value. This process could be iterated until the model skill is deemed sufficient to the modeller, or it is 

not possible to identify common characteristics of models with poor model skills. Results such as 

these would likewise lead to useful rules of thumb for similar applications without having to go 

through the effort of applying DCT. 

3.1.4.3 Improvement of the Model-Building Procedure 

An important use of DCT is to directly test various model-building choices and their impact on the 

decision-making ability of the model, and thus determine how the model-building procedure can be 

improved to support decision-making, both for the specific model and for similar models or decisions. 

This could be done by simply running two or more DCT experiments with the same synthetic reality 

realizations but different model-building procedures, and comparing the results in terms of similarity 

score and other metrics. For example, to test the impact of the calibration algorithm on the ability of 

the model to inform decision-making, one experiment would be run with algorithm A and another 

with algorithm B; a difference in similarity score would indicate a difference in decision-making by 

the calibration algorithm, which could be evaluated using basic statistical tests. The same could be 

done for any model-building decision, such as the: 

• Level of watershed discretization, e.g., lumped model vs 25 subbasins vs 250 subbasins; 

• Use of various forcing data sources; 

• Treatment of different hydrological process algorithms; 

• Size of the calibration budget; 

• Number or selection of parameters in calibration; 

• Different objective functions in calibration. 

As an additional example, a recent emergence in the calibration literature is the use of hydrologic 

signatures in calibration over the more common fit metrics, such as root mean square error and Nash 

Sutcliffe, e.g., (Hingray and S., 2010, Pokhrel et al., 2012, Shafii and Tolson, 2015). A set of DCT 
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experiments in which one experiment uses hydrologic signatures in calibration, and a second uses 

root mean square error, could reveal whether the use of signatures has a significant impact on the 

ability of the model in a decision-making context. This demonstrates the potential for DCT to be used 

in providing evidence of meaningful improvements in the model-building procedure for decision-

making applications. 

3.1.4.4 Evaluation of the Decision Formulation 

The definition of model-decision mapping, or in other words the decision rules that explicitly state 

how the decision will be based on model output, is a non-trivial task in the decision-making process. 

An important potential application of DCT is to test the impact of different decision formulation on 

the ability of the model to inform the correct decision. It may be possible that for a given decision set 

of k discrete decisions, a model will inform the correct decision more frequently if the decision 

quantity thresholds are adjusted, or the decision quantity is defined differently (i.e., based on a 

different model output(s)). DCT provides a framework to test various decision formulations directly. 

The direct testing of the impact of a decision formulation is not commonly done in the literature, 

although a good example of this is found in the de Novo planning framework, where a global 

sensitivity analysis on the decision variables is used to iteratively test different decision formulations 

(Kasprzyk et al., 2012). 

3.1.5 Analysis of DCT Method Choices 

While the DCT framework is empirically sound, there are a number of things to be warned about 

regarding the robustness and reliability of the method itself. Research topics on DCT itself may 

include (Craig, pers. comm., 2017):  

• Evaluating the relationship between the similarity score and its drivers, including model 

skill, model bias, the decision difficulty, and the synthetic reality sampling scheme; 

• Testing various algorithms and strategies for sampling synthetic realities, including the 

impact of sampling an insufficient number of synthetic realities; 

• Assessing the impact of measurement error on the ability of the model to inform decision-

making, which can be done by adding an error filter function to the observed states 

generated by the synthetic reality for use in the model-building (similar to the filter applied 

in (Crow and Van Loon, 2006)); 
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• Demonstrating under what conditions the similarity scores can be used to discriminate 

between the decision-informing skill of two competing models; 

• Examining the conditions under which the model skill is dependent or conditional on the 

decision quantity. 

These issues will not be addressed directly in this thesis but are, rather, open questions. 

3.1.6 Limitations of DCT 

The current DCT methodology, as presented, has a number of limitations. One of the main 

limitations is the subjectivity and lack of general guidance in generating synthetic realities for 

evaluating models, which has a large potential to influence overall DCT results. The discussions on 

this step in DCT thus far suggest that this limitation can be overcome by (a) the use of multiple 

synthetic reality sets in the DCT experiment, (b) the use of multiple decision formulations, and (c) by 

full reporting of the synthetic reality metrics, which provide a measure of the relative difficulty of the 

decision from the synthetic realities and decision formulation. Providing more guidance on the 

generation of synthetic realities is likely to be a research focus in future work. 

Another major limitation lies in the types of model-building procedures that can be tested with 

DCT. In order for a model-building procedure to be tested with DCT, the model-building procedure 

must be setup programmatically such that it can be iterated many times. For example, testing the use 

of an automatic calibration procedure is relatively trivial, while testing the use of a manual calibration 

algorithm would be impossible. 

Similarly, the decision formulation testable within DCT is limited to a quantitative formulation that 

can be evaluated automatically. A single decision quantity with a single decision quantity threshold is 

simple to evaluate programmatically for the purpose of DCT, but is not reflective of how a real 

decision-making process would proceed. In a real decision, there would be other factors and 

uncertainties to consider, as well as fuzzy decision areas where a judgement call by the decision-

maker is required. These human factors that are clearly part of the decision-making process are 

difficult to capture in the DCT framework, thus simplified implementations of the process are used. 

The use of more sophisticated decision formulations that approach the complexity of the decision-

making process are also potential areas for future research. 

Finally, a practical limitation on the DCT framework is the computational cost of experiments. A 

typical DCT experiment may require 100 iterations of a model calibration with a budget of 2000 or 
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more runs, which results in 200 000+ model runs without accounting for the runs required in the 

generation of synthetic realities. This cost increases proportionally for each synthetic reality set that is 

used. The computational cost of DCT illustrates the need for a fast model and/or sufficient 

computational resources, and makes the DCT method impractical for slower models. 

3.1.7 Comparison of DCT to Other Methods in Literature 

The various components of DCT can be found in the existing literature, and in particular there are a 

number of similarities between DCT and methods from the petroleum industry (Ballester and Carter, 

2006, Carter et al., 2006). The problem is framed as an inverse problem, which is simply defined as 

the process of “inferring model parameters from the past system behavior (e.g., measurements)” 

(Carter et al., 2006). In these examples, the ability of a model-building process to generate reliable 

predictions is tested against a synthetic or truth model, although not in the context of informing a 

decision. The truth model is built using the same physics and resolution as the model undergoing 

testing, and is produced using a set of fixed, known parameters. The state variables produced by the 

truth model are presented to the tested model (as a proxy for observed data) for use in calibration. 

Carter et al (2006) also experimented with adding random error to this ‘observed’ data.  

Other examples also exist where a ‘truth’ model is used to assess and improve the modelling 

process. In a separate area of literature, a ‘synthetic twin experiment’ is used to test the impact of 

incorrect error assumptions on data assimilation filters in a remote sensing application (Crow and Van 

Loon, 2006). A similar idea to a truth model also exists in reified analysis (Goldstein and Rougier, 

2009), in which improvements to a model are guided by comparison to a hypothetical near-perfect 

model (which has been ‘reified’ out of abstraction).  

In all of these instances, one extra step which is performed in DCT (and not in the methods 

mentioned here) is the mapping of the model outputs to decision space, such that the model quality is 

in specific reference to quality for informing decision-making, rather than a general ability to 

reproduce historical data. This is an important additional step in allowing decision-makers to 

understand the impacts of uncertainty for their practical purposes, which is not clear when the only 

discussion is on prediction accuracy. Any method that performs or considers decision-making must 

take the step to map model outputs to decision space. This can be as simple as prescribing a failure 

threshold for a single performance criterion, or something more complex. An example of more 

sophisticated mapping into decision space can be found in decision scaling (Brown et al., 2012) or 

Iterative Closed Question Modelling (Guillaume et al., 2015).  
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DCT is thus far unique in merging these two concepts together into one framework: the evaluation 

of models against synthetic realities (or truth models), and performing the comparison in a decision-

making context by mapping the evaluations into decision space. Performing this evaluation in 

decision space is one of the key features of DCT that makes it more clear and accessible to decision-

makers. 

3.2 Case Study Background 

This section will introduce the background for case studies used throughout this thesis, which are 

based on reservoir management problems in an Ontario watershed. An overview of the problem 

motivation, the characteristics of the local hydrology, and the development of the hydrologic models 

used in the case studies of this thesis are discussed in this section. 

3.2.1 Reservoir Management in Canada 

The proper management of hydroelectric and flood-control reservoirs is a large body of research, 

with many articles devoted to the optimization of reservoir releases (Ahmad et al., 2014, Choong and 

El-Shafie, 2015). Reservoirs are generally operated to consider several different objectives 

simultaneously, such as flood management, ecological low flow requirements, consumptive uses, and 

power generation (in the case of hydroelectric dams) (Chang et al., 2014, Hu et al., 2014, Kamodkar 

and Regulwar, 2014). Canada is home to many lakes and watercourses, and is the second largest 

producer of hydroelectricity in the world, demonstrated by the fact of 59.3% of the total electricity 

generated in Canada in 2014 coming from hydroelectric stations (Natural Resources Canada, 2017). 

As such, the proper management of hydroelectric reservoirs is of particular importance in Canada. 

3.2.2 Study Area and Case Study Introduction 

The case studies presented in this thesis are based on reservoir management problems in the 

Madawaska watershed, which is located in Ontario, southeast of Algonquin Provincial Park, and has a 

total drainage area of over 8500 km2. The watershed is highly managed, home to a total of 41 

reservoirs owned by a variety of government agencies and private companies, the two largest of 

which are Ontario Power Generation (OPG) and the Ministry of Natural Resources and Forestry 

(MNRF) (OPG, 2009). 

The Madawaska watershed is located on the Canadian Shield, which is known for thin soils and 

bedrock outcrops, a product of glaciation. Many lakes, marshes and wetland features exist, partially 
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due to glacial rebound and numerous depression storages (Fu et al., 2014). Overland flow seldom 

occurs with the exception of cases such as bedrock outcrops; otherwise, macropore infiltration 

through soils and interflow at the soil-bedrock interface are the dominant runoff processes (Buttle and 

D., 2004, Fu et al., 2014). 

This research was initiated by a need on the part of OPG to reliably predict inflows into their 

reservoirs, particularly to Bark Lake Dam, which is the most upstream dam that is owned and 

operated by OPG in the Madawaska. One of the main complicating factors in predicting inflow is the 

presence of 12 upstream reservoirs that are owned and operated by MNRF for flood control, with 

reservoir operations and release rules that are unknown to OPG. Thus, the hydrology of the area is 

dominated by the operation of these reservoirs, and the traditional approach of using a standard 

hydrological model to predict inflows to the dam is not applicable. For prediction of inflows to other 

OPG-operated reservoirs in the watershed this is less of an issue, since there is co-ordination within 

OPG between the release from upstream reservoirs and downstream operations.  

The other main complicating factor for the management of Bark Lake Dam is the lack of upstream 

flow data. Many data-driven methods exist in the literature and have been deployed for streamflow 

prediction, for example, artificial neural networks and time series models (Yaseen et al., 2015). 

However, these generally require extensive data sets to achieve good results in prediction, which are 

not available in this case. One possibility for obtaining historical inflow estimates (on which to build 

a data-driven model) is to use the level pool routing approximation (D’oria et al., 2012), where a 

simple mass balance on the reservoir is done to estimate inflow values. The daily inflow values can 

be calculated as: 

 
𝑄𝑖𝑛 = 

𝑑𝑉

𝑑𝑡
+ 𝑃 − 𝐸𝑇 − 𝑄𝑜𝑢𝑡 (10) 

where 𝑄𝑖𝑛 is the inflow to the reservoir, 𝑑𝑉 𝑑𝑡⁄  is the change in volume (or storage) of the reservoir 

determined from stage measurements, 𝑃 is the precipitation intensity, 𝐸𝑇 is the evapotranspiration, 

and 𝑄𝑜𝑢𝑡 is the outflow from the reservoir (all values reported in mm/d). However, the level pool 

routing approach has been found to be sensitive to errors in the measured stage and outflow, and has 

the potential to generate spurious oscillations and even infeasible negative inflow values (D’oria et 

al., 2012). A look at potential causes of measurement errors, such as winter measurements of 

reservoir stage and issues in estimating outflow from tailwater stage-discharge rating curve, is likely 
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enough to cause suspicion in the accuracy of the day-to-day measurements. The reliability of 

predictions from a black-box model built using these inflow estimates would be questionable. 

The approach presented in this work overcomes these limitations by constructing hydrologic 

models which are calibrated to the available reservoir stage data, rather than flow data. The details of 

this are discussed more in the following sections, as well as details on the model structure and model 

building procedure. The methodology presented in this section is used to produce two models for 

supporting the DCT case studies, one model is of the Bark Lake Dam subcatchment and the other of 

the Mountain Chute subcatchment. 

3.2.3 Hydrologic Model Structure 

The hydrologic model structure was developed to capture the characteristics of the Canadian 

Shield, namely the importance of interflow, thin soils, depression storage, and fractured rock 

transport. The models are developed using the Raven hydrologic modelling framework (Raven 

Development Team, 2017), which is built for flexibility and thus ideal for both crafting a custom 

model of the Canadian Shield and tweaking the model for two different portions of the watershed 

without extensive effort. 

The model structure was setup to have either bedrock outcrop (modelled with very thin soil) or 

deeper organic soil (with two soil profiles) in a given subbasin in order to accommodate the Canadian 

Shield landscape. Both soil types are assumed to be underlain by a fractured rock layer, which 

provides a transition to impermeable bedrock. The depth of the fractured bedrock layer also acts as an 

extra calibration parameter, where extra storage in the fractured bedrock can help account for extra 

storage present in the landscape contributing to flow but not accounted for in the model, such as 

depressions and wetlands. The conceptual soil profile is shown in Figure 7. 
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Figure 7. Conceptual diagram of soil profiles in the model 

The top soil layer of each soil profile, SOIL 0, acts as a control on the infiltration rate for each soil 

profile. Infiltration moves water from the ponded water storage (water sitting on the top of the soil 

profile) into the first soil layer (SOIL 0). Soil evaporation also acts on the top soil layer, which moves 

water from the soil layer to the atmosphere. From the first soil layer, percolation moves water 

downwards through the soil profiles. Interflow is assumed to occur at the interface of the fractured 

bedrock interface and the soil layer above it, i.e., from SOIL 1 in the organic soil profile and SOIL 0 

in the bedrock profile. Baseflow occurs from the fractured rock unit, and conceptually contributes a 

slower response than interflow. 

Depression storage is conceptualized with a single storage unit per subbasin, where both the 

maximum depression storage and the percentage of ponded water that is routed to depression storage 

are calibratable parameters. This is the primary accounting for the numerous depressions and 

wetlands that exist in the watershed, although for the purpose of this model they are not connected to 

streams and other water features via groundwater. 

Snow processes are controlled by a snow melt and refreezing algorithm. The snow melt is 

controlled by a simple snow melt algorithm, where potential melt is calculated using the degree day 

method and the actual snowmelt is controlled by calibratable maximum snowmelt rate. The snow 

refreeze is also calculated using a degree day method. 

A few other more minor processes and corrections exist in the model, such as reservoir 

evaporation, canopy storage, and shortwave radiation corrections. The full process diagram for the 

developed model is shown in full in Figure 8. 
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Figure 8. Process diagram for the developed hydrologic model 

The model is relatively simple, which is a function of the limited data to support more complex 

algorithms; for example, detailed snowpack depth and density measurements could justify a more 

sophisticated set of snowmelt algorithms. This model structure is used in both of the case study 

models, with some additional configuration based on the presence of reservoirs in the system. The 

next section discusses the data available to support the model construction, and the watershed 

discretization. 

3.2.4 Data Availability and Discretization 

The development of the models for the two case studies made use of several data types and sources, 

including meteorological data, soil and landuse data, streamflow data, reservoir data, etc. This section 

will document the sources of the data used, the processing and quality control of that data, and their 

use in the model development. This is discussed as one for both case studies, since the two case 

studies both use subsets of the Madawaska watershed. 

Meteorological data was obtained from Environment Canada Historical Climate Data, and seven of 

the closest stations to the Madawaska watershed were used. The stations were interpolated in the 

model using inverse distance weighting (IDW), such that the importance of each climate station in a 
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given subbasin is a function of its proximity. The stations used in the developed models can be found 

in Table 2; the climate ID refers to the Environment Canada Climate Identifier key. 

Table 2. Meteorological Stations used in Madawaska models 

Station Name Climate ID 

Algonquin Park East Gate 6080192 

Bancroft Auto 616I001 

Chalk River AECL 6101335 

Coe Hill 6161740 

Haliburton 3 6163171 

Ottawa CDA RCS 6105978 

Petawawa Hoffman 610FC98 

 

The model was driven using the total precipitation, minimum daily temperature, and maximum 

daily temperature forcings. These are the minimum forcings required to run a model in Raven; 

additional information is available from the Historical Climate Data, although only these forcings 

were used due to a large number of missing data points in the other forcing functions. Some data 

infilling was still required, since Raven does not allow for missing data points in forcing data. The 

missing data points for each time series were infilled using data points for the same day at each of the 

other stations where the data was available, where the data from other stations was weighted with 

IDW. Since the developed model also uses IDW to interpolate forcing functions, this approach in 

effect weights the other stations with data heavier on the days of missing data points. On occasion, the 

IDW infilling approach would produce a minimum temperature larger than the maximum (measured) 

temperature, or vice-versa. In such a case, the offending infilled value would be removed and instead 

interpolated using available data from that station only (i.e., interpolate a missing data value in time 

instead of from other stations).  

The landuse data was obtained from the MNRF, and four primary land use types exist in the 

watershed (three forest types and a water land type). The soil data was obtained from Agriculture and 

Agri-Food Canada, which has soil profile data for the first 100 cm of soil from the surface. This 

information was used to generate the soil types in the model, including soil composition for the non-

bedrock soil types. However, depth to bedrock data was required to build the model beyond a depth 

of 100 cm. This data was obtained from the Ontario Ministry of Northern Development and Mines, 

which provided a set of borehole logs that included depth to bedrock. The borehole logs showed three 
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fairly distinct regions in the watershed where the depth to bedrock was distinctly different, thus the 

soil classes were additionally split by region in order to allow a better representation of soil depths 

(Figure 9).  

 

Figure 9. Depth to bedrock map from borehole logs in the Madawaska watershed 

The depth to bedrock values were interpolated using IDW for each subbasin, and from there an 

average depth to bedrock was calculated for each of the soil classes. 

Flow gauge data was obtained from both OPG and Water Survey of Canada (WSC). Missing 

values in flow gauge data were not infilled, since Raven can disregard missing data points in 

calculating diagnostics. The typical reservoir data available from OPG included reservoir stage and 

reservoir outflows, estimated from a tailwater rating curve (relating downstream water level to flow). 

Several rating curves and storage tables were provided by OPG for both OPG reservoirs and MNRF 

dams, however these were noted to be subject to error (particularly for MNRF dams). It is also noted 

that no flow gauge data was available upstream of Bark Lake Dam, since no flow or stage data 

associated with MNRF dams was available (shown in Figure 10). 
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Figure 10. Flow and level data locations in the Madawaska watershed 

The landuse, soil type, and elevation data were used to discretize the watershed into a total of 83 

subbasins, including 18 reservoirs and 65 non-reservoir subbasins. For simplicity, a single dominant 

HRU is assumed for each subbasin. The two models for the case studies, the Bark Lake Dam model 

and the Mountain Chute model, can be shown in the discretized watershed in Figure 11. 
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Figure 11. Modelled areas in the Madawaska discretization 

One significant difference between the two models is the availability of data and the presence of 

MNRF dams. In the Bark Lake model, there is no streamflow data available upstream of Bark Lake 

Dam, and there are many dams controlled by MNRF, upstream of Bark Lake, which are not well 

characterized by the available information. In contrast, the Mountain Chute model is forced at the 

most upstream point by a WSC streamflow gauge at Palmer Rapids, and there are no MNRF dams in 

this area of the watershed. This makes the setup of the Mountain Chute model much more straight 

forward, since there are no dams to consider, save for Mountain Chute itself (a much smaller dam at 

Mackie Creek exists, but is ignored to its small drainage area and insignificant impact in comparison 

to other factors). 

3.2.5 Reservoir Representation 

An important component of reservoir models is the representation of reservoirs, which dictates the 

modelled reservoir relationships between stage, volume, area, and outflow. Typically, this 

relationship is captured using a table of values that explicitly defines the relationship, called a rating 

curve. The assumed shape of the reservoir can vary, and theoretically any shape or curve 

representation is acceptable as long as it can be demonstrated to be ‘operationally adequate’, to use 

the language of Klemeŝ (1986). In the models developed in this work, the reservoir geometry was 
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simplified with a truncated cone representation, which has the advantage of accounting for the sloped 

sides of reservoirs (rather than a vertical sided representation) while maintaining enough simplicity in 

the shape to derive simple geometric equations. This geometric representation is shown in Figure 12. 

 

Figure 12. Truncated cone representation of reservoir geometry 

Here, 𝐴𝑟𝑒𝑓 is the reference area, ℎ𝑟𝑒𝑓 is the reference height, 𝑟𝑟𝑒𝑓 is the reference radius, ℎ(𝑡) is 

the height at some time t, 𝐴(𝑡) is the reservoir area at time t, 𝑟(𝑡) is the radius at t, and 𝛽 is the slope 

of the reservoir sides (in radians). There is also an associated reference volume of the reservoir, 𝑉𝑟𝑒𝑓, 

which represents the volume of the reservoir at the reference height, and a volume of the reservoir at 

time t, denoted 𝑉(𝑡). This representation allows the calculation of the area and volume of the 

reservoir as a function of stage (Liu, pers. comm., 2017). First, the reference radius 𝑅𝑟𝑒𝑓 can be 

calculated using the reference area, which would be specified from available data and/or from 

calibration. 

 Rref = √Aref/π (11) 

Next, the 𝑟(𝑡) can be calculated as: 

 𝑟(𝑡) = 𝑅𝑟𝑒𝑓 + [ℎ(𝑡) − ℎ𝑟𝑒𝑓]/tan (𝛽) (12) 

From here, the 𝐴(𝑡) as a function of 𝑟(𝑡), simply as: 

 𝐴(𝑡) = 𝜋 ∙ 𝑟(𝑡)2 (13) 

The volume at any given point in time, 𝑉(𝑡), can be calculated as: 

 
𝑉(𝑡) = 𝑉𝑟𝑒𝑓 + 

1

3
∙ 𝜋(ℎ(𝑡) − ℎ𝑟𝑒𝑓) (𝑅𝑟𝑒𝑓

2 + 𝑅𝑟𝑒𝑓 ∗ 𝑟(𝑡) + 𝑟(𝑡)2) 
(14) 
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Together, these equations fully capture the stage-volume-area relationship. The outflow 

characteristic of a reservoir is calculated independently of the geometry, since the outflow is 

controlled. In this modelling setup, the reservoir outflow as a function of the stage at a given time, 

ℎ(𝑡), is calculated as: 

 𝑄(ℎ) =  𝑎(ℎ − ℎ0)
𝑏 (15) 

where 𝑄(ℎ) is the outflow as a function of reservoir stage (L3/T), 𝑎 is the power law coefficient 

(L2/T), ℎ is the reservoir stage (L), ℎ0 is a reference stage for flow (L), and 𝑏 is the power law 

exponent (dimensionless). 

Note that the reference stage for the flow rating curve is not necessarily the same as the reference 

stage in the volume rating curve equation. In the flow rating curve, the reference stage signifies the 

water level at which outflow begins, which is defined by reservoir operations and not geometry. The 

reference stage in the volume rating curve defines the ‘bottom’ of the reservoir as a reference point. 

These equations together allow the representation of reservoir properties and behaviour in the 

hydrologic model. The geometric properties were informed by both the HydroLakes dataset 

(Messager et al., 2016) and through calibration. The HydroLakes dataset contains information on 

reservoirs around the globe, including reservoir water elevation, area, slope, volume, etc., and were a 

useful starting point in estimating the reservoir parameters prior to calibration of the reservoir area. 

3.2.6 Model Calibration Procedure 

The model calibration procedure deployed here makes use of the reservoir stage data rather than 

the typical estimated flow data. The only previous use of reservoir stage data directly in hydrologic 

model calibration found in the literature comes from the building of a rainfall-runoff model in 

Swaziland (Gijsbers, 2015), making this the first known and documented use of such a procedure in a 

North American watershed. Typically, inflows are estimated using level-pool routing and the model is 

calibrated to estimated inflows. 

The reservoir outflow data is used to fix the daily outflow from the reservoir, thus the model should 

accurately reproduce the observed stage values, provided that (a) the model produces the correct 

inflow series, (b) the reservoir stage-volume relationship is well represented, and (c) the errors in 

measured data are unbiased. This approach is theoretically less sensitive to measurement errors than 

calibrating to inflows estimated from level pool routing, since the matching is done to the entire time 
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series of data, and is thus much less influenced by spurious flow peaks caused by errors. It also 

calibrates directly to raw data (rather than estimated data), thus there is no presence of numerical 

artefacts beyond measurement error. Here the assumption is made that the data is unbiased, and thus 

the observed stage can be matched, provided the structure and calibration of the model is adequate. 

A procedure was developed in order to calibrate these reservoir models using the available data. In 

this stepwise calibration, the model is calibrated sequentially to match the inflow volume, reservoir 

characteristics, snow parameters, and finally the stage data and daily volume changes overall. Each of 

these steps uses a different calibration metric, and the parameters calibrated in each step are selected 

as the parameters most influential to that particular metric. This allows the calibration to be done 

more efficiently with a relatively small number of parameters in each step. The calibration procedure 

is summarized in the steps below. The parameters calibrated in each step are discussed here briefly; 

the full list of calibrated parameters in each step can be found in Appendix A. 

1. Calibrate the model to the match the inflow volume to the outflow volume in each year of 

simulation, understanding that there is consistently a near-zero net change in reservoir 

volume on October 1st of each year. This calibration is done first and is independent of the 

unknown reservoir relationships, since the incoming and outgoing water from the reservoir 

are not impacted by the modelled reservoir rating curve. The evaporation and precipitation 

on the reservoir surface are neglected here in comparison to the much larger flow volumes. 

The correction factors for potential evapotranspiration, the parameters for canopy 

interception and storage, and the parameters related to depression storage are calibrated in 

this step. 

2. Adjust the reservoir rating curve parameters, namely the 𝐴𝑟𝑒𝑓 and 𝛽, to obtain an 

approximate solution for the rating curve parameters. This is done prior to the use of 

metrics that rely on fitting the historical stage data, which is impacted by the modelled 

rating curve. The starting point for the reservoir parameters comes from both the 

HydroLakes dataset and OPG data (parameter values provided in Appendix A). In practice, 

the reference area has much larger impact on the reservoir volume rating curve than the 

slope, thus 𝛽 was not calibrated (the original values from HydroLakes were kept). A 

correction factor for potential evapotranspiration on lakes was also calibrated in this step. 

3. The parameters related to snow and snowmelt are calibrated for the winter period, with a 

metric based on the daily change in volume in the reservoir during the winter months. The 
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metric is setup to penalize poor freshet response in the model, which is a key concern for 

reservoir operation. The calibrated parameters include the melt and refreezing factors, a 

correction factor for snowmelt in forests, and the temperatures for calculating the partition 

of rain and snow. 

4. A more general set of parameters that control timing of flows, mainly soil parameters 

related to infiltration, interflow, etc. are calibrated. The metric used is based on the match 

to reservoir stage as well as the daily changes in reservoir volume. 

5. An expanded version of the set of parameters in Step 4, which includes the soil routing 

parameters and a number of vegetation parameters, are calibrated as a final calibration run.  

This procedure had to be iterated a few times in order to achieve a good fit to the data. It is noted 

that these steps are not fully independent; for example, the calculation of daily reservoir volume 

changes, used in Steps 3-5, requires a good estimation of the stage-volume rating curve in order to 

establish the stage-volume relationship. The details of the metrics used in each step are presented in 

Appendix A. 

One issue that was identified in the calibration to reservoir stage is the long memory of reservoir 

stage; in other words, any errors in reservoir stage at one point in the simulation is propagated 

forward, which can create issues in matching stage at a later point in the simulation even if the inflow 

estimation was perfect. This is in contrast to the use of flow for calibration, since flow has a much 

shorter memory, and errors in flow estimation at one point in time do not necessarily impact the 

ability to match later flow events. The long memory issue can also impact the use of a warm-up 

period, since it becomes more difficult to ignore large errors in the stage simulation of the warm-up 

period, when results are typically ignored. There are a number of potential solutions to the long 

memory issue, such as (a) weighting later stage data heavier in the calculation of diagnostics, since 

the long memory implicitly makes the earlier time period more important in stage matching; (b) 

fixing the simulated stage to the measured stage periodically throughout the simulation; or (c) using 

metrics that use the stage data without fitting the stage explicitly, such as daily volume-change 

comparison metrics. In this work both (a) and (c) are used to reduce the impacts of the long memory 

in reservoir stage, however the second approach has been used in other studies, e.g., (Lin et al., 2015). 

Additional effort was required in the Bark Lake Dam model to account for the presence of the 

upstream reservoirs. The problem in calibrating the upstream reservoirs is that there is little 
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information on the reservoirs themselves and no information on the reservoir outflows. The large 

number of upstream reservoirs also creates a large number of parameters for each reservoir, creating a 

more difficult calibration problem. The large number of parameters were reduced by first 

consolidating the upstream reservoirs and simply representing all of the upstream reservoirs with only 

the Booth and Galeairy reservoirs, which are the two largest dams (in terms of drainage area) with the 

shortest upstream distance to Bark Lake. The next step was to use the HydroLakes data (and OPG 

rating curves) to fix the ℎ0 and ℎ𝑟𝑒𝑓 parameters of these two upstream reservoirs, and finally to 

manually calibrate the other upstream reservoir parameters for volume and flow relationships. The 

upstream reservoir parameters were chosen to (a) reduce the peak flows from the reservoirs as much 

as possible, and (b) release approximately the same volume of water as enters the reservoir each year, 

meaning that stationarity in reservoir stage (and volume) from year-to-year is maintained. This 

calibration is based on the knowledge that the upstream MNRF dams are flood control dams (and thus 

presumably minimizing peak flows), and the assumption that the reservoirs have relatively consistent 

volume storage from year-to-year. The assumptions are considered the best possible information 

available regarding the upstream reservoirs to guide a manual calibration. 

The Bark Lake and Mountain Chute models were both calibrated using the entire period of data 

(from 2007-10-01 to 2015-09-30), excluding a one-year warm-up period. In each calibration step, the 

Dynamically Dimensioned Search (DDS) algorithm (Tolson and Shoemaker, 2007) was deployed. 

The entire period was used in calibration in order to develop the best possible fit for use in DCT, 

although a set of split-sample tests was also performed as a check on model performance. This is 

discussed with results in the following section. 

3.2.7 Model Results and Use in DCT 

The calibrated model results for the two subcatchments are presented here, showing the simulated 

and observed stage for the entire simulation period. The results for the Bark Lake Dam model after 

undergoing calibration are shown in Figure 13. 
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Figure 13. Calibrated model results for Bark Lake Dam inflow model (blue shading indicates the 

December 1st to March 31st winter period) 

The results indicate in Figure 13 show a fair fit to reservoir stage with a Nash-Sutcliffe of 0.23 and 

an R2 of 0.49, particularly considering that the simulation was continuous and errors in reservoir stage 

were propagated throughout. Also note that Nash-Sutcliffe metric for stage compares the simulated 

stage values against a mean stage value, which matches the stage well during many months of the 

year, resulting in a relatively low metric. As an additional check, the flow to Bark Lake Dam 

produced by the calibrated model and the flows estimated by OPG using level pool routing are 

compared; this is done as a general check on the model (Figure 14). The level pool routing inflow 

estimates are by no means ‘measured’ data, however, an agreement between the two flow estimates 

still serves as a good indication of model performance. The two flow estimates show a relatively 

favourable comparison in Figure 14, with an NSE of 0.41 and an R2 of 0.46 (using the level pool 

routed flows as ‘observed’ data in the calculations). This suggests that the model is capable of 

reproducing the inflow series to some degree of agreement. However, the baseflow signature between 

the modelled and level pool routed flows are often in disagreement, indicating some issues here; this 

is likely attributed to the representation of upstream reservoirs, which causes the steady decline in the 

simulated flows at low flows. 
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Figure 14. Inflow comparison from calibrated model and level pool routing for Bark Lake Dam model 

As an additional validation test on the model, a split-sample test was applied, splitting the data 

from 2007-10-01 to 2011-09-30 and 2011-10-01 to 2015-09-30, and calibrating the model using the 

first data period only. The plot of the simulated stage for both periods is shown in Figure 15. 

 

Figure 15. Bark Lake model split-sample test results for reservoir stage 
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The stage plot shows that the stage is relatively well-fitted in the calibration period but is 

significantly off in the validation period. Errors accumulate particularly in the 2012-2013 period and 

persist in subsequent years, due to the long memory of stage in a continuous simulation. However, the 

flows during the validation period are still fairly consistent with the level pool routing estimated 

flows, with a Nash-Sutcliffe of 0.53 and 0.59 in the calibration and validation periods, respectively. 

This agreement is shown in Figure 16. 

 

Figure 16. Bark Lake model split-sample test results in flow comparison 

The simulated flows show a general overestimation of baseflow and underestimation of peak flows 

in comparison to the level pool routing flows. The relatively increased baseflows and decreased peak 

flows are likely due to both the explicit reservoir representation in the hydrologic model (which 

attenuate peak flow and increase low flows), and the artefacts of level pool routing, which tend to 

produce spurious peaks. Nonetheless, the model fit to flows is much better than would be expected 

after examining the reservoir stage fit alone. This is another example indicating that the long memory 

of stage can produce poor fits to reservoir stage without large detriment to the simulated flows. 

The performance of the stage-fitted model can be compared to the results obtained by using the 

typical approach, i.e., estimating the inflow series from level pool routing and calibrating the 

hydrologic model to those flows. The reservoir volume change is calculated from the same stage-

volume rating curve used in the Bark Lake model above. The uncorrected inflow series calculated 
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using level pool routing on Bark Lake Dam (without inclusion of the precipitation and 

evapotranspiration terms) is shown in Figure 17. 

 

Figure 17. Uncorrected level pool routing-estimated inflow series at Bark Lake Dam 

The level pool routed flows have a number of unrealistic characteristics, particularly the inflow of  

-327 m3/s on December 6th, 2007, and the other smaller inflows in the series (comprising 

approximately 4% of the time series). There is no obvious method to determine whether the peaks are 

spurious or not, however spurious peaks are a known characteristic of the level pool routing method. 

This inflow series is corrected with the basic approach of setting all negative flows to a value of zero, 

and this corrected series is used to calibrate the hydrologic model. The model is calibrated with a 

budget of 10 000 runs using the DDS algorithm, and the calibration objective is set as the root-mean 

square error of the observed and simulated flows. The parameters included in the calibration are the 

same as those in Table C1 of Appendix C. The inflows generated from the stage-fitted model and the 

level pool routing-fitted inflows are shown in Figure 18. 
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Figure 18. Comparison of stage-fitted and level pool routing-fitted inflows 

The flows from both models are relatively similar with an R2 of 0.63 and a volume difference of 

less than 2% (level pool routing inflow series has slightly larger volume overall). The base flows are 

generally larger in the stage-fitted model inflows, and the peaks are higher in the level pool routing 

model. Since there is no observed inflow data to compare to, no conclusion can be drawn from this 

plot regarding which provides the better fit, although it may be suggested that larger baseflows and 

smaller peaks are more likely in a reservoir-dominated watershed (since the reservoirs are operated 

for flood control), and the higher peaks in the level pool series may be spurious. The performance 

between these two inflow series is also examined using the simulated stage associated with each 

inflow series, which does have observed data for comparison. The difference in reservoir stage of 

these two inflow series is compared in Figure 19.  
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Figure 19. Comparison of Bark Lake model stage and level pool routing simulated stage 

The stage-fitted flows provide an overall better fit to the observed stage than the level pool routed 

stage, with a Nash-Sutcliffe and R2 of 0.23 and 0.49, respectively, while the level pool routed stage 

have a Nash-Sutcliffe and R2 of -0.38 and 0.37, respectively. This demonstrates that the stage is 

somewhat better fitted when the stage data is used directly in calibration, which is not surprising.  

The Mountain Chute model was also calibrated using the stage data. The calibrated model results 

of the Mountain Chute model are shown in Figure 20, and the comparison of simulated and level pool 

routing flows in Figure 21. The stage fit has a Nash-Sutcliffe of -0.01 and an R2 of 0.43. The flow 

comparison for the Mountain Chute model is particularly favourable; the Nash-Sutcliffe and R2 of the 

inflows are both calculated as 0.91. 
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Figure 20. Calibrated model results for Mountain Chute model 

 

Figure 21. Calibrated model results for Mountain Chute model 

The reason that the inflows are so close in the Mountain Chute model is due to the forced inflows 

from measured data in the most upstream point of the model, which is the dominant signal in the 

simulated inflow to the Mountain Chute reservoir (i.e., only a small amount of water is added to the 
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simulated inflows by the landscape, compared to the magnitude of upstream reservoir releases). This 

makes the matching of inflows from level pool routing less impressive than the Bark Lake model, 

since the naïve model of assuming that forced subcatchment inflows are equal to inflows at Mountain 

Chute obtains a Nash-Sutcliffe of 0.86 and an R2 of 0.91. The signal comparison from upstream 

released flows and model simulated inflows is shown in Figure 22. 

 

Figure 22. Comparison of upstream reservoir releases to simulated reservoir inflows at Mountain Chute 

The split-sample test is again applied to the Mountain Chute model, for the same calibration and 

validation periods as the test applied on the Bark Lake model. The results for the reservoir stage and 

flows in calibration and validation show a similar pattern, where the validation stage is not well fitted 

but the flows simulated in validation still closely match the level pool routing estimates; the flows 

obtain a Nash-Sutcliffe and R2 of 0.90 and 0.91 in the calibration period, respectively, and 0.91 for 

both metrics in the validation period. 
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Figure 23. Mountain Chute model split-sample test results for reservoir stage 

 

Figure 24. Mountain Chute model split-sample test results in flow comparison 

These results for both models, particularly when models of both areas in the watershed show poor 

stage performance in validation but quite reasonable flow performance, raises the question of how 

well the stage needs to be matched in order to provide good flow estimates or insight into decision-
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making. This is explored further in subsequent thesis chapters, where the DCT framework is applied 

to these model structures to evaluate them in decision-making contexts.  

The Bark Lake and Mountain Chute models calibrated to the full data period, where the stage and 

flows are both well-matched, are used in the synthetic reality generation step of the DCT framework. 

This provides a model with the best possible stage fit for use in the synthetic reality generation. It is 

stressed that for DCT, the synthetic reality model does not necessarily need to be fully validated for 

performance, it only requires the synthetic reality to produce plausible observations to test the 

evaluated model by. Therefore, the model calibrated to the full data period is sufficient for use in 

DCT as a synthetic reality generator. 

The model structure presented in this chapter is also recycled in building the model undergoing 

evaluation. The use of these models in the DCT framework is explained in more detail in subsequent 

chapters. The next chapter presents a DCT application to a reservoir management decision in the 

Mountain Chute Dam subcatchment, which makes use of the Mountain Chute model. 
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Chapter 4 

Decision Crash Testing in a Reservoir Management Application 

This chapter discusses the setup and results of the first Decision Crash Testing (DCT) case study, 

applied to a reservoir management problem in the central portion of the Madawaska watershed. The 

details of the DCT setup are demonstrated in this chapter. This chapter also includes a demonstration 

of testing improvements to the model-building procedure within a DCT framework. 

4.1 Case Study Setup 

This section details the setup of the DCT framework in the context of a reservoir management 

decision in the Madawaska watershed. The context of the hypothetical reservoir management 

decision, the quantitative decision formulation, the additional model updates required for this case 

study, and the details of the DCT experimental setup are discussed in this section. 

4.1.1 Reservoir Management Decision 

In this case study, the hypothetical decision at hand is whether the outflows from Kamaniskeg Dam 

should be decreased in overall volume by 5% during the summer season in order to release more 

water in the autumn, and thus produce more profit from hydroelectric power generation. Downstream 

of the Kamaniskeg Dam along the Madawaska River exists the Lower Madawaska River Provincial 

Park, where many recreational activities including camping, canoeing, whitewater rafting, etc., are 

popular in the summer season. The location of the major features in this subcatchment are shown in 

Figure 25. 
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Figure 25. Location of key features in reservoir management DCT case study (Provincial Park location 

shown in transparent red) 

In this hypothetical decision, the reservoir operator would yield greater profits by generating more 

electricity in the autumn season than in the winter season, and thus shifting some release from the 

summer season to the autumn season would be financially beneficial. However, releasing less water 

in the summer would impact the water flow and level in the Provincial Park during the summer 

season, to the detriment of the park patrons. Thus, the decision to adjust the flow releases at 

Kamaniskeg Dam is based on the impact of the adjusted reservoir operation on the flows in the 

Madawaska River. If the flows become reduced below a specified low flow threshold, the operational 

option is untenable. 

The decision is setup as a binary decision, where either the current reservoir operation is kept, or 

the adjusted operation with decreased summer flows and increased autumn flows is implemented. In 

reality, there would be a spectrum of potential decisions, however it is kept to a binary decision for 

the purpose of this case study. The decision is also formulated to be based only on whether the impact 

of the decision on river flow is greater than a given threshold; the tradeoff between profits to the 

reservoir operator and value of higher flows for park patrons are greatly simplified by the use of a 

decision quantity threshold, which is assumed in this case study but would normally be determined 

through something more rigorous, such as a cost-benefit analysis. 
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The DCT implementation in this case study tests the ability of the model to inform the correct 

decision in a forecasting period, i.e., the model is supplied some calibration data for training, supplied 

future boundary conditions in the form of meteorological forcings and reservoir forcings, and used to 

evaluate the decision quantity for data unused in training. This is different from the use in the 

previous case study, where the model calibration period and decision evaluation period were 

identical. 

4.1.2 Decision Quantity Definition 

The decision quantity is meant to capture the impact of the reservoir operations on low flows in the 

Provincial Park, thus the outlet of subbasin 48 in the overall model discretization was selected as the 

point of evaluation, which is the subbasin along the main river branch just upstream of the Provincial 

Park. The summer flows from both possible reservoir operations (as simulated by a synthetic reality 

model with calibrated parameters) are shown in Figure 26. 

 

Figure 26. Synthetic reality generated summer flows at subbasin 48 for base and adjusted reservoir 

operations (vertical lines indicate breaks in time) 

From the plot of summer flows, there is a consistent impact from the adjusted reservoir operation 

with a reduced summer rating curve. The June and early July flows are reduced by the adjusted 

reservoir operation, resulting in a slight increase in flows during the late July and August period. The 
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increase in later summer flows occurs due to the relative retention of water in the reservoir earlier in 

the summer, leaving more water available to flow out during the later period. This shows that the 

period upon which the decision quantity is based is highly important, since the impact of the reservoir 

operations on the summer hydrograph are dependent on the time period examined. 

In this case study, the decision quantities are based on the difference in proportion of low flow days 

during the respective evaluation periods, namely the months of June and August during the time 

period of 2012-10-10 to 2015-09-30. The threshold for each period, defining the low flow threshold, 

is set as 50 m3/s and 20 m3/s, respectively. The low flow thresholds are assumed for this case study, 

but reflect the hypothetical minimum streamflow values required for the reasonable enjoyment of the 

park for recreational purposes during the June and August months, respectively. 

Mathematically, the proportion of flows during the simulated June months that are below the low 

flow threshold can be calculated as: 

 

𝐷𝑉𝑏𝑎𝑠𝑒 =
1

𝑁𝑑
∑𝑆(𝑄𝑖 > 𝑄𝑡)

𝑁𝑑

𝑖=1

 

(1) 

where 𝐷𝑉𝑏𝑎𝑠𝑒 is a decision variable corresponding to the base reservoir operation (dimensionless), 𝑁𝑑 

is the number of June days in the evaluation period, 𝑆 is a function that evaluates the given statement 

and returns a value of 0 or 1 corresponding to whether it is true or false, 𝑄𝑖 is the daily average flow 

on the ith June day (m3/s), and 𝑄𝑡 is the minimum flow threshold required for ‘enjoyable’ use of the 

river (i.e., 50 m3/s). The second decision variable, 𝐷𝑉𝑎𝑑𝑗, is defined in the same way but calculated 

for the adjusted reservoir operation instead of the base operation. 

Using these definitions of decision variables, the decision quantity is calculated as: 

 𝐷𝑄1 = 𝐷𝑉𝑏𝑎𝑠𝑒 − 𝐷𝑉𝑎𝑑𝑗 (2) 

where 𝐷𝑄1 is the decision quantity calculated for June months (dimensionless). The second decision 

quantity, 𝐷𝑄2, is calculated in the same way but for the August months with a low flow threshold of 

20 m3/s. In either case, the decision formulation is based on whether the decision quantity, 

representing a change in the proportion of low flow days for that period, is acceptable. The decision 

quantity threshold is set here as 0.2, which can be interpreted as, “the adjusted reservoir operation 

should be implemented if the percent reduction in low flow days is less than 20%”. This 20% 

decision quantity threshold is arbitrarily assigned for the purpose of this case study, but reflects the 

hypothetical tradeoff between the reduction in value of the Park’s enjoyment and the value of profits 



 

 70 

made by the adjusted reservoir management scheme. Note that in the case of the August period, the 

proportion of low flows days is expected to decrease under the adjusted reservoir operation, meaning 

that the use of 𝐷𝑄2 as a decision quantity should lead to an easy decision for the model to inform. In 

terms of the model evaluation, the DCT framework is deployed to test whether the model (including 

provided data) is capable of estimating the change in proportion of summer flows with sufficient 

accuracy to inform the operational procedure of the reservoir. 

The updates to the Mountain Chute hydrologic model that were required to implement this case 

study are discussed in the next section. 

4.1.3 Mountain Chute Model Updates 

A number of updates to the calibrated hydrologic model of Mountain Chute (discussed in section 

3.2.7) were required for the application of DCT in this case study.  The main adjustment was the 

added representation of the Kamaniskeg Dam to replace the forced inflows to the model, since the 

reservoir operations at Kamaniskeg needed to be represented. Here, inflows to the Kamaniskeg 

reservoir were computed using level pool routing and forced to the reservoir. The Kamaniskeg Dam 

reservoir parameters were estimated in a similar fashion described in section 3.2.5; reservoir 

parameter estimates were obtained from the HydroLakes and OPG data sources, and the reservoir 

area was calibrated to obtain a good model fit to the observed stage. The reservoir parameters for 

Kamaniskeg Dam are included in Appendix B. 

An important update was the simulation of Kamaniskeg Dam outflows using a seasonal rating 

curve representation, rather than a fixed rating curve for the entire year. This was required in order to 

model the adjusted reservoir releases in different seasons. An analysis was performed to determine (a) 

which months are appropriate to cluster as seasonal outflow schemes, (b) the quantitative fitting of 

each season, and (c) the adjustments to the base seasonal outflow scheme required to decrease 

summer outflows by 5% (and increase autumn flows by 5%). The details of this analysis are included 

in Appendix B, however, the key results of this analysis include: 

• The seasons are defined as expected, with the exception of March belonging to the winter 

months rather than the spring months. This was defined qualitatively by examining the 

historical stage-outflow scatterplots in each month, and the March pattern was much more 

consistent with winter months. 
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• The typical power law relationship was not appropriate for fitting flows in any season. A 

piecewise linear regression was used to fit the winter stage-outflow relationship, and a simple 

linear regression was used for the other three seasons. These linear regressions were used to 

create the stage-outflow relationships in the rating curve representation of the Kamaniskeg 

Dam, and the outflows produced by this seasonal relationship were verified against observed 

data. 

• The summer flows in the adjusted reservoir management scheme were determined by manually 

reducing the summer flows in the base rating curve by a single factor, until such a point that the 

synthetic reality model with calibrated parameters had an average summer flow volume 

decrease of approximately 5%. This corresponded to an approximately 5% increase in autumn 

flows without adjusting the autumn stage-outflow relationship, since the excess volume held 

back in summer is naturally released in autumn under these circumstances. 

The modelled outflows under the base seasonal rating curve were matched very closely by the 

observed flows downstream of Kamaniskeg Dam, with a Nash-Sutcliffe value of 0.96 and an R2 value 

of 0.97.  These outflows are compared in Figure 27. 

 

Figure 27. Comparison of simulated and observed flows using a seasonal rating curve representation at 

Kamaniskeg Dam 
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Although the flows were well-fitted by the representation of the Kamaniskeg Dam, the reservoir 

stage was shown to be more sensitive to the seasonal representation, as shown in Figure 28. 

 

Figure 28. Kamaniskeg Dam stage with seasonal outflow representation 

The sensitivity in reservoir stage is due to the linear fits to the seasonal stage-outflow relationships. 

In reality, the reservoir is operated to adjust flows to mitigate such changes in reservoir stage, which 

is not captured well by the linear fits to the stage-outflow relationship. However, the fit is deemed 

sufficient by the fit to the observed outflows. 

One artefact of the seasonal rating curve is that there is spike in flows on the transition days 

between seasonal rating curves, as seen in Figure 28 for December 1st of each year, for example. Both 

of the reservoir management operations, the base scheme and the adjusted scheme with reduced 

summer flows, are described in the model with a table of seasonal rating curves. The rating curves 

provided to the model for both reservoir operations are shown in Appendix B. 

4.1.4 Synthetic Reality Generation 

In this case study, the synthetic reality model is used to generate synthetic reservoir stage data at 

Mountain Chute, to which the evaluated model is calibrated. The data is generated by the synthetic 

reality model for use in calibration for the 2007-10-01 to 2011-09-30 period, and the decision 

quantities are computed using the 2012-10-01 to 2015-09-30 period. 
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The synthetic realities were generated using random variations in key parameters to the updated 

Mountain Chute model. The parameters were varied using a uniform sampling of 11 key parameters 

within a specified range, shown in Table 3. 

Table 3. Key parameters used in synthetic reality generation for reservoir management case study 

Raven Parameter 

Name 
Description 

Base 

Value 

Lower 

Bound 

Upper 

Bound 

HBV_BETA Infiltration coefficient for rock layers [-] 10.98 5.00 20.00 

HBV_BETA Infiltration coefficient for soil layers [-] 13.75 5.00 20.00 

MAX_PERC_RATE Maximum percolation rate in fractured rock layers [mm/d] 57.26 10.00 100.00 

MAX_PERC_RATE Maximum percolation rate in fractured soil layers [mm/d] 196.00 10.00 200.00 

MAX_INTERFLOW_RATE Maximum interflow rate in fractured rock layers [mm/d] 10.73 1.00 50.00 

MAX_INTERFLOW_RATE Maximum interflow rate in fractured soil layers [mm/d] 34.55 1.00 50.00 

PET_CORRECTION PET Correction in rock layers [-] 0.71 0.40 1.30 

PET_CORRECTION PET Correction in soil layers [-] 0.66 0.40 1.30 

SVF_EXTINCTION Shortwave radiation extinction coefficient [-] 0.23 0.00 1.00 

DEP_MAX Maximum depression storage [mm] 229.00 10.00 500.00 

LAKE_PET_CORR PET correction for Lakes [-] 1.01 0.50 1.30 

ABST_PERCENT Percent runoff routed to depression storage [-] 0.30 0.05 0.50 

 

The other parameters in the model, including the reservoir parameters at Kamaniskeg Dam and 

Mountain Chute, were not varied in the synthetic reality generation. The model boundary conditions 

were similarly not changed, which includes the inflows to Kamaniskeg Dam, the outflows from 

Mountain Chute, and the forcing functions (i.e., precipitation, temperature).  

The synthetic reality model was run for the entire modelled period, from 2007-10-01 to 2015-09-

30. The decision quantities were calculated to be consistent with the model evaluation period (2012-

10-01 to 2015-09-30). The data passed to the evaluated model for calibration is the 2007-10-01 to 

2011-09-30 period, thus the model evaluation period includes a one-year warm-up period prior to 

calculating decision quantities. 

A check on the realism of the simulation was applied as a reservoir plausibility check on the 

Mountain Chute stage to ensure that the initial reservoir stage was within the 10% and 90% 

percentiles. An additional check was done to remove all synthetic realities that exceeded a stage of 

256 m at Mountain Chute. Together, these quality checks removed the synthetic realities that 

produced an unsteady stage at Mountain Chute, which is shown in Figure 29. 
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Figure 29. Comparison of synthetic reality simulated reservoir stages at Mountain Chute (pre-quality 

checks (left) and post-quality checks (right)) 

The removal of poor quality synthetic realities left 1325 generations remaining, from which 100 

were randomly resampled with a uniform distribution (using the August decision quantity). For each 

of these 100 samples, the synthetic reality model was run with the given parameter set using the base 

reservoir operation, which generates the synthetic data series passed to the evaluated model. The 

model is then run again with the adjusted seasonal rating curve. These two runs are compared to 

calculate the decision variables and decision quantities. The distributions of the June decision 

variables and decision quantity is shown in Figure 30 and Figure 31, and the distributions are 

similarly shown for the August decision variables and decision quantity in Figure 32 and Figure 33; 

the distributions of 100 sampled synthetic realities, as well as the full distributions for 1325 synthetic 

realities, are both shown in these plots. 
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Figure 30. June proportion of flows above threshold for synthetic realities 

 

Figure 31. Synthetic reality decision quantity distributions of DQ1 
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Figure 32. August proportion of flows above threshold for synthetic realities 

 

Figure 33. Synthetic reality decision quantity distributions of DQ2 

The impact of using a relatively small number of days for computing the decision quantities (i.e., 

<100 days) is shown in the sparseness of the synthetic decision quantity plots, particularly for June 
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flows. For the sampled synthetic reality decision quantity distributions, the relevant summary metrics 

are presented in Table 4. 

Table 4. Synthetic reality summary statistics for reservoir management decision 

  Sampled Synthetic Realities (100) All Synthetic Realities (1325) 

DQ Decision Difficulty AMAMS Decision Difficulty AMAMS 

DQ1 0.32 0.02 0.35 0.00 

DQ2 0.00 0.39 0.02 0.40 

 

The summary statistics in Table 4 show that the decision is relatively difficult when the June 

decision quantity (𝐷𝑄1) is used, based on the larger decision difficulty and the smaller AMAMS. The 

August decision quantity (𝐷𝑄2), in contrast, has a decision difficulty of zero due to all of the 

synthetic decision quantities falling on one side of the decision quantity threshold (Figure 33), and 

has a much larger AMAMS. The summary statistics also show that the metrics are almost identical 

for the sampled synthetic realities as for the full set of synthetic realities. 

These summary statistics are useful to compute prior to the DCT evaluation, since they provide an 

expectation of model performance and a benchmark for the required model skill. In order to provide 

evidence that the number of synthetic reality samples is enough to compute the decision difficulty and 

AMAMS, the convergence of these metrics with trial number can be plotted and evaluated 

qualitatively. This is shown for the AMAMS corresponding to 𝐷𝑄1 in Figure 34 for both the sampled 

synthetic realities and the full set of 1325 synthetic realities. 
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Figure 34. Convergence plot of the AMAMS for DQ1  

The convergence of the metric shown in Figure 34 indicates that the number of samples is likely 

enough to establish an estimate of the summary statistics for the synthetic reality generations, and is 

some evidence that the current sample size will also be sufficient for the remaining DCT metrics. This 

is certainly not conclusive prior to running the full DCT experiment, but is a good check prior to 

proceeding with the much more computationally expensive portion of the experiment. 

4.1.5 Model Evaluation Setup  

The model evaluation portion of this case study is similar to the previous one. The model structure 

is the same as the model used to generate synthetic realities, and an expanded set of the parameters 

varied in synthetic reality generation are included in the calibration parameter set (26 parameters in 

total are calibrated in each model evaluation step; the full list calibrated parameters is included in 

Appendix B). The list of parameters included in calibration is expanded to more closely reflect the 

fact that these parameters would not be known when the real model would be built and calibrated.   

The model receives the 2007-10-01 to 2011-09-30 synthetic stage data at Mountain Chute Dam 

from the synthetic reality generation, and is calibrated to this stage series. The calibration procedure 

uses the DDS algorithm with a budget of 2000 runs, and uses the root-mean square error of the stage 

on Mountain Chute (inverse-weighted in time, as suggested in section 3.2.6) as a calibration 
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objective. Once the model is calibrated, the model is run for the ‘future’ time period of 2011-10-01 to 

2015-09-30, and the decision quantities are evaluated for the 2012-10-01 to 2015-09-30 period (again 

leaving one year as a warm-up period). This requires running the calibrated model in each iteration 

twice, once for each reservoir management scheme (similar to the synthetic reality generation). Once 

the model is run for each reservoir management scheme, the two decision quantities can be computed 

and the DCT metrics can be computed. These results are presented in the next section. 

4.2 Results and Discussion 

This section presents the DCT results for the reservoir management decision in the first case study. 

The summary of the DCT metrics can be found in Table 5. 

Table 5. Summary metrics for DCT results for reservoir management decision 

DQ 
Sim. 

Score 

MS Mean* 
𝜇𝛥𝜙 

MS Abs. 

Mean* 
𝜇|𝛥𝜙| 

MS StDev* 
𝜎𝛥𝜙 

R2** Slope** 

DQ1 0.59 -0.002 0.016 0.021 0.002 0.000 

DQ2 1.00 -0.011 0.026 0.031 0.000 0.000 

*MS = model skill 

**from linear regression of MS onto calibrated RMSE 

 

The summary metrics show that the model had a lower similarity score with 𝐷𝑄1 than 𝐷𝑄2, which 

is consistent with the lower decision difficulty computed for the synthetic reality generations with 

𝐷𝑄2. The mean model skill is close to zero in both cases, which suggests the model predicts the 

decision quantity in an unbiased way. An examination of the synthetic and model decision quantities 

reveals further information; these are shown in Figure 35 and Figure 36 for 𝐷𝑄1 and 𝐷𝑄2, 

respectively; the regions where the model fails to inform the correct decision are shown in Figure 35. 
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Figure 35. Decision quantity 1 plot for reservoir management decision 

 

Figure 36. Decision quantity 2 plot for reservoir management decision 

The decision quantity plots above show that the model has some skill in a decision-making context. 

It is not surprising that the model is capable of consistently informing the correct decision when the 

impact on August flows (𝐷𝑄2) is examined, since the decision difficulty is zero. However, examining 
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the June flows (𝐷𝑄1) is a more honest test of the model’s ability to inform decision-making for this 

particular decision quantity threshold. The model has a similarity score of 59%, which can be 

interpreted as an upper bound of 59% on the probability that the model would inform the correct 

decision in the real application. This is treated as an upper bound since the test here is much less 

rigorous than a hypothetical test against all instances of ‘reality’ would be (for instance, the real 

decision-making application would not provide all future forcings to be known with certainty). In this 

light, the 59% success rate is still approximately as good as a coin flip; this shows that even this 

relatively well-performing model is not much more useful than random chance for a sharp binary 

decision, and in order to build trust in the reliability of the model to inform a non-hypothetical binary 

decision successfully, the model building procedure should somehow be improved. 

One possible detriment to the decision-making ability of the model is that the model skill appears 

to be a function of the synthetic decision quantity. Although the summary metrics indicate that the 

model skill is unbiased overall, there is a systemic trend evident in Figure 35 in the sign of the model 

skill as a function of synthetic decision quantity. In other words, the model tends to overestimate the 

decision quantity when the synthetic decision quantity is low, and underestimate the decision quantity 

when it is larger. A possible next step in the investigation of this model’s performance would be to 

deploy a Scenario Discovery-based approach to determine under what conditions the model skill 

becomes biased, and use the DCT framework as a guide to rectify this systematic bias. 

Finally, the synthetic reality analysis included a convergence check on the synthetic reality metrics, 

such as the AMAMS (see Figure 34). The same convergence check can be performed on any of the 

DCT metrics. The convergence of the similarity score for 𝐷𝑄1 is shown in Figure 37, which shows 

that the similarity score does seem to converge on its estimated value. 
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Figure 37. Convergence plot of the similarity score for DQ1 with 100 trials 

This qualitative convergence check provides reasonably sound evidence that including more runs 

will not significantly change the results presented here. Ideally, this would be further tested using a 

new set of 100 samples from the original 1325 synthetic realities generated. 

4.2.1 Follow-up DCT Experiment in Model Improvement 

The results of the previous section show that the model has a similarity score of 59% when the June 

flows are examined, which is likely not sufficient for reliability in the context of a sharp binary 

decision, with a decision quantity threshold in the toughest predictability region. In order to improve 

model reliability to inform the decision, the model-building procedure must somehow be adjusted. In 

this follow-up DCT experiment, a basic subsequent experiment is performed to demonstrate how 

DCT can provide the framework for guiding model improvements. 

In this experiment, the calibration objective used in model calibration is changed. The original 

objective function in the base DCT experiment was the RMSE of the reservoir stage, inversely 

weighted in time. In this experiment, the calibration objective function is an average of the stage-

based RMSE and the daily change in volume-based RMSE (this is the same objective as used in the 

building of the reservoir models, see the timing metric in Appendix A for details on the objective 

function). Otherwise, the same parameter set is calibrated, and the calibration budget of 2000 runs is 

also kept the same, thus any difference in the model performance is due to the adjusted objective 
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function (and stochasticity in the calibration algorithm) only. In the follow-up experiment, 50 of the 

100 synthetic realities used in the base experiment are sampled for use; this allows for direct 

comparison of model results between each experiment. The results of the base experiment are 

summarized in Table 6 (the base case results are recalculated for the 50 trials sampled). 

Table 6. Comparison of DCT metrics for base and follow-up experiments 

  Base Case Follow-up Experiment 

Metric DQ1 DQ2 DQ1 DQ2 

Sim. Score 0.60 1.00 0.66 1.00 

MS Mean -0.003 -0.014 0.005 0.005 

MS Abs. Mean 0.018 0.031 0.020 0.029 

MS StDev 0.014 0.026 0.014 0.024 

R2 0.004 0.039 0.050 0.023 

Slope -0.001 0.003 -0.005 0.005 

 

From the summary metrics, there is negligible difference in the mean model skill and the similarity 

score for 𝐷𝑄2 is 1.0 in both experiments. However, the follow-up experiment shows a 6% increase in 

the similarity score for 𝐷𝑄1, indicating that the adjustment in objective function had some 

improvement in the ability of the model to inform the decision. The decision quantity plots for each 

decision quantity are shown in Figure 38 and Figure 39. 
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Figure 38. Decision quantity 1 plot for reservoir management decision in follow-up experiment 

 

Figure 39. Decision quantity 2 plot for reservoir management decision in follow-up experiment 

In order to provide more evidence of a genuine increase in the similarity score for 𝐷𝑄1 due to this 

adjustment, a statistical test of the difference in similarity scores is applied. Since the similarity score 

is itself a single value in each experiment, the bootstrap method (Efron, 1979) is applied to obtain a 
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distribution of the similarity score for each experiment. Note that in this case a hypothesis for a 

proportion could be applied without the need for bootstrapping. However, for more complex decision 

formulations the test for proportions may not be appropriate, and thus bootstrapping is demonstrated 

as a more general approach for hypothesis testing of the similarity score. 

The bootstrapping is done by randomly sampling with replacement a total 50 samples from each set 

of experimental results, calculating a similarity score, and repeating this 50 times. This produces a 

distribution of similarity scores for each experiment, which is shown in Figure 40. 

 

Figure 40. Bootstrapped distributions of similarity score for each DCT experiment 

The plot of the distributions in Figure 40 suggests a difference in the mean of these two 

distributions; the sample means from bootstrapping are 0.59 and 0.66 for the base experiment and 

adjusted experiment, respectively. To test this difference statistically, the t-test is applied as a one-

sided difference in the means of the sampled distributions. The null hypothesis, 𝐻0, and the 

alternative hypothesis, 𝐻𝐴, are defined as: 

 𝐻0: 𝑆𝑎𝑑𝑗
̅̅ ̅̅ ̅̅ − 𝑆𝑏𝑎𝑠𝑒

̅̅ ̅̅ ̅̅ ̅ = 0 (3) 

 𝐻𝐴: 𝑆𝑎𝑑𝑗
̅̅ ̅̅ ̅̅ − 𝑆𝑏𝑎𝑠𝑒

̅̅ ̅̅ ̅̅ ̅ > 0 (4) 

where 𝑆𝑎𝑑𝑗
̅̅ ̅̅ ̅̅  is the mean of the similarity score distribution in the adjusted experiment, and 𝑆𝑏𝑎𝑠𝑒

̅̅ ̅̅ ̅̅ ̅ is the 

mean of the similarity score distribution in the base experiment. The test is performed using unequal 
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variances and unpaired results, which is referred to as Welch’s t-test (Welch, 1947). The normality of 

each distribution is an assumption of the test; the normality plots of each distribution show that this is 

not quite true, see seen in Figure 41. 

 

Figure 41. Normality plots for bootstrapped distributions of similarity scores (base similarity scores 

(left), adjusted similarity scores (right)) 

However, for the purpose of this t-test the strict normality assumption is relaxed, and the result of 

the test is treated as approximate. The t-test on difference in means the two similarity score 

distributions was performed using the ‘t.test’ function of the ‘stats’ library of the R Statistical 

Language (R Core Team, 2017). The result of the t-test shows that the null hypothesis is rejected and 

the true difference in means of the distributions is not equal to zero, with a p-value of approximately 

6.5E-7. Thus, the conclusion can be made that there is a statistically significant difference in the mean 

similarity score of the base experiment and the adjusted experiment. 

There are a number of different ways in which an improvement in the model-building procedure 

could be demonstrated in the DCT framework, however, this provides a simple example that 

demonstrates a statistically significant improvement in the ability of the model to inform the correct 

decision. This process would ideally be iterated until the similarity score is to the satisfaction of the 

decision-maker.  
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4.2.2 Adjusted Decision Formulations for Sharp Binary Decisions 

In the main experiment, the similarity score with 100 trials was computed as 59% for June flows, 

which suggests that the evaluated model does not have much more decision-making ability in this 

binary decision than random chance. However, the model appears to estimate the change in 

proportion of low flow days with an average accuracy of approximately ±1.6%, which by most other 

standards would be considered excellent for decision-making. This warrants the question as to why 

the model appears to perform so poorly within the DCT framework, despite the perceived high level 

of accuracy in estimation of the decision quantity. 

The answer may lie in the decision formulation, which is alluded by the reference to a ‘sharp’ 

binary decision. The sharp binary decision, where a decision is informed precisely by the decision 

quantity relative to the decision quantity threshold, is likely not consistent with the approach of a 

decision-maker. In a less theoretical decision-making process, a decision-maker would not consider a 

model-estimated decision quantity of 19% and 21% to be justification for making a different decision. 

This is the case for a number of reasons, primarily due to the uncertainty in model estimations. In the 

instance of this case study, a decision-maker would likely still choose to refrain from the adjusted 

reservoir operation if the model-estimated difference in low flow days is 19% in order to be 

conservative. Therefore, this section presents a new decision formulation that is more reflective of 

this fuzzier decision-making process, and re-evaluates the DCT results in this context. The sensitivity 

of the DCT results to the decision quantity threshold is also demonstrated. 

The fuzzy decision formulations introduce a “fuzzy” region in decision space around the decision 

quantity threshold, where the decision would be made by the decision-maker and not automatically 

dictated by the model result. This is done to account for model uncertainty and other factors generally 

present in the decision-making process, such that a decision is clearly preferred by the model-

estimated decision quantity if and only if the model informs the decision outside of this fuzzy 

boundary. 

To demonstrate the sensitivity of the DCT results to the decision quantity threshold, the similarity 

score is plotted as a function of the decision quantity threshold used in the sharp binary decision, 

shown in Figure 42. 
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Figure 42. Similarity score as a function of decision quantity threshold for June flows 

The plot in Figure 42 shows that the similarity score, a central metric in the DCT framework, is 

highly sensitive to the decision quantity threshold selected within the range of the original value of 

20%. In this example, the similarity score decreases from a value of 1 to 0.44 with only a 0.045 

change in the decision quantity. In this context, a small change in the decision quantity threshold can 

influence the DCT results drastically, which is not ideal.  

The results of Figure 42 provide motivation to re-evaluate the DCT results with a less influential 

decision formulation, thus two fuzzy decision formulations are implemented in this section. In the 

first decision formulation, referred to as the ‘fuzzy boundary’ decision formulation, the model is 

deemed to have informed the decision correctly if: 

1. The model and synthetic decision quantity are both within the fuzzy region of decision 

space, and 

2. The model and synthetic decision quantity are both clearly in the same decision region of 

decision space (i.e., decision A or B) outside of the fuzzy region. 

For the case where the model and synthetic decision quantity are on the same side of the sharp 

decision quantity threshold but one is in the fuzzy region and the other is not, the model is deemed to 

have partially informed the decision correctly, which is calculated as a function of the model skill. 
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This can be considered more reflective of the uncertain nature of less theoretical decision-making 

processes. For the purpose of this exercise, the fuzzy region is defined as the decision space between 

17.5% and 22.5% for decision quantity 1 (the difference in proportion of June low flows). The fuzzy 

boundary decision formulation is shown graphically in Figure 43. 

 

Figure 43. Similarity score calculation for fuzzy boundary decision formulation 

In this fuzzy boundary decision formulation, the degree of partial correctness is calculated as:  

 𝑚𝑎𝑥 {1 −
|Δ𝜙𝑛|

𝐴𝑀𝐴𝑀𝑆⁄ , 0} (5) 

where Δ𝜙𝑛 is the model skill and 𝐴𝑀𝐴𝑀𝑆 is the average maximum allowable model skill. This 

allows the partial correctness to be bounded between 0 and 1 as a function of the model skill. In the 

computation of an adjusted similarity score, this value is used for the instances of partial correctness.  

Evaluating the adjusted similarity score for the fuzzy boundary decision formulation outputs a 

value of 0.83, which is now significantly better than the previous similarity score of 0.59. This 

suggests that when a more realistic decision formulation is applied the model is interpreted as being 

much more likely (33% more) than random chance to inform the correct decision, whereas previously 

the model could only be interpreted as 9% more likely than random chance to inform the correct 

decision. 
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The results of the fuzzy boundary decision formulation are plotted in Figure 44; these are the same 

results as those in Figure 35, but replotted with the fuzzy boundary decision formulation. 

 

Figure 44. Decision quantity 1 plot for fuzzy decision formulation 

The second adjusted decision formulation, referred to as simply the ‘fuzzy’ decision formulation, 

offers an alternative decision formulation with less complexity than the fuzzy boundary decision 

formulation. In this case, the decision uses the original decision quantity threshold of 20% to partition 

the decision space into two decisions, but evaluates instances where the model skill is small to be 

counted as partially correct (similar to the fuzzy boundary decision formulation). Here, any instances 

of partial correctness are evaluated on a scale of zero to one, calculated as: 

 𝑚𝑎𝑥 {1 −
|Δ𝜙𝑛|

𝑞⁄ , 0} (6) 

where 𝑞 is a model skill threshold assumed as 0.025, and would normally would be prescribed by a 

decision-maker to convey the desired model accuracy. The 𝑞 functions similarly to the AMAMS in 

equation (5) in providing a comparable value for interpreting the model skill. This formulation is 

another method for allowing some flexibility in interpreting the decision quantity pairings in a 

realistic way. With this fuzzy decision formulation, the computed similarity score is 0.62 instead of 

0.59, which is a slight improvement. 
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The sensitivities of the similarity score for the fuzzy boundary decision formulation and the fuzzy 

decision formulation, in comparison to the sharp binary decision formulation, are shown in Figure 45. 

The fuzzy boundary decision thresholds are kept as ±0.025 from the decision quantity threshold for 

this calculation, and the 𝑞 value is kept at 0.025 for the fuzzy decision sensitivity. 

 

Figure 45. Similarity score sensitivity for sharp and fuzzy boundary and fuzzy decision formulations 

The fuzzy boundary decision is shown to have a general improvement to the similarity score from 

the sharp decision formulation, although the complexity of the sensitivity to the decision quantity 

threshold in this case likely inhibits an understanding of the model’s ability to inform decision-

making as a function of the decision quantity threshold. In contrast, the fuzzy decision sensitivity 

shows an overall improvement to the similarity score with decision quantity threshold from the sharp 

decision formulation without a change to the shape of the curve. Thus, although the fuzzy boundary 

decision formulation yielded a larger improvement to the similarity score at a decision quantity 

threshold of 20%, the fuzzy decision formulation is less sensitive to the decision formulation, and is 

therefore easier to interpret. 

In this exercise of creating a more realistic decision formulation, the importance of both 

implementing various decision formulations and assessing the formulations with a sensitivity analysis 

were demonstrated. The similarity score obtained from a single DCT experiment is likely to be a 

function of the decision quantity threshold and decision formulation implemented, and an 
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understanding of the similarity score sensitivity to the decision quantity threshold is useful in 

understanding the DCT results. This highlights the importance of the decision formulation step in the 

DCT framework, and suggests that testing multiple decision formulations is a beneficial for obtaining 

more information about the effect of the selected decision formulation on the interpretation of the 

model’s ability. 

4.3 Case Study Conclusions 

Subsequent to the analysis performed in this chapter, a likely set of conclusions from the DCT 

experiment would be: 

1. If the June months are used as the basis for the decision, then the model needs some 

adjustments for use in decision-making, assuming that an upper bound of 59% likely to 

inform the right decision is not sufficient for reliability. 

2. If the August months are used as the basis for the decision, then the model is deemed 

sufficient for informing the decision, and in fact the model is likely not required to inform 

the decision (beyond the analysis here). 

This is useful information for the decision-maker to have, and is explained in a way that is 

interpretable for decision-making directly. 

In the event that the decision should be based on June flows (𝐷𝑄1), DCT could be used as a 

framework for testing adjustments in the model-building procedure in a decision-making context. A 

likely first step to try to improve the model-building procedure would be to use a different calibration 

objective that captures more relevant information to the model’s decision, which would be justified 

given that there was no correlation between the objective function and model skill.  

A demonstration of this process was provided, where the objective function used in calibrating the 

evaluated model was adjusted, and the DCT experiment was re-run. The bootstrapping technique was 

used to obtain a distribution of the similarity score for each experiment, and a t-test was performed on 

the difference in mean similarity score of each distribution. The test concluded that the improvement 

in similarity score with the new objective function was statistically significant with a p-value of less 

than 1E-6, indicating that the adjustment of the objective function for calibration was successful in 

improving the ability of the model to inform decision-making. This provides an example of how one 

might test model improvements in a DCT framework, although other procedures are also possible. 
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The DCT framework could also be applied in a Scenario Discovery-inspired approach to 

investigate the cause of the systematic bias in model skill, or the cause of the particularly poor model 

trials. All of these potential follow-up experiments demonstrate the ability of DCT to provide not only 

a framework in which to evaluate the decision-making ability of a model, but a framework for 

guiding meaningful improvements in model-building for decision-making. 

Finally, the importance of carefully selecting the decision formulation, the potential impact of the 

decision formulation on the interpreted ability of the model to inform decision-making, and the 

importance of testing the sensitivity of the model performance to the decision quantity threshold, was 

demonstrated. The use of multiple decision formulations is recommended for testing the impact of the 

decision formulation on the apparent ability of the model, particularly for binary decision 

formulations with a sharp decision quantity threshold.  

The next chapter of the thesis examines the second case study of this thesis, which explores the 

ability of a hydrologic model to inform a data gauging decision for upstream reservoir releases in the 

absence of measured flow data.  
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Chapter 5 

Decision Crash Testing in a Data Collection Application 

This chapter details the setup and results of the second Decision Crash Testing (DCT) case study. 

This case study deploys the DCT framework to evaluate the ability of the model developed in the 

previous chapter to inform a hypothetical data gauging decision for the upper portion of the 

Madawaska watershed. This case study differs from the first in a number of key ways, including the 

evaluation of a model to inform decisions based on hindcasting rather than future predictions, and is 

complementary to the first case study in illustrating the potential application of DCT. 

5.1 Case Study Setup 

This section will discuss the setup of the DCT framework in the context of a data gauging decision 

in the Madawaska watershed. The context of the hypothetical data gauging decision, the quantitative 

decision formulation, and the details of the DCT experimental setup are discussed in this section. 

5.1.1 Data Gauging Decision 

The hypothetical decision used in this case study is based upon the question: “at which location 

should a new flow gauge be built?” In the Bark Lake Dam model described in section 3.2, there exist 

two upstream dams: Booth Lake Dam and Galeairy Lake Dam. Both of these are controlled dams 

with unknown stage-outflow rating curves, and the Bark Lake model would benefit from actual data 

about outflow from either dam. However, it is unclear which gauge site would be most beneficial. 

The potential flow gauge locations in this case study are immediately downstream of these two dams, 

with the goal of collecting the most possible information for inflow prediction at Bark Lake Dam. The 

location of these potential gauges in relation to the important dams in the watershed is shown in 

Figure 46. 
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Figure 46. Location of potential flow gauges in data gauging DCT case study 

Here it is assumed that both potential gauge locations are equal in terms of capital cost, 

maintenance cost, ease of access, etc., and the only deciding factor is the value of information 

obtained from a flow gauge at the given location. It is also assumed that building gauges at other 

locations, no gauges, or both gauges are not feasible options; for ease of the experimental setup, the 

decision is forced to be binary. In reality, this would not be the case. However, some simplification of 

the decision-making process is required for evaluation in the DCT framework. 

The typical approach to answer this question would be to use the existing calibrated model from 

section 3.2.7 to inform a decision, using some decision formulation to link model outputs to a 

decision. For example, the decision could be based on a comparison of annual flow volumes. In this 

experiment, the ability of the model to provide the right decision to that question is tested using the 

DCT framework. In lieu of a model, it may be possible to answer this question by making some 

reasonable assumptions about which reservoir is likely to release more water. For example, selecting 

the reservoir with a larger upstream drainage area might be a reasonable decision; the drainage area of 

the area upstream to Galeairy Lake is approximately twice that of Booth Lake, thus by this criterion, 

the decision would be made to place the gauge downstream of Galeairy Lake Dam. However, since 

the goal is ultimately to build a model for inflow prediction at Bark Lake dam, the ability of the 

proposed model to inform this decision is tested in this chapter. 



 

 96 

5.1.2 Decision Quantity Definition 

The decision quantity is meant to quantitatively represent the amount of useful information for 

inflow prediction captured by a gauge at the given location. There are many ways that this could be 

defined. In this case study, three different decision quantities are used to represent the useful 

information captured at a given gauge location. These decision quantities are calculated separately, 

and used to evaluate the sensitivity of the DCT results to the choice of decision quantity used. 

The first decision quantity captures the proportion of days where the daily average outflow from 

Booth Lake is larger than the daily average outflow from Galeairy Lake. This is defined as: 

 

𝐷𝑄1 =
2

𝑁
∑𝑆(𝑄67,𝑖 > 𝑄71,𝑖)

𝑁

𝑖=1

 

(1) 

where 𝐷𝑄1 is the first decision quantity (dimensionless), 𝑆 is a function that evaluates the given 

statement and returns a value of 0 or 1 corresponding to whether it is true or false, 𝑄67,𝑖 is the outflow 

from Booth Lake on the ith day of the evaluation period (m3/s), and 𝑄71,𝑖 is the outflow from Galeairy 

Lake on the ith day of the evaluation period (m3/s). The evaluation period is from 2008-10-01 to 2011-

09-30, thus N has a value of 1095 days. A factor of 2 is introduced a scaling factor to keep 𝐷𝑄1 

within the range [0, 2] and a decision quantity threshold of 1, such that if 𝐷𝑄1 is greater than one, the 

decision is to place the gauge at Booth Lake, and if 𝐷𝑄1 is less than one, the decision is to place the 

gauge at Galeairy Lake. 

The second decision quantity relates the average annual flow volumes from both reservoirs, and is 

calculated as: 

 

𝐷𝑄2 = ∑𝑉67,𝑖

3

𝑖=1

∑𝑉71,𝑖

3

𝑖=1

⁄  

(2) 

where 𝐷𝑄2 is the second decision quantity (dimensionless), 𝑉67,𝑖 is the cumulative outflow volume in 

the ith water year (defined from October 1st to September 30th) in m3, and 𝑉71,𝑖 is the cumulative 

outflow volume in the ith water year in m3. The same evaluation period as 𝐷𝑄1 is used for all three 

decision quantities, thus there are three water years used in the summation. This decision quantity 

follows the same decision mapping rules as 𝐷𝑄1 (i.e., a decision quantity threshold of 1). 

The third decision quantity captures the proportion in average annual peak flows during the 

evaluation period, defined as: 
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𝐷𝑄3 = ∑𝑄𝑝67,𝑖

3

𝑖=1

∑𝑄𝑝71,𝑖

3

𝑖=1

⁄  

(3) 

where 𝐷𝑄3 is the third decision quantity (dimensionless), 𝑄𝑝67,𝑖 is the peak outflow from Booth Lake 

in the ith day water year of the evaluation period (m3/s), and 𝑄𝑝71,𝑖 is the peak outflow from Galeairy 

Lake in the ith day water year of the evaluation period (m3/s). This decision quantity also follows the 

same decision mapping rules as 𝐷𝑄1. 

In this case study, all three decision quantities are computed independently and used to gather 

inferences about the decision-informing ability of the model. This is one way to compare the impact 

of decision formulation on the model evaluation, and evaluate the sensitivity of the DCT results to the 

selection of the decision quantity used in the experiment. 

5.1.3 Synthetic Reality Generation 

The synthetic reality generation was performed using the calibrated Bark Lake Dam model, 

discussed in section 3.2.7. The purpose of each synthetic reality generation is to simulate a plausible 

reality in which to test the model undergoing evaluation. Each synthetic reality generation must: 

1. Include sufficient information to determine the ‘correct’ decision, using a consistent 

decision formulation as the evaluated model, and 

2. Generate the synthetic information required for building the evaluated model. 

In this experiment, the hydrologic model undergoing evaluation will not be changed in terms of 

structure, but does require the synthetic stage time series at Bark Lake Dam to perform calibration. 

The synthetic reality must also produce the outflows from each of the two upstream reservoirs for 

evaluation of the ‘correct’ synthetic decision. 

The synthetic realities were obtained using a random parameter sampling of the reservoir outflow 

power law parameters, a and b, for the Booth and Galeairy dams. All other parameters and boundary 

conditions in the model were unchanged. The parameters were randomly generated using a deviation 

of ±40% from the calibrated values for the set of a and b parameters, for a given reservoir at a time 

(i.e., in a given synthetic reality, the Booth Lake a and b parameters could both change by +30%, and 

the Galeairy Lake parameters could both change by -5%). Applying the same percentage increase or 

decrease to the set of a and b parameters was done to avoid the counteracting effects of one parameter 
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increasing and the other decreasing, which provides a more uniform spread in the distribution of the 

decision quantities. 

In order to ensure that the synthetic reality generations were plausible, a basic check on the 

stationarity of the reservoir stage in both upstream reservoirs was included. This metric, referred to 

hereafter as a ‘plausibility criterion’, checked the assumption that the overall volume (represented by 

stage) of the reservoirs is approximately stationary on an annual basis. This was quantified by 

checking whether the initial reservoir stage was within the 10% and 90% percentiles of the reservoir 

stage during the simulation period (2007-10-01 to 2011-09-30). This was done for both upstream 

reservoirs, and any randomly generated synthetic realities where either upstream reservoir failed this 

plausibility criterion were excluded from the DCT experiment. 

The synthetic realities were generated prior to the DCT experiment, which allows for their 

examination and adjustment. A larger-than-required number of synthetic realities, 2000 in this case, 

were generated for analysis. The removal of synthetic realities with one or more nonstationary 

upstream reservoir stages left approximately 1600 synthetic realities for use in the DCT experiment. 

These were resampled and adjusted to create three forms of the case study (referred to hereafter as 

Subcases): 

1. 100 synthetic reality generations randomly sampled, such that the decision quantities 

follow the natural distribution created by the synthetic reality generation. 

2. 100 synthetic reality generations sampled such that 𝐷𝑄3 follows an approximately uniform 

distribution. 

3. The exact synthetic reality generations from #2 above, but with random noise added to the 

reservoir stage synthetic data provided to the evaluated model. 

The third Subcase was setup to determine if errors in the synthetic data provided to the evaluated 

model would be a detriment to the ability of the model to inform the correct decision, relative to 

Subcase 2. The random noise was created by (a) adding a random, uniformly distributed 0.5% 

fluctuation to each point in the reservoir stage time series, and (b) applying an 8-point moving 

average smoothing to the perturbed time series. This ensures that the noisy stage series is still 

relatively smooth but still contains random deviations from the ‘true’ synthetic series. This procedure 

is conceptually similar to the procedure of Crow and Loon (2006), where a random noise filter was 
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used to test the impact of errors in the observed data. An example of adding noise to a synthetic stage 

time series is shown in Figure 47. 

 

Figure 47. Example of random noise added to Bark Lake Dam stage time series 

The synthetic reality generations produced a distribution of each decision quantity. The decision 

quantity distributions for Subcase 1 are shown in Figure 48, and in Figure 49 for Subcases 2 and 3. 

 



 

 100 

 

Figure 48. Decision quantity distributions for Subcase 1 

 

Figure 49. Decision quantity distributions for Subcases 2 and 3 

These figures show that in each of the Subcases, the distributions for 𝐷𝑄1 and 𝐷𝑄2 fall entirely on 

the left side of the decision quantity threshold of 1.0, while 𝐷𝑄3 is distributed over either side of the 

decision quantity threshold. Thus, the decision difficulty will be zero for 𝐷𝑄1 and 𝐷𝑄2 and non-zero 
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for 𝐷𝑄3, such that if the decision was based on 𝐷𝑄3, the decision would be more difficult and the 

expectation would be a smaller similarity score.  The comparison between Figure 48 and Figure 49 

also shows the effect of the uniform sampling performed in creating a more uniform distribution of 

synthetic decision quantities. 

Once the synthetic realities are deemed fit for use in the DCT experiment, a number of metrics can 

be computed to describe the synthetic reality generations. The decision difficulty and average 

maximum allowable model skill (AMAMS) were evaluated. The summary metrics describing the 

synthetic realities are presented in Table 7. 

Table 7. Summary metrics for synthetic reality generations in data gauging case study 

  Subcase 1   Subcase 2 and 3   

DQ Decision Difficulty AMAMS Decision Difficulty AMAMS 

DQ1 0.00 0.91 0.00 0.65 

DQ2 0.00 0.56 0.00 0.36 

DQ3 0.22 0.62 0.54 1.03 

 

Table 7 shows that the uniform resampling of synthetic realities in Subcases 2 and 3 creates a 

generally more difficult decision for the model to answer than the sampling Subcase 1, shown by the 

generally larger decision difficulty and smaller AMAMS. The decision difficulty is also zero for 𝐷𝑄1 

and 𝐷𝑄2 in all Subcases, given that all of the synthetic realities fall on the left side of the decision 

quantity threshold. This is useful information in and of itself, since it shows that if the decision 

formulation was based on either of these two decision quantities, the decision may lack the difficulty 

that would otherwise require the use of a computational model to inform the decision. 

In each instance of a synthetic reality generation, the associated synthetic stage series at Bark Lake 

was provided to the evaluated model for use as data in calibration. The evaluation of the hydrologic 

model being tested is discussed in the next section. 

5.1.4  Model Evaluation Setup 

The evaluated model is of the same structural setup at the synthetic reality model, both of which are 

based on the Bark Lake Dam model discussed in section 3.2.7. The model receives the ‘observed’ 

synthetic reality stage data from the synthetic reality simulation and undergoes an automatic model 

calibration. The model is run from 2007-10-01 and is calibrated on the data from 2008-10-01 to 2011-

09-30, which includes a one-year warm-up period. The model is calibrated to the RMSE of Bark Lake 
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Dam stage using the DDS algorithm, with a calibration budget of 2000 runs. The RMSE was 

inversely weighted in time, as suggested in section 3.2.6 as a solution to the long memory issue with 

stage calibration. The same reservoir plausibility criterion used in the synthetic reality generations is 

applied as a penalty function in the calibration for the evaluated model, allowing the automatic 

calibration to avoid solutions that would not have been sampled by the synthetic reality. This is 

something that makes the model’s ability to inform the correct decision easier; in reality, it would 

likely be assumed (but not known) that solutions which fail the plausibility criterion are not feasible. 

The decision quantities are evaluated for the same period as the calibration, thus the model is being 

tested in its ability to hindcast. 

The parameters used in the calibration of the evaluated model include the two sets of a and b 

reservoir parameters for Booth Lake and Galeairy Lake, as well as 26 other hydrologic model 

parameters with defined ranges. Note that in the synthetic reality model only the four a and b 

parameters are varied, thus the 26 other parameters are included to provide a more realistic 

uncertainty in model parameters during calibration. The list of parameters included in calibration is 

included in Appendix C. 

The model was calibrated for each Subcase with 100 synthetic reality generations, and relevant 

summary metrics were computed (presented in the next section). This required more than 600 000 

model runs (2000 run calibration budget, 100 synthetic realities, 3 Subcases), illustrating the need for 

a very fast hydrologic model to make this type of study feasible with typically available 

computational resources. 

5.2 Results and Discussion 

This section presents the DCT results of the three Subcases in the data gauging decision. In this 

case study, the main pieces of the analysis are the DCT summary metrics (similarity score and model 

skill) and the associated plots, illustrating the distribution of each. Correlations between the calibrated 

objective function, RMSE, and model skill can also be inferred by examining a simple linear 

regression fit. The DCT summary metrics are shown in Table 8. 
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Table 8. Summary metrics for DCT results in data gauging case study 

  Subcase 1 

  
    

 
Sim. Score 

MS Mean*  
𝜇𝛥𝜙 

MS StDev* 
𝜎𝛥𝜙 

R2** Slope** 

DQ1 1.00 -0.09 0.14 0.02 -0.11 

DQ2 1.00 -0.05 0.09 0.00 -0.03 

DQ3 0.82 -0.09 0.47 0.01 0.28 

  Subcase 2         

DQ1 1.00 -0.25 0.19 0.00 -0.05 

DQ2 1.00 -0.16 0.15 0.00 0.02 

DQ3 0.35 -0.85 0.80 0.00 -0.26 

  Subcase 3         

DQ1 1.00 -0.25 0.19 0.00 -0.06 

DQ2 1.00 -0.16 0.15 0.00 0.01 

DQ3 0.35 -0.85 0.80 0.00 -0.19 

*MS = model skill 

**from linear regression of MS onto calibrated RMSE 

 

From the summary metrics in Table 8, a number of important generalizations can be drawn: 

• The similarity score for 𝐷𝑄1 and 𝐷𝑄2 is 1 in all cases, indicating that the model informs 

the decision correctly in each trial. This is not too surprising, since the decision difficulty 

was 0 for those decision quantities (unlike 𝐷𝑄3). 

• The overall decision-making ability of the model with respect to 𝐷𝑄3 is much better in 

Subcase 1, when the synthetic realities have not been resampled uniformly, and thus a 

greater number of synthetic realities remain on one side of the decision quantity threshold. 

• There appears to be essentially no correlation between the calibrated model RMSE and the 

model skill, indicated by both the near-zero regression slopes and the near-zero R2 values 

in all Subcases. This suggests that the calibration objective is not sufficient to describe the 

decision-making ability of the model. 

• There was essentially no impact on the results by the added noise to the data, based on the 

comparison of results between Subcases 2 and 3. It is likely that the effects of introducing 

noisy synthetic data are dominated by the inability of the model to determine the decision 

quantity, and the noisy data may have a more dominant role in a better-performing model. 
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The summary metrics also showcase the importance of the selection of the synthetic realities used 

in the experiment. In the summary metrics for 𝐷𝑄3, the similarity score (i.e., estimated probability of 

the model informing the correct decision) decreases from 82% to 35% when the synthetic reality is 

resampled uniformly. This is the difference between something that likely appears to be quite good to 

decision-makers versus something that is less likely to be correct than a coin flip (which has a 50% 

chance of informing the correct decision in this binary case). 

The plots of synthetic and modelled decision quantities are also helpful in interpreting the DCT 

results. The decision quantity plots are presented for Subcase 2 only, but are similar to Subcase 1 and 

nearly identical to Subcase 3. 

 

Figure 50. Decision quantity 1 plot for Subcase 2 in data gauging decision 
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Figure 51. Decision quantity 2 plot for Subcase 2 in data gauging decision 

 

Figure 52. Decision quantity 3 plot for Subcase 2 in data gauging decision 

The above figures show that the model decision quantity produced (for each of the three potential 

decision quantities) is almost identical, regardless of the synthetic reality decision quantity. This 

indicates that the model is essentially incapable of recreating the synthetic decision quantity using the 
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chosen calibration approach, and the DCT metrics of model skill and similarity score are controlled 

by the synthetic reality distribution used. This again illustrates the importance of carefully analyzing 

and justifying the synthetic realities selected prior to use in DCT. However, the model still informs 

the decision correctly 100% of the time when decision quantities 1 and 2 are used, simply because the 

decision is quite easy in those cases.  

The independence between the model-evaluated decision quantity and the synthetic decision 

quantity is also an indicator that either (a) the ‘observed’ stage data does not contain enough 

information for the model to discriminate between solutions during calibration and be useful in 

decision-making, or (b) the chosen calibration procedure was not sufficiently capable of training the 

model for decision-making applications. A combination of (a) and (b) is also possible, and it is 

difficult to determine which is the larger contributor without further tests. An interesting follow-up 

experiment would be to repeat the experiment with various calibration budgets and objective 

functions to determine which configuration, if any, allow the model to improve its decision-making 

ability. An improvement in the model’s decision-making ability without change to the synthetic 

realities or information passed to the model from the synthetic reality would indicate that the 

calibration procedure of the model was inadequate, rather than the information. 

5.3 Case Study Conclusions 

This chapter explored the use of a hydrologic model to inform a decision regarding the placement 

of a flow gauge for improved data collection, with the purpose of building a forecasting model to 

support reservoir operations. In short, the DCT experiment showed that the evaluated model is 

incapable of reproducing the correct decision quantity, and tended towards the same decision quantity 

intendent of what the ‘true’ decision quantity was. The experiment also shows that the choice of 

decision formulation is highly important; under some decision formulations the decision was a very 

easy one, and likely would not even require a model. This was true when the decision was based on 

the proportion of days with higher reservoir outflows (𝐷𝑄1), and when the decision was based on 

cumulative outflow volumes (𝐷𝑄2). However, when the decision was based on average annual peak 

flow from the reservoirs (𝐷𝑄3), the decision became much more difficult, and the probability of the 

model informing the correct decision was worse than a coin flip, depending on the generation of the 

synthetic realities. This reveals the need in DCT for careful selection and reporting of the synthetic 

realities. 
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The DCT experiment performed here was quite revealing in the ability of the model to inform the 

correct decisions, as well as the impact of the decision formulation. If this decision was to be 

performed for a real project, the recommendation would likely be to determine which decision 

formulation is most applicable, and depending on the choice, either choosing to gauge at the Galeairy 

Lake Dam without the use of a model or investing more resources to improving the ability of the 

model to inform the decision. The DCT framework could be used to guide further improvements to 

the model if the latter pathway is selected, as demonstrated in the previous chapter. 
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Chapter 6 

Conclusions 

The goals of this thesis were to both (a) demonstrate a novel method of model calibration for 

hydrologic models with reservoirs, and (b) present the motivation for and application of Decision 

Crash Testing (DCT). 

The first goal was fulfilled in Chapter 3, where the development and calibration of two hydrologic 

models was presented. The calibration procedure used the observed stage data directly in calibration, 

rather than inflow data estimated from level pool routing. The use of stage data for calibration 

overcame the issues of calibrating to estimated data with numerical artefacts, but also presented a 

number of new challenges; these were largely related to the long memory of reservoir stage, which 

meant that errors in stage accumulated and propagated throughout the simulation. However, it was 

also shown that the stage does not need to match perfectly in order to provide reasonable inflow 

estimates. A basic split-sample validation test on the two models showed that both had large 

deviations in reservoir stage during the validation period without significant detriment to the 

matching of inflows. The improvement in stage simulation from calibration directly to reservoir stage, 

rather than calibration to level-pool routing estimated inflows, was also demonstrated. The potential 

for this method to be deployed in future studies, for both research and operational applications, was 

illustrated. 

The motivation for the DCT framework was presented in Chapter 2, where the call in literature for 

rigorous validation methodologies was discussed, and the lack of development in new validation 

methodologies was also highlighted. Chapter 2 also included the general conclusion from literature 

that validation of models is possible, but only in a specific context and scope of application. This fit 

well with the theme of using models for decision-making applications specifically, where the 

communication gap between scientists and decision-makers was identified. The ways in which model 

outputs are presented to decision-makers are currently not useful for decision-making. Thus, the 

motivation for DCT is twofold; DCT (a) answers the call in literature for new and rigorous validation 

methodologies, and (b) provides a framework for validating models in a specific application that is 

much more readily interpretable by decision-makers. 

The DCT framework was demonstrated using two case studies in reservoir management. The first 

case study involved a decision based on the relative impacts of adjusted reservoir operation on 



 

 109 

downstream flows in the Mountain Chute subcatchment, and the second a data gauging decision for 

upstream flows in the Bark Lake subcatchment. In both cases, the DCT framework was demonstrably 

capable of providing useful information on both the difficulty of the decision and the ability of the 

model to inform the decision.  

In the first case study, the model was found to be somewhat useful in informing the decision, but 

only slightly better than random chance, with a similarity score of 59%. However, the potential of the 

DCT framework for guiding meaningful model improvements in a decision-making context were 

demonstrated with the use of hypothesis testing. In addition, a re-formulation of the decision 

demonstrated how a more realistic representation of the decision-making process can influence the 

perceived ability of the model to inform the correct decision. The importance of testing the sensitivity 

of the similarity score to the decision quantity threshold in each formulation was also demonstrated. 

In the second case study, the evaluated model was tested using three different decision quantities 

deployed simultaneously, which was done to explore the ability of the model using various plausible 

decision formulations. The model was found to be incapable of determining the correct decision 

quantity in all three cases, which were all essentially independent of the respective synthetic decision 

quantity. However, the decision was easy enough for two of the decision quantities that the model 

would likely not have been required to inform the decision, since the evaluated model was able to 

correctly inform the decision without being capable of estimating the decision quantity. This case 

study demonstrated the ability of DCT framework to gain information about the decision formulation 

itself, even in the case that the model is not deemed trustworthy. 

In both case studies, the importance of carefully analyzing the synthetic realities that are generated, 

and testing multiple decision formulations simultaneously, was demonstrated. Both the method in 

which the synthetic realities are generated, and the decision quantity and decision quantity thresholds 

selected, can influence the DCT results to make a poor model appear highly skilled and vice-versa. 

6.1 Contributions to Literature 

This thesis presents two primary contributions to the literature. The first contribution is the novel 

calibration method for reservoir models. This has only been presented once prior by Gijsbers (2015), 

and this thesis provides the first known example of this method in a North American watershed. 

The second and most vital contribution is the introduction and demonstration of DCT, which 

answers several challenges in the literature for novel validation methodologies and improved 
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communication between scientists and decision-makers. The DCT framework has the potential for 

widespread use in model validation studies, both within and outside of water resources applications. 

The DCT framework was demonstrated with two case studies in reservoir management, which serve 

to both illustrate the potential for DCT to inform decision-making in a specific context, and provide a 

template for future studies in deploying the DCT framework. 

6.2 Future Opportunities for DCT 

This thesis presents several opportunities for future work and research involving the DCT 

framework, including both novel applications of the method and further development the DCT 

framework itself. DCT has a large potential for application to many fields of study outside of water 

resources due to its generic procedure. The main requirements for deployment of DCT are that:  

1. A decision-maker needs to provide a decision, 

2. A model is deployed to inform the decision, 

3. The model-building procedure (or a portion of it) can be setup programmatically, and 

4. The decision formulation is quantitatively explicit. 

These requirements are relatively easy to satisfy for many decision-making exercises, and allow for 

DCT to be deployed in a wide range of applications, such as transportation engineering, structural 

analysis, machine learning, etc. It is hoped that future research will explore the application of DCT 

beyond the field of water resources. 

The DCT framework itself also has opportunities for future development. As highlighted in this 

thesis, DCT can be applied for uses beyond direct model evaluation, such as testing for model 

improvements and evaluating the decision formulations themselves. This thesis also illustrated the use 

of future research in further understanding the DCT framework, including the generation of synthetic 

realities and the impact of the decision formulation on the model evaluation. Further to this, the DCT 

framework can also be expanded by: 

• Expanding the decision formulation to use multiple decision quantities, and increasing the 

dimensionality of the decision space. This would require a multivariate generation of 

synthetic realities as well as a more complex model evaluation, although otherwise the 

same procedures could be followed. 
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• Implementing DCT for model ensembles instead of single models, where the decision is 

based on the output from a set of models rather than a single model.  

• Incorporating uncertainty into the decision quantities, such that each decision quantity 

becomes a distribution or range of decision quantities. The decision formulation would 

need to be updated to handle uncertainty in the decision quantities from the evaluated 

model. 

Many other expansions of the DCT framework presented here are possible, and many novel 

applications can be performed without major modification to the theory, simply by using different 

methods for generating synthetic realities or varied decision formulations. It is hoped that future 

research will see some exploration of these potential developments to the DCT framework. 
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Appendix A 

Reservoir Model Development - Supporting Materials 

Calibration Procedure: 

See section 3.2.6 for a discussion of the calibration procedure steps. Here the metric used in each 

step are presented. 

1. Total Volume – calculated as: 

 𝑀𝑉 = 𝑄(|(𝑉𝑖𝑛⃗⃗⃗⃗  ⃗ − 𝑉𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  )|; 𝑝 = 0.9) (1) 

where 𝑀𝑉 is the volume metric (m3), 𝑉𝑖𝑛⃗⃗⃗⃗  ⃗ is a vector of cumulative inflow volumes for each 

water year in the simulation (m3), 𝑉𝑜𝑢𝑡
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  is a vector of cumulative outflow volumes for each 

water year in the simulation (m3), 𝑄 is the quantile function, and 𝑝 is the percentage of time 

that values in an empirical cumulative distribution function should be less than the returned 

value. The quantile function is used to reduce the sensitivity of the metric to the largest 

values. 

2. Reservoir Properties – calibrate the Aref to root-mean square error (RMSE), computed as: 

 

𝑅𝑀𝑆𝐸 = √
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖=1

𝑛
 

(2) 

where 𝑦𝑖 is the ith observed daily average reservoir stage (m), 𝑦̂𝑖 is the ith simulated daily 

average reservoir stage (m), and 𝑛 is the number of days. The RMSE of the reservoir stage 

is linearly inverse weighted (earlier errors weighted less than later errors) to counteract the 

implicit heavier weighting of earlier errors. 

3. Winter Metric – calibrate the snow parameters, metric computed as 

 𝑀𝑊 = 𝑄(|(𝑑𝑉𝑠𝑖𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  − 𝑑𝑉𝑜𝑏𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗)|; 𝑝 = 0.8) (3) 

where 𝑀𝑊 is the winter metric, 𝑑𝑉𝑠𝑖𝑚⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗   is the vector of simulated daily reservoir volume 

changes (m3/d), 𝑑𝑉𝑜𝑏𝑠
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the vector of observed daily reservoir volume changes (m3/d), 𝑄 is 

the quantile function, and 𝑝 is the percentage of time that values in an empirical cumulative 

distribution function should be less than the returned value, set to 90% here. 
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4. Timing – for Steps (4 and 5), the final calibration sets are both calibrated using an average 

of the RMSE calculated for the reservoir stage (same as the metric from (2) above) and the 

RMSE calculated on the daily change in reservoir volume. The RMSE formula is the same 

as equation 7 above, and the daily change in reservoir volume is calculated as:  

 𝑑𝑉𝑖 = 𝑉𝑖 − 𝑉𝑖−1 (4) 

where 𝑑𝑉𝑖 is the daily change in volume on the ith day of the simulation, 𝑉𝑖 is the volume of 

the reservoir on the ith day, and 𝑉𝑖−1 is the volume of the reservoir on the previous day of 

the simulation. Reservoir volumes are linearly interpolated from the provided rating curve 

using the simulated or observed stage value. 
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Table A1. Parameters calibrated in each step of calibration procedure 

Raven Parameter Name Description 
Total 

Volume 

Reservoir 

Properties 
Winter 

Timing 

1 

Timing 

2 

AirSnowCoeff Air snow heat transfer coefficient [1/d] 
    

IrreducibleSnowSaturation Maximum liquid water content of snow [pct  SWE] 
 

✓
 

RainSnowTransition[0] RainSnow minimum temperature [°C] 
 

✓
 

<NA> RainSnow difference min and max temperature [°C] 
 

✓
 

POROSITY Porosity [-] 
  

✓ ✓

HBV_BETA Infiltration parameter in HBV method [-] 
  

✓ ✓

MAX_PERC_RATE Maximum percolation rate [mm/d] 
  

✓ ✓

MAX_INTERFLOW_RATE Maximum interflow rate [mm/d] 
  

✓ ✓

BASEFLOW_COEFF Baseflow coefficient for rock [1/d] 
  

✓ ✓

BASEFLOW_N Baseflow parameter for rock [-] 
  

✓ ✓

PET_CORRECTION PET correction factor [-] ✓
   

<NA> Thickness of fractured rock layer [m] 
  

✓ ✓

<NA> Thickness of top soil layer [m] 
    

MAX_HT Maximum vegetation height [m] 
   

✓

MAX_LAI Maximum leaf area index [m2/m2] 
   

✓

MAX_LEAF_COND Maximum leaf conductance [mm/s] 
   

✓

SAI_HT_RATIO Ratio of stem area index to height [m2/m2/m] 
   

✓

MAX_CAPACITY Maximum canopy storage for rain [mm] ✓
   

MAX_CAPACITY_SNOW Maximum canopy storage for snow [mm] ✓


✓
 

RAIN_ICEPT_PCT Canopy interception percentage for rain [-] ✓
   

SNOW_ICEPT_PCT Canopy interception percentage for snow [-] ✓


✓
 

SVF_EXTINCTION Shortwave radiation extinction coefficient [-] ✓
   

IMPERMEABLE_FRAC Impermeable fraction of land [-] ✓
   

FOREST_COVERAGE Percentage of land covered with vegetation [-] 
    

DEP_MAX Maximum depression storage [mm] ✓
   

OW_PET_CORR_FOREST Open water PET correction for forests [-] ✓
   

OW_PET_CORR_LAKE Open water PET correction for lakes [-] ✓
   

FOREST_SPARSENESS Forest sparseness factor [-] 
    

MELT_FACTOR Melt factor for degree day method [mm/d/°C] 
 

✓
 

MIN_MELT_FACTOR Minimum melt factor [mm/d/°C] 
 

✓
 

HBV_MELT_FOR_CORR Forest melt factor correction [-] 
 

✓
 

REFREEZE_FACTOR Refreeze factor for degree day method [mm/d/°C] 
 

✓
 

HBV_MELT_ASP_CORR Aspect melt factor correction [-] 
 

✓
 

LAKE_PET_CORR PET correction for Lakes [-] ✓ ✓
  

ABST_PERCENT Percent runoff routed to depression storage [-] ✓
   

<NA> Reference height for reservoir [m] 
    

<NA> Reference volume for reservoir [m3] 
    

<NA> Reference area for reservoir m2]* 


✓
  

<NA> Reservoir side slope [-]     

*Bark Lake Dam area in the Bark Lake model, and Mountain Chute Dam area in Mountain Chute model, 

respectively  
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Reservoir Parameters 

Table A2. Base reservoir parameters for calibrated models 

Parameter Booth Lake Galeairy Lake Bark Lake Mountain Chute 

href [m] 2.82E+02 3.88E+02 3.05E+02 2.44E+02 

Vref [m3] 0.00E+00 2.00E+08 0.00E+00 0.00E+00 

Aref [m2] 2.78E+07 1.01E+07 4.79E+07 4.47E+07 

β [-] 6.86E+00 6.51E+00 5.76E+00 5.36E+00 

h0 [m] 3.89E+02 3.89E+02 - - 

a [m2/d] 1.00E+00 7.00E-01 - - 

b [-] 1.00E+00 1.10E+00 - - 
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Appendix B 

DCT Case Study 1 - Supporting Materials 

Table B1. Reservoir parameters for Kamaniskeg Dam 

Parameter Value 

href [m] 2.82E+02 

Vref [m3] 0.00E+00 

Aref [m2] 2.78E+07 

β [-] 6.86E+00 
 

Table B2. List of parameters used in calibration of evaluated model for reservoir management case study 

Raven Parameter Name Description 
Base 

Value 

Lower 

Bound 

Upper 

Bound 

RainSnowTransition[0] RainSnow minimum temperature [°C] -2.52 -8.00 1.00 

<NA> RainSnow difference min and max temperature [°C] 1.92 0.50 6.00 

HBV_BETA Infiltration parameter for rock in HBV method [-] 10.98 0.10 20.00 

HBV_BETA Infiltration parameter for soil in HBV method [-] 13.75 0.10 20.00 

MAX_PERC_RATE Maximum percolation rate for rock [mm/d] 57.26 0.10 100.00 

MAX_PERC_RATE Maximum percolation rate for soil [mm/d] 196.00 0.10 200.00 

MAX_INTERFLOW_RATE Maximum interflow rate for rock [mm/d] 10.73 0.05 50.00 

MAX_INTERFLOW_RATE Maximum interflow rate for soil [mm/d] 34.55 0.05 50.00 

BASEFLOW_COEFF Baseflow coefficient for rock [1/d] 0.23 0.01 1.00 

BASEFLOW_COEFF Baseflow coefficient for soil [1/d] 0.00 0.00 0.00 

BASEFLOW_N Baseflow parameter for rock [-] 0.61 0.50 5.00 

BASEFLOW_N Baseflow parameter for soil [-] 0.00 0.00 0.00 

PET_CORRECTION PET correction factor for rock [-] 0.71 0.10 1.30 

PET_CORRECTION PET correction factor for soil [-] 0.66 0.10 1.30 

<NA> Thickness of fractured rock layer [m] 294.72 0.10 300.00 

SVF_EXTINCTION Shortwave radiation extinction coefficient [-] 0.23 0.00 1.00 

IMPERMEABLE_FRAC Impermeable fraction of land [-] 0.00 0.00 1.00 

FOREST_COVERAGE Percentage of land covered with vegetation [-] 0.90 0.50 1.00 

DEP_MAX Maximum depression storage [mm] 229.00 0.00 500.00 

MELT_FACTOR Melt factor for degree day method [mm/d/°C] 2.77 0.50 10.00 

MIN_MELT_FACTOR Minimum melt factor [mm/d/°C] 2.73 0.50 10.00 

HBV_MELT_FOR_CORR Forest melt factor correction [-] 1.15 0.50 1.50 

REFREEZE_FACTOR Refreeze factor for degree day method [mm/d/°C] 4.55 0.50 10.00 

HBV_MELT_ASP_CORR Aspect melt factor correction [-] 0.53 0.50 1.50 

LAKE_PET_CORR PET correction for Lakes [-] 1.01 0.10 1.30 

ABST_PERCENT Percent runoff routed to depression storage [-] 0.30 0.00 0.50 
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Kamaniskeg Seasonal Reservoir Fitting 

The seasonal rating curve at Kamaniskeg Dam was fitted using a piecewise linear regression. Only 

spring flows are fitted with a set of 3 linear regressions (with breakpoints in regression sets at stage 

values of 283.1 m and 283.3 m), the other seasons were fitted with a single linear regression. These 

regression values are shown in Table B3. 

Table B3. Fitted piecewise linear regression coefficients for seasonal outflows from Kamaniskeg Dam 

Parameter Winter Spring Summer Autumn 

Intercept 1 -119285.86 -77978.94 -28465.61 -24170.32 

Slope 1 421.87 275.91 100.74 85.57 

Intercept 1 NA -306895.19 NA NA 

Slope 1 NA 1084.65 NA NA 

Intercept 1 NA -44645.84 NA NA 

Slope 1 NA 158.82 NA NA 

 

The plots of piecewise linear regression by season are shown in the following four figures. 

 

Figure B1. Linear regression fit for Winter outflows from Kamaniskeg Dam 
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Figure B2. Linear regression fit for Spring outflows from Kamaniskeg Dam 

 

Figure B3. Linear regression fit for Summer outflows from Kamaniskeg Dam 
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Figure B4. Linear regression fit for Autumn outflows from Kamaniskeg Dam 

The seasonal rating curve, as provided to the Raven model for base operations, is shown in Table 

B4. The adjusted operation table simply divides the summer flows by a factor of 3.28. 
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Table B4. Seasonal rating curve for Kamaniskeg Dam 

  

Day of 

year 
274 91 152 244 335 

Stage 

[m] 

Volume 

[m3] 
Area [m2] Qdefault Qspring Qsummer Qautumn Qwinter 

282.00 0 27800000 0.00 0.00 0.00 0.00 0.00 

282.25 6954856 27838854 0.00 0.00 0.00 0.00 0.00 

282.50 13919429 27877735 0.00 0.00 0.00 0.00 0.00 

282.75 20893726 27916643 25.08 34.40 18.17 25.08 0.00 

283.00 27877753 27955579 46.48 103.37 43.36 46.48 103.67 

283.25 34871518 27994541 67.87 331.01 68.54 67.87 209.14 

283.50 41875026 28033531 89.26 378.58 93.73 89.26 314.61 

283.75 48888285 28072548 110.66 418.28 118.91 110.66 420.07 

284.00 55911302 28111591 132.05 457.99 144.10 132.05 525.54 

284.25 62944083 28150662 153.44 497.69 169.28 153.44 631.01 

284.50 69986635 28189761 174.84 537.40 194.46 174.84 736.48 

284.75 77038966 28228886 196.23 577.10 219.65 196.23 841.94 

285.00 84101081 28268038 217.62 616.80 244.83 217.62 947.41 

285.25 91172987 28307218 239.01 656.51 270.02 239.01 1052.88 

285.50 98254692 28346425 260.41 696.21 295.20 260.41 1158.35 

285.75 105346202 28385658 281.80 735.92 320.39 281.80 1263.82 

286.00 112447523 28424919 303.19 775.62 345.57 303.19 1369.28 
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Appendix C 

DCT Case Study 2 - Supporting Materials 

Table C1. List of parameters used in calibration of evaluated model for data gauging case study 

Raven Parameter Name Description 
Base 

Value 

Lower 

Bound 

Upper 

Bound 

RainSnowTransition[0] RainSnow minimum temperature [°C] -7.41 -10.00 2.00 

<NA> RainSnow difference min and max temperature [°C] 4.79 0.50 10.00 

POROSITY Soil porosity [-] 0.68 0.10 0.80 

HBV_BETA Infiltration parameter in HBV method [-] 5.02 0.10 20.00 

MAX_PERC_RATE Maximum percolation rate [mm/d] 49.99 0.10 50.00 

MAX_INTERFLOW_RATE Maximum interflow rate [mm/d] 12.98 0.05 50.00 

BASEFLOW_COEFF Baseflow coefficient [1/d] 0.23 0.01 10.00 

BASEFLOW_N Baseflow parameter [-] 0.72 0.50 4.00 

PET_CORRECTION PET correction factor [-] 0.13 0.10 1.20 

<NA> Thickness of fractured rock layer [m] 106.44 0.10 200.00 

MAX_CAPACITY Maximum canopy storage capacity [mm] 18.90 0.50 30.00 

MAX_SNOW_CAPACITY 

Maximum canopy storage capacity for snow [mm 

SWE] 9.87 0.50 15.00 

RAIN_ICEPT_FACT Rain interception fraction [-] 0.06 0.01 0.10 

SNOW_ICEPT_FACT Snow interception fraction [-] 0.07 0.01 0.10 

SVF_EXTINCTION Shortwave radiation extinction coefficient [-] 0.64 0.00 1.00 

IMPERMEABLE_FRAC Impermeable fraction of land [-] 0.07 0.00 0.10 

DEP_MAX Maximum depression storage [mm] 127.00 1.00 300.00 

OW_PET_CORR Open water correction factor [-] 0.53 0.25 1.00 

MELT_FACTOR Melt factor for degree day method [mm/d/°C] 1.90 1.00 15.00 

MIN_MELT_FACTOR Minimum melt factor [mm/d/°C] 1.92 0.50 4.00 

HBV_MELT_FOR_CORR Forest melt factor correction [-] 0.96 0.50 1.50 

REFREEZE_FACTOR Refreeze factor for degree day method [mm/d/°C] 2.05 2.00 5.00 

HBV_MELT_ASP_CORR Aspect melt factor correction [-] 1.08 0.50 1.50 

LAKE_PET_CORR PET correction for Lakes [-] 0.50 0.50 1.30 

ABST_PERCENT Percent runoff routed to depression storage [-] 0.46 0.00 0.50 

<NA> Booth Lake outflow power law parameter a [m^2/d] 1.00 0.00 20.00 

<NA> Booth Lake outflow power law parameter b [-] 1.00 0.00 10.00 

<NA> Galeairy Lake outflow power law parameter a [m^2/d] 0.70 0.00 20.00 

<NA> Galeairy Lake outflow power law parameter b [-] 1.10 0.00 10.00 

 


