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ABSTRACT 

Preventing falls and fall-related injuries are public health challenges of the upmost importance for 

Canadians, particularly for older adults. Due to the severe consequences that can accompany a fall (e.g., 

traumatic brain injuries, hip fractures), studying age-related changes in balance control is an important 

avenue towards informing more effective fall-prevention interventions. As tripping is a common cause of 

falling in older adults, many researchers have studied reactive stepping after a simulated trip. While the 

majority of studies have focused on recovery at foot-contact (FC), researchers have begun to focus on the 

landing phase (or restabilisation phase), which occurs after the point of FC of the reactive step. This thesis 

adds to the burgeoning insights in this important area by addressing the following four general objectives: 

i) determine which individual characteristics are predictive of center of mass (COM) displacement during 

the reactive stepping and landing phases in young and older adults (Study 1); ii) determine how lower-

limb muscle recruitment patterns during the landing phase compare to earlier phases of the reactive 

stepping response, as well as how lower-limb electromyography signals relate to each other during the 

landing phase (Study 2); iii) determine if wide stepping and restricted arm movement influence balance 

control during the landing phase (Study 3); and, iv) to quantify balance control after FC when participants 

responded with two reactive steps (Study 4). Reactive stepping was evoked via a tether-release paradigm.  

In Study 1, it was found that for both young and older adults, regression models driven by 

specific tether-release metrics were stronger predictors of COM movement during the stepping and 

landing phases compared to general metrics, calculated separately from the tether-release trials (e.g., 

response time, range-of-motion, etc.). For Study 2, which quantified lower-limb electromyography 

(EMG), the peak timing and magnitude were generally slower (more variable) and smallest from the point 

of the maximum COM after FC to the end of the trial. The muscles which exhibited their highest peak 

magnitude during the landing phase were the biceps femoris of the step-leg, which was correlated with 

the peak medial gastrocnemius magnitude during landing, and the rectus femoris and tibialis anterior of 

the support-leg. Peak magnitudes suggest that the step-leg biceps femoris and medial gastrocnemius and 

support-leg rectus femoris (in continuation from the swing phase) and tibialis anterior are important 
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during landing, while the step-leg rectus femoris and tibialis anterior are important in the swing phase. 

Regarding the investigation of wide stepping and restricted arm movement in Study 3, wide stepping 

resulted in the largest medio-lateral (ML) and anterior-posterior (AP) body movement after FC, regardless 

of age group. Second, despite limited AP influence, restricted arm movement resulted in larger ML body 

movement after FC, compared to the preferred stepping condition. During Study 4, analyses of the first 

step revealed that during the two-step condition peak AP COM displacement after FC was increased, 

while peak ML COM displacement was decreased, for both loading conditions. With asymmetrical 

loading, first step lengths were larger during the one-step condition, while first step width was reduced 

over both stepping tasks with asymmetrical loading. During two-steps, peak AP extrapolated COM 

(xCOM) displacement after FC was larger in the second vs. the first step with asymmetrical loading, yet 

the first step resulted in greater ML xCOM displacement vs. the second step, regardless of loading. 

Interestingly, first step width was narrower than the second with asymmetrical loading. As hypothesized, 

peak xCOM displacement between the first and second steps was correlated. 

As a whole, the results of these studies provide novel insights into the landing phase of reactive 

stepping. A consistent theme pertains to the potential ability of pro-actively training effective reactive 

stepping responses. The findings suggest that researchers and clinicians should consider task specificity if 

training reactive stepping responses. Furthermore, focus should be placed on the muscles which were 

their most active (and correlated) during landing, (i.e., the biceps femoris and medial gastrocnemius of the 

step-leg). The large stability margin observed during wide stepping suggests it can be a positive strategy 

for increased ML stability. Incorporating the arms into training would also be positive, as ML COM 

control decreased when the arms were restricted. Finally, multi-step balance control should not be 

inferred using single-step responses, as differences in COM\xCOM displacement existed between 

stepping tasks and step number. Further, xCOM correlations between the first and second step did not 

improve when the one-step responses were used for the first step metrics. To further enhance the evidence 

base in this area, future work could focus on characterizing landing phase control during more dynamic 

activities such as tripping during gait, ideally with participants who represent high-fall risk groups. 
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1. OVERVIEW, FRAMEWORK, OBJECTIVES AND GENERAL HYPOTHESES 

1.1 Overview 

Humans’ abilities to stand, walk and run upright are ones that separate us from the majority of 

species on earth. However, they also makes us inherently unstable as approximately two thirds of our 

body mass is located in the upper third of our body (Winter et al., 1990), and bipedal ambulation reduces 

the size of our base-of-support (compared to quadrupeds). Unfortunately, increased age can result in a 

decreased ability to effectively maintain stability, increasing one’s risk of falling (Maki & McIlroy, 2006; 

McIlroy & Maki, 1996; Nevitt et al., 1989; O'Loughlin et al., 1993; Tinetti et al., 1988). 

Many researchers have reported differences in balance control/stability between young and older 

adults. For example, numerous studies have shown that older adults take multiple reactive steps after an 

external postural perturbation (Luchies et al., 1994; McIlroy & Maki, 1996; Schulz et al., 2005), which 

are slower and shorter in length (Thelen et al., 1997; Wojcik et al., 1999). Older adults also often step 

with a larger lateral component compared to young adults (McIlroy & Maki, 1996; Schulz, et al., 2005). 

Regarding gait, older adults exhibit a slower velocity (due to a reduced stride length), increased double-

limb support time, a reduced push-off and a more flat-footed landing (Winter, et al., 1990). Balance 

impaired older adults have also been shown to exhibit excessive lateral momentum during gait, despite 

walking at a slower velocity (Kaya et al., 1998). Older adults also walk and terminate gait with an 

increased stride width (the former is moderately associated with falling (Maki, 1997)), and terminate their 

gait less frequently using one-step (Menant et al., 2009; Tirosh & Sparrow, 2004). 

Towards further enhancing our knowledge of balance control, recently the landing phase (or the 

restabilisation phase) of stepping has received increased attention. The landing phase is the period when 

the stepping foot is back in contact with the ground, and has a direct influence on the kinematics of the 

center of mass (COM) after movement initiation (Singer et al., 2012), when individuals can apply 

(potentially) stabilizing forces against the support surface. In studies of older adults during voluntary and 

reactive stepping, the medio-lateral (ML) COM incongruity was larger in older adults, with greater 

variability (Singer et al., 2013, 2016). The COM incongruity refers to the difference between the 
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maximum ML COM position after foot-contact (FC) and the stable region of the ML COM (Singer, et al., 

2013, 2016). Despite the novel findings, there is a need for research to understand the role of the landing 

phase, and more specifically, the role of body movement after FC. For example, it is possible that the 

alterations to the COM exhibited by the older adults could be pro-active strategies during the landing 

phase to aid in taking a subsequent step. Alternatively, the increased body movement after FC in older 

adults could be a form of dyscontrol due to age-related changes (Singer, et al., 2013).  

Research on the landing phase of forward stepping suggests that in older adults, initial voluntary 

and reactive steps may not be as stabilizing as those used by young adults (Singer, 2012; Singer et al., 

2014; Singer, et al., 2013, 2016). However, multiple aspects of the landing phase remain unexplored. 

First, it is unknown if balance control (i.e., COM displacement, velocity) during the stepping phase is 

related to balance control during the landing phase of reactive stepping. Further, it is unknown which 

factors are predictive of balance control during the landing phase, and if these factors differ between 

young and older adults. Second, and in-line with predicting balance control during the landing phase, it is 

unclear how lower-limb muscle recruitment patterns during the landing phase compare to other phases of 

the reactive stepping response. Third, while older adults often take wider steps and are more reliant on 

arm movement (compared to young adults), it is unclear if these strategies are beneficial for balance 

control during the landing phase. Lastly, while previous research has focused on the landing phase during 

single-step responses, the landing phase during two-step responses has received less attention. 

Understanding how balance control changes during the landing phase of two-step responses may provide 

important insight into the role of COM movement after FC, and will provide a springboard into the study 

of the landing phase during more dynamic activities, such as trip recovery during gait. 

1.2 Framework: Neuromechanical Control and Sources of Potential Age-Related Differences 

For humans to maintain an upright posture, their COM must remain positioned over the base-of-

support (BOS) (Maki & McIlroy, 1997). However, external or internal perturbations may cause the COM 

to approach the limits of the BOS. Accordingly, to prevent a fall, two distinct categories of balance 

recovery strategies exist to bring the COM back over the BOS: fixed-support and change-in-support 
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strategies (Maki & McIlroy, 1997). Fixed-support strategies may be used in response to small or moderate 

perturbations to one’s balance. These strategies do not change the size of the BOS but instead aim to stop 

movement of the COM by generating muscle torques and causing rotation about the ankle, knee and hip 

joints (Maki & McIlroy, 2006). However, if an individual is exposed to a larger perturbation, it may be 

necessary to use a change-in-support strategy, which results in an increase in the size of the BOS (Maki & 

McIlroy, 2006). One specific example of a change-in-support strategy is reactive stepping, where the size 

of the BOS is increased based on where the stepping leg is placed. Recently, researchers have begun to 

focus on the landing (or restabilisation) phase of reactive stepping, which occurs after the point of foot-

contact (FC) (King et al., 2012; Serrao et al., 2013; Singer, et al., 2014; Singer, et al., 2012, 2016).  

The landing phase is important for balance recovery as it allows one to modulate their net center 

of pressure via the generation of step-leg ground reaction forces (GRFs) (Singer, et al., 2016). Age-related 

differences have previously been observed during the landing phase of reactive stepping, specifically in 

the peak COM displacement after FC (Singer, et al., 2016). Mechanically, these differences may be 

attributable to declines in the ability of older adults to generate appropriately directed GRFs (King, et al., 

2012; Singer, et al., 2014), but not magnitude (King, et al., 2012). While generating GRFs of the 

appropriate magnitude may not be problematic for older adults, lower limb strength may be important 

during the landing phase. For instance, older adult multi-steppers tend to use a higher proportion of their 

available hip extension strength compared to single-steppers (Carty et al., 2012b). Others have also 

implicated the degeneration of leg extensor muscle-tendon units in age-related declines in forward 

stepping (Karamanidis & Arampatzis, 2007; Karamanidis et al., 2008). Interestingly, Pavol et al. (2001, 

2002) also reported that low strength older adults may be at an increased risk of after-step falls, due to 

declines in knee and\or hip extension strength. Older adults also produce less step-limb joint power in 

response to a simulated-trip (Carty, et al., 2012b). Step length, width and movement time may also play 

an important role in landing phase control, and differences between young and older adults. Older adults 

are slower to react and move with slower and shorter steps (Carty et al., 2011; Lee et al., 2014; Luchies, 
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et al., 1994; Schulz, et al., 2005; Thelen, et al., 1997; Wojcik, et al., 1999), which could each influence 

how far forward the COM is displaced after FC, during the landing phase. 

 In addition to the measures discussed above, neural factors such as muscle activation onset 

latency and automatic postural response (APR) timing\magnitude may also influence landing phase 

control. Automatic postural responses are muscle responses that typically precede the onset of a step (e.g., 

the generation of ankle moments via the triceps surae). If reactive stepping is the desired outcome, this 

can present a conflict in responses, as stepping would require a center of pressure displacement directed 

opposite of that generated by the early APR (Singer, 2012). Researchers have tried to better understand 

this potential conflict by studying reactive stepping after surface translations. Interestingly, APRs were 

always initiated, regardless of whether participants took a reactive step or not. Furthermore, the onset 

latency was the same. When steps were pre-planned, the magnitude of the tibialis anterior was reduced 

compared to unplanned stepping, or feet-in-place responses (McIlroy & Maki, 1993a). Researchers also 

observed the modifiability of the APR magnitude in a separate study where participants were asked to fall 

onto a mattress or to recover their balance after being released from a backward lean. Tibialis anterior 

onset latency was largely unchanged between the two conditions; however, the magnitude was 

significantly reduced in the fall trials (Weerdesteyn et al., 2008). This result suggests a similarity in the 

motor program between conditions, but that the motor program can be down-regulated as needed. 

Additional studies have reported similar findings on the consistency in timing of early APRs after release 

from forward leaning (Do et al., 1982), during reactive stepping, with and without constraints (McIlroy & 

Maki, 1993b), and also after being exposed to the same perturbation magnitude (McIlroy & Maki, 1995). 

Despite the consistent timing of early APRs during different tasks, researchers have reported that older 

adults exhibit delayed onset latencies in multiple muscles, during various balance recovery tasks. For 

example, older adults also exhibit delayed electromyographic (EMG) responses in all postural leg, hip, 

trunk and arm muscles after rotational perturbations (Allum et al., 2002), while anterior-posterior surface 

translations revealed delayed onset latencies in the medial gastrocnemius and biceps femoris in older 

adults (Tokuno et al., 2010). 
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 Lastly, occurring after the early APR, are anticipatory postural adjustments (APAs) which act to 

unload the stepping leg prior to toe-off. Research has shown that voluntary steps almost always occur 

with an APA preceding step initiation (Brunt et al., 1991). Unlike voluntary stepping, APAs are normally 

either absent or diminished in magnitude and effectiveness during reactive stepping (McIlroy & Maki, 

1999; Rogers et al., 2001), which may have a negative effect on ML stability (McIlroy & Maki, 1999; 

Rogers, et al., 2001). One study did find that young adults were more likely than older adults to generate 

an APA prior to reactive stepping, however the magnitude of the APA was small, with no corresponding 

increase in lateral stability at the time of foot-contact (McIlroy & Maki, 1996). This was in agreement 

with separate (unpublished) research showing that APAs which do precede compensatory stepping are 

often too brief or too small to have a significant or functional influence on the lateral movement of the 

COM (McIlroy & Maki, 1996). Nonetheless, along with the other factors listed above, it remains possible 

that APAs could also contribute to the peak movement of the COM after foot-contact, thereby influencing 

landing phase control. A summary of all the neuromechanical factors discussed is depicted in Figure 1-1. 

In light of the framework presented above, the current thesis focused on four specific areas which 

each encompassed some or all of the factors shown in Figure 1.1. Study 1 focused primarily on predictors 

of balance control during the landing phase, where factors such as response time, muscle strength and 

movement amplitude (e.g., step length and width) were examined, based on apriori decisions. Study 2 

focused on the peak timing and peak magnitude of lower-limb muscle activity throughout the entirety of 

the reactive stepping response. Specifically, the peak muscle recruitment patterns during the landing 

phase may speak to factors occurring earlier in the reactive stepping response, such as muscle activation 

onset latency, or the size of the automatic postural response. If such factors which are present early in the 

reactive stepping response are ineffective in restraining the forward rotation of the body, conceivably 

greater muscle activation will be required during the landing phase. Study three focused on the effect of 

wide stepping and arm movement on landing phase control. Not only have these characteristics been 

reported in older adults for a variety of tasks, but it is plausible that the need for a wide step, or large arm 

movement after foot-contact could be related to factors during the early part of the response, or during the 
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swing phase (e.g., muscle activation onset latency, automatic postural response timing and magnitude, 

anticipatory postural adjustment amplitude, movement time, etc.). Lastly, Study 4 focused on 

characterizing the landing phase during two-step responses, where any one of the above-mentioned 

factors could cause a participant to need a second reactive step. For example, if the automatic postural 

response is too small, the movement time too slow, and\or the accompanying first step too short, the 

COM may be pitched further forward resulting in the need for a second reactive step. Study-specific 

objectives and general hypotheses are presented below. 

 

Figure 1-1: A depiction of the potential sources of age-related differences during the landing phase of 

reactive stepping. 

 

1.3 Objectives and Hypotheses 

This thesis was comprised of four complementary studies outlined in Figure 1-2. Studies 1 – 3 were 

collected as part of one large experiment, while Study 4 was collected separately. In summary, the 

overarching objectives of this thesis were as follows:  
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1) Enhance our understanding of human balance control and recovery by assessing whether phases 

of forward reactive stepping are related in young and older adults. Focus was placed on COM 

displacement during the stepping phase (up to FC), and the landing phase (occurring after FC). 

Second, to determine which individual characteristics are predictive of COM displacement during 

both the stepping and landing phases, in young and older adults.  

 

It was hypothesized that balance control at FC would correlate with balance control after FC, in 

both the young and older adults. Second, general measures would significantly predict COM 

displacement during the stepping and landing phases, in young and older adults. However, 

regressions incorporating specific measures (from the tether-release trials) would result in larger 

R and R2 values compared to the general models, for each dependent variable and age-group. 

 

2) Determine how lower-limb muscle recruitment patterns during the landing phase compare to 

earlier phases of the reactive stepping response. Specifically, to determine if peak muscle 

recruitment differs across phases of forward reactive stepping for muscles of the lower-limb. 

Second, to determine if the peak magnitude between muscles is related in a given phase of 

reactive stepping, in an attempt to gain insight into synergistic activity between muscles. 

 

It was hypothesized that of the muscles examined, the peak timing and magnitude of the step-leg 

biceps femoris (due to its role as a hip-extensor) would be earliest and at its largest during the 

landing phase, from FC to the peak COM position after FC. Overall, for each muscle, the later 

aspect of the landing phase (after the peak COM) would have the latest peak timing, smallest 

peak magnitude, and the largest variability. During the period from FC to peak COM position 

after FC, the biceps femoris and medial gastrocnemius of the stepping leg would exhibit the 

largest positive correlation between peak magnitudes. 

 



8 
 

3) Determine whether wide stepping and restricted arm movement influence balance control during 

the landing phase of reactive stepping, in young and older adults. 

 

It was hypothesized that wide stepping would result in the largest and most variable peak COM 

displacement after FC. Second, restricted arm movement would result in a larger and more 

variable peak COM displacement after FC, compared to the preferred stepping trials. Lastly, 

compared to the young adults, older adults would exhibit a larger and more variable peak COM 

displacement after FC during all experimental conditions. However, the between-group 

differences would be largest during the wide stepping and restricted arm movement conditions. 

 

4) Quantify balance control after FC when participants responded with two reactive steps. A 

secondary objective was to quantify the effects of asymmetrical stance loading (pre-release) 

during two-step responses. 

 

When comparing the first step, it was hypothesized that two-step responses would result in a 

larger peak COM displacement after FC, compared to one-step responses. Second, during the 

two-step responses, the second step (vs. the first step) would occur with a smaller peak COM 

displacement after FC. Asymmetrical loading would result in a smaller peak COM displacement 

after FC during the first step, but a larger peak COM displacement after FC during the second 

step.
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Figure 1-2: A graphical overview of the four studies which comprised this thesis. The two arrows leading from Study 1 to Studies 2 and 3, 

respectively, represent the fact that Studies 2 and 3 were collected at the same time as Study 1 (i.e., part of one large data collection). Study 4 was 

collected separately, and involved only young adult participants. 
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2. REVIEW OF LITERATURE 

2.1 Overview – Falls in Older Adults 

Globally, the number of people who are of the age 65 years and older is growing at a faster rate 

than any other age group (WHO, 2007). In Canada specifically, the older adult cohort accounted for 15% 

of the population in 2011, and is expected to increases to 25% by the year 2036 (Statistics Canada, 2010). 

Due to the fact that the proportion of older adults living in Canada is increasing, we must devote our 

attention to the issues that these people face in living their daily lives. Accordingly, falls are a major 

public health concern and the leading cause of injury in older adults above the age of 65, as 

approximately one-third of community-dwelling older adults experience a fall annually (Raina et al., 

1997; Tromp et al., 2001). Researchers have suggested that 20% of falls in older adults will result in 

serious injury such as hip and intertrochanteric fractures and traumatic brain injuries (Alexander et al., 

1992; Gilasi et al., 2015). Furthermore, 77% of all injury hospitalizations in older adults are due to fall 

related injuries (Johnson et al., 2015; PHAC, 2005). Economically, this places a huge burden on our 

health-care system as an estimated 2 billion dollars is spent annually on fall related injuries in older adults 

(SMARTRISK, 2009). Even in the absence of a fall-related injury, falling once increases the likelihood of 

falling again and the fear of falling itself can cause mobility and independence limitations (O'Loughlin, et 

al., 1993; Tinetti et al., 1994). Therefore, it is of paramount importance that we conduct research aimed at 

characterizing falling and balance control which can inform fall reduction strategies.  

2.2 Overview – Reactive Stepping in Response to an External Perturbation 

In order to prevent a fall, two different types of balance recovery strategies may be employed to 

bring the center of mass (COM) back over the base-of-support (BOS), and maintain upright posture (Maki 

& McIlroy, 1997). Fixed-support strategies commonly occur in response to a small or moderate 

perturbation to one’s balance. These strategies do not change the size of the BOS, but instead the goal is 

to control movement of the COM by generating oppositely-directed (to the rotation of the COM) muscle 

torques, causing rotation about the ankle, knee and hip joints (Maki & McIlroy, 2006). When a larger 
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perturbation is experienced, or when one’s BOS is perturbed (e.g., their feet) via a trip or slip, it may be 

necessary to rely upon a change-in-support strategy. A change-in-support strategy results in a large 

increase in the size of the BOS either through stepping or the grasping of an object (e.g., handrail) for 

support (Maki & McIlroy, 2006). Consequently, such a strategy allows for a much larger range of COM 

motion to occur before it is brought to rest (Maki & McIlroy, 2006).  

Although the size of a perturbation influences one’s balance recovery strategy, an individual’s 

balance capabilities will also determine whether they use a fixed or change-in-support strategy. For 

example, older adults tend to rely more heavily on change-in-support strategies in order to recover their 

balance. Video surveillance of a geriatric facility showed that reactive stepping was quite common in 

response to a loss of balance (Holliday et al., 1990), as in 45% of cases individuals tried to take a step 

prior to the fall. Similarly, Yang et al. (2013) reported that observable attempts to recover balance via 

reactive stepping were noted in 42% of falls. Interestingly, even when participants are unsuccessful at 

recovering their balance via reactive stepping, the act of taking a step may still help to reduce the risk for 

hip fracture by increasing the time to pelvis impact, increasing the interval between hand and pelvis 

impact and decreasing the impact velocity of the pelvis (Feldman & Robinovitch, 2007).   

Regarding response prevalence, multiple laboratory studies have found reactive stepping to be 

common in response to postural perturbations. For instance, using perturbations which occurred in 

multiple directions, Hsiao and Robinovitch (1998) observed reactive stepping to be the predominant 

balance recovery response for young adults. Additionally, when participants did experience a fall, a failed 

reactive step was still observed in all but one fall trial (Hsiao & Robinovitch, 1998). Further, reactive 

stepping was prevalent even when participants were exposed to small-magnitude perturbations (Hsiao & 

Robinovitch, 1998; Luchies, et al., 1994; Pai et al., 1998; Rogers, et al., 2001). However, reactive steps 

can also be adapted to the initial disequilibrium torque, allowing for faster and larger reactive steps, for 

larger perturbations (Do, et al., 1982). As reactive stepping is a common balance recovery response in 

young adults, it is not surprising that this response is also frequently used\attempted by older adults, as 

shown by the studies of real-life falls in the paragraph above.  
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To better understand why reactive steps are initiated, many researchers have quantified dynamic 

balance by considering position-velocity relationships between the COM and BOS, moving beyond just 

COM position measures (Carty, et al., 2011; Hof et al., 2005; Pai et al., 2000; Pai & Patton, 1997; Pai, et 

al., 1998). Specifically, one study compared static (i.e., dependent on COM displacement) and dynamic 

(i.e., where the initial position and velocity of the COM and BOS were used as inputs) inverted pendulum 

models. Overwhelmingly, the dynamic model better predicted the need to take a reactive step in response 

to a support surface translation (i.e., 71% vs. 11% of stepping responses were predicted correctly for the 

dynamic and static models, respectively) (Pai, et al., 2000). This result was similar to a study when the 

COM was perturbed via waist-pulls. In that study, the dynamic model predicted stepping with an 

accuracy of 65%, compared to 5% for the static model which did not consider COM velocity (Pai, et al., 

1998). This demonstrated that the central nervous system (CNS) must react to and control the COM 

velocity as well as the COM displacement in order to effectively maintain stability without stepping (Pai, 

et al., 2000). Detecting and controlling both the COM displacement and velocity is difficult; therefore it is 

not surprising that reactive stepping is a very common response, even when participants are told not to 

step (McIlroy & Maki, 1993b). Accordingly, more recent models developed to predict if a balance 

perturbation can be recovered from using a single recovery step (as well as estimating the characteristics 

of the most efficient recovery step – shortest and fastest step) have incorporated and considered velocity 

effects about the COM, in the form of the extrapolated COM (Vallee et al., 2015). However, the decision 

to initiate a reactive step may also reflect non-biomechanical factors such as a fear of falling, 

misperception of the current state of instability or an anticipation of the forthcoming instability (Pai, et al., 

2000). Due to the importance and frequent occurrence of reactive stepping, many researchers have 

investigated how reactive stepping changes in older adults. 

2.3 The Effect of Age on Reactive Stepping 

The biomechanics of reactive stepping have been widely studied in older adults. Wojcik et al. 

(1999) observed that 50% of older women were unable to recover their balance with a single-step after 

being released from the smallest of the imposed forward-lean perturbations. This inability may have been 
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due to limitations in the maximum speeds at which the older women moved their swing foot (Wojcik, et 

al., 1999). Similarly, Thelen et al. (1997) observed that the maximum lean angle from which older adults 

could recover from using a single reactive step was significantly smaller compared to young adults. 

Similarly, multi-step reactions in older adults have also been reported by Schulz et al. (2005) and Luchies 

et al. (1994) when responding to larger perturbations, Mille et al. (2013) when responding to waist pull 

perturbations, Dijkstra et al (2015) after anterior-posterior (AP) surface translations, and McIlroy and 

Maki (1996), where multiple stepping was almost twice as common in older adults, compared to young 

adults (63% vs. 35% of trials) after an AP surface translation. Further, the number (absolute and relative) 

of multiple steppers who experienced a fall in a 12-month follow-up period was greater compared with 

single-steppers (Carty et al., 2014). Not only do older adults often respond with multiple reactive steps, 

but anterior stepping thresholds are also reduced with age (Crenshaw & Grabiner, 2014).  

Older adults who do take multiple-steps also step with a significantly shorter and faster initial 

recovery step, and adopt more trunk flexion throughout recovery (Graham et al., 2014). Shorter step 

lengths among multiple steppers were also reported by Cronin et al. (2013). Accordingly, older adult 

multiple steppers exhibit a smaller margin of safety (MoS) at foot-contact and at the maximum knee 

flexion angle after foot-contact, compared older adult single-steppers. Both the trunk flexion angle at 

foot-contact and step length correlated with the MoS at foot-contact (Carty, et al., 2011). Reduced lower-

limb isometric strength (i.e., especially of the hip flexors and knee extensors, which are needed for taking 

a long step) is also associated with an increased odds of requiring multiple steps, vs. a single-step in older 

adults (Carty et al., 2012a). In contrast, others have observed no differences in leg extensor strength 

(isometric ankle plantarflexion and knee extension) or tendon stiffness between older adult single and 

multiple steppers (Arampatzis et al., 2008). Lastly, some researchers have suggested an important role for 

the hip joint, as older adult multi-steppers use a higher proportion of their hip extension strength but 

produce less knee and ankle joint peak power during stepping (Carty, et al., 2012b). 

Deficits have also been noted in the speed and length of reactive steps, where older adults take 

slower (velocity) steps after a forward or backward platform perturbation (Lee, et al., 2014). Both Thelen 
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et al. (1997) and Wojcik et al. (1999) noted that older adults had slower reaction times compared to young 

adults, while Thelen et al. (1997) observed that older adults tended to take shorter reactive steps at any 

given forward-lean angle. The latter finding agreed with the work of Schulz et al. (2005) for backwards 

stepping and Luchies et al. (1994), who observed older adults to take shorter reactive steps, with a 

reduced height from the ground. Luchies et al. (1994) also observed that older adults landed their first 

reactive step earlier, with a shorter step duration. At foot-contact and up to the point of maximum knee 

flexion after foot-contact (i.e., termination of downwards body motion), older adults exhibited a shorter 

anterior BOS and smaller stability margin after a forward tether-release (Karamanidis, et al., 2008), 

possibly due to reduced lower-limb strength (Karamanidis, et al., 2008). Madigan and Lloyd (2005b) also 

reported that older adults exhibit reduced hip flexion, knee flexion and extension as well as ankle plantar 

flexion velocity when taking forward reactive steps. Similarly, Carty et al. (2011) found older adults to 

take shorter reactive steps, exhibit increased trunk flexion, smaller peak knee flexion angles and a smaller 

MoS at foot-contact vs. young adults.  

In young and older adults, differences also exist for measures of medio-lateral (ML) stability. For 

instance, single-step trials were least frequently taken by older adults for purely lateral perturbation 

directions (Mille, et al., 2013). When forced to rely on a complicated cross-over lateral reactive step, there 

was also a 16-fold increase in inter-limb collisions for older adults, compared to young adults (Mille, et 

al., 2013). Along with using a laterally-directed balance task to examine ML balance control, lateral 

instability has also been observed in response to AP perturbations. For instance, in response to backward 

platform translations (causing forward stepping) older adults commonly exhibited “same-leg” multiple-

step responses, where the “same-leg” reactions were almost exclusive to the older adults. In older adults, 

these responses occurred in over 30% of trials, often times featuring a second step where the foot moved 

laterally as much as 28 cm (McIlroy & Maki, 1996). Conversely, laterally directed second steps were only 

observed in four trials (8%) for the young adults. Lateral stepping may reflect an impaired ability to 

control a ML instability that arises after the initial foot-contact, subsequent to the onset of additional steps 

(McIlroy & Maki, 1996).  
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Focusing on the initial step, recent research has shown that in older adults, the initial reactive step 

resulted in an increased ML ground reaction force (GRF) component, compared to young adults (King, et 

al., 2012). This suggests that ML instability in older adults may not be solely an issue of magnitude, but 

may arise from an inability to adequately control and direct the line of action of the net GRF, as the 

increased ML GRF component must be offset with an appropriately sized vertical force. Similarly, Rogers 

et al. (2001) also examined forward-directed reactive steps and observed that older adult fallers had a 

significantly greater and faster ML body motion toward the stepping side at first step contact and a more 

laterally directed step placement compared to young adults and older adult non-fallers. The authors 

suggested that the older adult fallers may have used a wider step in a compensatory manner, to account 

for the ML instability that likely developed from the point of foot lift-off to initial step-contact (Rogers, et 

al., 2001). However, no data was presented to quantify stability during the landing phase. 

Impaired ML control may also exist in older adults during backward-directed reactive stepping, 

as compared to young adults, older adults show a larger lateral component to their reactive steps (Schulz, 

et al., 2005). Older adults also use more laterally-directed steps after a backwards directed slip (Troy et 

al., 2008). This may be a compensatory mechanism to account for increased lateral instability. The COM 

of the older adults moved more laterally before step lift-off and their feet also travelled more laterally 

during the first 0.1 seconds of their backwards compensatory steps. By directing their first step more 

laterally, the older adults reduced the usefulness of that step in resisting the posterior perturbation, but 

increased their lateral stability with the resulting BOS. Interestingly, when multiple step trials were 

compared to single-step trials, the initial posterior steps of the multiple step trials exhibited an increased 

lateral placement and increased initial lateral foot velocities. This suggests that multiple steps may not be 

as efficient as one long AP step in dissipating the backward-directed perturbation force, but appear to 

provide a more stable, conservative recovery strategy, providing stability in both the AP and ML 

directions (Schulz, et al., 2005).  

Conservative strategies are also a recurring theme when one reviews the literature on ML stability 

during gait and gait termination in older adults. For example, when instructed to walk along a narrow 
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path, marked by lines on the floor, older adults walked in a conservative manner by taking wider steps 

compared to the young adults (Schrager et al., 2008). Regarding gait termination, Tirosh and Sparrow 

(2004) postulated that upon the completion of the first step, if AP stability is secured but ML stability 

remains to be consolidated, the prevalence of a second step in older adults may occur to ensure that ML 

stability is achieved. This could explain why older adults often performed two-step stopping even when, 

after the first step, they were already within the stability region predicted by Pai and Patton (1997), as 

these authors modeled only AP stability. An increased stride width in older adults has also been reported 

by Menant et al. (2009) for rapid gait termination after an auditory cue. 

While older adults do show reactive stepping deficits, when compared to young adults, they can 

adapt to repeated forward tether-release perturbations and improve their subsequent AP stability. Reactive 

stepping improvements have been inferred through a reduced number of reactive steps, a larger BOS at 

foot-contact, a reduced COM position at foot-contact, and an increased rate of BOS displacement from 

toe-off to foot-contact (Carty et al., 2012c). Researchers have also noted a reduced anterior COM position 

and velocity (i.e., resulting in a greater MoS) at both foot-contact and the maximum knee joint flexion 

angle after foot-contact (Barrett et al., 2012). No improvements were observed in the ML MoS with 

repeated trials/exposure (Barrett, et al., 2012). The fact that older adults can improve their reactive 

stepping has positive implications for training interventions to reduce the risk of falling in older adults. Of 

concern is that recent research has reported that single-step balance recovery from a forward-lean 

perturbation (simulated-trip) can begin to decrease as early as 51 years of age, where the maximum lean 

angle decreased below one standard deviation of the mean value for young adults 18 years of age 

(Carbonneau & Smeesters, 2014). As such, interventions to offset age-related declines in reactive 

stepping and other balance recovery responses are of the upmost importance, and may have positive 

benefits for middle-aged adults as well as older adults. 

2.4 Implications Resulting from a Loss of Balance 

Due to the severe consequences that can accompany a fall, studying balance control in older 

adults is very important. One of the injuries that can result from a fall is a traumatic brain injury (TBI). In 
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a study of TBIs, falls accounted for 71% (15 of 21) of injuries in older adults, 65 years of age and older 

(Pickett et al., 2001). Over half (50.3%) of all fall-related deaths in older adults 65 years of age and older 

can be attributed to fall-related TBI (Thomas et al., 2008). Of further concern is the fact that the risk for 

fall-related TBI continues to increase as one ages. Specifically, persons over the age of 85 are hospitalized 

for fall-related TBI over twice as often as those aged 75–84, and over 6 times as often as those aged 65–

74 (Coronado et al., 2005). Linking fall mechanics to head impacts, videos of real-life falls in long-term 

care showed incorrect weight shifting (34%) and tripping (25%) to be the two highest causes of falls in 

which head impact occurred. The probability of head impact was significantly associated with initial fall 

direction and landing configuration (Schonnop et al., 2013). For falls that were initially directed forward, 

the odds ratio for head impact was at least 2.7-fold greater than for falls directed backwards, sideways or 

straight down. Further, the odds ratio for head impact was 2.5-fold larger for falls involving a forward or 

sideways landing configuration than a backward landing configuration (Schonnop, et al., 2013). While it 

is intuitive that forward-directed falls increase one’s risk of sustaining a head impact, forward (along with 

sideways) directed falls also increase one’s risk of sustaining a hip impact. 

Another serious injury that can result from a fall is a hip fracture. In older adults, suffering a hip 

fracture was associated with a greater than 2-fold increase in the likelihood of death, a 4-fold increase in 

the likelihood of requiring long-term nursing facility care, and a 2-fold increase in one’s probability of 

entering into a low-income socio-economic status (Tajeu et al., 2014). Regarding fall mechanics, hip 

fracture risk in older adult females increased 3.3-fold for those who fell sideways and approximately 30-

fold for those who landed on or near the hip (Nevitt & Cummings, 1993). In older adult males, a sideways 

fall increased the risk of hip fracture by 3.2-fold, while hitting the hip and or thigh when falling increased 

the risk for hip fracture by almost 50-fold (Schwartz et al., 1998). Similarly, a prospective study of hip 

fracture cases in a LTC facility revealed that of those participants who suffered a hip fracture due to a fall, 

they were more likely to have fallen sideways (odds ratio = 5.7). The authors concluded that sustaining a 

fall to the side was an important and independent risk factor for suffering a hip fracture (Greenspan et al., 

1998). However, not all impacts occurring to the side of the body are due to sideways-directed falls. 
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Similar to the findings of Schonopp et al (2013) regarding head impact, Yang et al. (2015) found that the 

odds for hip impact were 4.2 to 7.9-fold greater for falls initially directed forwards or sideways compared 

to falls directed backwards or straight down.  

Due to the serious consequences which can result from a fall, such as a TBI or a hip fracture, it is 

important to be able to safely simulate balance perturbations in a lab setting. One experimental technique 

which can be used to accomplish this goal is referred to as the tether-release, cable-release, or lean-and-

release (Hsiao-Wecksler, 2008), and will be described in section 3.3.1 of the document. Simply, the 

tether-release method simulates body configuration at the onset of a trip, which is a common cause of 

falls among older adults in long-term care (Robinovitch et al., 2013). Although the tether-release 

primarily perturbs the participant forward, a sideways perturbation will also be introduced if a reactive 

step is required (e.g., particularly during single-leg support). Due to the importance of reactive stepping 

for preventing a fall, we must understand all phases of the stepping reaction, including the landing phase 

(or restabilisation phase) which occurs after foot-contact. Historically, this phase has received less 

attention compared to the stepping phase (from toe-off to foot-contact), but recent investigations into the 

landing phase have provided novel insights into reactive stepping control and how it changes with age. 

2.5 The Landing Phase of Stepping 

2.5.1 Definition and Current Knowledge 

Recently, researchers have begun to investigate the landing phase (or the restabilisation phase) of 

forward stepping, which occurs after heel-contact. Studying balance after foot-contact is very important, 

as research has shown incorrect weight shifting to be the largest cause of falls among older adults in long-

term care (Robinovitch, et al., 2013), which shows that stability is not guaranteed just because both feet 

are in contact with the floor. Mechanically, the requirements of the stepping leg are not expected to 

become critical until after landing, when forces and moments must be generated to counteract the angular 

momentum of the body (Pijnappels et al., 2004). Accordingly, if placed correctly, in front of the body’s 

COM, the recovery limb can generate a moment that counteracts the body’s forward rotation (Grabiner et 

al., 1993). According to Singer et al. (2012) this phase is particularly important for the maintenance of 
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dynamic stability because it may have the most direct influence on the kinematics of the COM after 

movement initiation when the swing phase is complete and the foot is back in-contact with the ground. 

Separate studies have also supported this notion. For example, Schulz et al. (2005) used waist pulls to 

study reactive stepping in the anterior and posterior directions in young and older adults, as well as 

balance-impaired older adults. Compared to the young and older adults, balance-impaired older adults 

were less effective at attenuating their linear momentum during the landing of the first step (inferred 

through AP COM-BOS distance), which may have contributed to their need for multiple steps. Schulz et 

al. (2005) suggested this indicated that critical balance impairment-related decrements in compensatory 

stepping occur after the landing of the first step. Challenges with balance control during the landing phase 

may also be evident from the finding of multi-step responses when older adults try to regain their balance 

using one-step (Luchies, et al., 1994; McIlroy & Maki, 1996). The need for additional steps may arise 

from a difficulty in the regulation of the position and velocity of the COM within the BOS, from the time 

beginning specifically after foot-contact occurs (Singer, et al., 2012).  

Accordingly, researchers have begun to focus specifically on balance control during the landing 

phase of a forward step (after foot-contact). Results revealed that older adults use larger laterally directed 

landing phase ground and ankle reaction forces (King, et al., 2012), and show increased variability in 

frontal-plane balance control during rapid stepping (Kurz et al., 2013). Madigan and Lloyd (2005a) 

examined landing phase peak joint torques during single-step recovery, and observed a consistent pattern 

of joint torques between young and older participants, but older adults tended to use larger peak extensor 

torques at the hip and ankle (Madigan & Lloyd, 2005a). A separate group examined age-related changes 

in recovery after a forward fall, along with the influence of running experience. Young adults generally 

had increased muscle strength, increased tendon stiffness and better dynamic balance (i.e., increased BOS 

and MoS) compared to older adults, and running experience was linked to the ability to recover using a 

single-step (vs. non-active participants) (Karamanidis & Arampatzis, 2007; Karamanidis, et al., 2008). 

While these studies did capture the landing phase (or the stance phase as the authors referred to it), the 

analysis was limited to 400 ms after foot-contact (Karamanidis & Arampatzis, 2007; Karamanidis, et al., 
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2008). The 400 ms cut-off was proposed to align with the termination of downward body movement after 

stepping (encompassing the first minimum angle at the knee after foot-contact); yet, data from the current 

projects show that maximum downward body position (COM) is not always complete within 400 ms after 

foot-contact, nor has the maximum AP or ML COM position after foot-contact always been reached. 

Separate studies have examined balance recovery up to the point of the maximum knee flexion angle after 

foot-contact (Arampatzis, et al., 2008; Arampatzis et al., 2011; Barrett, et al., 2012; Carty, et al., 2011); 

however, this method does not encompass AP or ML COM movement which may occur after the 

termination of downward body movement. To analyze the landing phase thoroughly, researchers should 

use a longer period after foot-contact.  

In line with the previous paragraph, researchers have collected data for upwards of 10 seconds 

after the start of data collection, to allow for the landing phase to be adequately characterized (Singer, 

2012). During a study of dynamic stability control during volitional stepping, researchers observed that 

overshoots in the final COM position were quite prevalent, occurring in 77% (AP) and 68% (ML) of all 

trials when participants stepped with their preferred step length and width. Overall, less than 30% of trials 

contained no incongruity (i.e., difference) between the peak and final COM position (Singer, et al., 2012). 

Although both AP and ML overshoots were observed, the authors focused on the ML COM overshoots. 

As the ML COM overshoots (toward the lateral BOS limit) occurred during voluntary stepping in a group 

of young participants with no known health issues, the authors initially suggested that the ML COM 

incongruity may serve a functional role (Singer, et al., 2012). During voluntary stepping, this was 

supported by the finding that the magnitude of the ML COM incongruity in young adults increased with a 

more conservative, wider step (Singer, et al., 2012). If the incongruity was a form of dyscontrol or an 

“error”, one would expect that taking a wider step would reduce the size of this COM “error” in the ML 

direction. Instead, the incongruity may simplify reactive control after foot-contact, as greater than 

expected AP or ML movement of the COM could place an increased emphasis on the stepping limb for 

stability restoration. In theory, difficulties in COM control, resulting in a larger than expected forward or 

lateral COM movement after foot-contact would only require an increase in the force applied by the 
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stepping limb and\or the initiation of an additional forward or lateral step to regain stability (Singer, et al., 

2012). These characteristics are typical of the stepping responses observed in older adults in response to 

anterior postural perturbations (McIlroy & Maki, 1996).  

However, this notion was challenged when researchers observed older adults to respond with a 

larger and more variable ML COM incongruity, regardless of whether older adults took voluntary steps of 

preferred length\width, reduced width, preferred speed or rapid speed (Singer, et al., 2013). Furthermore, 

when using forward reactive steps to respond to tether-release perturbations, older adults also exhibited an 

increased ML COM incongruity, regardless of whether they stepped with a preferred step placement 

(length\width) or with a reduced step width (Singer, 2012; Singer, et al., 2016). If alterations to the COM 

exhibited by the older adults are to be considered pro-active strategies during the landing phase, then 

purposely allowing the COM to travel closer to the lateral limits of the BOS would be counterproductive 

to the objective of maintaining stability. It seems more likely that the increased overshoot (and increased 

variability) in older adults (Singer, 2012; Singer, et al., 2013, 2016) was a function of dynamic stability 

dyscontrol (Singer, et al., 2013). Interestingly, it has been observed that in older adults, decreased strength 

may be linked with an increase likelihood of sustaining an after-step fall (i.e., a fall occurring at least 470 

ms after recovery step contact) (Pavol, et al., 2002). 

Overall, research on the landing phase of forward stepping suggests that in older adults, initial 

voluntary and forward reactive steps may not be as stabilizing as in young adults (Singer, 2012; Singer, et 

al., 2013, 2016), perhaps contributing to the use of multiple steps by older adults during many different 

activities. However, there are currently multiple research gaps which must be addressed to allow for a 

more comprehensive understanding of the landing phase, and the differences which exist between young 

and older adults.  

2.5.2 Research Gaps 

Although existing research on the landing phase has provided important and novel insight into 

this understudied phase of balance control, certain gaps still exist in the research. In older adults, 

impairments have been observed in the speed (slower) and length (shorter) of reactive steps (Lee, et al., 
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2014; Luchies, et al., 1994; Schulz, et al., 2005; Thelen, et al., 1997; Wojcik, et al., 1999). Regarding the 

role of leg-strength during reactive stepping in older adults, some studies suggest leg strength is important 

(Carty, et al., 2012a; Carty, et al., 2012b; Karamanidis & Arampatzis, 2007; Karamanidis, et al., 2008), 

while others suggest leg strength may not be very important (Arampatzis, et al., 2008; Grabiner et al., 

2005). Graham et al. (2014) explored muscle force contributions during forward reactive stepping, in 

young and older adults, but did not analyze beyond foot-contact. Graham et al. (2015) explored 

biomechanical predictors of the maximum forward lean magnitude which participants could recover from 

with a single-step. While useful, this metric does not provide specific insight into balance control (i.e., 

COM displacement, stability margins, etc.). Therefore, to further develop the literature, research is needed 

to: 1) determine if balance control during the stepping phase and landing phase is related; and, 2) 

determine whether landing phase (and stepping phase) performance can be predicted by general and 

specific measures of reaction time or movement time, range-of-motion\movement size and leg strength. It 

is important to understand if balance control during the stepping and landing phases is correlated, as it 

would suggest a potential for transfer effects when training a specific phase of reactive stepping. It is 

known that the support-leg can provide enough time and clearance for proper positioning of the step-leg, 

and reduce the angular momentum during push-off, reducing the step-leg demands (Pijnappels, et al., 

2004). Despite these results, it is unclear if balance control (i.e., COM displacement, velocity) between 

phases is correlated. Previous research has advocated for both the COM displacement and COM velocity 

when studying balance control, but also for predicting the need to initiate a reactive step (Hof, et al., 

2005; Pai, et al., 2000). Second, in predicting balance control during the landing phase of reactive 

stepping, it would also be ideal for predictor variables to be easily measured and assessed by clinicians. 

For example, if lower-limb strength was shown to be a strong predictor of landing phase performance, 

such information could be incorporated into interventions, in the form of resistance training, to improve 

balance control in older adults. These research gaps will be addressed in Study 1 (Chapter 3) (refer to 

thesis framework in Figure 1-2). 
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Second, multiple researchers have reported that older adults exhibit an impaired timing of muscle 

activity when responding to postural perturbations. In a study of older adult single vs. multiple steppers, 

single-steppers recruited a larger proportion of the available motor unit pool during balance recovery 

(higher peak normalized electromyography (EMG) in 6 of 7 step-leg muscles), and also took longer steps 

than multiple steppers (Cronin, et al., 2013). Specific balance metrics (e.g., COM displacement, stability 

margins) were not quantified, and the study focused only on up to foot-contact, meaning the landing 

phase was not analyzed. Similarly, in response to feet-in-place rotational perturbations, older adults 

exhibited delayed EMG responses in all postural leg, hip, trunk and arm muscles, potentially compensated 

for by enhanced later responses (Allum, et al., 2002). In response to anterior-posterior surface 

translations, older adults also responded with delayed EMG onset latencies in the medial gastrocnemius 

and biceps femoris (Tokuno, et al., 2010). Older adults also recruit fewer swing leg muscles, resulting in 

less extensor torque (Tirosh & Sparrow, 2005). These examples show that impaired muscle recruitment 

has been observed in older adults across multiple types of balance recovery tasks\perturbations. However, 

no study to date has assessed lower-limb muscle recruitment patterns (peak timing and magnitude) during 

the landing phase, and compared these patterns to earlier phases of the reactive stepping response. 

Further, no study has assessed between-muscle relationships in peak timing and magnitude within each 

phase. Therefore, prior to assessing landing phase recruitment patterns in older adults, a baseline of 

control must first be established in young adults. Moving forward, understanding how lower-limb muscle 

recruitment differs between reactive stepping phases will allow researchers and clinicians to target phases 

of reactive stepping, by training a muscle(s) which is at its most active during the specific phase. Further, 

understanding if separate muscle recruitment patterns correlate within a phase will also allow for specific 

training, by targeting (e.g., strength training) the muscles with correlated recruitment patterns in a given 

reactive stepping phase. An investigation of muscle recruitment during the landing phase will be 

addressed in Study 2 (Chapter 4) (Figure 1-2). 

Third, it is unclear how specific movement characteristics influence balance control during the 

landing phase. For example, older adult fallers use more laterally directed forward-reactive steps 
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compared to young adults and older adult non-fallers (Rogers, et al., 2001). In response to AP platform 

translations, older adults were more likely than young adults to take laterally-directed additional steps 

(McIlroy & Maki, 1996). Likewise, larger lateral steps have been observed during backward-directed 

stepping (compared to young adults) (Schulz, et al., 2005; Troy, et al., 2008), gait (Dean et al., 2007), 

narrow gait (Schrager, et al., 2008) and gait termination (Menant, et al., 2009). Stride width variability 

has also been found to be larger in older, compared to younger, adults (Dean, et al., 2007; Grabiner et al., 

2001). An increased stride width in older adults has also been shown to have a moderate association with 

both falling and fear-of-falling (Maki, 1997). Approximately 70-85% of the gait cycle occurs in the 

single-leg phases (Maki, 1997), therefore older adults may be forced to adopt a wider stride to capture the 

COM as it falls sideways during single-limb support before effectively moving into double-limb support. 

Older adults are also more reliant on the use of their arms for assistance during balance recovery after a 

postural perturbation (Maki et al., 2000), despite being unable to initiate arm movements as rapidly 

(Allum, et al., 2002; Maki et al., 2001; Mansfield & Maki, 2009; Weaver et al., 2012), or to the same 

extent as the young (Allum, et al., 2002). However, the influence of arm movement on landing phase 

control has not yet been studied. Understanding how wide stepping and restricted arm movement 

influence balance control during the landing phase has important implications for training reactive 

balance control. If wide steps or arm movements have a positive effect on landing phase control, these 

actions can be emphasized in clinical settings. From a basic science perspective, studying landing phase 

control during wide stepping (specifically in the ML direction) will provide important information on the 

role of body movement after foot-contact (e.g., is the COM overshoot proactive or poor control). The 

influence of wide stepping and restricted arm movement on balance control during the landing phase will 

be addressed in Study 3 (Chapter 5) (Figure 1-2). 

Lastly, throughout day-to-day life, the most common types of perturbations initiated are voluntary 

(e.g., walking, turning, reaching or bending). One such internal perturbation occurs during gait 

termination, which requires the CNS to predict the future and final position of the body’s COM (Winter, 

1995). This may be particularly difficult for older adults, as they often terminate gait using more than 
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one-step (Menant, et al., 2009; Tirosh & Sparrow, 2004, 2005). However, it is unclear if this need for 

multiple steps is real or “perceived” as 86% of the older adults’ two-step responses occurred within the 

predicted stability region prior to them taking the second step (Tirosh & Sparrow, 2004). Recently, the 

landing phase of single-step responses has become a focus of researchers (Singer, et al., 2014; Singer, et 

al., 2012, 2013, 2016). Accordingly, it is of interest to study the landing phase of reactive stepping when 

participants use two-steps to recover their balance because it has implications for tasks occurring after a 

large postural perturbation, such as tripping while walking. As an initial step, researchers must 

characterize the landing phase during two-step responses in young adults to establish a baseline of control 

and to determine if single-step responses are similar to those observed during multi-step scenarios, in 

terms of body movement after foot-contact and foot-placement (step length and width). Effects of 

asymmetrical loading between legs should also be assessed as during dynamic activities involving gait, 

one’s body weight is unevenly distributed throughout the various phases. Further, these results could 

carry implications for those individuals who exhibit loading asymmetries during standing\leaning (e.g., 

stroke patients). Studying the landing phase during two-step responses will provide important information 

on the role of body movement after foot-contact of a reactive step. As such, landing phase control during 

two-step responses, as well as the influence of asymmetrical leaning will all be addressed in Study 4 

(Chapter 6) (Figure 1-2). Future work should progress to studying the landing phase in more dynamic 

activities, moving beyond responses evoked from a stationary starting position. 

Overall, studying the landing phase of reactive stepping is very important. Research is needed to 

further understand this phase, so researchers can progress to studying the same phase in individuals at an 

elevated risk of falling compared to community-dwelling older adults. For example, frail older adults, 

individuals with Parkinson’s disease, or stroke patients. In response to a trip, the act of taking of step 

alone does not guarantee that one will not fall. One must continue to control their body movement after 

the point of foot-contact. Recall, in long term care, frail-older adults were very susceptible to falls due to 

tripping while walking, but also due to incorrect weight shifting (Robinovitch, et al., 2013), which shows 

the importance of body control even when both feet are in contact with the support surface. 
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3. STUDY ONE – PREDICTORS OF BALANCE CONTROL DURING THE LANDING 

PHASE OF REACTIVE STEPPING IN YOUNG AND OLDER ADULTS 

3.1 Chapter Overview 

Research on the landing phase of reactive stepping, occurring after foot-contact (FC), has 

revealed control deficits in older adults. Currently, it is unknown if balance control during the stepping 

and landing phases is related, and if individual characteristics are predictive of balance control during 

reactive stepping. The purposes of this study were to determine if elements of balance control during the 

stepping and landing phases are related, and to assess the predictive value of models consisting of general 

and specific (from the tether-release trials) predictors. Forty young adults and 40 older adults participated 

in the study. A tether-release paradigm was used to evoke 10 reactive stepping responses. Dependent 

variables were center of mass (COM) displacement at FC and peak COM displacement after FC. 

Predictor variables were: maximal isometric hip extension strength; maximal active hip flexion and hip 

abduction (general) and normalized step length and width (specific); response time, when stepping to an 

auditory tone (general) and during the tether-release trials (specific). In young adults and older adults, 

COM displacement during the stepping phase significantly predicted landing phase COM displacement 

(Young: R2=0.810, p<0.001; Older: R2=0.746, p<0.001). Second, the specific models (but not general) 

were all significant predicators of COM displacement (p<0.001; R2=0.569-0.783). The results of this 

study demonstrate the importance of specificity in predicting reactive stepping balance control. By 

emphasizing within-task metrics (i.e., step length or width) clinicians and researchers may be able to 

improve control during the landing phase of reactive stepping in older adults.  

3.2 Introduction 

The ability to effectively recover one’s balance after a postural perturbation is of paramount 

importance, especially for preventing a fall. As such, many researchers have studied reactive stepping in 

response to a trip, slip etc., and how this ability changes with age. Older adults are slower to react and 

move with slower and shorter steps (Lee, et al., 2014; Luchies, et al., 1994; Schulz, et al., 2005; Thelen, et 
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al., 1997; Wojcik, et al., 1999). Regarding leg strength, conflicting reports exist. Researchers have 

suggested an important role for the hip, as older adult multi-steppers use a higher proportion of their hip 

extension strength compared to single-steppers (Carty, et al., 2012b). Similarly, others have implicated 

degeneration in leg-extensor muscle-tendon units as being an important factor in age-related differences 

during forward stepping (Karamanidis & Arampatzis, 2007; Karamanidis, et al., 2008). Oppositely, 

separate studies show that leg strength may play a minimal role in reactive stepping in older adults 

(Arampatzis, et al., 2008; Grabiner, et al., 2005). However, these studies did not focus on the landing 

phase of reactive stepping (after foot-contact). 

Previous studies have revealed deficits during the landing phase in older adults (Singer, 2012; 

Singer, et al., 2013, 2016) (see section 2.5 in this thesis). Proper control of the center of mass (COM) 

when both feet are on the ground is very important, illustrated by the fact that incorrect weight shifting is 

a predominant cause of falls in frail older adults (Robinovitch, et al., 2013). Understanding if 

characteristics such as response time, movement amplitude or leg strength are predictive of COM 

movement during the landing phase will allow for the targeting of specific domains during interventions. 

Therefore, this study focused on the following objectives: 1) compare response time, movement 

amplitude, hip extension strength and COM displacement during reactive stepping, between young and 

older adults, to ensure that our between-group differences are similar to existing research; 2) determine if 

balance control during the stepping phase and landing phase is related, or if the characteristics present at 

the start of the landing phase represent a second perturbation, in young and older adults. During stepping, 

the support-leg can allow enough time and clearance for proper step-leg placement, and help to reduce 

angular momentum prior to the landing phase (Pijnappels, et al., 2004). However, it is unclear if body 

movement, or COM displacement, between phases is related. Further, research has suggested that both the 

COM displacement and velocity be considered when studying balance control, and when predicting the 

need to initiate a reactive step (Hof, et al., 2005; Pai, et al., 2000; Pai & Patton, 1997; Pai, et al., 1998); 3) 

assess the predictive value of a model consisting of general measures of response time, range-of-motion 
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and leg strength, all measured separately from the tether-release trials; and 4) assess the predictive value 

of a model consisting of specific predictors drawn from the tether-release trials.  

It was hypothesized that the older adults would have a delayed response time, reduced movement 

amplitude, lower hip extensions strength and larger COM displacement at and after foot-contact (FC) 

(objective 1), Regarding the second objective, it was hypothesized that COM displacement at FC would 

strongly (0.60-0.79) or very strongly (0.80-1.0) (Evans, 1996) correlate with peak COM displacement 

after FC, in both the young and older adults. Further, incorporating COM velocity at FC as a predictor 

would strengthen both models. Third, multiple linear regressions incorporating general measures would 

significantly predict COM displacement at FC (stepping phase) and peak COM displacement after FC 

(landing phase), in young and older adults, where the coefficient of multiple correlation (R) for each 

general statistical model would indicate moderate (0.40-0.59) to strong (0.60-0.79) (Evans, 1996) 

predictive ability for all models (objective 3). Fourth, the multiple-linear regressions incorporating 

specific measures would result in larger R values, vs. the general models, for each dependent variable and 

age-group (objective 4). For the purpose of this study, general refers to measures which were 

collected and calculated separately/in isolation from the balance recovery task (tether-release 

trials). Continuing with this framework, specific refers to measures calculated directly from the 

tether-release trials. 

3.3 Methods 

3.3.1 Experimental Protocol 

Forty young adults (age: 22.7(3.3) y; height: 1.7(0.1) m; mass: 72.4(17.1) kg; 20 females) and 40 

healthy, community-dwelling older adults (age: 69.6(4.3) y; height: 1.7(0.1) m; mass: 73.6(14.3) kg; 25 

females) participated in the study. Ethics clearance was obtained from the University of Waterloo Human 

Research Ethics Committee prior to study commencement. Telephone interviews were conducted to 

ensure participant eligibility (Appendix 1). All participants provided their informed consent prior to 

participation.  
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Twelve cameras (Optotrak Certus, Northern Digital Incorporated, Waterloo, Ontario, Canada) 

were used to collect kinematic data at 64Hz, while three force-plates (BP 5050 (x2), Bertec, Columbus, 

Ohio, USA, and OR6-7 (x1), Advanced Mechanical Technology Inc., (AMTI) Watertown, MA, USA) 

were used to collect ground reaction forces and moments at 2048 Hz. The two Bertec force-plates were 

arranged side-by-side (Figures 3-1 and 3-2). The AMTI force-plate was where the participants stepped 

onto, using their right leg, during all stepping tasks. The tether supporting each participant’s body weight 

was located in-line with a load cell (MLP-300-CO, Transducer Techniques, Temecula, CA) which was 

sampled at 2048 Hz and rated for up to136 kg. The tether was connected to a metal frame via an 

electromagnet (AEC Magnetics, Cincinnati, OH, USA).  

 

 

Figure 3-1: On the left is the safety harness which participants wore, along with the safety-tether which 

was connected to the ceiling to prevent participants from falling to the ground. In the middle, a young 

adult participant, and on the right, an older adult participant are depicted wearing the harness, along with 

the safety tether. The two Bertec force-plates are also depicted in both photos. 
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Figure 3-2: Depicted is the layout of the Bertec and AMTI force-plates. Marked with black electrical tape 

(on the Bertec force-plates) is the participants’ initial foot position. 

 

In the current study, ankle muscle electromyography (EMG) and full body kinematics were 

collected. Electromyographic data was sampled at 2048 Hz using a differential amplifier, with a hardware 

band-pass filter of 10-1000 Hz, a common mode rejection ratio of 115dB at 60 Hz (Bortec Biomedical, 

Calgary, AB) and disposable, self-adhesive Ag/Ag-Cl electrodes which were placed bilaterally on the 

tibialis anterior (TA) and medial gastrocnemius (MG). All data sources were synchronized using First 

Principles software (Northern Digital Incorporated, Waterloo, Ontario, Canada). The analog-to-digital 

converter included a 16-bit card. Kinematics were measured using a whole-body marker set. Rigid 

clusters of four markers were placed on the locations depicted in Appendix 2. Additionally, using a 

digitizing probe (Northern Digital Incorporated, Waterloo, Ontario, Canada) “imaginary” markers were 

digitized bilaterally at anatomically relevant locations (Appendix 2). The laboratory global coordinate 

system was defined in accordance with ISB recommendations (Wu & Cavanagh, 1995). 

Hip extension strength was measured via a dominant-leg maximal isometric exertion against an 

ankle cuff, placed around the malleoli of the tibia (Figure 3-3). All participants completed the isometric 
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exertion twice. Foot-position was shoulder width apart and parallel. Participants were instructed to 

maintain an upright posture, minimize movement of their trunk, keep their knee straight, focus on 

movement at the hip and to keep the toes and heel in-line (i.e., avoid internal/external rotation). After 

ramping up to their maximum, each trial was collected for 3 seconds (Glinka, 2013).  

 

 

Figure 3-3: A participant completing the isometric hip extension task. Note the arrow indicating the 

direction of pull, and the physiotherapy table for support. The participant did their best to keep their leg 

straight and focus on pulling with their hip muscles. 

 

Maximal active range-of-motion (ROM) was assessed for hip flexion and hip abduction of the 

dominant leg. Participants completed five cycles of each movement within 20 seconds, and were 

instructed to maintain an upright posture, and avoid trunk movement as much as possible. During hip 

flexion, participants were told to keep their toes and heel in-line. During hip abduction, participants were 

told to lead with their heel. The goal of the task was to move their leg as far as possible in the specified 

direction, in a controlled manner, while avoiding forcing extra movement at the end (Figures 3-4 and 3-

5). No movement speed was specified. 



32 
 

 

Figure 3-4: A participant completing the active hip flexion range-of-motion task. Note the chair beside 

the participant which offered balance support if required. 

 

Figure 3-5: A participant completing the active hip abduction range-of-motion task. Note the chair in 

front of the participant which offered balance support if required. 
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Voluntary reaction time was assessed by having participants start with their feet in a standardized 

position (0.17 m between heel centers and an angle of 14º between the long axes of the feet) (McIlroy & 

Maki, 1997), with one foot on each of the Bertec force-plates and their arms by their sides. Participants 

were instructed to focus their gaze to a computer monitor located at eye level, 3.28 m in front of them. In 

response to an auditory tone (presented randomly), participants stepped with their right leg as “fast as 

possible” onto the AMTI force-plate. A target was marked on the AMTI force-plate, which equalled a 

step length of 48 cm (Singer, et al., 2014) and a step width of 4 cm (McIlroy & Maki, 1996). Two trials 

were completed. 

Next, two quiet standing trials were collected. The first had participants adopt the standardized 

foot position described above (McIlroy & Maki, 1997), with their arms at their sides, while looking 

straight ahead. The second trial required participants to start in the standardized foot position, take a 

single forward step onto the AMTI force-plate with their right leg, and hold the final forward-stance 

position (Singer, 2012). Both trials were 60 seconds in duration (Carpenter et al., 2001).  

To provide the postural perturbations, a tether-release paradigm was used (Hsiao-Wecksler, 

2008). Participants started in an initial forward-lean position pertaining to 10% of their body weight 

(Singer, et al., 2016), which was monitored in real-time and kept to within ± 1% body weight trial-to-trial 

(Graham, et al., 2015). Initial foot position was standardized as above (McIlroy & Maki, 1997). The 

center of pressure position of each foot and the body weight supported by each leg (Newtons) were 

monitored prior to each tether-release perturbation, using a real-time LabVIEW feedback routine 

(National Instruments Corporation, Austin, TX). 

The EMG activity recorded bi-laterally from the TA and MG was used to help ensure the same 

levels of pre-perturbation activity prior to a tether-release. It was the goal that the level of pre-

perturbation EMG activity observed during the tether-release trials would not exceed the maximum which 

was observed from participants during the feet side-by-side quiet standing trial (Singer, 2012; Singer, et 

al., 2016). This was done using a LabVIEW feedback routine (National Instruments Corporation, Austin, 

TX). Verbal encouragement was provided emphasizing participants to, “allow for the tether to fully 
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support their body weight”. The tether was released at random intervals after the initial conditions were 

met. A minimum of one second was always captured from when the participant met the initial conditions, 

and when the electromagnet was powered off and the tether released.  

Five practice trials were always completed first. Participants were instructed to respond to each 

tether-release trial by taking a single-step with their right leg. No additional restrictions were placed on 

the recovery step, as long as the entire foot landed on the AMTI force-plate. Participants started each trial 

with their arms at their sides, but no restriction was placed on arm movement after tether-release. Next, 10 

preferred stepping trials were conducted in the same manner as the practice trials, where the goal was to 

respond with a single reactive step, using their right leg, onto the AMTI force-plate. Participants were 

instructed to maintain their final position for approximately 10 seconds once they regained their stability 

(Singer, 2012). 

3.3.2 Data Analysis 

All kinematic data (including the range-of motion trials) was low-pass filtered using a 2nd order, 

dual-pass, Butterworth filter with a cut-off frequency of 6 Hz (Graham, et al., 2015; Singer, et al., 2016). 

An estimate of the whole body COM was calculated using the filtered kinematic data and the 

anthropometric tables of de Leva (1996) for the young adults and Dempster (1955) (as displayed in 

Winter (2009)) for the older adults. To determine the hip and shoulder joint centers, the methods of 

Weinhandl and O’Connor (2010) and Nussbaum and Zhang (2000), respectively, were used. Next, the 

position of the COM, in the anterior-posterior (AP) and medio-lateral (ML) directions, was calculated at 

the following time points: 1) toe-off (TO), 2) FC and, 3) the peak COM position after FC. The peak COM 

after FC was chosen as a dependent variable, as it has previously been shown to be sensitive to 

differences between young and older adults during the landing phase (Singer, et al., 2013, 2016). 

Additionally, it represents the point of maximum body movement after FC, which assuming the foot-

position does not change after FC, also represents the point of the minimum stability margin (after FC). 

Although many have advocated for accounting for both the position and velocity of the COM during 

dynamic tasks such as reactive stepping (e.g., via the extrapolated COM (xCOM)) (Hof, et al., 2005; Pai, 
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et al., 2000; Pai, et al., 1998), the COM was used to allow for direct comparison to recent studies focused 

on landing phase control (Singer, et al., 2016). In each instant, to calculate COM displacement, the COM 

was referenced to the mean starting COM value, which was calculated from the start of the trial (frame 1) 

to one frame before cable-release (CR). The peak ML COM position after FC was always calculated in 

the +Z (right) direction. 

Force-plate data was also low-pass filtered using a 2nd order, dual-pass Butterworth filter with a 

cut-off frequency of 50 Hz (Singer, et al., 2016). Using the force-plates, TO and FC were defined. Toe-off 

was defined as the point when the vertical force under the right leg fell below 10 N (Sparrow & Tirosh, 

2003), while FC was defined as the point when the vertical force signal of the force-plate (which 

participants stepped onto) exceeded, and remained above, 10 N (Sparrow & Tirosh, 2003). Cable-release 

was calculated using the data from the load cell in-series with the tether. This data was low-pass filtered 

using a 2nd order, dual-pass Butterworth filter, with a cut-off frequency of 3 Hz (Wright et al., 2014). 

Cable-release was defined, in accordance with previous research (Graham, et al., 2015), as a 20% 

reduction in force. The mean force value over the first second of the lean was used as the baseline value, 

which was then used to determine a CR threshold corresponding to a 20% reduction in tether force. 

During the tether-release trials, reaction time was calculated as the time from CR to TO, while 

movement time was calculated from TO to FC. These two metrics were summed to calculate response 

time. An average was calculated over the 10 tether-release trials. From the stepping task (in response to 

the auditory tone), reaction time and movement time were also calculated using the same TO and FC 

thresholds described above. However, instead of starting at CR, reaction time was calculated from the 

time of auditory tone presentation to TO. From the two-stepping trials an average reaction time and 

movement time were calculated to determine response time. 

Step length and width were calculated using the COM of the right foot. The difference in the 

position of the right foot COM between FC and CR was calculated as the step length (AP) and step width 

(ML), respectively. Both of these values were normalized to participant leg length (Graham, et al., 2015). 

An average was calculated over the 10 tether-release trials. Using the ROM trials, maximum active hip 
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flexion and hip abduction ROM were also calculated. Via the cosine law, these angles were calculated at 

the point of maximum hip flexion, and hip abduction. As the participants performed the ROM tasks in-

place, these values were the maximum global anterior (hip flexion) and lateral (hip abduction) knee 

positions. 

Maximum isometric hip extension strength was calculated by taking the maximum value during 

the last two seconds of each three second isometric hip extension trial (the three second recording started 

after the ramp period) (Viggiani, 2015). Each value was normalized to leg length and an average was 

taken using the two maximum values.  

Lastly, the mean tether-load (during the lean), the mean vertical force under each foot and the 

mean start AP and ML COM positions were all calculated. Right foot AP and ML stability margins were 

calculated by subtracting the COM position from the tip of the big toe and the 5th metatarsal, respectively. 

All of these values were calculated from the start of the trial, to one frame prior to CR. Additionally, AP 

and ML COM displacements, stability margins, and velocities (central difference differentiation) were 

each determined at TO. COM displacements at TO were referenced to the mean starting COM value. 

3.3.3 Statistical Analyses 

To compare all variables between the young and older adults, independent samples t-tests were 

used (hypothesis 1). To determine if balance control between the stepping and landing phases was 

correlated, (hypothesis 2), linear-regressions were conducted with: 1) the COM displacement at FC, and 

2) the COM displacement at FC and the COM velocity at FC as independent variables. Peak COM 

displacement after FC was the dependent variable. To assess hypothesis 3, for the COM displacement at 

FC, and the peak COM displacement after FC forced-entry multiple linear regressions were conducted 

incorporating general measures. The models included the following independent variables chosen apriori: 

1) Response time (voluntary stepping task); 2) Maximum active hip flexion ROM; 3) Maximum active 

hip abduction ROM; 4) Normalized maximum isometric hip extension strength. To assess hypothesis 4, 

forced-entry multiple linear regressions were conducted incorporating specific measures of response time 

and movement amplitude (from the tether-release trials). Specifically, the models included the following 



37 
 

variables selected apriori: 1) Response time (tether-release trials); 2) Normalized step length (Graham, et 

al., 2015); 3) Normalized step width; 4) Normalized maximum isometric hip extension strength (Table 3-

1). All statistical analyses were conducted using SPSS (v.21, IBM Corporation, New York, USA). 

Experiment wide statistical significance was set at p≤0.05. 

 

Table 3-1: The rationale for why each predictor was included (#1-3), as well as why all predictor 

variables were included in a forced-entry multiple linear regression approach (#4). 

1) Response time (composed of both reaction time and movement time) was selected due to the 

importance of a rapid step in response to a trip perturbation. Furthermore, older adults take reactive 

steps of a slower velocity after a forward or backward platform perturbation (Lee, et al., 2014). Both 

Thelen et al. (1997) and Wojcik et al. (1999) also noted that the older adults had slower reaction times 

compared to young adults.  

2) Maximal active hip flexion ROM (with the knee straight) was selected because in order to generate a 

large step, one must be able to effectively flex their hip, to move the leg forward. Recent research has 

emphasized the importance of taking a long and rapid step after tripping (Graham, et al., 2015). 

Likewise, in order to modulate step width, one must have an adequate active hip abduction ROM. Step 

length and width were included (in the ‘specific’ model) due to previous studies showing age-related 

differences in the step length (Carty, et al., 2011; Cronin, et al., 2013; Graham, et al., 2014; Luchies, et 

al., 1994; Schulz, et al., 2005; Thelen, et al., 1997) and width (McIlroy & Maki, 1996; Rogers, et al., 

2001; Schulz, et al., 2005; Troy, et al., 2008). Normalized step length was also implicated by Graham 

et al. (2015) as an important variable in predicting maximum recoverable lean angle. A medio-lateral 

component was included in the regressions (as opposed to step length alone) as recent research has 

quantified medio-lateral COM displacement after foot-contact, which is larger in older adults (Singer, 

et al., 2013, 2016). 

3) Hip extension strength was chosen due to the observed greater trunk flexion in older adults during 

reactive stepping (compared to young adults) (Graham, et al., 2014). Similarly, Carty et al. (2011) 

found older adults to take shorter reactive steps and exhibit increased trunk flexion at FC compared to 

young adults. Both the trunk flexion angle at FC and step length correlated with the margin of safety at 

FC (Carty, et al., 2011). Crenshaw et al. (2012) observed that trunk flexion velocity at the first reactive 

step and trunk flexion angle at the second step had the most accurate overall classification of falls and 

recoveries, compared to step kinematics and stability measures. Further, older adult multi-steppers use 

a higher proportion of their hip extension strength (Carty, et al., 2012b). Interestingly, Madigan and 

Lloyd (2005a) also observed that during the support phase of a single reactive step older adults 

exhibited larger peak extensor torques at the hip and ankle. However, during gait termination older 

adults recruited fewer swing leg muscles with less frequent activation of the soleus and gluteus medius. 

Failure to activate muscles would provide less extensor torque, decreasing the total force opposing 

horizontal velocity (Tirosh & Sparrow, 2005). 

4) The decision to include all predictor variables together was made due to the fact that mathematical 

models predict that successful balance recovery by stepping is governed by a coupling between step 

length, step execution time, and leg strength, so that the feasibility of balance recovery decreases unless 

declines in one capacity are offset by enhancements in the others, suggesting that one's risk for falls 

may be affected more by small but diffuse neuromuscular impairments than by larger impairment in a 

single motor capacity (Hsiao & Robinovitch, 1999). 
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3.4 Results 

In older adults, COM displacement at FC and the peak COM displacement after FC both tended 

to be larger compared to the young adults (12.7 mm, p=0.051 and 20.2 mm, p=0.053, respectively). Of 

the general predictors, only response time (i.e., in response to the auditory tone) was different between 

age-groups (150 ms slower in older adults, p<0.001). For the specific predictors (i.e., in response to the 

tether-release perturbations) older adults had a 60 ms slower response time (p<0.001), a 7.2% longer 

normalized step length, and a 2.6% larger normalized step width. Older adults also had a 53.3 Nm smaller 

normalized isometric hip extension strength (p<0.001) (Table 3-2). Mean(SD) values for the initial 

conditions can be found in Table 3-3.  

 

Table 3-2: Mean(SD) values for the dependent and independent variables used in the multiple linear 

regressions. 

Variable Young Adults Older Adults p-value 

COM Disp. at FC (mm) 121.8(24.5) 134.5(32.0) 0.051 

     AP Disp.  119.6(24.5) 131.6(31.0) 0.059 

     ML Disp. 22.0(7.8) 26.6(11.3) 0.036* 

COM Velocity at FC (mm/s) 665.3(73.1) 643.4(81.3) 0.21 

Peak COM Disp. after FC (mm) 243.6(42.2) 263.8(49.6) 0.053 

     AP Disp. 233.0(41.4) 249.8(46.4) 0.092 

     ML Disp.  69.2(17.8) 83.4(23.7) 0.003* 

Response Time (s) 0.80(0.13) 0.95(0.17) <0.001* 

Max Hip Flexion ROM (deg) 83.8(19.9) 89.8(15.6) 0.138 

Max Hip Abduction ROM (deg) 71.5(19.6) 70.3(18.3) 0.772 

Response Time (tether-release) (s) 0.48(0.03) 0.54(0.08) <0.001* 

Step Length (% Leg Length) 64.1(6.9) 71.3(8.5) <0.001* 

Step Width (% Leg Length) 4.8(2.9) 7.4(3.7) <0.001* 

Hip Ext. Strength (Nm) 161.8(49.7) 108.5(43.4) <0.001* 

*indicates statistical significance at p≤0.05 (independent samples t-test); COM = center of mass; FC = 

foot-contact; ROM = range of motion. 
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Table 3-3: Initial conditions for the young and older adults. 

*indicates statistical significance at p≤0.05 (independent samples t-test) 

BW = body weight; AP = anterior-posterior; ML = medio-lateral; COM = center of mass; TO = toe-off; 

wrt = with respect to. 

 

Due to AP and ML correlations, the resultant COM displacements were used as the dependent 

variables (Table 3-4). In young adults and older adults, COM displacement at FC (stepping phase) was a 

significant predictor of peak COM displacement after FC (landing phase) (Young: R=0.900, R2=0.810, 

p<0.001; Older: R=0.864, R2=0.746, p<0.001). When COM velocity at FC was added as a predictor 

variable, the results for the young adults were very similar (R=0.901, R2=0.812, p<0.001), and velocity 

was not a significant predictor (p=0.582). However, in the older adults, the addition of COM velocity at 

FC did account for 4% more explained variance (R=0.884; R2=0.781, p<0.001), where displacement 

(p<0.001) and velocity (p=0.021) were both significant predictors in the model. 

 

 

 

 

Initial Condition Variable Young Adults Older Adults p-value 

Tether Load (%BW) 10.4(0.6) 10.4(0.8) 0.99 

Right Vertical Force (% Total) 50.0(0.4) 49.8(0.7) 0.32 

Left Vertical Force (% Total) 50.0(0.4) 50.2(0.7) 0.32 

AP COM Start Position (mm) 446.5(25.7) 448.7(37.8) 0.76 

AP Stability Margin Before Release (mm) -14.3(22.4) -12.0(31.7) 0.71 

AP COM Position at TO (wrt Start) (mm) 30.7(9.5) 35.5(12.6) 0.12 

AP Stability Margin at TO (mm) -40.4(22.3) -41.0(33.1) 0.92 

AP COM Velocity at TO (mm\s) 347.7(74.0) 341.5(78.9) 0.72 

ML COM Start Position (mm) 8.8(4.2) 8.1(4.9) 0.47 

ML Stability Margin Before Release (mm) 201.7(7.4) 206.5(9.2) 0.01* 

ML COM Position at TO (wrt Start) (mm) 1.7(2.4) 2.8(3.4) 0.09 

ML Stability Margin at TO (mm) 192.9(7.1) 201.2(11.7) <0.001* 

ML COM Velocity at TO (mm\s) 37.5(22.0) 49.2(24.9) 0.03* 
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Table 3-4: Correlations between the COM displacement in the AP and ML directions, for young and 

older adults. Bold denotes p≤0.05. 

 Young Adults Older Adults 

ML COM Disp. 

at FC 

ML Peak COM 

Disp. after FC 

ML COM Disp. 

at FC 

ML Peak COM 

Disp. after FC 

AP COM Disp. 

at FC 
0.285; p=0.074 -------------------- 0.693; p<0.001 -------------------- 

AP Peak COM 

Disp. after FC 
-------------------- 0.418; p=0.007 -------------------- 0.684; p<0.001 

AP = anterior-posterior; ML = medio-lateral; COM = center of mass; FC = foot-contact; Disp. = 

displacement. 

 

In young adults, the combination of general predictor variables were not significant predictors of 

COM displacement at FC (R=0.192, F(4,35)=0.33, p=0.853) or the peak COM displacement after FC 

(R=0.135, F(4,35)=0.16, p=0.957). In the older adults, the same predictors resulted in a model which was 

a significant predictor of COM displacement at FC (R=0.635; R2=0.403; F(4,35)=5.90, p=0.001), as well 

as the peak COM displacement after FC (R=0.483; R2=0.233; F(4,35)=2.66, p=0.049). In both older adult 

models, hip-extension strength was the only significant variable (Table 3-5). 

 

Table 3-5: Regression coefficients, standard error, and individual factor significance values for the 

models with general response time and range-of-motion variables. 

 
Factor 

Young Adults Older Adults 

B SE t Sig. B SE t Sig. 

FC 

Response Time 4.20 35.92 0.12 0.91 -1.29 25.59 -0.05 0.96 

Hip Flexion 0.20 0.27 0.77 0.45 -0.01 0.40 -0.03 0.98 

Hip Abduction 0.04 0.27 0.14 0.89 0.11 0.33 0.33 0.74 

Hip Ext. Strength -0.01 0.10 -0.09 0.93 -0.46 0.10 -4.66 <0.001 

Peak 

after 

FC 

Response Time 33.17 62.30 0.53 0.60 23.84 44.94 0.53 0.60 

Hip Flexion 0.26 0.46 0.56 0.58 -0.04 0.70 -0.05 0.96 

Hip Abduction -0.08 0.46 -0.17 0.87 0.09 0.58 0.15 0.88 

Hip Ext. Strength 0.06 0.17 0.35 0.73 -0.55 0.17 -3.15 0.003 

Hip flexion and hip abduction refer the active range-of-motion tasks collected before the tether-release 

trials. FC = foot-contact; B = beta; SE = standard error. 
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For both age groups, trial specific variables were significant predictors of COM displacement. 

For the young adults, 72% of the variance in COM displacement at FC was explained by the model 

(R=0.848, F(4,35)=22.42, p<0.001), while the combination of predictors explained 64% of the variance in 

the peak COM displacement after FC (R=0.799, F(4,35)=15.50, p<0.001). Response time was significant 

in both models for the young adults, while step length was significant only for the COM displacement at 

FC (Table 3-6). In older adults, 78% of the variance in the COM displacement at FC was explained 

(R=0.885, F(4,35)=31.54, p<0.001), while 57% of the variance in the peak COM displacement after FC 

was accounted for (R=0.754, F(4,35)=11.56, p<0.001). In both models, normalized step length was the 

only significant predictor for the older adults (Table 3-6). Scatter-plots of the actual vs. predicted COM 

displacement from the specific models are depicted in Figure 3-6. 

 

Table 3-6: Regression coefficients, standard error, and individual factor significance values for the 

models with specific response time and movement amplitude variables. 

 
Factor 

Young Adults Older Adults 

B SE t Sig. B SE t Sig. 

FC 

Response Time 452.71 82.40 5.49 <0.001 44.66 34.73 1.29 0.21 

Step Length 1.23 0.46 2.66 0.01 2.75 0.39 7.04 <0.001 

Step Width -0.34 0.91 -0.37 0.71 0.39 0.80 0.49 0.63 

Hip Ext. Strength 0.05 0.05 1.13 0.27 -0.09 0.08 -1.18 0.25 

Peak 

after 

FC 

Response Time 868.42 160.45 5.41 <0.001 -3.49 75.79 -0.05 0.96 

Step Length 1.24 0.90 1.38 0.18 3.86 0.85 4.53 <0.001 

Step Width -1.09 1.76 -0.62 0.54 2.14 1.75 1.22 0.23 

Hip Ext. Strength 0.12 0.09 1.37 0.18 -0.01 0.17 -0.06 0.95 

FC = foot-contact; B = beta; SE = standard error. 
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Figure 3-6: Scatter-plots of the actual vs. predicted center of mass (COM) displacement at foot-contact (top row), and the peak COM displacement 

which occurred after foot-contact (bottom row), in young (left column) and older (right column) adults.  
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3.5 Discussion 

The primary purposes of this study were to compare individual characteristics and COM 

displacement during reactive stepping between young and older adults, determine if COM displacement 

during the stepping phase was related to that during the landing phase, and to determine if general 

participant characteristics, and trial specific responses, were predictive of COM displacement at different 

points during reactive stepping. In agreement with our first hypothesis, older adults exhibited larger COM 

displacements both at and after FC. Second, COM displacement during the stepping and landing phase 

were very strongly correlated (.80-1.0) (Evans, 1996) in both age-groups (Young: r=0.900; Older: 

r=0.864), while COM velocity at FC was also a significant predictor in older adults. However, while the 

general measures did have moderate (.40-59) to strong (.60-.79) (Evans, 1996) predictive utility in the 

older adults, the specific models performed superiorly for predicting COM displacement during both 

phases. As hypothesized, this was true for young and older adults, highlighting the importance of task 

specificity in predicting balance control during reactive stepping. 

As hypothesized older adults had generally slower response times, longer and wider steps, 

reduced hip extension strength, and tended to exhibit increased COM displacement at both time-points. 

Our observation of significant associations between COM displacement (and velocity) during the stepping 

and landing phases of reactive stepping also builds upon previous literature. In line with our second 

hypothesis, COM displacement at FC was a strong predictor of peak COM displacement after FC, for 

both young and older adults. In the older adults, (but not young adults) there was an increase in explained 

variance when COM velocity at FC was added. Using the extrapolated COM proposed by Hof et al. 

(2005), Carty et al. (2011) observed the margin of safety (MoS) at FC to be significantly correlated 

(r=0.88) with MoS at the maximum knee flexion angle after FC, however the latter time point does not 

necessarily correspond to the maximum COM displacement after FC. The current study expands this 

finding to encompass the entire landing phase, suggesting that COM movement after FC during single-

step responses may be due to poor-control during the stepping phase. Interestingly, during lateral-directed 

stepping in older adults, multiple-step stability margins (at higher intensity perturbations) were smaller at 
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first step lift-off, compared to single-steps. This suggests that multiple steps could be attributable to COM 

dynamics as early as first step lift-off (Fujimoto et al., 2017).  

The third and fourth objectives of this study were to assess the predictive value of models 

consisting of general, as well as specific measures, for predicting COM displacement during the stepping 

and landing phases. Overall, we observed stronger regressions with specific predictor variables, which 

was in-line with our final hypothesis. Recent research in older adults found that task-specific variables 

including normalized step length and peak hip extension moment during stepping together accounted for 

69% of the variance in the maximum recoverable lean magnitude (Graham, et al., 2015). In the current 

study, the combination of specific predictor variables predicted COM displacement at FC with 78% 

explained variance, and the peak displacement after FC, with 57% explained variance, in older adults. 

However, our dependent variable was COM displacement, calculated from specific time points in the 

time-varying COM waveform, while Graham et al. (2015) focused on the maximum recoverable lean 

angle. During gait termination, older adults frequently use two-step responses when within their predicted 

stability region prior to taking the second step, suggesting that the second step was not needed (Tirosh & 

Sparrow, 2004). This result shows the importance of including a mechanical metric of balance control, as 

done in the current study, because older adults may take a second step when it is not required 

mechanically. Further, the results of Graham et al. (2015) provide no insight into balance control at 

different points in time (of the response), and whether their predictor variables relate to control during 

separate phases of the reactive stepping response. The results of the current study add to the literature by 

showing that an objective, quantitative measure of balance control, (COM displacement), can be predicted 

using specific measures calculated from the trial itself. 

In the specific models, normalized step length was positively associated with COM displacement 

at both time-points for the older adults. However, in the young adults, response time was a significant, 

positive predictor in both specific models. As the older adults had a 60 ms slower response time during 

the tether-release trials, this suggests a difficulty in moving as quickly as the young adults. For older 

adults step length is important because a delayed response time could cause the COM to be displaced 
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further forward prior to the moment of FC (statistical trend of p=0.059, Table 3-2). Specifically, the COM 

of the older adults was displaced 11.98 mm further in the anterior direction at FC, compared to the young 

adults. Therefore, an increased step length would be required to adequately capture the falling COM. In 

the current study, older adults were on average 60 ms slower in their response time compared to young 

adults (Table 3-2), which is very close to the 72 ms mean difference reported by Wojcik et al. (1999). The 

positive associations between step length and COM displacement, and the fact that COM displacement 

was correlated between phases (r > 0.85) suggests that COM displacement after FC in older adults may 

manifest due to poor control during earlier phases of the stepping reaction (where a large step length is 

needed to account for the larger COM displacement), as opposed to an active strategy (Singer, et al., 

2013). Interestingly, the general models did result in significant predictions of COM displacement in the 

older adults, but not the young adults. For both measures of COM displacement, normalized hip extension 

strength was the only significant predictor variable. Perhaps the young adults did not require maximal 

levels of hip extension strength, as their mean value was 53.28 Nm greater compared to the older adults. 

Previous research suggests that low-strength older adults are at a greater risk of falling during after-step 

falls (471 to 785 ms after recovery foot ground contact) (Pavol, et al., 2001, 2002). After-step falls have 

been suggested to be related to lower-extremity weakness, primarily of the hip and knee extensors, as 

primary factors in such falls were excessive lumbar flexion and buckling of the recovery limb (Pavol, et 

al., 2001, 2002). Our results indirectly support this notion as hip extension strength was negatively 

associated with COM displacement in both older adult regressions.  

This study was associated with several limitations. First, the fact that participants were instructed 

to recover their balance using a single step, coupled with the uni-directional perturbation, likely promoted 

more voluntary, or pre-planned components to the reactive stepping response. Accordingly, multi-

directional paradigms such as waist-pulls or surface translations may be better suited for evoking reactive 

steps with minimal pre-planning. Therefore, while the results of the current study do carry implications 

for training reactive stepping, they must be weighed in accordance with this limitation. Note, this initial 

limitation is relevant to all studies presented in this thesis. Second, the stance configuration used in the 
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active ROM trials required the participants to exert substantive muscle moments (especially at the end 

ROM). As such, it is unclear whether end ROM may have also required certain levels of strength to move 

the leg against gravity. Perhaps the older adults employed compensatory techniques, which may be why 

the young and older adults did not differ in ROM values (Table 3-2). Third, the isometric exertion may 

have been unfamiliar to many participants, possibly influencing their ability to perform the task. 

However, multiple trials were collected in an attempt to minimize this possibility. Fourth, the perturbation 

used was highly controlled, and does not truly mimic a real-life fall. Researchers may address this 

concern (to a degree) by using only the first (practice) trial to calculate COM displacement in follow-up 

studies. Fifth, the older adults were community-dwelling, and not likely at a high risk of falling. Although 

community-dwelling older adults, on average, are at a lower risk of falls, it remains possible that they 

were fearful or nervous of completing the tether-release task. To limit the influence of psychological 

factors in reactive stepping analysis, future studies may wish to include older adults who exhibit high 

activity levels, with minimal fear of falling, etc. Such a sample would allow researchers to more closely 

isolate the physiological effects of aging alone, without concomitant psychological factors that may be 

present in older adults. Sixth, during the reaction time task, despite verbal encouragement, there was no 

way to guarantee participants were stepping as fast as possible. More exhaustive sensory tests should be 

incorporated moving forward. Lastly, a larger sample size would allow for response time to be divided 

into reaction and movement time components in the regression models. However, both reaction time and 

movement time (during the tether-release trials) were delayed in the older, compared to young adults 

(similar to response time). Limitations aside, this study was novel as it focused on prediction during the 

landing phase (beyond FC). 

In conclusion, COM displacement during the stepping and landing phase was correlated in both 

age-groups. Second, the specific regressions performed better than general models for predicting COM 

displacement. By emphasizing within-task metrics (such as response time, step length or width), 

clinicians and researchers may be able to improve landing phase control in older adults. However, caution 

must be exercised, given the predictable nature of the tether-release paradigm, and the instructional set 



47 
 

employed, where participants were told to respond with a step. Next steps must focus on older adults who 

are at an elevated risk of falling, as well as individuals with neurological conditions. Future studies 

(Chapter 4) should also characterize lower-limb muscle recruitment, as this information could be an 

important part of developing interventions to train reactive stepping responses. 
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4. STUDY TWO – CHARACTERIZING PEAK LOWER-LIMB MUSCLE 

ELECTROMYOGRAPHY DURING THE LANDING PHASE OF REACTIVE 

STEPPING 

4.1 Chapter Overview 

Many studies have reported that during balance recovery tasks, older adults demonstrate impaired 

muscle responses. However, lower-limb muscle recruitment has not been characterized during the landing 

phase of reactive stepping. Accordingly, the primary objective of this study was to quantify lower-limb 

muscle peak recruitment patterns during this important element of dynamic balance control. A secondary 

objective was to assess between-muscle relationships in peak magnitude within each phase. Twenty 

young adults participated in this study. A tether-release paradigm was used to evoke 10 reactive stepping 

responses. Electromyography (EMG) was recorded bilaterally from the rectus femoris, biceps femoris, 

tibialis anterior and medial gastrocnemius. Peak timing and magnitude were generally slowest (most 

variable) and smallest from the peak center of mass after foot-contact to trial end. The muscles which 

exhibited their highest peak magnitude during the landing phase were the biceps femoris of the stepping 

leg, and the rectus femoris and tibialis anterior of the support-leg. Additionally, the biceps femoris and 

medial gastrocnemius peak magnitudes were significantly correlated during the landing phase, in both 

legs. High peak magnitudes of the step-leg bicep femoris and medial gastrocnemius, along with the 

significant correlations, suggest the step-leg extensors are important during foot landing, while the step-

leg rectus femoris and tibialis anterior may be more crucial during the swing phase. This study provided a 

basic science characterization of leg muscle patterns in young adults. Clinicians can target phases of 

reactive stepping by strengthening the muscles which were most active in a given phase. 

4.2 Introduction 

Numerous studies have examined muscle recruitment and balance recovery in older adults. In 

response to tether-release perturbations, older adult multi-step responders showed reduced peak 

electromyography (EMG) in 6 of 7 step-leg muscles (Cronin, et al., 2013). However, researchers focused 
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only on the stepping phase up to foot-contact (FC), making it unclear how muscle recruitment differs (if 

at all) during the landing phase of reactive stepping. Older adults also exhibit delayed EMG responses in 

all postural leg, hip, trunk and arm muscles after rotational perturbations (Allum, et al., 2002), while 

anterior-posterior surface translations revealed delayed onset latencies in the medial gastrocnemius and 

biceps femoris in older adults (Tokuno, et al., 2010). Older adults also recruit fewer swing leg muscles 

during gait termination (Tirosh & Sparrow, 2005).  

While these studies showed differential muscle recruitment in older adults, lower-limb muscle 

recruitment during the landing phase of reactive stepping has yet to be quantified. Balance control during 

this phase of reactive stepping has important implications for avoiding a fall after a perturbation, where 

age-related changes have previously been reported in older adults (Singer, et al., 2016). As such, 

knowledge of the muscle control strategies could assist with the development of appropriately targeted 

exercise interventions. Therefore, the primary objective of this study was to assess baseline lower-limb 

muscle recruitment patterns (peak timing and magnitude) over the entirety of the reactive stepping 

response, including after the peak center of mass (COM) position following FC, which is typically the 

kinematic event of interest in analysis of the landing phase (Singer, et al., 2013, 2016). Means and the 

coefficient of variation were assessed to gain insight into trial-to-trial variability, in-line with previous 

research which has reported on trial-to-trial variability during the landing phase (Singer, et al., 2012, 

2013, 2016). Additionally, if a muscle (in a specific phase) exhibits low variability, along with a large 

peak magnitude, this may reflect a stereotypical response suggesting that the muscle is crucial for balance 

control in a given phase. A secondary objective was to assess between-muscle relationships in peak 

magnitude within each phase, in an attempt to gain insight into synergistic activity between muscles. 

It was hypothesized that: 1a) step-leg rectus femoris peak timing and magnitude would be earliest 

and largest during toe-off (TO) to FC; 1b) step-leg biceps femoris peak timing and magnitude would be 

earliest and largest during FC to the peak COM position after FC, while the support-leg biceps femoris 

activity would be earliest and largest from cable-release to TO; 1c) step-leg tibialis anterior peak timing 

and magnitude would be earliest and largest from TO to FC; 1d) medial gastrocnemius (of both legs) peak 
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timing and magnitude would be earliest and largest from cable-release to TO. The peak timing and 

magnitude of the medial gastrocnemius of both legs would also be early and large during FC to the peak 

COM position after FC, to slow the falling COM along with the biceps femoris as hypothesized above. 

Overall, for each muscle, the period from the peak COM after FC to trial end would have the latest peak 

timing and smallest peak magnitude, with the largest variability. 2a) During cable-release to TO, all four 

muscles (of both legs) would positively correlate; 2b) During TO to FC, the rectus femoris and tibialis 

anterior of the stepping leg would positively correlate, as the leg swings forward; 2c) During FC to the 

peak COM position after FC, the biceps femoris and medial gastrocnemius of the stepping leg would 

exhibit the largest positive correlation. Previous research has shown that the triceps surae and hamstring 

are important for restraining forward rotation and generating a push-off force in the support limb 

(Pijnappels, et al., 2004; Pijnappels et al., 2005; Pijnappels et al., 2008). It is proposed that the stepping 

leg biceps femoris and medial gastrocnemius may operate in a similar manner during step landing; 2d) 

During the peak COM position after FC to trial end, the peak magnitudes of the i) rectus femoris and 

medial gastrocnemius and ii) biceps femoris and tibialis anterior would each positively correlate during 

this ‘quasi’-static phase (i.e., flexors and extensors working together to control sway).  

4.3 Methods 

4.3.1 Experimental Protocol 

A subset of 20 young adults participated in Study 2 (10 males and females, mean(SD) age = 

22.4(3.1) y; height = 1.7(0.1) m; mass = 74.0 (20.6) kg; participants were a subset of a larger collection 

described in Chapter 3, section 3.3.1). Ethics clearance was obtained from the University of Waterloo 

Human Research Ethics Committee. All participants provided informed consent prior to participation.  

Twelve cameras (Optotrak Certus, Northern Digital Incorporated, Waterloo, Ontario, Canada) 

were used to collect kinematic data at 64Hz, while three force-plates (BP 5050 (x2), Bertec, Columbus, 

Ohio, USA, and OR6-7 (x1), Advanced Mechanical Technology Inc., (AMTI) Watertown, MA, USA) 

were sampled at 2048 Hz. The two Bertec force-plates were arranged side-by-side (Figure 4-1 and Figure 

4-2) under the initial stance limbs. The AMTI force-plate was positioned to the right side, anterior to the 
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Bertec force-plate, to capture the entire landing phase of the step response (stepping was always 

performed with the right leg). The tether supporting each participant’s body weight was located in-line 

with a load cell (MLP-300-CO, Transducer Techniques, Temecula, CA) which was sampled at 2048 Hz 

and rated for up to 136 kg. The tether was connected to a metal frame via an electromagnet (AEC 

Magnetics, Cincinnati, OH, USA).  

 

 

Figure 4-1: On the left is the safety harness which participants wore, along with the safety-tether which 

was connected to the ceiling to prevent participants from falling to the ground. On the right, a participant 

is depicted wearing the harness, along with the safety tether. The two Bertec force-plates are also 

depicted. 
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Figure 4-2: Depicted is the layout of the Bertec and AMTI force-plates. Marked with black electrical tape 

(on the Bertec force-plates) is the participants’ initial foot position. 

 

In the current study, lower-limb EMG and full body kinematics were collected. 

Electromyographic data was sampled at 2048 Hz using a differential amplifier, with a hardware band-pass 

filter of 10-1000 Hz, a common mode rejection ratio of 115dB at 60 Hz (Bortec Biomedical, Calgary, 

AB) and disposable, self-adhesive Ag/Ag-Cl electrodes which were placed bilaterally on the rectus 

femoris (RF), biceps femoris (BF), tibialis anterior (TA) and medial gastrocnemius (MG). All motion 

capture data and analog-to-digital converted signals were synchronized using First Principles software 

(Northern Digital Incorporated, Waterloo, Ontario, Canada). The analog-to-digital converter included a 

16-bit card. Kinematics were measured using a whole-body marker set. Rigid clusters of four markers 

were placed on the locations depicted in Appendix 2. Additionally, using a digitizing probe (Northern 

Digital Incorporated, Waterloo, Ontario, Canada) “imaginary” markers were digitized bilaterally at 

anatomically relevant locations (Appendix 2). The laboratory global coordinate system was defined in 

accordance with ISB recommendations (Wu & Cavanagh, 1995).  
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The experimental protocol consisted of the participant completing five (5) practice tether-release 

trials, followed by 10 preferred stepping tether-release trials. The details associated with the tether-release 

protocol were presented earlier in the document (see details in Chapter 3, section 3.3.1). 

4.3.2 Data Analysis 

All eight channels of EMG were linear enveloped by subtracting the mean bias, full-wave 

rectifying and low-pass filtering each signal using a 2nd order, single-pass, Butterworth filter with a cut-

off frequency of 3 Hz (Brenneman, 2014; Winter, 2009; Winter & Yack, 1987). This cut-off corresponds 

to twitch-response times reported by previous authors (Milner-Brown et al., 1973a, 1973b). Linear 

enveloping helps to produce a signal that mimics the twitch response of a muscle, and in a graded 

contraction, mimics the superposition of muscle twitches, by (attempting) to account for 

electromechanical delay. Recall that filter cut-off (Fc) is mathematically related to a given muscle’s twitch 

time (T) via the following formula for a critically damped second-order low-pass filer: Fc = 1/2πT. This 

results in a signal that resembles the timing and shape of a muscle’s tension curve (Winter, 2009). 

Further, the raw EMG signals were low-pass filtered in an attempt to remove the random high frequency 

noise inherent to EMG signals that might influence a reliable detection of peak magnitude (O’Connell et 

al., 2016). To normalize each participant’s EMG signals, the peak of the averaged signal (for each 

muscle) was used (Yang & Winter, 1984). This method has previously been shown to reduce inter-subject 

variability compared to normalizing to 50% maximum voluntary contraction (Yang & Winter, 1984), and 

continues to be employed in current biomechanical research (Harper et al., 2014; Lockhart & Kim, 2006; 

Nüesch et al., 2016). 

For all analyses, cable-release was calculated using the data from the load cell located in-series 

with the tether. This data was low-pass filtered using a 2nd order, dual-pass Butterworth filter, with a cut-

off frequency of 3 Hz (Wright, et al., 2014). The point at which cable-release occurred was defined in 

accordance with previous research (Graham, et al., 2015). Specifically, cable-release was defined as a 

20% reduction in force measured using the load cell located in-series with the tether attached to the 

participant’s harness. All kinetic data collected from the force-plates was low-pass filtered using a 2nd 
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order, dual-pass, Butterworth filter with a cut-off frequency of 50 Hz (Singer, et al., 2016). Toe-off was 

defined as the time point when the vertical force under the right leg fell below 10 N (Sparrow & Tirosh, 

2003), while FC was defined as the time point when the vertical force signal of the force-plate (which 

participants stepped onto) exceeded, and remained above, 10 N (Sparrow & Tirosh, 2003). Next, from 

each normalized EMG signal, the peak timing and peak magnitudes were calculated for each trial during 

the following phases: Cable-release to TO (phase1); TO to FC (phase 2); FC to the peak COM after FC 

(phase 3); the peak COM after FC to trial end (phase 4). Mean peak timing and magnitude values were 

calculated for each participant, for each muscle, during each of the four phases. Peak timing was 

calculated as the time between the event of interest (i.e., Cable-release, TO, FC, etc.) and the peak EMG 

magnitude, similar to previous research (O’Connell, et al., 2016), which assessed peak EMG timing and 

magnitude during slips. Peak timing has been used previously to assess potential adaptions to perturbation 

based training in older adults (Parijat et al., 2015), as well as to distinguish muscle activation patterns 

during step recovery in older adult women with and without a history of falls (Ochi et al., 2014). For each 

participant, muscle and phase, the mean coefficient of variation (CV) was also calculated for the peak 

timing and magnitude to gain insight into trial-to-trial variability between phases for each muscle. 

4.3.3 Statistical Analyses 

To compare the peak timing and magnitude mean and CV values (hypotheses 1a – 1d) Friedman 

tests were used with phase (four phases; as defined above) as the within-subjects factor. Post-hoc 

Wilcoxon Signed-Rank tests were used when appropriate to examine main effects of phase. These non-

parametric tests were used as the EMG variables were not normally distributed, as assessed using 

Shapiro-Wilk tests, where p≤0.05. To assess the relationship between each muscle’s peak magnitude 

within each phase (hypotheses 2a – 2d), Spearman Rank-Order correlations were used. For all 

correlations, correlation strength was interpreted according to guidelines suggested by Evans (1996): 

moderate (.40–59); strong (.60–.79); and very strong (.80–1.0). All statistical analyses were conducted 

using SPSS (v.21, IBM Corporation, New York, USA). Experiment wide statistical significance was set 

at p≤0.05.  
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4.4 Results 

In all 16 peak timing analyses, a main effect of phase was observed for each muscle 

(X2(3)=28.02–54.85; p<0.001). For each muscle, peak timing during phase 4 (the peak COM after FC to 

trial end) was the slowest, except when compared to phase 1 for both the step-leg RF and the TA (Table 

4-1). Step-leg peak timing mean(SD) values ranged from: RF: 0.057(0.016) (phase 2) to 0.851(0.969) 

(phase 4) seconds; BF: 0.128(0.051) (phase 2) to 1.74(1.91) (phase 4) seconds; TA: 0.036(0.016) (phase 

2) to 0.667(0.813) (phase 4) seconds; MG: 0.052(0.032) (phase 3) to 1.44(1.31) (phase 4) seconds. 

Support-leg peak timing mean(SD) values ranged from: RF: 0.052(0.039) (phase 3) to 1.15(0.99) (phase 

4) seconds; BF: 0.001(0.002) (phase 2) to 2.04(1.82) (phase 4) seconds; TA: 0.110(0.027) (phase 3) to 

1.17(1.22) (phase 4) seconds; MG: 0.006(0.011) (phase 2) to 2.47(1.78) (phase 4) seconds. 

 

Table 4-1: Mean(SD) for the peak timing mean values for each muscle and phase. The timing values 

reported are relative to the start of each phase, and are in seconds. 

Muscle Phase 1 Ph. 2 Ph. 3 Ph. 4 Friedman Test  

R 

RF 0.303(0.025) 2,3 0.057(0.016) 1,4 0.079(0.067) 1,4 0.851(0.969) 2,3 X2(3)=32.64; 

p<0.001 

BF 0.215(0.018) 2,3,4 0.128(0.051) 1,3,4 0.144(0.292) 1,2,4 1.74(1.91) 1,2,3 X2(3)=28.02; 

p<0.001 

TA 0.280(0.039) 2 0.036(0.016) 1,3,4 0.255(0.099) 2,4 0.667(0.813) 2,3 X2(3)=38.88; 

p<0.001 

MG 0.228(0.018) 2,3,4 0.089(0.063) 1,4
 0.052(0.032) 1,4 1.44(1.31) 1,2,3 X2(3)=51.48; 

p<0.001 

L 

RF 0.267(0.037) 2,3,4 0.150(0.027) 1,3,4 0.052(0.039) 1,2,4 1.15(0.99) 1,2,3 X2(3)=51.87; 

p<0.001 

BF 0.251(0.028) 2,3,4 0.001(0.002) 1,3,4 0.170(0.052) 1,2,4 2.04(1.82) 1,2,3 X2(3)=49.80;  

p<0.001 

TA 0.267(0.025) 2,3,4 0.129(0.052) 1,4 0.110(0.027) 1,4 1.17(1.22) 1,2,3 X2(3)=38.34; 

p<0.001 

MG 0.264(0.026) 2,3,4 0.006(0.011) 1,3,4 0.233(0.284) 1,2,4 2.47(1.78) 1,2,3 X2(3)=53.46; 

p<0.001 

R = right; L = left; RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial 

gastrocnemius; Ph. = phase. Superscript values refer to the phases which statistically differ from the given 

phase. 

 

For the peak timing variability, as reflected by mean CV values, a main effect of phase was 

observed for each muscle, in all 16 analyses (X2(3)=24.47–44.10; p<0.001). In 50% of the muscles 
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studied, phase 4 variability was larger than that of phases 1,2 and 3 (step-leg RF and TA; support-leg BF 

and TA) (Table 4-2). 

 

Table 4-2: Mean(SD) for the peak timing coefficient of variation values for each muscle and phase. 

Muscle Phase 1 Ph. 2 Ph. 3 Ph. 4 Friedman Test  

R 

RF 6.5(4.4) 2,3,4 25.5(16.4) 1,4 81.5(97.7) 1,4 160.7(47.5) 1,2,3 X2(3)=39.18; 

p<0.001 

BF 7.5(3.1) 2,3,4 49.2(62.1) 1,3,4 89.8(61.1) 1,2 137.3(69.8) 1,2 X2(3)=37.08; 

p<0.001 

TA 9.8(5.9) 2,3,4 51.6(44.0) 1,4 66.8(38.9) 1,4 138.2(61.9) 1,2,3 X2(3)=44.10; 

p<0.001 

MG 7.7(3.1) 2,3,4 102.3(99.2) 1 50.9(28.3) 1,4 132.4(48.0) 1,3 X2(3)=34.26; 

p<0.001 

L 

RF 18.5(22.2) 3,4 17.8(17.6) 3,4 112.1(39.7) 1,2 139.6(66.2) 1,2 X2(3)=39.35; 

p<0.001 

BF 8.4(4.0) 2,3,4 54.2(69.7) 1,4 39.6(23.5) 1,4 147.7(68.9) 1,2,3 X2(3)=31.35;  

p<0.001 

TA 9.2(2.8) 2,3,4 61.5(75.3) 1,4 23.2(14.0) 1,4 137.0(52.4) 1,2,3 X2(3)=43.92; 

p<0.001 

MG 11.1(5.7) 2,3,4 112.5(93.8) 1 134.7(102.3) 1 114.7(48.5) 1 X2(3)=24.47; 

p<0.001 

R = right; L = left; RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial 

gastrocnemius; Ph. = phase. Superscript values refer to the phases which statistically differ from the given 

phase.  

 

Regarding the peak magnitude, a main effect of phase was also observed for each muscle 

(X2(3)=10.38–53.46; p=0.016 – p<0.001). In the stepping leg, for each muscle, phase 4 was the smallest 

compared to all other phases, except for phase 1 for the TA. The muscles which exhibited their highest 

peak magnitude during the landing phase (either phase 3 or phase 4) were the BF of the stepping leg 

(98.4(23.9) % peak activity), and the RF (110.2(14.4) % peak activity) and TA (111.0(12.3) % peak 

activity) of the support-leg (Table 4-3, Figure 4-3).  

Step-leg peak magnitude mean(SD) values ranged from: RF: 29.0(18.4) (phase 4) to 100.2(27.9) 

(phase 2) %; BF: 42.8(21.4) (phase 4) to 98.4(23.9) (phase 3) %; TA: 71.5(31.9) (phase 4) to 99.6(23.4) 

(phase 2) %; MG: 25.7(14.8) (phase 4) to 107.8(15.0) (phase 1) %. Support-leg peak magnitude 

mean(SD) values ranged from: RF: 49.8(18.9) (phase 1) to 110.2(14.4) (phase 3) %; BF: 23.7(18.8) 

(phase 4) to 110.1(12.9) (phase 1) %; TA: 35.9(19.0) (phase 1) to 111.0(12.3) (phase 3) %; MG: 
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24.2(29.4) (phase 3) to 107.0(23.4) (phase 1) %. Averaged time-series EMG signals are shown in Figure 

4-4. 

Table 4-3: Mean(SD) for the peak magnitude mean values, for each muscle and phase. Values are in % 

peak of the averaged signal. 

Muscle Phase 1 Ph. 2 Ph. 3 Ph. 4 Friedman Test  

R 

RF 65.9(25.2) 2,4 100.2(27.9) 1,3,4 75.5(33.1) 2,4 29.0(18.4) 1,2,3 X2(3)=35.22; 

p<0.001 

BF 85.9(33.5) 2,4 70.7(25.3) 1,3,4 98.4(23.9) 2,4 42.8(21.4) 1,2,3 X2(3)=31.86; 

p<0.001 

TA 87.9(28.4) 2 99.6(23.4) 1,4 89.2(31.3) 4 71.5(31.9) 2,3 X2(3)=10.38; 

p=0.016 

MG 107.8(15.0) 2,3,4 74.6(14.6) 1,3,4
 85.3(26.6) 1,2,4 25.7(14.8) 1,2,3 X2(3)=49.02; 

p<0.001 

L 

RF 49.8(18.9) 2,3,4 103.9(9.2) 1,3,4 110.2(14.4) 1,2,4 71.0(35.6) 1,2,3 X2(3)=33.47; 

p<0.001 

BF 110.1(12.9) 2,3,4 87.0(21.2) 1,3,4 41.7(22.1) 1,2,4 23.7(18.8) 1,2,3 X2(3)=53.46;  

p<0.001 

TA 35.9(19.0) 2,3 53.2(15.9) 1,3 111.0(12.3) 1,2,4 46.6(39.6) 3 X2(3)=40.38; 

p<0.001 

MG 107.0(23.4) 2,3,4 93.5(24.7) 1,3,4 24.2(29.4) 1,2 27.6(30.8) 1,2 X2(3)=42.06; 

p<0.001 

R = right; L = left; RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial 

gastrocnemius; Ph. = phase. Superscript values refer to the phases which statistically differ from the given 

phase. 
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Figure 4-3: Mean(SD) for the peak magnitude mean values, for each muscle and phase. Values are in % 

peak of the averaged signal. The right (step-leg) is depicted in the top graph, while the left (support-leg) is 

depicted in the bottom graph. 
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Figure 4-4: Mean time-series electromyographic signals for each muscle, of both the stepping and non-

stepping legs. RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial 

gastrocnemius. The phases are depicted along the top by the numbers 1, 2, 3 and 4. These curves were 

created by averaging the average responses of each participant. 
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For peak magnitude variability, main effects of phase were observed for 5 of 8 muscles (step-leg 

TA and MG; support-leg BF, TA, MG; X2(3)=15.78–32.82; p=0.001 – p<0.001). In 3 of the 5 muscles 

where phase main effects were observed, phase 4 was more variable than phases 1, 2 and 3 (Table 4-4). 

Mean EMG traces for each participant are shown in Figure 4-5. 

 

Table 4-4: Mean(SD) for the peak magnitude coefficient of variation values, for each muscle and phase.  

Muscle Phase 1 Ph. 2 Ph. 3 Ph. 4 Friedman Test  

R 

RF 22.3(4.7) 27.0(40.4) 35.8(38.4) 36.2(46.6) X2(3)=7.74; 

p=0.052 

BF 26.7(11.6) 36.5(48.8) 34.9(35.2) 40.7(49.1) X2(3)=2.34; 

p=0.505 

TA 21.2(7.0) 3,4 30.7(48.2) 3,4 54.9(37.9) 1,2 56.4(31.9) 1,2 X2(3)=27.60; 

p<0.001 

MG 20.2(7.3) 4 24.5(19.5) 3,4 28.6(35.4) 2,4 42.5(37.3) 1,2,3 X2(3)=20.10; 

p<0.001 

L 

RF 30.0(17.1) 29.5(10.9) 27.5(10.0) 29.1(16.1) X2(3)=1.13; 

p=0.769 

BF 19.1(7.0) 2,3,4 22.6(7.5) 1,4 29.9(15.1) 1,4 39.8(19.0) 1,2,3 X2(3)=19.11;  

p<0.001 

TA 35.5(11.3) 3,4 31.0(9.7) 3,4 17.3(6.8) 1,2,4 67.2(27.7) 1,2,3 X2(3)=32.82; 

p<0.001 

MG 27.3(14.9) 3,4 28.8(15.4) 3 41.8(19.8) 1,2 37.2(17.4) 1 X2(3)=15.78; 

p=0.001 

R = right; L = left; RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial 

gastrocnemius; Ph. = phase. Superscript values refer to the phases which statistically differ from the given 

phase. 

 

Lastly, the results of the peak magnitude correlations, between muscles for each phase, are 

presented in Table 4-5. During the landing phase, significant correlations were observed between the step-

leg BF and MG (r=0.683, p≤0.01) and the support-leg BF and MG (r=0.558, p≤0.05) during phase 3. 

During phase 4, the step-leg RF and MG (r=0.517, p≤0.05), and the support-leg BF and MG (r=0.565, 

p≤0.05) were each significantly correlated. 
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Figure 4-5: Individual participant mean time-series electromyographic signals for each muscle, of both 

the stepping and non-stepping legs. RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG 

= medial gastrocnemius. These curves were created by averaging each participant’s data, incorporating all 

of the trials which were completed. 
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Table 4-5: Correlation coefficients for the peak magnitudes between each muscle, during each phase. 

 RIGHT LEFT 

PHASE 1 BF TA MG BF TA MG 

RF .571* .376 .395 .191 .304 .705** 

BF --------- .495* .283 ---------- .130 .374 

TA --------- --------- .493* ---------- ---------- .198 

PHASE 2 BF TA MG BF TA MG 

RF .299 .475* .117 -.015 .195 -.503* 

BF --------- .289 .334 ---------- .433 .191 

TA --------- --------- .441 ---------- ---------- -.098 

PHASE 3 BF TA MG BF TA MG 

RF .012 .438 .050 -.147 .364 -.071 

BF --------- .095 .683** ---------- -.086 .558* 

TA --------- --------- .164 ---------- ---------- -.048 

PHASE 4 BF TA MG BF TA MG 

RF -.140 .343 .517* .453 .451 .455 

BF --------- -.287 .009 ---------- .337 .565* 

TA --------- --------- .353 ---------- ---------- .209 

RF = rectus femoris; BF = biceps femoris; TA = tibialis anterior; MG = medial gastrocnemius; * p≤0.05; 

**p≤0.01. 

 

4.5 Discussion  

The goals of this study were to assess peak lower-limb muscle recruitment patterns during 

reactive stepping, particularly during the landing phase, and to assess between-muscle relationships in 

peak magnitude within each phase. Generally, phase 4 occurred with the latest and most variable peak 

timing, and typically with the smallest peak magnitude. As hypothesized the peak magnitudes of the BF 

and MG were positively correlated during phase 3, in both the step and support-leg. Overall, these results 

may be helpful in understanding muscle control strategies during the landing phase, which is important 

for the development of appropriately targeted exercise interventions. 

The primary objective of this study was to assess baseline lower-limb muscle recruitment patterns 

(peak timing and magnitude) over the entirety of the reactive stepping response, including after the peak 

COM position following FC, which is typically the kinematic event of interest in analysis of the landing 
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phase (Singer, et al., 2013, 2016). It was the goal that this analysis would provide further insight into the 

landing phase, and possible differences before and after the peak COM position after FC. Overall, the 

latest peak timing occurred during phase 4. During phase 3, which occurred from FC to the peak COM 

after FC, mean values in Table 4-1 revealed that peak timing was second earliest during this phase for 

each step-leg muscle, except for the MG, where peak timing during phase 3 was the earliest. These values 

reveal that rapid muscle activity during the initial part of the landing phase is important. Such rapidly 

occurring activity may be particularly important in the MG, due to the role of the plantar-flexors in 

generating extension moments (Pijnappels, et al., 2004, 2005; Pijnappels, et al., 2008), to resist forward 

rotation. Regarding the peak timing variability, for each muscle, phase 1 was significantly less variable 

than all other phases, except for phase 2 of the support-leg. When looking at the landing phase, phase 4 

was significantly more variable than phase 3 in 63% (5 of 8) of the muscles (Table 4-2). This 

accompanied by the rapid peak timing values observed for phase 3 (compared to phase 4), suggests that 

the landing phase has two separate phases, where during phase 3, peak EMG timing is rapid and less 

variable compared to phase 4. 

The peak magnitude for each muscle was influenced by a phase main effect. In phase 1, the step-

leg MG was at its highest peak magnitude. The step-leg BF and TA also exhibited relatively large 

magnitudes during phase 1. In the support-leg, the MG during phase 1 exhibited its largest peak 

magnitude, similar to the step-leg. Additionally, the support-leg BF exhibited its largest peak magnitude 

during phase 1, which was likely in an hip extension role, to resist the rotational effects of the 

perturbation. The results regarding the BF and MG are in agreement with previous research showing the 

importance of these muscles in resisting forward rotation and generating a horizontal push-off (or 

braking) force (Pijnappels, et al., 2004, 2005; Pijnappels, et al., 2008). Overall, these early responses, in 

the MG specifically, are consistent with early automatic postural responses (e.g., the generation of ankle 

moments that typically precede reactive stepping) noted previously in response to external perturbations 

(McIlroy & Maki, 1993a, 1993b, 1995; Weerdesteyn, et al., 2008). 
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During phase 2, the step-leg RF and TA were at their most active. The RF would be important for 

hip flexion to lift the step-leg, while the TA would be necessary for concentric dorsi-flexion to provide 

adequate toe clearance during stepping. Overall, we see the importance of the flexors (i.e., RF and TA) in 

the step-leg during phase 2 (Table 4-3). Regarding the support-leg, the RF was at its second highest peak 

magnitude during phase 2, where it helps to maintain hip height above the ground via the generation of a 

knee extensor moment, preventing the knee from buckling. Previously, hip height has been shown to be a 

modifiable feature of the reactive stepping response (Bhatt et al., 2012). Support-leg RF recruitment was 

accompanied by support-leg BF recruitment, likely in a hip extension role, to keep the trunk upright 

during the swing phase and resist the rotational effects of the perturbation. This is in agreement with early 

research on muscle activity during gait which suggested that the more proximal muscles of the knee and 

hip not only prevent collapse of the lower limb, but are also primarily responsible for correcting posture 

and balance of the head, arms and trunk, which together comprise the dominant mass of the body (Winter 

& Yack, 1987). The support-leg MG was also recruited during phase 2. During the swing phase (phase 2), 

the COM would be located anterior to the support-leg, which would cause a dorsi-flexion moment about 

the support-leg ankle. Activation of the support-leg MG would counteract this ankle dorsi-flexion by 

generating a plantar flexion moment, helping to keep the support-leg ankle from collapsing. 

During phase 3 (the first phase of the landing phase), the step-leg BF was at its most active, while 

the step-leg MG was at its second most active. The BF, in its role as a hip extensor, may be acting 

eccentrically to help counteract the gravitational moment about the trunk. Without activation from the BF, 

the gravitational moment would cause forward and downward rotation of the trunk, due to the large 

inertia of this body segment. Previous research suggests that low-strength older adults are at a greater risk 

of falling during after-step falls (Pavol, et al., 2001, 2002). After-step falls have been suggested to be 

related to lower-extremity weakness, primarily of the hip and knee extensors, as primary factors in such 

falls were excessive lumbar flexion as well as buckling of the recovery limb (Pavol, et al., 2001, 2002). 

The large relative activation of the step-leg BF during phase 3, is in-line with the notion of the hip 

extensors being important after FC. The step-leg MG would also be important during phase 3 to help 
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move the center of pressure anteriorly, via the generation of a plantar flexion moment, which would help 

to arrest the COM movement. Both the hip extensors and plantar flexors have been examined previously, 

in the support-leg, for their role in resisting forward-rotation after a trip (Pijnappels, et al., 2004, 2005; 

Pijnappels, et al., 2008). Contributions from the step-leg RF and TA during phase 3 likely served to 

extend the knee (moving the body upwards, away from the ground), and dorsi-flex the ankle 

(eccentrically) to prevent the step-foot from slapping against the force-plate, respectively. The step-leg 

TA could also serve to bring the heel back to the floor if needed during phase 3.  

In the support-leg, the peak magnitude of the RF and TA during phase 3 were larger than all of 

the other phases, within each muscle. The support-leg RF likely served to keep the knee-extended during 

landing. This recruitment could be eccentric in nature, as the gravitational effects from the perturbation 

would act to collapse the knee into a ‘flexed’ position. For the support-leg TA, its magnitude during phase 

3 may be linked with that of the support-leg BF and MG during phase 1, where both of these muscles 

exhibited their largest peak magnitude (Table 4-3). Previous research has shown that the support-leg is 

important for restraining forward rotation and generating a braking force, via rapid muscles responses in 

the triceps surae and hamstring muscles. These muscles generate a large ankle plantar flexion moment, 

knee flexion moment and hip extension moment (Pijnappels, et al., 2004, 2005; Pijnappels, et al., 2008). 

Therefore, the use of the support-leg TA from FC onward (phase 3) will likely be closely linked with the 

‘effectiveness’ of the support limb plantar flexors, knee flexors and hip extensors prior to FC. For 

instance, if the BF and MG do not adequately resist the body’s forward rotation upon perturbation onset, 

one may continue to move anteriorly onto their support-leg toes in preparation for a second step, in which 

case the TA would be needed to pull the heel-back to the ground, via the generation of a dorsi-flexion 

moment (if using one-step for recovery). This action would help move the COM posteriorly, away from 

the anterior base-of-support limits, and safely between the two legs in a tandem configuration. During 

phase 3, the support-leg MG peak magnitude was low (relative to phases 1 and 2) as plantar-flexion from 

the support-leg, during the tandem stance configuration after FC, would cause the COM to move 

anteriorly onto the support-leg toes, which would be counter-productive to stability. Such an action would 
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be useful for a second step (to propel the leg into swing), but not when using a single-step for recovery 

(this idea could be explored in future research). Interestingly, research of rapid gait termination in young 

and older adults reported that the main qualitative features of the support-leg (or stance limb) data were 

the reciprocal strong tibialis anterior activation and marked soleus inhibition to reduce forward 

momentum (Tirosh & Sparrow, 2005). 

During phase 4, the step-leg BF likely continues to act in a hip extension role (possibly 

concentrically at this point), to help keep the trunk upright. Linking kinematic data with EMG responses 

in future research may provide more specific insight into the role of BF activation (e.g., concentric or 

eccentric) during the landing phase. Additionally, the support-leg RF peak magnitude was still relatively 

large during phase 4, as the knee must remain extended. However, as a whole, peak magnitudes during 

phase 4 were generally small when compared to the earlier three phases. This is highlighted by Figure 4-

4, where each muscle appears to be at its lowest activation during this later aspect of the landing phase. 

To interpret peak magnitude variability, with respect to the notion of a stereotypical response 

(i.e., high magnitude, low variability), the phase where each muscle exhibited its highest peak magnitude 

will be focused on. Accordingly, the support-leg TA during phase 3 had the lowest peak magnitude CV of 

all muscle-phase combinations, where this value was also significantly smaller than phases 1, 2 and 4 for 

the support-leg TA. This coupled with the large peak magnitude observed in this muscle suggests a 

stereotypical response, as dorsi-flexion to bring the support-leg heel to the floor and move the COM 

posteriorly would be important in single-step reactions, to arrest anterior pushing of the COM from the 

support-leg. Additionally, variability of the BF of the support-leg in phase 1 was lower than phases 2, 3 

and 4 (and the second lowest mean CV overall) (Table 4-4). This coupled with the high magnitude of the 

support-leg BF observed in phase 1 suggests that hip extension in the support-leg following cable-release 

(CR) occurs with a relatively consistent magnitude to resist the rotational effects of the perturbation, 

particularly about the trunk which is the largest segment of the body. Overall, peak magnitudes during 

phase 3 were always larger than that of phase 4 (except for the MG of the support-leg) (Table 4-3). 

Additionally, for the step-leg, peak magnitudes during phase 4 were significantly smaller than every other 
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phase, except for phase 1 of the TA. Along with the peak timing results, this adds to the notion that the 

landing phase is comprised of two phases: one phase immediately following FC, which is dynamic, 

requiring rapid muscle recruitment with large relative peak magnitudes, and a second quasi-static phase 

(following the peak COM position after FC), where peak timing is slower, more variable, and the peak 

magnitudes are smaller. 

While the values presented in Figures 4-3 and 4-4 provide interesting insights into mean muscle 

activation during the reactive stepping response, the subject-specific mean\averaged responses presented 

in Figure 4-5 may provide information regarding which of the muscle responses are ‘stereotypical’ and 

which are variable between participants. The MG of the both the step and support-leg appear to be very 

similar across participants in terms of the number of peaks, and timing (specifically the first peak of the 

step-leg). Interestingly, the support-leg BF was also similar across participants. Together, the common 

responses observed in the support-leg BF and MG across participants could suggest an important role for 

these muscles during the reactive stepping response, a notion which has been reported previously 

(Pijnappels, et al., 2004, 2005; Pijnappels, et al., 2008). Alternatively, perhaps the more variable muscles 

are important for balance control during the reactive stepping response. When one examines Figure 4-5, it 

appears as though the muscles of the anterior chain (RF and TA) were highly variable. Specifically, the 

step-leg TA and support-leg RF showed large peak magnitude variability between-subjects during the 3 to 

4 second period of Figure 4-5, which could suggest that these muscles are particularly important for 

control during the landing phase. Due to the between-subject variability in lower-limb muscle activation, 

future studies should explore the link between landing phase kinematics\kinetics and muscle activation. 

Regarding the correlations between the peak magnitudes, the landing phase (phases 3 and 4) will 

be focused on during the Discussion. In agreement with the hypothesis, during phase 3 the BF and MG of 

the step-leg positively correlated with each other. The step-leg BF and MG, similar to what has been 

observed for the support-leg, are likely very important for resisting forward rotation via large ankle 

plantar flexion, knee flexion and hip extension moments (Pijnappels, et al., 2004, 2005; Pijnappels, et al., 

2008). As such, clinicians may wish to focus on these two muscles. Similar correlations were also 
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observed in the support-leg. However, the correlation was not as strong as observed in the step-leg (r = 

0.683 vs 0.558) (Table 4-5), which may be because at FC, the support-leg configuration was typically 

extended at the knee, which reduces the moment arm of the BF for hip extension. During phase 4, the 

step-leg RF and MG were positively correlated (as hypothesized), however the step-leg BF and TA were 

not. Yet, in the support-leg, the BF and MG were again positively correlated. Contractions by the step-leg 

RF and MG would serve to move the body backward towards the support limb (Table 4-5), while (as 

discussed) the support-leg BF and MG provide hip extension and plantar flexion moments required to 

keep the body away from the anterior limits of stability. However, if after a single reactive step, the 

support-leg is configured such that the participant is on their toes, continued plantar-flexion could be 

destabilizing. Overall, the correlation results could aid researchers in training recruitment patterns in older 

adults, via biofeedback programs etc. 

As with Study 1, the results of this study must be interpreted with caution, due to the predictable 

nature of the tether-release perturbation direction. Participants were also instructed to respond with a 

single forward step, which may have promoted response pre-planning. Study 2 was also limited by the 

fact that maximal voluntary contractions were not collected. The reason for this was because we were 

most interested in differences across phases of the reactive stepping response, and not necessarily 

between muscles. Further, due to the challenging nature of the tether-release task, we did not want to 

fatigue the participants unnecessarily prior to the reactive stepping trials, as the participants also 

completed the active range-of-motion and strength tasks described in Study 1, section 3.3.1. Therefore, 

we cannot compare EMG magnitude between muscles, nor could measures such as a co-contraction index 

be calculated to gain insight into agonist and antagonistic recruitment. Nonetheless, the peak magnitudes 

were focused on to gain insight into whether the relative contribution of each muscle changed from phase-

to-phase. Second, no muscles which are related to medio-lateral control, such as the gluteus medius, were 

collected due to constraints caused by the safety harness and EMG belt which all participants had to wear. 

As the tether-release perturbation primarily occurs in the anterior-posterior direction, collecting EMG 

activity from primarily anterior-posterior muscles was logical. Further, although the objective of the study 
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was to quantify baseline EMG during the landing phase of reactive stepping, the fact that only young 

adults were collected means that no direct insight or conclusions can be made regarding lower-limb EMG 

in older adults, during the landing phase. Finally, the decision to separate each trial, for each participant, 

into four phases (or bins) was also associated with limitations. Although the four phases were used to 

determine both peak timing and peak magnitude, muscle activation onset (after CR) was not calculated. 

Therefore, the timing of the earliest leg muscle activation was not captured in the current study. 

Additionally, it is possible that a ‘peak’ in a given trial could have spanned multiple phases. As such, it is 

possible that some peak magnitudes may actually represent the highest value during the ascending or 

descending aspect of a larger ‘true’ peak, achieved in a separate phase (e.g., Figure 4-4 – MG of the step-

leg from TO to FC). Lastly, Figure 4-4 represents averaged data for each muscle, which includes data 

from all 20 participants. This makes it unclear whether the patterns shown represent ‘real’ common 

responses, or if the patterns are a result of differences in event timing (TO, FC, peak COM after FC), 

between-participants, and potentially within-trials for each participant. In an attempt to show participant 

specific data, Figure 4-5 was also presented, with participant specific averaged time-series data for each 

muscle. Nonetheless, these figures were not meant to be a detailed analysis, but instead to show trends 

which generally agree with the data which was used for the statistical analyses, calculated on a trial-by-

trial basis for each participant (Tables 4-1 to 4-4). Despite the limitations of the current study, it was the 

first to quantify EMG recruitment patterns in the lower-limbs during the landing phase of reactive 

stepping.  

In conclusion, this study provided a basic science characterization of the leg muscle recruitment 

patterns in young adults during reactive stepping. Using this information, researchers can next assess how 

recruitment patterns change with age or specific pathology, while clinicians can use this baseline young 

adult data to target phases of reactive stepping by strengthening the muscles which were most active 

during the landing phase, such as the step-leg BF (which was correlated with the step-leg MG peak 

magnitude) and the support-leg RF and TA. Moving forward (Chapter 5), research is needed to quantify 
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how arm movement and wide stepping influence balance control during the landing phase, as these 

movements are often used by older adults. 
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5. STUDY THREE – INFLUENCE OF WIDE STEPPING AND ARM MOVEMENT ON 

BALANCE CONTROL DURING REACTIVE STEPPING: A FOCUS ON 

STABILITY AFTER FOOT-CONTACT 

5.1 Chapter Overview 

Numerous studies have shown older adults to use wide steps and large arm movement during 

balance recovery. However, it is unclear how these strategies influence reactive stepping, particularly 

after foot-contact (FC). Therefore, the purpose of this study was to examine the influence of wide 

stepping and restricted arm movement on landing phase control. Twenty young adults and 16 older adults 

participated in three conditions: 1) preferred stepping; 2) wide stepping, and; 3) restricted arm movement. 

Full body kinematics were used to quantify the peak center of mass (COM) displacement after FC, in the 

anterior-posterior (AP) and medio-lateral (ML) directions. Wide-stepping resulted in a larger AP COM 

displacement compared to both other conditions (p≤0.001). Older adults also exhibited a larger peak AP 

COM displacement after FC (p=0.003). In the ML direction, older adults had a greater ML displacement 

during the preferred stepping condition (p=0.018) and tended to have a greater displacement in the 

restricted arm movement condition (p=0.062). Medio-lateral COM displacement was largest during wide 

stepping and second largest in the restricted arm movement condition (p≤0.001). In the AP direction, the 

restricted arm movement condition was significantly less variable than both other conditions (p=0.010-

0.050), while wide stepping was most variable in the ML direction (p<0.001). Wide stepping resulted in 

the largest AP and ML body movement after FC, where the former could be counterproductive to 

increased stability. Second, restricted arm movement resulted in larger ML body movement after FC, 

compared to preferred stepping, suggesting that arm movement is important for ML control. 

5.2 Introduction 

Despite recent research revealing deficits in older adults (Singer, et al., 2016), it is unclear how 

specific movements/compensatory strategies influence stability during the landing phase. During forward 

and backward reactive stepping, older adults often exhibit a laterally directed step placement (McIlroy & 
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Maki, 1996; Rogers, et al., 2001; Schulz, et al., 2005; Troy, et al., 2008). Further, during normal or 

narrow walking, older adults use wider steps compared to young adults (Dean, et al., 2007; Schrager, et 

al., 2008), with greater stride width variability (Dean, et al., 2007; Grabiner, et al., 2001). An increased 

stride width in older adults has also been reported during rapid gait termination (Menant, et al., 2009). 

During volitional lateral stepping, older adults’ medio-lateral center of pressure velocity remains above 

baseline levels 30-seconds post-step (Porter & Nantel, 2015), suggesting age-related restabilisation 

deficits during lateral stepping. 

Older adults are also more reliant on the use of their arms for assistance during balance recovery 

after a postural perturbation (Maki, et al., 2000), despite being unable to initiate arm movements as 

rapidly (Allum, et al., 2002; Maki, et al., 2001; Mansfield & Maki, 2009; Weaver, et al., 2012), or to the 

same extent as the young (Allum, et al., 2002). Without restricting arm movement during the reactive 

stepping task, Singer (2012) and Singer et al. (2016) observed deficits during the landing phase in older 

adults, compared to young adults. Although not quantified, the older adults exhibited larger arm 

abduction after step initiation (Singer, 2012). Logically, if older adults are more reliant on their arms, 

restraining the arms should amplify previously reported age-related differences in landing phase balance 

control. 

The objective of this study was to determine how wide stepping and restricted arm movement 

influence balance control after foot-contact (FC) during forward reactive stepping, in young and older 

adults. Both mean values and standard deviations (SD) were compared, as existing research has shown 

increased variability in older adults during the landing phase (Singer, et al., 2013, 2016). It was 

hypothesized that: 1) wide stepping would result in the largest and most variable peak anterior-posterior 

(AP) and medio-lateral (ML) center of mass (COM) displacement after FC; 2) restricted arm movement 

would result in a larger and more variable peak AP and ML COM displacement after FC, compared to the 

preferred stepping trials; and 3) compared to the young adults, older adults would exhibit a larger and 

more variable peak AP and ML COM displacement after FC during all experimental conditions. 

However, the between-group differences would be largest during the wide stepping and restricted arm 
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movement conditions. Understanding how wide stepping and arm movement influence landing phase 

balance control will aid researchers and clinicians who wish to improve reactive stepping performance in 

older adults. 

5.3 Methods 

5.3.1 Experimental Protocol 

Twenty young adults (age: 22.4(3.1) y; height: 1.7(0.1) m; mass: 74.0 (20.6) kg; 10 females) and 

16 older adults (age: 69.6(4.0) y; height: 1.6(0.1) m; mass: 67.6(12.4) kg; 13 females) participated in 

Study 3. These participants were part of a larger data collection, described in Chapter 3, section 3.3.1. 

Ethics clearance was obtained from the University of Waterloo Human Research Ethics Committee prior 

to study commencement. Telephone interviews were conducted to ensure participant eligibility (Appendix 

1). All participants provided their informed consent prior to completing any aspect of the study.  

Twelve cameras (Optotrak Certus, Northern Digital Incorporated, Waterloo, Ontario, Canada) 

were used to collect kinematic data at 64Hz, while three force-plates (BP 5050 (x2), Bertec, Columbus, 

Ohio, USA, and OR6-7 (x1), Advanced Mechanical Technology Inc., (AMTI) Watertown, MA, USA) 

were used to collect ground reaction forces and moments at 2048 Hz. The two Bertec force-plates were 

arranged side-by-side (Figure 5-1 and Figure 5-2). The AMTI force-plate was where the participants 

stepped onto, using their right leg. The tether supporting each participant’s body weight was located in-

line with a load cell (MLP-300-CO, Transducer Techniques, Temecula, CA) which was sampled at 2048 

Hz and rated for up to 136 kg. The tether was connected to a metal frame via an electromagnet (AEC 

Magnetics, Cincinnati, OH, USA).  
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Figure 5-1: On the left is the safety harness which participants wore, along with the safety-tether which 

was connected to the ceiling to prevent participants from falling to the ground. In the middle, a young 

adult participant, and on the right, an older adult participant are depicted wearing the harness, along with 

the safety tether. The two Bertec force-plates are also depicted in both photos. 

 

 

Figure 5-2: The layout of the three force-plates is depicted. The wide stepping target is also displayed 

(black electrical tape), along with the participant’s initial foot position. 
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In the current study, ankle muscle electromyography and full body kinematics were collected. 

Electromyographic data was sampled at 2048 Hz using a differential amplifier, with a hardware band-pass 

filter of 10-1000 Hz, a common mode rejection ratio of 115dB at 60 Hz (Bortec Biomedical, Calgary, 

AB) and disposable, self-adhesive Ag/Ag-Cl electrodes which were placed bilaterally on the tibialis 

anterior (TA) and medial gastrocnemius (MG). All motion capture data and analog-to-digital converted 

signals were synchronized using First Principles software (Northern Digital Incorporated, Waterloo, 

Ontario, Canada). The analog-to-digital converter included a 16-bit card. Kinematics were measured 

using a whole-body marker set. Rigid clusters of four markers were placed on the locations depicted in 

Appendix 2. Additionally, using a digitizing probe (Northern Digital Incorporated, Waterloo, Ontario, 

Canada) “imaginary” markers were digitized bilaterally at anatomically relevant locations (Appendix 2). 

The laboratory global coordinate system was defined in accordance with ISB recommendations (Wu & 

Cavanagh, 1995). 

Briefly, this data collection was part of a larger experiment, which has previously been described 

in Chapter 3 (section 3.3.1) (Figure 5-1). The quiet standing trials, the tether-release method used to 

provide the postural perturbations, and all of the pre-release conditions that participants were asked to 

meet have been detailed in Chapter 3 (section 3.3.1) and Appendix 1. In addition to the tether-release 

trials collected as part of Chapter 3 (i.e., 5 practice trials, 10 preferred stepping trials) participants also 

completed two experimental conditions involving reactive stepping after tether-release perturbations: 1) 

wide stepping, and 2) restricted arm movement. During the wide stepping trials, participants were 

instructed to respond to each trial with a single-step of their right leg, with a width that was aligned with a 

black piece of electrical tape located near the lateral border of the target stepping force-plate (Figure 5-2). 

From the standardized start position, the wide stepping target equated to a step width of 0.31 m. However, 

if the participant’s foot was touching the tape, this was accepted as a ‘successful’ trial. This distance was 

the maximum available distance, based on the force-plate participants stepped onto. These trials were 

repeated until five ‘successful’ trials were completed. No additional restrictions were placed on 
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participant step length (aside from the AMTI force-plate). Participants started each trial with their arms at 

their sides, but no restrictions were placed on arm movement after tether-release. 

For the restricted arm movement trials, participants were instructed to respond to each tether-

release perturbation with a single (right leg) step, and to not use their arms. Participants were instructed to 

start each trial by holding onto their shorts, and to keep holding their shorts throughout the recovery 

process. Trials where a participant was unable to adhere to the instruction were repeated. No additional 

restrictions were placed on participant step length or step width.  

Regardless of the experimental condition, participants were instructed to maintain their final 

position for approximately 10 seconds once they regained their stability, to allow for the landing phase to 

be captured (Singer, 2012). The practice trials, and preferred stepping condition were always completed 

first (described in Chapter 3, section 3.3.1), after which the wide stepping and restricted arm movement 

conditions were block randomized across participants. 

5.3.2 Data Analysis 

All kinematic data was low-pass filtered using a 2nd order, dual-pass, Butterworth filter with a 

cut-off frequency of 6 Hz (Graham, et al., 2015; Singer, et al., 2016). An estimate of the whole body 

center of mass (COM) was calculated using the filtered kinematic data and the anthropometric tables of 

de Leva (1996) for the young adult participants and Dempster (1955) (as displayed in Winter (2009)) for 

the older adults. To determine the hip and shoulder joint centers, the methods of Weinhandl and 

O’Connor (2010) and Nussbaum and Zhang (2000), respectively, were used. Next, the position of the 

COM, in the AP and ML directions, was calculated at the following time points: 1) toe-off, 2) FC and, 3) 

the peak COM position after FC. In each instance, to calculate COM displacement, the COM was 

referenced to the mean starting COM value, which was calculated from the start of the trial (frame 1) to 

one frame before cable-release. The direction of the peak ML COM position after FC was determined 

based on the stepping leg, which was always the right leg (i.e., peak right (+Z) position). Anterior-

posterior and ML stability margins were calculated by subtracting the COM position from the tip of the 
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right big toe and the right 5th metatarsal, in the AP and ML directions, respectively. Stability margins 

were calculated at the point of the maximum AP and ML COM positions after FC. 

Force-plate data was also low-pass filtered using a 2nd order, dual-pass Butterworth filter with a 

cut-off frequency of 50 Hz (Singer, et al., 2016). From the force-plates, the following temporal events 

were defined: toe-off of the right (stepping) leg and FC of the right leg. Toe-off was defined as the time 

point when the vertical force under the right leg fell below 10 N (Sparrow & Tirosh, 2003), while FC was 

defined as the time point when the vertical force signal of the force-plate (which participants stepped 

onto) exceeded, and remained above 10 N (Sparrow & Tirosh, 2003). Cable-release was calculated using 

the data from the load cell located in-series with the tether. This data was low-pass filtered using a 2nd 

order, dual-pass Butterworth filter, with a cut-off frequency of 3 Hz (Wright, et al., 2014). The point at 

which cable-release occurred was defined in accordance with previous research (Graham, et al., 2015). 

Specifically, cable-release was defined as a 20% reduction in force in the load cell located in-series with 

the tether.  

Step length and width were calculated using the COM of the right foot. The difference in the 

position of the right foot COM between FC and cable-release was calculated as the step length (AP) and 

step width (ML), respectively. Both of these values were also normalized by dividing by each 

participant’s leg length (Graham, et al., 2015). Stability margins and step length/width were calculated as 

secondary variables to aid in the interpretation of the COM displacement mean and SD values. 

To compare participant position prior to cable-release, multiple variables were calculated. Mean 

tether-load (during the lean), mean vertical force under the right and left feet and the mean start AP and 

ML COM positions were all calculated from the start of the trial, to one frame prior to cable-release. 

Similarly, mean AP and ML stability margins were also calculated from the start of the trial to one frame 

prior to cable-release. All stability margins were calculated with respect to the right foot. 

5.3.3 Statistical Analyses 

To examine the effects of movement condition and age-group on the size and variability of the 

peak COM displacement after FC, stability margins and step length and width, 3 x 2 mixed model 
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ANOVAs were conducted. Regarding the peak COM displacement after FC, the ANOVAs were 

conducted using the mean values, as well as the SD values, which represented within-subject trial-to-trial 

variability, computed for each subject, in each group. Secondary analyses evaluated the initial lean-

position metrics with the same mixed-model ANOVA approach. For each ANOVA, the within-subject 

factor consisted of movement condition (preferred stepping vs. wide stepping vs. restricted arm 

movement), while the between-subject factor consisted of age-group (young vs. older adults). Significant 

main or interaction effects were explored using post-hoc Fisher’s least significant difference (LSD) paired 

or independent samples t-tests, as appropriate. All statistical analyses were conducted using SPSS (v.21, 

IBM Corporation, New York, USA). Experiment wide statistical significance was set at p≤0.05. 

5.4 Results 

Peak COM Displacement after FC: 

In the AP direction, there was a condition main effect (F(2,68)=28.10; p<0.001), where the wide-

stepping condition resulted in a larger COM displacement compared to both other conditions (p<0.001), 

regardless of age-group. A main effect of age was also observed, where the older adults exhibited a larger 

overall peak AP COM displacement after FC (F(1,34)=0.34; p=0.003) (Table 5-1; Figures 5-3 and 5-4). 

In the ML direction, a condition x age group interaction was observed (F(2,68)=5.48; p=0.006), where 

older adults had a greater ML displacement during the preferred stepping condition (p=0.018) and tended 

to have a greater displacement in the restricted arm movement condition (p=0.062), compared to the 

young adults (Table 5-2; Figure 5-5). 
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Table 5-1: Mean(SD) peak AP COM displacement after foot-contact, for each condition and age group. 

 AP Peak COM Displacement after Foot-Contact 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 227.9(35.0) 253.4(40.5) 230.4(39.8) 237.2(39.6) A 

Older (mm) 263.8(34.1) 295.9(28.7) 257.6(36.2) 272.4(36.6) A 

Average (mm) 243.9(38.6) 272.3(41.3)C 242.5(40.1) --------------------- 

C p<0.001, compared to both the preferred and restricted arm movement conditions; A p=0.003; AP = 

anterior-posterior; COM = center of mass. 

 

 

 

Figure 5-3: Mean(SD) values for the anterior-posterior (AP) peak center of mass (COM) displacement 

after foot-contact during the three movement conditions. Values have been collapsed across age groups. 

Restricted refers to the restricted arm movement condition. * p≤0.05.  
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Figure 5-4: Mean(SD) values for the anterior-posterior (AP) peak center of mass (COM) displacement 

after foot-contact for the young and older adults. Values have been collapsed across movement 

conditions. * p≤0.05. 

 

Table 5-2: Mean(SD) peak ML COM displacement after foot-contact, for each condition and age group. 

 ML Peak COM Displacement after Foot-Contact 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 69.8(17.7)CA 191.6(32.3) 82.9(23.9)CA* 114.8(60.4) 

Older (mm) 87.4(24.7)CA 181.5 (33.8) 98.6 (24.7)CA* 122.5(50.5) 

Average (mm) 77.6(22.6)C 187.1(32.9)C 89.9(25.1)C -------------------- 

C p≤0.001; CA p=0.018; CA* p=0.062; ML = medio-lateral; COM = center of mass. 
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Figure 5-5: Mean(SD) values for the medio-lateral (ML) peak center of mass (COM) displacement after 

foot-contact. Restricted refers to the restricted arm movement condition. * p≤0.05; # 0.05<p≤0.10. 

 

Variability (SD) in the AP direction was influenced by a condition main effect (F(2,62)=4.94; 

p=0.010), where the restricted arm movement condition was significantly less variable than both the 

preferred stepping (p=0.050) and wide stepping conditions (p=0.010). In the ML direction, the SD was 

also influenced by a condition main effect (F(2,62)=14.08; p<0.001), where both the preferred stepping 

(p<0.001) and the restricted arm movement conditions (p<0.001) were less variable than the wide 

stepping condition (Table 5-3). 

 

Table 5-3: Mean(SD) values reflecting trial-to-trial variability for each condition, in each direction. 

Dependent Variable Preferred Wide Stepping Restricted Arms 

AP Peak COM Disp. after FC (mm) 19.1(8.2) 21.7(9.8) 14.8(9.1)C 

ML Peak COM Disp. after FC (mm) 11.8(3.8) 23.5(15.7)C 10.7(8.7) 

C p≤0.05, compared to all other conditions in the given movement direction. 
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Stability Margin (at the Peak COM Position after FC):  

The AP stability margin was influenced by a condition main effect (F(2,68)=13.96; p<0.001), 

where wide stepping resulted in a larger stability margin than both the preferred (p<0.001) and restricted 

arm movement conditions (p<0.001). A trend of age was also observed (F(1,34)=2.89; p=0.099), where 

older adults tended to exhibit a smaller stability margin vs. the young adults (Table 5-4). In the ML 

direction the stability margin was influenced by a condition x age group interaction (F(2,68)=7.88; 

p=0.001). Post-hoc analysis revealed that during the wide stepping condition, the older adults had a 

smaller ML stability margin at the peak COM position, compared to the young adults (p=0.017) (Table 5-

5).  

 

Table 5-4: Mean(SD) AP stability margin at the peak COM after FC, for each condition and age group. 

 AP Stability Margin at Peak AP COM Position after Foot-Contact 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 306.3(34.6) 337.5(38.8) 316.5(35.0) 320.1(37.9)A 

Older (mm) 300.7(30.6) 311.6(27.3) 297.3(28.8) 303.2(29.0)A 

Average (mm) 303.8(32.5) 326.0(36.2)C 308.0(33.4) --------------------- 

C p<0.001, compared to both the preferred and restricted arm movement conditions; A p=0.099; AP = 

anterior-posterior; COM = center of mass; FC = foot-contact. 

 

 

Table 5-5: Mean(SD) ML stability margin at the peak COM after FC, for each condition and age group. 

 ML Stability Margin at Peak AP COM Position after Foot-Contact 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 165.2(17.7) 265.7(32.6)CA 183.1(24.6) 204.7(50.9) 

Older (mm) 170.1(16.0) 241.6(22.3)CA 179.5(21.7) 197.1(37.7) 

Average (mm) 167.4(16.9)C 255.0(30.6)C 181.5(21.1)C --------------------- 

C p≤0.001; CA p=0.017; ML = medio-lateral; COM = center of mass; FC = foot-contact. 

 

Step Length and Width: 

Step length was influenced by a condition main effect (F(2,68)=57.70; p<0.001), and an age main 

effect (F(1,34)=13.51; p=0.001) (Figures 5-6 and 5-7), where the wide stepping condition resulted in 

longer step lengths than both the other conditions (p<0.001). Additionally, older adults took longer steps 
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regardless of condition (576.2(49.1) mm vs. 538.8(45.9) mm. Similar results were observed for 

normalized step length (Table 5-6). Step width was influenced by a condition x age group interaction 

(F(2,68)=8.56; p<0.001) (Figure 5-8). Post-hoc analysis revealed that during the preferred stepping 

condition, older adults took wider steps (58.5(25.9) mm vs. 37.8(16.7) mm) (p=0.007), but tended to take 

narrower steps during the wide stepping condition (218.6(49.9) mm vs. 245.2(33.0) mm) (p=0.063), 

compared to the young adult group. Normalized step width was influenced by a condition x age group 

interaction (F(2,68)=4.27; p=0.018). Post-hoc analysis revealed that during the preferred stepping 

condition, older adults (7.8(3.5) %) took wider normalized steps than young adults (4.8(2.4) %) 

(p=0.004), and tended to take wider normalized steps during the restricted arm movement condition 

(11.0(4.5) % vs. 8.2(4.1) %) (p=0.057) (Table 5-7).  

 

Table 5-6: Mean(SD) step length values, for each movement condition and age group. 

 Step Length 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 514.2(29.6) 582.2(42.6) 520.0(29.4) 538.8(45.9)A 

Older (mm) 558.9(43.3) 614.3(35.8) 555.4(45.6) 576.2(49.1)A 

Average (mm) 534.0(42.2) 596.5(42.4)C 535.7(41.0) --------------------- 

 Normalized Step Length 

Group Preferred Wide Stepping Restricted Arms Average (%) 

Young (%) 63.5(6.4) 71.9(7.7) 64.2(6.6) 66.5(7.8)A 

Older (%) 74.4(5.9) 81.8(6.2) 74.0(7.5) 76.7(7.4)A 

Average (%) 68.3(8.2) 76.3(8.6)C 68.6(8.5) --------------------- 

C p<0.001, compared to both the preferred and restricted arm movement conditions; A p≤0.001. 
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Figure 5-6: Mean(SD) values for the normalized step length during the three movement conditions. 

Values have been collapsed across age groups. Restricted refers to the restricted arm movement condition. 

* p≤0.05. 

 

Figure 5-7: Mean(SD) values for the normalized step length for the young and older adults. Values have 

been collapsed across movement conditions. * p≤0.05. 
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Table 5-7: Mean(SD) step width values, for each movement condition and age group. 

 Step Width 

Group Preferred Wide Stepping Restricted Arms Average (mm) 

Young (mm) 37.8(16.7)CA 245.2(33.0)CA* 65.7(32.3) 116.2(96.8) 

Older (mm) 58.5(25.9)CA 218.6(49.9)CA* 81.5(30.9) 119.5(80.1) 

Average (mm) 47.0(23.4)C 233.4(42.9)C 72.7(32.2)C --------------------- 

 Normalized Step Width 

Group Preferred Wide Stepping Restricted Arms Average (%) 

Young (%) 4.8(2.4)CA 30.4(5.5) 8.2(4.1)CA* 14.5(12.2) 

Older (%) 7.8(3.5)CA 29.1(6.8) 11.0(4.5)CA* 16.0(10.7) 

Average (%) 6.1(3.3)C 29.9(6.0)C 9.4(4.4)C --------------------- 

C p≤0.001; CA p=0.004 - 0.007; CA* p=0.057 - 0.063. 

 

 

Figure 5-8: Mean(SD) values for the normalized step width. Restricted refers to the restricted arm 

movement condition. * p≤0.05; # 0.05<p≤0.10. 

 

 

 



86 
 

Initial Lean-Position Metrics: 

The initial tether load was influenced by a condition x age group interaction (F(2,68)=3.78; 

p=0.028). Post-hoc analysis showed that tether load during the restricted arm movement condition was 

higher in the older adults, vs. the young adults (p=0.023) (Table 5-8). The pre-release AP stability margin 

was also influenced by a condition x age group interaction (F(2,68)=5.21; p=0.008), where during the 

restricted arm movement condition, the older adults tended to exhibit a smaller AP stability margin before 

release, compared to the young adults (p=0.074) (Table 5-8). 

 

Table 5-8: Mean(SD) values for the initial conditions calculated prior to the point of cable-release. 

 Young Adults Older Adults 

Initial 

Condition 

Variable 

First 10 

Trials 

Wide 

Stepping 

Arm 

Restrict. 

First 10 

Trials 

Wide 

Stepping 

Arm 

Restrict. 

Tether Load 

(%BW) 
10.4(0.5) 10.4(0.5) 10.0(0.6)a 10.5(0.7) 10.5(1.1) 10.6(0.9)a 

R Vert. Force 

(% Total) 
49.9(0.4) 49.9(0.4) 50.0(0.4) 49.8(0.9) 49.9(1.0) 50.1(1.1) 

L Vert. Force 

(% Total) 
50.1(0.4) 50.1(0.4) 50.0(0.4) 50.2(0.9) 50.1(1.0) 49.9(1.1) 

AP Stab Marg# 

(mm) 
-14.9(24.0) -9.2(28.0) -6.1(24.2)b -18.9(26.7) -18.8(28.2) -22.5(29.1)b 

ML Stab Marg# 

(mm) 
202.6(8.4) 205.2(11.4) 203.9(9.2) 205.0(9.3) 204.5(9.6) 203.8(10.2) 

AP COM Start 

Pos. (mm) 
449.9(26.4) 443.4(31.3) 439.9(25.9) 450.3(29.7) 453.2(32.9) 453.2(30.6) 

ML COM Start 

Pos. (mm) 
8.3(4.3) 6.8(10.9) 7.8(4.6) 7.6(6.1) 9.1(6.3) 9.4(6.1) 

a = p≤0.05; b= p≤0.10; BW = body weight; R = right; L = left; Stab Marg = stability margin; Pos. = 

position; COM = center of mass. 
#Note: stability margins reflect the period prior to cable-release. 
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5.5 Discussion 

The objective of this study was to assess how wide stepping and restricted arm movement 

influence balance control during the landing phase of forward reactive stepping. Not surprisingly, the wide 

stepping condition resulted in the largest ML body movement after FC, regardless of age group. However, 

wide stepping also resulted in the largest AP body movement after FC. If wide stepping is a proactive 

strategy used by older adults to preserve ML stability, inducing greater AP body movement would be 

counterproductive to such a goal. Second, despite limited AP influence, restricted arm movement resulted 

in larger ML body movement after FC, compared to the preferred stepping condition. This suggests that 

arm movement may be important for ML control during reactive stepping, and is in-line with past research 

suggesting that compensatory arm movement is particularly important in older adults 

Regarding the first hypothesis, wide stepping was expected to result in the largest and most 

variable peak AP and ML COM displacement after FC. In terms of the magnitude of the displacement, this 

hypothesis was true as wide stepping did result in the largest COM displacement in the AP and ML 

directions. As many studies have reported that older adults take wider steps (Dean, et al., 2007; McIlroy 

& Maki, 1996; Rogers, et al., 2001; Schrager, et al., 2008; Schulz, et al., 2005; Troy, et al., 2008), possibly 

as part of a strategy to preserve stability in both directions (Schulz, et al., 2005), greater AP displacement 

may be counter productive to this goal. Accordingly, for both age groups, step length was also the largest 

during the wide stepping condition (Table 5-6), suggesting participants were able to compensate 

accordingly. In terms of the variability of the AP COM displacement after FC, restricted arm movement 

resulted in the least variable displacement (vs. preferred and wide stepping), but preferred and wide 

stepping were not different from each other. In the ML direction, the wide stepping condition resulted in 

the greatest variability in the peak COM displacement after FC, in line with our hypothesis. As this was a 

main effect, both young and older adults exhibited this increased variability. Due to the large step width 

required during this condition, perhaps participants were ‘afforded’ greater freedom in the control of their 

COM after FC (trial-to-trial), due to a potentially larger stability margin. 
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To gain further insight into the wide stepping condition, the ML stability margin at the peak COM 

position after FC was also examined. Although the peak ML COM displacement after FC was largest 

during the wide stepping condition, step width was also largest during this condition. This resulted in the 

largest ML stability margin during the wide stepping condition. Previously, researchers have postulated 

that COM movement after FC was associated with (1) challenges in reactive control during the landing 

phase; or (2) a strategy to simplify reactive control in the event that additional forward steps were required 

(Singer, et al., 2013). Research on voluntary stepping in young adults showed that COM displacement 

after FC was largest during a wide-stepping condition; however, when COM displacement was referenced 

to the base-of-support, the wide-stepping condition was no different than the preferred. To the authors, this 

suggested a (proactive) attempt to scale the peak ML COM displacement to step width, to take advantage 

of the passive dynamics of the response (Singer, et al., 2012). In the current study, the large ML COM 

displacement in the wide stepping condition could suggest that participants were also scaling their ML 

COM displacement to the large step width. Interestingly, in subsequent work, the authors concluded that 

dyscontrol (not a proactive strategy) was more likely, due in part to the increased trial-to-trial variability 

(in COM displacement after FC) in older adults during voluntary and reactive stepping (Singer, et al., 

2013, 2016). The current results do not provide direct support for the dyscontrol hypothesis. Instead, the 

wide stepping movement was likely responsible (in part) for the large ML COM displacement after FC. 

The lateral stepping motion, which involved a large degree of hip abduction, may have caused the body to 

move or rotate laterally, due to the creation of a large frontal plane moment vs. the other two conditions. 

As mentioned above, this is in agreement with the passive dynamics hypothesis from previous research 

(Singer, et al., 2012).   

Next, it was hypothesized that restricted arm movement would result in larger and more variable 

peak COM displacement after FC compared to the preferred condition. For the AP COM displacement, 

there was no difference between the restricted arm movement and preferred stepping conditions. However, 

ML COM displacement was on average 12.3 mm larger (across both groups) in the restricted arm 

movement condition vs. the preferred stepping condition. However, the restricted arm movement condition 
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did not result in more variability, and in the AP direction, restricted arm movement actually resulted in the 

lowest trial-to-trial variability (Table 5-3). These results suggest that the arms may be more important for 

frontal-plane control, to help stabilize the body during the landing phase. Previous research on the landing 

phase did not restrict arm movement during any of the trials (Singer, 2012; Singer, et al., 2016). However, 

the authors suggested that arm movement during the stepping phase, and the corresponding increase in the 

moment of inertia about the anteroposterior axis, could moderate frontal-plane angular acceleration caused 

by the gravitational force, which may simplify stability control during the landing phase (Singer, 2012). 

Interestingly, in the ML direction, the stability margin was larger during the restricted arm movement, 

compared to the preferred stepping condition, which suggests that there was actually greater stability after 

FC with no arm movement. Instead, this was likely due to participants taking wider steps in the restricted 

arm movement condition (vs the preferred condition), to account for a real (or perceived) instability, 

accentuated by the reduced arm movement. Arm movement did not cause changes in step length, compared 

to the preferred stepping condition (Table 5-6). 

Third, it was hypothesized that the older adults would exhibit a larger, more variable peak AP and 

ML COM displacement after FC, compared to the young adults. However, the between-group differences 

would be largest during the wide stepping and restricted arm movement conditions. In the AP direction, 

this was not true for COM displacement, as an age main effect was observed (Table 5-1). The variability 

of the AP COM displacement was also unaffected by age. In the ML direction, the older adults exhibited 

a larger peak ML COM displacement after FC in the preferred condition, which agrees with existing 

literature (Singer, et al., 2013, 2016) and tended to exhibit a larger ML COM displacement in the restricted 

arm movement condition. It has been suggested that older adults are reliant on their arms for balance 

recovery after a perturbation (Maki, et al., 2000), despite deficits in the speed (Allum, et al., 2002; Maki, 

et al., 2001; Mansfield & Maki, 2009; Robinovitch et al., 2005; Weaver, et al., 2012), or magnitude (Allum, 

et al., 2002) of these responses when compared to young adults. The results of the current study add to this 

notion, particularly for ML COM control during the landing phase of reactive stepping. Researchers have 

suggested that future studies should focus on training protective arm reactions for fall-related injury 
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prevention (Choi et al., 2015; Feldman & Robinovitch, 2007; Schonnop, et al., 2013), but perhaps training 

arm movements for balance recovery may also be fruitful. Nonetheless, older adults may have 

compensated for the trend of increased ML COM displacement by taking wider normalized steps during 

the restricted arm movement condition, compared to the young adults (10.97(4.49) % vs. 8.15(4.08) %; 

p=0.057). The lack of age-related differences in peak ML COM displacement during the wide stepping 

condition is in-line with previous research where older adults were not more unstable (i.e., a larger margin 

of stability at heel-strike) than young adults when taking progressively larger lateral steps. Instead the older 

adults may have compensated by generating a larger peak hip abductor moment (of the stepping limb) 

which may reflect greater muscular effort by older adults to reduce the likelihood of becoming unstable 

(Hurt & Grabiner, 2015). 

As with Studies 1 and 2, Study 3 was primarily limited by the uni-directional nature of the tether-

release perturbation. This coupled with the fact that participants were instructed to respond with a single 

forward step suggests that participants may have been able to pre-plan aspects of their reactive stepping 

responses. Accordingly, all results must be interpreted with these limitations in mind. Study 3 was also 

limited by the fact that the older adults were all community-dwelling, and active. Therefore, future studies 

should aim to investigate the same stepping conditions in groups at a higher risk of falling, such as frail 

older adults and those with neurological conditions. Next, only one wide stepping condition was 

examined, which was based on the physical dimensions of the force-plate which participants stepped 

onto. It is also unclear how the ‘wide step’ relates to real-world conditions, as it was chosen to be wide 

enough to challenge participant capabilities. Further, during the restricted arm movement condition, no 

physical restriction was placed on arm movement; however, the researchers were vigilant in their 

observation of whether participants kept their arms by their sides during these trials. Limitations aside, 

this was the first study to assess how wide stepping and restricted arm movement influence balance 

control during reactive stepping, specifically during the landing phase. 

In conclusion, wide stepping resulted in the largest ML body movement after FC, in both age 

groups. Interestingly, wide stepping also resulted in the largest AP body movement after FC. However, 
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ML stability margins were also the largest during the wide stepping condition, suggesting that taking a 

wide step may be a positive strategy for improving ML stability during the landing phase of reactive 

stepping. During the restricted arm movement condition, older adults tended to exhibit larger ML COM 

movement after FC, which they may have accommodated for by taking wider (normalized) steps. Looking 

ahead, future research (Chapter 6) must expand to studying the landing phase during multi-step scenarios, 

evoked using larger perturbations. Evoking and studying multi-step responses may be more relatable to 

real-life losses of balance where reactive stepping is required, such as tripping while walking. 
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6. STUDY FOUR – QUANTIFYING BALANCE CONTROL AFTER FOOT-CONTACT 

DURING TWO-STEP RESPONSES 

6.1 Chapter Overview 

While the landing phase of voluntary and reactive single-step responses has recently become a 

focus of researchers, multi-step responses are often used in real-world situations. The primary purpose of 

this study was to determine if single-step responses are similar to those observed during multi-step 

scenarios. This was done by comparing the first step of one and two-step responses and the first and 

second step of two-step responses. The secondary purpose was to assess effects of asymmetrical body 

weight while leaning which is relevant for individuals with loading asymmetries. Eighteen young adults 

participated in one and two-step conditions, where the initial lean was symmetrical or asymmetrical. Peak 

center of mass (COM) and extrapolated COM (xCOM) displacement after foot-contact were calculated in 

the anterior-posterior (AP) and medio-lateral (ML) directions. Compared to one-step responses, two-steps 

resulted in AP and ML COM displacements during the first step which were larger and smaller, 

respectively (p<0.001-p=0.009). With asymmetrical loading, first step lengths were larger during the one-

step condition (p=0.002), while first step width was reduced over both stepping tasks with asymmetrical 

loading (p<0.001). Peak AP xCOM displacement after foot-contact was larger in the second, compared to 

the first step with asymmetrical loading (p=0.023), yet the first step resulted in greater ML xCOM 

displacement vs. the second step (p<0.001), regardless of loading. First step width was narrower than the 

second step with asymmetrical loading (p=0.006). Differences between one and two-step responses 

suggest that single-step responses should not be used to infer balance control during multi-step scenarios. 

6.2 Introduction 

The most common types of perturbations are voluntarily in nature. One example, gait termination, 

is particularly difficult because of the need for the central nervous system to predict the future and final 

position of the body’s center of mass (COM) (Winter, 1995). As such, older adults terminate their gait 

less frequently using just one-step in comparison to young adults (Menant, et al., 2009; Tirosh & 
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Sparrow, 2004, 2005), with longer mean stopping times (Tirosh & Sparrow, 2004). It is unclear if this 

need for multiple steps in older adults is real or “perceived” as 86% of the older adults’ two-step 

responses occurred within the predicted stability region prior to them taking the second step (Tirosh & 

Sparrow, 2004). Research on the landing phase of reactive stepping when participants use two-steps has 

important implications for activities such as rapid gait termination or tripping during walking which is 

common in frail older adults (Robinovitch, et al., 2013), and it may further inform researchers regarding 

the role of body movement after foot-contact. However, recent studies have focused primarily on the 

landing phase during only single-step responses (King, et al., 2012; Serrao, et al., 2013; Singer, et al., 

2014; Singer, et al., 2012, 2013, 2016), therefore, comparing one and two-step responses will inform 

whether body movement and foot-placement during single-step responses are applicable to multi-step 

scenarios. 

In the process of quantifying landing phase control during two-step responses, it is also necessary 

to consider the effects of body weight asymmetry. During perturbations such as tripping while walking 

and voluntary stepping, the support-leg is typically loaded to a greater degree than the step-leg. 

Interestingly, anticipatory postural adjustments (APAs) are normally either absent or diminished in 

magnitude and effectiveness during reactive stepping (McIlroy & Maki, 1999; Rogers, et al., 2001). 

While this may help to achieve a rapid response time, it may also have a negative effect on medio-lateral 

(ML) stability (McIlroy & Maki, 1999; Rogers, et al., 2001). Conversely, voluntary steps almost always 

occur with an APA preceding stepping (Brunt, et al., 1991). Unloading the step-leg during reactive 

stepping (evoked from standing) could allow for a faster toe-off time, as less time would be needed to 

unload the step-leg, which might also influence COM kinematics during the landing phase, and foot-

placement. Previous research has assessed the effect of asymmetrical loading on reactive step placement 

and spatio-temporal step characteristics (Lakhani et al., 2011); however, participants did not step with the 

unloaded leg in 100% of trials, making it difficult to determine how body weight asymmetry influenced 

step length and width. Such research is relevant for real-world perturbations such as tripping during gait, 
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or for individuals with chronic stroke, where up to 56% of these individuals exhibit gait asymmetry 

(Patterson et al., 2008).  

As such, the overall goal of this study was to determine if single-step responses are similar to 

those observed during multi-step scenarios, in terms of body movement after foot-contact (FC) and foot-

placement (step length and width). Comparing landing phase control during one and two-step responses 

will also provide further insight into the role of body movement after FC. Therefore, the specific 

objectives were to: 1) compare balance control and foot-placement during one-step and two-step 

responses and to assess the effect of asymmetrical loading, using only the first step; 2) compare balance 

control and foot-placement between the first and second steps of two-step responses, and examine the 

effects of asymmetrical loading during two-step responses; and 3) determine if balance control and foot-

placement of the first and second steps is related. The first step of both one-step and two-step responses 

was compared to the second step of two-step responses to provide further insight into whether balance 

control during multi-step responses can be inferred from one-step responses. 

When comparing the first step, it was hypothesized that: 1a) two-step responses would result in a 

larger first step peak COM displacement after FC, compared to one-step responses, however step length 

and width would be larger during the one-step responses. 1b) Additionally, it was hypothesized that 

asymmetrical loading (with an increased load on the support-leg) would result in a smaller peak COM 

displacement after FC of the first step, along with a longer and wider first step, compared to symmetrical 

loading (for both one and two-step responses). Second, during the two-step responses, 2a) the second step 

(vs. the first step) would occur with a smaller peak extrapolated COM (xCOM) displacement after FC, 

and be longer and wider. 2b) Asymmetrical loading (with an increased load on the support-leg) would 

result in a smaller peak xCOM displacement after FC during the first step, but a larger peak xCOM 

displacement after FC during the second step. Asymmetrical loading (with an increased load on the 

support-leg) would also result in a longer and wider first step. 3) Lastly, it was hypothesized that: 3a) the 

peak xCOM displacement after FC of the first and second step would moderately-to-strongly positively 

(anterior-posterior) and negatively (medial-lateral) correlate. 3b) Step length during the first and second 
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step would moderately-to-strongly positively correlate, while step width would moderately-to-strongly 

negatively correlate. 3c) First step metrics calculated from the one-step only responses would not be 

correlated to the second step during two-step responses. Note that the COM was used for the analysis of 

the first step, in order to allow for direct comparison with previous research which has focused on one-

step responses (Singer, 2012; Singer, et al., 2016). The xCOM was used for the comparison of the first 

and second steps, because of the need to consider COM velocity during multi-step scenarios. For 

example, in the anterior-posterior direction, one must redirect the COM velocity from one pendular arc to 

the next during the transition between steps (Donelan et al., 2002). In the medio-lateral direction, one 

must also redirect the COM velocity during the transition between single stance phases (Donelan et al., 

2001). 

6.3 Methods 

6.3.1 Experimental Protocol 

Eighteen young adults participated in Study 4 (age: 25.1(2.7) y; height: 1.7(0.1) m; mass: 

74.7(14.4) kg; 8 females). All were right leg dominant, defined as the leg they indicated they would kick a 

soccer ball with. Ethics clearance was obtained from the University of Waterloo Human Research Ethics 

Committee, and all participants provided informed consent prior to participating. 

Twelve cameras (Optotrak Certus, Northern Digital Incorporated, Waterloo, Ontario, Canada) 

were used to collect kinematic data at 64Hz, while three force-plates (BP 5050 (x2), Bertec, Columbus, 

Ohio, USA; and OR6-7 (x1), Advanced Mechanical Technology Inc., (AMTI) Watertown, MA, USA) 

were sampled at 2048 Hz. The two Bertec force-plates were arranged side-by-side (Figure 6-1 and Figure 

6-2). The tether supporting each participant’s body weight was located in-line with a load cell (MLP-300-

CO, Transducer Techniques, Temecula, CA) which was sampled at 2048 Hz and rated for up to 136 kg. 

The tether was connected to a metal frame via an electromagnet (AEC Magnetics, Cincinnati, OH, USA).  
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Figure 6-1: On the left is the safety harness which participants wore, along with the safety-tether which 

was connected to the ceiling. On the right, a participant is depicted wearing the harness, along with the 

safety tether. The two Bertec force-plates are also depicted. 

 

Figure 6-2: The layout of the three force-plates is depicted. The AMTI force-plate is where all steps with 

the right leg landed, and the laboratory floor is where all steps with the left foot landed. 
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In the current study, ankle muscle electromyography (EMG) and full body kinematics were 

collected. Electromyographic data was sampled at 2048 Hz using a differential amplifier, with a hardware 

band-pass filter of 10-1000 Hz, a common mode rejection ratio of 115dB at 60 Hz (Bortec Biomedical, 

Calgary, AB) and disposable, self-adhesive Ag/Ag-Cl electrodes which were placed bilaterally on the 

tibialis anterior (TA) and medial gastrocnemius (MG). All motion capture data and analog-to-digital 

converted signals were synchronized using First Principles software (Northern Digital Incorporated, 

Waterloo, Ontario, Canada). The analog-to-digital converter included a 16-bit card. Kinematics were 

measured using a whole-body marker set. Rigid clusters of four markers were placed on the locations 

depicted in Appendix 2. Additionally, using a digitizing probe (Northern Digital Incorporated, Waterloo, 

Ontario, Canada) “imaginary” markers were digitized bilaterally at anatomically relevant locations 

(Appendix 2). The laboratory global coordinate system was defined in accordance with ISB 

recommendations (Wu & Cavanagh, 1995). 

Two quiet standing trials were first collected. The first had participants adopt a standardized foot 

position, based on existing research (0.17 m between heel centers and an angle of 14º between the long 

axes of the feet) (McIlroy & Maki, 1997), with their arms at their sides, while looking straight ahead. The 

second trial required participants to start in the standardized foot position, take a single forward step onto 

the AMTI force-plate with their right (dominant) leg, and hold the final forward-stance position (Singer, 

2012). Both trials were 60 seconds in duration (Carpenter, et al., 2001). After which, all participants 

completed practice trials, single-step trials and two-step trials. 

To provide the external postural perturbations, a tether-release paradigm was used (Hsiao-

Wecksler, 2008) (Figure 6-1). Participants started in an initial forward-lean position pertaining to 12-13% 

of their body weight, which was monitored in real-time and kept to within ± 1% body weight trial-to-trial 

(Graham, et al., 2015). Each participant’s initial stance width was standardized as described above. 

Participants initially stood with their feet on separate force-plates, which allowed for the center of 

pressure position of each foot and the body weight supported by each leg (Newtons) to be monitored prior 
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to each tether-release perturbation (trial-to-trial) using a real-time LabVIEW feedback routine (National 

Instruments Corporation, Austin, TX). 

The EMG activity recorded bi-laterally from the TA and MG was used to ensure that the level of 

pre-perturbation EMG activity during the tether-release trials would not exceed the maximum from the 

feet side-by-side quiet standing trial (Singer, 2012; Singer, et al., 2016). This was done using a LabVIEW 

feedback routine (National Instruments Corporation, Austin, TX). Verbal encouragement was provided 

emphasizing participants to, “allow for the tether to fully support their body weight”. The tether was 

released at random intervals after the initial conditions were met. A minimum of one second was always 

captured from when the participant met the initial conditions and the tether was released.  

Upon completion of the kinematic and EMG setup, reactive stepping was evoked during multiple 

tether-release conditions, each with separate instructions. Five practice trials were always completed first. 

Participants were instructed to do what felt “natural”, as the goal was to familiarize participants with the 

perturbation magnitude, but not a specific reactive stepping response. During the single-step trials, 

participants responded to each tether-release perturbation with one-step using their right leg, directly onto 

the AMTI force-plate. During the two-step trials, participants responded to each tether-release 

perturbation using two-steps. The first step was with their right leg, onto the AMTI force-plate, while the 

second step was taken with the left leg onto the laboratory floor beside the AMTI force-plate (Figure 6-2). 

No instruction was provided regarding where the left foot should land, as long as it did not touch the 

AMTI force-plate, as the researcher wished to avoid further movement constraints. Participants started all 

trials with their arms at their sides. 

During each of the two blocks described above, participants completed: 1) five trials with their 

body weight evenly (50%/50%) distributed between their legs while leaning, and 2) five trials with 60% 

of their body weight over the left (initial non-stepping) leg and 40% of their body weight over the right 

(initial stepping) leg (Lakhani, et al., 2011). Originally, a 70%/30% ratio (Lakhani, et al., 2011) was 

tested in pilot sessions. However, the 70% support-leg load, coupled with the 12-13% lean magnitude, 

was too difficult to maintain pre-perturbation and also resulted in participants often missing the force-
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plate with their reactive step. The order in which the four experimental conditions (Table 6-1) were 

presented was block randomized between participants. Regardless of experimental condition, participants 

were instructed to maintain their final position for approximately 10 seconds once they regained their 

stability (Singer, 2012). 

 

Table 6-1: Summary of the experimental conditions. 

EXPERIMENTAL CONDITION DEPENDENT VARIABLES 

1) One-step, symmetrical body weight 

 

2) One-step, asymmetrical body weight 

1) Peak AP COM displacement after foot-contact 

2) Peak ML COM displacement after foot-contact 

3) Step length 

4) Step width 

3) Two-steps, symmetrical body weight 

 

4) Two-steps, asymmetrical body weight 

1) Peak AP xCOM displacement after foot-contact 

2) Peak ML xCOM displacement after foot-contact 

3) Step length 

4) Step width 

AP = anterior-posterior; ML = medio-lateral; COM = center of mass; xCOM = extrapolated center of 

mass. 

 

 

6.3.2 Data Analysis 

Force-plate data was low-pass filtered using a 2nd order, dual-pass Butterworth filter with a cut-

off frequency of 50 Hz (Singer, et al., 2016). Toe-off was defined as the point when the vertical force 

under the right and/or left leg fell below 10 N (Sparrow & Tirosh, 2003), while FC was defined as the 

time point of the minimum vertical velocity (of the foot COM) after toe-off of each step (O’Connor et al., 

2007). Cable-release was calculated using the data from the load cell located in-series with the tether. 

This data was low-pass filtered using a 2nd order, dual-pass Butterworth filter, with a cut-off frequency of 

3 Hz (Wright, et al., 2014). Cable-release was defined in accordance with previous research (Graham, et 

al., 2015), as a 20% reduction in force measured using the load cell located in-series with the tether.  
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All kinematic data was low-pass filtered using a 2nd order, dual-pass, Butterworth filter with a 

cut-off frequency of 6 Hz (Graham, et al., 2015; Singer, et al., 2016). An estimate of the whole body 

center of mass (COM) was calculated using the filtered kinematic data and the anthropometric tables of 

de Leva (1996). To determine the hip and shoulder joint centers, the methods of Weinhandl and 

O’Connor (2010) and Nussbaum and Zhang (2000), respectively, were used. Next, the position of the 

COM, in the anterior-posterior (AP) and medio-lateral (ML) directions, was calculated at the following 

time points: 1) toe-off, 2) FC and, 3) the peak COM position after FC. This was done for each step. 

During the two-step responses, the peak COM position after FC of the first step was calculated up until 

the instant of toe-off of the second step. In each instance, to calculate COM displacement, the COM was 

referenced to the mean starting COM value, which was calculated as the average from the start of the trial 

(frame 1) to one frame before cable-release. The xCOM was also calculated, in accordance with Hof, 

Gazendam and Sinke (2005), at the same time points as the COM. Only the xCOM was used for the 

comparison of the two-step responses because stance leg transitions require mechanical work to redirect 

the ML COM velocity from one leg to the next (Donelan, et al., 2001). The xCOM of both the one and 

two-step responses was also used for the correlational analyses detailed below in the Statistical Analyses 

section. For both the COM and xCOM, the direction of the peak ML position after FC was determined 

based on the stepping leg (i.e., peak right (+Z) position for right steps, and peak left (-Z) position for left 

steps). Values calculated during the two-step responses with the left leg were mirrored to allow for 

statistical comparison to the right-legged steps. Step length and width were calculated using the COM of 

the right and left feet. For each right or left step, the difference in the position of the foot COM between 

FC and cable-release was calculated as the step length (AP) and step width (ML), respectively.  

To examine potential confounding factors related to participant position prior to cable-release, 

multiple variables were calculated. The mean tether-load (during the lean) and the mean vertical ground 

reaction forces under the right and left feet were each calculated. Anterior-posterior and ML stability 

margins were also calculated by subtracting the COM position from the tip of the big toe and the 5th 

metatarsal, in the AP and ML directions, respectively. Stability margins were calculated with respect to 
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the right and left feet, due to the two-step conditions. For each trial, mean initial condition metrics were 

calculated from the start of the trial to one frame prior to cable-release. 

6.3.3 Statistical Analyses 

Primary Analyses: To compare balance control after FC during the first step of one and two-step 

responses (hypotheses 1a – 1b), a 2 x 2 repeated measures ANOVA was used with stepping task (one-step 

vs. two-steps) and body weight symmetry (symmetrical vs. asymmetrical) as factors. Second, to examine 

balance control during two-step responses (hypotheses 2a – 2b), a 2 x 2 repeated measures ANOVA was 

also used with step number (first vs. second), and body weight symmetry (symmetrical vs. asymmetrical) 

as factors. These analyses were conducted using the: 1) peak COM\xCOM after FC and, 2) step length 

and width. Note, COM displacements were compared during the first step analyses (hypotheses 1a – 1b), 

while xCOM displacements were compared during the two-step responses (hypotheses 2a – 2b). Lastly, 

to determine if balance control during the first and second steps was correlated (hypothesis 3a – 3c), one-

tailed Pearson's correlation coefficients were calculated using the AP and ML peak xCOM displacement 

after FC, step length and step width from the first and second steps of the two-step responses, as well as 

the first step values from the one-step only responses. All significant interactions were explored using 

post-hoc paired-samples t-tests.  

Secondary Analyses: A secondary analyses was conducted comparing the initial lean conditions, 

to ensure that changes in the dependent variables were not caused by different lean positions between 

experimental conditions. The initial conditions for the first step analyses were compared using repeated-

measures ANOVAs as detailed above. To compare the initial conditions during the two-step responses, 

paired-samples t-tests were used. All statistical analyses were completed using SPSS (v.21, IBM 

Corporation, New York, USA). Experiment wide statistical significance was set at p≤0.05. Results of the 

secondary analyses can be found in Appendix 3 – Supplementary Tables 1 and 2. Additionally, mean(SD) 

values for the primary analyses can also be found in Appendix 3 – Supplementary Tables 3 to 10. 
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6.4 Results 

A summary of the statistical results can be found in Table 6-2, while mean(SD) values for the first 

step and first vs. second step analyses are depicted in Figures 6-3 and 6-5, respectively. Lastly, mean 

time-series COM (first step comparison) and xCOM (first and second step comparison) data can be found 

in Figures 6-4 and 6-6, respectively. 
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Table 6-2: Summary of the statistical effects observed for the comparison of only the first step 

(hypotheses 1a – 1b) and the comparison of the first and second steps (hypotheses 2a – 2b). 

Dependent Variable Effect(s) ANOVA Output 

First Step Comparison – One and Two-Step Responses (Hypotheses 1a -1b) 

AP COM Displacement 

(mm) 

Stepping Task 

Body Weight Symmetry 

Interaction 

F(1,17)=21.24; p<0.001 

F(1,17)=3.68; p=0.072 

F(1,17)=5.55; p=0.031 

ML COM Displacement 

(mm) 

Stepping Task 

Body Weight Symmetry 

Interaction 

F(1,17)=73.95; p<0.001 

F(1,17)=1.16; p=0.296 

F(1,17)=8.72; p=0.009 

Step Length (mm) 

Step Task 

Body Weight Symmetry 

Interaction 

F(1,17)=10.30; p=0.005 

F(1,17)=0.06; p=0.810 

F(1,17)=7.88; p=0.012 

Step Width (mm) 

Stepping Task 

Body Weight Symmetry 

Interaction 

F(1,17)=8.50; p=0.010 

F(1,17)=33.11; p<0.001 

F(1,17)=1.01; p=0.330 

First and Second Step Comparison – Two-Step Responses (Hypotheses 2a – 2b) 

AP xCOM Displacement 

(mm) 

Step Number 

Body Weight Symmetry 

Interaction 

F(1,17)=2.70; p=0.118 

F(1,17)=6.00; p=0.025 

F(1,17)=5.84; p=0.027 

ML xCOM Displacement 

(mm) 

Step Number 

Body Weight Symmetry 

Interaction 

F(1,17)=36.83; p<0.001 

F(1,17)=3.56; p=0.076 

F(1,17)=3.98; p=0.062 

Step Length (mm) 

Step Number 

Body Weight Symmetry 

Interaction 

F(1,17)=17.19; p=0.001 

F(1,17)=1.41; p=0.251 

F(1,17)=7.31; p=0.015 

Step Width (mm) 

Step Number 

Body Weight Symmetry 

Interaction 

F(1,17)=1.76; p=0.202 

F(1,17)=0.003; p=0.956 

F(1,17)=48.55; p<0.001 

AP = anterior-posterior; ML = medio-lateral; COM = center of mass; xCOM = extrapolated center of 

mass. 
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First Step Comparison: The peak COM displacement after FC in the AP direction was influenced 

by a stepping task (one vs. two-steps) x body weight symmetry interaction (F(1,17)=5.55; p=0.031), 

where with symmetrical loading the first step peak AP COM displacement was larger during the two-step 

(306.8(30.9) mm) compared to the one-step condition (274.2(32.3) mm) (p<0.001). During the 

asymmetrical body weight condition, the two-step condition (308.3(29.8) mm) also resulted in a larger 

first step peak AP COM displacement compared to the one-step condition (288.3(28.2) mm) (p=0.009). In 

the ML direction, the peak COM displacement after FC was also influenced by a stepping task x body 

weight symmetry interaction (F(1,17)=8.72; p=0.009). With symmetrical loading, the first step peak ML 

COM displacement was lager during the one-step (83.3(13.3) mm) compared to the two-step condition 

(60.4(12.0) mm) (p<0.001). During the asymmetrical body weight condition, the one-step condition 

(90.7(15.8) mm) also resulted in a larger first step compared to the two-step condition (56.5(15.7) mm) 

(p<0.001) (Figures 6-3 and 6-4). 
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Figure 6-3: First step comparison mean(SD) values for: 1) peak AP COM displacement after FC (top left); 2) peak ML COM displacement after 

FC (top right); 3) step length (bottom left); and 4) step width (bottom right). * p≤0.05. AP = anterior-posterior. ML = medio-lateral. COM = center 

of mass. 
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Figure 6-4: Time-series center of mass trajectories for the one and two-step conditions, with symmetrical and asymmetrical loading. The squares 

represent the center of mass position at foot-contact (for both steps during the two-step condition). Solid lines represent the one-step condition, 

while dashed lines represent the two-step condition. Black lines represent symmetrical loading, while gray lines represent asymmetrical loading. 
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Regarding step length, there was a stepping task x body weight symmetry interaction 

(F(1,17)=7.88; p=0.012). With symmetrical loading, first step length was not different between the one 

and two-step conditions (p=0.170). During the asymmetrical body weight condition, first step length was 

larger during the one-step condition (455.0(97.7) mm) compared to the two-step condition (395.1(69.6) 

mm) (p=0.002). Step width was influenced by both stepping task (F(1,17)=8.50; p=0.010) and body 

weight symmetry (F(1,17)=33.11; p<0.001) main effects. First steps were wider during the two-step 

responses (19.9(30.5) mm) compared to the one-step responses (12.4(32.2) mm). Second, the first step 

was wider during the symmetrical (26.7(29.8) mm) vs. asymmetrical (5.6(29.6) mm) body weight 

condition, regardless of step condition. 

First and Second Step Comparison (xCOM): The peak AP xCOM after FC was influenced by a 

step number x body weight symmetry interaction (F(1,17)=5.84; p=0.027). Post-hoc analyses revealed 

that AP xCOM displacement during the first and second steps did not differ with symmetrical loading 

(p=0.602); however, with asymmetrical loading, the first (448.0(38.7) mm) and second steps (457.6(52.1) 

mm) were significantly different (p=0.023). In the ML direction, the peak xCOM after FC was influenced 

by a step number main effect (F(1,17)=36.83; p<0.001) and a trend of body weight symmetry 

(F(1,17)=3.56; p=0.076). Peak ML xCOM displacement was larger during the first step (106.1(18.4) mm) 

compared to the second step (43.5(36.8) mm). Asymmetrical body weight tended to result in a larger ML 

xCOM peak displacement after FC (77.3(40.3) mm) compared to the symmetrical body weight condition. 

(72.2(45.5) mm) (Figures 6-5 and 6-6). 
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Figure 6-5: First vs. second step comparison mean(SD) values for: 1) peak AP xCOM displacement after FC (top left); 2) peak ML xCOM 

displacement after FC (top right); 3) step length (bottom left); and 4) step width (bottom right). * p≤0.05. AP = anterior-posterior. ML = medio-

lateral. xCOM = extrapolated center of mass. 
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Figure 6-6: Time-series extrapolated center of mass trajectories for the two-step condition, with symmetrical and asymmetrical loading. The 

squares represent the extrapolated center of mass position at foot-contact for each step. Black lines represent symmetrical loading, while gray lines 

represent asymmetrical loading. 
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Step length was influenced by a step number x body weight symmetry interaction (F(1,17)=7.31; 

p=0.015), where the first steps were longer than the second steps during both symmetrical (419.1(72.0) 

mm vs. 332.3(46.3) mm; p<0.001) and asymmetrical loading (395.1(69.6) mm vs. 339.1(45.4) mm; 

p=0.008). Step width was influenced by a step number x body weight symmetry interaction 

(F(1,17)=48.55; p<0.001) where the first and second step widths did not differ during the symmetrical 

body weight condition (p=0.419). However, during the asymmetrical body weight condition, the first step 

(10.8(28.3) mm) was narrower than the second step (40.0(29.7) mm) (p=0.006). 

Regarding the correlations between the xCOM displacement of the first and second steps, 

significant correlations were observed for all comparisons in the AP and ML directions (p≤0.05) (Table 6-

3, Figure 6-7). When the first step from the one-step only responses was used in the correlations, the only 

significant correlation was for peak AP xCOM displacement during the symmetrical body weight 

condition (r=0.586; p=0.005) (Table 6-3). Regarding the step length and step width correlations between 

the first and second step of the two-step responses, no significant correlations were observed (p>0.05). 

When the first step from the one-step only responses was used, instead of the first step of the two-step 

responses, one significant correlation was observed for step length, during the asymmetrical body 

weight\loading condition (r=0.402; p=0.049) (Table 6-4). 

 

Table 6-3: Correlation coefficients for the peak AP and ML xCOM displacement after foot-contact, along 

with statistical significance values. 

First Step Data Body Weight Symmetry 
AP xCOM ML xCOM 

r & p-value r & p-value 

First Step from 

Two-Step 

Responses 

Symmetrical  .953; p<0.001 -.405; p=0.048 

Asymmetrical  .977; p<0.001 -.500; p=0.017 

First Step from 

One-Step 

Responses 

Symmetrical  .586; p=0.005 -.132; p=0.300 

Asymmetrical  .280; p=0.131 -.281; p=0.129 

AP = anterior-posterior; ML = medio-lateral; xCOM = extrapolated center of mass. 
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Table 6-4: Correlation coefficients for step length and step width, and statistical significance values. 

First Step Data Body Weight Symmetry 
Step Length Step Width 

r & p-value r & p-value 

First Step from 

Two-Step 

Responses 

Symmetrical  .260; p=0.149 .232; p=0.177 

Asymmetrical  .106; p=0.338 .088; p=0.364 

First Step from 

One-Step 

Responses 

Symmetrical  .133; p=0.300 -.003; p=0.495 

Asymmetrical  .402; p=0.049 .009; p=0.486 

 

 

 

Figure 6-7: Scatter-plots of the correlations between the first and second step peak xCOM displacement 

after foot-contact, for the anterior-posterior (AP; top-row) and medio-lateral (ML; bottom-row) 

directions. The symmetrical loading condition is represented by the plots in the left column, while the 

asymmetrical condition by the plots in the right column. All correlations were significant at p≤0.05. 
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6.5 Discussion 

This study examined balance control during the landing phase of one and two-step responses. 

Regarding the first objective to compare balance control during the first step of one and two-step 

responses, two-steps resulted in AP and ML COM displacements which were larger and smaller, 

respectively. Asymmetrical loading resulted in larger first step lengths during the one-step condition, 

while first step width was reduced over both stepping tasks with asymmetrical loading. The second 

objective was to compare balance control during two-step responses where peak AP xCOM displacement 

after FC was larger in the second, compared to the first step with asymmetrical loading. However, ML 

xCOM during the first step was greater compared to the second step regardless of loading. First step 

width was narrower than the second step with asymmetrical loading. Lastly, during the first and second 

steps of two-step responses, peak AP xCOM displacements after FC were significantly, positively 

correlated, while peak ML xCOM displacements after FC were significantly, negatively correlated. 

Incorporating the first step from the one-step only responses resulted in non-significant correlations, 

suggesting that control during multi-step responses should not be inferred from responses where only a 

single-step was used. Specific statistical results will be discussed in greater detail below. 

The first objective of this study was to examine peak COM displacement after FC, and foot-

placement during the first step of one and two-step responses. The larger peak AP COM displacement 

after FC, but smaller peak ML COM displacement after FC during the two-step condition, provides 

insight into the role of COM movement after FC. Previous work suggests that the mechanical work for 

step-to-step transitions is a large determinant in the metabolic cost of human walking (Donelan, et al., 

2002). As such, the larger AP displacement during the two-step condition would potentially reduce the 

mechanical work needed to move the COM up and over the support limb, where the gait cycle could 

continue (Singer, et al., 2012). Our results in the AP direction appear to align with the theory that larger 

AP COM movement in the first step may be part of a multi-step strategy (Singer, et al., 2012). The 

smaller peak ML COM displacement during the two-step condition suggests that ML COM movement 

after FC of single-step responses is not purposeful (for a second step) as postulated previously (Singer, et 
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al., 2012, 2013) As our sample was a group of young adults, during the one-step condition perhaps 

participants let their body move more laterally in an exploratory manner as a means of acquiring sensory 

information (Carpenter et al., 2010; Murnaghan et al., 2013). Interestingly, the stepping task differences 

were found in peak COM displacement with both symmetrical and asymmetrical loading, suggesting that 

asymmetrical loading does not have a differential effect on peak AP or ML COM displacement after FC 

during the first step of one and two-step responses. 

As part of comparing the first step, step length and width were also examined. Step length was 

influenced by a stepping task x body weight symmetry interaction, where symmetrical loading did not 

influence first step lengths. However, with asymmetrical loading, first step lengths were larger during the 

one-step condition, compared to the two-step condition. A shorter first step in the two-step condition 

would be less effortful, and could be beneficial (along with the increased AP COM displacement reported 

above) for maximizing efficiency if one’s goal is to continue forward ambulation. Regarding the step 

width, it is suggested that there is an increased effort associated with wider steps during gait (mechanical 

work required to re-direct the COM during the transition between single stance phases) (Donelan, et al., 

2001). In the current study, main effects of stepping task and body weight symmetry were observed, 

where the two-step condition, and symmetrical loading each resulted in wider first steps, compared to the 

one-step and symmetrical condition, respectively. The main effect of stepping task was likely driven 

primarily by the task difference within the asymmetrical loading condition (Appendix 3 – Supplementary 

Table 6), as the mean(SD) step width during the two-step condition was 10.4(17.1) mm larger than the 

one-step condition. Perhaps during a single-step, young adults may be able to compensate for a narrower 

step with ground reaction forces of the appropriate size and direction. Overall, asymmetrical loading did 

result in a narrower first step width, which could be useful when taking a second step, with respect to 

stability about the stance-leg. For example, given an unchanged ML COM displacement between loading 

conditions, a narrower step could result in a smaller frontal-plane gravitational moment about the stance-

leg after FC. However, the frontal-plane gravitational moment about the stance leg could play a role in 

minimizing the effort associated with slowing and reversing the ML COM during the first step (making 
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the second step easier), as suggested by the wider first step in the two-step (vs. one-step condition), and 

the large difference between the one and two-step condition with asymmetrical loading (mentioned 

above). 

The second objective of this study was to compare balance control and foot-placement during the 

first and second steps of two-step responses, while also assessing the effect of body weight symmetry. In 

the AP direction, step number interacted with body weight symmetry, where the peak AP xCOM 

displacement after FC did not differ by step number with symmetrical loading. However, with 

asymmetrical loading, the first (448.0(38.7) mm) and second step (457.6(52.1) mm) were significantly 

different, where asymmetrical loading may beneficial if the goal is to progress the body forward, such as 

when taking multiple reactive steps. This result has implications for groups such as stroke patients, as this 

heterogeneous group has been observed to exhibit asymmetric loading prior to reactive stepping 

(Mansfield et al., 2012). In the ML direction, the peak xCOM displacement after FC was always smaller 

during the second, compared to the first step which was in agreement with our hypothesis. A trend of 

body weight condition was also observed, where asymmetrical loading tended to result in a larger peak 

ML xCOM displacement after FC. However, this trend of greater peak ML xCOM displacement after FC 

with asymmetrical loading was likely driven by a larger ML xCOM displacement during the second step, 

but not the first (Appendix 3 – Supplementary Table 8). This suggests that asymmetrical loading does not 

differentially influence ML body movement during the first step of multi-step responses. 

Similar to the first step comparison, step length and width were also examined during the 

comparison of one and two-step responses. Step length and width were both influenced by a step number 

x body weight symmetry interaction. For step length, the first step was longer than the second step, with 

both symmetrical and asymmetrical loading. This result provides support for our evoked-stepping 

protocol, and is in agreement with research indicating that gait termination with one’s feet parallel rarely 

occurs during activities of daily living (Hase & Stein, 1998). When examining step width, asymmetrical 

loading caused the first and second step widths to differ significantly, where the second step was wider. 

However, symmetrical loading resulted in no difference in step width. This result suggests that 
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asymmetrical loading makes it difficult to maintain the first step width (during two-step responses), when 

compared to symmetrical loading. A similar phenomenon was observed for the comparison of the first 

step, where asymmetrical loading resulted in narrower mean steps for both stepping tasks.  

Generally, our results revealed that balance control during the first and second steps (during two-

step responses) are related. In agreement with our final hypothesis, peak xCOM displacement after FC 

between the first and second steps was very strongly (.80–1.0) (Evans, 1996) positively correlated for all 

comparisons in the AP direction and moderately (.40-.59) negatively correlated for all comparisons in the 

ML direction. However, step length and width values between steps were not significantly correlated. 

These correlations suggest that xCOM movement after FC could be proactive during two-step responses, 

where larger ML xCOM movement in the first step might aid in taking a more stable second step (as it 

would reduce the gravitational moment in the frontal-plane causing lateral rotation away from the stance 

leg, opposite to the notion discussed above). The idea that larger ML COM\xCOM movement after FC 

may be a strategy to aid in multiple steps has been proposed previously (Singer, et al., 2012). However, as 

older adults exhibit larger and more variable ML COM movement after FC of single-step responses 

(Singer, et al., 2013, 2016), it could reflect poor control in older adults, and is unlikely to be proactive 

when only one-step is required. To this point, when the first step xCOM displacement was calculated 

from the one-step only responses, the correlations between the first and second step peak xCOM 

displacement were not as strong in either the AP or ML direction, and only one of four correlations was 

statistically significant. This suggests that balance control during multi-step scenarios should not be 

inferred from responses where a single-step was used. 

The primary limitation of this study was the fact that the same magnitude perturbation was used 

to evoke both the one and two-step responses. Although the presentation of these two conditions was 

block randomized between participants, the fact that all participants could successfully recover using a 

single step during the one-step condition suggests that the second-step, during the two-step condition, was 

not necessarily needed for stability. This notion was indirectly highlighted by the fact that the second step 

lengths were shorter compared to the first step lengths, for both loading conditions (Figure 6-5). However, 
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the same magnitude of perturbation ensured that the two conditions could be compared directly. Future 

studies may wish to evoke one and two-step responses using the same magnitude perturbation, but also 

evoke both responses at the maximum perturbation magnitudes in which participants can recover from 

using one and two-steps, respectively. Allowing participants to respond “naturally” to these perturbations, 

as opposed to using specific task instructions, may also be beneficial for evoking more realistic, less pre-

planned responses. Together, these suggestions could help provide further insight into the differences 

between one and two-step responses, at each participant’s maximum capabilities. This study was also 

limited by the fact that the AMTI force-plate which participants stepped onto constrained where the right 

foot could be placed. Although this did not appear to be an issue, it is unclear whether participants would 

have stepped elsewhere with their right leg. It is also possible that the biofeedback program monitoring 

lean magnitude, vertical forces and the center of pressure position may have introduced a cognitive load, 

creating a dual-task scenario. Oppositely, the biofeedback program may have prevented the participants 

from trying to anticipate the tether-release timing, as they were focused on the biofeedback program and 

meeting the pre-release requirements. The final limitation relates to only sampling young participants. 

Future work should build on this study to examine potential age- or pathology-related differences that 

might help to explain the high rates of falls in those populations. Although it is important to acknowledge 

these limitations, this was the first study to assess balance control and foot-placement during the landing 

phase of two-step responses. 

In conclusion, this study investigated the landing phase during one and two-step responses, which 

is important as real-world perturbations such as tripping while walking often require multi-step responses. 

Differences were observed in COM\xCOM displacement between one and two-step conditions, as well as 

between the first and second step of two-step responses. Additionally, asymmetrical loading was found to 

influence both step length and width metrics. Furthermore, xCOM displacements between the first and 

second step were significantly correlated in the AP and ML directions. These results help to inform on the 

role of body movement after FC during reactive stepping, while the body weight symmetry results may 

have implications for individuals who exhibit body weight asymmetries during reactive stepping tasks. 
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Next steps should focus on analyzing landing phase kinetics for single vs. two-step responses, and initial 

stepping limb dominance. Long-term goals should focus on studying landing phase control during more 

dynamic activities such as tripping while walking. 
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7. SUMMARY OF NOVELTY, CONTRIBUTION AND FUTURE DIRECTIONS 

The four studies presented as part of this thesis are each novel in their own respects. Numerous 

studies have examined balance control during reactive stepping, with more recent work focusing on the 

landing phase occurring after foot-contact (FC) (Singer, et al., 2016). However, while these recent studies 

laid important ground work and provided important insights, many questions still remained about the 

control responses during this important phase of reactive stepping. Accordingly, while the results of the 

four studies presented in this thesis must be interpreted with caution due to the predictable nature of the 

tether-release paradigm (i.e., only forward-directed perturbations), and the instructional set employed, 

many novel insights were observed. The novelty, contribution and future directions of each study will be 

discussed below. 

This first study included in this thesis (Chapter 3) was novel as it was the first to focus on 

whether center of mass (COM) displacement and velocity during the stepping phase can predict COM 

displacement during the landing phase (of reactive stepping). The first study also provided insight into 

whether individual characteristics can be used to predict COM displacement during the landing phase.The 

primary contributions from this study were the observations that COM displacement during the stepping 

and landing phases are correlated, and that specificity is important in predicting COM displacement 

during reactive stepping. Knowing that balance control is correlated between phases suggests that 

researchers and\or clinicians could focus on training the stepping phase, and as individuals improve their 

control, concomitant improvements may also be observed in the landing phase. Research has shown that a 

single session of perturbation-based training can result in improvements in stability at FC in community-

dwelling older adults, which persist up to 12-months post training (Pai et al., 2014). A single session of 

perturbation-based training can also result in improvements in peak COM displacement during forward 

and backward reactive stepping, which persists for 24 hours (Dijkstra, et al., 2015). Second, this 

information could prove to be valuable for researchers and clinicians who are interested in training 

reactive stepping, as it suggests that measures calculated directly from reactive stepping trials are better 
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predictors of COM displacement, compared to independent variables calculated\measured separately from 

the reactive stepping task.  

Regarding the general vs. specific predictors, overall the specific models resulted in stronger 

predictions of COM displacement in both age groups, at both points in time. The idea of training 

specificity is not new in the athletic world, where theoretically, the most specific and therefore functional 

form of training is to perform the actual movement(s) of the sport (Gamble, 2006; Siff, 2002). Perhaps the 

same is true in the domain of reactive balance training (Mansfield et al., 2010; Mansfield et al., 2015). 

While perturbation-based reactive stepping studies show promise for improving step metrics, and 

potentially reducing fall risk (Bhatt, et al., 2012; Mansfield, et al., 2010; Mansfield, et al., 2015; Pai, et 

al., 2014), these studies generally have not focused explicitly on landing phase control. As multiple 

studies suggest that age-related differences in initial spatio-temporal metrics are relatively small (McIlroy 

& Maki, 1996; Rogers, et al., 2001), future perturbation-based training studies should explore if this type 

of training has benefits for landing phase control. Lastly, as Study 1 found that hip extension strength was 

the only significant predictor of COM displacement at FC and the peak displacement after FC in the older 

adult general models, specifically targeting hip extension strength in older adults may also be a beneficial 

way to improve landing phase control in older adults. Recall, a study by Sibley et al. (2013) found that in 

Ontario physiotherapists, the three most commonly used clinical balance tools were the single leg stance, 

timed up and go (TUG), and Berg Balance Test. All three of these tests require components of hip 

extension strength, especially the TUG test. Therefore, focusing on hip extension strength (e.g., via 

squats) may not only facilitate landing phase control in older adults, but also improve other aspects of 

clinically-assessed balance control. Furthermore, beyond muscle strength, muscle power may be equally 

or more important in older adults for performing activities such as stair climbing, rising from a chair, and 

walking (Bassey et al., 1992; Evans, 2000). Recent studies of lateral balance recovery in older adults have 

also implicated the rate of force development as an important factor for distinguishing fallers and non-

fallers, and the type of lateral stepping strategy used (Addison et al., 2017; Inacio et al., 2014). 

Accordingly, plyometric training in older adults incorporating hip extension movements (i.e., 
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countermovement vertical jumps, or drop landing vertical jumps) could be beneficial for improving 

landing phase performance in older adults, as well as the execution of activities of daily living. 

The thesis’ second study (Chapter 4) was novel, as no published literature to date has reported 

electromyographic (EMG) patterns during the landing phase of reactive stepping. This study compliments 

Chapter 3, as researchers and clinicians who are interested in training the reactive stepping response 

during a given phase could target the muscles which were most active in that specific phase. Accordingly, 

the muscles which were active during the landing phase (compared to the earlier phases) were the biceps 

femoris of the step-leg (which was correlated with the step-leg medial gastrocnemius peak magnitude 

during the landing phase), and the rectus femoris and tibialis anterior of the support-leg. This is likely due 

to the role of the step-leg biceps femoris as a hip extensor. In contrast, the rectus femoris of the support-

leg keeps the knee extended (and as a result help prevents the body from collapsing, likely in continuation 

from the swing phase), while as discussed in section 4.5, the recruitment of the support-leg tibialis 

anterior during phase 3 may be linked to the effectiveness of the biceps femoris and medial gastrocnemius 

in resisting the initial rotational effects of the perturbation, and could serve to move the support-leg heel 

back to the ground (if needed). While the mean peak timing and magnitude values which were analyzed 

statistically, and presented in Tables 4-1 to 4-4 and Figure 4-4 provided novel and interesting insight into 

muscle activation throughout the entirety of the reactive stepping response, the subject specific ensemble 

averages (for each muscle) presented in Figure 4-5 suggest that future studies should focus on the 

between-subject variability in muscle activation. Figure 4-5 shows that rectus femoris and tibialis anterior 

activation was largely variable between participants. Specifically, both the step-leg tibialis anterior and 

support-leg rectus femoris activation varied (visually) between-subjects over the entire time-frame 

depicted in Figure 4-5. This may suggest that these specific muscles are particularly important for control 

during the later aspects of the reactive stepping response (i.e., the landing phase). However, research is 

needed to explore this idea further. Nonetheless, the results of this study contribute to the literature by 

revealing which muscles were their most active during the landing phase, and which peak magnitudes 

were correlated between muscles in a given phase. Focusing on the muscles (via exercise, etc.) which 
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were active during the landing phase could improve performance during this period, while understanding 

which muscle’s peak magnitudes were correlated in a given phase could aid researchers in training 

recruitment patterns in older adults. 

The thesis’ third study (Chapter 5) provides new insights into whether wide stepping and arm 

movement are beneficial for balance control during the landing phase of reactive stepping. The results 

demonstrate that wide stepping is beneficial for stability in the medio-lateral (ML) direction, but may 

induce a larger anterior-posterior (AP) COM displacement, which could place greater demands on step 

length. Regarding arm movement, our results indicate that it may be more important for balance control in 

the ML direction, as opposed to the AP direction. In the ML direction, peak COM displacement after FC 

was larger in the restricted arm movement condition, when compared to the preferred stepping condition, 

regardless of age group. Accordingly, these findings support the potential value of incorporating arm 

movement training as part of re- or prehabilitation programs for those interested in preventing injuries due 

to sideways falls (i.e., hip fractures). While the current study did not focus on actual fall events, many 

researchers have previously suggested that future studies should focus on training protective arm 

reactions for fall-related injury prevention (Choi, et al., 2015; Feldman & Robinovitch, 2007; Schonnop, 

et al., 2013). Overall, the results will be important for helping to train balance recovery during forward 

reactive stepping, particularly in older adults, along with the results of Studies 1 and 2. However, with 

regards to the notion that wide stepping resulted in the largest ML stability margins in young and older 

adults, the benefits of wide stepping will have to be weighed with the fact that wide stepping is effortful, 

and humans tend to prefer a step width that minimizes metabolic cost (Donelan, et al., 2001). 

Anecdotally, many participants expressed that the wide stepping condition was the most physically taxing 

condition in Study 3. 

The thesis’ final study (Chapter 6) focused on the landing phase during two-step responses. A 

secondary objective was to quantify the effects of symmetrical and asymmetrical stance loading (pre-

release). The novelty of Study 4 was that it was the first to focus on landing phase control during two-step 

responses, while also comparing two-step responses to one-step responses. When analyzing the first step, 
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two-step responses resulted in AP and ML COM displacements during the first step which were larger 

and smaller, respectively, when compared to the one-step condition. With asymmetrical loading, first step 

lengths were larger during the one-step condition (vs. two-step condition), while first step width was 

reduced over both stepping tasks with asymmetrical loading. Peak AP extrapolated COM (xCOM) 

displacement after foot-contact was larger in the second step, compared to the first step, with 

asymmetrical loading. This suggests that asymmetrical loading may be beneficial when the goal is to 

continue forward progression of the body, such as during gait. Interestingly, the first step resulted in a 

greater ML xCOM displacement vs. the second step, regardless of loading, however, the first step width 

was narrower (compared to the second step) with asymmetrical loading. Lastly, peak xCOM 

displacements between the first and second steps were significantly correlated, and incorporating the first 

step metrics from the one-step only condition did not strengthen these correlations. Overall, these results 

suggest that single-step responses should not be used to infer balance control during multi-step scenarios. 

This carries implications for those researchers interested in studying reactive stepping responses. 

Although one-step responses may be more feasible to evoke safely, if one’s goal is to gain insight into 

balance control during multi-step scenarios, a perturbation large enough to evoke multiple steps should be 

used. Or, alternatively, participants could be instructed to use two-steps, as recent research has shown that 

instructing participants to recover with one or two reactive steps had little functional effect on the spatio-

temporal metrics of the first step (Cyr & Smeesters, 2009). However, as Study 4 revealed, there are 

differences in landing phase balance control (COM\xCOM) when participants are instructed to respond 

with one vs. two reactive steps. 

While this thesis provides a complementary collection of studies that enhance our understanding 

of balance control during reactive stepping responses, it also highlights future directions that could 

provide further insights. Potential future directions would be to study the landing phase in a group of 

older adults who are at a greater risk of falling than the community-dwelling older adults who participated 

in the current study. Further novel insights may be gained about body movement after FC by studying 

individuals such as frail older adults or individuals with neurological disorders such as Parkinson’s 
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disease, or stroke patients. Additionally, as discussed in Chapter 3, studying a highly active sample of 

older adults, who are not ‘fearful’ or ‘nervous’ of the tether-release task could provide novel insights into 

the physiological effect of aging on reactive stepping, without the influence of psychological factors. One 

possibility to address the fact that the tether-release task can be daunting for some older adults, is to 

explore the potential of virtual reality (VR) in studying or training reactive stepping. The use of VR 

would eliminate the physical perturbation involved with the tether-release, surface translation, etc., which 

could be less physically demanding\fatiguing for older adults (compared to repeated exposure to an 

externally applied force). In turn, this would allow for an increased number of trials to be studied. To 

build on Chapter 3, a larger sample should be collected to assess the predictive utility of a larger number 

of predictor variables, while EMG recruitment patterns during the landing phase must be assessed in older 

adults to accompany the data presented here. This would inform researchers if there are obvious age-

related discrepancies in lower-limb muscle recruitment which can be targeted clinically. Additionally, 

researchers should focus on studying landing phase balance control during more ‘realistic’ activities such 

as the rapid termination of gait and trip recovery during gait. Accounting for the effects of preceding gait 

will be important as a higher walking speed increases the effect of the perturbation, which can make 

recovery after tripping more difficult (Pijnappels, et al., 2008). Pavol et al. (2002) observed that a main 

contributor to falls during a reactive step was a faster walking speed, which paradoxically could place 

high strength older adults at an elevated risk of falling. Future studies should also assess whether the 

properties of the foot and\or toes (e.g., strength, flexibility, sensitivity, etc.) are important for landing 

phase control. Finally, researchers must aim to determine if landing phase control is related to actual fall-

risk in older adults. To conclude, the novel contributions of the current thesis to the literature are new 

insights into the landing phase during reactive stepping, with a focus on predictive factors, muscle 

recruitment, movement restraints and two-step responses. 
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9. APPENDICES 

9.1 Appendix 1 – Telephone Interview Questions: 

All participants were interviewed prior to participation to ensure they:  

1) were able to stand, without moving, for at least 60 seconds;  

2) were confident in their ability to independently perform the balance recovery task involving the use of 

a forward step;  

3) were able to walk and stand without the use of a cane, walker or other ambulatory aid;  

4) were free of any health issues/conditions which could affect their balance; 

5) were not using any psychotropic medications;  

6) were free of any current injuries to their torso, legs or arms;  

7) did not have or experience a heart condition; pacemaker, balance issues, prone to dizziness, light 

headedness, or fainting due to medications;  

8) were free of any allergy or sensitivity to medical tape and running alcohol 
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9.2 Appendix 2 – Kinematic Marker Setup 
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9.3 Appendix 3 – Supplementary Tables 

Supplementary Table 1: Mean(SD) values for the initial conditions for the first step comparison. Note that the stability margins reflect the period 

prior to cable-release. 2 x 2 repeated measures ANOVAs were used with stepping task (one-step vs. two-steps) and body weight symmetry 

(symmetrical vs. asymmetrical) to assess for statistically significant effects. 

 One-step,  

Symmetrical 

BW% 

One-step, 

Asymmetrical 

BW% 

Two-steps, 

Symmetrical 

BW% 

Two-steps, 

Asymmetrical 

BW% 

Effect(s); p 
Mean 

Difference 

Tether Load (%) 12.8(0.8) 12.8(0.6) 12.8(0.6) 12.9(0.6) 

Stepping Task; p=0.735 

Body Weight; p=0.774 

Interaction; p=0.507 

--------------- 

Right Vert. Force (%) 49.9(0.6) 40.1(0.6) 50.4(0.6) 40.3(0.5) 

Stepping Task; p=0.007 

Body Weight; p<0.001 

Interaction; p=0.070 

0.29 % 

9.95 % 

 

Left Vert. Force (%) 50.1(0.6) 59.9(0.6) 49.6(0.6) 59.7(0.5) 

Step Number; p=0.007 

Body Weight; p<0.001 

Interaction; p=0.070 

0.29 % 

9.95 % 

 

AP Stability Margin (mm) -44.8(22.4) -43.6(21.8) -46.4(22.3) -45.7(20.9) 

Stepping Task; p=0.300 

Body Weight; p=0.587 

Interaction; p=0.841 

--------------- 

ML Stability Margin (mm) 209.1(11.2) 240.1(12.1) 206.1(11.1) 240.4(12.5) 

Stepping Task; p=0.057 

Body Weight; p<0.001 

Interaction; p=0.078 

32.69 mm 

BW = body weight; AP = anterior-posterior; ML = medio-lateral. 
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Supplementary Table 2: Mean(SD) values for the two-step response comparison. Paired-samples t-tests were used to compare if the initial 

conditions differed between the two loading conditions. 

 Symmetrical BW% Asymmetrical BW% p-value 

Tether Load (%) 12.8 (0.6) 12.9(0.6) p=0.528 

Right Vert. Force (%) 50.4(0.6) 40.3(0.5) p<0.001 

Left Vert. Force (%) 49.6 (0.6) 59.7(0.5) p<0.001 

AP Stability Margin (mm) -46.4(22.3) -45.7(20.9) p=0.764 

ML Stability Margin (mm) 206.1(11.1) 240.4(12.4) p<0.001 

BW = body weight. 
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Supplementary Table 3: Mean(SD) values for the peak AP COM displacement after foot-contact during 

the first step. A 2 x 2 repeated measures ANOVA was used with stepping task (one-step vs. two-steps) 

and body weight symmetry (symmetrical vs. asymmetrical) as factors. In the case of a significant 

interaction, a paired-samples t-test was used for post-hoc analysis. 

 Body Weight Symmetry 
Average (mm) 

Step Condition Symmetrical Asymmetrical 

One-Step (mm) 274.2(32.3) 288.3(28.2) 281.2(30.7) 

Two-Steps (mm) 306.8(30.9) 308.3(29.8) 307.6(29.9) 

Average (mm) 290.5(35.3) 298.3(30.3) ----------------- 

AP = anterior-posterior; COM = center of mass. 
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Supplementary Table 4: Mean(SD) values for the peak ML COM displacement after foot-contact during 

the first step. A 2 x 2 repeated measures ANOVA was used with stepping task (one-step vs. two-steps) 

and body weight symmetry (symmetrical vs. asymmetrical) as factors. In the case of a significant 

interaction, a paired-samples t-test was used for post-hoc analysis. 

 Body Weight Symmetry 
Average (mm) 

Step Condition Symmetrical Asymmetrical 

One-Step (mm) 83.3(13.3) 90.7(15.8) 87.0(14.9) 

Two-Steps (mm) 60.4(12.0) 56.5(15.7) 58.5(13.9) 

Average (mm) 71.9(17.0) 73.6(23.3) ----------------- 

ML = medio-lateral; COM = center of mass. 
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Supplementary Table 5: Mean(SD) values for step length (of the first step). A 2 x 2 repeated measures 

ANOVA was used with stepping task (one-step vs. two-steps) and body weight symmetry (symmetrical 

vs. asymmetrical) as factors. In the case of a significant interaction, a paired-samples t-test was used for 

post-hoc analysis. 

 Body Weight Symmetry 
Average (mm) 

Step Condition Symmetrical Asymmetrical 

One-Step (mm) 435.3(84.0) 455.0(97.7) 445.2(90.3) 

Two-Steps (mm) 419.1(72.0) 395.1(69.6) 407.1(70.9) 

Average (mm) 427.2(77.5) 425.1(88.9) ----------------- 
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Supplementary Table 6: Mean(SD) values for step width (of the first step). A 2 x 2 repeated measures 

ANOVA was used with stepping task (one-step vs. two-steps) and body weight symmetry (symmetrical 

vs. asymmetrical) as factors. In the case of a significant interaction, a paired-samples t-test was used for 

post-hoc analysis. 

 Body Weight Symmetry 
Average (mm) 

Step Condition Symmetrical Asymmetrical 

One-Step (mm) 24.4(29.8) 0.4(30.7) 12.4(32.2) 

Two-Steps (mm) 29.1(30.6) 10.8(28.3) 19.9(30.5) 

Average (mm) 26.7(29.8) 5.6(29.6) ----------------- 
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Supplementary Table 7: Mean(SD) values for the peak AP xCOM displacement after foot-contact. A 2 

x 2 repeated measures ANOVA was used with step number (first vs. second) and body weight symmetry 

(symmetrical vs. asymmetrical) as factors. In the case of a significant interaction, a paired-samples t-test 

was used for post-hoc analysis. 

  Body Weight Symmetry 
Average (mm) 

Step Number Symmetrical Asymmetrical 

First Step (mm) 430.4(40.7) 448.0(38.7) 439.2(40.1) 

Second Step (mm) 432.3(49.2) 457.6(52.1) 445.0(51.6) 

Average (mm) 431.4(44.5) 452.8(45.5) ------------------- 

AP = anterior-posterior; xCOM = extrapolated center of mass. 
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Supplementary Table 8: Mean(SD) values for the peak ML xCOM displacement after foot-contact. A 2 

x 2 repeated measures ANOVA was used with step number (first vs. second) and body weight symmetry 

(symmetrical vs. asymmetrical) as factors. In the case of a significant interaction, a paired-samples t-test 

was used for post-hoc analysis. 

  Body Weight Symmetry 
Average (mm) 

Step Number Symmetrical Asymmetrical 

First Step (mm) 108.1(17.0) 104.0(19.9) 106.1(18.4) 

Second Step (mm) 36.3(35.2) 50.6(37.9) 43.5(36.8) 

Average (mm) 72.2(45.5) 77.3(40.3) ------------------- 

ML = medio-lateral; xCOM = extrapolated center of mass. 
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Supplementary Table 9: Mean(SD) values for step length. A 2 x 2 repeated measures ANOVA was used 

with step number (first vs. second) and body weight symmetry (symmetrical vs. asymmetrical) as factors. 

In the case of a significant interaction, a paired-samples t-test was used for post-hoc analysis. 

  Body Weight Symmetry 
Average (mm) 

Step Number Symmetrical Asymmetrical 

First Step (mm) 419.1(72.0) 395.1(69.6) 407.1(70.8) 

Second Step (mm) 332.3(46.3) 339.1(45.4) 335.7(45.3) 

Average (mm) 375.7(74.1) 367.1(64.5) ------------------- 
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Supplementary Table 10: Mean(SD) values for step width. A 2 x 2 repeated measures ANOVA was 

used with step number (first vs. second) and body weight symmetry (symmetrical vs. asymmetrical) as 

factors. In the case of a significant interaction, a paired-samples t-test was used for post-hoc analysis. 

  Body Weight Symmetry 
Average (mm) 

Step Number Symmetrical Asymmetrical 

First Step (mm) 29.1(30.6) 10.8(28.3) 19.9(30.5) 

Second Step (mm) 22.1(26.2) 40.0(29.7) 31.1(29.1) 

Average (mm) 25.6(28.3) 25.4(32.2) ------------------- 

 


