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Abstract

Motivated by recent experimental measurements of the degeneracy lifting of the

rotational ground state of molecular ortho-H2 confined inside the fullerene cage C60

and, more generally, motivated by the physics of confined quantum molecular degree

of freedom. By using exact diagonalization we performed a detailed study on the

coupled translational and rotational motion of H2 based on the Van der Waals inter-

action model. We found that degeneracy lifting is caused by a symmetry reduction

from Ih to C3i symmetry of C60 in its solid state. The origin of the degeneracy lifting

is found to mainly arise from the interaction between H2 and its C60 cage instead of

the interaction between the H2@C60 molecule and its neighbouring molecules. The

size of the splitting is extremely sensitive to the cage geometry while sitting in a

relatively large linear regime. The zero point motion effect of carbon atoms does not

change the size of the splitting. The analytical study also was preformed by using

multipole expansion on Lennard-Jones potential in order to gain a more physical

perspective on confined quantum molecular degree of freedom.
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Chapter 1

Introduction

The endofullurene H2@C60, first synthesized in 2005, has since become a classical

model in the study of quantum dynamics of a single confined molecule. Recently,

H2@C60 has drawn great attention because of the coupled translational and rota-

tional motion of H2 when confined inside C60. In this Chapter, an outline of the

fascinating features of C60 will be presented including chemical bonding, symmetry

operations, electronic states and vibrational modes of the C60 molecule. A general

introduction on the crystalline structure of crystalline C60 will also be provided as

it is the same as that of H2@C60. A summary on the symmetry group Pa3̄ will be

presented as it will closely relate to our work. Finally, the fundamental research

motivation and objective of this work and the outline of the structure of this thesis

will be discussed.
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1.1 A Brief Review of C60

1.1.1 Chemical Bonding

The Buckminsterfullerene has the chemical formula of C60, was discovered in 1985

[34], and is a nearly spherical fullerene molecule. This molecule is also known as

buckyball or soccer ball. C60 contains 12 pentagons and 20 hexagons. This means

that there are 60 vertices for the carbon atoms sharing 90 covalent bonds between

them, 30 electron-rich double bonds, and 60 electron-poor single bonds [44]. The

pentagon is made of 5 electron poor single bonds and the hexagon is made of 3 single

bonds and 3 double bonds as shown in Figure.1.1. C60 has a cage-like truncated

icosahedron structure and has been described as the roundest molecule that can

possibly exists by Curly and Smalley [19, 33]. The nucleus to nucleus diameter of

C60 molecule is around 10.1Å and the length of a single bond that connects two

hexagons is slightly larger than that of a double bond which connects two pentagons.

The average bond length of a C60 molecule is about 1.4 Å??. C60 molecule in gas

phase belongs to the icosahedral (Ih) symmetry group [19, 43].

Figure 1.1: Molecular structure of the C60

1.1.2 Icosahedral Symmetry Operations

C60 molecule is highly symmetrical and there are many transformations that map

the C60 molecule back onto itself. These transformations are rotation around an
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axis, reflection about a plane and inversion with respect to a point. All rotational

axes and mirror planes must go through the centre of mass of C60 since the centre of

mass of the C60 molecule must be unchanged under all symmetry operations. There

are three kinds of rotational symmetry for a C60 molecule as shown in Figure.1.2.

One is 2-fold axis through the centres of the edges between two hexagons which is

Figure 1.2: A demonstration of three kinds of rotational symmetry in molecule C60:

left is the twofold axis, middle is the threefold axis, and right is the fivefold axis.

referred to as C2 axis. There are 30 edges between two hexagons since each hexagon

is neighboured by three other hexagons. As a result, there are 15 distinct 2-fold axes

in one C60 molecule. The second one is 3-fold axis through the centre of two facing

hexagons, a rotation of 120 degrees about this axis is needed to map the molecule

onto itself. Since each axis passes through two hexagons, 20 hexagons in one C60

molecule will gives 10 different 3-fold axes which are referred to as C3 axes. The third

one is 5-fold rotational axis through the centre of two facing pentagons, a rotation

of 72 degrees about this axis will map the molecule onto itself. 12 pentagons in C60

molecule will give 6 different 5-fold rotational axes which are referred to as C5 axes.

The reflection symmetries are in the planes that contain two edges between adjacent

hexagons. There are also 15 different mirror planes. Finally, C60 has inversion

symmetry with respect to its centre of mass. It means that one can replace each

carbon atoms’ coordinate (x, y, z) by (−x,−y,−z), with the C60 molecule mapping

back onto itself. All these symmetry operations form the Ih point group. Symmetry

consideration is very important when dealing with physical problems with fullerenes

3



such as the electronic states or vibrational modes. The spherical harmonics are

treated as natural basis functions for the full rotational group.

1.1.3 Electronic States

In this subsection, we consider the electronic states of C60 fullerene molecules within

a very simple description. Initially, C60 was assumed to be a perfect sphere. How-

ever, qualitative treatment adapted from the quantum mechanics of one-electron

hydrogen atom gives electronic structure with unpaired electrons [19, 43, 44]. This

is in a contradiction with the fact that C60 is an insulator and has no unpaired

electrons. This contradiction gets resolved if the symmetry is lowered from spher-

ical to Ih since all unpaired electrons become paired under the Ih symmetry. As

Figure 1.3: Electronic energy levels of C60 from spherical symmetry to Ih symmetry

[26]

shown in Figure.1.3, if C60 has spherical symmetry, each carbon is single bonded

to three other carbons using three of four valence electrons with the remaining one

electron for each carbon moving on the sphere that is created by the 60 carbon

atoms. This qualitative treatment of 60 delocalized electrons moving on a sphere

results in 10 unpaired electrons. After the symmetry is lowered to Ih, the highest

occupied molecular orbital is fivefold degenerate and the lowest unoccupied molec-

ular orbital is threefold degeneracy. The existence of two triply degenerate sates

shown in Figure.1.3 is consistent with the experimental results showing that K3C60

is a conductor while K6C60 is an insulator [52].

4



1.1.4 Vibrational Modes

Symmetry consideration is also very important to characterize the nature of the

vibration modes of C60 molecule. In this subsection, we briefly summarize the

symmetries of the vibrational modes for C60 molecule. After one subtracts the

translational and rotational degree of freedom, there remains 174 vibrational degrees

of freedoms. However, due to the high symmetric of Ih symmetry, many vibration

modes are degenerate and only 46 distinct vibrational frequencies remain. They

correspond to the following symmetry decomposition [12, 13, 44]:

2Ag + 3F1g + 4F2g + 6Gg + 8Hg + Au + 4F1u + 5F2u + 6Gu + 7Hu. (1.1)

The coefficients can be explained as follows: 2Ag means that two distinct eigenfre-

quencies have Ag symmetry while 3F1g means three distinct eigenfrequencies have

F1g, etc. The lowest frequency modes of Ag is so called the ”breathing” mode

and refers identical radial displacements for all 60 carbon atoms. The frequency of

this mode is about 450cm−1[12, 29] and the root-mean-square displacement at zero

temperature is 0.04 Å[29].

1.1.5 Crystalline Structure

In this subsection, we review features of the crystalline structure of C60 including

the crystal structure of C60 at room temperature, the structural phase transition of

temperature dependence and the neighbouring orientation feature of C60 [12]. In

solid state, C60 molecules will crystallize into face centred cubic (FCC) lattice struc-

ture. The lattice constant is 14.17Å and the nearest-neighbour C60-C60 distance is

10.02 Å [12, 50] at room temperature and ambient pressure [12]. The C60 molecules

are located at the lattice points of a FCC lattice with one C60 molecule per primi-

tive FCC unit cell or four molecules per simple cubic (SC) unit cell. C60 displays a

structural phase transition as a function of temperature. At room temperature, C60

molecules are rotating rapidly about their lattice positions. There is no orientational

order and all molecules are treated as equivalent molecules. Consequently, the crys-

tal structure of C60 is FCC and the space group symmetry at room temperature is

5



Fm3̄m as revealed by x-ray and neutron diffraction [12, 21, 15, 51]. The structural

phase transition from FCC to SC structure occurs when the temperature decreases

below a temperature T1. This temperature is called characteristic temperature and

is about 261 K. Below T1, the C60 molecules only have one degree of freedom which

is the rotational motion about the four < 111 > direction due to the strong correla-

tion with the adjacent molecules. As a result, the lattice structure of solid C60 is SC

when the temperature is below T1 and the symmetry of C60 is Pa3̄. Moreover, as

temperature goes below T1, there exists two different phase in the idealized ordered

structure with respect to the relative orientation of adjacent C60 molecules [12].

• p-phase: the electron rich double bonds faces the electron poor pentagon of

the adjacent C60 molecule

• h-phase: the electron rich double bonds faces the electron rich hexagon of the

adjacent C60 molecule

(a) p-phase (b) h-phase

Figure 1.4: A illustration of the p-phase and h-phase relative neighbouring C60

molecular orientation: grey part from one cage blue part from its nearest neighbour

As the temperature continues to decrease, another ”phase transition” will occur at

temperature T2. This ”phase transition” involves the transition between p-phase

orientation and h-phase orientation [12, 13]. The value of T2 is not determined since

it differs from different properties being measured. A number of experiments such

as: the velocity of sound [12, 32, 22], specific heat measurement [12, 18, 2, 47, 4],

dielectric relaxation studies [12, 5] and neutron scattering measurement [12, 10],

showed that this ”phase transition” occurs at a temperature range of 90K-160K.
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As temperature gets lower, most of the molecules tend to have a p-phase with the

adjacent molecules since p-phase configuration has lower energy than that of h-phase

configuration. Moreover, when T2 = 90K, 87% of the intermolecular alignment

are reported in lower energy p-phase and 17% of the intermolecular alignments

are reported in slightly higher energy level h-phase [12]. This percentage will be

maintained down to about 50K.

1.2 Background of Confined Quantum Molecule

1.2.1 A Brief Summary on General Confined Molecule

In this subsection, we present a brief summary on general endohedral compounds

including several current achieved cases, the method to synthesize those compounds,

and application of the endohedral compounds. Endohedral compounds are when a

guest atom or molecule is trapped in the interior of a host molecule. The first

endohedral compounds obtained by trapping single lanthanum atom inside carbon

cage which was denoted as La@C60[7, 16]. This notation can be explained as the

following: the atom or molecule on the left of @ will be assumed to be the guest

molecule and all atoms listed on the right will be assumed to be part of the cage

[7]. The host molecule usually are fullerenes, such as C60, C70 and C80 and in this

case the endohedral compounds is also called endofullerene. The endofullerene was

synthesized by a procedure named ”molecular surgery” [36, 30]. ”Molecular surgery”

involves using a series of chemical reactions to open a hole on the cage, trapping the

guest molecule inside and preforming another series chemical reactions to close the

hole. The endofullerene H2@C60 in Figure.1.5a where a small H2 molecule that is

encapsulated into a fullerene cage C60 was the first to be synthesized. [30] Similar

molecules such as: H2O@C60 [35] in Figure.1.5b and HF@C60 in Figure.1.5c have

also been synthesized since[31]. One important reason that motivated people to

synthesize H2@C60 endofullerene is the need to storage clear H2 as it is an ideal fuel

and in principle reduces or even eliminates CO2 emissions[48, 42]. Moreover, in order

7



(a) H2@C60 (b) H2O@C60
(c) HF@C60

Figure 1.5: The demonstration of three endofullerene [35, 30, 31]

to reveal the fundamental properties of water molecules that exist in non-hydrogen-

bonding environments, the endofullerene H2O@C60 is also necessary[28]. All these

three endofullerene displays remarkable quantum effects where the translational and

rotational motion becomes coupled due to the confinement. In our project, we

focused on H2@C60

1.2.2 Crystalline Structure of H2@C60

The crystalline structure of H2@C60, including the crystal structure at room tem-

perature, the structural phase transition of temperature dependence, and the neigh-

bouring orientation feature are all same with that of C60. In this subsection,we will

emphasis the structure feature when the lattice structure is in the symmetry group

Pa3̄ in which the point group of a single C60 molecule is C3i. The C3i operator

involves the following 3-fold rotation and inversion shown in Table 1.1. For a single

C60 molecule that has C3i symmetry, only 10 independent carbon atoms’ positions

are needed in order to obtain any carbon atoms position in one C60 molecule. Start-

ing with these 10 independent carbon atoms’ positions, one can apply 3-fold rotation

to get 30 rotational symmetry related carbons’ position which are presented in left

column of Table 1.1. Then by using inversion symmetry, one can obtain the 60

carbon atoms’ position for one C60 molecule. The symmetry group Pa3̄ involves the

8



3-fold Rotation Inversion

(x,y,z) (-x,-y,-z)

(z,x,y) (-z,-x,-y)

(y,z,x) (-y,-z,-x)

Table 1.1: The table of general position of C3i point group

following transition in the space for all the C3i general positions. Let us use (x,y,z)

position as example as showing in Table 1.2. Similar transitions on (z,x,y), (y,z,x)

-x+1/2,-y,z+1/2

-x,y+1/2,-z+1/2

x+1/2,-y+1/2,-z

Table 1.2: The table of general position of for (x,y,z) in symmetry group Pa3̄

and their inversions also needs to form the full group of positions of Pa3̄ symmetry.

In summary, the crystalline structure of H2@C60 is the same as that of C60. In the

temperature regime that relates to our projects, H2@C60 is in symmetry group Pa3̄

in which the single C60 has C3i symmetry.

1.2.3 Quantum Dynamics of H2@C60

The remarkable quantum effects of coupled transitional and rotational degrees of

freedom will play an important role once the H2 is trapped into the C60. The quan-

tum dynamics of H2 confined in C60 is even more attractive since H2 molecules has

two spin isomers, which are para-H2 and ortho-H2[8]. For para-H2, it gives the anti-

symmetric total spin(I = 0) isomer and has antiparallel spins , while for ortho-H2, it

gives the symmetric total spin (I = 1) isomer and has parallel spins.The Pauli exclu-

sive principle requires that the total wave function to be antisymmetric with respect
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to the exchange of nuclei due to the fact that the H nuclei spins are fermions. In

the Born-Oppenheimer approximation, If we ignore the rotation-vibration coupling,

the total wave function of the H2 can be written as:|Ψ〉 = |ψs〉 · |ψel〉 · |ψvib〉 · |ψrot〉
which is referring to the nuclei spin, electronic, vibrational and rotational wave

functions. The vibrational and electronic wave function are symmetric with respect

to permutation of the two hydrogen molecules. Consequently, For para-H2, only

even rotational quantum numbers are allowed j = 0, 2, 4, 6...,while for the ortho-H2,

only odd rotational quantum number are allowed j = 1, 3, 5, 7... in order to have

an antisymmetric wave function. In our work, we will refer j = 1 state to ortho-H2

ground state. The spin conversion between the two isomers are extremely slow with

the absence of magnetic impurities and dopants since no measurable para-H2 and

ortho-H2 conversion in pure solids has been observed in several days at cryogenic

temperature [12]. In summary, para-H2 and ortho-H2 can be treated as two different

physical spices inside the cage C60.

1.3 Motivation and Objective

Due to the fascinating quantum dynamic features of the endofullerene, H2@C60 has

aroused extensive interests both in theoretical [56, 57, 53, 58, 17, 59, 14]. Numerous

experimental studies such as: nuclear magnetic resonance [6] and inelastic neutron

scattering [25, 24, 23, 54, 40] have been reported. In this section, we will present

the motivation as well as the objective of this work. The coupled translational and

rotational motion of H2 inside C60 would be effected by the potential energy surface

that H2 molecule experiences due to the confinement. The energy spectrum of con-

fined H2 will be related to the symmetry of this potential energy surface which would

directly relate to the symmetry of C60. As we mentioned before, in gas phase, a

single C60 molecule has icosahedral (Ih) symmetry, and the rotational motion of H2

preserved the high degeneracy up to J=5 under Ih symmetry [13, 12]. This splitting

principle has been justified by the following theoretical works [56, 57, 53, 58]. In its

solid state, C60 molecules crystallize into cubic lattice with space group Pa3̄[20] and
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the symmetry of a single C60 molecule will decrease from Ih to C3i. The rotational

three-fold ortho-H2 ground state(j = 1) will split into two doubly degenerate level

and single nondegenerate level due to the nature of C3i symmetry. This splitting

principle was also observed by the most recent inelastic neutron scattering exper-

imental result in Ref.[40]. These experiments were preformed in the temperature

range where C60 has Pa3̄ symmetry. The splitting of three-fold ortho-H2 ground

state(j = 1) was studied as a function of temperature from 40K down to 60 mK.

It demonstrated that the three-fold degeneracy of ortho-H2 ground state could split

into a low energy nondegeneracy level and a high energy doubly degeneracy level

[40]. This experiment also found that the size of this splitting would depend on

orientation of the C60 molecule. More specifically, the splitting size depend on the

statistical weights of p-phase and h-phase neighbouring orientation C60 molecules

as showing in Table.1.3[40]. The ”p-phase rich” means that statistical weights of

p-phase rich h-phase rich

S 1.089cm−1 1.371cm−1

Table 1.3: The splitting size observed in the inelastic neutron scattering

experiment[40]

p-phase orientation is larger than that of the h-phase orientation and the ”h-phase

rich” means that statistical weights of h-phase orientation is larger than that of the

p-phase orientation. Moreover, we will use ”S” to represent the splitting and use

wavenumber (cm−1) as the unit of splitting in this work as showing in Table.1.3.

Here we will clarify the sign of ”S” due to the fact that we also found that the three-

fold degeneracy can be lifted in opposite order. Therefore, we will use a positive

”S” to denote that the splitting had the same order as the experimental result. The

sign of splitting ”S” have the following notation:

• S>0: the three-fold degeneracy of rotational ortho-H2 ground state (j =

1)splits into a low energy nondegeneracy level and a high energy doubly de-

generacy level
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• S<0: the three-fold degeneracy of rotational ortho-H2 ground state (j = 1)

splits into a high energy nondegenerate level and a low energy doubly degen-

erate level

These notations are illustrated in Figure.1.6

Figure 1.6: The illustration showing that the three-fold degeneracy can be lifted in

opposite order: S>0 and S<0

The fundamental origin that responsible for the listing of the three-fold degen-

eracy is still an open problem in chemical physics. There are two possibilities and

here we will use the notations used in Ref.[40]. The one possibility is that it could

be caused by the interaction between H2 and its own cage. This will be refer to

as ”intra-cage” interaction. The other one is the interaction between H2@C60 and

neighbouring H2@C60 molecules. This will be refer to as ”inter-cage” interactions.

The objective of this work is to gain insights into the role of inter-cage or intra-cage

interactions in determining the energy spectrum of H2. Furthermore, the splitting

size of the three-fold degeneracy of rotational ortho-H2 ground state (j = 1).

1.4 Outline of the Thesis

This concludes the introduction of this thesis, which was aimed to give the reader

a general understanding of small molecules confined inside C60. The remaining

part of this work consists of four chapters. Chapter 2 will introduce the model
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used to accomplish our objective. The primary focus of Chapter 2 is a physical

understanding of H2 confined into C60. It will start with a model of a free rotor, then

add translational degree of freedom and finish by adding potential energy surface

between H2 and C60. Chapter 3 will provide the numerical techniques required to

investigate our problem. It will present the method of exact diagonalization, the

matrix element and a discussion of the effect of the basis size truncation. Chapter

4 will display the results of applying the methods presented in Chapter 3 on the

Hamiltonian of H2 confined inside C60 with the potentials discussed in Chapter 2. In

order to develop a more efficient method as well as understand the physical meaning,

we will introduce an analytical perspective to solve our problem in Chapter 5 and

Chapter 6. Chapter 5 will introduce the analytical method on a toy model. After

the validation of the toy model in Chapter 5, Chapter 6 will present the analytical

method on the real model that was introduced in Chapter 2. This model leaves

future direction of our work with additional further corrections on the potential

between H2 and C60. With the understanding of the endofullerene H2@C60, the

process of understanding the physical perspective of other endofullerene such as

H2O@C60 or HF@C60 would be easier. The possible directions of future work will

be discussed in Chapter 7.
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Chapter 2

Model

In this chapter, we start with stating all assumption basing on the quantum nature

of small molecule H2 trapped inside a fullerene cage C60 and presenting the full

Hamiltonian that consists of translational part, rotational part as well as interaction

part. Then we will introduce each part of the Hamiltonian as well as the natural

basis function. A discussion on the potential energy surface will be present. Finally

, we will give a brief summary on previous studies of the potential of H2 confined

inside C60. We will present the L-J potential as well as its parameters we used to

physically describe the interaction between H2 and its cage C60.
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2.1 Hamiltonian

Considering the quantum nature of small molecule H2 trapped inside a nano cavity

C60, there are several features that needs to be emphasized in order to simplify the

Hamiltonian and solve the problem. First, C60 is treated as a rigid cage due to fact

that the H2-C60 interaction is much weaker than the lowest frequency mode of C60

molecule [56]. The couplings between them are very weak and it is measured by the

Raman and infrared spectra [11]. Second, C60 is treated as non-rotating molecules

due to the fact that the three rotational constants of C60 are equal to 2.803 ×
10−3cm−1and are negligible when compared to the H2-C60 interaction [59]. Third,

H2 is treated as a rigid rotor, which is justified by the fact that vibrational motion

of H2 is coupled very weakly to the coupled translational and rotational motion [59].

With assumptions shown above, the coupled translational and rotational motion of

H2 inside C60 can be described by a 5D coordinate system (x, y, z, θ, φ). Finally the

5D Hamiltonian of rigid H2 trapped inside a rigid and non-rotating C60 cage can be

written as follows [59]:

H = − ~2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
+BνL

2 + V (x, y, z, θ, φ). (2.1)

2.2 Rotational Motion

The rotational motion is described by θ and φ, which specify the orientation of

H2 with respect to C60 cage frame. The Hamiltonian for rotational part has the

following form:

Hrot = BνL
2. (2.2)

L2 is the angular momentum operator of diatomic H2 molecule, and is used to

describe the rotational motion of H2. Bν is the rotational constant of the H2 in

vibrational ν state and the value is given by Bν = Beq − α(ν + 1/2) where α

is a vibration-rotation interaction constant. The equilibrium rotational constant

Beq = 59.3cm−1 and the vibration-rotation constant α = 2.98cm−1 are measured
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from IR spectra of H2@C60 [38]. The rotational basis function used in this work is

spherical harmonic wavefunction since |l,m〉 are eigenfunction of L2simultaneously:

L2 |l,m〉 = l(l + 1) |l,m〉 , with |l,m〉 ≡ Ylm(θ, φ). (2.3)

Since this study is focused on the degeneracy lifting of ortho-H2 ground state (l = 1)

manifold, the spherical harmonic function Y1m under spherical coordinates(θ, φ) will

be listed.

Y1,0 =

√
3

4π
cos θ

Y1,−1 =

√
3

4π
sin θe−iφ

Y1,1 = −
√

3

4π
sin θeiφ

Finally, as mentioned in 1.2.3, H2 can exist as two nuclear spin isomers ortho-H2

and para-ceH2. Due to the fact that the conversion between the two spin isomer

is extremely slow, one can treat ortho-H2 and para-ceH2 as two distinct physical

species. It will dramatically decrease the basis size of the full Hamiltonian and save

numerous computational expenses.

2.3 Translational Motion

In addition to rotating, H2 has translational degree of freedom and can be described

by 3D coordinate system(x, y, z). In this system, x, y and z specify the centre of

mass (CM) position of H2 away from the geometry centre of C60. The Hamiltonian

for rotational part has the following form:

Htrans = − ~2

2µ

(
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)
. (2.4)

In the above Equation 2.4, − ~2
2µ

∂2

∂x2
describes the translational motion of the CM of

H2 along x direction. µ is the reduced mass of H2 inside C60, which is given by the
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mass of H2 and C60 with
mH2mC60

mH2+mC60
. Due to the large mass difference between H2 and

C60, the reduced mass of H2 is only slightly smaller than the mass of H2(2.0160amu).

The value of 2.0104amu will be used in this work to represent it. The 3D harmonic

oscillator wave-function for translational motion of CM of H2 coupled with spherical

harmonics for rotational motion are used in this work in order to preform exact

diagonalization on the Hamiltonian. The basis function can be written as follows:

Ψ(x, y, z, θ, φ) = 〈x, y, z, θ, φ| (|nx, ny, nz〉 ⊗ |l,m〉) . (2.5)

|nx, ny, nz〉 is the 3D harmonic oscillator eigenfunction and |nx〉 (similar with |ny〉
and |nz〉) can be written under the cartesian coordinate basis as follows:

|nx〉 = φnx(x) =
1√

2nn!

(mω
π~

)1/4
exp

{
−mωx

2

2~

}
Hn

(√
mω

~
x

)
. (2.6)

Hn(x) is the n-th order Hermite polynomials. The choice of using the 3D harmonic

oscillator eigenfunction basis function is motivated by the potential of the problem,

and can be approximated by a harmonic potential at the vicinity of the equilibrium

point.

2.4 The Potential Energy Surface(PES)

2.4.1 Previous Studies on the PES

In order to describe the H2 that trapped inside C60, now we need to come up

with an effective potential that characterizes the interaction between the trapped

molecule H2 and its cage C60. A number of experimental measurements have been

performed using spectroscopic techniques such as nuclear magnetic resonance spec-

troscopy (NMR), inelastic neutron scattering (INS), and infrared (IR) spectroscopy.

An excellent review on IR, INS and NMR spectroscopy of H2@C60 at cryogenic tem-

perature was presented by Mamone [39]. After obtaining energy levels of H2@C60

by using all three of the aforementioned spectroscopic techniques, there exist two

choices to formalize the PES. One was that the PES could be obtained as a sum
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of the two body interactions over all carbon and hydrogen atoms and fitted to the

experimental measured spectrum to parameterize the potential. A standard two-

site Lennard-Jones potential was first used to fit the energy level of H2 in C60 cage

[38, 37]. To get a better fitting, a three-site LJ potential, which also accounts for

the interactions between the centre of mass of H2 and all carbon atoms was pro-

posed later by fitting IR spectra [38]. This was motivated by the molecular charge

distribution which was located not only at the exact nuclear positions, but also in

the intermediate region between the hydrogen atoms. Consequently, the three-site

potential improved the accuracy of the spectrum fitting, especially for higher energy

levels. In summary, principally, a real potential energy surface that characterizes

the interaction between H2 and C60 is required. However, considering the complex-

ity of coming up with a real potential, and that since empirically parameterizing

5D Lennard-Jones(L-J) potential gives good agreements with the IR spectroscopic

measurements, [38, 37], we will use a 5D parameterized L-J potential to describe

the interaction between trapped H2 and C60.

2.4.2 Lennard-Jones potential

The 5D potential V(x, y, z, θ, φ) can be written in L-J form:

V =
2∑
j=1

60∑
i=1

V (rij) + w
60∑
i=1

V (rim) (2.7)

In Equation.2.7, rij is the distance between i-th hydrogen atom of H2 and j-th

carbon atom of C60. rim is the distance between CM of H2 and j-th carbon atom. w

is a dimensionless weight parameter that efficiently changes the L-J potential energy

surface. In Equation.2.7, the L-J potential V (r) has the following form:

V (r) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
. (2.8)

In Equation2.8, ε and σ are standard L-J potential parameters,where ε is the depth

of potential well and σ is the finite distance where inter-particle potential equals to

zero. The L-J parameters [57] used in this work are displayed in Table 2.2.

18



ε(cm−1) σ(Å) w

OPES 2.99 2.95 7.5

PES2 19.2 3.08 0.0

Table 2.1: Parameters specifying potential energy surface:ε(cm−1) and σ(Å) are L-J

potential parameters, w is a dimensionless weight as discussed in the text. [57]

When fitting with the IR spectroscopic measurements, besides the L-J param-

eters, the vibrational state of H2 also play an important role in the behaviours of

energy spectra. As suggested by [37], H2 in vibrational ground state with PES2 is

better fitting with IR spectra than it in excited vibrational state. While for H2 with

OPES, using H2 in the first vibrational excited state can explain experimental mea-

surements better than it in vibrational ground state[38]. The PES2 with H2 in first

vibrational excited state and the OPES with H2 in vibrational ground state are two

potential energy surfaces that are motivated by PES2ν0 and OPESν1 respectively.

A detail explanation of vibrational quantum number ν can be found in 2.2. To get a

ε(cm−1) σ(Å) w ν

OPESν0 2.99 2.95 7.5 0.0

OPESν1 2.99 2.95 7.5 1.0

PES2ν0 19.2 3.08 0.0 0.0

PES2ν1 19.2 3.08 0.0 1.0

Table 2.2: Parameters specifying potential energy surface:ε(cm−1) and σ(Å) are L-J

potential parameters,w is a dimensionless weight as discussed in the text,and ν is

the vibrational quantum number to specify the rotational constant Bν .[57]

direct sense of the difference between the two kinds of potential energy surface,one

can plot the potential with respect to the position of the centre of mass of the H2 as

shown in Figure.2.1. It is the plot given in [57]. The PES2 and OPES parameters

generate very different well depths, and shapes of potentials that will effect the cou-

pled translational and rotational motion of trapped H2. However, as pointed out in
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Figure 2.1: 1D potential V (x) cuts along x of H2 inside C60 of PES2 (Left) and

OPES (Right): solid line and dash line stands for H2 perpendicularly and parallel

move along C2 axis of C60 [57]

[55, 56, 57], the quantum translational-rotational dynamics of H2/HD/D2 in C60 on

both potential energy surfaces all display the same patterns of degeneracies, which

can be qualitatively understood in terms the model of the rigid rotor that is trapped

inside a high symmetry cage with a large cavity. It is also shown that these features

are robust, generic and independent of the details of the interaction potentials.
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Chapter 3

Method

In this chapter, we introduce the methodology used to investigate the quantum

rotor H2 trapped inside C60 is exact diagonalization. The reason is that the time-

independent Schrödinger equation is an eigenvalue problem. Even though the real

physical problem is in the infinite dimensional space, the Schrödinger equation can

be formulated as an eigenvalue matrix with the approximation of truncating Hilbert

space to finite dimension. We will present the matrix element basing on the Hamil-

tonian and the basis functions that we defined in Chapter 2. Finally, a discussion

on the basis size convergence will be provide, highlighting the convergence factor we

used to proceed our project.
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3.1 Matrix Elements

Having defined the Hamiltonian and the basis functions in Chapter 2, it is now

possible to move with evaluating the matrix elements of the Hamiltonian under the

basis functions. As mentioned before, the potential used in this work has harmonic

potential behaviour in the vicinity of the equilibrium point. This point will be the

geometry centre of the C60 molecule. From these set of states, H2 molecule can

be treated as a quantum harmonic oscillator that oscillating around the equilib-

rium point in the harmonic like potential well. This suggests one can rewrite the

Hamiltonian in terms of 3D quantum harmonic oscillator Hamiltonian by adding

the potential term 1
2
mω2r2 and subtract this term in the 5D interaction potential

V (x, y, z, θ, φ) latter. The total hamiltonian will be unchanged and has the following

form:

H = HQHO +BνL
2 + V ′(x, y, z, θ, φ), (3.1)

where HQHO and V ′(x, y, z, θ, φ) have the following form:

HQHO = − ~2

2µ
∇2 +

1

2
mω2r2 and V′ = V − 1

2
mω2r2. (3.2)

Here, a parameter ω is used and represents the angular frequency of the H2 molecule.

The value of ω can be determined by the Taylor series expansion of potential V in

terms of r around equilibrium position (r=0), and more specifically by the second

derivative of the potential. The value of the parameter ω will not effect the energy

spectrum when using a converged basis size since the same quantities are added and

subtracted. The matrix elements of HQHO hamiltonian are easy to evaluate since it

is the diagonal in the 3D quantum harmonic oscillator basis set.

〈nx, ny, ny|HQHO

∣∣n′x, n′y, n′z〉 = ~ω
(

3

2
+ nx + ny + nz

)
δnx,n′

x
δny ,n′

y
δnz ,n′

z
. (3.3)

Similarly, the rotational part BνL
2 is diagonal in the spherical harmonic basis:

〈l′m′|BL2 |lm〉 = l(l + 1)δl,l′δm,m′ . (3.4)
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We can now proceed to evaluate the matrix elements of the interaction potential,

which can be done using the translational and rotational basis separately. The

rotational part is as follows:

〈L′M ′|V ′ |LM〉 =

∫ 1

−1

d cos(θ)

∫ 2π

0

dφ 〈L′M ′|V ′ |θφ〉 〈θφ|LM〉

=
∑
α

∑
β

wαwβ Y ∗L′M ′(θα, φβ)V ′(xyz, θα, φβ)YLM(θα, φβ). (3.5)

In Equation.3.5, wα is Gauss-Legendre quadrature weights, which are used to eval-

uate the integral over the polar angle part and has the following general form:∫ 1

−1

f(x)dx =
∑
i

wif(xi).

The ωβ are equal spaced weights from 0 to 2π which is used to evaluate the integral

over the azimuthal angle. The translational part needs to be calculated under the

3D quantum harmonic and it can be written as follows:〈
n′x, n

′
y, n

′
z

∣∣V ′ |nx, ny, nz〉 =

∫
dx

∫
dy

∫
dz
〈
n′x, n

′
y, n

′
z

∣∣V ′ |xyz〉 〈xyz|nx, ny, nz〉
=
∑
i,j,k

wiwjwk φ
∗
n′
x
(xi)φ

∗
n′
y
(yj)φ

∗
n′
z
(zk) V

′(xi, yj, zk) φnx(xi)φny(yj)φnz(zk).

(3.6)

Again, in the above equation, wi,wj and wk are Gauss-Laguerre quadrature weights.

By combining all of the above together, one obtains all matrix elements of the

Hamiltonian shown in Equation.2.1 under the basis function in Equation.2.5. After

completing this, one can perform exact diagonalization on the Hamiltonian to get

the full energy spectrum.

3.2 Basis Size Truncation

In this work, there are three convergence related factors that need to be stressed.

First is the choice of the quantum oscillator frequency ω, which can be calculated
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through the second derivative of potential. The frequency used in exact diagonal-

ization calculation is 9.673× 10−4 in atomic units. The second factor is the number

of grid points used to get a converged value of the 5D integral. The number of

grid points for the translational motion xyz is 30 which means in Equation.3.6

i, j, k = 1...30. Similarly, for rotational motion θ and φ is 30 and 20 which means

in Equation.3.5 α = 1...30 and β = 1...20, respectively. The third factor is that

based on all of the above convergency studies, a rigorous basis size convergence

study must be performed. The basis for translational wavefunction is truncated at

nx + ny + nz ≤ 11, and for rotational motion where only the ortho-H2 wavefunction

(odd J) are used is truncated at J ≤ 5.
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Chapter 4

Exact Diagonalization Results

In this chapter, we will present the exact diagonalizations results for H2@C60.

Firstly, we will introduce and clarify all cases we considered to investigate the ori-

gin of the degeneracy lifting of ortho-H2 ground state. Basing on the comparison

between different case, we will draw an important conclusion, which is ”intra-cage”

interaction is the main reason of this degeneracy lifting. Then we will focus on one

H2@C60 molecule to do the sensitivity analysis of splitting on cage geometry. Finally,

we will explore the entanglement between the translational and rotational degrees

of freedom using the measure known as the bipartite Von Neumann entanglement

entropy.

25



4.1 The ”intra-cage” Interaction is the Main Rea-

son of Splitting

The cage geometry used in this work are obtained from combining NMR [60] and

X-ray[46] in [20] and measured at 11 K where all C60 molecules are orientationally

ordered. As is mentioned in Chapter 1, the symmetry group of solid C60 is Pa3̄

such that a single C60 molecule has C3i symmetry. The all carbons’ position of a

single C60 molecule can be determined by 10 independent carbons’ coordinates since

the rest of the coordinates are all C3i symmetry related. The coordinates that are

reported in [20] is as follows:

i Xi Yi Zi

1 1.595 -0.540 3.123

2 0.279 -0.917 3.417

3 2.866 1.910 0.852

4 2.912 0.899 1.819

5 3.463 -0.769 0.084

6 3.215 -0.464 1.428

7 -2.831 0.277 2.121

8 -1.973 -0.510 2.907

9 -2.234 -2.402 1.353

10 -1.669 -1.864 2.516

Table 4.1: The C60 geometry in orientationally ordered phase given in [20].

In order to investigate the origin of the degeneracy lifting of ortho-H2 ground

state, the following situations are considered and are illustrated in Figure 4.1. The

symbols used in Figure 4.1 are explained as follows: A circle stands for a C60 cage

with Ih symmetry, a square stands for a C60 in the solid with C3i symmetry and the

two black dots connected with a solid line stands for a H2 molecule. In a FCC lattice,

one C60 molecule has 12 nearest neighbour cages which are illustrated by 4 squares or
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4 circles for simplicity in Figure 4.1. Here, the contribution of further neighbouring

C60 molecules is in the order of 0.01 compared to the nearest neighbour contribution.

It is negligible due to the fact that L-J potential has r−6 decay. Moreover, the L-J

interaction between H2 and H2 is also insignificant comparing it between H2 and

C60, which justifies that no H2 molecules was modelled inside the neighbouring C60

cages.

H2@Ih H2@C3i H2@Pa3̄ H2@13Ih H2@C3i12Ih

Figure 4.1: Diagrammatic representation of a H2 sitting in different cage environ-

ments.

• H2@13Ih: A H2 inside a C60 molecule with Ih symmetry;

• H2@C3i: A H2 inside a C60 molecule with C3i symmetry;

• H2@Pa3̄: A H2 in a C60 with 12 nearest neighbour C60 cages (Pa3̄) in the solid

state;

• H2@13Ih: A H2 inside a central Ih C60 with12 neighbouring Ih C60;

• H2@C3i12Ih: A H2 inside a C60 with C3i symmetry, with 12 neighbouring Ih

C60 cages.

In order to investigate the role of neighbour cages, the exact diagonalizations were

preformed for the above cases with all potential energy surfaces that presented in Ta-

ble 2.2. The splitting (cm−1) of ortho-H2 ground state (J=1) for PES2 with H2 in its

translational ground state ν = 0 were tabulated in Table 4.2. The positive splitting

denotes that the three-fold J=1 state is split into a higher doubly degenerate level

and a lower non-degenerate level and have the same ordering as the experimental

measurements in [40]. Conversely, a negative splitting denotes that the three-fold
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J=1 state is split into a higher non-degenerate level and a lower doubly degenerate

level as we explained in 1.3. Similarly with the PES2, the splitting (cm−1) of ortho-

H2@Pa3̄ H2@13Ih H2@C3i12Ih H2@C3i H2@Ih

p-phase -0.1622 -0.0173 -0.1677
-0.1495 0.0000

h-phase -0.1336 0.0157 -0.1345

Table 4.2: The splitting of ortho-H2(J=1) ground state for PES2ν0

H2 ground state (J=1) for OPES with H2 in first excited state ν = 1 and in ground

state ν = 0 were tabulated in TABLE4.3 and TABEL4.4 respectively.

H2@Pa3̄ H2@13Ih H2@C3i12Ih H2@C3i H2@Ih

p-phase -0.0175 -0.0020 -0.0181
-0.0160 0.0000

h-phase -0.0141 0.0019 -0.0142

Table 4.3: The splitting of ortho-H2(J=1) ground state for OPESν1

H2@Pa3̄ H2@13Ih H2@C3i12Ih H2@C3i H2@Ih

p-phase -0.0164 -0.0019 -0.0133
-0.0150 0.0000

h-phase -0.0132 0.0018 -0.0133

Table 4.4: The splitting of ortho-H2(J=1) ground state for OPESν0

As we mentioned in 1.1.3, the principle that the degeneracy of otrho-H2 ground

state(J=1) is not lifted if the Ih symmetry of the C60 cage is maintained is con-

firmed by the fact that H2@Ih gives no splitting at J=1 level for all potential energy

surfaces considered. The splitting calculated on H2 inside a distorted cage (H2@C3i)

confirms that the degeneracy of otrho-H2 ground state(J=1) is lifted if Ih symmetry

is reduced to C3i symmetry. The comparison between H2 sitting in a single distorted

C60 without (H2@C3i) and with(H2@Pa3̄) neighbouring cages in solid state shows

that the splitting of ortho-H2 ground state(J=1) mainly caused by the C60 cage
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that trapped it in solid state. The fact that H2 inside a distorted C60 with other

distorted C60 as nearest neighbouring cages(H2@Pa3̄) or with 12 Ih C60 as nearest

neighbouring (H2@C3i12Ih) gives almost the same splitting strongly suggests that

the neighbouring cages’ geometry has no crucial effects on the ortho-H2(J=1) split-

ting. The p-phase and h-phase nearest neighbouring cages orientation give different

values for splitting in the solid state (H2@Pa3̄). Whether the single cage splitting

increases or decreases depends on whether it follows the same splitting ordering.

For the p-phase neighbouring cages orientation, the splitting given by 12 neighbour-

ing cages (H2@13Ih) is negative which has the same order as with H2 sitting in

the centred single distorted C60 (H2@C3i) such that the size of the splitting will be

increased by including the neighbouring cage (H2@C3i12Ih). For the h-phase, the

splitting given by 12 neighbouring cages has opposite order with H2 sitting in the

centred single distorted C60 (H2@C3i) such that the magnitude of the splitting is

decreased by including the neighbouring cage. The splitting is slightly different for

H2 in its vibrational ground state compared to when it is in its first excited state. In

the excited state (ν = 1), it has a pairing of larger bond length of H2 molecule and

smaller rotational constant. The size of the splitting is determined by the isotropic

level of the potential. By adding the third term interaction between the centre of

mass of H2 and C60, the potential (OPES) become more isotropic. As a result, the

splitting that is given by OPES is much smaller that those given by PES2. How-

ever, the splitting is much smaller than the experimental measurements in [40] even

if when consider the PES2, which suggests that the sensitivity analysis of splitting

size on single cage would be the next step.

4.2 Sensitivity Analysis of Splitting on C60 geom-

etry

The carbon position used in this work is from [20] and is summarized in Table

4.2. These coordinates, which are referred to as {~Rexp
i }(i = 1...10) carries with

experimental uncertainties which are at least in the 10−3Åorder of magnitude. To
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explore the possible role of the experimental uncertainties, exact diagonalizations

on 40 randomly distorted cages that, nevertheless, persevere of C3i symmetry were

performed. These random distorted cages are formulated by adding random dis-

placements taken from a normal distribution with a standard deviation of 0.001Å

to the 10 independent coordinates {~Rexp
i } reported in [20] to get 10 independent

new coordinates {~Ri}. After this,C3i operators are applied onto these new coordi-

nates to obtain a new slightly distorted cage geometry. Figure 4.2 shows how the

splitting of ortho-H2 ground state(J=1) varies from cage to cage in over 40 ran-

dom distorted cages with same C3i symmetry as described above for PES2 (Left)

and OPES (Right) with H2 in vibrational ground state ν = 0 (red circle) or first

excited state ν = 1 (blue square). The splitting is slightly different for H2 in vibra-
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Figure 4.2: The sorted splitting (S) (cm−1) varies from cage to cage in over 40

random distorted cages with C3i symmetry on PES2 (Left) and OPES (Right): (a)

red circle and blue square are splitting with H2 in its vibrational ground state and

first excited state. (b) The difference of splitting with H2 in its vibrational ground

state and first excited state.

tional ground state from when it was in its first excited state. This corresponds to

different bond length of H2 molecule and rotational constant, as discussed in 2.2.

Higher vibrational state corresponds to smaller rotational constant,larger H2 bond

length,and larger splitting. With 0.001Å standard deviation,some geometries give
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positive splitting, while some give a negative splitting. The reason that the number

of cages that gives negative splitting is larger than those giving positive splitting

is that start cage in [20] gives negative splitting order. This splitting extends, and

is several times larger than those given by the experimental cage geometry {~Rexp
i }.

This indicates that the splitting is extremely sensitive to the cage geometry. Given

the sensitivity of splitting on the geometry,there are two perspective regarding the

experimental measurements of splitting in [40]. One is that p-phase and h-phase

nearest neighbouring orientation gives different splitting maybe due to fact that p-

phase and h-phase neighbouring orientation may have different effect on the centred

C60 cage geometry. The other one is that if it is possible to access the cage geometry

that is used to measure splitting, one may compute comparable splitting with the

experimental measurement given that for some random cages the splitting is close

to the experimental measurements. Furthermore,we need to consider the quantum

zero point translational motion of carbon atoms effect on the structure of C60 which

has the magnitude of 0.044Å in [29]. This will be discussed in next chapter after

an analytical approach has been developed.

4.3 Translational and Rotational Coupling

In order to explore the effects of translational and rotational coupling on the split-

ting of ortho-H2 ground state (J=1), calculations using different truncated basis were

preformed. The splitting calculated by exact diagonalization using a converged basis

is referred to as Sfull. The splitting calculated by exact diagonalization in converged

rotational basis (J ≤ 5) coupled with translational ground state (nx + ny + nz = 0)

is denoted as SED0. The splitting calculated by exact diagonalization in ortho-H2

rotational ground state coupled with translational ground state is denoted as SPT.

The comparison of these three calculations are shown in Figure 4.3. The effect of

higher rotational level (J > 1) coupling on J=1 splitting are negligible. The coupling

between translational ground state and ortho-H2 rotational ground state gives com-

parable splitting with that of those given by full calculations. To quantify the above
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Figure 4.3: The comparison of splitting with different truncated basis on PES2ν0

(Left) and OPESν1 (Right): difference between Sfull and SED0 and difference between

SPT and SED0.

coupling, the entanglement between the translational and rotational degrees of free-

dom has been evaluated. Our measure of entanglement is known as the bipartite

Von Neumann entanglement entropy:

Sr
|Φ〉 = −Tr [ρr log ρr] with ρr = Trt |Φ〉 〈Φ| (4.1)

In Equation 4.1, |Φ〉 is an eigenfunction of the Hamiltonian in Equation 2.1 and ρr is

the reduced density matrix of rotational part given by tracing out the translational

part from a pure state density matrix. The results of Von Neumann entanglement

entropy are showed in Table 4.5 for OPESν1 and in Table 4.6 for PES2ν0: the

maximum Von Neumann entanglement entropy of the following calculation is Smax

= log(eigenfunction size) = 7.6962. The cage geometry used in the calculation is

{~Rexp
i } in [20] which gives negative splitting order. The lower doubly degenerate

level have same entanglement entropy which is larger than it is for the higher non-

degenerate level, as was expected. The PES2 have relative larger Von Neumann

entanglement entropy than OPES, which is not predicted by the translational and

rotational coupling study showing in Figure 4.3. All entanglement entropy are small

comparing to the maximum. The linear combination of the basis function which
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Sr
|Φ〉 Linear Combination

|Φ = 1〉 0.0111 0.344|000; 11̄〉+0.851|000; 11〉+0.206|002; 11〉+0.200|020; 11〉+0.204|200; 11〉
|Φ = 2〉 0.0111 0.344|000; 11〉+0.851|000; 11̄〉+0.206|002; 11̄〉+0.200|200; 11̄〉+0.204|020; 11̄〉
|Φ = 3〉 0.0026 0.917|000; 10〉+0.212|002; 10〉+0.223|020; 10〉+0.223|200; 10〉

Table 4.5: Von Neumann entanglement entropy of ortho-H2 state calculated using

OPESν1: |Φ = 1〉 is the first eigenfunction of ortho-H2 and the basis function is

expressed in the form |nxnynz; lm〉

Sr
|Φ〉 Linear Combination

|Φ = 1〉 0.0247 0.993|000; 11〉+0.093|000; 11̄〉+0.039|002; 11〉+0.021|020; 11〉+0.024|200; 11〉
|Φ = 2〉 0.0247 0.993|000; 11̄〉+0.093|000; 11〉+0.039|002; 11̄〉+0.021|200; 11̄〉+0.024|020; 11̄〉
|Φ = 3〉 0.0171 0.997|000; 10〉+0.039|020; 10〉+0.039|200; 10〉

Table 4.6: Von Neumann entanglement entropy of ortho-H2 state calculated using

PES2ν0: |Φ = 1〉 is the first eigenfunction of ortho-H2

contributes most has been tabulated. It is showing that the basis function |000; 11〉
and |000; 11̄〉 are the main contributors in the lower doubly degenerate eigenstate and

|000; 10〉 is the main contributor to the non degenerate eigenstate. The probability

amplitude of the basis |000; 10〉, |000; 11̄〉 and |000; 11〉 in PES2 is larger than them

in OPES. this may explain why the splitting calculated by exact diagonalization

in converged rotational basis(J ≤ 5) coupled with translational ground state SED0

recover more percentage of the splitting in PES2 than in OPES as shown by Figure

4.3.

33



Chapter 5

Analytical Approach

In this chapter, we will present how to solve our problem analytically by performing

multipole expansion on the L-J potential. First, a very brief summary of multipole

expansion on electric potential will be present which aims to give the reader a refresh

of this general case. Then, we start with performing multipole expansion on L-J

potential for pinned H2 which has no translational degree of freedom comparing

with that H2 is trapped inside C60. After validating the multipole expansion on L-J

potential for pinned H2, we will provide the multipole expansion on L-J potential

for our real case which is H2 trapped inside C60 and will be referred to unpinned

case in this chapter. The formalism and validation of multipole expansion on L-J

potential for unpinned H2 will be provide, as well as the discussion of advances of

this analytical approach.
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5.1 A Brief Summary of Multipole Expansion for

Electric Potential

As shown in Equation 2.8, the L-J potential has r−6 behaviours, which is similar

to the Coulomb potential caused by a localized charge distribution. The Coulomb

potential outside the charge distribution can be written as an expansion of spherical

harmonics with properly assigned multipole moments [27]. It will be worthwhile

to briefly review the formalism of the multipole expansion for Coulomb potential.

Imagine that a point charge Q sitting in position ~R′(R′,Θ′,Φ′), the Coulomb poten-

tial at position ~R(R,Θ,Φ) is given by:

V =
Q

| ~R′ − ~R|
. (5.1)

One can easily generalize this expression by simply replacing the point charge into a

localized charge distribution. Assuming the localized charge distribution is described

by ρ( ~R′), the Coulomb potential can be written as follows:

V (~R) =

∫
ρ( ~R′)

| ~R′ − ~R|
d ~R′. (5.2)

If the condition |~R| � | ~R′| is satisfied, one can expand 1

| ~R′−~R| into a summation of

Legendre polynomials:

1

| ~R′ − ~R|
=

1

R

∞∑
l=0

(
R′

R

)l
Pl(cos γ), (5.3)

where Pl(cos γ) is the Legendre polynomials of order l and γ is the angle between
~R′ and ~R. The Legendre polynomials can be written as the summation of spherical

harmonic functions:

Pl(cos γ) =
4π

2l + 1

l∑
m=−l

Y ∗lm(Θ′,Φ′)Ylm(Θ,Φ). (5.4)

Using Equation 5.4, the Coulomb potential due to a localized charge distribution

can be written as :

V (~R) =
∑
lm

4π

2l + 1

[∫
ρ( ~R′)(R′)lY ∗lm(Θ′,Φ′)d ~R′

]
Ylm(Θ,Φ)

Rl+1
. (5.5)
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The coefficient in the square bracket in front of Ylm(Θ,Φ)
Rl+1 is known as multipole

moments,

qlm =

∫
ρ( ~R′)(R′)lY ∗lm(Θ′,Φ′)d ~R′ (5.6)

The coefficient qlm characterizes the properties of the charge distribution density

ρ( ~R′). l = 0 is called the monopole term, l = 1 is the dipole term which relates

the electric dipole moment and l = 2 is the quadruple term which is related to the

electric quadruple moment tensor.

5.2 Multipole Expansion on L-J of Pinned H2

5.2.1 Formalism

To start with, a hydrogen molecule assumed to be pinned at the centre of C60

molecule is considered since this is easier to deal with. Motivated by the multipole

expansion for Coulomb potential using Legendre polynomials, the r−6 and r−12

terms of the L-J potential are expanded by using Gegenbauer polynomials. These

polynomials are a generalized higher dimensional version of Legendre polynomials [3,

41]. Assuming a hydrogen atom at ~r(r, θ, φ) and i-th carbon atom at ~Ri(Ri,Θi,Φi),

the r−λ term in the L-J potential can be written as follows:

1

|~R− ~r|λ
=

1

Rλ

∞∑
n=0

(
rn

Rn

)
C

(λ2 )
n (cos γ), (5.7)

where C
(λ2 )
n (cos γ) are Gegenbauer polynomials and, again, γ is the angle between

the ~r and ~Ri. Similarly, to the Legendre polynomials, the Gegenbauer Polynomials

can also be written as a summation of spherical harmonic functions by using the

Addition Theorem.

Cλ/2
n (cos γ) =

bn/2c∑
m=0

n−2m∑
k=−(n−2m)

4π

2(n− 2m) + 1
Bλ/2
n,mY

∗
n−2m,k(Θ,Φ)Yn−2m,k(θ, φ). (5.8)
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The Y ∗n−2m,k(Θ,Φ) and Yn−2m,k(θ, φ) terms are spherical harmonics functions both

with a degree of n − 2m. Bλ
nm is a dimensionless constant and has the following

form:

Bλ/2
n,m =

(λ/2)n−m (λ/2− 1/2)m (2n− 4m+ 1)

(3/2)n−mm!
, (5.9)

where (p)m is the Pochhammer symbol and more specifically it is a rising factorial.

With all of the above, the multipole expansion on L-J potential of H2 molecule

pinned in the geometry centre of the C60 molecule can be written as:

V (θ, φ) =
∞∑
l=0

l∑
m=−l

QlmYl,m(θ, φ) (5.10)

Qlm = 2
∞∑
k=0

60∑
i=1

4π

2l + 1
4ε

(
B6
l+2k,k

σ12rl+2k

Rl+2k+12
i

−B3
l+2k,k

σ6rl+2k

Rl+2k+6
i

)
Y ∗l,m(Θi,Φi). (5.11)

The factor 2 accounts for the 2 hydrogen atoms of H2. Similarly to the multipole

moments qlm of the Coulomb potential, Qlm will characterize the geometry properties

of C60 cage. A convergence study was performed in this case and, since r � R, the

summation will converge very quickly. Since k = 0 can give 75% of the real potential

and k = 0, 1 gives approximately 98% of the real potential, we used l = 8 and k = 8

to get very accurate potentials as well as the multipole moments Qlm.

5.2.2 Validation

For a H2 molecule is pinned in the geometrical centre ofa C60, only rotational degree

of freedom are left to consider. The Hamiltonian only contains the rotational part

and the interaction potential energy V (θ, φ). The natural basis of this Hamiltonian

is the spherical harmonic function and the matrix element has the following form:

〈LM |Hpinned |L′M ′〉 . (5.12)

In order to check the validity of the multipole expansion method, we compare the

potential given by Equation 2.7 and that given by the multipole expansion expres-

sion. Here only the results for PES2 are presented since the interaction between
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the centre of mass of H2 and C60 cage only gives a constant shift on the potential

for pinned rotor. In Figure 5.1, we show how the potential for a pinned H2 inside

−1.0 −0.5 0.0 0.5 1.0

cosθ

−2.4

−2.2

−2.0

−1.8

−1.6

−1.4

−1.2

−1.0

−0.8

−0.6

V
(c
os
θ)

−1.2563×104

−1.0 −0.5 0.0 0.5 1.0

cosθ

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

V
(c
os
θ)

−1.2564×104

Figure 5.1: The comparison of potential dependence on cos θ between multipole

expansion (red line) and accumulation 2-site L-J potential (blue line): Left potential

gives negative splitting order and right one gives positive splitting order.

C60 varies along different polar angle (cos θ) with averaged azimuthal angle. Our

multipole expansion expression gives right results of the L-J potential for H2 pinned

at the centre of C60 molecule. The potential shown on the left was calculated us-

ing a cage geometry that gives negative splitting and the potential showing on the

right was calculated by using another cage geometry that gives positive splitting.

Due to the inversion symmetry of the cage, only even multipole term will survive in

the multipole expansion, moreover by choosing z-axis along C3i symmetry axis only

multipole terms that has 3-fold rotational symmetry will be nonzero. The multipole

term(Qlm) can be tabulated in Table 5.1 for one cage geometry that gives a negative

splitting and Table 5.2 for that gives positive splitting. Only results for l ≤ 6 are

showing here since higher order terms are negligible. The sign of Q20 is opposite

since it directly related to the ortho-H2 ground state splitting.

〈1M ′|V |1M〉 =

∫
Y ∗1M ′(θ, φ)Q20Y20(θ, φ)Y1,M(θ, φ) sin θdθdφ. (5.13)
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Furthermore,the comparison between analytical approach and numerical calcula-

l=2 l=4 l=6

m=-6 0.085+0.021i

m=-3 0.027-0.031i 0.137+0.017i

m=0 0.336 -0.029 -0.091

m=3 -0.027-0.031i -0.137+0.017i

m=6 0.085-0.021i

Table 5.1: The tabulation of multipole term(Qlm) with PES2 that gives negative

splitting

l=2 l=4 l=6

m=-6 0.088+0.021i

m=-3 0.086+0.013i 0.136+0.018i

m=0 -0.356 0.042 -0.091

m=3 -0.086+0.013i -0.136+0.018i

m=6 0.088-0.021i

Table 5.2: The tabulation of multipole term(Qlm) with PES2 that gives positive

splitting

tion are showing in Figure 5.2 for PES2ν0. The SEDfull is the splitting calculated

by exact diagonalization under converged basis. The SPT is the splitting calculated

by exact diagonalization in ortho-H2 ground state (J=1), which is the first order

degeneracy perturbation theory given by 〈1M ′|V |1M〉. The Smultipole is the split-

ting calculated by multipole expansion by using Equation 5.13. The agreement of

numerical calculation and analytical multipole expansion calculation adjusted by

the insert figure(c) in Figure 5.2 and the error is in the order of 10−8. Similar

with unpinned case, the higher rotational state coupling is negligible given that
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Figure 5.2: The comparison between analytical approach and numerical calculation

for pinned rotor with PES2: The SPT is the splitting calculated by exact diagonaliza-

tion in ortho-H2 ground state(J=1), which is the first order degeneracy perturbation

theory given by 〈1M ′|V |1M〉. The Smultipole is the splitting calculated by multipole

expansion by using Equation 5.13.

the difference between full calculation and perturbation is in the order of 10−4 as

show in insert figure(b) in Figure 5.2. The same calculation was also conducted for

OPES and it shows same qualitative behaviours which can be found in appendix.

For pinned rotor, It shows that the numerical exact diagonalization agrees with the

analytical approach and the splitting of ortho-H2 ground state can be computed by

using dipolar term Q20 with very small error. The splitting order will determined

by the sign of the dipolar term Q20 which reflects the geometry feature of the C60

cages. after solving the above problems for pinned case, It is time to move onto our

real topic that H2 confined inside C60, which also referred as unpinned H2.
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5.3 Multipole Expansion on L-J of Unpinned H2

5.3.1 Formalism

Having developed the formation for the multipole expansion for the case that a H2

molecule pinned at the geometry centre of C60 which only have rotational degree

of freedom. We can now consider H2 with its five dimensional degrees of freedom,

which are characterized by centre of mass motion ~δ(δ, θδ, φδ) and ~r(r, θ, φ). ~r specify

the orientation of H2 respect to center of mass where r is half of the bond length

of H2. ~δ specify the position of the center of mass of H2. We use ~Ri(Ri,Θi,Φi)

to specify the position of i-th carbon atom from the origin. We have the following

vector relation:

~d1i = ~Ri − ~δ − ~r,
~d2i = ~Ri − ~δ + ~r,

where ~d1i and ~d2i refer to the vector from hydrogen atom 1 and hydrogen atom 2 to

i-th carbon atom. The main difficulties of moving from a description of pinned H2

inside C60 to the unpinned H2 inside C60 is to deal with the translational degrees

of freedom. Suggested by the numerical work in 4.3 that the coupling between

translational ground state and ortho-H2 rotational ground state gives comparable

splitting with that of those given by full calculations, we can assume that the centre

of mass motion can be described by the ground state of isotropic harmonic oscillator

which has the following form:

ψnlm(r, θ, φ) = Rnl(r)Ylm(θ, φ) with

∫ ∞
0

|Rnl(r)|2r2dr = 1.

The centre of mass of H2 in the ground state have the following form:

ψ000(δ, θδ, φδ) = R00(δ)Y00(θδ, φδ) =

(
2ν3

π

) 1
4 √

8 exp
{
−νδ2

} 1√
4π
, (5.14)

where ν is defined as ν = µω
2~ , µ is the mass of H2 and ω is the angular frequency of

the oscillator. We can now perform a multipole expansion of an unpinned rotor with
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centre of mass in translational ground state. Firstly, the potential can be written

as following given that H2 is the translational ground state:

〈000| V̂ |000〉 =

∫ ∞
0

∫ 1

−1

∫ 2π

0

|R00(δ)|2 δ2|Y00(θδ, φδ)|2V (| ~Ri − ~r − ~δ|)dδ d cos θδ dφδ.

(5.15)

Similar with the pinned rotor case, we treated ~Ri − ~r together and expand the

potential in terms of ~δ since the condition |~δ| � | ~Ri − ~r| holds in this case. we got

the following:

V (δ, θδ, φδ) =
∑
l,m

∞∑
k=0

60∑
i=1

4π

2l + 1

(
4εσ12B6

l+2k,kδ
l+2k

| ~Ri − ~r|l+2k+12
−

4εσ6B3
l+2k,kδ

l+2k

| ~Ri − ~r|l+2k+6

)
Y ∗lm( ~̂Ri − ~r)Ylm(θδ, φδ),

(5.16)

where ~̂Ri − ~r means the angle of vector ~Ri−~r. Now, we can plug Equation 5.16 into

Equation 5.15. We use the following properties of the spherical harmonic function:

1√
4π

∫ 1

−1

∫ 2π

0

Ynm(θ, φ)d cos(θ)dφ = δn,0δm,0, (5.17)

where δn,0δm,0 are Kronecker delta function. This allow to simplify the expansion

significantly since only the l = 0 and m = 0 terms survived. The Equation 5.15 can

be rewritten as following:

〈000| V̂ |000〉 =

∫ ∞
0

|R00(δ)|2 δ2

∞∑
k=0

60∑
i=1

(
4εσ12B6

2k,kδ
2k

| ~Ri − ~r|2k+12
−

4εσ6B3
2k,kδ

2k

| ~Ri − ~r|2k+6

)
dδ.

(5.18)

Then, one find that Equation 5.18 can be further expanded again with respect to ~r

by using Equation5.7 and Equation5.8. Now we use prime for each label:

1

| ~Ri − ~r|2k+12
=

1

| ~Ri|2k+12

∑
l′,m′

∞∑
k′=0

4π

2l′ + 1
Bk+6
l′+2k′,k′

|~r|l′+2k′

| ~Ri|l′+2k′
Y ∗l′m′(Θi,Φi)Yl′m′(θ, φ)

(5.19)

Then the Equation 5.18 can be written as following:

〈000| V̂ |000〉 =
∞∑
l=0

m=l∑
m=−l

AlmYlm(θ, φ) (5.20)
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with Al′m′ has the following form and for simplicity only the repulsive part of L-J

potential are presented here and we can obtain the attractive term by replacing 12

by 6 and 6 by 3:

Al′m′ =
∞∑

k,k′=0

60∑
i=1

∫ ∞
0

|R00(δ)|2 δ2+2kdδ
4π

2l′ + 1
4ε

(
σ12B6

2k,kB
k+6
l′+2k′,k′ |~r|l

′+2k′

| ~Ri|l′+2k′+2k+12

)
Y ∗l′m′(Θi,Φi)

(5.21)

The coefficient Al′m′ is an analogue of Qlm which we defined for pinned rotor before.

Again the factor of 2 is still needed to count in two hydrogen atoms by symmetry.

Now it is time to evaluate the integral of the translational part:∫ ∞
0

|R00(δ)|2 δ2+2kdδ = 8ν
(2k + 1)!!

2k+2(2ν)k+1
, (5.22)

according to the following handy integral rules:∫ ∞
0

x2n exp
{
−ax2

}
dx =

(2n− 1)!!

2n+1an

(π
a

)1/2

.

We can now put everything together to get final result for the repulsive term of the

L-J potential of the interaction between one hydrogen atom and the i-th carbon

atom:

Alm =
∞∑

k,k′=0

8ν(2k + 1)!!

2k+2(2ν)k+1

4π|~r|l+2k′

2l + 1

4εσ12B6
2k,kB

k+6
l+2k′,k′

| ~Ri|l+2k′+2k+12
Y ∗lm(Θi,Φi) (5.23)

Now the value of ortho-H2 rotational ground state block(J=1) are easy to evaluate,

since only l′ = 2 term give nonzero value according to the properties of Clebsch-

Gordan coefficients. Moreover, if the z-axis is align along the C3i symmetry axis,

only m′ = 0 term will be nonzero by the space group argument.

〈1M ′| 〈000|V |000〉 |1M〉 =

∫
Y ∗1M ′(θ, φ)A20Y20(θ, φ)Y1,M(θ, φ) sin θdθdφ. (5.24)

Above is the multipole expansion for unpinned H2 molecule confined into C60 molecule

with the assumption that H2 is in translational ground state. We can justify our an-

alytical result by comparing with block diagonalization calculation. For OPES,the
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interaction potential between the centre of mass of H2 and C60 can be expand as

following which is directly took from Equation5.18 with ~r = 0 and integrate over

translational radius part:

〈000|V (| ~Ri − ~δ|) |000〉 =
∞∑
k=0

60∑
i=1

8ν
(2k + 1)!!

2k+2(2ν)k+1

(
4εσ12B6

2k,k

| ~Ri|2k+12
−

4εσ6B3
2k,k

| ~Ri|2k+6

)
(5.25)

This term is a constant and it will not lift the degeneracy or cause splitting under

the assumption that H2 is in translational ground state. This argument can also be

justified by comparing analytical result and block diagonalization calculation with

the OPES potential.

5.3.2 Validation

The L-J potential has been expanded as a summation of spherical harmonics func-

tions under the assumption that H2 is in its translational ground state. The potential

calculated by multipole expansion with Equation 5.20 and Equation 5.21 is com-

pared with it calculated by accumulated 2-site or 3-site L-J potential. The potential

of PES2ν0 is shown in Figure 5.3. Again, similarly with pinned case, the left

l=2 l=4 l=6

m=-6 0.118+0.029i

m=-3 0.039-0.044i 0.191+0.024i

m=0 0.495 -0.042 0.126

m=3 -0.039-0.044i -0.091+0.024i

m=6 0.118-0.029i

Table 5.3: The tabulation of multipole term(Alm) with PES2ν0 that gives negative

splitting.

potential is from a cage that gives negative splitting order and the right one is from

a cage that gives positive splitting order. The multipole terms that gives the above
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Figure 5.3: The comparison of potential dependence on cos θ between multipole

expansion (red line) and L-J potential (blue line) for unpinned H2 with PES2ν0:

Left potential gives negative splitting order and right one gives positive splitting

order.

PES2 potential are tabulated in Table 5.3 for negative splitting and Table 5.4 for

positive splitting. The validation of the multipole expansion can simply be justi-

l=2 l=4 l=6

m=-6 0.123+0.030i

m=-3 0.123+0.019i 0.189+0.024i

m=0 -0.538 0.060 -0.126

m=3 0.123-0.019i -0.189+0.024i

m=6 0.123-0.030i

Table 5.4: The tabulation of multipole term(Alm) with PES2ν1that gives positive

splitting

fied by the comparison of splitting that calculated numerically and analytically as

shown in Figure 5.4. The multipole expansion calculation that given by Equation

5.24 agrees with the block diagonal. The error is of the order of 10−9 as showing in
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the insert figure(b) in Figure 5.4.
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Figure 5.4: The comparison of block diagonalization calculation and multipole ex-

pansion calculation on PES2ν0.

For OPES, the interaction potential between the centre of mass of H2 and C60

can be expand as following which is directly took from Equation 5.18 with ~r = 0 and

integrate over translational radius part. This term is a constant and it will not lift the

degeneracy or cause splitting under the assumption that H2 is in translational ground

state. The comparison in Figure 5.5 of potential calculated by multipole expansion

with Equation 5.20 and Equation 5.21 is compared with it calculated by OPES but

without the interaction between centre of mass of H2 and C60 cage. The multiple

moments for OPESν1 that give the above potential can be found in Table 5.5 for

negative splitting order and in Table5.6 for positive splitting order. The validation

of the multipole expansion can simply be justified by the comparison of splitting

that calculated numerically and analytically as shown in Figure 5.6. The fact the

interaction between the centre of mass of H2 and the cage does not affect the ortho-

H2 ground state splitting under the assumption that H2 is in its translational ground
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Figure 5.5: The comparison of potential dependence on cos θ between multipole

expansion (red line) and L-J potential (blue line) for unpinned H2 with OPESν1:

Left potential gives negative splitting order and right one gives positive splitting

order.

l=2 l=4 l=6

m=-6 0.013+0.003i

m=-3 0.004-0.004i 0.020+0.003i

m=0 0.044 -0.004 -0.013

m=3 -0.004-0.004i -0.020+0.003i

m=6 0.013-0.003i

Table 5.5: The tabulation of multipole term (Alm) with OPESν1 that gives negative

splitting

state was therefore justified. For the unpinned rotor, the multipole expansion on

L-J potential have been developed under the assumption that H2 in its translational

ground state. The analytical approach agrees with numerical results very well and

the multipole moments can predict the splitting order. It also provides us a more
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l=2 l=4 l=6

m=-6 0.013+0.003i

m=-3 0.012+0.002i 0.020+0.003i

m=0 -0.046 0.006 -0.013

m=3 -0.012+0.002i -0.020+0.003i

m=6 0.013-0.003i

Table 5.6: The tabulation of multipole term (Alm) with OPESν1 that gives negative

splitting.
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Figure 5.6: The comparison of block diagonalization calculation and multipole ex-

pansion calculation on OPESν1.

efficient way to calculate the splitting compared to the exact diagonalization method.
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Chapter 6

Conclusion

6.1 Conclusion of Present Work

In this work we have discussed the subject of confined quantum molecular degrees

of freedom when a small molecule H2 is confined inside C60 fullerene molecule. We

used the simplest possible Hamiltonian composed of translational term, rotational

term and interaction term to encapsulate the quantum dynamics of the confined H2

molecule. The interaction term can be effectively handled with L-J potential which is

a simple model that approximates the interaction between H2 and C60. The method

we used to deal with this problem is exact diagonalization. A variety of L-J potential

parameters according to experimental measurements were used to obtain the energy

levels of the trapped H2. The reason for the splitting of ortho-H2 ground state

(J=1) has been identified to be because of the reduction from Ih symmetry to C3i

symmetry, which is reflected by the interaction between H2 and its C60 cage instead

of that between H2@C60 with its neighbouring molecules. The fact that ortho-H2

ground sate(J=1) does not split if the Ih symmetry is maintained has been justified.

The reason for the splitting of ortho-H2 ground state(J=1) has been identified to be

because of the reduction from Ih symmetry to C3i symmetry. It is mainly caused by

the interaction between H2 and its C60 cage instead of that between H2@C60 with its

neighbouring molecules. We also found that the splitting is extremely sensitive to its
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cage geometry while sitting in a relatively large linear regime. This feature suggests

that the zero point motion of carbon atoms would not effect the size of the splitting.

These behaviour are independent of L-J potential parameters as we expected. We

also found an analytical approach to solve our problem which is doing multipole

expansion on L-J potential. This analytical approach was preformed basing on the

fact that the coupled motion of translational ground state and rotational ortho-ceH2

ground state(J=1) gives comparable splitting with that given by converged basis.

This analytical approach gives physical understanding of energy degeneracy from

symmetry perspective. We further verified that the analytical results agrees with

that calculated from exact diagonalization.

Finally, a discussion of future work left for studying confined molecular degree

of freedom will be present. For H2@C60, a more precise potential to better describe

the interaction between H2 and C60 would be more sufficient to study the quantum

dynamics of confined H2 molecule. A more precise potential provide us a more

accurate model to confirm the above conclusions. From the study of H2@C60, we

can extend our study into other endofullerene, such as H2O@C60 and HF@C60.

Comparing with H2@C60, the only difference is that the confined molecule H2O and

HF are dipolar molecule and will involve the long range dipole-dipole interaction.

6.2 Future Directions

6.2.1 More Precise Potential

We begun this subsection with a discussion for obtaining more precise potential to

physically describe H2 trapped inside C60. Instead of parametrizing L-J potential

with the experimentally measured energy level, there exists another potential to

characterize this interaction. It involves writing the potential into a series of spher-

ical harmonics physically based on the symmetry of the system and fitting into IR

spectra to obtain the coefficients of the spherical harmonics [17, 45]. However, to

deal with this problem, this potential will not be sufficient due to the fact that the
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splitting of ortho-H2 ground state(J=1) is small and can not be measured accu-

rately. Therefore, fitting with IR spectra to parametrize L-J potential is the only

way for now to study the degeneracy lifting of ortho-H2 ground state(J=1). An

additional direction of future work is that instead of fitting into IR spectra one can

preform Ab-initio calculation to obtain coefficients of the spherical harmonics with

high accuracy.

6.2.2 Dipolar Molecule Confined Inside C60

In this subsection, we will describe another potential future direction of this work.

The simplest possible Hamiltonian will have one more term which is the dipolar

interaction term and have the following form:

Hdipole−dipole =
µ2

4πεr3
nn

∑
i>j

n̂in̂j − 3n̂i · r̂ij r̂ij · n̂j
(rij/rnn)3

. (6.1)

In Equation 6.1, µ is the dipole moment of H2O@C60 or HF@C60 and pointing in

n̂i direction. r̂ij is the unit vector pointing from i-th dipole to j-th dipole with

distance rij and rnn is the nearest neighbour distance of H2O@C60 or HF@C60 lat-

tice. Of equal interest experimentally and theoretically, dipolar molecule confined

inside C60, such as H2O and HF, could result in a net polarization due to the very

long-range dipolar interactions. The periodic lattices of endofullerene complexes

with polar molecules trapped inside the C60 can, theoretically, exhibit ferroelectric

phase transition as predicted in [9]. While experimentalists did not observe any

ferroelectric phase transition [1, 31]. More theoretical efforts are needed in order to

predict the collective orientation of dipolar molecule and phase transition diagrams

for endofullerene complexes with polar molecules trapped inside.
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colm H Levitt, and Anthony J Horsewill. Symmetry-breaking in the h 2@ c

60 endofullerene revealed by inelastic neutron scattering at low temperature.

Physical Chemistry Chemical Physics, 18(3):1998–2005, 2016.

[41] Claus Müller. Analysis of spherical symmetries in Euclidean spaces, volume

129. Springer Science & Business Media, 2012.

56



[42] Takeo Oku. Hydrogen storage in boron nitride and carbon nanomaterials.

Energies, 8(1):319–337, 2014.

[43] EK Parks, L Zhu, J Ho, and SJ Riley. The structure of small nickel clusters. i.

ni3–ni15. The Journal of chemical physics, 100(10):7206–7222, 1994.

[44] Frank Rioux. Quantum mechanics, group theory, and c (60). Journal of chem-

ical education, 71(6):464, 1994.
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