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Abstract

The input space of conventional physical keyboards is largely limited by the
number of keys. To enable more actions than simply entering the symbol repre-
sented by a key, standard keyboards use combinations of modifier keys such as
command, alternate, or shift to re-purpose the standard text entry behaviour.

To explore alternatives to conventional keyboard shortcuts and enable more
expressive keyboard interaction, this thesis first presents Finger-Aware Short-
cuts, which encode information from finger, hand, and hand posture identifica-
tion as keyboard shortcuts. By detecting the hand and finger used to press a key,
and an open or closed hand posture, a key press can have multiple command
mappings. A formative study revealed the performance and preference patterns
when using different fingers and postures to press a key. The results were used
to develop a computer vision algorithm to identify fingers and hands on a key-
board captured by a built-in laptop camera and a reflector. This algorithm was
built into a background service to enable system-wide Finger-Aware Shortcut
keys in any application. A controlled experiment used the service to compare
the performance of Finger-Aware Shortcuts with existing methods. The results
showed that Finger-Aware Shortcuts are comparable with a common class of
shortcuts using multiple modifier keys. Several application demonstrations il-
lustrate different use cases and mappings for Finger-Aware Shortcuts.

To further explore how introducing finger awareness can help foster the
learning and use of keyboard shortcuts, an interview study was conducted with
expert computer users to identify the likely causes that hinder the adoption of
keyboard shortcuts. Based on this, the concept of Finger-Aware Shortcuts is
extended and two guided keyboard shortcut techniques are proposed: Finger-
Arc and FingerChord. The two techniques provide dynamic visual guidance on
the screen when users press and hold an alphabetical key semantically related
to a set of commands. FingerArc differentiates these commands by examining
the angle between the thumb and index finger; FingerChord differentiates these
commands by allowing users to press different key areas using a second finger.

The thesis contributes comprehensive evaluations of Finger-Aware Shortcuts
and proof-of-concept demonstrations of FingerArc and FingerChord. Together,
they contribute a novel interaction space that expands the conventional key-
board input space with more expressivity.
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Chapter 1

Introduction

1.1 Motivation

Physical keyboards were originally designed for text entry, but pressing keys
can also issue commands with keyboard shortcuts (also called “hotkeys” [30]).
Shortcut keys re-purpose standard text entry keys and may be differentiated
from dedicated function keys like [F1] or [HOME|. In graphics software like Adobe
Photoshop or Illustrator, switching between different tools can be achieved by
simply pressing a single key. For example, activates the selection tool, [P |
enables the pen tool, and [ 1 | accesses the eyedropper tool. In text-heavy appli-
cations like Google Docs or Microsoft Word, all shortcut keys need to include
one or more special modifier keys like command (], control [ctr], or alternate [~|.

In desktop computing, where the Windows-Icons-Menus-Pointing (WIMP) in-
teraction paradigm dominates, users start using software by exploring com-
mands in their drop-down menus and toolbars. Keyboard shortcuts pro-
vide users with a faster alternative to graphical input — by learning the map-
pings between commands and keys and mastering their corresponding motor
skills, experienced users can quickly express a large number of frequent com-
mands [41], 149 54, 68, [87] to improve the fluidity of interaction [27, 54, [71].
Good design of shortcut keys also helps reduce unnecessary physical move-
ment [71], take advantage of bimanual interaction [60, [68], and allow users to
concentrate on their objects of interest [5, [71]. Expert users can leverage key-
board shortcuts as a powerful tool to improve their efficiency, whereas novice



users can still count on menus and toolbars to easily learn new software func-
tionality [64], 87].

Although commonly used by experts for applications like video editing [40]
and programmers (like Donald Knuth [45]), studies show keyboard shortcuts
are underused by most computer users [54], (71, [87]. Researchers attribute this
to a gulf between graphical input and pressing keys [48, |62], poor visibility and
mnemonics [30, 22], the uncomfortable and error-prone act of pressing multiple
keys simultaneously [60], and the lack of motivation from users to spend time
learning more efficient strategies [7, 18| [12] 165, [87]. Several techniques have
been proposed to foster shortcut key usage with interventions and visualisa-
tions for training and encouragement [46 30, 56, 87], as well as augmenting
the keyboard or mouse to make shortcut keys more available [60) 73] and ex-
pressive [3].

The focus of this thesis is also on the availability and expressivity of key-
board shortcuts. We enable this by encoding information from finger, hand,
and hand posture identification as part of keyboard input to make shortcut
keys. We refer to such ability as finger awareness and techniques with such
ability as finger-aware techniques. We present and discuss three finger-aware
techniques: Finger-Aware Shortcuts, FingerArc, and FingerChord. The next
section will briefly introduce these techniques with examples.

1.2 Finger-Aware Techniques

1.2.1 Finger-Aware Shortcuts

Finger-Aware Shortcuts detect which hand and finger are used to press a key,
and whether the hand posture is open or closed, so that pressing the same
key can have multiple command mappings. This enables a larger input space
for traditional keyboards with increased expressivity by pressing keys in differ-
ent ways to access more shortcuts, and increased availability by differentiating
between normal keyboard input and shortcut input.

For example, pressing with the left index finger and open hand simply
enters the letter “G” as would be expected when touch typing (Figure [1.1a), but
when the hand is closed, pressing with the index finger could mean Goto
Line (Figure [1.1p), and when pressed with the right hand, the same could
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mean Goto Page, Goto Class, Grab, or Gap depending on which finger and what
posture is used (Figure [I.1[c).

(a) “6” (b) “GOTO LINE” () “GOTO PAGE”

Gunno Gnnoo DEHO
F) )KL ) WKL) ;
| 7 BMmE)

Figure 1.1: Finger-Aware Shortcuts trigger different commands by detecting the finger, hand,
and posture used to press the key: (a) for example, pressing with the left index finger and
open hand simply enters the letter “G”; (b) pressing | G | with the left index and closed hand could
trigger a command like “Goto Line”; and (c) pressing with different right-hand fingers and
postures could trigger other commands like “Goto Page”, “Goto Class”, etc.

Based on a formative study, we recommend fingers and hand postures to use.
A controlled experiment shows that although there is a performance cost com-
pared to simply pressing different keys individually or with a single modifier key,
Finger-Aware Shortcuts are comparable to a common and practically-necessary
class of shortcuts using multiple modifier keys with the same key.

We accomplish this by monitoring both typing hands using computer vision
and the built-in laptop camera augmented with a small reflector. Previous work
has tracked hands above a keyboard for mouse-like input or gestures [63, (96,
95, [70], 188], but to our knowledge, identifying which finger has pushed a key
for the purpose of issuing shortcut commands has not been explored. Our
detection algorithm is packaged into a background service to enable system-
wide Finger-Aware Shortcut keys in any application. Based on the guidelines
from the formative study, and using our background service, we demonstrate
multiple applications illustrating different use cases and mappings for Finger-
Aware Shortcuts.

1.2.2 FingerArc and FingerChord

FingerArc and FingerChord both activate keyboard shortcuts by detecting
whether a special hand posture is formed while pressing a key. Similar to Finger-
Aware Shortcuts, each key can be mapped to multiple commands to enable more
expressive keyboard interaction. FingerArc differentiates the activation of these
commands by examining the angle between the user’s thumb and index finger.
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FingerChord differentiates these commands by letting the user press different
key areas.

7 [~ |
h@
- ==
MM MM ()]
()& KL (F)(e] '@
el

(a) Key Press (b)  FingerArc (c) FingerChord

Figure 1.2: FingerArc and FingerChord both activate keyboard shortcuts by detecting whether
a special posture is presented while pressing a key. For example: (a) pressing [H|with a natural
hand posture simply enters the letter “H”; (b) pressing and holding the same key with the index
finger and tucking in the little, ring, and middle fingers triggers the FingerArc shortcut inter-
face; (c) pressing and holding with the middle finger and tucking in the little and ring fingers
triggers FingerChord shortcut interface. The user can then rely on the visual guidance of the
shortcut interfaces to choose from different commands semantically related to the key they have
just pressed: (b) FingerArc differentiates these commands by examining the angle between the
thumb and the index finger; (c) FingerChord differentiates the activation of these commands
by letting the user press different key areas using a second finger. For both techniques, expe-
rienced users can directly issue the same command with the same posture without waiting for
the shortcut interfaces to display.

Both techniques allow users with different levels of proficiency to interact
with them easily. Similar to standard shortcut keys, a novice user may still
rely on drop-down menus or toolbars to find out the shortcut mapping to a
command. However, an intermediate user can press and hold the action key
for a predesignated delay time to pop up the shortcut interface, then adjust the
posture or press a second key to choose from different commands with the aid
of the dynamic guidance shown in the shortcut interface. An experienced user
can directly use the same action to activate the commands without waiting for
the shortcut interface to display.

For example, pressing | H | with a natural hand posture simply enters the letter
“H” (Figure [1.2p); pressing and holding the same key with the index finger and
tucking in the little, ring, and middle fingers triggers the FingerArc shortcut in-
terface (Figure[1.2b); pressing and holding with the middle finger and tucking in
the little and ring fingers triggers FingerChord shortcut interface (Figure [I.2[).
The user can then rely on the visual guidance of the shortcut interfaces to
choose from a set of different commands semantically related to the key they
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have just pressed: FingerArc differentiates these commands by examining the
angle between the thumb and the index finger (Figure [I.2p); FingerChord dif-
ferentiates these commands by letting the user press different key areas using
a second finger (Figure [1.2lc). For both techniques, experienced users can di-
rectly issue the same command with the same posture without waiting for the
shortcut interfaces to display.

FingerArc and FingerChord enable more expressive keyboard shortcut acti-
vation by detecting more enriched hand postures. In addition, they also reduce
the gap between graphical input and keyboard shortcuts. The intermediate step
of visual guidance allows users to rehearse the expert behaviour by approximat-
ing the same movement with dynamic feedback. The alignment of the novice and
expert movements is considered to be critical in supporting users to smoothly
transition from novice to expert behaviour [50]. Some researchers refer to this
as the rehearsal hypothesis [33]. Many techniques have been proposed follow-
ing the same principle to exploit its benefits [1], 4, [34] 52| 56| 90, [101], but to
our knowledge, designing guided shortcut interfaces responding to hand pos-
ture identification to enable the rehearsal of keyboard shortcuts has never been
explored. After reporting an interview of expert computer users on keyboard
shortcut usage, we demonstrate FingerArc and FingerChord as a proof of con-
cept, enabled with a similar hardware setup to Finger-Aware Shortcuts.

1.3 Contributions

The thesis makes the following contributions:

* A novel concept of finger-aware keyboard shortcuts that encodes the in-
formation from finger, hand, and hand posture identification as part of
keyboard input.

¢ A formative study that empirically assessed the interaction space enabled
by finger, hand, and hand posture identification.

* A guideline that advises which fingers and hand postures are recom-
mended and to be avoided for key press tasks in practice.

* A minimal, system-wide working system of Finger-Aware Shortcuts, with
the aid of a green keyboard cover, a built-in camera, and a reflector.

5



* A comparison of the performance of Finger-Aware Shortcuts with three
conventional shortcut key mapping strategies.

* An interview study with expert computer users that identified the likely
causes as to why keyboard shortcuts are underused by experienced users.

¢ An extension to the basic concept of Finger-Aware Shortcuts that provides
dynamic visual guidance and allows for more expressive hand postures.

1.4 Organisation

The remainder of this thesis is organised as follows:

* Chapter 2 describes the previous work on keyboard shortcuts, methods
to augment physical keyboards, finger identification for expressive interac-
tion, and techniques that support novice to expert behaviour transition.

* Chapter 3 describes the concept, implementation, and two empirical eval-
uations of Finger-Aware Shortcuts.

* Chapter 4 describes the concept and proof-of-concept implementation of
FingerArc and FingerChord.

* Chapter 5 summarises the contributions of previous chapters and con-
cludes the thesis.



Chapter 2

Related Work

The finger-aware techniques proposed in this thesis, Finger-Aware Shortcuts,
FingerArc, and FingerChord, all relate to the research areas of understand-
ing, improving, and promoting keyboard shortcuts, augmenting conventional
keyboard input, and identifying fingers to improve the expressivity of human-
computer interaction. In addition, FingerArc and FingerChord also relate to the
research that aims at supporting the smooth transition from novice to expert
performance. In this chapter, we detail how our techniques are related to the
previous research in these domains.

2.1 Promoting Keyboard Shortcuts

In desktop computing, interaction with computers often takes the form of either
providing graphical input using a pointing device or activating shortcuts with
a keyboard. The two different interaction methods satisfy the needs of both
novice and expert users, so the literature (e.g. [14]) often refers to the former as
the novice mode and the latter as the expert mode.

Graphical user interfaces (GUIs) draw metaphors from the real world and
use elements like windows, icons, menus, and a pointer (WIMP) to minimise the
effort from users in learning computers. Novice users may rely on drop-down
menus and icon toolbars to visually inspect possible actions in an application
and attain a certain level of proficiency in the GUI through repeated practice.
The power of this interaction paradigm, as Norman [67] theorised, is that it
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allows users to distribute knowledge and cognition to the world (graphic ele-
ments) and minimise the need for memorising actions in the head (keyboard
commands). Evidence also suggests that menu commands can be more easily
relearned than keyboard shortcuts after disuse [44].

Keyboard shortcuts, on the other hand, provide a faster alternative to graph-
ical input. With the GUI, repeated access to the same command causes users to
make frequent round trips between menus, toolbars, and objects of concern [5],
but with keyboard shortcuts, they can simply press one or more keys on a key-
board. Anecdotal evidence suggests some expert users regularly use keyboard
shortcuts: Jacob et al. claimed video editors do [40], and Knuth said he uses
so many Emacs shortcuts that it is “a little bit like playing the organ” [45]. This
makes sense considering Lane et al. [54], Karat et al. [42], and others [68, [75]
have shown that triggering commands with keys can be faster than pointing at
graphical widgets using a mouse.

Yet, keyboard shortcuts do require a substantial amount of conscious train-
ing before the benefits start to show [75]. Much research [30, [37, 54, [87] has
found that keyboard shortcuts are not frequently used by users, even the experi-
enced ones. To some extent, this can be ascribed to the poor visibility [30, 87],
the cumbersome and error-prone movement of simultaneously pressing mul-
tiple keys [49] 60, 87], and the lack of motivation from users to spend time
learning more efficient strategies [7, |8, (12, |65, [87]. More importantly, the cog-
nitive process and physical movement of activating keyboard shortcuts are radi-
cally different from choosing items from a drop-down menu [37, 48|, 49|, 52, [51].
This difference means that an efficient and smooth transition to using keyboard
shortcuts with the current GUI paradigm is nearly impossible [50]. On top of
this, the often poor mnemonics of shortcut key mappings make it even harder
for users to learn [30, 37, 49, [71].

Researchers have motivated people to learn and use keyboard shortcuts us-
ing different strategies:

* Reinforcement-based strategy loads more information to users when they
preview or activate menu or toolbar commands to reinforce their percep-
tion to keyboard shortcuts. For example, Grossman et al. [30] tapped the
auditory channel to provide feedback when clicking on a menu item in or-
der to remind users of its corresponding keyboard shortcut. Giannisakis
et al. [23] blended the shortcut key characters as part of toolbar icons to
increase the visibility of their corresponding keyboard shortcuts.
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* Cost-based strategy adds a cost to activating commands in the novice mode
to encourage users to learn and rehearse keyboard shortcuts. The cost
typically takes the form of a delay in performing the action after clicking a
menu item [30] or completely disabling the menu items to force users to use
keyboard shortcuts [46, [30]. Grossman et al. [30] showed that the latter is
more effective, but Malacria et al. [56] and Gutwin et al. [33] argued that
this strategy may harm the usability of the graphics-based interaction for
novice users.

* Rehearsal-based strategy lets users voluntarily switch to using keyboard
shortcuts, but when they do, it helps users smoothly transition to experts
by making the access and physical rehearsal of keyboard shortcuts easier.
For example, Tak et al. [87] displayed a crib sheet of all possible commands
when a modifier key is being held. Similarly, Malacria et al. [56] showed
shortcut information next to icons or on an opened menu upon a hold on
a modifier key.

There are also other strategies, although less common. For example,
Malacria et al. [57] displayed an efficiency score to encourage shortcut usage;
Bailly et al. [3] physically raised actual keys on a keyboard when users press
a modifier key to increase haptic and visual feedback; and Pietrzak et al. [73]
duplicated modifier keys to the mouse to help reduce the movement of hands.

Along this line, FingerArc and FingerChord apply both the cost- and
rehearsal-based strategies: the predesignated delay while pressing an action
key adds a cost to the interface pop-up to nudge users towards actively retriev-
ing the shortcut posture; the alignment of physical actions with and without
the visual display allows users to rehearse the expert behaviour with guidance
and feedback. We explain this in more detail when reviewing theories and tech-
niques that support the smooth transition from novice to expert performance.

On the other hand, Finger-Aware Shortcuts, FingerArc, and FingerChord all
increase shortcut expressivity and availability. Expressivity [3] means a key can
be pressed in different ways to increase input capability. We achieve expressivity
by letting the user press a key with different fingers, hands, and hand postures
to access more shortcuts. Availability [58), [71] means shortcut commands are
accessed with a single key press rather than a key combination. We increase
availability by differentiating between normal keyboard input and shortcut input
by detecting how a key is pressed.



2.2 Augmenting Keyboard Interaction

Keyboard input can be expanded by pressing keys in unconventional ways, such
as Zhang and Li's GestKeyboard [103] that recognises motion gestures as mul-
tiple keys are stroked like a touchscreen, but a more common approach is aug-
menting the simple key switch with additional sensors. PreSense Keypad [74]
senses finger contact before pressing and Dietz et al. [17] developed a pressure
sensitive keyboard for continuous input while pressing a key. Touch-Display
Keyboard [9] augments each key with a touch-sensor and a display to increase
the input space when the keyboard is used as a single surface and increase
shortcut visibility by displaying commands on each key.

Another approach is to augment keyboard input by tracking hand and finger
movement above the keyboard. SpaceTop [55] placed a transparent screen above
the keyboard and a downward facing depth camera to detect finger touch and
hand gestures. FlowMouse [96] and TAFFI [95] used a downward facing camera
to track hands moving above a conventional keyboard for mouse and touch-
screen style input performed mid-air. FingerMouse [63] and AirMouse [70] did
the same, but combine mid-air hand movements with key presses (or touch pad
taps) to simulate mouse clicks. Air Typing Keyboard [99] enabled mid-air typing
with a Leap Motion sensor facing up on the desktop. Taylor et al.’s [88] keyboard
with a matrix of infrared proximity sensors embedded between the keys detects
a large set of motion gestures that can be easily interlaced with key presses.
However, all these projects essentially treat hand gestures and key presses as
two independent input techniques.

It is worth noting the body of research combining vision-based mid-air or
near-surface hand gesture input with interactive surfaces, but the use case is
very different from desktop computing and soft keyboards are not a focus for
interaction. For example, Visual Touchpad [58] demonstrated the robustness of
their vision-based system by typing on a virtual keyboard, RetroDepth [43] in-
cluded an example of a passive retro-reflective keyboard, and a keyboard “SLAP
widgets” [94] is a motivating example for the idea of tangible, translucent widgets
for multi-touch tabletops.
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2.3 Identifying Fingers for Expressivity

A touch on a surface — whether it is a multi-touch screen, a keyboard key, or
a piano key — can be augmented with additional finger information to make in-
teraction more expressive. For example, Wang and colleagues [91, [92] detected
finger orientation on a touchscreen; Harrison and Hudson [35] considered also
the shear force of fingers tangential to the touchscreen surface; Surale et al. [86]
enabled users to signal an alternative input mode by bringing the thumb and in-
dex finger together; Harrison et al. [36] differentiated a finger tap and a knuckle
knock on a mobile phone; Huang et al. [39] expanded input vocabulary with
different areas of finger pads on a smartwatch; Boring et al. [10] detected the
contact size of the thumb to enable different input modes; and McPherson et
al. [61] used the position information on a piano key to express continuous
drift from the original sound pitch. Like how a violin string can be manipulated
with a bow to produce different sounds, these sensing techniques re-purpose
the functionality of touchscreens, which were originally designed for registering
input coordinates, to enable more expressivity.

Our work is based on the idea of encoding information from finger, hand, and
hand posture recognition as part of keyboard input. Although not exactly the
same, it is largely relevant to the concept of finger identification (see Goguey et
al. [27] for a comprehensive review). Researchers have explored finger identifica-
tion on different form factors. For example, Gupta et al. [32] and Gil et al. [24]
both extended smartwatch touch input with finger identification; Gorodnichy
and Yogeswaran [28] and Oka and Hashimoto [69] both enabled identifying fin-
gers on piano keys; Colley and Hakkila [16] identified fingers to trigger different
commands on a mobile phone; Gupta et al. [31] did the same, but applied it
to enable multitasking. Goguey et al. [26] systematically evaluated the perfor-
mance and preference of using different fingers for pointing on a tablet; Masson
et al. [59] achieved finger identification on touch surfaces and physical key-
boards by attaching vibration sensors to each finger; and Goguey et al. [25, 27]
proposed FingerCuts to enable richer vocabulary with finger information from
both hands on tabletops, tablets, and mobile phones.

More relevant to our work are Sugiura and Koseki [85] and Wang and
Canny [93]. They both introduced the general idea of pressing a button with
different fingers to activate different commands. However, they were early proof-
of-concept studies using devices that can hardly be called “buttons”, much less
a full keyboard: Sugiura and Koseki used a commercial fingerprint scanner
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and Wang and Canny used a piece of glass. Wang and Canny evaluated time to
switch fingers, we evaluate the more practical aspect of performance and prefer-
ences when using different fingers for shortcuts after typing and pointing tasks.
Neither applied this to a physical keyboard, added the idea of hand postures,
or explored the performance and preference design space for shortcut-like com-
mand activation in real applications.

2.4 Supporting Novice to Expert Transition

FingerArc and FingerChord extend the basic concept of finger awareness with
more enriched hand postures, visual guidance, and feedback. Their designs
are influenced by the large body of research aiming at supporting novices to
effectively transition to experts.

Supporting users to efficiently transition from novice to expert performance
is a recurrent theme in Human-Computer Interaction (see Cockburn et al. [14]
for a review). While it is commonly agreed that user interfaces should provide
mechanisms for expert users to attain higher performance [64), [72], much evi-
dence has shown that people very rarely use these mechanisms. For example,
Bhavnani and John [7, |8] found that computer-aided design (CAD) software
users do not progress to using efficient strategies with long-term experience;
Rosson [76] reported that skills of text editor users stabilised at a non-optimal
level; and Nilsen et al. [66] found the same for spreadsheet users.

Carroll and Rosson [12] referred to this common observation that users’
knowledge and performance of software tend to converge to a non-optimal level
as the “paradox of the active user”. They suggested that there are two cognitive
biases that impede the learning of high-performance mechanisms: production
bias refers to the observation that users tend to persist with the methods they
have already learned when approaching the same tasks; assimilation bias refers
to the observation that users tend to apply the existing knowledge when faced
with new tasks.

Past research has suggested different explanations to the paradox of the ac-
tive user. Tak et al. [87] interpreted this with “satisficing”, a behaviour in eco-
nomics that people tend to accept a “good enough” level of outcome without
trying to maximise it [84]. Gray et al. [29] also referred to this phenomenon as
“local optimality”. These interpretations seem to suggest that stabilising at a
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suboptimal level of performance is inherent to our cognition. Nevertheless, Fu
and Gray [20] argued that the novice methods are preferred because they are
indeed more beneficial — they showed that novice methods are typically more
generic, applicable to a variety of different contexts, and provide fast and incre-
mental feedback; whereas expert methods are typically specialised, applicable
to only one specific type of task. This makes sense considering how GUIs can be
easily learned with the knowledge of only a few standard graphical widgets and
how a mouse works, whereas every single keyboard shortcut or stroke gesture
need to be intentionally learned [2]. As a result, the novice methods become in-
creasingly rehearsed and reinforced through practice. The excessive guidance
provided by novice user interfaces might also become relied upon by users so
as to hinder the learning of expert methods [1}, [81].

Kurtenbach and colleagues [50] realised that supporting users to transition
to expert performance is especially hard when the novice and expert methods
are drastically different behaviours, or as Scarr et al. [80] characterised, in two
different modalities. Scarr et al. suggested that in order to learn more effec-
tive strategies in a different modality, users need to first go through a perfor-
mance dip that yields lower throughput than reusing the learned novice meth-
ods. Kurtenbach and colleagues’ research on Marking Menus [48, 50, 51}, [52]
made substantial contributions to overcoming this performance dip. A Marking
Menu provides two different modes for novice and expert users. A novice user
presses and holds at an activation point for one-third seconds to reveal a hier-
archical pie menu, which visually guides them to select a menu item. An expert
user, without waiting for the menu display, directly approximates the stroke
used for selecting the same item on the pie menu to issue the same command.
Marking Menus are expected to afford smooth transition to expert behaviour
because the novice execution of the user interface is the physical rehearsal of
the expert behaviour - this is also called the “rehearsal hypothesis”.

Following the rehearsal hypothesis, a large body of research has been con-
ducted to improve user interface learning. These interfaces are also referred to
as “rehearsal interfaces” [33]. For example, ShapeWriter [47, (101}, [102] enables
users to connect a sequence of key taps into a stroke gesture on a soft keyboard
to input complete words. OctoPocus [4] provides dynamic, contextual guidance
showing matching pen-stroke gestures if users slow down their drawing move-
ment. FastTap [33] [34] let novice users hold an activation button with one finger
to display a grid of buttons and use a second finger to tap on a button to activate
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commands; expert users can directly tap on the same locations with a chord
posture.

In addition to the rehearsal hypothesis, evidence also shows the following
factors may facilitate novice to expert performance transition:

® Cost — a cost added to the novice execution, such as a delay in revealing
the visual interface, can encourage mental elaboration and active retrieval
of expert behaviour [15] [18, [30]; too much cost, may impede learning [15].

* Guidance — an appropriate amount of guidance can help users specify and
complete their actions [4, 50}, [82]; too much guidance, however, might hin-
der learning [1, [82].

* Spatial stability — a user interface being spatially stable helps users leverage
the power of spatial memory, reduce visual search time, and retrieve visited
items faster [77, [78], 79, 34, 53], 83, 90, 89, 19, [38].

Of all the rehearsal interfaces, our work is most relevant to ExposeHK [56],
which allows users to press a modifier key to display shortcut information over-
laid on their associated commands. ExposeHK can be used for both toolbars
and menus. With menus, when the modifier key is pressed, all the menu items
will be displayed in a modified visual layout so that users can browse and ac-
cess the commands using shortcut keys in one display. While flattening the
command hierarchy can maximise expert performance (e.g. [77]), in practice, it
can be hard to adapt all user interface commands into one single display. Menu
hierarchies are regularly employed to convey complex command constraints and
sometimes there might simply be too many commands in one application.

In contrast, FingerArc and FingerChord do not seek to enable shortcut access
to all commands. They are complementary to existing interfaces — no modifica-
tion to the menu layout is required. FingerArc and FingerChord shortcuts can
be displayed next to menu items just like regular shortcuts. Users then start
exploring a shortcut key when they frequently access the same menu item. A
family of related commands can be bound to the same key to increase their
discoverability.

As we discussed earlier, FingerArc and FingerChord are the combinations of
rehearsal- and cost-based strategies to promote keyboard shortcuts. Once users
decide to activate a FingerArc or FingerChord shortcut, they are presented with
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an intermediate mode that provides dynamic visual guidance in a display after
holding a key for a predesignated delay time. More experienced users can simply
use the same hand posture to activate the same command. These designs make
FingerArc and FingerChord a rehearsal interface, with a cost added to the novice
execution, guidance provided to help users to specify their actions, and spatial
stability from the nature of keyboard keys.
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Chapter 3

Finger-Aware Shortcuts

In this chapter, we propose, evaluate, and demonstrate Finger-Aware Shortcuts.
We first introduce their basic concept. Then, a formative study measures the
performance and preference for using different fingers, hands, and hand pos-
tures to press a key. Based on the result of the formative study, we present a
guideline that recommends which postures to use and which ones to avoid. We
then detail how Finger-Aware Shortcuts can be implemented by adding only a
few additional components to a laptop. Finally, we compare Finger-Aware Short-
cuts with conventional shortcut invocation methods, and demonstrate how they
can be mapped with real-world commands.

3.1 Concept

We provide details of standard shortcut keys and discuss how Finger-Aware
Shortcuts can replace or augment them.

3.1.1 Keyboard Shortcuts

Our focus is on two primary types of shortcuts: single keys (e.g. for Brush)
and keys pressed while one or more modifier keys are held down (e.g. [+ c | for
Copy). Other more complex variations exist such as keys pressed after a special
command mode is entered (e.g. [cti)+ D], then [K ]| for Tasks), but this is not our
focus.
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Single “unmodified” shortcuts are practical only when keys are not used for
text entry, so this approach is not suited to word processors or text editors.
However, they are common in graphical direct manipulation applications like
photo editors. A common mapping strategy is to choose keys that correspond to
the first letter of the command for a semantic connection. Even with a handful
of commands, the first letter key will already be taken leading to more arbitrary
mappings (e.g. [R] for Blur). The number of available shortcut commands is
also limited by the number of keyboard keys.

A more generalised method is pressing a single key while holding one or more
modifier keys. A single modifier can be used, like [3)+(P | for Print. The ideal
mapping uses the first letter of the command, but collisions are unavoidable.
Consider [3]+[ V] for Paste. The semantic link could be how “V” resembles an
insertion mark, but more likely it was chosen for non-semantic reasons. Since
(s¢]+( c]is used for Copy and Paste is often used immediately after, [V | suggests a
proximity mapping since the two shortcut keys are side-by-side. To expand the
input space and enable more meaningful mappings, different modifiers may be
used like [%]+[ F | for Find and [etr)+[ F | for Format. Or, multiple modifiers can be
used together like (% |+ ]+ F | for Find in Project, [ctr]+[32 )+ F | for Full Screen Mode,
and [cti]+[ T ]+[38 ]+[ F | for Distraction Free Mode.

3.1.2 Finger-Aware Shortcuts

The central concept is to interpret key presses differently depending on which
finger is used and whether the remaining fingers on the same hand are spread
open or bent closed. In theory, this provides 20 different ways to interpret each
key press (10 fingers x 2 hand postures). In actuality, the formative study in the
next section shows 16 are actually reasonable with 8 identified as best. This
increased expressivity can be exploited as Finger-Aware Shortcuts.

Text-entry applications can have single “unmodified” shortcut keys based
on standard touch typing finger-to-key mappings [6]. When the usual finger
presses a key while typing, the alphanumeric character is sent (e.g. pressing
with the left index finger sends “G”). But, when a key is pressed with a finger
not normally used while typing, it sends a command (e.g. pressing with
the left middle finger invokes Goto Line). This strategy can be relaxed for less-
proficient typists by differentiating by open and closed hand postures: typing
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with an open hand enters text but pressing keys with one finger and a closed
hand activates shortcut commands.

Different fingers can map related commands to the same key. For example,
pressing | ¢ |with the right index finger, open hand for Copy, pressing | ¢ |with the
same finger, closed hand for Cut, and pressing | ¢ | with the right middle finger
for Paste. This enables two first letter mappings (Cut and Copy) and provides
a proximity mapping (Paste). New kinds of semantic relations can be created
based on fingers and postures. For example, using the right thumb, closed
hand to issue global commands like New Document and the left thumb, closed
hand to issue contextual commands like New Layer.

A standard modifier key can be combined with finger-specific actions to aug-
ment current shortcuts. As an example, accessing a family of commands by
holding then pressing a key with different fingers, such as with the left
index for Find, the left middle for Find and Replace, or the left ring for Find in
Project.Specific fingers can be mapped to common modifier keys used with [ ].
For example, holding then pressing a key with the left index finger could

mean [+ T, the left middle [ctr]+[32], or the left ring [otr]+[ { +[32].

Finger-Aware Shortcuts could potentially benefit expert users using a large
number of commands. However, all of these ideas should be based on perfor-
mance and preference when using different fingers and hand postures for key
presses, which is the goal of the following study.

3.2 Experiment 1: Formative Study

The purpose of this study was to identify a set of postures that maximise perfor-
mance and minimise error and fatigue. We measured time, error, and subjec-
tive preference for different postures in different conditions. The results of this
study provided data for training and testing our posture recognition algorithm
and enabled us to empirically derive guidelines for selecting suitable postures.

3.2.1 Participants

We recruited 21 right-handed participants (9 female, mean age 25.4, sp=4.9). All
reported extensive experience with desktop or laptop computers. Self-reported
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average weekly computer use ranged from 28 to 84 hours (M=50.7, sp=12.6). A
one-minute typing speed test was performed on participants at the beginning of
the experiment. Mean typing speed was 47.9 words-per-minute (sp=12.7) with
a mean error rate of 3.11% (sp=3.51%).

Note initial analysis found Participant 17 had a very high error rate 11.4%
for the third task (explained in Task and Stimuli) compared to the mean error
rate 2.47% (sp=2.61%) across all participants. This participant was removed,
and Participant 21 was recruited to keep the design balanced.

3.2.2 Apparatus

The experiment was performed on an Apple MacBook Pro with a 15-inch dis-
play and a QWERTY keyboard. The software was written as a web application
in Google Chrome hosted from a local server. The built-in camera recorded
the keyboard area with the aid of an Osmo reflector (playosmo.com, see also
Figure [3.4p). To simplify background subtraction, a green keyboard cover and
green material covered the laptop. A 20-inch square softbox was placed over
the laptop at a suitable distance to provide consistent lighting. Hand colours
were sampled.

3.2.3 Procedure

Each trial in our experiment consisted of three tasks: a posture task, a reference
task, and a repetition of the posture task (Figure [3.1ja,b,c). Upon completion of
each task, there was a ding sound with different pitches to indicate success.

In a posture task, the participants were required to use a certain hand pos-
ture to press a certain key. A hand posture was defined in terms of three in-
dependent variables: HAND (LEFTHAND, RIGHTHAND), FORM (OPEN, CLOSED), and
FINGER (THUMB, INDEX, MIDDLE, RING, LITTLE). Each finger needed to press three

KEYAREAS (Figure [3.1d):

* HOMEAREA refers to the keys a finger normally presses when typing — the
home row key of a finger and the two keys above and under that key. For
example, the left middle finger's home row key is (D], so its HOMEAREA in-
cludes [ b ] (home row key), (above), and [ ¢ | (under).
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* LEFTAREA refers to the keys at the extreme left: [a], [A], [Z].
* RIGHTAREA refers to the keys at the extreme right: [P, [; ], [/ ].

The thumb’s HOMEAREA contains only one Key, [SPACE|. Further, because the
home Kkeys for the left little finger is (@], (A}, [Z], same as LEFTAREA, we chose (W],
(s, as its LEFTAREA instead. For the same reason, we used (0], (L], [. ] as
RIGHTAREA of the right little finger instead of [P, [ ; ], [/ ].

(d) () (f)

Figure 3.1: Experiment task: (a) prompt for finger and key with initial press; (b) typing reference
task; (c) final key press. (d) Key area, example for left middle finger: home area (coloured green
in this figure); left area (yellow); right area (red). Hand form examples: (e) left middle, hand
open; (f) left middle, hand closed.

In a reference task, participants were required to either type three charac-
ters using the keyboard (TypING) or click a button using the trackpad (POINTING).
The purpose was to simulate real-world keyboard interaction. In TyPING, partic-
ipants were prompted with three characters and they needed to type them se-
quentially (Figure [3.1b). The characters were randomly selected from the home
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row: one from left (A][s),[p],(F), one from right (J][«},[L][; ), and the other

randomly chosen from one side. This would force the participants to put both
hands onto the keyboard. In pPoOINTING, the participants were asked to use the
trackpad to click a button that appeared on the screen. The button could ap-
pear either on the left or right side of the display, always different from the last
appearance. This forced the participants to place their dominant hands onto
the trackpad.

Participants were instructed to memorise the hand posture and the key in the
first (posture) task and perform the third (posture) task quickly and accurately.
No requirement was imposed to the reference task.

Error and Time

In the experiment, a posture task was considered successful if the participants
used the correct hand, form, and finger to press the correct key. When a wrong
key was pressed, the participants were immediately informed and would not be
able to continue until the correct key was pressed. Posture errors like using a
wrong hand, form, or finger were ignored during the experiment and manually
classified after it using images captured by the camera. A reference task was
considered successful if the correct characters were typed in sequence or the
button was clicked. An error occurred when the expected character was not
typed or a click did not happen on the button. When an error occurred, a low-
frequency basso sound would be played.

Three durations were recorded for each trial, corresponding to the three
tasks.Duration 1 started when the start button was pressed in the beginning
of a block or the last task was completed. It ended when the correct key was
pressed. Duration 2 started immediately after the first task was completed and
ended when all three characters were typed or the button was clicked. Duration
3 started immediately after the second task was completed and ended when the
correct key was pressed.

We are interested in the time and error when users are cognitively prepared
for the key to push and the posture to use after a reference task, so the third task
was used for analysis. Note the first task allowed participants to rehearse the
required posture to key, the second task simulated keyboard or touchpad use,
and the third task provided the best estimation for the time and error measures
of practised performance.
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3.2.4 Design

The experiment design was within-subject, repeated measures, and full facto-
rial. All trials for each type of Form were presented together in counterbalanced
order. For each ForwM, participants performed 3 blocks of measured trials. Each
block presented all trials for each combination of HAND, FINGER, KEYAREA, and
REFTASK in random order. A short training containing 8 randomly selected trials
for each rorMm was performed prior to the formal experiment. Short rest breaks
were enforced at the end of each block.

In summary: 3 BLOCKS X 2 FORMS X 2 HANDS X D FINGERS X 2 REFTASKS X 3
KEYAREAS = 360 trials per participant.

3.2.5 Results

Repeated measures ANOVA and pairwise t-tests with Holm correction were
used for all measured!| Because the measures for preference exhibited non-
normality, they were transformed using Aligned Rank Transform [97]. Trials
were aggregated by participant and the factors being analysed. Time data were
aggregated using the median.

Learning Effect

Overall, BLock had a main effect on time (F;3s2571 = 30.91, p <.0001, *> = .619), but
not on error. Post hoc tests found block 1 significantly slower than blocks 2
and 3 (both p < .0001) and block 2 significantly slower than block 3 (p < .005),
suggesting a learning effect across all blocks. In all subsequent analysis, we
used only block 3 for the best estimation of practised performance.

Error Rate

No main effect was found for REFTASK, FORM, HAND, FINGER, OI KEYAREA ON €rTor
rate and the overall mean error rate was a very good 1.88% (sp=1.83%). The

!When the assumption of sphericity was violated, we corrected the degrees of freedom using
Greenhouse-Geisser (Greenhouse-Geisser’s € < 0.75) or Huynh-Feldt (Greenhouse-Geisser’s € >
0.75).
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total error rate breakdown was 1.08% (sp=1.24%) for pressing a wrong key and
0.79% (sp=1.06%) for using a wrong posture when the correct key was pressed.

Time

The mean time across all the participants was 1060.85ms (sp=299.52). There
was a main effect of REFTASK on time (Fj 19 = 59.769, p <.0001, * =.759). Time with
POINTING as the reference task was significantly faster than tyring by 346ms.
There was a main effect of FINGER on time (F76 = 10.853, p <.0001, * = .364) (Fig-
ure [3.2] and Figure [3.3). Post hoc tests showed THUMB was significantly faster
than INDEx and uITTLE (both p < .05) and MIDDLE and RING (both p < .001). As
would be expected, there was a main effect of KEYAREA on time (F,33 = 23.892,
p <.0001, n* =.557). Post hoc tests showed pressing keys in HOMEAREA was sig-
nificantly faster than LEFTAREA by 100ms (p < .0005) and RIGHTAREA by 153ms
(p < .0001), LEFTAREA was significantly faster than RIGHTAREA by 53ms (p < .05).
No main effect was found for hand or form on time suggesting similar time per-
formance for left and right hands and open and closed forms.

A further examination found an interaction between KEYAREA and HAND on
time (F) 39,1640 = 5.527, p < .05, 7> =.155). Post hoc tests found LEFTHAND was sig-
nificantly slower when pressing keys in RIGHTAREA compared to LEFTAREA by
145ms (p < .05). No pairwise difference was found for comparisons involving
RIGHTHAND Or HOMEAREA. Regarding different fingers, there was an interaction
between KEYAREA and FINGER on time (Fg s, = 7.132, p <.0001, n*> = 273). Post hoc
tests did not find any difference between pressing LEFTAREA and RIGHTAREA with
any finger, but there were differences involving HoMEAREA for all fingers except
INDEX. THUMB had the most pronounced difference where HOMEAREA was signifi-
cantly faster than LEFTAREA by 273ms and RIGHTAREA by 340ms (both p < .0001).
MIDDLE, RING, and LITTLE had more moderate differences with HOMEAREA signif-
icantly faster than RIGHTAREA and/or LEFTAREA by 130ms to 150ms (all p < .05).

There was an interaction between REFTASK and FINGER on time (F5.75 5273 = 5.877,
p <.005, n* = .236). Post hoc tests showed that for each finger, durations after
the poinTING reference task were significantly faster than typiNnG (p < .0005 for
THUMB; p < .0001 for others). There was no interaction between REFTASK and
HAND, HAND and FINGER, or FORM and FINGER on time. An examination of the
data also indicates a symmetric pattern for fingers across hands for these factors

(Figure and Figure [3.3).
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Figure 3.2: Time and preference by HAND and FINGER for open hand form. Green shading
indicates Tier 1 fingers (best). Note FINGER is a categorical variable, dashed lines connecting
fingers used for readability only. Error bars are 95% confidence intervals.
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Figure 3.3: Time and preference by HAND and FINGER for closed hand form. Green shading
indicates Tier 1 fingers (best), red shading indicates Tier 3 fingers (to avoid). Note FINGER is a
categorical variable, dashed lines connecting fingers used for readability only. Error bars are
95% confidence intervals.

Preference

At the end of the experiment, participants were asked to consider accuracy,
speed, and fatigue and provide a numerical preference score for each combi-
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nation of HAND, FINGER, and FORM. Preference scores used a real numbered,
continuous scale from 1 (least preferred) to 5 (most preferred). Decimal ratings
such as 3.5 were permitted.

There was a main effect of FINGER on preference (F,394547 = 21.962, p < .0001,
n? =.536). Post hoc tests found RING (2.55) was less preferred than all other fingers
(all p < .005). Differences between other fingers suggest a partial ranking with
INDEX (4.27) preferred over MipDDLE (3.49) and LitTLE (3.37) (both p < .0005), and
THUMB (3.91) preferred over LITTLE (p < .05). There was a main effect of Form on
preference (F; 19 = 33.675, p <.0001, n*> = .639). Hand form opreN (3.90) was preferred
over cLOSED (3.13). There was also a main effect of HAND on preference (F; 9 =
18.166, p <.0005, n*> = .489). RIGHTHAND (3.60) was preferred over LEFTHAND (3.44).
This may be attributed to all participants being right-handed.

There was a large interaction of FINGER and FORM on preference (F476 = 17.249,
p <.0001, n* = .476). Most interesting is that post hoc tests found rRING OPEN (3.3)
was more preferred than rRING cLosED (1.8) (p < .01). No interaction was found
between FINGER and HAND, FORM and HAND, Or FINGER, FORM, and HAND on pref-
erence.

In the interview, three participants indicated their dislike of THUMB OPEN,
explaining the hand could hit the screen when pressing the upper keys; two
participants expressed their aversion to MIDDLE cLOSED due to bad social impli-
cations.

3.2.6 Discussion

Our study results show that Finger-Aware Shortcuts, performed with any fin-
ger with either open or closed hand forms, are acceptable in terms of speed. A
consistent learning effect and low error rate suggest the technique is easy to
learn and perform. Pressing left and right areas of the keyboard have compa-
rable time for all fingers, regardless of their home areas. As expected, pressing
keys in the home area is significantly faster than left or right area, but the dif-
ference is reasonably small. The significant difference between reference tasks
suggests that Finger-Aware Shortcuts will be faster in pointing-intense applica-
tions compared to typing-intense applications. However, both times are within a
reasonable and practical range. Overall, this study shows that pressing a single
key in 16 different ways is feasible, supporting our goal of increasing keyboard
expressivity and availability.
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Guideline for Selecting Hand Postures

We use the time and preference results to provide a three-tier guideline for se-
lecting postures. Tier 1 are most recommended postures and Tier 3 are least
recommended (see green and red shading in Figure and Figure [3.3). Since
time and preference are symmetric between hands, we simplify our discussion
to 5 fingers x 2 forms regardless of hand.

The index finger has consistently high performance and preference for open
and closed forms, so it is Tier 1. The thumb is comparable, but people with
larger hands hit the screen when using the open form, so we place thumb closed
in Tier 1 and thumb open in Tier 2. Although the performance of the middle,
ring, and little fingers with an open hand are good, they are less preferred than
the index finger and thumb. We place them in Tier 2. When the hand is closed,
the middle finger has similar measures compared to the little, but this posture
has negative social implications, so it is Tier 3. The ring finger with closed form
is least preferred, so it is also Tier 3.

In summary:

¢ Tier 1 postures are the index finger (hand open/closed) and thumb (hand
closed) - they should be mapped to most frequently used commands.

¢ Tier 2 postures are the thumb (hand open), middle finger (hand open), ring
finger (hand open), and little finger (hand open/closed) — they should be
mapped to less frequent, secondary functions.

¢ Tier 3 postures are the middle finger (hand closed) and ring finger (hand
closed) — they should be avoided.

3.3 Implementation

In this section, we describe an algorithm that identifies the hand and finger on
the keyboard when a key is pressed. The algorithm recognises all postures that
are in Tier 1 and 2 of our guideline. We used the same apparatus as Experi-
ment 1, including the web camera reflector (Figure [3.4p) and the green material
covering the keyboard face that facilitates keyboard localisation (Figure [3.4p)
and background subtraction (Figure [3.4fc). Our simple prototype can be easily

26



reproduced and might be further improved with dedicated sensors and improved
background models.

3.3.1 Keyboard Localisation

To reliably determine which finger is pressing a key, we used a keyboard cover
with a slightly different shade than the green laptop skin. The cover colour was
sampled in advance. We used this information to extract the keyboard area
and automatically localise the four corners of the keyboard by approximating
a quadrilateral. The perspective of the image frame was corrected by rectifying
the quadrilateral to a rectangle. Key positions were mapped from the physical
keyboard to coordinates in this rectangle.

Figure 3.4: Apparatus: (a) A reflector directs the web camera to watch the keyboard; (b) a
slight difference in colour between the keyboard cover and laptop skin helps extract the keyboard
location; (c) aided by a green keyboard cover and laptop skin, the hands are isolated and tracked
in a rectified frame.

3.3.2 Hand Feature Extraction

Hand skin and background samples from Experiment 1 were converted to the
Hue-Saturation-Value (HSV) colour space to train a Gaussian naive Bayes clas-
sifier, which identifies which pixel is likely to be part of the skin. The identi-
fied skin pixels are often disconnected or contain false positives. Performing a
morphological close followed by an open reduces noise and brings each hand
contour together. The contours are then smoothed by sequentially applying
blurring, dilating, thresholding, and eroding. To eliminate dark areas between
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two fingers, Sobel operators are applied to the contour areas to identify sharp
changes in derivatives of brightness. The contours are smoothed one more time.

(a)

J

Figure 3.5: Algorithm: (a) hand feature extraction showing wrist reference points as red dots,
palm centre as purple dot, principle axis as red line, and perpendicular axis as dashed purple
line; (b) stroke recognition approach for hand and finger identification.

Two points and two axes are calculated from each hand contour to facilitate
identifying fingers and hand shape. With the assumption that computer users
always interact with the keyboard by reaching their hands forward, we calcu-
late a wrist reference by simply taking the intersection midpoint between the
forearm and the bottom of the camera’s view (Figure [3.5a). We also estimate
the palm centre by calculating a weighted average of the wrist reference and the
centroid of the hand contour. A principal axis is formed with the vector from the
wrist reference to the palm centre, which provides an estimation of the orienta-
tion of the hand. A perpendicular axis is perpendicular to the principal axis at
the palm centre pointing outwards. This axis is used to reduce false positives
during fingertip detection and provide a reference for sorting vectors of the wrist
reference and fingertips.

3.3.3 Fingertip Localisation

A similar approach to Yoruk et al. [100] was used for localising fingertips. We
compute distances from the wrist reference to each point on the contour in
sequence, then local maxima are candidates for fingertips. False positives on
the wrist reference side of the perpendicular axis are eliminated. Remaining
candidates are mostly extended fingers. Bent fingers can be falsely detected
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due to the slight curvature at the knuckle, but we minimise this by tuning the
curvature threshold.

3.3.4 Hand and Finger Identification

Using the extracted hand features and localised fingertips, we applied two ap-
proaches for hand identification: stroke recognition and heuristic rules. Both
distinguish between left and right hands and open or closed forms. We used
stroke recognition in Experiment 2 and heuristic rules in Demonstrations.

Stroke Recognition Approach — A hand contour can be normalised as a sin-
gle “stroke” from the bottom left corner to the bottom right corner, ignoring the
intersection between the forearm and the bottom of the frame. Therefore, tech-
niques used for processing and recognising strokes can be applied to classify
hand shapes (Figure [3.5b). We used 1€ Filter [13] to smooth and $1 Recog-
niser [98] to recognise the stroke. The 1€ Filter is a first-order low-pass fil-
ter for reducing noisy signals. Applying it produces a more normalised stroke
which aids the $1 Recogniser algorithm. The $1 Recogniser is a 2D single stroke
recogniser. Each posture, hand side, and form is labelled with a code (such as
“R0O1000” if right hand with the index finger extended and other fingers closed).
We train the $1 Recogniser with the filtered strokes and corresponding labels.
When a single finger is extended, the finger used for pressing the key is imme-
diately identified.

Heuristic Rule Approach — As a simple and practical alternative, we use
heuristics to identify hands. Hand side is jointly determined with the relative
positions of the wrist reference and the direction of the principal axis. The frame
is equally divided into three parts horizontally. For example, if the wrist refer-
ence falls into the left part, it is a left hand. If the wrist reference falls into the
middle part, the opposite side of the principal axis direction is the hand side.
With simple heuristics, hand form is determined using the distance of each fin-
gertip to the palm centre and their vertical differences. When the maximum of
the distances is greater than all other distance by a threshold, either index or
little is extended. When the difference between the maximum and minimum of
the vertical differences is smaller than a threshold, the thumb is extended. In
all other conditions, we consider the hand open.

If an open hand is recognised by either approach, fingertips are sorted in
descending order based on the angle between the perpendicular axis and the
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vector from the palm centre to each fingertip. A larger angle indicates the finger
is closer to the thumb. We compare the distance from each finger to the key
and identify the finger using its order.

3.3.5 Hand and Finger Tracking

We used a Kalman Filter to track each identified fingertip. The filter models fin-
gertip movement as uniform motion. When a new observation is not presented,
a fingertip position is predicted. We used dynamic programming to match new
fingertip positions with predicted positions. Cartesian distances were employed
to measure the difference between two positions. The dynamic programming
reduces the computational cost by assuming the mapping from one sorted fin-
gertip to another is monotonic. It also yields the best matching score by calcu-
lating the minimum distance sum of two hands. With the best matching scores,
we could also trivially track hands.

3.3.6 System-Wide Background Service

We built our algorithm as a background service in Apple OS X. The service has
two parts: an OpenCV posture recogniser and a Cocoa key event interceptor.
The interceptor traps key events from the operating system using Quartz Event
Services. When a key down is received, it sends the key code and timestamp to
an intermediate in-memory event queue. The recogniser receives the event and
searches in a 3s cache for an unprocessed frame with the closest timestamp.
The posture is then recognised and the interceptor is notified via another queue.
The interceptor rewrites the event according to a configurable mapping between
Finger-Aware Shortcuts and equivalent shortcut keys. The event is fired imme-
diately after receiving the posture or releasing the key. Processing a shortcut
using our background service takes approximately 77ms, empirically shorter
than the duration of a key press and hardly perceivable. With accessibility fea-
tures in OS X, we can also detect which application is active and interpret key
events as application-specific commands.
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3.4 Experiment 2: Comparing with Shortcut Keys

The goal of this study is to compare Finger-Aware Shortcuts with current key-
board shortcut approaches. Time and error were used as primary performance
metrics, but we also examined cognitive differences using perceived workload
and frequency of viewing the command mappings. The general format of the
experiment was similar to Experiment 1.

3.4.1 Participants

A subset of 8 participants (3 female) from Experiment 1 were recruited, age
ranging from 23 to 37 (M=25.6, sp=4.7).

3.4.2 Apparatus

The same apparatus as the previous experiment were employed. The stroke-
based recognition algorithm (described above) was used in real-time.

3.4.3 Procedure

In each trial, participants completed a reference task followed by a shortcut task.
The reference task simulates real-world scenarios of keyboard interactions with
the same TYPING and POINTING reference tasks from Experiment 1.

Our main focus is the shortcut task where participants issue one of 6 “com-
mands” using a shortcut technique: either Finger-Aware Shortcuts or a stan-
dard keyboard shortcut method. The commands were represented as two sets
of three four-letter English words. All words in each set begin with the same
letter (e.g. W: Wack, Wool, Whim, P: Peek, Pill, Pump).

We tested for 3 variations representing how commands are typically mapped
to standard keyboard-only shortcuts:

3KEY: 3 Keys Without Modifier — The set of commands are mapped to dif-
ferent keys without any modifier key. Only one key can correspond to the first
letter of the command, other keys are chosen arbitrarily. Using the ‘W’ example
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set, this could create the following mapping: for Wack; [ s | for Wool; and [R ]
for Whim. This variation is based on a common method for mapping shortcut
keys in drawing applications where text entry is modal, for example in Adobe
Ilustrator, means Scale, means Select, and [ K] means Slice. We expect
3KEY will be fast since it is simply pressing a key, but there may be cognitive
overhead from the conflicting key and the first letter of the word.

3KEY1MOD: 3 Keys using 1 Modifier — The set of commands are mapped to
different keys using a single modifier key. As above, only one key can correspond
to the first letter of the command. We use the (command) modifier. Using the
‘W’ example set, this could create the following mapping: [} w] for Wack; [ ]+ D |
for Wool; and [ %+ A | for Whim. This variation is based on an analogous common
shortcut key mapping: [$t]+ ¢ | for Copy:; [s¢)+ x| for Cut; and [3)-(w ]| for Close. We
expect 3KEY1MoD to be slower than 3kEY due to the extra modifier press, but the
same conflict between word and key letter could introduce cognitive overhead.

1KEY3MOD: 1 Key using 3 Modifiers — All commands in a set are mapped to
the same key using three different modifier key combinations. The key corre-
sponds to the common first letter in the command set, for example Wack, Wool,
Whim are all mapped to (W]. Three modifier key combinations were used:
(command), [s¢]+[ ] (command + shift), and <] (alternate). For the example set,
this creates the following mapping: (% +{w | for Wack; [}« T |+(w ] for Wool; and
+ W] for Whim. This variation is based on applications that use different modifier
keys to map related commands to the same key, such as 3]+ s | for Save; [ ]+
+ 8] for Save As ...; and <)+ s | for Save Copy. We expect 1KEY3mMOD to be slower
than 3key, but it may have less cognitive overhead without a conflict between
word and key letter.

We compare these to Finger-Aware Shortcuts:

FINGERAWARE: 1 Key with 3 Finger Aware Postures — All commands in a set
are mapped to the same key using three different postures. The key corresponds
to the common first letter in the command set, for example, Wack, Wool, Whim
are all mapped to (W]. Three postures were used: INDEX OPEN, INDEX CLOSED,
and MIDDLE OPEN. All postures were performed with the right hand. These
postures were selected according to the guideline derived from the formative
study: two postures are from Tier 1 (INDEX OPEN, INDEX CLOSED) and one Tier 2
(MiDDLE OPEN). Like 1KEY3MOD, there is no conflict between word and key letter.
However, we expect it to be slower than 3Key given overhead for using a specific
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finger and posture. The question is whether it is comparable to 1KEy3moD or
3KEY1MOD since it could be an alternative to these common techniques.

Common Task Details

With every sHoRtcuUT, the two sets of 3 commands are mapped to a subset of
12 keys: 6 keys on the left (w], [E],[R]},[s], [P}, [F) and 6 on the right (P}, (0],
(1], (L], [k}, [J). The two command sets were chosen such that the first letter
of one set matched one of the left keys and the other matched one of the right
keys. Parts of the keyboard are denoted with KEYPART (LEFTPART, RIGHTPART).

For single key mappings (1KEY3MOD, FINGERAWARE), all commands in a set
were assigned to the key matching the first letter. For multiple key mappings
(3KEY, 3KEY1MOD), one command from each set was assigned to the key match-
ing the first letter. The remaining key mappings were randomly selected without
duplicates from the remaining 10 keys.

All shortcut mappings were displayed on a cue card, rendered as two columns
of 3 commands. The cue card could be viewed anytime by pressing [SPACE], but
participants were encouraged to memorise the mappings. The current trial was
restarted if the cue card was viewed. We logged the number of view (CC Count)
and viewing duration (CC Duration) as additional factors to test learning effects.

Error and Time

We are only concerned with errors during shortcut tasks. In the experiment, an
error occurred when wrong shortcut keys were used for the prompted command
word. Participants immediately repeated the same trial beginning from the ref-
erence task for a maximum of 3 tries. This repeated trial design maximises
error-free trials for analysis. With FINGERAWARE, errors might also be caused by
incorrect posture recognition. These errors appeared as trial errors to partici-
pants, but they were informed that FINGERAWARE could have false negatives prior
to the experiment. We manually corrected for these false errors (accounting for
10.9% overall) before analysis. Most were due to capture quality issues such
as fingers cropped by capture area, shadows, and motion blur, which could be
addressed with a wider angle, faster, and more sensitive camera. Others were
caused by one hand occluding the other, which could be addressed with a depth
SEensor.
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3.4.4 Design

The experiment design was within-subject, repeated measures, and full fac-
torial. All trials for each variation of sHoRTCcUT were presented together, with
their order counterbalanced using a balanced Latin Square. For each sHORTCUT,
participants performed 5 blocks of measured trials. Each block presented all
trials for all combinations of commanDs and REFTAsKs in random order for 3
REPETITIONS.

In summary: 4 SHORTCUTS X D BLOCKS X 6 COMMANDS X 2 REFTASKS X 3
REPETITIONS = 720 trials per participant.

3.4.5 Results

The same analysis method was used as Experiment 1. CC Count and CC Du-
ration were aggregated using sum. All subjective data were transformed with
Aligned Rank Transform.

Learning Effect

BLOCK had a main effect on time (F4,5 = 14.756, p <.0001, > = .678). Post hoc tests
found block 1 significantly slower than blocks 4 and 5, and block 2 significantly
slower than block 4 (all p < .05). BLock had a main effect on error (F4,s = 5.298,
p < .005, n* = .431), but no post hoc differences. BLock had a main effect on CC
Duration (F;21846 = 54.196, p <.0001, > = .886). Post hoc tests show block 1 had a
longer duration than all other blocks (all p < .005). Given these learning effects,
only blocks 4 and 5 are used in subsequent analysis.

Error Rate

Excluding false negatives in FINGERAWARE, the mean error rate across all partic-
ipants was 8.7% with sp=5.53% (3KEY 8.9%, 3KEY1MOD 9.0%, 1KEY3MOD 9.9%,
FINGERAWARE 6.9%). There was no main effect of SHORTCUT or REFTASK On €rror,
nor was there a main effect of sHorTcUT on error for REFTAsK. Analysing each
SHORTCUT separately found a main effect of REFTASK on error in 3KEY (F; 7 =40.111,
p <.0005, 7 = .851): TYPING (M=12.15%, sp=5.34%) had a significantly higher error
rate than POINTING (M=5.56%, sp=6.47%).
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Time

The mean time across all participants was 629ms (sp=190). Overall, there was a
main effect of SHORTCUT on time (F 5410581 = 9.809, p <.0005, > = .584). Post hoc tests
showed 3kKEY faster than 1KEy3MoD and FINGERAWARE both by 421ms (p < .005),
and 3kEY1MoOD faster than 1kKEy3moD and FINGERAWARE, both by 377ms (p < .03).

Analysing each REFTAsK separately (Figure [3.6), sHorTcuT had a main effect
on time in POINTING (F3,; = 10.292, p <.0005, > =.595) and in TYPING (F)sg 1105 = 7.676,
p <.05, n* =.523). Post hoc tests revealed that in POINTING, 3KEY was significantly
faster than 1key3mop by 303ms and FINGERAWARE by 329ms; 3KEY1MOD was
significantly faster than 1keEvy3gmop by 238ms and FINGERAWARE by 264ms (all
p < .05). In TYPING, 1KEY3MOD was significantly slower than 3key by 539ms and
3KEY1MoOD by 515ms (both p < .05).

1600

ot il

3KEY 3KEY1MOD 1KEY3MOD FINGERAWARE

. Pointing
B Typing

Time (ms)

Figure 3.6: Time by sHORTcUT technique by reference task.

Perceived Workload

At the end of the experiment, NASA-TLX was used to elicit participants’ per-
ceived workload. Each sHorTcuT technique was measured in six dimensions
on a scale from O (very low) to 20 (very high). Mental demand, physical de-
mand, performance, effort, and frustration for each sHorTCUT Were: 3KEY 8.1,
4.4, 8.6, 7.3, and 6.6; 3keyimobp 12.6, 10.3, 9.8, 10.9, and 10.8; 1KEY3MOD
13.9, 13.1, 11.4, 13.4, and 12.9; FINGERAWARE 14.0, 12.7, 13.0, 12.7, and 13.9,
respectively.

sHORTCUT had a main effect on mental demand (Fs,; = 3.771, p < .05, *> = .350),
with post hoc tests showing 3key had lower demand than 1kEy3mobp and
FINGERAWARE (both p < .05). sHORTcuT had a main effect on physical demand
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(F321 = 10.595, p <.0005, * = .602), with post hoc tests showing 3key had lower de-
mand compared to all others (all p < .05). sHorTcUT had a main effect on effort
(F521 = 6.785, p <.005, * = .492), with post hoc tests showing 3key had lower effort
than 1KEY3MOD (p < .005) and FINGERAWARE (p < .01). sHORTcUT had a main ef-
fect on frustration (Fsy =4.152, p < .05, n* = .372), with post hoc tests showing 3KEY
had lower frustration than FINGERAWARE (p < .05). There was no main effect of
SHORTCUT on performance.

Memorisation

A real number continuous scale was provided for each sHorRTcuT, describing
the ease of memorising the command-shortcut mappings. The scale is from 1
(hardest to remember) to 5 (easiest to remember). The results were 3Ky 4.0,
3KEY1MOD 2.2, 1KEY3MoD 2.8, and FINGERAWARE 3.0. There was a main effect
of sHORTCUT on ease of memorisation (Fs,; = 3.423, p < .05, n* = .328), with post hoc
tests showing 3KEY easier to remember than 3keyimobp (p < .03).

Participants were asked about their memorisation strategy for each
sHORTcUT. Their descriptions fall into three categories: a) memorising the or-
der of shortcuts and commands independently, then using orders to establish
a mapping; b) using mnemonics; and c¢) using no special technique. In 3KEy,
six participants used b, one used a, and one used c. In 3kEvy1moD, four used b,
three used ¢, and one used a. 1KEY3MoD and FINGERAWARE had the same result:
six used only a, one only used b, and one used both a and b.

3.4.6 Discussion

Our finding that single key shortcuts are fast was expected — this is simply
pressing a key. Despite the conflicts between command letters and key letters,
such strong performance when mapping single keys with or without one mod-
ifier is surprising. We expected a cognitive processing overhead, but the result
suggests this was less of a concern. However, this benefit may be due to the
relatively small number of commands and short training time. It is possible
that increasing the number of commands or performing a longer study could
reveal different patterns. Regardless, in real world usage, single key shortcuts
are limited to non-text modes and both single key techniques are limited in the
number of available keys.
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It is encouraging that Finger-Aware Shortcuts achieved similar performance
with one key with multiple modifiers. As reflected by the memorisation pat-
terns used by participants, the two techniques are analogous in that different
postures act like different modifier keys. It is important to recognise that using
specific fingers and postures to press keys is not currently a well-practised task.
With more time, advantages for motor memory are likely to develop, further
decreasing performance time. In addition, participants explained that higher
frustration scores with Finger-Aware Shortcuts were due to occasional false de-
tection in the computer vision system. This likely negatively impacted perfor-
mance. Since participants are already familiar with multiple modifier shortcuts,
the comparable performance of Finger-Aware Shortcuts is notable considering
the short exposure and “research-quality” posture recognition.

Overall, our study confirmed that Finger-Aware Shortcuts have similar per-
formance to a common and necessary class of shortcut keys with multiple mod-
ifier keys and a single alphanumeric key. With further improvements to recog-
nition robustness and more practice, our technique could be a viable alternative
to multiple modifier keys by substituting modifiers with postures. It could also
enable single shortcut keys in text-focused applications by simply using the
thumb to press keys while typing. It could even be combined with a single
modifier key to double the number of single key mappings.

3.5 Demonstrations

We demonstrate Finger-Aware Shortcuts for complementary commands,
up/down controls, and alternative modifiers in Adobe Photoshop and Google
Docs. We also extend for parameter control during a shortcut press and two-
handed shortcuts with a single key.

3.5.1 Command Mappings

Complementary Command

Finger-Aware Shortcuts enable the same key to overload a family of related com-
mands. In Google Docs, pressing with the left index finger, open hand to

change the style of the current line to Heading 1, the middle to Heading 2, and
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heading 2/

(a) “Heading 1” (b) “Heading 2”

Figure 3.7: Complementary command - in Google Docs, (a) pressing with the left index
finger, open hand changes the style to “Heading 1”; (b) left middle finger changes the style to
“Heading 2”.

the ring to Heading 3 (Figure[3.7). The text is set to normal with the left thumb,
closed hand.

Up/Down Control

By mapping two fingers to up and down, then pressing related keys, numerical
values of different properties can be adjusted. In Photoshop, pressing with
the right index, open hand decreases the brightness of an image, while the right
middle increases the brightness (Figure . Similarly, pressing | ¢ | with differ-
ent fingers adjusts contrast and pressing [ 0 | adjusts opacity. Up/down controls
can be mapped to a non-dominant hand when pointing is intense. When draw-
ing with the brush tool in Photoshop using the right hand, pressing | H | with the
left index or middle finger using an open hand decreases or increases the hue
of the brush colour.

Alternate Modifier

Another way is to map keyboard shortcut modifier combinations to different
postures. For example, mapping the modifier to the right thumb, closed
hand. All existing keyboard shortcuts using only can then be triggered by
pressing the same key with this thumb posture. In Photoshop, users can Open
File by pressing (0] and Save by pressing (s ], both with the thumb posture.
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(a) “Brightness Down” (b) “Brightness Up”

Figure 3.8: Up/down control — in Photoshop, (a) pressing (8] with the right index finger, open
hand decreases the brightness; (b) whereas the right ring finger increases the brightness.

Similarly, 3+ {f] can be mapped to the right index and closed hand, so press-
ing with that posture invokes Create a New Layer. In Google Docs, Bold,
Italic, and Underline can be triggered in the same way using the right thumb

(Figure [3.9).

3.5.2 Extensions

Simultaneous Parameter Control

It is possible to track finger movement to control parameters during a key press.
For example, pressing and holding a key with the index finger with an extended
thumb, then moving the thumb to adjust a continuous parameter. For example,

adjusting an RGB colour by pressing and holding [ R ] to adjust red, to adjust
green, or [B] to adjust the blue (Figure [3.10).
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(a) “Bold” (b) “Italicise”

Figure 3.9: Alternate modifier - in Google Docs, the right thumb, closed hand can be treated
as an additional (] modifier key: (a) pressing B] triggers (%]+(B] “Bold”; (b) pressing [ I | triggers
(se)+[ 1) “Italicise”.

Thumb movement can be discretised into menu options for variations of a
command. For example, holding [ P | with the index finger displays a partial pie
menu with items selected with the thumb, like Print to Printer and Print to PDF.
We will further explore such interaction in the next chapter.

(a) “Red” (b) “Green”

Figure 3.10: Simultaneous parameter control — pressing (R}, (G}, [B] with the right index finger
and the thumb extended could achieve simultaneous parameter control of RGB colour values.
Two-Handed Key Press

Special or uncommon commands could even be triggered with two-handed key
presses. For example, using both index fingers to simultaneously press to

Log Out (Figure [3.11).

40



(a) Two Fingers Pressing ‘L’ (b) “Log Out”

Figure 3.11: Two-Handed Key Press - pressing (L | with two hands could trigger the uncommon
action “Log Out”.

3.6 Summary

This chapter has introduced the idea of Finger-Aware Shortcuts and showed it
is a viable method for augmenting current shortcut keys, and perhaps used as
an alternative to shortcut keys requiring multiple modifiers.

The recognition algorithm is robust enough for conducting an experiment
and demonstrating the technique, but infallible hand tracking in all environ-
mental conditions remains a barrier for full deployment. If we use an alternate
capture set up with the assumption that it could be built into future laptops,
hand tracking could be improved further. For example, pairing stereo cameras
with infrared illumination and a laptop and keyboard with a retro reflective coat-
ing [43] would dramatically increase the reliability of hand and finger extraction.

In addition to technical improvements, our findings regarding shortcut map-
pings and cognitive load require more targeted studies to control and fully un-
derstand. A direct comparison between mappings based on fingers and keys
under many different variations of command names, keys, and cue card access
would be an informative next step. Besides, we can also actively improve our
technique to facilitate the learning of finger-aware shortcut keys, which we will
discuss in more detail in the next chapter.
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Chapter 4

FingerArc and FingerChord

In the previous chapter, we have demonstrated how Finger-Aware Shortcuts can
enable more expressive keyboard interaction. The experiment that compared
Finger-Aware Shortcuts with conventional shortcut key mappings reveals good
performance in learning given a small number of commands. Yet, it remains
challenging for users to memorise a substantial number of commands to make
effective use of Finger-Aware Shortcuts.

As an extension, we present FingerArc and FingerChord, both providing an
intermediate step between using menus and directly activating hand posture
based keyboard shortcuts. The intermediate step provides contextual, dynamic
visual guidance to users to help them specify and complete their actions. In
addition, our techniques reduce the need for modifier keys and alleviate the
risk of making errors with a common mechanism for cancellation.

In this chapter, we first describe an interview study with expert computer
users to identify the key issues with conventional keyboard shortcuts. Then,
based on the findings from the interview, we present the design goals, concept,
and proof-of-concept implementations of FingerArc and FingerChord. With
these preliminary investigations, we hope to start making finger-aware keyboard
shortcuts more usable, learnable, and explorable.
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4.1 Interview with Expert Computer Users

In this section, we report on a qualitative interview study with expert computer
users to identify what hinders them from learning, using, and exploring key-
board shortcuts. We are most interested in why users learn and use one type
of keyboard shortcuts rather than another. The results of this study provide us
with a better understanding of current issues of keyboard shortcuts that can
be addressed with finger-aware techniques.

4.1.1 Participants

We recruited 12 participants (4 female, 9 right-handed), ages ranging from 21 to
39 years (M=26.9, sp=5.9). Each participant is associated with a unique identi-
fier from [P1] to [P12]. Participants reported extensive use of computers, weekly
usage ranging from 42 to 84 hours (M=61.3, sp=10.6). In addition, they all had
formal education or industry experience in computer science, therefore we con-
sider them to be expert computer users.

Regarding operating systems, participants reported regular use of Windows
(7 participants), macOS (7 participants), and Linux (3 participants): all had
experience with at least two; nine used all three; and five participants frequently
switched between two different operating systems.

Participants also reported experience with a variety of desktop, web, and
terminal programs, including text-intensive applications (e.g. Google Docs, Mi-
crosoft Word, Sublime Text, Vim), graphics-intensive applications (e.g. Adobe
Photoshop, GIMP, Blender, Autodesk 3ds Max), integrated development environ-
ments (e.g. Visual Studio, Xcode, Eclipse, Unity), and other common software
(e.g. Google Chrome, Safari, Adobe Acrobat Reader, Skype).

4.1.2 Procedure

Participants were first asked to complete a questionnaire eliciting demographic
data and computer experience. Semi-structured interviews were then con-
ducted to probe for different aspects of keyboard shortcut interaction, includ-
ing basic usage, learning, physical articulation, and feedback. The interview
questions were formulated based on an analysis to keyboard shortcuts with
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Norman’s seven stages of action framework [67]. Of particular importance, we
focused on eliciting the types of keyboard shortcuts that participants tend to
learn, use, or forget.

Upon completion of the interviews with 12 participants, we reviewed the data
to ensure saturation had occurred — the same patterns were recurring, and it
was not likely to obtain additional information by recruiting more participants
[21]. Thematic analysis [11] was then employed to identify the themes within
our data.

4.1.3 Results

We identified nine factors that impact users’ learning, use, and exploration of
keyboard shortcuts:

p—d

. Frequency of triggering the same command.

Perceived cost of graphical input versus keyboard shortcuts.
Visibility of keyboard shortcuts.

Semantic alignment to the associated command.

Difficulty of pressing multiple keys, together or in multiple steps.
Consistency across applications and operating systems.
Perceived risk of making errors.

Feedback to keyboard shortcuts.

© ©® N o 0 & W N

Customisation to keyboard shortcuts.

We present the analysis of each factor in detail and report our findings with
the support of quotes from the participants.
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Factor 1: Frequency of Triggering the Same Command

Comments from participants suggest that frequent activation of a command
motivates the learning of a keyboard shortcut: “for functions like Bold and Ital-
icise — just as I write documents, I often need to emphasise stuff — they are
common enough that I feel I need to learn them” [P5]; and the use of a keyboard
shortcut: “for me to do something a lot of times, I would always prefer hitting
the keyboard shortcut” [P9].

Also, learning keyboard shortcuts typically occurs naturally with repeated
usage: “it's not like a dedicated learning process where I spend ten minutes
just for memorising keyboard shortcuts” [P3]. Because of the gradual nature of
learning, infrequent commands are more likely to be forgotten: “I'd always pay
attention to the keyboard shortcut while clicking on the menu, and realise [that
keyboard shortcuts would have been faster]; but by the time I reuse the same
command, I would already forget the shortcut” [P11].

Some participants suggested they are consciously biased towards using key-
board shortcuts if they intend to learn: “I'd make a conscious effort trying to use
the keyboard shortcut once I'm aware of it” [P4]. Some would go even further:
“if I find myself repeatedly clicking on the menu, I would either find a way to
hide the menu item or completely disable it [to force myself to use its keyboard
shortcut]” [P5].

Frequency of use also affects the development of automaticity in activating
keyboard shortcuts. For very common actions such as Copy, Paste, and Save,
all participants acknowledged that they have developed muscle memory — key-
board shortcuts can be articulated without much cognitive effort. In contrast,
less frequent keyboard shortcuts require a conscious association to the keys
being pressed: “for the things that I use less often like Bold in Google Docs, I
often have myself being like ... OK, I have to use Ctrl+B, so it’s a little bit more
thoughts into it, and it’s just because it’s a less frequent action” [P5].

Factor 2: Perceived Cost of Graphical Input versus Keyboard Shortcuts
Switching to keyboard shortcuts is often motivated by the inconvenience of

graphical input: “using your fingers to trigger keyboard shortcuts is way more
efficient than just clicking everywhere with a mouse” [P3]. Indeed, users may
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unconsciously compare the perceived costs between using a mouse and a key-
board. The perceived costs, as an estimation of each action’s physical and cog-
nitive effort, drive users to employ one method from another. While the costs
are certainly relative to users’ experience, they are also relevant to the specific
interaction context.

By nature, graphical widgets, including context menus, toolbars, and menus,
require different extents of effort. In many situations, especially for infrequent
actions, participants found it convenient enough to use context menus: “if I
can do the task with a right click [and a context menu], I might not bother to
remember the keyboard shortcut” [P7]; or toolbars: “if it’s just on the toolbar, I
probably will have to use it a lot of times before I search for the shortcut” [P10].
In these cases, the perceived cost of graphical input is relatively low.

In contrast, menus are considered less efficient, therefore a higher perceived
cost: “I feel it’s more likely for me to use keyboard shortcuts if the commands
are hidden in a menu” [P9]. Further, if an application is designed in favour of
keyboard access, the cost of graphical input becomes very high: “in Vim, there’s
no other choice than using keyboard shortcuts, so I have to learn them” [P7].

The perceived costs are also related to the hand positions before and after
the command action. When two hands are both on the keyboard, providing
graphical input is costly: “... you have to move your hand back to the mouse,
which is much more work than just using the shortcut” [P3]. However, when
one hand is already on the mouse, accessing graphical widgets becomes eas-
ier, which discourages the learning and use of keyboard shortcuts [P2,8,12]. If
subsequent interaction requires text entry, keyboard shortcuts are more likely
to be used [P11]; whereas if requiring a mouse, graphical input is more likely to
be used: “keyboard shortcuts like Ctrl+P pops up a print settings dialogue — 1
have to use my mouse anyway” [P7].

Factor 3: Visibility of Keyboard Shortcuts

The lack of visibility is one major hindrance to learning keyboard shortcuts:
“there’s no real good way of discovering them” [P5]. Because of this, participants
adopted different strategies to find out the keys to press when learning. The
strategies include navigating menus [P1 - 12], hovering on toolbar icons [P1 - 12],
performing menu search [P10], searching online [P1 - 12], studying crib sheets
[P1,2,7,10-12], and watching tutorials [P2,5,6]. Although the extent may vary,
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these strategies all require a certain amount of effort, therefore various levels
of visibility.

The most common way of finding a keyboard shortcut is either navigating
menus or hovering on toolbar icons [P1—-12]. Given a certain command, users
need to first locate the corresponding graphical element from the user interface.
This is relatively easy if the learning is prompted by frequent menu or toolbar
access [P10]. Yet, it might not be immediately clear if they are unfamiliar with the
user interface, despite having a clear goal in mind: “for something like Ctrl+K
Ctrl+C for Comment in Visual Studio, I know the command must exist [from
other code editors], but I'm not sure where to find it in the menu” [P10].

For the latter, some operating systems (e.g. macOS) and applications (e.g.
Google Docs) feature the ability to search commands inside the menu [P10], but
this was not well known among our participants. More participants resorted
to online search, often with keywords containing the application name and a
description of the action that the command performs [P1 - 12]. Online search
becomes more valuable for terminal applications, which heavily rely on key-
board shortcuts (e.g. Vim [P6]) or complex software with many functions (e.g.
SolidWorks [P6]). In both cases, the visibility of keyboard shortcuts from the
user interface alone is so low that users have to seek for external support.

Another common strategy is to use cheat sheets [P1,2,7,10—-12]. Participants
indicated that cheat sheets are most suitable for learning keyboard shortcuts
they have used before: “if I've learned the shortcuts in the past, and I just need
to quickly glance over them, then cheat sheets are the best option” [P10]. Re-
garding the source of cheat sheets, some participants made their own [P6,12],
some searched online [P1,2,7,10,11], and others used the ones provided by the
software [P9]. Many applications include the feature of quickly viewing a cheat
sheet with a keyboard shortcut, for example, “in Google Docs, you can use
Command+/ to see all the shortcuts available” [P10]. In addition to cheat
sheets, participants also suggested watching online tutorials helps learning key-
board shortcuts, especially for feature-rich software like Visual Studio Code [P5],
SolidWorks [P6], and Blender [P11].

Factor 4: Semantic Alignment to the Associated Command

Participants commonly acknowledged the importance of semantic alignment
between the shortcut key and its associated command [P1-12]. Many suggested
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the most pronounced issue with keyboard shortcuts are that they “do not make
sense” [P1,2,4,6 — 12]. The misalignment with the associated command not only
impedes learning, but also hinders the exploration to new keyboard shortcuts.

Participants indicated that keyboard shortcuts are most easily memorised
and retained when the key character is the same as the first letter of a major
word in the command (e.g. [ctn)+ ¢ | for Copy, [ctn)+[ s | for Save, and [cti)< A | for Select
All) [P1-12]. They might even carry this expectation to unknown shortcuts of
common actions, for example: “sometimes I think Ctrl+D should be delete, and
I'll do a Ctrl+D when I want to delete a line of code, but only to find out it actually
does something else” [P3].

When another alphabetical key is selected instead of the first letter of a com-
mand word (e.g. [ct]+[ G | for Find Next), it is more likely to be confusing [P1-12],
especially when using the first letter is a common expectation: “Ctrl+S to save
makes sense, but to strikethrough [text], for example, you have to try to figure
out what the keyboard shortcut for that is, because the one that first comes to
your mind is Ctrl+S” [P6].

Even worse than arbitrary alphabetical key is when using symbol keys [P10],
number keys [P11], function keys [P12], and most frequently, modifier keys [P1 -
12]: “anything that has to do with Ctrl, Alt, and Shift [is] very confusing: they
are all in the same area and the combinations you need to hit in connection
with another key is very confusing” [P6]. In addition, participants suggested
the symbol representations of modifier keys on macOS further aggravates the
issue: “(pointing to a modifier key symbol) is this control [or] option? I'm always
confused about these things” [PS].

Factor 5: Difficulty of Pressing Multiple Keys

Participants indicated that the difficulty of pressing multiple keys also affects
learning and use of keyboard shortcuts [P1-12]. This difficulty can be attributed
to both the cognitive complexity of memorising multiple keys [P2-5,7-12] and
the physical complexity of articulating multiple keys [P1,5-7,10]. Most par-
ticipants suggested that pressing three keys simultaneously with one hand is
acceptable, but more keys would be hard to memorise or articulate [P3-5,7—-12].

Even though pressing more keys with both hands is possible, participants
preferred single-handed shortcuts [P1,3-7,9,11,12]. Having one hand on the
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mouse and the other activating keyboard shortcuts may be of particular ad-
vantage when frequently switching modes to manipulate graphical objects, for
example: “when I'm using Blender, I would typically have one hand on the key-
board to switch between different tools and the other hand on the mouse to
manipulate objects” [P10].

Some keyboard shortcuts require pressing keys in multiple steps (e.g. [Ctrl]+
[, [em)+[ ¢ | for Comment in Visual Studio), but participants found them hard to
learn [P4,5,11], for example: “there’re already too many things to remember in
a keyboard shortcut, yet with these shortcuts, I'll also have to remember their
ordering” [P5].

Factor 6: Consistency across Applications and Operating Systems

Comments from participants suggest the consistency of shortcut mappings
across applications and operating systems helps them learn keyboard short-
cuts. Participants described those that are retained to be “system-wide” [P3,5],
“ubiquitous” [P1,6,8], “universal” [P7,9], “useful” [P0,4,8,10], or “shared across
different applications” [P11]. These also include the ones with obscure com-

mand mappings like (Command|+| v | for Paste [P1,2,3,5,9], [ctr)+[At]+(Del] for Windows
Task Manager [P4], and for Rename [P12].

In contrast, keyboard shortcuts that participants tend to forget are typically
specific to a certain application [P1,2,4,6,7,8,9,10,12], especially the ones that
contain many shortcut commands like Adobe Photoshop [P1], Adobe Illustrator
[P8], Inkscape [P4], SolidWorks [P6], Blender [P11], and Vim [P2,3]. Learning or
relearning happens on an ad hoc basis based on the need to certain functions:
“I'd remember a keyboard shortcut for the day that I am using it, but the next
day I might already forget it” [P7]; and to certain applications: “when I stop using
Photoshop on [a] day to day basis, I start forgetting its keyboard shortcuts, but
if I move back to using the application again more frequently, I'd actively relearn
the keyboard shortcuts, because it just saves me more time” [P11].

The consistency of keyboard shortcuts in different contexts motivates the
exploration of the same shortcut in different applications: “sometimes I try the
shortcut I know for other applications -1 think ‘well, this seems to be pretty stan-
dard, so maybe it works in this application too’ ” [P4]. On the other hand, incon-
sistency impedes exploration: “I'd get confused when some standard shortcuts
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are mapped differently in some other applications” [P4]. Participants raised dif-
ferent examples to illustrate this inconsistency: (cti:[ T | does not open a new tab
in Notepad++ [P4], [Command|+[ Z ] does not perform an undo in Vim [P8], and [ctr]-
does not comment a line in Visual Studio [P4,11]. In addition, participants
also reported making errors when switching operating systems due to the in-
consistency of the default modifier keys (e.g. in Windows versus in
macOS) [P3-7,10,11].

Factor 7: Perceived Risk of Making Errors

Triggering a wrong command may happen by accident when articulating key-
board shortcuts [P1,6,7,10], but it is also possible when exploring new key-
board shortcuts. Nevertheless, many participants suggested that they will use
a keyboard shortcut only if they are very confident about its associated action
[P1,3,5,7,8,10,11,12], for example: “I don’t really use a keyboard shortcut unless
I'm 90% certain of what it does” [P5]. Indeed, the perceived risk of making errors
hinders the exploration to new shortcuts, especially when the task is important:
“if I already have a three-page document full of important text, then I wouldn’t
try a keyboard shortcut that I'm not sure at all” [P12].

Some participants felt that making an error is undesirable even if the action
is nondestructive and correctable with an undo command [P5,7,9,11]. This may
be because the perceived cost of correcting the error is high: “there’s a lot of
fatigue in correcting mistakes” [P6]. Yet, others suggested that they are will-
ing to experiment with a group of shortcuts if these shortcuts simply switch
between different modes [P2,11], for example: “in 3ds Max, pressing number
keys switches between editing vertices, edges, and faces; I know that the num-
bers switch between them, but I'm not quite sure, for example, whether two is
the right number; in that case, I'd try pressing the keys until I see the one I
want” [P2].

Factor 8: Feedback to Keyboard Shortcuts

Participants suggested that feedback to the actions triggered by keyboard short-
cuts also affects their adoption [P1,2,5,6,8 — 12]. Appropriate feedback helps
them confirm their action when it is correct: “... the interaction in SolidWorks is
very effective, because you have immediate feedback on what's happened” [P6];
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and indicate what command is triggered instead when making an error: “it
would be easy to tell [what error I made] in Lightroom, because it pops up a
toast whenever I trigger a shortcut” [P10]. Explicit feedback also encourages
users to explore new keyboard shortcuts: “the toast notification in Lightroom
also makes me more willing to experiment with keyboard shortcuts ... if I don’t
know what the error was, then I won't be able to learn from mistakes” [P10].

Despite this, many participants acknowledged that shortcut feedback in
most applications is very poor [P1,2,5,6,8 - 12], especially when accidentally trig-
gering a different action [P1,5,6,9 - 12]. Keyboard shortcuts may trigger actions
anywhere in the user interface, but users’ focus is often on their object of inter-
est: “knowing what command a keyboard shortcut has triggered is often very
difficult unless it involves apparent Ul changes; you won’'t know if you acciden-
tally triggered a keyboard shortcut which does something in the background or
toggles a small button on the toolbar” [P11].

Factor 9: Customisation to Keyboard Shortcuts

A few participants suggested customised shortcut mappings compensate the
drawbacks of existing keyboard shortcuts and may be more easily memorised
[P4,6,10,12], for example: “I typically remember quite well shortcuts I bound
myself, so if I come up with a custom shortcut, I generally remember that much
better than shortcuts that are given to me” [P6].

Yet, participants also indicated that customised shortcuts may be hard to
communicate with other people [P10] and difficult to find the mappings once
forgotten [P1]. In addition, customisation may require more modifier keys to
avoid conflicts with existing shortcuts: “when you customise a shortcut, you
don’t want it to conflict with existing shortcuts; and because of that, you have
to use multiple modifier keys and try different combinations of modifier keys to
see which one hasn’'t been used” [P10].

4.1.4 Discussion
Our interview identified nine factors that impact the adoption of keyboard short-

cuts. Of these factors, the frequency of activating a command dominates learn-
ing and use, but it is primarily driven by users’ need for certain actions (factor 1).
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Other factors help us pinpoint the current issues and identify implications for
better shortcut design.

Overall, our findings suggest that promoting keyboard shortcuts can be
achieved by lowering the cost, increasing visibility, improving semantic align-
ment, reducing the number of keys, advocating single-handed shortcuts, being
consistent with standard mappings, decreasing the risk of making errors, pro-
viding explicit feedback, and facilitating customisation.

Further interpretation of the results indicates that consistency (factor 6) and
customisation (factor 9) are more a matter of better design decisions such as
conforming to the conventional shortcut mappings used in other applications
and providing utilities for creating customised shortcuts. On a deeper level,
more profound issues with keyboard shortcuts are the following:

1. The use of modifier keys increases the complexity of keyboard shortcuts
(factor 2) and induces cumbersome hand postures (factor 5), which limits
the expressivity or the number of commands can be practically bound to
an action key.

2. The use of an action key that is not the first letter of a major word in
the command leads to semantic misalignment and poor memorability (fac-
tor 4).

3. The drastically different acts of providing graphical input and activating
keyboard shortcuts reduces the visibility (factor 3) and hinders the effective
transition to expert behaviour.

4. The lack of explicit feedback (factor 8) and mechanism for cancelling a
keyboard shortcut increases the perceived risk of making errors (factor 7),
therefore hindering the exploration of keyboard shortcuts.

Some of our observations are consistent with other work at a high level. For
example, Kim and Ritter [44] also acknowledged frequency of use as a dominant
factor in learning keyboard shortcuts (factor 1); Grossman et al. [30] and Krisler
and Alterman [46] found perceived cost (factor 2), visibility (factor 3), semantic
alignment (factor 4), and feedback (factor 8) impact shortcut learning; Peres et
al. [71] suggested perceived risk (factor 7) also contributes to the underuse of
keyboard shortcuts; Malacria [56] promoted keyboard shortcuts by increasing
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visibility (factor 3) and decreasing the cost (factor 2); Pietrzak et al. [73] recog-
nised the difficulty of pressing multiple modifier keys (factor 5) and duplicated
modifier keys on a mouse; and Giannisakis et al. [23] encouraged shortcut us-
age by increasing the visibility on toolbar icons (factor 3).

Despite this, our study adds depth to the understanding of keyboard short-
cuts at a more nuanced level and recognises other factors such as consistency
and customisation that are not previously identified. In addition, we synthe-
sised our findings into a clear outline for designers and researchers to address
the key issues of keyboard shortcuts. Further, the study provides us with a
solid basis to formulate design goals of FingerArc and FingerChord, which we
present in detail in the next section.

4.2 Concept

In this section, we describe our design goals based on the findings of the inter-
view study, then explain in detail the concepts of FingerArc and FingerChord.

4.2.1 Design Goals

The motivation of designing FingerArc and FingerChord is to leverage the ability
to detect hand postures to alleviate the existing issues with conventional key-
board shortcuts. We expect that with our techniques, keyboard shortcuts can
be more usable, learnable, and explorable. Based on the results of the interview
study, we present four design goals as follows.

Design Goal 1: Increase Expressivity to Keyboard Shortcuts

Pressing more than two modifier keys simultaneously is very hard to articulate
with a single hand. Yet, single-handed shortcuts are of particular importance
because they free the other hand for users to interact with active objects. This
practically limits the number of commands feasible of being associated with one
action key. To bring more expressivity to keyboard shortcuts, FingerArc and
FingerChord complement conventional keyboard shortcuts that require press-
ing one or more modifier keys. Besides, the two compatible techniques also
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increase the practical number of commands associated with one action key by
eight.

Design Goal 2: Improve Semantic Alignment to Associated Commands

The poor memorability of keyboard shortcuts often stems from the misalign-
ment between the shortcut keys and the associated actions. A typical keyboard
shortcut (e.g. [ct)+[ V) consists of one action key (V) and one or more modifier
keys (cr). Ideally, an easily memorised shortcut should use the same letter
that a major word in the command starts and only one standard modifier key
(e.g. [cr]+[c | for Copy). However, when multiple commands start with the same
letter, designers have to assign the new command to a different, unused action
key, or add an extra modifier key. When a growing number of commands are
assigned with keyboard shortcuts, the mappings become increasingly obscure.
To alleviate this semantic misalignment, FingerArc and FingerChord reduce the
need for pressing modifier keys by detecting whether a special hand posture is
formed. Designers can group the commands starting with the same letter un-
der the same action key to minimise this misalignment. Further, the actions
associated with pressing a certain key become more predictable.

Design Goal 3: Support Physical Rehearsal of Expert Behaviour

Undoubtedly, learning keyboard shortcuts requires a considerable amount of
physical and mental effort. This is largely because the current interaction
paradigm does not support users to effectively rehearse them. There is a huge
gulf between the physical movement of navigating menus or clicking toolbar
icons and the one of activating shortcut keys (Figure [4.1a). When learning key-
board shortcuts, users need to point their cursor to the graphical widget, where
the action can be completed with a simple click. Yet, they need to consciously
avoid using graphical input and trigger the action with the displayed shortcut.
In addition, the lack of visual guidance when articulating shortcut keys further
exacerbates the issue. To support physical rehearsal of keyboard shortcuts,
FingerArc and FingerChord provide an intermediate step between menu naviga-
tion and direct activation of shortcut keys (Figure [4.1p). By providing dynamic
visual guidance when pressing and holding an action key, users practise the
same expert behaviour with the feedback from the shortcut interface. This fa-
cilitates the smooth transition to expert behaviour.
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Figure 4.1: Illustration of FingerArc and FingerChord interaction model compared to traditional
keyboard shortcuts: (a) a huge gulf exists between graphical input and keyboard shortcuts;
(b) FingerArc and FingerChord reduces such gulf by providing dynamic visual guidance when
pressing and holding an action key.

Design Goal 4: Facilitate Shortcut Command Exploration

Keyboard shortcuts are rarely learned directly through the interaction with a
keyboard due to the unpredictable behaviour of activating a different action. An
exception is when users expect a shortcut to trigger the same command learned
from a different context or the same combination of modifier keys to modify
the primary command the same way. Regardless, the explorability of keyboard
shortcuts is very limited. To facilitate active shortcut command exploration,
FingerArc and FingerChord provide a common mechanism for cancellation to
reduce the risk of making an error. Besides, when pressing one action key, one
can also view other commands bound to the same key. This prompts the discov-
ery of new command shortcuts from the keyboard itself, rather than graphical
widgets.

4.2.2 FingerArc and FingerChord

FingerArc and FingerChord are complementary to menu interaction for novice
users. A novice user starts interacting with an interface by navigating through
menu hierarchies. Hand posture based keyboard shortcuts are displayed next
to their associated commands as plain text or as symbols. Users can activate
the shortcuts in two different modes:

* Guidance mode is triggered when users pause on the action key for a pre-
designated delay time with a special hand posture. A shortcut interface
pops up after the delay. Users then interactively adjust their hand pos-
tures to select the desired command. The shortcut interface dynamically
provides feedback on which option is selected.
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¢ Shortcut mode is triggered when users directly press the action key with
the posture that selects the command.

FingerArc and FingerChord both expect a special hand posture to differenti-
ate between entering text or activating a keyboard shortcut. FingerArc expects
the action key to be pressed using the index finger with the little, ring, and
middle fingers tucked in (posture illustrated in Figure 4.2ja). FingerChord ex-
pects the middle finger to press the action key and the little and ring fingers
tucked in (posture illustrated in Figure 4.3p). Because the two techniques use
different fingers, they are compatible with each other. In addition, they are also
compatible with the conventional keyboard shortcuts with modifier keys.

FingerArc triggers the default action when the thumb is hidden under the
index finger (Figure [4.2b). To select other options under the action key, Finger-
Arc detects the relative angle between the thumb and the index finger. If the
angle is greater or equal to 60°, the second command is selected (Figure [4.2[).
If the angle is greater or equal to 30° and smaller than 60°, the third command
is selected (Figure 4.2d). If the angle is smaller than 30°, the fourth command

is selected (Figure [Z.2f).
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Figure 4.2: FingerArc: (a) for users who are not familiar with the shortcut, they can press and
hold the action key using the index finger with the little, ring, and middle fingers tucked in for
a predesignated delay time to show the shortcut interface; (b) hiding the thumb underneath se-
lects the primary command; (c-e) posing the thumb relative to the index finger to form different
angles selects other options; (f) releasing the key while maintaining the hand posture activates
the selected command; (g) revealing all the hidden fingers cancels the operation. For users who
are already familiar with the hand posture, they can simply press the key posing the same hand
posture to trigger its corresponding command.

FingerChord allows users to select different commands by optionally press-
ing different key areas using the index finger. Figure 4.3]illustrates an example
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that demonstrates this concept. The default action of pressing with only the
middle finger selects the first command (Figure [4.3pb). Subsequently pressing a
key in the lower row relative to the action key selects the second command (Fig-
ure[4.3fc). Similarly, pressing a key in the middle row selects the third command
(Figure 4.3(d) and pressing a key in the upper row selects the fourth command

(Figure 4.3e).
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Figure 4.3: FingerChord: (a) for users who are not familiar with the shortcut, they can press
and hold the action key using the middle finger with the little and ring fingers tucked in for
a predesignated delay time to show the shortcut interface; (b) maintaining the hand posture
selects the primary command; (c-e) using the index finger to press different key areas selects
other options; (f) releasing the key while maintaining the hand posture activates the selected
command; (g) revealing the little and ring fingers cancels the operation. For users who are
already familiar with the hand posture, they can simply press the key(s) using the same hand
posture to trigger its corresponding command.

To activate the selected command, both FingerArc and FingerChord require
releasing the key while maintaining the posture (Figure and Figure 4.3f).
Additionally, if two keys are being pressed in FingerChord, they need to be re-
leased at the same time. In both techniques, cancellation of the current op-
eration is achieved with a common mechanism that requires revealing all the
fingers regardless of the current mode (Figure and Figure [4.3e).

Compared to traditional keyboard shortcuts, we hypothesise FingerArc and
FingerChord to have the following advantages, which correspond to the four
design goals that we have discussed earlier:

* Increased expressivity — by complementing the conventional shortcuts
that involve pressing one or more modifier keys, the two compatible tech-
niques increase the number of commands under the same key by eight.

* Increased memorability — by associating commands with the letter key
that the commands start with, and prompting users to take advantage of
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more expressive hand postures, keyboard shortcuts become more easily
remembered.

* Increased learnability — by providing an intermediate guidance mode,
users can physically rehearse the expert behaviour with dynamic visual
feedback, therefore transitioning to experts more effectively.

* Increased explorability — by affording a common mechanism to cancel
an operation, these techniques reduce the risk of making an error and
encourage users to explore hand posture based keyboard shortcuts as if
navigating menus.

4.3 Proof-of-Concept Implementation

We developed a proof-of-concept implementation of FingerArc and FingerChord
on a MacBook Pro laptop computer with a 15-inch display and a QWERTY key-
board (Figure [4.4fa). A downward facing camera fixed in a 3D printed case was
mounted on top of the laptop screen, recording the keyboard area. The camera
was equipped with an illumination board and an infrared filter to precisely con-
trol the lighting environment. The built-in camera, reflector, and green keyboard
cover in Finger-Aware Shortcuts was not applied here because the tracking ac-
curacy was sensitive to the environment lighting change.

Three 5mm hemisphere reflective markers were attached to the fingertips of
the little finger, index finger, and the thumb, respectively. A fourth marker was
attached to a point on the back of the hand that forms a right angle with the
markers on the index finger and the thumb. A native macOS applicationran as a
system-wide service, tracking the marker positions while intercepting keyboard
events. Keyboard area was rectified by manually labelling the four corners of the
keyboard in the software (Figure 4.4b). Heuristic rules were applied to identify
hand postures in real-time (Figure [4.4c).

Our preliminary test with a number of users showed that FingerArc and
FingerChord are feasible of complementing standard shortcuts to enable more
expressive keyboard interaction. We expect future work to further understand
the performance and learning of hand posture based keyboard shortcuts com-
pared to standard shortcuts.
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Figure 4.4: Implementation: (a) apparatus and a demonstration of triggering a FingerArc short-
cut; (b) keyboard rectification with manual labels; (c) marker tracking for hand posture identi-
fication.

4.4 Summary

This chapter has presented a qualitative interview study that provides us with
a better understanding of the current issues with conventional keyboard short-
cuts. Based on the findings, we presented the concept and implementation of
FingerArc and FingerChord, which extends Finger-Aware Shortcuts to be more
usable, learnable, and explorable. By providing visual guidance as an inter-
mediate step between graphical input and direct shortcut activation, FingerArc
and FingerChord are expected to better facilitate users’ transition to expert be-
haviour. In addition, detecting hand posture based keyboard shortcuts further
increases the expressivity of keyboard shortcuts.
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Chapter 5

Conclusion

This thesis explored three different finger-aware techniques that enable more
enriched interaction experience for activating keyboard shortcuts. Finger-Aware
Shortcuts allow for activating different commands with the same key by detect-
ing the finger, hand, and hand posture used for pressing. FingerArc and Finger-
Chord let users press a key with one finger and select from different commands
with another finger.

Our evaluations to Finger-Aware Shortcuts revealed the performance and
preference patterns for pressing keys with different fingers, hands, and hand
postures, as well as their performance compared to conventional keyboard
shortcut mapping strategies. We showed that Finger-Aware Shortcuts have
similar performance to a common, yet necessary class of keyboard shortcuts
consisting of one alphanumeric key and multiple modifier keys. Our interview
of expert computer users identified the key factors that impede the learning of
keyboard shortcuts. Based on the findings, we designed FingerArc and Fin-
gerChord that extend Finger-Aware Shortcuts to detect more expressive hand
postures, provide dynamic visual feedback, and allow for cancellation to help
novice users explore and transition to experts.

Together, our work unveiled a novel design space on conventional keyboards
that encode the information from finger, hand, and hand posture identification,
which makes keyboard interaction more expressive. While understanding the
long-term performance of these techniques is beyond the scope of this thesis, we
hope our work may provide valuable insights for researchers to further explore
this interaction space.
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