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Abstract 

Fluorinated benzoic acids (FBAs) are frequently used as tracers by the oil industry to 

characterize petroleum reservoirs. The demand for fast, reliable, robust, and sensitive 

approaches to separate and quantify FBAs in produced water, both in laboratory and field 

conditions, has not been yet fully satisfied. In this study, for the first time, thin film solid 

phase microextraction (TF-SPME) is proposed as a versatile sample preparation tool for 

the determination of FBAs in produced water by pursing two different approaches. First, 

an automated high throughput TF-SPME method using solvent desorption for fast and 

simultaneous preparation of multiple samples prior to liquid chromatographic separation 

and high resolution mass spectrometric detection (LC-MS) of FBAs was demonstrated 

for routine laboratory analysis. This method was optimized in terms of extraction phase 

chemistry, sample pH and ionic strength, extraction/desorption times using two 

representative FBAs (4-FBA and 2,3,4,5-tetraFBA). It incorporates a relatively simple 

sample pretreatment involving pH adjustment prior to the TF-SPME, and obtained limits 

of quantification (LOQ) are at the 1.0 ng mL-1 level. Second, the applicability ofTF-

SPME for fast mass spectrometric (MS) determination of FBAs with omission of 

derivatization and gas chromatographic (GC) separation was proven. This second method 

consists of manual extractions of analytes from seawater samples with a thermally stable 

TF-SPME membrane and direct thermal desorption of the extracted FBAs to a MS via a 

thermal desorption unit (TDU). It was demonstrated that the TF-SPME extracts and 

thermally releases analytes quantitatively and with good reproducibility. This approach 

opens up the possibility for on-site measurements with portable analyzers. 
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1. Introduction 

Secondary recovery is a process in which reservoir fluid is mobilized from an injection 

well toward a production well. Problems arising from fluid channeling through mini-

fractures, faults, and high permeability streaks result in poor contact between reservoir 

and injection fluids, and consequently, in low hydrocarbon recovery [1]. Tracer testing 

has been proven to help overcome these challenges during the design, testing, and 

execution of fluid injection programs [2-4]. Tracers analyses of the distribution of 

residence times between wells, together with numerical simulations, provide detailed 

information on reservoir heterogeneity and connectivity, remaining oil saturation and its 

distribution, and estimates of how much of the reservoir fluid volume contacts the 

injection fluid [2,4]. Owing to their unique characteristics, fluorinated benzoic acids 

(FBAs) are the most widely used tracers in fluid injection campaigns; they are highly 

stable under reservoir conditions, fairly inert (no binding to the matrix), do not naturally 

occur in nature, and are found in several distinct structural compositions, which allows 

for their application towards multiple tracing experiments in fractured media where 

several conservative tracers are required [5-7]. For these reasons, FBAs are also utilized 

to trace groundwater movement in soil, and as indicators in leaching studies for carbon 

sequestration techniques [7]. As they are typically injected in low quantities, several 

analytical methods have been proposed to enable the detection of these compounds at 

trace and ultra-trace levels [5,6].The lowest detection limits reported to date are below 

0.050 ng mL-1 and are achieved by solid phase extraction (SPE) followed by gas 

chromatography mass spectrometric (GC-MS) analysis [8,9]. Although the obtained 

detection limits in this method are very good, it nonetheless requires many tedious 

sample preparation steps. For instance, in SPE, extraction of samples is followed by a 

long derivatization step (24 h) to convert FBAs into fluorobenzoic acid methyl esters 

(FBAMEs), and a solvent exchange step is further incorporated prior to the GC-MS 

analysis. As FBAs are nonvolatile and relatively polar, high pressure liquid 

chromatography (HPLC) offers the advantage of elimination of the derivatization step, 

speeding up direct analysis. However, to date, the reported HPLC-UV detection limits are 

typically two to three orders of magnitude higher than the current reference method; for 

instance, a HPLC-UV method with minor sample preparation can only offer detection 



limits as low as 10 ng mL-1 [3]. On the other hand, when HPLC is coupled toa more 

sensitive mass detector, superior detection capabilities can be achieved. For instance, 

high pressure liquid chromatography tandem mass spectrometry (LC-MS/MS) methods 

with limits of detection in the ng mL-1 [7] and 0.05-50 ng mL-1 range [6] have been 

reported for FBAs. Recently, a study employing LC-MS based determination after SPE 

reported detection in the 0.016-0.210 ng mL-1 range, with an enrichment factor of 500, 

almost matching the sensitivity of the above-mentioned SPE followed by GC-MS 

method[8],while avoiding the tedious derivatization step [5]. Yet, despite the high 

enrichment factors achieved in these experiments, and the simultaneous clean-up of 

analytes from the matrix components offered by the method,its sample preparation 

methodology is as comparatively tedious as traditional SPE followed by GC-MS, and can 

be considered the bottleneck of the analysis. In addition, none of the reported methods 

scrutinize possible matrix effects that may occur in real sample analyses owing to salinity 

or other dissolved organics co-eluting with the probed analytes. 

A novel approach to sample preparation is needed to simplify long procedures while still 

providing analyte selectivity in complex matrices. The bottleneck issue, often cited as a 

major challenge in chemical analyses, can be overcome by introducing a high throughput 

approach to sample preparation. In this sense, solid phase microextraction (SPME), 

which has of late been widely established in various areas as a method of choice, 

provides the opportunity for high throughput sampling and sample preparation. In SPME, 

the principle of extraction lies in the equilibrium established between the concentration of 

the analyte in the sample and the extraction phase [10]. SPME-based sampling and 

sample preparation approaches are well suited for automation [11, 12], as well as direct 

coupling, or coupling via various interfaces to analytical instruments [13-15]. 

Additionally, SPME is flexible in applicable geometries and extraction chemistries, as 

well as suitable for in vivo and on site analysis. Among the various geometries that exist 

for SPME, thin film SPME (TF-SPME) has been recently introduced to further increase 

the sensitivity of the method. The basic principles of TF-SPME rely on the use of a 

relatively large surface volume for the extraction phase, while keeping the thickness of 

the coating similar to the traditional fiber coating thickness; this change in geometry 

practically improves the extracted amount of analytes in reasonable extraction times, 



which is ensured by fast sampling rates via contact of large extraction surface areas with 

the sample. Moreover, TF-SPME has been designed to fit commercially available 96-well 

plates, allowing for simultaneous sample preparation throughput of up to 96 samples. 

Considering its multiple benefits, TF-SPME has been proposed as a practical approach 

for high throughput sample preparation in bioanalysis [16-18], environmental analysis 

[19-21], clinical analysis [22-24] and doping analysis [25, 26], where many samples may 

be generated in a short time. The wide variety of TF-SPME applications available today 

stems from the simplicity of the SPME device; its re-usability, which decreases the 

analysis cost per sample; and its direct applicability to complex matrices without the 

necessity for sample pretreatment steps, such as filtration or centrifugation. 

In this work, we present a method for analysis of FBAs tracers in brine based on TF-

SPME and liquid chromatography-high resolution mass spectrometry (LC-HRMS), with 

seawater introduced as a proxy for produced water. Limits of detection are below 1 ng 

mL-1 for the two FBAs used during method development: 4-fluorinated benzoic acid (4-

FBA), and 2,3,4,5-tetrafluorinated benzoic acid (2,3,4,5-tetraFBA). The method requires 

minimal sample handling, and provides simultaneous sample preparation of up to96 

samples, presenting obvious advantages over GC-MS techniques for aqueous samples 

that require derivatization. Additionally, the direct thermal desorption of analytes from 

TF-SPME to a quadrupole mass detector, which omits the necessity of derivatization, was 

scrutinized in order to emphasize the potential of TF-SPME for on-site sampling and 

analysis when portable detectors for this application become available. Direct SPME 

sampling in the field will aid in conserving sample integrity, and avoiding human error 

during handling and shipping of samples to analytical chemistry laboratories from remote 

oilfields. In addition, on-site sampling enables the representation of distributions of 

residence times of tracers between wells with higher point densities. 

  



2. Experimental  

2.1. Materials and chemicals 

All chromatographic solvents, namely water (H2O), acetonitrile (ACN), and methanol 

(MeOH), were of LC-MS grade, and purchased from Fisher Scientific (Ottawa, ON, 

Canada), while formic acid (FA) for mass spectrometry was obtained from Fluka 

(Oakville, ON, Canada). The analytes 4-FBA and 2,3,4,5-tetraFBAwere purchased from 

Aldrich (Oakville, ON, Canada). Individual standard stock solutions of 1 mg mL-1of each 

FBA were prepared in MeOH and stored at 4oC. A phosphate-buffered saline (PBS) 

solution (pH 7.4) was prepared in ultrapure water, as described elsewhere [12],by mixing 

appropriate amounts of sodium chloride, potassium chloride, potassium phosphate 

monobasic, and sodium phosphate dibasic (Sigma-Aldrich, Oakville, ON, Canada), and 

used as sample matrix in preliminary evaluations of optimum extraction phase. Synthetic 

seawater with a representative composition for the Gulf of Mexico (GOM) was prepared 

(following the recipe shown in Table 1S) by mixing appropriate amounts of sodium 

sulphate, potassium chloride, magnesium chloride hexahydrate, calcium chloride 

dehydrate (all from Sigma-Aldrich, Oakville, ON, Canada), and used in various stages of 

method development, as well as for validation of the final method. Working standard 

solutions were prepared daily by diluting the abovementioned analyte stock solutions in 

PBS or synthetic seawater. 

In order to select the most suitable extraction phase for the study, various extraction 

phases and SPE particles were tested. Among the extraction phases tested, hydrophilic-

lipophilic balanced (HLB), C18, and strong anion exchange (SAX) particles were kindly 

obtained from Supelco (Bellefonte, PA, USA), while polystyrene divinylbenzene, 

modified with weak anion exchange (WAX-PS-DVB) particles, were purchased from 

Macherey-Nagel (Germany).To immobilize the particles on the surface of the blades, 

polyacrylonitrile (PAN) dissolved in N,N-dimethyloformamide (DMF) (both purchased 

from Sigma-Aldrich, Oakville, ON, Canada) was used as a glue by following the spray-

coating method described by Mirnaghi et al. [27]. 

In addition to solvent desorption of extracted analytes from thin films, direct thermal 

desorption was also demonstrated. In this set-up, a thermal desorption unit (TDU) was 

directly coupled to a single quadrupole mass spectrometer. For these experiments, 



thermally stable membranes consisting of divinylbenzene (DVB), (5µm diameter, 

Supelco, Bellefonte, PA, USA) immobilized in PDMS were prepared with the method 

described by Jiang et al. [28]. 

 

2.2. Instrumentation 

2.2. 1. LC-MS instrumentation 

LC-MS analyses were performed in an Accela liquid chromatograph (equipped with a 

binary pump, a vacuum degasser, and a thermostated autosampler) coupled to an 

ExactiveTM benchtop Orbitrap mass analyzer with an electrospray ionization probe (ESI) 

(Thermo Scientific, San Jose, CA, USA). 

Chromatographic separation of the analytes was achieved on a Discovery HS F5 column 

(50 mm × 2.1 mm i.d., 3 µm; Supelco, Bellefonte, PA, USA) usinga 0.4 mL min-1 flow 

rate in a gradient elution, with water (solvent A) and ACN (solvent B) both acidified to 

contain 0.1% (v/v) FA. The used gradient was as follows: for the first 0.5 min, 10% B 

was used, then raised to 70% B in 2.5 min and held for 0.5 min, then returned to the 

initial settings in 0.5 min, and held for 1 min at these conditions to ensure re-equilibration 

of the column. The injection volume was 10 µL (full loop mode) for all analyses. The 

tray temperature of the autosampler was maintained at 5oC. For evaluation of instrument 

performance, quality control samples (QC) consisting of 50 ng mL−1 of each compound 

were injected periodically throughout the sequences, including in the beginning and end 

of each run. 

Mass spectrometric analyses were performed in negative ionization mode with operating 

parameters set as reported on Table 2Sin Supplementary Information (SI). The mass 

resolution was set at 100,000 FWHM for m/z 200. The automatic gain control (AGC) 

target was set at a balanced range (1 x 106 ions). Instrument calibration was conducted 

daily with the use of a negative calibration solution containing sodium dodecyl sulfate, 

sodium taurocholate, and Ultramark® 1621. Instrument settings, data acquisition, and 

processing were carried out by Xcalibur software (version 2.2) provided by Thermo 

Scientific. 

  



2.2.2. TDU-MS coupling for thermal desorption of analytes 

A GERSTEL TDU connected to a cooled injection system (CIS) (GERSTEL GmbH, 

Mullheim, GE) was coupled to the quadrupole MS (Agilent Technologies, CA, USA) 

using a deactivated fused silica column (5 m length, 0.25 mm ID; Supelco, Bellefonte, 

PA, USA) as a transfer line between the injection system and the mass analyzer. Helium 

was used as a carrier gas, and the flow rate was set to 4 mL min-1 with a split ratio of 

20:1. The column temperature was kept at 175oC during the analyses using a column 

oven Agilent 6890 GC. TF-SPME membranes (DVB-PDMS)were desorbed in the TDU 

with a desorption temperature program as follows: initial temperature was set to40oC and 

ramped to 200oC at a heating rate of 700 °C min-1, then held for 2 min to ensure complete 

desorption of analytes. During the thermal desorption process, the CIS was kept at -50oC, 

and desorbed analytes were cryo-focused in the CIS liner. Then, the CIS was heated to 

275oC at a rate of 12 °C s-1, and held for 2 min at the given final temperature. The 

quantification was performed using the peak area of the signal collected from each 

selected molecular ion. 

 

2.3. Method development 

2.3.1. High throughput TF-SPME for solvent desorption and LC-MS analysis 

2.3.1.1.Optimization of TF-SPME 

All method development steps for solvent desorption were performed on a Concept 96 

manual unit[21],which provides parallel sample preparations of up to 96 samples with the 

use of a multi-well plate; consequently, in a single experiment, the best coating and 

desorption solvent combination could be selected. Moreover, the compact size of the 

manual unit allows for portability, which, together with the simplicity of the proposed 

protocol, makes the unit very convenient for on-site routine analysis. In order to evaluate 

the best coating and desorption solvent for the developed method, analytes were spiked 

into PBS to obtain 50 ng mL-1 final concentrations. For this purpose, five types of 

coatings (HLB, PS-DVB-WAX, C18, SAX, and mixture of HLB-SAX (50/50, w/w)) and 

four types of desorption solutions (Solvent A: ACN/MeOH/H2O (40/40/20, v/v/v) 

acidified to contain 0.1% (v/v) FA; solvent B: ACN/H2O (80/20, v/v); solvent C: 

ACN/H2O (80/20, v/v) acidified with FA to contain 0.5% (v/v); solvent D: ACN/MeOH 



(80/20, v/v)were tested for selection of the best extraction phase and solvent. In these 

evaluations, extractions were performed from 1.5 mL samples in triplicate for 60 min at 

room temperature, and using 850 rpm agitation speed. Immediately after each extraction, 

a 2 s static washing step was conducted with 1.5 mL water to remove any loosely 

retained matrix components. Next, analytes were desorbed into 1.5 mL of the above-

mentioned solvent mixtures for 60 min, using an agitation speed of 850 rpm. A second 

desorption with the same conditions was applied in order to calculate the carry-over in 

each extraction phase-solvent pair. Using the best coating and solvent combination, 

further optimizations of the experimental parameters were performed. The effect of pH, 

salt addition, and organic modifier, as well as extraction and desorption time profiles 

were among the investigated parameters.  

 

2.3.1.2. Validation of the method for seawater analysis 

For validation experiments, Mediterranean seawater collected from Messina, Italy, as 

well as synthetic seawater prepared in laboratory were used. Seawater samples were 

stored upon arrival in plastic bottles at +4 °C until use. The same procedure was used for 

synthetic seawater prepared in laboratory. 

The first step of validation involved verifying that matrix-to-matrix variations of seawater 

did not affect the performance of the method. For this purpose, seawater samples were 

first confirmed to be free from tested FBAs by performance of blank sample extractions 

with the developed high throughput TF-SPME method followed by LC-MS analysis. 

Next, external SPME calibrations were constructed by application of the developed 

method to seawater and synthetic seawater, and examination of deviations between the 

obtained slopes. 

In order to determine figures of merit for the method, external SPME calibration 

solutions were prepared in synthetic seawater and Mediterranean seawater in a range of 

0.1-1000 ng mL-1 of FBAs. Each calibration point was extracted in triplicate with the 

developed high throughput TF-SPME method, followed by LC-MS analysis. Before LC-

MS analysis, in order to not exceed the upper limit of the linear response of the 

instrument, the calibration samples, which had been spiked to contain more than 100 ng 

mL-1 of FBA, were diluted ten times with their corresponding desorption solution. 



For determination of method precision, target analytes were spiked at various 

concentrations (0.5, 5, 50 and 500 ng mL-1), representing-low,-mid, and -high portions of 

the constructed calibrations. These extractions were performed in twelve replicates for 

inter-blade repeatability, and in three replicates for intra-blade repeatability, both in 

Mediterranean seawater and synthetic seawater.  

For determination of method accuracy, the same levels of concentrations tested for 

precision were used in Mediterranean seawater, and relative recoveries were calculated 

using the TF-SPME calibration curve for synthetic seawater. Extractions were performed 

in twelve replicates from seawater, and the average of three replicates was used for each 

point of the calibration curve. 

 

2.3.2. Membrane TF-SPME for TDU-MS analysis  

For direct thermal desorption to the MS, extractions of FBAs were performed with a 

PDMS loaded with DVB (5μm particles) as extraction phase, which has already been 

approved in several studies [28,29] as a thermally stable extraction phase with a wide 

range of analyte coverage. Extraction experiments were performed manually in 2 mL 

amber glass vials sealed with PTFE caps. For extraction, 150 µm thick membranes made 

of PDMS and loaded with DVB were cut to 20 mm x7 mm in size and attached to a 

stainless steel wire (40 mm) that functioned as support both for the extraction and 

desorption steps (Figure 1S).FBAs were extracted from 1.9 mL of GOM acidified with 

10 µL of concentrated HCl under 1800 rpm agitation. Following extraction, a short (2 s 

static) washing step was applied using 1.9 mL of ultrapure water. Any water droplets 

remaining on the membranes were removed with kimwipes prior to thermal desorption. 

Following the extraction, the membranes were immersed into the TDU liners by holding 

them from the wire supports (without detaching the wire) and the liners were placed on 

the autosampler for injection. Extraction time profiles and linear dynamic ranges were 

among the selected parameters to be evaluated to show the potential of TF-SPME-MS for 

direct thermal desorption-based analysis of FBAs. 

 

3. Results and discussion 

3.1. Optimization of a TF-SPME protocol for solvent desorption and LC-MS 



analysis 

In order to develop a high throughput TF-SPME-based analysis method for FBAs, 

numerous parameters were scrutinized. A number of parameters that may affect the 

extraction efficiency of the target compounds using SPME were evaluated: type of 

extractive phase (coatings/sorbent) and desorption solvent, extraction and desorption 

times, as well as matrix properties, including sample pH and salinity. 

 
3.1.1. Sorbent and desorption solvent selection 

In order to obtain the best possible extraction efficiency, it is crucial that an appropriate 

SPME extraction phase and the right desorption solvent are chosen. Thus, as a first step, a 

comprehensive review of the literature was undertaken in regards to SPE materials 

frequently used for extraction of those compounds. In light of the most commonly 

reported SPE sorbents for isolation of FBAs from sample matrices [5,8,9], together with 

our experience in developing new coatings for multi-residue analyses, and taking into 

consideration the physicochemical characteristics of the analytes, five different types of 

TF-SPME coatings, namely, HLB, C18, SAX, HLB-SAX, PS-DVB-WAX and 50/50 

(w/w) mixture of SAX-HLB, were selected to be investigated. Depending on the pH of 

the sample and the extraction phase to be used, analytes can interact via multiple types of 

interactions with the extraction materials, such as π-π interactions, hydrogen bonding, ion 

exchange (electrostatic), hydrophobic interactions, as well as synergetic multiple 

interactions of the abovementioned interactions; as such, it is worth testing all the 

different chemistry-possessing extraction phases so as to select the best one in terms of 

highest extraction efficiency and lowest carry-over. In parallel, four different 

compositions of desorption solvent mixtures were evaluated for their capabilities of 

quantitative desorption of the analytes under study. Solvent composition details can be 

found in section “2.3. Method development”. The obtained results for the extraction 

amounts of FBAs from aforementioned coating/solvent pairs are presented in Figure 1.As 

shown, the best recoveries for both FBAs were obtained with HLB, SAX-HLB, and PS-

DVB-WAX coatings. Particularly, PS-DVB-WAX provided superior extraction for 4-

FBA. However, the results from a second sequential desorption applied under the same 

conditions (carry-over evaluation, see Supporting InformationTable 3S) showed that the 



PS-DVB-WAX coating provided high carry-over in a wide range of 6-18% (results are 

not shown) for the tested desorption solvents. With such high carry-over values, it is 

possible that false positives may be reported, or that higher concentrations of samples be 

determined that are in reality analyte-free or contain low concentrations, especially if 

they are sampled subsequently to a high concentration batch. Accordingly, this sorbent 

was eliminated from further consideration. Among the next best two sorbents, HLB and 

SAX-HLB, which provided similar extraction amounts, HLB was selected as a coating 

for further use due to its high recoveries and the low carry-over (see Supporting 

Information Table 3S) obtained with the tested solvent mixtures. In addition, the mixing 

of HLB with SAX was observed to not dramatically enhance the extraction of FBAs 

compared to HLB alone. Regarding the best solvent associated with the quantitative 

desorption of analytes from HLB, the recoveries in Solvent D were observed to be the 

highest among all tested solvents. However, evaporation during the desorption step was 

very high, which resulted in apparent highest recoveries due to the pre-concentration of 

the extract. Regarding carry-over, Solvent B was shown to provide the lowest value (less 

than 1%). Out of four desorption solvents and the five extraction phases tested, 

ACN/H2O (80/20, v/v) and HLB coated blades were selected as a compromise between 

satisfactory results regarding repeatability (RSD 3.8-6.3%), extraction efficiency (ca 12 

% in PBS), and low carry-over (less than 1%).  

 

3.1.2. Effect of sample pH and salinity on the extraction of FBAs 

After selection of an appropriate extraction phase and solvent, the effect of sample pH on 

extraction was evaluated. For this purpose, the pH of ultrapure water was adjusted to 

acidic, neutral, and basic pHs by adding necessary amounts of concentrated HCl (for pH 

2.0), CH3COOH/NH4CH3COO (for pH 4.5), NH4HCO3/HCl (for pH 7.0), and NaOH (for 

pH 9.1).Since FBAs are ionizable compounds, pH may play an important role on 

extraction efficiency, as exemplified by our results; as can be seen on Figure 2,extracted 

amounts were significantly enhanced at pH 2.0.This was an expected result, as these 

compounds exist in their neutral forms at this pH, and thus, are more available for 

extraction. 

On the other hand, as mentioned earlier, one of the main applications for the developed 



method is the determination of FBAs as tracers in produced water. Considering that 

seawater is frequently used as an injection fluid, and that seawaters from different sources 

may have different ionic strengths, the extraction efficiencies of the studied FBAs needed 

to be evaluated under various salt concentrations. Accordingly, experiments on the effect 

of ionic strength (salinity) were performed under neutral pH by varying the salt content of 

the sample. The obtained results, shown in Figure 3, revealed that extraction efficiencies 

in the presence of salt were enhanced with respect to extractions performed in pure water. 

In addition, GOM, which is representative of seawater composition, and 9% and 18% 

(w/v) of NaCl showed similar values for extraction. The presence of salt involves more 

water molecules around ionic salts due to the formation of hydration spheres around 

them, thereby reducing water available to dissolve or hydrate FBAs [30].However, 

further increases in salt amounts to 27% (w/v) were observed to cause a slight decrease in 

recoveries. Moreover, experiments performed over different time periods revealed that 

recoveries can show inconsistencies under neutral pH levels, even with adjusted ionic 

strengths. Therefore, for the final method, acidification of the sample (seawater or GOM) 

to pH: 2.0 was employed for all experiments. 

 

3.1.3. Effect of organic solvent addition on extraction efficiency 

All produced water contains some soluble oil, increasing the complexity of the sample 

matrix. The effect of organic content is known to play a key role in the extraction 

efficiency of analytes using SPME [10].More specifically, organic components dissolved 

in water have shown to provide difficulties during analysis of environmental water 

samples[31, 32].To analyze the effect of organic solvent addition on extraction 

efficiency, a standard mixture of benzene, toluene, ethylbenzene and xylene (BTEX)in 

MeOH was added to GOM solutions to adjust BTEX concentrations to 1, 5, and 10 µg 

mL-1.Experiments with HLB coated blades resulted in the following extraction 

efficiencies: 98%, 96%, and 70%,respectively, for 4-FBA,and 88%, 74%, and 44%, 

respectively, for 2,3,4,5-tetraFBA. The observed decrease in extraction efficiency upon 

addition of BTEX could be attributed to organic content and to solvent replacement (for 

the 10 µg mL-1BTEX solution, 1% of the water solvent was replaced by MeOH). 

Experiments with water replaced by MeOH at the 1%, 5%, and 10% levels yield 



extraction efficiencies of 63%, 63%, and 50%, respectively for 4-FBA, and 35%, 35%, 

and 28%, respectively, for 2,3,4,5-tetraFBA. Solvent composition changes have an 

impact on extraction efficiencies: organic solvent can reduce distribution constants for 

analytes, and as it was observed here, this phenomenon could be critical even when 

solvent displacement levels are as low as 1% [33-34].In cases where the organic 

composition of the sample matrix is dynamic, matrix normalization procedures may be 

necessary for quantitative analysis [33, 35]. 

3.1.4. Extraction/desorption time profiles 

Extraction time was investigated in the range of 5 to 120 min. The time required to reach 

equilibrium was approximately 60 min for both studied compounds (Figure 2S). 

Nevertheless, due to the use of a 96-well plate high-throughput configuration (which 

allows for advantageous parallel extractions of studied samples and standards used for the 

matrix-matched calibration curve), good precision can be maintained even in pre-

equilibrium conditions; accordingly, even a5 min extraction time could be applied, 

provided that sufficient sensitivity is obtained. As a next step, the desorption time of 

analytes was evaluated in a range of 5 to 60 min. After 5 minutes of desorption, no 

significant differences in desorbed amount were observed. In order to avoid artifacts 

associated with small variations in desorption conditions, 10 min was selected as 

desorption time. Thus, extraction and desorption times were held at 60 and 10 min, 

respectively.  

 

3.1.5. Validation of the proposed method for high throughput TF-SPME with LC-

MS based detection 

As described in the experimental section, the validation of the developed high throughput 

TF-SPME method was performed using prepared synthetic seawater and Mediterranean 

seawater. Constructed TF-SPME calibrations showed good correlation coefficients in 

both tested matrices. Moreover, the slopes of the calibrations were similar for both 

synthetic seawater and real seawater. The high  correlation obtained in terms of the 

amounts of analytes extracted from these two  matrices  shows that synthetic seawater 

can be used for the construction of a matrix-matched calibration when analyte-free real 

samples are unavailable (see Supporting Information, Figure 3S and 4S).This not only 



shows the applicability of the method for different sources of seawater (which may have 

slightly different amounts of salts), but also shows that synthetic seawater can be used for 

construction of external SPME calibration for quantification purposes (matrix matched 

calibration). 

Method LOQs were calculated for both synthetic seawater and Mediterranean seawater, 

and are summarized in Table 1. Individual LOQs for each analyte were chosen as the 

lowest level of the standard that provided less than 20% of deviation from their nominal 

concentration in the constructed calibration curve. A LOQ of 1.0 ng mL-1was estimated 

for 4-FBAin both matrices, while for 2,3,4,5-tetraFBA, LOQs of 0.5 and 1.0 ng mL-1were 

estimated for synthetic and Mediterranean seawaters, respectively. 

The precision of the method was evaluated in terms of inter-blade and intra-blade 

repeatability. Inter-blade precision was performed with 12 blades (for each spike level) 

using Mediterranean seawater spiked with both FBAs at low-, mid- and high levels 

corresponding to 0.5, 5.0, 50.0, and 500.0 ng mL-1 concentrations. Intra-blade 

repeatability was evaluated with the use of the same 3 blades in 3 separate experiments 

within a day, maintaining the same parameters for all experiments. In all repeatability 

experiments, extractions were conducted on Mediterranean seawater spiked with both 

FBAs at the mentioned concentration levels, and calculations were based on the amount 

of analytes extracted in ng. Extracted amounts were determined using standards prepared 

in neat solvent. The obtained results, which are summarized in Table 2, reveal good 

repeatability for both compounds at 5.0, 50.0, and 500.0 ng mL-1. On the other hand, at 

the lowest tested level, deviations were relatively higher, but acceptable with the 

exception of intra-blade evaluations for 2,3,4,5-tetraFBA, which showed more than 20% 

RSD. 

Method accuracy was scrutinized in Mediterranean seawater at the same concentrations 

used for the precision evaluation. Relative recoveries from Mediterranean seawater were 

determined using SPME external calibration constructed in synthetic seawater. 

Extractions were performed in 12 replicates (12 blades). Good correlations between 

extracted amounts and spike levels were obtained for both tested compounds (see Table 2 

for obtained accuracies and Figure 5S for typical chromatograms). For 4-FBA,a relative 



error of more than 20% was obtained at the low-spike level (0.5 ng mL-1); however, this 

was an expected result, as the LOQ for that compound was calculated to be1.0 ng mL-1. 

Considering that internal standards corrections were not used, neither for experimental 

bias nor instrumental drifts, the LOQs obtained in this study show that the method is 

adequate for the analysis of FBA tracers at the ng mL-1 level in seawater. Further 

improvements in LOQ values can be made with the use of a triple quadrupole instrument, 

or the use of better pre-concentration factors; for instance, smaller desorption volumes or 

evaporation-reconstitution to smaller volumes can be incorporated to the proposed 

method. 

 

3.2. TF-SPME for direct thermal desorption of FBAs to MS: a step towards direct 

on-site analyses  

As mentioned in the introduction of this article, GC-MS determinations are capable of 

providing the lowest detection limits for these compounds. However, as the carboxylic 

acid moiety of FBAs possesses strong interactions with the GC column stationary phase, 

FBAs are required to be derivatized before introduction to make them GC amenable. 

Considering the major drawbacks of the “gold standard”, and in light of the encouraging 

results obtained for extraction of FBAs using TF-SPME, the applicability of the TF-

SPME for direct thermal desorption of FBAs to MS was pursued, thus omitting 

chromatographic separation. This application not only provides a derivatization-free 

approach for thermal desorption, it also provides flexibility for on-site analysis when a 

portable mass spectrometer equipped with a thermal desorption unit is available. Hence, 

sampling and sample preparation can be performed in a single step using TF-SPME, and 

determinations can be completed in field. It should be kept in mind, however, that the 

results shown in this section are only preliminary evaluations showing the potential of 

TF-SPME for such applications. 

For the purpose of this study, a connection between the GC injector port and MS analyzer 

was established, as shown in Supporting Information Figure 6S.Given that the formerly 

described PAN glued coatings are not thermally stable, for this part of the study, well-

studied PDMS loaded with DVB were used (see Supporting Information for the images, 

Figure 1S) as extraction phase [28,36]. Experimental evaluation included carry-over 



analysis on the thermally stable TF-SPME, recoveries, extraction time profiles and 

external SPME calibrations. 

 

3.2.1. Optimization of the thermal desorption  

Although high thermal desorption temperatures in the TDU can facilitate fast desorption 

from the membrane, in this case, significant bleeding of PDMS and production of a high 

background in the collected total ion chromatographic data were observed. In cases such 

as this, slightly lower desorption temperatures can be used to avoid significant bleeding. 

However, to ensure complete thermal desorption from the thin films, relatively longer 

desorption times should be used to compensate for the slow desorption rate at lower 

temperatures. Given that the CIS was kept at -50 °C during the entire desorption step in 

the TDU, any slowly desorbed analytes from the thin films were re-focused on the CIS 

liner prior to their introduction to the MS. In this study, a 2 min desorption at 200 °C was 

found to be sufficient to quantitatively desorb all analytes from the thin films. As can be 

seen from Figure 6S (Supporting Information), the direct coupling of the injection system 

to the MS with the deactivated short capillary column, together with optimized 

conditions, made the detection of both FBAs feasible. Accordingly, it can be concluded 

that desorption of these compounds from DVB-PDMS is possible. The quantitative 

desorption of analytes was confirmed by second and third sequential desorptions and 

analyses (results are not shown) for carry-over. 

The recoveries of FBAs with TF-SPME were estimated by spiking the same absolute 

amount of analyte used in the extraction step on the membrane. As can be seen (Figure 

7S), under the tested conditions, extracted and spiked FBA amounts have similar peak 

areas in the chromatograph. This indicates the exhaustive nature of the extraction under 

the extraction phase/sample volume ratio conditions of these experiments. 

 

3.2.2. Extraction time profiles 

The extraction time profiles of analytes with DVB-PDMS membranes reached a plateau 

at 45 min under the tested conditions (Figure 8S and 9S).However, considering the fact 

that the extraction reached exhaustive recoveries, the observed equilibrium should be 

considered only as an apparent equilibrium. 



3.2.3. TF-SPME external calibration and linear range of the extraction 

Extractions of FBAs were evaluated over a wide range of concentrations using DVB-

PDMS membranes in order to determine the linear range and LOQ of the method. Results 

are shown in Figure 10S and Figure11S. Under these working conditions, the LOQs for 

4-FBA and 2,3,4,5-tetraFBAwere established to be 5 and 13 ng mL-1, respectively. 

However, it is worth mentioning that in the current system, only 1 out of 20 portions of 

the extracted analytes were introduced to the detection system, and in splitless injection 

mode, lower detection limits are expected. To overcome this, an alternative way to 

improve sensitivity would be to increase the sample volume; however, this was not 

investigated at this point, since it fell outside of the main scope of the study. 

In this section, the feasibility of direct thermal desorption from TF-SPME to MS without 

derivatization of FBAs was demonstrated. As discussed above in this section, the TF-

SPME can extract and thermally release analytes quantitatively and with good 

repeatability. 

 

 

4. Conclusions 

In this study, we demonstrated the potential of TF-SPME as a versatile tool for 

determination of FBAs in brine. In order to show the applicability of TF-SPME for 

laboratory and on-site analysis, two approaches were pursued. The main difference 

between these two is in their desorption procedures, namely, automated high throughput 

TF-SPME using solvent desorption followed by LC-MS determination, and extraction 

with thermally stable TF-SPME membranes followed by thermal desorption and coupling 

to a mass spectrometer (TF-SPME-MS). The former method has the advantage of 

simultaneously performing automated sample preparation for up to 96 samples in 

laboratory. Among the various tested extraction materials, HLB particles showed superior 

features in terms of extraction recoveries and completeness of the desorption process 

(low carry-over), and consequently, were selected as the extraction phase for the TF-

SPME blades. The proposed method requires acidification of the sample to keep analytes 

in their neutral form and ensure exhaustive extraction. This method, in terms of its 

exhaustive recoveries, can be considered as an open bed procedure, as it does not require 



filtration or centrifugation steps to remove sample particulates. The results obtained from 

the method validation experiments revealed detection limits of 1.0 ng mL-1,which can be 

further improved with the use of smaller desorption solvent volumes, larger sample 

volumes, or alternatively, with the use of more sensitive instrumentation, such as a triple 

quadrupole mass spectrometer. Organic components dissolved in water had a negative 

impact on extraction efficiencies. Matrix normalization studies will be needed for 

analyses of produced water, as this application requires consistent extraction efficiencies 

for samples with varying quantities of soluble oil. 

The second sample preparation approach affords the advantage of avoiding gas 

chromatographic separations, in addition to circumventing derivatization, which is 

normally needed for GC-MS based determinations of FBAs. A solvent- and 

derivatization- free technique opens up the possibility for direct analysis of tracers at the 

wellhead (on-site analysis), allowing for better sample integrity, and minimization of 

human error during handling and shipping of samples. In addition, more frequent 

measurements will enable a better characterization of the connectivity between wells, 

which in turn will provide information to plan injection strategies and obtain maximum 

oil recovery. 
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Table 1. Figures of merit of the method (extraction conditions: extraction volume: 1.5 

mL, desorption volume: 1.0 mL). 

 Synthetic seawater Mediterranean seawater 

Analyte R2 Equation LOQ R2 Equation LOQ 

4-FBA 0.999 y = 1.138x - 1.997 1.0 ng mL-1 0.999 y = 1.198x - 3.262 1.0 ng mL-1 

2,3,4,5-FBA 0.997 y = 1.363x - 5.104 0.5 ng mL-1 0.998 y = 1.353x - 4.102 1.0 ng mL-1 

 

  



Table 2. Precision and accuracy of the method (accuracy n: 12, inter-blade repeatability 

n: 12, intra-blade repeatability n:3; extraction conditions: extraction volume: 1.5 mL, 

desorption volume: 1.0 mL). 

Concentration 
(ng mL-1) 

Accuracy 
(RE %) 

Inter-blade repeatability 
RSD(%) 

Intra-blade repeatability 
RSD (%) 

 4-FBA 2,3,4,5-FBA 4-FBA 2,3,4,5-FBA 4-FBA 2,3,4,5-FBA 

0.5 -47 - 8 16 20 12 24 

5.0 14 14 5 6 12 8 

50.0 -8 7 4 2 5 2 

500.0 -15 2 3 3 6 3 

 

  



Figure 1. Extracted amount of 2,3,4,5-tetraFBA (a) and 4-FBA (b) by various sorbents 

from PBS (Solvent A: ACN/MeOH/H2O (40/40/20, v/v/v) acidified to contain 0.1% (v/v) 

FA; solvent B: ACN/H2O (80/20, v/v); solvent C: ACN/H2O (80/20, v/v) acidified with 

FA to contain 0.5% (v/v); solvent D: ACN/MeOH (80/20, v/v)); (extraction conditions:  

concentrations of analytes in PBS: 50 ng mL-1, extraction and desorption volumes: 1.5 

mL, extraction and desorption times: 60 min), error bars represent standard deviation for 

3 blades evaluated for each experimental point).  

Figure 2. Amount of 2,3,4,5-tetraFBA and 4-FBA extracted at various pHs using HLB 

coated blades (extraction conditions: concentrations of analytes in samples: 50 ng mL-1, 

extraction and desorption volumes: 1.5 mL, extraction and desorption times: 60 min), 

error bars represent standard deviation for 3 blades evaluated for each experimental 

point). 

Figure 3. Effect of salt addition on the extraction efficiency (extraction conditions: 

concentrations of analytes in sample: 50 ng mL-1, extraction and desorption volumes: 1.5 

mL, extraction and desorption times: 60 min), error bars represent standard deviation for 

3 blades evaluated for each experimental point). 

 


