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Abstract

Predictive controllers play an important role in today’s industry because of their ca-
pability of verifying optimum control signals for nonlinear systems in a real-time fashion.
Due to their mathematical properties, such controllers are best suited for control problems
with constraints. Also, these interesting controllers can be equipped with different types
of optimization and learning modules. The main goal of this thesis is to explore the poten-
tial of predictive controllers for a challenging automotive problem, known as active vehicle
suspension control.

In this context, it is intended to explore both modeling and optimization modules
using different statistical methodologies ranging from statistical learning to random process
control. Among the variants of predictive controllers, learning-based model predictive
controller (LBMPC) is becoming more and more interesting to the researchers of control
society due to its structural flexibility and optimal performance. The current investigation
will contribute to the improvement of LBMPC by adopting different statistical learning
strategies and forecasting methods to improve the efficiency and robustness of learning
performed in LBMPC. Also, advanced probabilistic tools such as reinforcement learning,
absorbing state stochastic process, graphical modelling, and bootstrapping are used to
quantify different sources of uncertainty which can affect the performance of the LBMPC
when it is used for vehicle suspension control. Moreover, a comparative study is conducted
using gradient-based as well as deterministic and stochastic direct search optimization
algorithms for calculating the optimal control commands.

By combining the well-established control and statistical theories, a novel variant of
LBMPC is developed which not only affords stability and robustness, but also surpasses
a wide range of conventional controllers for the vehicle suspension control problem. The
findings of the current investigation can be interesting to the researchers of automotive
industry (in particular those interested in automotive control), as several open issues re-
garding the potential of statistical tools for improving the performance of controllers for
vehicle suspension problem are addressed.
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Chapter 1

Introduction

1.1 Background

Automotive industry can undoubtedly be enumerated as one of the most brilliant achieve-
ments of modern society. Due to the market demand and quality control issues, over the
past decades, tremendous amount of investment has been done to promote the fundaments
of automotive industry. Interestingly, the creative mind of designers has produced so many
idealistic schemes which have instigated automotive engineers to seek for advanced tech-
nologies to improve the performance of vehicles. The research on designing new efficient
vehicles and improving the existing vehicles is abound, and that would definitely not be
convenient to categorize them into a certain number of branches. However, as a general
view, one can say that the improvements are made on hardware and software devised on ve-
hicles. The main focus of this thesis is on reviewing and analyzing the important progresses
and improvements made to automotive software. By using the general term software, we
mainly refer to those controlling and fault detection algorithms used either to make the
functioning of automobiles possible or to improve the performance of different components
of automobiles. To come up with efficient algorithms for improving the performance of
vehicles, programmers should use the well-established theories and ideas from the fields of
sensing [1], optimization [2], estimation [3], modeling [4], and control [5].

The final goal of any algorithm designer is to develop an algorithmic frame which
is much more robust and accurate compared to the exiting techniques or at-least has
the same efficiency of the existing methods but with less computational complexity [6].
Nowadays, such concerns are even more pivotal as the performance of modern vehicles
mostly relies on algorithms used for monitoring and controlling of vehicle components.
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Fortunately, remarkable computational and theoretical developments have made it possible
for algorithmic designers to conduct comprehensive simulation, and test the compatibility
of their methods with computational resources available in vehicles. The detailed review of
the conducted researches will be given later in Chapter 2 so that readers can easily follow
the streamline of conducted researches.

As a general remark, it can be stated that the most successful algorithms are those
which efficiently automate the data acquisition and decision making processes to make the
most optimal control decisions. So, a proficient algorithm designer is the one with a decent
knowledge of fields like data mining, machine learning, and control [7]. Such prerequisites
are inline with the interest for designing smart vehicles [8] which should simultaneously
make efficient inference from the sensed data, and calculate proper controlling commands
to steer the vehicle. It is also worth mentioning that the final goal of automotive industry
is to gradually elevate the smartness of vehicles to come up with fully-automated vehicles,
technically known as autonomous vehicles [J].

The existing traditional and advanced controlling / monitoring algorithms are designed
for different objectives, and are mounted into different components of vehicles. To name
only a few, controlling / monitoring algorithms can be used for passengers’ safety [10],
riding comfort [11], tire stability control [12], vehicle body vibration control [13], adap-
tive cruise control [11], fuel consumption minimization [15], and etc. Hence, ongoing re-
search activities mainly concern with designing better controlling techniques to improve
the quality of controllers for the abovementioned control objectives. As can be inferred,
tremendous amount of investigation has been devoted to each of the abovementioned con-
trol fields. However, due to the mentioned reasons, recently, a remarkable trend has been
emerged towards designing interdisciplinary controlling algorithms which not only take ad-
vantage from well-established control theories to guarantee the robustness and accuracy of
the actuation signals, but also can use the incoming sensory information to make proper
decisions regarding the vehicle status [10].

Together with the mentioned interest, there is also another trend to seek for a class of
real-time optimal controllers which are capable of calculating the control commands based
on the future behavior of vehicles. Such class of controllers are known as model predictive
controllers (MPCs) which have several modules in their architecture that enables them to
calculate optimal actuation signals in a real-time fashion based on the future behavior of
vehicles [17]. In the next sub-section, the main motivations of the current thesis are stated,
and it is clarified how the thesis is connected to the state-of-the-art.
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1.2 Motivation

In this thesis, a comprehensive investigation is conducted to come up with an efficient and
robust variant of MPC which can perform both control and decision making in tandem. The
main idea, in terms of the algorithmic architecture, has previously been proposed in [18].
The controller which is a variant of the mentioned interdisciplinary controllers is called
learning-based model predictive control (LBMPC). So far, a large number of learnable
MPCs have been proposed which mainly replace the physics-based control-oriented state-
space model with a black-box oracle [19, 20]. However, due to the best knowledge of the
author, LBMPC is among the rare existing learnable controllers (if not the only one) which
has a firm theoretical foundation, and deals with the uncertainties of the learning model,
as well as the measurement noises, and also satisfies the required conditions to ensure the
robustness of the controlling commands [21].

In the current investigation, LBMPC is used for coping with one of the most impor-
tant controlling objectives of vehicles, i.e. suspension system control. The final goal of
LBMPC is to guarantee the ride comfort and also decrease the vibration of the suspension
system. Through a comprehensive experimental and theoretical investigation, different
statistical and black-box learning systems are contrived at the heart of LBMPC to ex-
plore the power of its learning modules. Also, in this thesis, some important strides are
taken towards introducing a novel algorithm that uses stochastic process and reinforcement
learning theory to develop a real-time desired trajectory building mechanism. It is shown
that well-established statistical theories are not only beneficial for developing reliable and
robust learning modules, but also can play pivotal role for designing a desired trajectory
building mechanism which considers the main sources of uncertainty to optimally calculate
the desired tracking profile [22].

In spite of the fact that the road roughness is one of the major disturbances affect-
ing the performance of suspension controllers, there exist rare reports in the literature for
developing realistic models for its estimation. Indeed, most of the conducted researches
make simple assumptions, e.g. considering sinusoid bumps, predefined waves, or Gaussian
uncertainties, to simulate the road roughness [23]. This is when the author’s own experi-
ments indicate that the road roughness does not follow a Gaussian distribution. Instead,
it is usually a non-stationary spatial profile for which the first and second difference orders
are mean-stationary. Also, in a remarkable number of researches, the road roughness is
estimated by point-estimators without considering any confidence band for the predicted
values. Such simulation-based studies result in unsatisfactory outcomes. Hence, in this
thesis, an independent chapter is devoted to the detailed explanation of the steps that
should be taken to design a data-driven road roughness prediction module. To do so,
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experimental data are captured using an accelerometer sensor, and then statistical tech-
niques are adopted to perform data analysis, and finally (after making proper inferences),
statistical prediction techniques are used to come up with a practical model for predicting
the road roughness. To the best knowledge of the author, this is one of the rare existing
reports which tries to develop a data-driven road roughness predictor in time-domain to
be used at the heart of suspension controller as road disturbance estimator.

One of the other important aspects considered in the thesis is to explore the compu-
tational complexity of LBMPC for suspension control problem. Mainly, it is tried to find
out whether the structure of LBMPC is compatible with the computational units used
in vehicles. Also, several existing controlling methods alongwith authentic performance
evaluation indices are adopted from the literature, and are applied to the same control
problem to evaluate the performance of LBMPC.

In general, by performing a throughout simulation and rigorous theoretical analysis, it
is tried to fulfill the following objectives:

1. Since the mathematical state-space model used for suspension control is complicated,
it is quite difficult to train a surrogate model with acceptable accuracy. Thus, that
would be logical to have a considerable modeling error. Using learning modules with-
out considering a mechanism to handle the uncertainty drastically undermines the
performance of general learnable MPCs. Here, it is shown that the robustness con-
siderations and the dual-modeling module devised in this specific variant of learnable
controller (i.e. LBMPC) is best suited for suspension control problem. The findings
of the simulation are organized in the form of a research paper and is going to be
submitted to a control engineering journal.

2. By using different well-established statistical techniques and theories, it is indicated
that one can come up with a realistic algorithm to predict the road roughness before-
hand, and feed it to the state-space model as one of the main sources of disturbance.
Also, through experimental data acquisition and data analysis, it is revealed that
some common assumptions usually used for simulation-based numerical experiments
need much more careful considerations. Due to the fact that the obtained results
contribute to the available literature (to the best knwoledge of the author, this is the
first time that a statistical analysis is conducted using the real road data for road
roughness forecasting), the findings are gathered in the form of a research paper and
is submitted for publication to a Journal.

3. A novel desired trajectory building mechanism is developed which uses the concepts
of reinforcement learning and stochastic process Markov chains to deal with the
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uncertainties in a real-time fashion, and to optimally calculate the desired trajectory.
The obtained results are editted in the form of a book chapter and will be published.

4. Some novel constraints and optimization remarks are presented based on the author’s
experiment which facilitate the implementation of LBMPC, and also ensures the
controlling commands are logical.

5. Several controlling and learning modules are tested to find out the most efficient ones
for suspension control. Also, it is tried to find out whether LBMPC has the potential
of surpassing the other rival controllers. Finally, the advantages and downsides of
LBMPC are reported. Due to the importance of this issue and also the interesting
findigs, the results are prepared in the form of a research paper and will be submitted
to a journal.

1.3 Outline

The thesis is organized in 9 chapters. Chapter 2 is devoted to a detailed review of the
existing controllers for suspension control problem. The mathematical formulation of the
considered vehicle suspension system is given in Chapter 3. In this chapter, the main
nonlinear terms playing part in the vehicle model are presented, and it is discussed how
one can come up with an equivalent linearized model to be used in a real-time fashion. In
Chapter 4, the steps and procedures required for developing an experimentally derived and
provably robust predictor for road roughness are scrutinized. Also, through data analysis,
it is indicated which common assumptions for developing road roughness models should be
avoided to have an authentic predictor. Chapter 5 is devoted to the detailed description
of Markov models for developing desired trajectory builder. The mathematical formula-
tion and corresponding details for the implementation of LBMPC are given in Chapter 6.
Chapter 7 encompasses the detailed studies regarding the selection and evaluation of statis-
tical and intelligent oracles as a part of LBMPC. Some recommendations on using proper
oracles are given based on the conducted experiments. The comparative simulation results
are presented in Chapter 8. In this chapter, the pros and cons of LBMPC are given based
on the results. Finally, the thesis is concluded in Chapter 9. Moreover, some outlines are
given that deserve further investigation to reveal the potentials of LBMPC for advanced
applications. Also, it is tried to explain why LBMPC can be a good choice for some of the
emerging applications.



Chapter 2

Literature Review

In this chapter, a detailed review of the main streamline of researches on designing con-
trollers and learning algorithms for vehicle suspension system is provided, and the main
findings are reported. Another objective of this chapter is to categorize the conducted
researches into a certain classes so that the readers can find out which issues are important
topics for vehicle suspension control. It is worth pointing out that in the literature, the
term active suspension control is used to represent designing controllers for vehicle suspen-
sion systems. The controllers can be designed to satisfy versatile objectives such as road
holding, vehicle stability, passenger comfort, regenerating power, and etc.

For a long period of time, engineers have focused on using well-established control
theories to satisfy different control objectives within the context of optimal and robust ve-
hicle suspension control [21]. Although traditional controllers show very promising results
at the simulation level, they usually encounter functioning problems when implemented
as hardware-in-the-loop controllers. For most of such controllers, the problem was that
despite of their computational and theoretically proven power, there were no decision
making / data processing modules to do perception and update the control strategies to
produce proper actuation signals. This has been a remarkable motivation for automotive
control engineers to switch to using more complicated controlling algorithms which are
capable of performing perception and control simultaneously. In line with such interest,
machine learning and decision making tools have extensively been explored, and several
useful techniques from data mining have been fused with controlling modules [25]. By
the introduction of learnable control algorithms, new challenges have emerged. Obviously,
complicated controlling algorithms consume a considerable computational power which is
not a good feature from automotive control prospective in which the available computa-
tional processors are not so powerful [26]. Hence, different statistical and sensing theorems
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have been adopted to somehow reduce the computational complexity of complicated sus-
pension controllers. In what follows this chapter, it is tried to review some of the most
promising traditional and recent active controllers which have been developed to satisfy
different control objectives for vehicle suspension control.

Prior to proceeding with the literature review, it is worth mentioning that other than
active suspension controllers, there exist another variant of controllers which fall within
the category of semi-active suspension control. Semi-active controllers such as sky hook
controller (SHC), ground hook controller (GHC) and magnetorheological damper (MRD)
[27, 28] can only change the viscous damping coefficient of the shock absorber, and are not
capable of adding any external energy in the form of actuation force to suspension system.
Such simple heuristically designed controllers use a small number of rules to change the
damping coefficient on road, and have been proven to be practical choices given their rel-
atively cheap implementation. In the light of promising feedbacks on the applicability of
semi-active controllers, researchers have put a considerable effort to further improve their
performance, in particular by incorporating the power of well-established offline controlling
schemes. In [29], a modified SHC was proposed in which the parameters were optimally
verified via equating the control force of the feedback system to that obtained by linear
quadratic regulator (LQR). The simulation using Monte Carlo indicated that the resulting
controller is as good as other well-known optimal controllers. In [30], a model-free control
structure for the online tuning of semi-active suspension of a passenger car is proposed. The
controller was developed based on some simple physical insights from the vehicle and semi-
active suspension dynamics beneficial for linearizing and decoupling the system, and de-
centralized linear feedback. The most interesting asset of the controller is its independency
from any model for calculating the controller which reduces its computational complex-
ity. In [31], a comparative analysis was conducted using two types of heuristic semi-active
controllers, i.e. a global suspension controller and a semi-active controller which used four
independent controllers for each quarter of vehicle. The simulation indicated that both of
the considered semi-active controllers have the same performance accuracy; however, more
hardware including measuring and actuation devices should be used for the one with four
independent controllers. In [32], a novel adaptive semi-active suspension control scheme
was proposed which used a linear time varying model to estimate any change in the mass
of the vehicle body (mainly due to any change in the number of passengers). To do so, a
gain scheduled parameterization to adaptively capture the nonlinear behavior of dampers
as well as the variation of sprung mass was implemented. The results indicated that this
adaptive semi-active controller can show promising results, and its performance surpasses
those controllers considering a fixed nominal model for suspension control. In [33], an inter-
esting open loop variational feedback controller (VFC) was proposed based on variational
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optimal control theory for the semi-active control of suspension system. The proposed op-
timal semi-active controller was compared to different well-known semi-active controllers
such as SHC and GHC. The simulation results indicated that VFC based controller enjoys
a higher generalization and is more appropriate for practical usage. In [31], an optimal
semi-active preview control law was formulated for a four-degree of freedom half-car model
with constant velocity. The model includes a hysteretic nonlinear suspension spring which
was linearized for deriving the control law. The road roughness was also considered as
a stochastic signal which was simulated by means of Monte Carlo. The simulation indi-
cated that the control law can be viewed as a promising scheme for suspension control. In
[35], the control synthesis was proposed for a class of semi-active suspension systems with
norm-bounded parameter uncertainties, time-varying input delays and actuator saturation.
The existence conditions of the desired state-feedback controller were proven with the aid
of linear matrix inequality (LMI) and delay-range-dependent Lyapunov function and also
exploring the property of the underlying saturation nonlinearity. Simulation indicated the
usefulness and advantageous performance of the developed theoretical model.

As can be inferred, researchers are vividly trying to develop novel semi-active con-
trollers. However, most of such controllers are functioning based on a predefined logic
(heuristic or optimal) to regulate the damping coefficient, and may not be completely au-
thentic for practical uses. Therefore, the majority of modern vehicles are equipped with
active controllers which are able to estimate the states of suspension systems in a real-time
fashion, and produce actuation forces using external energy production systems to satisfy
predefined control objectives. In some senses, research activities on active suspension con-
trol have attracted considerable attentions after the publication of seminal research papers
by Balzer [36], Yoshimura and Ananthanarayana [37], and Alleyne and Hedrick [38]. In
[30], a theoretical optimal control strategy resulting from the concept of partial preview
of disturbance with generalized rate penalties and measurements is solved and used for
vehicle suspension control. In [37], a relatively same idea has been used for designing an
optimal stochastic controller for suspension vibration control with preview on an irregular
surface. In this way, the controller has been fused with a Kalman filter to estimate the
dynamic behavior of suspension system on irregular surfaces. By considering a numerical
example, it was endorsed that the controller can be very effective for active control of
suspension systems with preview. In [38], an adaptive nonlinear sliding control law was
formulated to control an electrohydraulic suspension system. The primary goal of this
nonlinear controller was to guarantee the robustness in the presence of different types of
uncertainties and disturbances. A comparative study was also carried out considering the
standard sliding mode controller (SMC) as well as the conventional passive suspension
system. Through simulation, it was shown that the proposed active controlling scheme
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can remarkably improve the performance of passive suspension system. At the end of 20"
century, a comprehensive review has been published which precisely investigated the state-
of-the-art of active suspension control [39]. Several clues and future research outlines had
been proposed which have been later used for technical progresses in the field and have
served as a motivation for an exhaustive research on designing advanced active controllers
for vehicle suspension systems.

Following the streamline of conducted researches, in the 215 century, traditional /classical
theories within the realm of optimal, adaptive, robust, hybrid switching and nonlinear con-
trol have come to the aid of practitioners for designing active suspension controllers. In
[10], a LQR was proposed for the active control of vehicle suspension. In this research,
LQR control strategy was used for the optimal calculation of external force to regulate
the vibration of vehicle suspension system. By comparing the performance of the resulting
active suspension to the passive system, the efficacy of the proposed controller was verified.
In [41], a multi-objective synthesis framework which corporates the generalized Lo-norm,
Hy-norm, and generalized Hs-norm were implemented in such a way that the poles of the
closed-loop system were constrained within the sub-region of the left-half of s-plane. Based
on the simulation, it was observed that the proposed multiobjective controller retains a
proper trade-off between vehicle ride comfort and suspension travel objectives. In [12],
a novel structural condition on the controller was derived that guaranteed appropriate
disturbance response decoupling and achievable performance with application to vehicle
active suspension control. By numerical simulation on a half-car model, it was observed
that the proposed theorems on disturbance response decoupling can be used for standard
quarter and half-car models with various different choices of measurements. In [13], an
innovative nonlinear backstepping active suspension controller was proposed for half-car
suspension model. The main goal of the proposed controller was to improve the inherent
trade-off between ride quality and suspension travel. The numerical results indicated that
the proposed controller could effectively guarantee the improvement of trade-off, and thus,
is appropriate for multitask control of suspension system. In [11], a throughout analysis
of various principles of suspensions with variable dampers and springs as well as active
components was carried out, and several existing models for suspension systems were dis-
cussed. Based on the models, different variants of controllers such as adaptive, feedback
based, and etc. were presented, and their applicability to advanced tasks such as fault
diagnosis and sensor fault detection were scrutinized. It was shown that the model-based
fault detection of vehicle suspension is possible by the classification of symptoms generated
by parameter estimation and parity equations. In [15], a robust non-chattering SMC for a
full-vehicle without suspension gap loss was developed. By considering a seven degree of
freedom model and a periodic surface, the efficacy of the proposed controller, and its resis-
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tance against unmeasured noises were demonstrated. In [16], a switching robust controller
comprised of three independent control strategies were developed to satisfy three different
objectives, namely road holding ability, passenger comfort, and suspension deflection. It
was shown that by considering a control switching logic, one can improve the trade-off capa-
bility of the implemented multi-task suspension control scheme. In [17], a load dependent
controller was designed by means of linear matrix inequality (LMI) to solve the problem
of multiobjective control for vehicle active suspension system. A quarter-car model with
active suspension was considered to test the performance of the proposed controller. In
the formulation of this controller which was based on a parameter-dependent Lyapunov
function, the gain matrix was updated using the online available information about the
body mass. The simulation results indicated that the proposed controller could yield much
less conservative results compared to a number of rival robust controllers formulated within
the quadratic frame. In [18], an active suspension controller was proposed which used an
adaptive filter (called William’s filter) for decoupling vehicle response to load and inertial
disturbance from the vehicle response to road disturbance. One of the other advantages of
devised filter was its independency from the values of vehicle parameter. The efficacy of
the proposed controller was examined on a model with the abrupt variation of parameters
such as vehicle load. The results elaborated the power of the proposed method for adap-
tive suspension control. In [19], a novel impedance controller was proposed to control the
dynamic behavior of a vehicle subjected to road disturbance. The role of the impedance
rule was to achieve passenger comfort and vehicle handling using a hydraulically actuated
suspension system. The salient asset of the proposed controller was its model-free prop-
erty as well as its applicability to a broad range of suspension systems. In [50], a Hy
controller was designed for active vehicle suspension control. The acceptable robustness
of the proposed controller against different sources of uncertainties were studied through
simulation. In [51], a gain-scheduled H., controller was developed for active suspension
control considering two different objectives, i.e. attitude and handling improvement. Sim-
ulation on a complex nonlinear full-vehicle model as well as on experimental data coming
from a real model demonstrated the efficacy of the proposed controller. In [52], a gen-
eralized predictive control (GPC) algorithm was proposed for embedded active control of
vehicle suspension system. The software-only simulation indicated that the proposed GPC
could speed-up the calculation of optimal control command compared to rival GPCs with
alternative parameter tuning strategies while satisfying tight constraints on the actuation
force and states. In [53], a Hy, controller was proposed for robust control of suspension
systems while taking the uncertainty of the model parameter into account. The simulation
results indicated that the proposed model can efficiently cope with the undesired effects
of disturbances while calculating optimal actuation commands for active suspension sys-
tem control. In [51], a novel stochastic optimal control law was formulated for stochastic
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active control of a half-car nonlinear suspension with random road roughness profile. The
randomness of the road roughness was simulated by considering a first order filter with
Gaussian white noise. Simulation based on Monte Carlo indicated the applicability of
the proposed optimal controller for suspension system being exposed to stochastic road
profile. In [55], an innovative robust optimal controller was proposed using Pontryagin’s
minimum principle, Lyapunov theory and affine quadratic stability to improve vehicle ride
comfort and handling performance. The results of the carried out simulation indicated the
withstanding property of the controller against road bump disturbance. In [50], an active
vehicle suspension controller with input output feedback linearization was proposed con-
sidering actuator delay. Stability proofs for the zero-dynamics and the closed-loop system
were also presented. Based on numerical results, it was shown that the proposed controller
is efficient for suspension control. In [57], a multiplexed model predictive control (MMPC)
was proposed for active suspension control. The optimization problem in MMPC was for-
mulated such that each control input was optimized independently, and thereafter, a cyclic
process was repeated to improve the optimality of the control command. The simulation
results demonstrated that the proposed method possesses less computational complexity
compared to standard model predictive control (MPC) which solved a multivariate op-
timization problem at each updating stage. In [58], a predictive control strategy was
proposed based on dynamic matrix control (DMC) and variable structure control (VSC)
for the active control of suspension systems. By a throughout comparative study consider-
ing a large number of well-established controllers and periodic / non-periodic disturbances,
it was shown that the proposed controller has acceptable control power. Also, theoretical
results from VSC side indicated that the method can achieve the zero-dynamics provided
that the uncertainty of suspension system model is bounded.

Fortunately, research on using standard / classical control theories for vehicle suspen-
sion control is ongoing and more and more algorithms are being invented to handle the
mentioned task. However, notwithstanding the obvious advantages of such techniques, they
have some drawbacks which needs further investigation and thoughts. One can strongly
claim that standard control algorithms are not smart enough to make inference in a real-
time fashion. At most, such techniques follow a pre-determined controlling rule (both
stochastic and deterministic versions) to calculate the actuation command. As discussed
previously, the fast evolution of computational hardware and software has made it feasible
for engineers to take ambitious steps towards designing autonomous systems. One of the
most pragmatic and initial stages to fulfill this goal is the adoption of intelligent knowledge
based methods and using them at the heart of control algorithms. In this fashion, intelli-
gent techniques can conduct data-driven inference and share their findings with controllers
(stochastic and deterministic) to come up with data-driven control commands.
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The abovementioned idea has been pursued for designing vehicle suspension controllers,
and in particular, computational intelligence techniques such as neural networks and fuzzy
models have been used to satisfy the mentioned objectives. Here, we will report some of
the most remarkable findings pertaining to the implementation of intelligent controllers
for vehicle suspension control. In [59], an intelligent optimization technique called genetic
algorithm (GA) was adopted and hybridized with LMI for optimal design of static output
feedback and non-fragile output feedback H., controller for active vehicle suspension con-
trol. The proposed intelligent robust controller was examined using a quarter-car model
with active suspension. The simulation results indicated that the resulting controller sig-
nificantly improved the non-fragility characteristics over controller gain variations. In [60],
two different variants of intelligent controllers, namely fuzzy controller and adaptive fuzzy
controller were proposed for active vehicle suspension control. The control objective was
to achieve the road holding and riding comfort over a wide range of road profiles. Nu-
merical simulation were conducted to demonstrate the efficacy of the proposed controllers.
By comparing the intelligent controllers with LQR, it was observed that intelligent con-
trollers have superior performance. In [01], GA was utilized to optimize a complex design
task involving the control of electric damper and model parameters such that the power
dissipation of the electric damper be minimized while maintaining acceptable comfort and
road-holding capabilities. The results of the simulation endorsed the effectiveness of GA
meta-optimization of the architecture of the considered controller. In [62], a fuzzy controller
was proposed based on the vehicle dynamics and control theory to control a six degree of
freedom suspension system subjected to irregular excitation from road surface. The sim-
ulation results indicated the acceptable performance of the proposed controller for vehicle
suspension control. Also, an innovative simulation frame comprising of Matlab/Simulink
and ADAMS was developed for the visualization of the performance of controller. In [63],
a neural network-based MPC (NNMPC) was developed for controlling a servo-hydraulic
vehicle suspension system. The proposed intelligent controller was applied to a two de-
gree of freedom quarter car servo hydraulic vehicle suspension system. Neural network
made it possible to model the nonlinear dynamics of the servo-electric actuator. The pro-
posed nonlinear optimal controller was compared to proportional-integral-derivative (PID)
controller tuned by Ziegler-Nichols method. The simulation results unveiled the superior
performance of NNMPC over PID with respect to different performance indices such as
adaptation to deterministic road disturbance. In [64], a novel intelligent controller was
developed to control the dynamic behavior of vehicle suspension system subjected to road
disturbance. The proposed intelligent controller includes a model-free impedance control
law with two interior loops that were force control of the actuator by feedback lineariza-
tion and fuzzy control loop to track a desired body displacement. The system stability was
analyzed to ensure the controller does not experience any sort of collapse on road. The
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proposed controller was applied to a nonlinear suspension system with a nonlinear model
of hydraulic actuator. The simulation results indicated that the proposed model-free con-
troller is as good as model-based optimal control strategies, and also can be applied to a
broad range of road conditions. In [65], GA was adopted for multiobjective optimization
of semi-active LPV suspension controller which used H,, control law for comfort and road
holding. The simulation indicated that the Pareto front obtained by GA could give the
designer versatility to find a trade-off between potential optimal solutions. Also, from a
control prospective, it was observed that the proposed intelligent controller can be viewed
as an effective technique for suspension control. In [66], an adaptive impedance controller
was designed using particle swarm optimization (PSO) for the vibration control of a hy-
draulic suspension system. The inner loop of the controller was a force controller and the
outer loop was a robust model reference adaptive controller. The outer loop enabled the
controller to handle different sources of uncertainties. By simulating the proposed intelli-
gent controller on a quarter-car model in the presence of disturbance, the effectiveness of
the control law was proven. In [67], a novel inverse adaptive neuro-fuzzy inference system
(ANFIS) based MR damper hybridized with linear quadratic Gaussian (LQG) controller
was developed for the vibration control of vehicle suspension system. Simulation demon-
strated that the resulting controller can accurately track the desired force using ANFIS,
and, at the same time, LQG could show competitive performance compared to rival ac-
tive controllers. In [08], a fuzzy logic controller combined with PID was implemented for
the modeling and control of a nonlinear half-car suspension system with quadratic tire
stiffness, cubic suspension stiffness, and coulomb friction. By comparing the proposed con-
troller with standard PID and fuzzy controller, it was observed that the hybrid controller
with coupled rules could show promising results. In [69], a robust ANFIS-based controller
was proposed for the vibration control of a vehicle active suspension system. A comparative
study considering PID and NN-based controller was carried out to evaluate the power of
the proposed control scheme. The simulation results indicated that the proposed controller
can outperform the rival techniques in terms of travelling comfort when the suspension sys-
tem is subjected to random disturbance. In [70], an intelligent semi-active controller with
SCH and ANFIS with Gaussian membership functions and back-propagation learning was
proposed for controlling a quarter-car suspension system with semi-active MR damper. By
comparing the performance of the proposed semi-active controller with SHC and GHC as
well as passive system, the efficacy of the proposed intelligent controller was shown. In [71],
a concise review of the well-known suspension control methods including both classical and
intelligent versions was conducted. In that report, the main advantages of using intelligent
controllers for vehicle suspension system control were explained, and it was justified that
computational intelligence can serve as a good mean for vehicle suspension control. In [72],
an intelligent semi-active controller including a fuzzy logic based SHC and ANFIS model
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was proposed for the control of vehicle suspension system in order to improve passenger
comfort and road holding, and also to stabilize the vehicle movements. The simulation
results indicated that the proposed intelligent controller provides a better isolation per-
formance compared to passive suspension system. In [73], an intelligent controller was
proposed which used simulated annealing (SA) for the optimization of the weight matrix
of LQR controller. The performance of the intelligent controller was tested against stan-
dard LQR and passive suspension system. It was observed that GA-LQR can outperform
the standard LQR. In [74], an adaptive controller with an augmented NN was proposed
for the active control of uncertain suspension system with prescribed performance. An
efficient optimization algorithm was also considered to estimate the unknown weights of
NN, and also to estimate the sprung mass in a real-time fashion. Simulation results in-
dicated the effectiveness of the proposed controller for uncertain suspension control. In
[75], an intelligent multiobjective optimization method called, non-dominated sorting ge-
netic algorithm (NSGA-II), was adopted to optimize a hybrid electromagnetic suspension
system for ride comfort, regenerated power and road holding. The proposed technique
was applied to a two degree-of-freedom quarter-car model. The results of the simulation
indicated an improvement with respect to the mentioned control objectives. In [7(], a
robust and adaptive intelligent controller was proposed which comprised of H,, controller,
GA and wavelet-based support vector machine (SVM) for nonlinear suspension control
with time delay actuation signal. Also, a mixture of wavelet and radial-basis functions
(RBFs) were considered to design another intelligent controller. Time varying sprung and
unsprung masses and the suspension performances with actuator delay were considered
to construct the model. Simulation results demonstrated the robustness of the proposed
intelligent controller against any variation on sprung mass in the presence of actuator time
delay.

The abovementioned intelligent controllers were mostly combined with existing soft in-
telligent tools without performing a firm statistical analysis or having a deep insight into
their structural properties. As far as the author is concerned, more elaborated studies
should be conducted to come up with theoretically cherished data-mining and modeling
methods to be used at the heart of controllers. Such a philosophy is called learning-based
control, which is a general term which comprises techniques from soft computing and sta-
tistical computing. The main contribution of the thesis is to perform a deep investigation
into the existing theories and techniques mostly raised from statistics to answer some
important questions for designing smart controlling algorithms [77]. It is a fact that to
come up with a proper data-driven learning module, several important design questions
concerning the probabilistic behavior of the signal of interest, sampling from objects / orig-
inal signals, sparse representations, reduction of the undesired effects of over-fitting and
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under-fitting, and balancing the trade-off between variance and bias of the model should
be answered. Obviously, such important issues cannot be handled simply by extracting
a model (either soft or statistical) and fit it to a set of captured data. What is actually
important here is to conduct some theoretical analysis and find out how to design a model.
In [77], most of the abovementioned issues was neatly discussed, and several solutions
to solve them were presented. Also, in general studies, statistical learning theories have
been demonstrated to be very beneficial for designing controllers. In [75], the potentials of
randomization algorithms and well-established statistical learning theories were explored
for robust control synthesis. It was theoretically indicated that several problems such as
robust stabilization and weighted Hy/H,, minimization can be well treated using the pro-
posed statistical method. In [79], the capabilities of statistical theories for designing a
learning paradigm for humanoid robots were investigated. In this way, techniques such as
locally weighted projection regression were used for the online learning of inverse dynamics
models for model-based control, the learning of inverse kinematics of redundant manipu-
lators, and the learning of oculomotor reflexes. The numerical simulation indicated that
the learning method has a fast convergence rate with a highly accurate performance. In
[30], a novel statistical learning controller was developed for the energy management of
a fuel cell electric vehicle. The learning module comprised of a bank of neural networks
designed using different statistical learning theories. The simulation results comparing the
proposed method with a learning controller with a single NN indicated the superiority of
the proposed statistical learning algorithm with a high confidence level. It was also prob-
abilistically indicated that the statistical learning strategy almost surely converged to an
optimal solution. In [31], a statistical machine learning method was proposed to make the
automatic control practical for internet datacenters. It was argued that common shortcom-
ings can be handled using statistical analysis and modeling theories for automatic controller
design. In [32], a probabilistic direct statistical learning algorithm was proposed for design-
ing a learning-based controller for robots. Also, it was argued that how such techniques
can be used to improve the manoeuvrability of robots for practical applications. It was
argued that in near future, statistical theories will play pivotal role in improving the per-
formance of robots. In [33], the theoretical foundation of several statistical algorithms have
been established to be used for designing controllers for uncertain systems. The simulation
results indicated that the resulting techniques can reduce the computational complexity
of some optimal control strategies by turning them to decision making problems. Based
on comprehensive probabilistic analysis, it was indicated that such decision making based
statistical controller can find approximated solutions with high probability. In [31], a sta-
tistical learning based technique was proposed for the optimal control of hybrid systems.
Based on the performed simulation, it was indicated that the optimization problem which
is treated from a statistical viewpoint is near global optimum. In [$5], a provably stable
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learning adaptive controller was formulated with the aid of statistical learning techniques.
Also, a nonparametric regression technique was adopted to approximate the unknown dy-
namical system, and it was shown that the resulting tracking controller has an acceptable
convergence speed.

In spite of obvious progresses made in the field of statistical computing and the exis-
tence of versatile theoretical results, so far, they have not been given full consideration for
designing active suspension controllers. Therefore, the author tries to take strides towards
designing a learning based controller to find out whether such methodologies are promising
and deserve a thorough investigation.
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Chapter 3

Suspension System Control Problem

In this chapter, a detailed investigation into the common existing suspension system models
is carried out. Also, a nonlinear suspension system model is implemented for the current
simulation, and its equivalent linearized version is determined to be used at the heart of
learning-based model predictive controller (LBMPC). In general, the society of control
engineering tries to adopt one of the well-known mathematical models (including the one
formulated in this chapter) to design controlling algorithms for suspension system control.
However, the fact that mathematical models are just approximations of real suspension
systems, and several unknown factors and disturbances can affect the performance of con-
trollers is neglected. Therefore, in an attempt to come up with a more realistic model as
well as practical conditions for designing a controlling algorithm, in this chapter, different
sources of uncertainties which can affect the performance of controller and the precision
of mathematical model are taken into account, and proper strategies / arguments are
presented for the realistic calibration of the considered model.

3.1 Literature Review of Commonly Used Models

In this section, a concise and consistent review concerning the progress of the mathemati-
cal modeling of suspension systems is provided. The literature on the modeling, analyzing
and designing of surrogate models for vehicle suspension dynamics has been expanding
significantly, thanks to the availability of computational resources and mathematical tools.
There are several standard archived research papers and terminologies released by Soci-
ety of Automotive Engineers (SAE) which endorse on this claim. Fortunately, all of the
researchers working within the realm of vehicle dynamics analysis and modeling use the
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same standard terminologies (suggested by SAE), and this helps them to conveniently share
their information and conduct breakthrough progress in recent decades. Having said that
although the most of the conducted researches and analysis as well as standard terminolo-
gies pertain to passenger vehicles, their results can be easily extended to heavy vehicles,
articulated vehicles, and etc. [30].

By using simplified models of vehicle suspension systems, the main goal is to assess the
potential effects of vibration on human whole-body health, comfort and perception. At the
same time, some engineering / economical goals such as reducing the cost of final product,
energy harvesting and etc. may be pursued. In a very near future, the increasing demands
on improving vehicle dynamics and stability along with the extensive production of hybrid
and electric vehicles might make the mathematical modeling of suspension systems quite
challenging. This implies the importance of paying attention to mathematical modeling
of vehicle systems (in particular the suspension system and tires) and searching for the
most reliable mathematical models for designing controlling algorithms, decision making
systems, or learning paradigms. It is also worth mentioning that despite of the significant
progress on active suspension design and model-based analysis, most of the vehicles on
road still use traditional passive suspension systems. This is mainly due to the expense of
equipping vehicles with model-based controllers and decision making algorithms. However,
the tight governmental regulations and market demand have inclined the automotive in-
dustry towards upgrading vehicles’ suspension systems, and use the findings of automotive
research and development societies.

From the abovementioned information, one can realize the role of mathematical model
in the modification and precise analysis of vehicle dynamics and stability on roads. There-
fore, here, some of the most important archived research papers concerning the mathe-
matical modeling of vehicle suspension systems are briefly reviewed, which will be then
followed by giving some more details about real suspension models.

In a pioneering research [37], a through discussion and analysis was conducted to un-
veil some new aspects of vehicle dynamics. The accuracy of the results suggested in the
paper further endorsed on the veracity of using mathematical models for analyzing the
performance of vehicles. In [3%], a through investigation was carried out to analyze the
computational aspects of different mathematical models of vehicle dynamics, and also to
find out their accuracy / robustness to be used for practical applications. By means of a
model-based analysis, the author studied the effect of suspension system on the safety and
performance of vehicles. In [89], a thorough investigation was carried out for the model-
based analysis of heavy vehicle ride dynamics. Based on the simulation, it was revealed
how important a mathematical model can be for the accurate analysis of heavy vehicles.
In [90], a novel mathematical model was developed for the simulation of the suspension
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system of a vehicle with pneumatic tire modelling. Also, the mathematical modeling of
vehicle dynamic has been extended to some advanced applications, such as the simulation
and measurement of human perception as a function of vehicle vibration. In [91], a review
of existing mathematical models for the measurement, assessment and evaluation of the
human perception of vehicle vibration was provided. It was argued that mathematical
models are pivotal for such an analysis, and provided that the models be designed in a
reliable fashion, their feedbacks can be used for real-life applications. In [92], the compat-
ibility of safety-based performance measures with vehicle dynamic mathematical models
including suspension system was studied for the development of safety-oriented vehicles.
Some theoretical extensions to traditional active suspension mathematical models were
proposed in [93]. In [91], a comprehensive review was conducted to discuss the role of
mathematical suspension system modeling for analyzing the effect of heavy commercial
vehicles on pavement loading. Also, some practical examples of vehicles were provided to
endorse the efficacy of mathematical models for reliable analysis. A relatively same anal-
ysis was conducted in [95] to elaborate the potential of mathematical modeling for heavy
vehicles such as trucks. In [96], model-based analysis was taken into account for a generic
design procedure of pneumatic and air suspension systems. In an innovative research [97], a
multiobjective optimization problem was coupled to a mathematical model for the efficient
and robust design of suspension systems with regard to a set of conflicting objective func-
tions. In [98], a comprehensive review of various advanced mathematical models of chassis
system was carried out for commercial vehicles aiming at enhancing vehicles traffic safety.
The derived conclusions indicated that a model-based analysis can afford very promising
outcome for guaranteeing the safety of vehicles.

As seen, the model-based analysis of vehicle dynamics in particular suspension system
has come to the aid of researchers to improve the performance of vehicles with respect
to different objectives. Almost all of the abovementioned research reports have conceded
that without having a robust, computationally efficient and accurate model, it would be
impossible to ensure the simulation results can be used in practice. Indeed, the selection of
the best fitted mathematical model is problem / case specific and depends on the type of
vehicle as well as the objective of analysis. Suspension systems vary in configuration and
type of components used for operation, and thus, that would be important to realize the
type of suspension architecture / components when selecting a model for analysis, design,
and control.

Indeed, providing a detailed review of the types of existing suspension system architec-
tures and actuators is beyond the scope of this research (and somehow impossible due to
versatility of such systems). However, there are some certain types of suspension systems
which are commonly used by researchers for vehicle dynamics analysis. Here, we would like
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to name some of the most important variants which have been used by automotive research
community and consequently have played tremendous role in improving the performance
of suspension systems. Keeping in mind that there are also an independent through litera-
ture dedicated to the detailed high-fidelity modeling of vehicle tire (e.g. Magic model and
LuGre friction model) which will not be reviewed here.

In general, before starting to excavate the existing mathematical models for analysis,
that would be a wise choice to ensure which type of vehicle is going to be analyzed. This
aids one to select the optimum configuration of suspension system which is the prerequisite
of selecting a mathematical model. As an example, it is well-known that (1) hydrogass
slow-active suspension systems can be a logical option for racing cars, some passenger
cars, public service vehicles and off-road vehicles, (2) Lotus electro-hydraulic active sus-
pension system has proven its potential to be used for racing cars and passenger cars,
and (3) vehicles such as Leyland Trucks are compatible with the suspension systems using
pneumatic actuators in their architecture [99]. Also, it is obvious that when analyzing
the vehicle dynamics and suspension systems of non-traditional vehicles such as electric
vehicles and hybrid electric vehicles, attention should be paid to the specific configuration
of such systems. This is because, due to their particular configuration, the results coming
from standard model-based analysis are unreliable for such vehicles.

In [100], three types of suspension systems were proposed, and their advantages for
real-life implementation were studied. The considered systems were (1) suspension system
with oil damper mounted in parallel with a compression helical spring, (2) suspension
system with colloidal damper without attached compression helical spring, and (3) colloidal
damper mounted in parallel with a compression helical spring. For the first suspension
system, a Kelvin-Voigt model was presented which included a dashpot and an elastic
element connected in parallel. For the second system, a Maxwell model with a dashpot and
an elastic element connected in series was formulated. For the third suspension system,
a standard linear model consisted of Maxwell unit connected in parallel with an elastic
element was considered. The efficacy of the mathematical models and the suspension
systems were studied independently by the calculation of vibration transmission from the
rough road to vehicle body, considering the constraint that damping coefficient varies
with respect to the excitation frequency. It was numerically indicated that with the aid
of the presented mathematical models, that would be possible to minimize the vibration
transmissibility and consequently maximize the vehicle’s ride comfort. In [101], a review
of common actuators used in active suspension design was conducted, and some of their
physical properties were analyzed by means of mathematical models. It was reported that,
among the existing actuators, Oleo-pneumatic actuators, hydraulic actuators, magnetic
actuators and electromagnetic actuators have attracted the attention of industrialists and
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are widely used in todays’ products.

Also, there exist other types of suspension systems which are capable of energy harvest-
ing. Such suspension systems are often called energy-regenerative suspension systems. The
main reason behind using such suspension systems is to harvest the dissipated energy due
to the vibration and convert it to regenerative energy to improve the vehicle fuel efficiency.
The harvested energy can be used for the improvement of suspension performance, for
power vehicle electronics, and also for increasing the vehicle fuel efficiency. In general two
types of such suspension systems have gained value for automotive industrialists which are
mechanical regenerative systems and electromagnetic regenerative systems. Mechanical re-
generative suspension systems are those using hydraulic and pneumatic suspensions. Due
to their considerable weight, their complexity and the possibility for leaks and raptures,
they are scarcely used in the architecture of advanced modern vehicles [102]. On the other
hand, electromagnetic regenerative suspension systems are becoming popular in market.
The most important variants of such systems are: direct-drive electromagnetic suspension,
ball screw electromagnetic suspension, rack-pinion electromagnetic suspension, planetary
gear electromagnetic suspension, hydraulic transmission electromagnetic suspension, and
self-powered magnetorheological suspension.

In the current research, it is intended to study the suspension system of a traditional
passenger vehicle, which is one of the most important products in todays’ automotive
markets. Also, since it can somehow be viewed as a base suspension system, the results
of analysis performed in this thesis can be extended to the other variants of suspension
models, such as those stated previously.

Typically, the existing models for vehicle suspension systems have been implemented
for time-domain and frequency domain analysis [103]. Traditionally, frequency-domain
analysis has been performed for the active control of suspension systems. However, due
the fact that most of the modern controlling algorithms operate based on time-domain state
space models, mathematical models formulated in time-domain have been becoming more
and more popular. Arguably, there exist a limited number of well-consensused time-domain
mathematical models available in the literature, which have been used for analyzing the
suspension systems of standard passenger cars. These models are quarter-car [101], half-
car [58], and full-car models [105]. The main difference of the models used in the literature
is the values of model parameters which fit the mentioned mathematical models to the
suspension system of particular vehicles, e.g. different models of Toyota, Ford, BMW, and
etc. Also, another difference which may exist in the modeling of suspension systems is
the type of spring and dampers used to come up with the mathematical model. Some
researchers have advocated using simple linear state-space models with linear dampers,
linear springs and linear model of tire, while some other researchers have fostered the
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introduction of a certain amount of nonlinearity to suspension system, typically by using
nonlinear springs, nonlinear dampers, asymmetric damping coefficients and modeling tires
by means of damping and spring systems.

For the current simulation, based on trial and error, and given the recommendations of
the abovementioned papers as well as the author’s own assessment [58], a half-car model
with nonlinear damper, nonlinear spring as well as the spring and damper model of tires is
used for analyzing the vibration of suspension systems. Also, a piece-wise linear represen-
tation of the nonlinear model is presented which will be then used at the heart of LBMPC
for the calculation of optimal controlling commands.

It is worth pointing out that a number of performance metrics should be formulated
together with a mathematical model for the calculation of optimal actuation signals from
the actuator devised in active suspension systems. The most commonly used variants
of such performance metrics are (1) suspension displacement constraint, (2) road holding
metric, and (3) ride comfort index.

The detailed implementation of the mathematical model used here is given in the
next section. Also, the performance metrics used in this investigation is given later when
formulating the controlling law of LBMPC.

3.2 Mathematical Modeling of Suspension System

For our simulation, a 4 degree of freedom (4-DOF') half-car suspension system with nonlin-
ear damping and nonlinear stiffness is considered. A schematic illustration of the 4-DOF
active suspension system is given in Figure 3.1. The notations and symbols used in Fig-
ure 3.1 are defined one-by-one to make the interpretation of the mathematical model given
later possible. In the figure, M, represents the body (sprung) mass, J, represents the body
mass moment of inertia, m,, and m,, represent the front and rear unsprung masses, cg,
and c,, are the front and rear suspension nonlinear damping coefficients, k;, and kg, are
the front and rear suspension nonlinear stiffness coefficients, F,, and F,, are the front and
rear actuation forces which should be inflicted on suspension system by active controllers,
¢y, and ¢, are the front and rear tire damping coefficients, and k;, and k;, are the front
and rear tire stiffness coefficients.

Given the above notations and definitions, it is now intended to formulate the nonlin-
ear dynamics of the considered suspension system. The 4-DOF half-car model comprises
various components including front and rear tires, front and rear unsprung masses, and
body masses working altogether. Apparently, potholes, bumps, road roughness and other
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Figure 3.1: Schematic illustration of 4-DOF half-car active suspension system on road.

sources of unknown disturbances excite the vehicle. In such conditions, suspension system
serves as a filter which tries to mitigate the abrupt and continuous deflections to reduce the
possible damages, and also improve the ride comfort. Under excitation / vibration, each
of the components of suspension system are affected and follow specific equations. To have
a sense regarding the overall behavior of suspension system, the governing equations for
each of the components should be written done separately and combined to simulate the
dynamics of suspension system. In the presented mathematical model, the Newton’s law
of motion is used to formulate the nonlinear dynamics of the half-car suspension system.
In this context, one can formulate the front and rear body mass displacements as:

Zp, = Zc + 11 sinf
Zp, = Zc + 1,0 cos 6
2p, = Zc — lasin
Zhy = Ze — 129 cos

: (3.1)

where [; and [y are the distances of front and rear axles from the center of gravity of
body mass, z, , z, , and z. are the front, rear, and center of gravity of body mass vertical
displacements, zj,, %,, and Z. are the front, rear, and center of gravity of body mass
velocities, 6 is the body mass pitch angle, and 0 represents the angular velocity.

As mentioned, in the considered model, the nonlinearity of damping component is
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taken into account to increase the accuracy of simulation. This nonlinearity is imposed
by an additive term as a function of linear damping, asymmetric damping, and nonlinear
damping coefficients. The mathematical formulation of the damping force of suspension
system can be given as:
o l . . . . l . . . .
Fb51 = Cg (Zu1 - 251) - ngl;m ’Z'U«l - Zb1| + C?l |Zu1 - Zb1’ sgn (Zul - Zbl)

— ! 5 5 _ aSym 9
Fbsg = Cs, (Zug ZbQ) Csy

. . l . . . .
’Z’UQ - Zb2| + CZQ |ZU2 - Zb2| sgn (ZU2 - 252)
where Fjs, and Fjg, are the front and rear damping forces, Z,, and 2,, are the front
and rear unsprung mass vertical velocities, and ¢!, c2¥™ and ¢ are the linear, asymmetric
and nonlinear damping coefficients of dampers, respectively.

The nonlinearity of the springs of suspension system is formulated as follows:

{ stl = kil (ZUI - Zbl) + kgll (Zm - Zbl)i
stz = kig (ZUQ - sz) + k,;zzl (Zuz - sz)

9

where Fjs, and Fj,, are the front and rear spring forces, z,, and z,, are the front and rear
unsprung mass vertical displacements, and k% and k™ are the linear and nonlinear stiffness
coefficients of springs, respectively.

Given the recommendation of [18], tires are modelled by a linear spring and damper sys-
tem rather than a simple spring to improve the accuracy of simulation. The mathematical
formulation of the tire damping force is given below:

{ Fbt1 = Ctl (Zul - 7"1)

Fy, = ¢, (2uy — 72)

I

where Iy, and Fy, are the front and rear tire damping forces, ¢;, and ¢, are the rear and
front tire damping coefficients, and 7; and r are the derivatives of front and rear tires’
disturbances with respect to time, respectively.

The mathematical formulations of the front and rear tire damping forces are given
below:
{ Fkt1 = ktl (Zul - 7’1)
Fity = Ky, (20, —72)

where Fy;, and Fj, are the front and rear tire spring forces, k; and k,, are the rear and
front tire stiffness coefficients, and r; and ro are the front and rear tires’ disturbances,
respectively.

The total forces in the front and rear parts of suspension system can be calculated as:
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leFk51+Fb81_Fa1
f2:Fk52+Fb82_Fa2

By combining the equations of motion for each component, the equations of motion for
half-car suspension system are obtained, as given below:

MpzZ. = kél (Zu1 — Zbl) + k?ll (Zu1 — zbl)S —&-cé1 (2u1 Zbl) — cSl }zul — zb1| +c¥ ( |z — Zbl{) sgn (im — z'bl)
+kl52 (zu2 — Zbg) + k?zl (zu2 — zb2)3 + cl52 (2u2 — Zb2) —cs }Zw — zb2| + c ( |zu2 — Zp, |) sgn (73u2 — z"b2)
—Fq, — Fa,

Jbé = —l1k:lS1 (Zu1 — Zbl) cos @ — 11 cos ekgf (Zu1 — zbl)3 - Cos@cé1 (2u1 — z'bl) + 11 cos@cii’m |2"u1 — z"b1|

— 1 cos 9025 ( !z'u2 — Zp, |) sgn (Fuy — 2by) + lgkéz (2up — 2by) cosB + I3 cos Gk’;‘é (2us — zbZ)B

+lz cosOcl, (2uy — 2by) — l2 cos0c3Y™ |2uy — Zp, | + 2 cos Ol ( |2us — 20, {) sgn (Zuy — 2b,)
+Fq,l1cos@ — Fa,lacosf

Muy Zuy = _ktl (zuy = wry) = ¢y (Bug — @ry) — klsl (2ur = 2y) — kglll (u1 — Zb1)3 - Clsl (2u1 — 2b,)
+ cs |zu1 2y, | — c"l ( |2u1 — z'bl |) sgn (2u1 — z'bl) + Faq
My Zuy = _ktz (2ug — wry) — Cty (Fug — Wry) — kég (ZUQ - sz) - kgzl (ZU2 - sz) Csz (ZU2 - sz)

+ e un = 2] = b (]2us = 205 ) 597 (Fuz = 20,) + Py

Z, =¢ [kél (Zul - Zbl) + kgll (Zul - Zb1)3 + Clsl (Z'ul - 21)1) - ngm |éu1 - éb1| + Cnl ( {";'ul — Zp, |) sgn Zul - /5’b1) - Fa1]
sg

i [klsz (2uz = 2b5) + K25 (2us — Zbg)g +el, (fus — ) — €25 [2un — 20| + €4 ( |2us — sz|> n (fup = 2by) — Fa2]

[kl1 (Zu1 —Zbl) +kgll (Zu1 — Zbl) +051 (zu1 — Zbl) —c51 !zul — Zb1|+c < |z'u1 - éb1| sgn (z'u1 — ébl) —Fal]

+v [k: 5o (zu2 - zb2) +k?21 (qu - zb2) +052 (zu2 - zb2) —052 {ZW —Zb2| +c < |éu2 - é62| sgn (z'u2 - ébQ) — Fa2]

1 G 1 ! 1 13
where ¢ = (mﬂLJ—lb)’ = <E_ },2) andy = < +7";>
The nominal values of the model parameters are given in Table 3.1. It should be men-
tioned that due to external disturbances, and some unknown factors and unseen random
events, it would be a wise choice to treat some of the model parameters as random vari-
ables, and perform statistical analysis to get more reliable answers. The discussion on the

mentioned concern will be given later in this chapter, and it is discussed how to treat with
some of the model parameters via uncertainty analysis.

As mentioned before, for calculating the control commands of LBMPC, a piece-wise
linear version of the presented nonlinear model should be determined. In what follows
this section, the details of the steps taken for piece-wise linearization of the nonlinear
mathematical model are presented.
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Table 3.1: Model parameters for half-car vehicle suspension system

Parameters Value Parameters Value
1% 20 (m/s) . 700 (Ns/m)
M, 580 (kg) cym, ey 400 (Ns/m)
My, 40 (kg) e 400 (Ns/m)
My, 35.5 (kg) KL KL 14000 (N/m)
L, 1.5 (m) ik 2.35¢4 (N/m)
Ly 1 (m) k, .k, 190e3 (N/m)
Jy 1100 (kg.m?) ¢, 80 (Ns/m)
ct 800 (Ns/m) Ct, 70 (Ns/m)

Let’s suppose a nonlinear function g(3,t), with 8 = (81, 2, ..., 84)" is going to be
linearized. Then, the piece-wise linear function can be approximated around the working
point (g, as follows:

9(B,t) ~ p(B — Bo),
where g is a 1 x d vector, and its " array is calculated as follows:

~ 99(B,1)

j = 1> L oi=1,...d.
P 95, | B=B '

The nonlinearity of the model comes from the characteristics of the dampers and springs
of suspension system. Both of the dampers and springs consist of a linear part and a
nonlinear part, and an equivalent linear function should be obtained for the nonlinear
terms to make the model suit for LBMPC. Suppose that 6; = z,, — 23, and 02 = 2y, — 2p,,
then the piece-wise linear format of spring model can be given as:

{ k2 (01)° = prs, (51 = (61),)
k2 (62)° = sy (02 — (02)g)

where o, = 3k (61)p and @, = 3k (32);-

Also, suppose that 8; = 2,, — %, and 0y = Z,, — %,, then the piece-wise linear format
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of damping coefficient can be given as follows:

csvm ‘5 ‘ =i ( (‘51> >
et (Vo)) sgn (8:) = o ( -(%),)
csym ‘5 ‘ =" ( ( >o> |
| 622( ‘52‘) sgn (82) = ot (82— (&) )

where
( psym — sym (51>0
. L [(01),+e ]
w1 (81), ( ) -0 << > )
pL = cy _2|<51 ] 01 0—1—6 sgn | (6 o) |
psym = cSym .52 0
2 T % ) 4] ]
w1 (82), ( ) -0 (( ) )
\ By = Csy _2 ‘(52)0+€| (52 0 +e€ sgn 62 o/ |

Based on the above piece-wise linearization, the equivalent model of the suspension
system dynamics can be given as follows:

Mbéc = k; (Zul - Zb1) =+ 6:1 (2u1 - Z.bl) + k:g (Zu2 - Zb2) + 022 (21@ - Z'b2) - Fal - Fa2
Jyf = —I, cos Ok: (2uy — 2p,) — licosOck (2u, — %) + Fa,li cos @
+ly cos Ok}, (zuy — 2b,) + lacosOcs, (24, — Z,) — Fluylacos O

)
éb1 = C [k;;kl (zm - zb1) (ZUQ - 2b2) - F ] +p [k (ZUQ - sz) + C:Q (2u2 - 2b2) - Faz}
(2

éb2 =K [k:1 (Zm - Zb1) + Csl Ruy — 73172) - F ] + [k (ZU2 - Zb2) + C:Q (2712 - zbz) - Fa2}

mu1éu1 == _ktl (Zul - Tl) - Ctl (Zul - Tl) - k:l (Zul - Zbl) - C:I (Zul — Zbl) + Fal
muQ.Z:“Q - _kt2 (qu B TZ) — Gy <ZU2 - 7"2) - k;kQ (’Zuz - ZbQ) - C:Q (2u2 - sz) + Fa2
(3.2)
where kl, = ki, 4 Ohor, K, = Ky Phoay €, = 6, — 0177 F 04 andel, =, — o + o0
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To make sure the piece-wise linear mathematical model operates properly, after calcu-
lating the control commands via LBMPC, a validation test is performed by feeding the
calculated actuation signals to the original nonlinear model and comparing the obtained
responses.

3.3 Uncertainty Sources for Suspension Unit Control

As mentioned before, a considerable portion of research reports have used the nominal
mathematical models (e.g. 4-DOF suspension system model without disturbance) for
model-based decision making and control. At most, some of the conducted researches
have considered the road roughness as the dominant source of uncertainty, while neglect-
ing so many other sources of uncertainty which can play part in practice [54]. This is
mainly due to the fact that automotive engineer’s interest lies in the design of control
algorithms rather than performing statistical analysis to come up with realistic solutions.
For more information regarding the performed research on uncertainty handling, one can
refer to the literature review conducted in Chapter 2. It is quite clear that unless the ef-
fects of dominant sources of uncertainties have not been considered, it would be impossible
to ensure the obtained results can be reliably used in practice. Therefore, based on the
opinion of experts, published reports, and the author’s own assessment, the most dominant
sources of uncertainty which can affect the dynamics of vehicle on road are identified and
categorized, and proper strategies are taken into account to capture them [100, ].

In this section, the emphasis is exerted on categorizing and introducing the sources
of uncertainty, and in the next section, it is mentioned how these stochastic events are
simulated. Fortunately, LBMPC has a distinct module (oracle) which is best suited for
simulating the uncertainties. Through numerical experiments and theoretical analysis, the
usefulness of LBMPC for our simulation scenario (in which a remarkable attention is paid
to the uncertainty of the formulated mathematical model) will be justified.

The sources of uncertainty which can affect vehicle dynamics and suspension system
are as below:

1. Driver’s behavior: It is quite clear that due to several behavioral and environmen-
tal factors, drivers’ driving style can change on road. This is quite justifiable and
realistic since it is, for example, possible that driver abruptly reduces the vehicle
speed due to an accident or adjust the speed of vehicle when seeing a pothole or
bump on road. Also, cognitive and psychological factors can affect the driver’s driv-
ing style. Therefore, to have a realistic simulation, the effect of uncertainty due to
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the driver’s behavior should be taken into account. Unfortunately, the majority of
conducted researches consider a constant cruise speed for the vehicle, as given in
nominal simulation condition in Table 3.1. Given the information provided, it can be
easily inferred that conducting the simulation with a constant speed does not have
practical implication, and affords unrealistic simulation-based results and misjudge-
ment. To the best of the author’s knowledge, the current investigation is among
the rare researches which pay a considerable attention to uncertainty of the driver’s
behavior, and its effect on the dynamics of the vehicle. It sounds logical to simulate
the uncertainty of driver’s behavior by taking the cruise speed as a random variable.
The speed of the vehicle has an indirect relation with the excitation of suspension
system. To be more precise, the more the speed of the vehicle, the faster the tires
are exposed to the road profile. Thus, at varying speeds (which results from driver’s
behavior uncertainty), the controller should be powerful enough to adaptively calcu-
late the controlling commands, and also to filter the shocks due to the time varying
excitation of tires.

2. Number of passengers and load: Another constant factor in the nominal simulation
scenario is the vehicles body mass (M,) which directly affects the dynamics of sus-
pension system. Just like the vehicle speed, the body mass can undergo remarkable
variations due to several factors, e.g. number of passengers in the vehicle and the
loads in the vehicle. However, this very important element has retained constant dur-
ing the simulation in a large number of researches. To be more precise, the variation
of body mass on road has been given more attention compared to driver’s behavior
uncertainty. There exist seminal reports in the literature in which the researchers
have taken ideas from Kalman filtering and estimation theory to adaptively estimate
the vehicles total body mass [108, 109]. In the current investigation, a statistical
analysis is carried out to deal with the uncertainty of body mass. It sounds more
logical to recline on the results with uncertain (varying) body mass compared to
considering a constant vehicle mass.

3. Model-plant mismatch: For many of the existing systems, obtaining a high-fidelity
model requires an exhaustive trial and error effort to extract usually a consider-
able number of variables, and precisely calculate the DOF of the considered system.
High-fidelity models are often too complex and take a considerable computational
power for the simulation of real systems’ behavior. However, for applications such as
model-based control and decision making, it is essential to have an abstract model
which can represent the most important aspects of the real system. Within the con-
text of control, such abstract models are called control-oriented models. To develop
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a control-oriented model, one is allowed to consider the most prominent variables
affecting the systems behavior. Also, the DOF of control-oriented models is less than
that of high-fidelity models, and identification algorithms are used to identify the
flexible parameters of control-oriented models by maximizing their correlation with
high-fidelity models. The 4-DOF half-car model is an example of control-oriented
models which is much simpler than a high-fidelity model of real vehicle suspension
system. The salient asset of such a model lies in its computational speed which suits
it to be used at the heart of LBMPC for the online calculation of control commands.
So, it is obvious that there is a mismatch between the real suspension system and the
considered model. On the other hand, there is a possibility that even the nominal
values of the parameters of real-plant, such as damping coefficient, stiffness of springs,
and etc., change for the same product [106]. Therefore, that would be a wise choice
to consider a distribution for some of the parameters of the control-oriented model
rather than using the nominal values of model parameters. Such a consideration
will result in a more realistic analysis and increases the reliability of the controller
proposed for active suspension control.

4. Road roughness: Arguably, road roughness is one of the foremost challenging factors
when designing a controlling algorithm for suspension systems. So far, tremendous
efforts have been made to cope with the random excitation of suspension system
due to the road roughness. In this research, a thorough investigation is conducted
to come up with efficient statistical methods for forecasting the road roughness. To
the best knowledge of the author, this investigation remarkably contributes to the
research activities concerning the prediction of road roughness. To do so, well-known
statistical theories and forecasting techniques are taken into account, and a confidence
band is obtained to predict the roughness of the road with an acceptable robustness
rate.

5. Information preview uncertainty: Modern vehicles are equipped with many sensors
and communication systems which enable them to read information from global po-
sitioning systems (GPS) and radars. This actually paves the way of coming up with
intelligent transportation system. Due to so many factors such as communication de-
lay, rapture of vehicle sensors, and the noisy information transmitted to vehicle from
radars, a certain degree of uncertainty is accompanied with information preview. So,
for I'TS, that would be mandatory to take the advantage of statistical techniques to
cope with the effects of uncertainty.

For better understanding of the above details, Figure 3.2 represents a schematic illus-
tration of a vehicle on road which encounters different sources of uncertainty:.
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Figure 3.2: Schematic illustration of a vehicle with possible sources of uncertainty.

3.4 How to Treat / Simulate Uncertainties

In this section, it is intended to point out how the sources of uncertainty mentioned previ-
ously are handled in this investigation. Having said that detailed simulation and numerical
experiments will be given in corresponding chapters.

Let’s call the sources of uncertainties (SUs) as: (1) SU-1: driver’s behavior, (2) SU-2:
number of passengers and load, (3) SU-3: model-plant mismatch, (4) SU-4: road roughness,
(5) SU-5 information preview uncertainty and the uncertainties due to the rapture of
sensors and internal components of vehicles.

SU-1 is captured by implementing an absorbing stochastic Markov chain and designing
a proper transition probability matrix in Chapter 5. In this way, a distribution is obtained
for absorption time, and this is equivalent to the time that driver can manage the condition
to get back to the cruise speed after a random event during the driving cycle. For SU-2
and SU-3, a thorough discussion and analysis is performed by considering a distribution
for unknown model parameters in Chapter 8 after the implementation of the state-space
model in Chapter 6. For SU-4, a separate investigation is carried out in Chapter 4 and
several well-known forecasting models and statistical theories / techniques are considered
to come up with an authentic and robust way of predicting the road roughness. For SU-
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5, we have two scenarios of uncertainties. Actually, coping with the uncertainties due
to the noisy information transmission from radar and GPS falls within the category of
ITS, which is out of the scope of this study, as we neither use an intelligent car nor any
satellite based information preview. However, the uncertainty due to the rapture of sensors
and internal components of vehicles lies within the scope of the current investigation, and
has an unknown and unpredictable nature. For the current simulation, we consider it as
an additive disturbance and took the advantage of oracle module of LBMPC to tame it.
The simulation results concerning the use of oracle for SU-5 are presented in details in
Chapter 7.

The information provided in this chapter serves as a base for the extensions and con-
tributions of the next chapters. So, some of the mathematical details presented in this
chapter are considered as known truth in the coming chapters, and the author may simply
refer the readers to Chapter 3 for some basic information about the control-oriented model,
sources of uncertainties, and etc.
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Chapter 4

Prediction of Road Roughness

This chapter is devoted to the design and evaluation of statistical methods for predicting
the road roughness (also called road disturbance). After designing an appropriate pre-
dictor which holds a desirable trade-off between robustness and efficiency, it will be used
as a model to predict the disturbances resulting from road roughness at the heart of the
control-oriented state-space model used for designing learning based model predictive con-
troller (LBMPC). At the end of the chapter, one can find informative clues on how well
statistical methods and data analysis can guarantee the both robustness and efficiency of
road disturbance prediction module.

4.1 Problem Statement and Review

Arguably, the rapid development of computational processors has made it possible for
practitioners to adopt mathematical models for hardware-in-the-loop online applications.
Automotive industry is one of such fields that has instigated engineers and mathematicians
to develop sophisticated prediction and controlling modules for performance improvement.
A detailed review of the conducted research on designing efficient predictive controllers
and prediction tools was given in Chapter 2. In this chapter, we focus on the most remark-
able achievements pertaining to the development of prediction modules for predicting the
future roughness of road. In the context of vehicle suspension control, road roughness is
regarded as a source of uncertainty and is usually included in the state-space model as an
additive disturbance. This is mainly due to the fact that for any kind of vehicle suspension
control (including passenger comfort and deflection control), road roughness results in the
deflection of tires which imposes an external force to spring and dampers. Therefore, it is
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vital for any kind of active controller to have a good sense of road deflection for a proper
reaction in a right time. This is even more crucial when the active controller is of predictive
type in which the optimum controlling command is determined using the future behavior
of the plant. Apparently, using a model which cannot precisely predict the future road
roughness is very offensive, as under such a condition, the controlling command is deter-
mined based on a wrong disturbance profile. The exact mathematical formulation of the
predictive state-space, which clearly states that how the controlling command is related to
the future road roughness profile, will be given in Chapter 6.

The idea of searching for well-established prediction models have come to the mind of re-
searchers working on designing predictive control algorithms for vehicle suspension system
control. Here, we will only concentrate on citing and analyzing those research papers which
have rational logics and convincing reasons for selecting a predictive method for determin-
ing the future road roughness. Having said that the literature is full of research reports
in which either an arbitrary predictor is used without any justification or a trial-and-error
procedure is conducted to design a road roughness prediction module. Also, there exist a
vast number of research papers in which the road roughness is replaced with some basic
sinusoids or spikes which results in unrealistic controlling commands [110), , , 23]
In [113], several intelligent techniques including neuro-fuzzy and fuzzy logic based meth-
ods were used for predicting the road roughness. These methods did not consider any
assumption on the distribution of data, and only developed an interpolator based on a
number of input/output pairs. In [111], a set of regression techniques, including artificial
neural network (ANN), were evaluated, and it was concluded that intelligent methods are
good choices for roughness estimation. For the analysis of the results, the authors merely
reclined on the correlation between model output and data metric, and left the other im-
portant issues untouched. For example, they did not mention the fact that ANN simply
develops a nonlinear map between the input-output pairs used for training, and also, the
simulation did not contain any information regarding the robustness of the prediction. In
[115], radial basis neural network (RBNN) was used to predict the road displacement (in
the form of acceleration) for different road conditions such as concrete, waved stone block
paved and country roads. The veracity of the predictor was verified using mean-squared
error (MSE). One of the main flaws associated with this study was the relatively low num-
ber of training/testing data. Indeed, the authors evaluated RBNN using a limited test
data, and then, conducted a sensitivity analysis (based on the assumption that RBNN is
precise and robust). There also exist a number of research papers considering the whole
suspension system model together with the road disturbance as a unique uncertain sys-
tem. In [68], both modeling and control of a nonlinear half-car suspension system were
carried out by means of a hybrid fuzzy logic method, obtained by hybridizing proportional-
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integral-derivative (PID) and fuzzy logic controller (FLC). The uncertainty and unknown
parameters in the nonlinear model were treated with arbitrary membership functions, and
a comparative study was carried out to ascertain the properness of the controller. Since,
the shape of the considered membership functions were designed randomly, and had no
meaningful tie with the underlying nature of the model (including suspension model un-
certainty and road profile disturbance), the controller can be viewed as a black-box which
is not appropriate for interpretation and inference. In [116], a FLC was developed for the
seat vibrations of a nonlinear vehicle model. However, the simulation suffered exactly from
the same flaws, and there were neither a firm statistical analysis nor any knowledge coming
from experimental data, and thus, the veracity of the model could not be assured.

There also exist a number of research papers in the literature which are based on more
realistic scenarios to predict the road roughness. In [27, 50, |, it was assumed that a
multi-harmonic input which is close to an actual road profile can be used for simulation. To
attain this, one way is to consider pseudo-random process resulting from the summation
of several non-commensurately related sine waves. It is recommended to select spatial
frequencies of certain forms to achieve desirable pseudo-random profiles. In spite of the
fact that such a scenario borrows some statistical ideas to model the randomness, it still
has a set of parameters which should be manipulated. However, usually these tunable
parameters are set based on priori information and judgment of the user. For example, in
[27], the final pseudo-random processes generated a profile which was similar to Gaussian
white noise. However, the real experiments indicate that mean-stationary Gaussian profile
is not a realistic model for simulating the random roughness of roads. In [51], a stochastic
process was proposed to generate time histories of the front wheel road input. The model
used power spectral density function, and also had a uniformly distributed additive noise
to avoid periodicity. Although the use of statistical theories and methods for predicting
the road roughness is appreciated, the considered model was just a simulation technique,
design based on the authors’ judgement, and did not have anything to do with the real
characteristics of road profile.

By precise reading and contemplating the results and conclusions of the above research
papers, two key questions come to one’s mind which need further analysis and simulation,
at-least from statistical view point. Firstly, in the majority of the conducted research,
the road-roughness prediction is simply treated as a point estimation problem, without
any experimental quantification of the distribution of data, or using any statistical theo-
rem to come up with a confidence interval for the predictions. This hinders the engineers
from having a proper inference by means of the developed prediction model, which makes
such a blind point estimation unacceptable. This is mainly because at the end of the day,
the prediction module is going to be used at the heart of real-time predictive controller.
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Therefore, making inference by the developed prediction model, as well as the bounded-
ness of prediction error are very important. In some of the conducted research (such as
[27, 56, , b4, , |), a much more logical procedure was taken into account us-
ing the concept of Monte-Carlo simulation with some assumptions on the disturbance of
road roughness. Despite the fact that considering a source of uncertainty and performing
statistical analysis for designing an efficient predictor is appreciable, there are still some
important questions regarding the authenticity of the conducted research, which should be
clearly addressed. To the best of the author’s knowledge, most of the papers which have
tried to use statistical techniques to design a practical predictor have never taken strides
beyond software based simulation (see for example [51, 115]). In these papers, it was sim-
ply assumed that by considering the road roughness as a random variable and assigning a
certain type of distribution to it, one can derive acceptable statistical conclusions regarding
the robustness and accuracy of the predictor. For example, in [27, 50, , b4, , 1,
it was assumed that the road roughness approximately follows the Gaussian distribution.
This is when, as discussed later, our analysis on experimentally captured data indicates
that the distribution of road roughness is not Gaussian at all. However, its 1 and 2"¢
order differenced versions can be considered as Gaussian (1% order stationary) time series.

Unfortunately, such simple assumptions which can facilitate the computer-based sim-
ulation have hindered the majority of automotive engineering researchers from deriving
appropriate conclusions, and some of the concluded results may not be practical.

To cope with the abovementioned flaws, and also to have a fare judgment on the veracity
of the existing reports, a throughout analysis is conducted using different well-established
statistical theorems and techniques. Also, all of the comparative and theoretical analysis
are conducted on experimental data which are acquiesced using an accelerometer sensor.
By doing so, it is tried to ensure that the recommendations and conclusions derived are
authentic, and can be used by other practitioners who intend to develop a predictor for
determining the road roughness.

It should be mentioned that the predictor designed in this section will be finally used at
the heart of predictive controller for predicting the road disturbance and will be included
in the state-space representation as an additive noise. For a better vision, the schematic
illustration of the process is given in Figure 4.1.

4.2 Statistical Prediction Strategies

In this section, the methods used for predicting the road roughness are formulated. The
considered models are among the most applicable statistical techniques which have suc-
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I Additive noise Forecasting model for
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Figure 4.1: LBMPC with prediction module for suspension system control.

cessfully been applied to different prediction and forecasting problems [120, |. Also,
they are efficient, easy to implement and have firm theoretical background. Since the
road roughness is included in the suspension system state-space model as an additive noise
(see Figure 4.1), selecting predictors with simple structure is quite advantageous. This
is because such methods do not take a considerable computational time for performing
the prediction, and are good fits for real-time applications, such as the control problem at
hand in which the prediction and control are done in a real-time fashion, and computational
speed is of highest importance.

4.2.1 Notations and preliminaries

Before starting the formulation of considered methods, there are a few notes which should
be pointed out. All vectors are shown by lower case bold fonts (a, b, and etc.). Sets are
presented by calligraphic upper case italic format (A, B, and etc.), and matrixes are given
by upper case italic format (A, B, and etc.). The vectors are presented in columns, i.e.
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a = col(ay, ay, ..., ay), where a € R™. The transpose of matrix A is shown by AT. Also, a
vector of zeros of appropriate size (e.g. n X 1) is shown by 0,,4;.

4.2.2 Moving average process

Suppose that the time series {x;},., is collected. Moving average (MA) process is a fore-
casting method which estimates the value of a time series at time ¢ (x;) as a linear com-
bination of previously captured noises plus the noise at time ¢. Let’s define the backward
shift operator B as below:

Blo,=a,,, l€Z.

Also, let’s define the operator 8(B), as follows:

q
O(B):=1+> 6B,
=1

such that when 6(B) operates on z;, we get:
O(B)I't = Tt ‘I— ell't_l ‘I— e + qut—q .

Definition 4.1 Let {w;}

random noises, i.e. w; i N(0,0?%), where 0? < co. Then, the time series obtained by ¢
order moving average processes, MA(q), is defined as:

.z, be an independent and identically distributed sequence of

Ty = G(B)wt = w + 61&)15_1 + egwt_g +---+ qut_q .

By simple calculations, the mean and auto-covariance of MA(q) can be respectively
obtained as:
E[l’t] =0 s

q—[t—s|

o? 0.0, g if |[t—s|<q
'}/(t, S) — ];O JYj+t—s| I |

Y

0 otherwise
where F [ } is the expectation operator. It can be shown that MA process is stationary.

Definition 4.2 A process {x;},_, is causal if z; is only a function of wj YN (0,0?%), such

that s < ¢.

tEL
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As seen, MA(q) has a very simple formulation, and yet is among the most powerful
prediction / forecasting methods. One the salient assets of MA(q) process is that it predicts
based on the previously captured noises (it is a causal process), which makes its use for
practical and real-time applications possible, thanks to the sensors and noise measurement
tools at-hand.

4.2.3 Autoregressive process

The idea behind using autoregressive (AR) process is to estimate the value of a time series
at time ¢ (z;) as a linear combination of previously captured values of time series plus the
noise at time t.

Let’s define the operator ¢(B), as below:
P
¢(B):=1+) —¢B',
=1

where B is the backward shift operator, and also, when ¢(B) operates on z;, we get:

OB)ry =3 — Q1141 — - — Py

Definition 4.3 Let {x;},_, be the time series and w; w N(0,0?%), where 0 < co. Then,
the p' order autoregressive processes, AR(p), is the stationary solution to the differenced
equation below:

¢(B)$t =Ty — Q1T — - — ¢p33t—p = Wt .
It can be shown that AR(p) is stationary if the polynomial below:
¢(2):1—¢1Z—¢1Z2—"'—¢p2p,

has no root on the unit circle. Also, if all of the roots strictly lie outside the unit circle, by
some calculation, it can be shown that the AR(p) is causal and can be presented as:

(o)
Ty = E ¢jwt_j .
=0

The mean and auto-covariance of a causal and stationary AR(p) process can, respec-
tively, be given as:
E[It] = 0 y
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Yt 5) = 0" Y ity -
=0

AR(p) is a very useful forecasting / prediction method given its simple formulation,
as well as its capability to forecast based on the previous measured states of the system.
This is especially beneficial for state-space model (hidden Markov model) based controllers,
which evolve the system dynamics based on the variation of states, as a function of the
previous values of the states.

4.2.4 Autoregressive moving average process

Autoregressive moving average (ARMA) process is an efficient forecasting method which
takes advantage from both MA and AR process. Given a fine tuning of its parameter, it
can usually yield much better estimation for real-word problems, compared to MA and AR.
By means of 8(B) and ¢(B) operators defined in the previous sections, the formulation of
ARMA process can presented.

Definition 4.4 Let {x;}, , be the time series and {w;}

tically distributed sequence of random noises, i.e. w; YN (0,0?), where 02 < co. Then
ARMA (p, q) process is the stationary solution to the differenced equation below:

be an independent and iden-

teZ teEL

¢(B)z, = 0(B)w; .

Note that when forming ARMA(p, q) process, it is assumed that polynomials €(z) and
¢(z) possess no common roots. Just like AR(p) process, ARMA is stationary when the
polynomial ¢(z) has no root on the unit circle. Also, if all of the roots strictly lie outside
the unit circle, the process is causal.

There is no unique / exact way to find the proper values of ARMA process (unlike
AR and MA which could be tuned by looking at the graphical auto-correlation function
(ACF) and partial auto-correlation function (PACF) plots) for a given data. Therefore
optimization methods such as maximum likelihood and least-square technique are usually
used to find the values of p and ¢. Also, it is usually the case that the obtained ARMA
is such that p + ¢ << m , where n is the number of training data points (actually the
same holds for AR and MA). So, such methods can be viewed as short-term forecasting
techniques, and in long-term, the forecasted value is just the mean.

Therefore, it would be a wise choice to seek for more advanced forecasting methods and
use them together with MA, AR, and ARMA.
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4.2.5 APARCH model

It is possible that, due to the complexity of time series data, some type of periodicity or
volatility clustering be observed. In such cases, the abovementioned methods do not work
efficiently, and usually the trained model’s residual sequence is not white noise. APARCH
is an interesting method which tries to take advantage from the potentials of ARMA
process and a nonlinear model called generalized autoregressive conditional heteroskedastic
(GARCH) process [120]. GARCH is best suited for cases in which a volatility clustering
is observed in the time series. The beauty of the considered APARCH model is that it
tries to use GARCH to reduce the possible dependency of the residual errors obtained by
a fitted ARMA model. In this context, after training an ARMA model and conducting
model diagnosis, if the ACF plot of residual error has significant values (due to several
reasons such as nonlinearity of the original time series), GARCH is applied to the residual
errors with the hope of capturing the dependency between the residual errors. So, it is
expected that APARCH can effectively cope with forecasting of complicated time series in
a fashion that the residual errors are just white noise and follow normal distribution, and
also the ACF of residual error sequence does not have periodicity, and its elements always
remain within the predefined confidence interval.

Definition 4.5 Let {x:}

tically distributed sequence of unit variance random noises, i.e. wy YN (0,1). Also, let
the estimated solution of ARMA(p, q) process be denoted by ;. Then, the residual error
e; = Ty — x4 is fed to GARCH(1, 1) model for further processing, using the equation below:

be the time series and {w;}, , be an independent and iden-

teEL teZ

€t = 0t Wy,

2 2 2
oy =apt+ e + pioyy

e
with initial condition o; = iy
w1
The trained model can be used then for forecasting the unseen values of ¢é;, which
together with z; gives the APARCH model. The model can be simulated in R using either

tseries or rugarch packages.

4.2.6 Dynamic linear model

Dynamic linear model (DLM) is a state-space model which is based on the concept of
Bayesian regression. In this context, the parameters of the model are not only tuned
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by using the captured data, but also depend on any form of information, such as expert
knowledge, which can be represented probabilistically, as prior distribution. Consider a
univariate time series {x;},,. Assume that the information available for prediction /
forecasting at time ¢ be represented as Z;, and the model parameters (called states) vector
at time ¢ be pu, € R™. To take advantage from Bayesian regression concept, we need a
probability model for time series, i.e. Pr(z; | p,Zi—1), and a prior probability model
Pr(w; | Z,—1), then we need to find the posterior probability model Pr(u, | z;,Z;), where
s > t for prediction scenario. The mathematical formulation of DLM can be given based
on the mentioned concepts.

Definition 4.6 Let {x,},_, be the sequence of univariate collected data, in which at each
time ¢, x, € R, and p, be the states / parameters vector of the model. Then, the general
DLM can be presented as:

z =1, + v,

=Gy g +wy

where the first equation is called the observation equation, and the second equation is
called the system equation. Here, the n x 1 vector f; and n X n matrix G; are known
values, w; ~ N(0,x1, W;) and v; ~ N(0,02), where W, is a n X n time-varying covariance
matrix, o? is a time-varying variance, and also the prior distribution of system state is
o | Zy ~ N(myg, M), where mg is a known n x 1 vector, and M, is a known n X n
covariance matrix . In this model, the covariance matrix W; and ¢? can be known or

unknown, and the system state vector u, is unknown.

Upon fine tuning, DLM can efficiently model a given time series, even when the series
is not stationary. Considering this method together with ARMA, AR and MA will help us
to conduct a good comparative study, and obtain reliable results for forecasting the road
disturbance for vehicle suspension system control.

4.3 Data Acquisition Experiment

Collecting detailed experimental data for estimating the road roughness is a very time con-
suming and burdensome task. This is due to the fact that, to make sure the experimental
data are of acceptable values, one should use highly accurate sensors, and also repeat the
data collection for the same road through different independent trials to reduce the effects
of uncertainty and sensors measurement noise as much as possible. Such facts have hin-
dered engineers and practitioners from collectecting experimental data for road roughness.
As mentioned, one of the main goals of this investigation is to come up with practical road
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roughness forecasting models, and to do so, it is needed to have experimental dataset. In
this regard, two different sets of data are used for the simulation.

In the rest of the section, the properties of the considered datasets as well as the required
pre-processing for using them are explained. The first dataset is a well-known experimental
road roughness data collected by engineers working on a Queensland governmental project,
and the second dataset is obtained by the author’s research group at Waterloo by using
an accelerometer sensor.

4.3.1 Data obtained in Queensland

The data has been collected by engineers working on a Queensland governmental project,
and contains averaged road roughness data over different road segments. The collected data
are available at two levels of granularity on different road segment. For each of the data
bases, the average roughness with respect to international roughness index (IRI) for the
segment lengths of interest (100 m) has been reported. The detailed procedures and steps
taken to collect data can be found in the website https://data.qld.gov.au/case-studies.
Also, a related analytical study regarding the evaluation of pavement deflection values was
conducted in [122]. Our assessment of the initial dataset indicated that there were some
unreasonable spikes in the time series.

The initial time series which exactly shows what reported on the database is given in
Figure 4.2. It can be seen that in some points, the IRI index goes to -100 which is not
a standard value. By further investigation, it was discerned that those values represent
the data-pairs for which the sensor could not measure the IRI index. So, those have been
discarded to get the reasonable data in the form of time series. It is clear that the collected
data is spatial as the IRI values are reported based on some distance measure. Keeping
this in mind, for the sake of convenience, we rename the x-axis and consider the unit to
be time, and the values series are treated as time series.

The filtered time-series is depicted in Figure 4.3 (a). As expected, the initial time series
does not satisfy the first order and second order stationarity conditions, and thus, is not
prepared to be used, and can degenerate the performance of standard forecasting systems
which do their best when there is stationarity in the series. There are two main approaches
to come up with a stationary times series. The first way is to decompose the stochastic
time series into a trend (main signal) and a noise sequence. However, for practical time
series such as road roughness, it is a very optimistic assumption to seek for an accurate
trend and extract it from the original series. Therefore, the differencing strategy is taken
into account to wash out the trend and make the series stationary for analysis. In this
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way, different orders of differencing are performed on the time series. The results indicated
that the first order differencing can acceptably wash out the trend and make the series
stationary.

Figure 4.3 (b) indicates the first order stationary series, and as seen, it can be viewed as
stationary time series. Therefore, it is used for training the forecasting models. Also, note
that to make sure the first order differenced times series is the best choice, the original
time series was differentiated for more times, and it was observed that differentiation
orders greater than one increase the variability of the resulting differenced signal which is
not desirable.
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Figure 4.2: The initial time series with spikes (due to lack of information).
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Figure 4.3: Time series of (a) IRI road roughness, and (b) first order differenced version of
time series.

4.3.2 Data obtained in Waterloo

One of the difficulties of the Queensland experimental data is that the road roughness is
reported in terms of IRI index, for which there is not an inverse function to get the road
displacement information (which is required for the controller). Therefore, the author’s
research group conducted a complementary experimental study at Waterloo using an ac-
celerometer sensor, which measured the vertical acceleration of the vehicle, and could be
used to get the displacement profile.

The dataset of Waterloo experiment was collected on a Honda Civic automobile, using
an accelerometer software installed in a Black-Berry passport mobile, with Black-Berry OS
10.3.3.1 operating system, and 3 GB memory in a 160 sec period which will be used to
evaluate the performance of forecasting systems.
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Figure 4.4 (a) indicates the measured vehicle acceleration over 160 sec (from 11:53:52 to
11:56:32). After reducing a constant value (0.25) from the profile, the mean adjusted time
series seems to be approximately stationary (see Figure 4.4 (b) ). To have a more stationary
time series, different differenced version of the mean adjusted profile is determined. Based
on the experiment, the author realized that first order differenced profile can be viewed
as stationary time series. Therefore, the first order differenced profile which is shown in

Figure 4.4 (c) is used for training the forecasting methods.
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Figure 4.4: Time series of (a) original vehicle acceleration, (b) mean adjusted vehicle
acceleration, and (c) first order differenced version of acceleration.
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Figure 4.5: The corresponding road displacement.

Also, the vehicle displacement for the measured acceleration profile is depicted in Fig-
ure 4.5. In this way, after forecasting the vertical acceleration, the estimated value will be
transformed to displacement, and used at the heart of control state-space model, as road
disturbance. Interestingly, the obtained value matches with standard road displacements
which are assumed by designers for developing controllers.

4.4 Simulation Results

This section is given in two sub-sections. Firstly, the detailed description of the parameter
settings as well as the steps taken to conduct the numerical study are presented. Thereafter,
the numerical results obtained through simulation are scrutinized.

4.4.1 Simulation setup and parameter settings

As mentioned in Chapter 3, the suspension system senses the road disturbance on both the
front and rear axles. Indeed, the front and rear tires sense exactly the same disturbance
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profile with a time delay, which can be calculated as a function of vehicle cruise speed and
acceleration. Thus, the forecasting method is just used once, to forecast the future road
roughness profile which will be sensed by the front tire, and the same value is fed to the
rear tire (and also to the state-space model of the rear axles) with a time delay.

For using AR, MA and ARMA methods, the Box-Jenkins strategy is taken into account,
by following the model identification / model selection, parameter estimation, and model
checking / diagnosis stages. Note that, as stated before, these methods work perfectly when
times series are stationary. So, since for the data used in this case study, the observed non-
stationary time series can be viewed as the linear transformation of stationary processes,
it would be possible to take differences and wash out the trends, and then, use the above
methods as the variants of general autoregressive integrated moving average, ARIMA(p,
d, q), process.

For model-order selection, graphical visualization by means of autocorrelation function
(ACF) and partial autocorrelation function (PACF) can be used. Although such a strategy
can be useful for selecting the order of MA and AR processes, it cannot afford an exact
result for ARMA process. So, making inference regarding ARMA model is difficult, and
even if an approximate model can be taken, it is impossible to claim that this is the best
fit ARMA for a given time series. Therefore, here, the author uses the Akaike information
criterion (AIC) to get the best model for ARMA. AIC can be formulated as below [121]:

AIC = —20(B) + 2~ ,
where ¢ (,@) isAthe maximum log-likelihood value, « is the number of parameters in the fitted
model, and 3 € R* represents the estimated parameter vector. For the current simula-
tion, AIC objective function is optimized by Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm [2].

Also, for comparing the performance of the rival considered methods, mean square
estimate (MSE) and standard deviation (std.) are taken into account. For reporting the
MSE values, it is common to divide the data into training and testing sets and check the
performance of the fitted model for testing set. A better way is the use of k-fold cross-
validation. However, the current case study deals with time series, which are intrinsically
ordered data. This makes the use of cross-validation problematic because some patterns
may emerge at a certain point (which could potentially be neglected at some of the stages
of k-fold cross-validation training process), and be crucial for forecasting the step-ahead
points. Therefore, an approach which is more principled for time series, and is called k-
fold forward chaining is taken into account. Let’s say k = 3, then the procedure includes
dividing the time series into k = 3 segments, and doing (a) fold 1 (training segment 1 and
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testing N-step ahead), (b) fold 2 (training segments {1, 2}, and testing N-step ahead), (c)
fold 3 (training segments {1,2,3}, and testing N-step ahead), and finally reporting the
average MSE and std. values. Such a process also lets us evaluate the dependency of the
forecasting models on the required size of training dataset. For this study 10-fold forward
chaining is taken into account. Also, due to the properties of the dataset and the nature
of the predictive control problem at hand, N =5 is selected for simulation.

For model diagnosis, some important visualization tools such as quantile-quantile plot
(QQ-plot) of residual error, correlation of fitted model and data, and confidence interval
(CI) are taken into account [120]. For each of the models, the future predicted values are
reported in the form of a mean value and a 95% CI bound to check the robustness of the
system. Note that, during the analysis, the time lag between two measured values at times
t and s is denoted by h =| t — s |.

Also, for training APARCH model, after fitting a proper ARIMA model, the residual
errors are calculated, and the resulting sequence is fed to GARCH(1, 1) for further pro-
cessing. In the current study, Quasi Newton-Raphson algorithm is used for calculating the
optimal model parameters of GARCH.

As pointed out, it is necessary to use both of the considered datasets for simulation
and evaluation of the potential of the adopted forecasting / prediction methods, since they
are experimental and represent two real road profiles. Note that, since the second dataset,
(which has been collected by the author’s research group at Waterloo) has been reported
based on vertical acceleration measure, and can be transformed to road displacement, it is
more suited to be used at the heart of controller. Therefore, the main focus of the current
simulation is to find out an authentic predictor for that dataset, and eventually use it as
the road disturbance prediction module at the heart of LBMPC in Chapter 8.

All of the simulation are conducted in MATLAB and R software on a Pentium IV DELL
laptop, with Windows 7 operating system, Intel Dual core 2.2 GHz, and 2 GBs RAM.

4.4.2 Analysis of data obtained in Queensland

As mentioned, before proceeding with fitting procedure, that would be a wise choice to
carry out some primary analysis on the dataset. This gives us some clues to seek for
more appropriate versions of forecasting algorithms. Therefore, instead of blindly using of
autoregressive (AR), moving average (MA) and autoregressive moving average (ARMA)
methods, here, the behavior of the times series is analyzed in terms of auto-covariance
function (ACF) and partial auto-covariance function (PACF) to see which model is a good
fit for analysis and fitting. First of all, the resulting difference time series has been tested in
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terms of quantile-quantile correlation to find out to what extend it shares properties with
Gaussian distribution. Figure 4.6 illustrates the QQ-plot of the time series. As seen, QQ-
plot shows a good correlation between data and theoretical quantiles, which is a favorable
phenomenon, and helps us conveniently proceed with the analysis.

Figure 4.6 also unveils the ACF and PACF values for the road roughness data. It can be
concluded from the obtained information that PACF has a tail-off type decaying property
(which makes the data a good fit for MA process). Also, the ACF plot approximately
cuts-off at lag h = 2 (at h = 2 still coincides the CI bound), which is interestingly another
property of MA process. Given the mentioned facts, one can infer that more emphasis
should be put on designing a forecasting model which is based on the linear combination
of previous white noise signals (MA(1) or MA(2) may be proper choices). Also, to be
more accurate and carry out a more comprehensive investigation, it should be taken into
account that one cannot precisely claim that the ACF values entirely match the properties
of MA model, as the ACF value does not exactly cuts-off at a point to zero. That is to
say, after h = 1, there is a strong suppression in the ACF value. But, it is not exactly
equal to 0 (maybe due to the noises or maybe due to the nature of the data), rather it
gives some values in the vicinity of 0. Such a fact also suggests considering ARMA model
for this dataset, provided that it is better to seek for ARMA(p, q) processes with order
g = p or q > p. As mentioned, for ARMA, an optimization is conducted using AIC
and considering MSE error. Other than that, to have more comprehensive experiment, a
sensitivity analysis by considering some possible ARMA(p, ¢) variants is carried out, and
the results are compared to the one obtained by optimization, keeping in mind that due
to the properties of the data, that would not be a wise choice to increase the order of AR
part significantly.

In view of the derived conclusions, for the trial and error experiment, MA(1), MA(2),
MA(3), and MA(4) are used to fit the data. Also, ARMA(1, 1), ARMA(1, 2), ARMA(2, 2)
and ARMA(2, 3) are considered for further analysis (AIC optimization for ARMA is also
used). Firstly, the performance of MA for fitting a good forecasting model is evaluated,
and then, the results pertaining to fitting an ARMA model is presented.

The statistical results obtaining after training MA models are summarized in Figure 4.7.
As seen, QQ-plots of all of the considered models are acceptable in the sense that they
are in good correlation with theoretical quantiles. This means that MA is a good choice
for interpolation on the captured data. Each of the MAs predict 5-step ahead values
of the series (as mentioned, MAs are short-term forecasters). Also, the other reason is
that LBMPC controller usually uses a prediction horizon length of 5 (i.e. the five future
signals) to make an optimal controlling decision. The second plot for each of MAs shows
the correlation between the model values and the experimental data. As seen, the model
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and experimental values are in good agreement. Also, MA models are measured with
respect to MSE performance metric obtained by 10-fold forward chaining. It can be seen
that MSE index for MA(2) is less than the other MA counterparts.

Also, the last two figures show the performance of MAs for the estimation of future
unseen values. For each of the models, the future values are predicted and reported in the
form of a mean value and a 95% CI bound to check the robustness of the system. The
fourth (last) subplot of each model includes the considered intervals and means as well
as the actual experimentally evaluated data. It can be seen that all of the models could
efficiently forecast the future values of the time series, and also the actual values are very
close to the mean values of estimated intervals.
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Figure 4.6: Analyzing the Queensland roughness data in terms of (a) quantile-quantile
plot, (b) autocovariance function, and (c) partial autocovariance function.
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Figure 4.7: Model diagnosis results for fitting models by different MAs for Queensland
dataset.

By repeating the experiments, it was observed that the actual future signals rarely vio-
late the estimated CI. This implies the good performance of MA models for the considered
forecasting task (as expected). Obviously, the ACF values in Figure 4.6 approximately
cuts-off to zero after lag 2, which somehow augurs the standard behavior of MA(2). This
can also be verified in Figure 4.8 which compares the actual and model estimated signals.
As seen, the model has a very good performance, and its estimated values are in a very
good agreement with actual experimental signals.

Also, some standard statistical tests on the residuals of MA(2) are conducted for fur-
ther analysis. Figure 4.9 (a) indicates the residuals of MA. Figure 4.9 (b) evaluates the
performance of MA(2) by measuring the ACF values for residual signals. It can be seen
that the values are in most of the times within the 95% CI. This shows that the captured
residuals are approximately Gaussian white noises and MA(2) does an acceptable fitting
on time series.
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Figure 4.8: Experimental time series data vs. MA(2) prediction for Queensland dataset.

The last test is known as Ljung-Box test. This test can be performed on residuals
of any variant of fitted ARIMA process, including MA. The test is performed under the
null hypothesis that the residuals from any ARIMA (p, d, ¢) have no autocorrelation.
The rejection criterion (critical value) comes from Chi-squared distribution with degree of
freedom equals the considered lag. It can be seen that the obtained values approximately
do not violate the threshold (except h = 9 and 10) which means that the calculated errors
have no (or at-least trivial) dependence, and there is no strong evidence to reject the null
hypothesis.

Also, the estimation errors for MA processes of different orders are obtained in an
additional experiment to get some clues about the veracity of the conducted ACF / PACF
analysis (results of Figure 4.6), and the derived conclusions. As mentioned previously,
based on the properties of ACF and PACEF plots, it was concluded that Queensland dataset
is best suited to be modeled by MA(2), as the ACF approximately cuts-off after lag h = 2.
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Figure 4.9: Further model diagnosis results for MA(2).

The results of sensitivity analysis in terms of MSE and the order of MA is shown in
Figure 4.10. It can be easily verified that the most optimum performance in terms of MSE
index is achieved for MA(2). Also, the sensitivity results reveals that for MA of orders
greater than 4, the estimation error increases significantly. This also is in consensus with
our conclusion from data ACF-PACF analysis that the order of MA for this specific data
should not be large (it should be something around 1 to 3).

To further investigate the potential of linear process predictors, and also based on the
results of data analysis, it is intended to fit a number of ARMA models to the data.
The same experiments are repeated using the aforementioned ARMA models. Figure 4.11
presents the results of statistical test on the ARMA models.
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Figure 4.10: MSE error of MA models of different orders obtained by 10-fold forward
chaining.

It can be seen that the considered ARMA models are also capable of handling the fitting
task. However, by taking a fair comparison with MA counterparts, it can be inferred that
their MSE error are higher. Also, they have a much more complex structure compared to
MA models. This leads to the conclusion that, for Queensland dataset, MA could be a
better choice to be used as prediction module for LBMPC, as online calculation speed and
less computational complexity is of highest priority.

The obtained AIC, MSE and std. values for ARMA model selection is shown in Ta-
ble 4.1. The AIC optimization suggests ARMA(1, 2) as the most optimum structure with
((B) = —210.6 and AIC = 427.26. Also, the 10-fold forward chain MSE and std. values for
ARMA(1, 1) and ARMAC(1, 2) models are better than the other two models, i.e. ARMA(2,
2) and ARMA(2, 3). As seen, the estimation power of this two models are very close to
cach other, and based on the AIC results, ARMA(1, 2) dominates ARMA(1, 1) because
of having lower AIC value. The selection of ARMA(1, 2) is also in agreement with MA(q)
model selection experiments, and it seems that ¢ = 2 is the best choice for Queensland
dataset. Indeed, this is inline with the findings of ACF / PACF analysis of the time series

(results of Figure 4.6).
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Figure 4.11: Model diagnosis results for fitting models by different ARMA processes for
Queensland dataset.

Table 4.1: Results of optimization for ARMA models for Queensland dataset
Parameters (B) AIC MSE std.

p=1,q=1 212.6 429.20 0.3877 0.0440
p=1,q=2 -210.6 427.26 0.3807 0.0440
p=2,q=2 -210.6 429.20 0.4135 0.0454
p=24qg=3 -210.6 431.20 0.4268 0.0454

Figure 4.12 compares the values estimated by ARMA(1, 2) and the actual time series. It
can be seen that the signals acceptably match each other. Figure 4.13 shows the statistical
tests on residuals obtained by ARMA(1, 2). By comparing the results of Ljung-Box test
for ARMA and MA models, it can be seen that MA does a better job, as ARMA(1, 2)
violates the threshold in more points. This means that the residuals of ARMA(1, 2) model
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have higher dependency compared to those of the MA(2) model.

To complete the experiment, more advanced forecasting models are also taken into
account. For Queensland road roughness time series, some sort of volatility clustering can
be observed in the original data as well as the first differenced version (see Figure 4.3). Also,
to be very precise, it can be stated that ACF values of the model diagnosis results for both
MA(2) and ARMA(1, 2) are at some lags significant or very close to the confidence bound
(this can be also verified by the results of Ljung-Box test). Such observations suggests the
need for using a much more sophisticated modeling scenario (maybe a nonlinear model) to
get better results.

To cope with such a diminishment, we seek for a remedy to improve the statistical
results of forecasting. This is done by using APARCH model which takes advantage from
both volatility and linear process theories.
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Figure 4.12: Experimental time series data vs. ARMA(1, 2) prediction for Queensland
dataset.
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Figure 4.13: Further model diagnosis results for ARMA(1, 2).

Thanks to the powerful tseries tool box of R software, a model is developed which
firstly uses ARMA(1, 2) to fit a model, and then, applies GARCH(1, 1) to residual errors.
Note that just like DLM, upon fine tuning of APARCH, it can be used for long-term
forecasting, and could be advantageous for the current application. The ACF-square of
the model obtained by GARCH(1, 1) is shown in Figure 4.14 (a). It obvious that the ACF
values always remain within the CI bound. Also, the ACF of APARCH model is shown in
Figure 4.14 (b). The obtained result indicates that except a significant value at lag h = 1,
the ACF at the other lags always falls within the CI and is not even close to the bounds.
By comparing the ACF of residuals of APARCH to ARMA(1, 2) and MA(2), it can be
seen that APARCH has a superior performance in terms of removing the dependency of
residual sequence. Also, APARCH yields MSE of 0.3678 and std. of 0.0428, which are both
better than the previous obtained results.
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Figure 4.14: ACF plots for (a) GARCH and (b) APARCH for Queensland dataset.

Figure 4.15 compares the values estimated by APARCH and the actual time series.
All in all, the results of conducted simulation indicate that APARCH can also be a good
choice for our application. It is worth pointing out that it has a much complex structure
compared to ARIMA methods, and also requires more computational time for estimating
the parameters, and due to the nonlinearity of GARCH, more sophisticated optimization
process is needed for its fine tuning. Such observations make the applicability of APARCH
for online applications and incremental learning a little bit questionable, and care should
be taken when using it.

The final model used for forecasting of Queensland road roughness time series is DLM.
Note that for DLM, the original version of the time series is taken into account, which is
non-stationary. Based on the experiments, it was realized that the best variant of DLM is
the simple DLM with one parameter and f; = g, = 1 (the original vector f; and matrix G,
are simplified to one array for our case). Also, the optimization suggests using V' = 2.59
and W = 3 . Note that the initial distribution of the parameter is set by taking m,
equal to mean of data, and M, equal to variance of dataset. The obtained MSE error and
std. values are 0.5936 and 0.0544, respectively, which are not as good as the other rival
methods. The model diagnosis results are summarized in Figure 4.16. As seen, the residual
error sequence of the fitted model has an acceptable behavior, and seems to approximately
follow normal distribution.
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Figure 4.15: Experimental time series data vs. APARCH prediction for first order differ-
enced version for Queensland dataset.

Also, the ACF of residuals remains within the CI for most of the considered lags.
The weakness of the model lies in its estimation capability, and as can be seen from the
correlation plot, the DLM estimation and time series data are not in a very good correlation.
Also, for having a fair comparison with the other methods (for which the estimated series
are reported in terms of first order sequence), the first order differenced version of the data
and DLM prediction is depicted in Figure 4.17.

By comparing the result with Figure 4.8 and Figure 4.12, one can find out that the
estimation power of the other rival methods is better than that of DLM, and at-least for
this dataset, the other methods can be more beneficial. One reason could be the lack of
enough information for efficient determination of prior distribution of the system state,
which is a common drawback of all Bayesian regression methods. Having said that DLM
may not outperform the other methods, but still does an acceptable prediction job, and
in particular, its results are better than the other methods (except APARCH) in terms of
capturing the dependency of the residual error.
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Figure 4.16: Model diagnosis results of DLM fit for Queensland dataset.

4.4.3 Analysis of data obtained in Waterloo

To find out which types of forecasting models are more appropriate for Waterloo dataset,
and also, to have a visual inference regarding the proper (or relevant) orders of ARIMA
processes, a statistical test is carried out on the first order differenced version of dataset.
The conducted experiment includes quantile-quantile, ACF and PACF analysis. The re-
sults of the experiment are summarized in Figure 4.18. It seems that the theoretical and
sample quantiles are in an acceptable correlation with some deviation on both tails. Our
experiment indicated that further differencing can drastically increase the variability of
series as well as the deviation on both tails, and thus, the first order difference is an ac-
ceptable choice. Also, the ACF plot cuts-off at lag h = 2, and clearly after lag h = 1,
the other ACF values are within the confidence bound. Also, PACF shows an exponential
decay which together with ACF results suggests the use of MA process for fitting. Also, it
can be seen that at some point, the ACF and PACF values raise from 0 (but still remain
within the CI) and again cut-off to 0. This could be because of the measurement noises
or other sources of disturbance which contaminate the dataset. Such a fact substantiates
the need for using other versions of forecasting methods to get a better view on the most
appropriate model for Waterloo dataset. Therefore, ARMA process can also be a good
choice for the current experiment, again, with focus on selecting models with order ¢ = p
or ¢ > p, and also not setting large values for p. Also, APARCH and DLM models are
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Figure 4.17: Experimental time series data vs. DLM prediction for first order differenced
version of Queensland dataset.

good choices for Waterloo dataset.

As mentioned, for the considered variants of ARIMA processes, i.e. MA and ARMA,
the analysis is conducted in the light of Box-Jenkins procedure which includes, model se-
lection, parameter estimation, and model diagnosis. Different variants of MA and ARMA,
namely MA(1), MA(2), MA(3), and MA(4), ARMA(1, 1), ARMA(1, 2), ARMA(2, 2) and
ARMA (2, 3) are used for analysis and the best models are selected with respect to AIC,
MSE;, std., and other model diagnosis experiments. Also, due to priority of using simple
and efficient models at the heart of LBMPC controller, and the possible need for incremen-
tal learning in a real-time fashion, simple DLM is selected as the most appropriate version
of Bayesian regression models.

The statistical results obtaining after training MA models are presented in Figure 4.19.
By checking the QQ-plots of the simulation, one can realize that the correlation between
theoretical and sample quantiles for residual error sequence is not that satisfactory. In
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Figure 4.18: Results of statistical tests on Waterloo roughness data, (a) quantile-quantile
plot, (b) autocovariance function, and (c) partial autocovariance function.

particular, remarkable deviation can be observed at the both tails for all of the considered
MA models. The MSE values obtained by 10-fold forward chain suggest that MA(3) has a
superior performance comparing to the other values. Also, for all of the cases, the N-step
ahead forecast violates the 95% percent Cls. Putting the results altogether brings us to
the conclusion that MA is not a very efficient model for Waterloo dataset. Also, it can be
stated that among the considered MAs, MA(3) outperforms the other variants.

Figure 4.20 indicates the complementary model checking results for MA(3). There is an
obvious pattern in the residual error sequence, which shows the dependency of the obtained
errors. This pattern can be also observed in the ACF of residuals plot, though it seems
that the obtained values remain within the confidence bound. Also, the Ljung-Box test
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Figure 4.19: Model diagnosis results for fitting models by different MAs for Waterloo
dataset.

rejected the null hypothesis of independency of residual errors.

As a complementary experiment, a sensitivity analysis based on error-bar values for
MAs of different orders is performed in Figure 4.21. It can be seen from Figure 4.21 (a)
that the variation of error is relatively the same for all of the MAs, and as mentioned,
the best MSE belongs to MA(3). Figure 4.21 (b) indicates the estimation of MA(3) vs.
real data. As a conclusion, it seems that MA process cannot be considered as a reliable
forecaster for the Waterloo road roughness, and the other models should be checked.

The experiment is followed by using ARMA process for forecasting task. Figure 4.22
depicts the model diagnosis results for the fitted ARMA models. In general, the obtained
results are not in favor of using ARMA for this process. In particular, QQ-plot indicates
that the residual errors have deviation from the theoretical quantiles in both tails, and also,
the prediction for unseen data falls outside the 95% CI at one point. At the same time,
it seems that ARMA successfully trained its structure with respect to the training data
because the correlation of the models output and real data are very good. However, this
cannot be an enough condition since the performance for unseen data is more important.
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Figure 4.20: Model diagnosis results for MA(3).
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Figure 4.22: Model diagnosis results for fitting models by different ARMA processes for
Waterloo dataset.

Table 4.2: Results of optimization for ARMA models for Waterloo dataset

Parameters (3) AIC MSE std.

p=1lg=1 -27.96 59.92 0.1973 0.0351
p=1,q=2 -98.03 62.06 0.1771 0.0332
p=2,q=2 -27.00 62.00 0.1825 0.0337
p=2,q=3 -95.48 62.48 0.2517 0.0396

Table 4.2 lists the obtained results for the trained models. As seen, the MSE and std.
values of the first three models are really close to each other, and thus, the best model is
ARMA(1, 1) because of having the lowest AIC. Therefore. Further analysis are conducted
on this model.

Figure 4.23 depicts the model diagnosis results for ARMA(1, 1) process. As seen, ACF
values of the residual errors remain within the CI bound, which is promising. Also, the
prediction of ARMA(1, 1) vs. the experimental data is shown in Figure 4.24. All in all, it
can be concluded that ARMA(1, 1) does a good job at the training level, but cannot be
expected as a reliable model because of its performance at the testing stage. It seems that
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more advanced models should also be tried for Waterloo dataset.

Figure 4.25 indicates the model diagnosis results for APARCH model. The MSE and
std. values of APARCH model are 0.2648 and 0.0406, respectively. The comparison of the
obtained results with the previous results indicate that APARCH shown a better perfor-
mance in terms of QQ-plot, and the deviation from the theoretical quantiles are decreased
a little bit. Also, the correlation plot is acceptable. Note that one of the APARCH predic-
tions for the unseen data violates the 95% CI which undermines its reliability.

The results of ACF analysis for the model are shown in Figure 4.26. As seen, the ACF of
both APARCH and GARCH(1, 1) model significantly violate CI, which means there could
be a significant correlation between residual error values at different lags. This is clearer
from QQ-plot of GARCH(1, 1) residuals, which has heavy tails and makes the normality of
errors assumption not quite satisfactory. This offers checking GARCH(1, 1) with student ¢
distribution for possible performance improvement. The Q-Q plot for GARCH(1, 1) with
student ¢ distribution seems quite satisfactory, and can further improve the performance

of APARCH.

Figure 4.27 compares the predicted values of APARCH and the experimental data. It
can be seen that APARCH does a good job in identification of the series; however, it is
obvious that ARMA(1, 1) model has a lower MSE value which could be a result of over-
fitting because the performance of APARCH and ARMA are very close for N-step ahead
forecast (unseen data).

The next model used for Waterloo data experiment is DLM. The model diagnosis results
are shown in Figure 4.28. Note that the non-differenced non-stationary version of dataset
is used for training DLM. Again the simple DLM is selected for the current study with
to | Zo ~ N(—0.0045,0.0810), v ~ N(0,2.59), and w ~ N(0,3). As seen, the QQ-plot of
residual errors shows a deviation on both tails, but the deviation is not as significant as
those of the other methods. Also, the ACF values of residuals mostly remain within the
CI, and the correlation between data and the DLM outputs is acceptable. The obtained
MSE is 0.2065 which is quite less than that of APARCH model and is close to those of
ARMA processes. To have a better comparison between DLM and the models presented
previously, the MSE and std. values of the differenced version of DLM are also reported,
that are 0.2330 and 0.0381, respectively. It seems that the results are comparable to
ARMA(1, 1).
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Figure 4.24: Experimental time series data vs.

dataset.
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Figure 4.23: Model diagnosis results for ARMA(1, 1).
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Figure 4.25: Model diagnosis results for fitted APARCH model for Waterloo dataset.

Also, the comparison of the predicted values of DLM with real data for both original
and first order differenced versions are shown in Figure 4.29. It is obvious that DLM does
a very good job and the estimated and real data profiles are very close to each other.

Among the models used for Waterloo dataset, it seems that DLM and ARMA(1, 1)
have a good performance at the training stage. Also, DLM shows improvement in terms
of independency of the obtained residual errors, and can be selected as the final choice for
this study. Note that, since the simple version of DLM is used, it has a good computational
speed, and does not take a significant time for forecasting which is acceptable for real-time
applications, as is the case in this study. Also, as a Bayesian regression, once more data
and information are available, the prior estimates can be improved which results in the
improvement of the model, and it seems that DLM has an aptitude to be considered as an

incremental learning technique, which is another required feature for the efficient design of
the learning module of LBMPC.
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Figure 4.26: (a) ACF plot for GARCH(1, 1), (b) ACF plot for APARCH (c) Q-Q plot for
GARCH(1, 1), and (d) Q-Q plot of GARCH(1,1) with ¢ distribution for Waterloo dataset.

4.5 Remarks on Using Statistical Techniques for Road
Roughness Prediction

Based on the conducted simulation, the following remarks are observed for the current case
study:

1. One of the prominent features of the considered statistical forecasting methods is their
capability to predict with a CI. The boundedness of disturbance sources, including

70



CHAPTER 4. PREDICTION OF ROAD ROUGHNESS

APARCH fit

— Data
— APARCH fit

15

1.0

05

series values
0.0

-0.5

-1.0

] 100 150
Time
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Figure 4.28: Model diagnosis of DLM for Waterloo dataset.
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Figure 4.29: Experimental time series data vs. DLM prediction for of Waterloo dataset.

road disturbance, is necessary for proving the stability and robustness of LBMPC.
This will be proven in Chapter 6.

2. The statistical forecasting methods have usually simple yet efficient formulations,
which is very beneficial when using them for real-time applications. As observed in
the previous sections, most of the obtained models had at-most 2 to 4 structural
parameters, and could be tuned in a short period of time. This desirable feature
together with the intrinsic robustness of the resulting forecasting systems make such
techniques good fits to be used at the heart of any type of learnable predictive
controllers including LBMPC.

3. As observed, Bayesian forecasting methods have a very good potential to be used for
forecasting the road roughness profiles. Such techniques can be always improved by
collecting more information about the road roughness, and choosing more appropriate
prior distributions for the system parameters. This predisposes such techniques for
incremental learning and online forecasting / prediction, which is another desirable
feature for the learning module of LBMPC.

Note

All MATLAB and R codes pertaining to the simulation performed in this chapter can be
found in Appendix.
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Chapter 5

Reinforcement Learning and
Stochastic Process for Desired
Trajectory Design and Driver’s
Behavior Perception

This chapter is devoted to theoretical analyzing and explaining the potentials of stochastic
process and reinforcement learning (RL) for estimating uncertain / unmeasured parame-
ters such as drivers behavior on road (which is represented by vehicle speed) as well as
designing a desired trajectory for learning-based model predictive controller (LBMPC),
taking several sources of uncertainty into account. The rest of the chapter is organized as
follows. Firstly, a review of the state-of-the-art pertinent to the application of stochastic
process to control theory is presented, and some promising aspects of using probabilistic
methods for optimal and robust controllers design are discussed. The review is followed by
two distinct sections which argue why stochastic process and RL are useful for our control
problem. Thereafter, the mathematical formulations of an absorbing state stochastic pro-
cess and RL for vehicle speed estimation and desired trajectory design under uncertainty
are given. After formulating the problems, some simulation are conducted to validate the
performance of the considered methods. Finally, the findings of the chapter are presented.
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5.1 Review of Advances from Control Prospective

Stochastic process and RL are among the most fruitful and promising techniques which have
come to the aid of control engineers to design robust, optimal and adaptive control systems.
Now a days, there is a wide consensus among control theoreticians that theorise and tools
from stochastic calculus are rigid enough to be used for designing efficient and robust
filtering and control algorithms [123]. For example, techniques like RL are very close in
their implementation to traditional optimal control approaches like dynamic programming
(DP). However, unlike DP which is based on a grid-based partitioning of state-space and
control input space, and checking all possible outcomes to find the global solution, RL takes
the advantage of Monte-Carlo Markov Chain (MCMC) procedure, transition probability
matrix, a finite set of actions, and a reward function to approximately find the optimal
solution, with remarkably less computational effort compared to DP [124].

Also, combination of stochastic process methods, e.g. absorbing state processes, point
processes, Gaussian graphical model processes with other statistical learning and hypoth-
esis testing techniques enables us to efficiently calibrate uncertainties associated with dy-
namic systems to be controlled [125]. These sorts of uncertainties usually appear in the form
of measurement noises on sensors which read the system output, as well as un-modeled un-
certainties on internal states which results in imperfect state information models [126, 127].

A majority of the existing controllers are implemented to track a desired trajectory
which steers the system’s evolution in an appropriate fashion. The controllers can have
both open loop and closed-loop forms. It is apparent that online closed-loop controllers
which update their performance based on the real functioning of the system are more in-
teresting than offline controllers. On the other hand, online trajectory tracking controllers
require efficient tools to deal with uncertainties of the environment and efficiently recog-
nize the optimal and robust desired trajectory for tracking. To attain this goal, there is
no better way than taking advantage from stochastic process techniques such as hidden
Markov models, Monte Carlo with expectation maximization (MC-EM) and RL by defin-
ing a reward function and an appropriate action space which yields the desired trajectory
[128, , 22]. The use of stochastic process methods for designing optimal trajectory for
controllers have found its place within the society of robotics and autonomous systems
[130], and in this sense, it is related to the topic of the current investigation.

In the light of the abovementioned information, in the next two sections, more details
regarding the use of stochastic process for the current control problem will be given. In par-
ticular, a RL combined with graphical modeling concept and an absorbing state stochastic
process are used for the online design of desired trajectory and realizing driver’s behavior
on road, respectively.
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5.2 Why RL for Desired Trajectory Design?

RL can be viewed as a kind of cost-to-go function evaluation which tries to estimate the
reward of the future evolution of the system based on the previous experiment. RL has
been implemented in both deterministic and stochastic formats; however, the most interest
goes upon the stochastic format as it has a deeper tie with real-world problems that are
often associated with uncertainty. The motivation behind the proposition of RL was to
facilitate solving tedious problems raised within the fields of big data, artificial intelligence
(AI) and deep learning. In particular, RL has found its place among practitioners after
being used (together with deep learning) by a company called Google Deep Mind for
designing a computer program for playing an ancient Chinese game called Go. Because
of the exponential increase of the possible events, it was previously impossible to write
a program for this game which could compete with human professional player. However,
it was demonstrated that RL, which is based on position evaluation and maximizing the
reward of future movements at each point instead of evaluating all possible movements,
is the key success of this program [I31]. It has been shown that RL shares remarkable
similarities with the computational strategies and mechanisms of decision making at the
cellular and circuit level in the brain [132].

The approximate optimality of RL as well as its potential to be implemented in a
stochastic fashion have placed it among the most distinct learning / decision making meth-
ods, and have made it reputable among practitioners. As reviewed in the previous section,
the conducted research on using RL for the generation of desired trajectory for robots is
abound in literature. In this investigation, RL is used for the real-time design of desired
trajectory under uncertainty so that the vehicle suspension controller (LBMPC) can damp
the vibration of suspension system on road in a realistic fashion.

In almost all of the conducted research in the literature of active suspension controller
design, the desired trajectory is simply taken to be the body displacement of 0 (i.e. 2, =
zp, = 0in Eq. 3.1), and controller should always try to create actuation signals in a way that
the vehicle body displacement be damped as fast as possible. However, in practice, there is
a possibility that vehicle encounters big bumps which results in the considerable deflection
of vehicle body. In such cases, the desired trajectory of 2, = 2, = 0 forces the controller
to produce big actuation signals to damp the inflicted displacement in shortest possible
time. This results in an inconvenience for passengers, and can harm the global interest
for purchasing the vehicle in markets. Also, there are many other sources of uncertainty
which can affect the displacement of vehicle body, and make the authenticity of choosing
a constant desired trajectory regardless the environmental conditions more questionable.

To the author’s opinion, using RL for the adaptive and smart online designing of desired
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trajectory can be beneficial in the following senses:

1. RL has the potential to be fused with well-known statistical tools and concepts, such
as transition probability matrix, expectation maximization and maximum likelihood
estimation (in the form of maximum reward) to come up with an online trajectory
builder which captures the effects of uncertainty, and at the same time can make
robust and optimal decisions to steer the displacement of vehicle body towards 0 in a
smooth fashion. By doing so, one can further increase the possibility of guaranteeing
the comfort of passengers on road.

2. One of the other important features of RL is that it is an optimal decision making
paradigm. It means that one can manually adapt the objective function (in the form
of reward) to have the decision of interest. For the case of vehicle suspension control,
for example, the reward function can be the weighted summation of different objec-
tives, such as the speed of vibration damping and the smoothness of damping (which
are obviously in confliction with each other). By tuning the weight of each objective,
RL can build specific desired trajectories to meet the real pragmatic requirements.

3. Recently, in [133], model predictive control (MPC) was used for designing optimal
trajectory for an aerially towed cable system. The findings of the research was very
promising, and it was shown that using a desired trajectory generation scheme can be
very beneficial compared to having a predetermined desired trajectory. However, as
can be inferred, desired trajectory building by MPC requires remarkable calculations,
and at-least, for our case study, it was impossible to use the same approach. This is
because, for our problem, desired trajectory builder is only a sub-module in the bigger
controller frame (LBMPC), and it is not computationally tractable to devise indepen-
dent controllers for both the calculation of desired trajectory and control commands.
However, it will be shown that by using an interesting graph theoretic based reward
maximization function at the heart of RL, one can calculate the maximum likelihood
trajectory with the worst-case complexity scenario of O(poly(k) + k logN ), where N
and k represent the horizon length and the number of system states, respectively.

The detailed formulation of RL for this case study will be given later in this chapter,
and its performance is validated by some examples.
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5.3 Why Stochastic Perception of Driver’s Behavior?

In this investigation, a stochastic process with absorbing state [134] is used for modeling
the driver’s behavior uncertainty (SU-1, see Chapter 3) on road. Within the context of
vehicle suspension control, the most influential parameter which can be affected by driver’s
behavior is the speed of vehicle. In general, the state-space model of suspension system
is formulated by considering a cruise speed for vehicle. This means that, regardless of the
elements and operating conditions which can affect the vehicle speed on road, a constant
speed is considered for vehicle.

This is when having a realistic estimation of vehicle speed is crucial for precise vehicle
suspension control. Note that the suspension system under study has control and actuation
systems on both the front and rear tires. So, by having the road profile (which includes the
roughness information that vibrates the suspension system) and also the distance between
the front and rear tires, one can exactly estimate the real-time external forces imposed on
both the front and rear suspension units as a function of vehicle speed. Recall from the
state-space model given in Eq. 3.2 that both the front and rear tires deflection depend on
time, and thus, formulating the exact time of deflections as a function of vehicle speed is
important. From the physical laws of motion (15 order Taylor expansion), the following
approximate time for the deflection of rear and front tires can be obtained:

I +1
try ~ by, 4+ ——2, (5.1)
Vg

where [; and [, are the distances of the front and rear axles from the center of gravity
of body mass, t,, and t,, are the time of deflection for front and rear tires, and v; is the
real-time estimated speed of vehicle. Note that the variation of speed between time-steps
is negligible, as the time portion between each set-point of the estimated profile is very
small. So, that is logical to approximate the vehicle speed without considering acceleration
(i.e. fat? ~0).

The reason behind using absorbing state stochastic process lies in the fact that after
any sudden deviation in driver’s perception (which appears as a random change in vehicle
speed), driver can manage to return to the nominal speed after a portion of time. Figure 5.1
visualizes the mentioned concept. So, it would logical to consider the nominal speed of
vehicle as an absorbing state so that after any deviation in the vehicle speed, the absorbing
state MC finally converges to the state delegating the standard speed, and stays there until
another sudden change affects the drivers perception.

To the best knowledge of the author, such a concept has not been used so far by
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A sudden increase in the speed of
proceeding vehicle can affect the speed of
front vehicle to avoid collision

A big bump on road which can
affect driver’s perception

v o

Figure 5.1: Two typical examples of conditions which can affect driver’s perception.

any other researcher, and can be viewed as a very promising paradigm for the stochastic
modeling of driver’s perception on road.

The mathematical details of the abovementioned process will be given in the next
section, and its authenticity will be validated numerically.

5.4 Problem Formulation

This section is organized in three sub-sections. Firstly, some standard notations are pre-
sented which will be used through the rest of the chapter. Thereafter, the considered
RL method which is combined with a graph theoretic based optimization procedure for
maximizing the reward function is presented. In the last sub-section, the absorbing state
stochastic process that is used for the estimation of vehicle speed under uncertainty is
presented.
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5.4.1 Notations and preliminaries

Throughout the chapter, vectors are shown by lower case bold fonts (a, b, and etc.). Sets
are presented by calligraphic upper case italic format (A, B, and etc.), and matrixes are
given by upper case italic format (A, B, and etc.). The vectors are presented in columns,
i.e. a = col(ay,as,...,a,) where a € R™ (unless something else be mentioned). AT is the
trnspose of A. The Euclidian (L) norm is shown by || - ||2. Also, || - ||a, where A is a
matrix, represents the weighted norm. For example, ||a||4 = vaTAa. A vector of one’s of
appropriate size (e.g. n x 1) is shown by 1,,.;. An identity matrix of appropriate size (e.g.
n x n) is shown by I,,. The cardinality of set A (number of elements in set A4) is shown by

#A.

5.4.2 RL for desired trajectory estimation

Before going into the details of the RL considered for this study, the general formulation of
RL is given for better understanding. In general, RL includes 4 components {S, A, R, f}
which are defined below.

Definition 5.1 [121] S (where #S = k) is the set of possible states (k is the number of
states that the Markov chain can jump to), A is the set of actions, R is the set of reward
signals, and f : A xS — § is a transition function which determines the jump from one
state to another state given an action a € A, i.e. s;11 = f(s¢, Q).

Definition 5.2 [121] A policy 7 : S — A is a function which determines the actions based
on the current state, i.e. @ = 7(s;). Given the action at set-point ¢, the new state can
be calculated using the transition function which in turn lets us calculate the conditional
reward signal 71 |s, .a,.s.= T(St, Qt, St41)-

The goal of RL is to find the optimal policy sequences to maximize the accumulated
reward at the end of process, given the initial state so. To comply with this, one plausible
choice is to define a value function V;(.) and a cost fucntion J(.), as below:

N
V(St> = 1’I17§riX J(ﬂ', Sti41y--+5y St N, th, ey (~]Jt+N,1> = mSXZ ’)/l f(StJri,l, dt+i, 5t+i) ‘st
i=1

where 0 < < 1, and N is the horizon length (the length of the chain created by stochastic
process). The cost function of RL is defined such that the Bellman principle of optimality
be satisfied. Let’s denote the optimal value function by V*(s;), due to the Bellman equation
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of optimality, we have that:
V*(St) = mfx{f(stadtystﬂ)ﬁ V*(St—l-l)} .

Remark 5.1 We can interchangeably consider the action-value function for finding the
optimal policy. The resulting RL is called Q-learning, and the optimization problem and
Bellman principle of optimality can be reformulated as:

N
Q(Stadt) = mﬁ}XZ’Yi f(3t+z‘—17dt+i73t+z‘) |st,&t .

=1

Q" (st,ar) = T(St, at, St1) + WmEX{Q*(StH, at+1)}-

Note that since we are dealing with the stochastic process, the transition function f is
replaced with transition probability matrix, as follows:

PT’(St+1 ’ St,&t) = PT(St+1 :j ‘ St = i,dt) = ng .
where 7,5 € {1,2, ..., k}. The reward function and the value function are calculated as:

7z(St? dta St+1> = Eﬂ'[fﬂrl ‘St—l,flt,sz] ’

N
V(St) = FEr [ZVZ f(3t+i—1,6~lt+z‘, St—i-i) |St ] ) (5-2)

i=1
where F is the expectation operator under policy sequence 7.

The stochastic implementation of RL is best suited for our problem, and will be used
to formulate the desired trajectory production problem.

Remark 5.2 Although the state-space of the controller is continuous, the stochastic pro-
cess used for desired trajectory generation is set to be discrete which can be modelled by a
finite-time Markov chain. Otherwise, the desired trajectory building complexity can make
the problem computationally intractable, as the continuous desired trajectory space could
require an infinite possible elements in the transition probability matrix. Thus, for the de-
sired trajectory production, which is used for steering vehicle body displacement (i.e. z,
and 2, in Eq. 3.1 that have continuous domain), the original continuity of the state-space
is replaced with a Markov chain which has a finite transition probability matrix (as the
discrete skeleton of the chain) and a sojourn time after jumping to a new state. Indeed
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Blue lines are the discrete skeleton produced by desired trajectory
builder. As seen, after jumping to a new desired state, the Markov
process stays there for a finite sojourn time, and then jumps to

5 another state

Red curve is the continuous profile of the real state of the system.

oz Obviously, the system state tries to track the desired values
state transition

52454

83 fomd e E'.‘.}/( |
i i ! ! ' sojourn time
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Figure 5.2: Schematic illustration of the considered desired trajectory production strategy.

using a discrete skeleton transition probability matrix together with a sojourn time is a
common strategy to cope with continuous stochastic processes.

For better understanding of the above remark, Figure 5.2 visualizes the concept.

The stochastic RL with transition probability matrix, probabilistic reward signal and
probabilistic value function presented above is used for producing desired trajectory for
vehicle’s rear and front body displacement. As mentioned, the trajectory produced by RL
is used instead of simply taking the value 0 for the desired deflection of vehicle body along
the road.

Remark 5.3 The same desired trajectory will be used for both controllers mounted at
the rear and front axels of vehicle body. Eq. 5.1 is used for calculating the required time
delay for sending the desired trajectory signal to front and rear controllers.

The remaining point is to use an algorithm to find the optimal policy by maximizing
the accumulated reward presented in Eq. 5.2 to get the best possible trajectory. To do
so, a very efficient method is used which reformulates the reward signal maximization as
the mazimum likelihood estimation of trajectories in a Markov chain (MLE-TMC)
[135]. The salient asset of the method lies in its potential to generate the most practical
trajectory based on the transition probability matrix of the stochastic process.

MLE-TMC works based on a predetermined transition probability matrix. Firstly, the
method is presented for a given probability matrix, and after that, it is mentioned how to
determine the transition probability matrix of the discrete skeleton and sojourn time for a
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continuous time Markov chain (CTMC).

Remark 5.4 MLE-TMC represents the Markov chain stochastic process in graphical mod-
eling fashion. So, there are, say k nodes (#S = k ), which create a complex directed graph
based on a k x k transition probability matrix P.

Remark 5.5 MLE-TMC assumes that no node repetition is allowed in the stochastic
process, and at each transition, Markov chain should jump from one state to another.
Indeed, this condition is compatible with CTMC, as the transition probability matrix of
discrete skeleton does not allow any state (node) repetition, by definition (which will be
given right after the formulation of MLE-TMC).

Let {s(t)};ez+ be a finite-time discrete stochastic process with k x k transition prob-
ability matrix P, such that Vi,j : p;; > 0 and P11 = 1px1. Let sp and sy be the
pre-defined initial and final states of the chain. Note that s = (s, s1, ..., Si4n-1,5f) can
be viewed as a random walk, where N is the horizon length, and s(i) = s; is a random
variable representing the state of the chain at " step.

Definition 5.3 [135] The MLE of a trajectory {s(t)}scz+ is defined as any trajectory
(S0, S1, ..., 5¢) which satisfies:

MLE(s) = max Pr(sy, S2, ..., St+N—1 | S0, Sf, @) = max Pr(sy, Sz, ..., Strn—1 | So,qt) -

Remark 5.6 The above problem can also be viewed as maximizing a reward signal based
on a sequence of actions.

Definition 5.4 The maximum likelihood estimation of trajectory can be represented as
a minimum-weight walk problem of finite length ¢ + N — 1 from node s, to node sy on
a weighted directed graph G(V,E, W), where V is the vertices set with cardinality & (i.e.
#V =k), E={(i,7) | Vi,j € {1,2,...,k} & p;; > 0} is the set of edges in the graph, and
W is a k x k matrix of weights such that Vi, j : W (i, j) = w;; = —logp;;.

Definition 5.5 Let denote a simple cycle in a directed graph G by ¢, then ¢(™ is a walk
in a graph that is the concatenation of m repetitions of cycle c. See Figure 5.3 for more
details.

Definition 5.6 Let s be an arbitrary random walk on graph G. The length of the walk is
measured by the number of edges in s and is denoted by [s|e, and s(7) represents the state
of the chain at " step. See Figure 5.4 for more details.

Definition 5.7 Let w(s) be the sum of the weights assigned to the edges of s, then, the
mean weight of s is defined as w(s) = % See Ezample 5.1 for more details.
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Y ={L2)

Figure 5.3: A random walk consisting of two time repetitions of c.

u={123)

$3)=2 |s|.=5

£

Figure 5.4: The length and state representation of a given random walk.

Example 5.1 Let s with Vs = {1,2,3}, be a random walk, generated by the transition
probability matrix given in Figure 5.5, then we get:

’8|g:5,

w(s) = —log p13 — log psa — log pasz — log ps1 — log p13 = 4.021

w(s) =

sle

w(s) _ 8042

Remark 5.6 1t can be immediately inferred that two random walks, say s; and s, that
share the same collection of edges are “equivalent”, as they have the same length and
weight summation.
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1 2 3
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Figure 5.5: The transition probability matrix and resulting random walk for Ezample 5.1.

Figure 5.6: The two random walks studied in Fxample 5.2.

Example 5.2 The random walks depicted in Figure 5.6 are equivalent since (1) s; and
Sy possess the same collection of edges, i.e. &, = &, = {ei3, €32, €23, €31, €12}, (2) |s1]e =
|sale = 5, and (3) w(s1) = —log p13 — log ps2 — log pa3 — log pa1 — log pr2 = —log pra —
log pa3 — log p31 — log p13 — log pss = w(s2).

Definition 5.8 Let s; and sy be two arbitrary random walks on graph G, and & be the
collection of edges in s, then (s; + s9) is all set of walks resulting from the combination of
edges obtained by &, U&s,, and (s; —s») is all set of walks resulting from the combination
of edges obtained by &, \ &, if &, C &,, and () otherwise. Based on the given definitions,
some properties can be immediately extracted: (1) (- &) can be extended to (- £ (- +-))
and etc., and (2) w((-£-)) and |(- £ -)|¢ denote the weight summation and length of such
walks, respectively.

Example 5.3 The properties presented in Definition 5.8 can be calculated as below for
two graphs s; and se with Vs, = Vs, = {1, 2, 3,4}, shown in Figure 5.7:

5s1 = {612762476417613’632} ) 552 = {614764276237631} )
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(s1+s92) = {s| & = {e12, €13, €14, €23, €24, €31, €32, €41, €22} }

<S1—Sz>=@.

Based on the above definitions and remarks, it would be possible to implement a com-
putationally efficient heuristic-type search to get the minimum weight walk trajectory (the
one which maximizes the reward signal). The considered algorithm works based on the
decomposition of a walk into a group walk [135]. A group walk possesses the same collec-
tion of edges as those of original walk s. In a group walk, the edges of original walk s are
divided into two categories of anchor walk a, and a set of simple cycles which is called free
cycle f.

Definition 5.9 [135] The anchor walk is a bounded length walk that contains anchor
nodes as the first occurrence of the unique nodes in original walk s. Each simple cycle
between anchor nodes is removed and added to the collection of free cycles. Based on the
given definition, one can infer that w(s) = w(a) + w(f) and |s|¢ = |a|¢ + |f]e.

Remark 5.7 If there is a simple cycle at the beginning of the chain, it cannot be removed
from the anchor walk since it completely changes the nature of the chain. The starting
point of the anchor walk is the same as that of original walk.

Figure 5.8 depicts a schematic illustration of representing a walk s by anchor walk and
free cycle.

One interesting point about the group decomposition method is that it can represent
a given walk of arbitrary length by a finite length anchor walk and a number of simple
cycles. It will be shown that this interesting feature allows us to come up with an optimal
minimum-weight trajectory with low computational effort which is quite desirable for being
used as online desired trajectory generation module in LBMPC.

Figure 5.7: The two random walks studied in Fxample 5.35.

85



CHAPTER 5. REINFORCEMENT LEARNING AND STOCHASTIC PROCESS

original walk

OO

©
©
o

(2)
L

©
©

@—oogooooo

s O—O—O—0—0O

G G Cy
i
S R O
”“‘i@ O—O—0—® @@

Anchor walk

Free cycle

Figure 5.8: A schematic illustration of group walk decomposition process.

Theorem 5.1 Let h < k be the number of distinct nodes in random walk s. Then, the
length of anchor walk a is bounded by |als < @

Proof. The proof is rather simple following the information given in Definition 5.9. As
mentioned, anchor walk includes anchor nodes which are the first occurrence of unique
nodes in original walk s. So, it holds that between i and (i + 1)** anchor nodes, once can
place at-most ¢ distinct nodes. This means that, in the worst-case scenario, the maximum
length of anchor walk is |ale =1+24---+h = @ O
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Definition 5.10 [135, 130] In a weighted directed graph G(V, E, W), a mean-weight cycle
cover refers to a weight-wise ordered set of cycles C = {cy, ca, ..., ¢, } if for Vj € {1,2, ..., q},
by removing all vertices appearing in {cy, ¢, ...,c;_1} from graph G, the cycle c; has the
smallest mean-weight in the resulting graph, and also the graph obtained by removing all
vertices appearing in C from G is acyclic. Note that the remaining graph can be something
like anchor walk.

Now it is the time to mention how the algorithm works. Prior to that, one proposition
and one Lemma should be given for facilitating the understanding of the performance of
the method.

Lemma 5.1 For two numbers x,y € Z*, if z = xy + 1 objects are distributed among vy
sets, then at-least one of the sets contains x + 1 objects.

Proof. It can be easily shown that x +1 = |(z — 1)/y| + 1, where |-| represents the floor
function. O

Proposition 5.1 [135] Let D be a set including a finite number of integers with cardinality
#D. Then, for any integer 0 < k < #D, there exists a non-empty set  C D such that

(> pezr) mod k=0.

Proof. Assume that D = {d;,dy,...,dgp}, and let S; = Zgzl d; be the summation of
the first j'* elements in D. If 3j 5 S; mod k = 0, then Z = {d;,ds, ...,d;}. Otherwise,
for all j, we get S; mod k € {dy,ds,...,d;}. Thus, based on Lemma 5.1, 3j1 < j2 3 5},
mod k =5, mod k, which means Z = {d;, +1,ds, ...,d;,}. O

Theorem 5.2 [135] Let C = {cy, o, ..., ¢, } denote the mean-weight cycle cover of a weighted
graph GV, E,W). Let s; be a minimum-weight walk of length |sfle = N > k* + @
(where N is the horizon length and k is the number of states), satisfying the initial and
final conditions s;(t) = so and s;(t + N) = sg. Then, 3i € {1,2,...,q} and an arbitrary
finite length walk s such that:

[s+c™)e =N,

w((s + ™)) = w(s;)

k(k+1)
2

(m)

i

where (s +c¢; ) is a non-empty set, |s|g < k|cile +

Proof. Let’s represent sy by group decomposition method in the form of anchor walk a
and free cycle f. Based on Theorem 5.1, it holds that |a|s < @ Thus, based on
the assumption made in the theorem and also based on Definition 5.9, we get |f|e =
Isfle — |ale = N — |a|¢ > k?, which means that free cycle possesses more than k* edges
on s;. Also, based on the properties of mean-weight cycle cover given in Definition 5.10,

there is at-least one cycle in C intersecting all cycles in f (they should have at-least one
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common node). Let ¢; € C be the cycle with smallest mean-weight which shares common
node with some members of f. To construct the optimal walk, one should remove cycles
from f, and replace it with the repetitions of cgm). Based on Proposition 5.1, as long as
f includes at-least c; cycles, it is possible to choose a number of members of f (resulting
in a smaller free cycle container ') such that the length of |f'|¢ becomes a multiple of c;.
Removing cycles from f should continue until the number of free cycles in f becomes less
than |c;|¢. Thereafter, the remaining cycles in f are added to anchor walk a to form s.
By forming s} in the abovementioned manner, we get |(s})|e = [(s + cgm)>|g = N. Also,
since c¢; is the smallest mean-weight cycle in C that intersects with members of f, no cycle

in f can have smaller mean edge weight than c;, and thus w((s + cim))) < w(sy). On the
(m)

other hand, the optimality of s; implies w(s;) < w((s +¢; ’)), and combining the two

inequalities gives w((s + cgm)>) = w(sy). Also |s|e < Elci|e + @ can be inferred from
Theorem 5.1 which states that |a|g < @, and also from the fact that the number of
remaining cycles in f is less than |c;|¢, and the length of a simple cycle cannot exceed k.

This completes the proof. [

At this point, based on Theorem 5.2, it would be possible to calculate the most probable
desired trajectory, provided that a graph G with discrete finite-time transition probability
matrix be available.

However, as mentioned, in our case, the model states (including front and rear vehicle
body deflections) follow a continuous time Markov chain (CTMC), and thus, it is necessary
to point out how to turn the process to a discrete finite-time random event.

Definition 5.11 A stochastic process {s(t)}iez+ is called CTMC if (1) for t > 0, s(?)
takes values from a countable set S, and (2) the Markov property holds, i.e. for t;,t5 > 0
and Vi, j € S:

PT(8t1+t2 :j ‘ Sty = ivvsu;o <u< tl) = ,PT(Stlthz :j ‘ Sty = Z) :

Remark 5.8 It is common to consider the CTMC to be time-homogenous, i.e. p;;(ts) =
Pr(snst, = J | s = 1) = Pr(sy, =j | s0 =1).

In general, two important questions should be answered when dealing with CTMC:

1. How long does Markov chain stay in a state ¢ 7

2. When does Markov chain leave the current state, and how to decide which state it
will enter?
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Theorem 5.3 Let T; be the sojourn time, i.e. the random portion of time that the Markov
chain stays in state i. Then, T; has an exponential distribution.

Proof. The proof requires the properties given in Definition 5.11 and Remark 5.8, and
follows the argument below:

Vi, t1,ts € R
Pr(T; >t 4+t | Ty > 1) = Prse =i to <u<to+t1+to | su=10;Vsu:to<u<tyt+t)
=Pr(sy, =i,to+t1 Su<tg+t;+ta| Stgre; =180 =1, V8y 1 tog <u <tyg+1t)
=Pr(sy =1t +t <u<tyg+t1+1t2| 51941, = 1)
=Pr(s, =1i,to <u<ty+ts| s, =1)=Pr(l; >t) .

So, Vt1,te € RT : Pr(T; > t1+ty | T; > t1) = Pr(T; > to) that in-turn satisfies the memory-
less property. This means that T; follows and exponential distribution. This completes the
proof. [

Definition 5.12 Let 0; be the intensity of exponential process, then T; ~ exp(6;). This
means that once the stochastic process enters state i, the time it spends there before

jumping to another state is exponentially distributed with mean 9%_.

For the 2" question, it is obvious that the transition probability is independent of
sojourn time once stochastic process leaves i, and only depends on the current state (and
obviously the current state carries no information about time). So, the probability of
jumping from ¢ to j only depends on p;; which can be read from transition probability ma-
trix. {p;;}t>0 can be viewed as the transition probability matrix of discrete-time stochastic
process (DTMC) which is the discrete skeleton of CTMC. Also, not that based on the
presented definitions and properties of CTMC, it holds that p; = 0.

Remark 5.9 For the current study, it is a logical choice to consider a constant discrete-
skeleton for CTMC, i.e. Vii,t5 € RT : p;;(t1) = pij(t2). This means that the finite-time
discrete transition probability matrix does not change over time.

So, CTMC stays in state ¢ for an exponential amount of time T}, which is then followed
by a jump from i to j based on the p;; of discrete skeleton, and then stays in j for an
exponential amount of time 7.
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5.4.3 Absorbing state stochastic process for speed estimation

The estimation of vehicle speed on road is performed using an absorbing state stochastic
process. As mentioned before, this is because it is rational to assume that driver can
regain the control of vehicle after each perturbation (which means that vehicle speed finally
converges to absorbing state).

Definition 5.13 Absorbing state stochastic process {s(t)}scz+ refers to a process which
possesses a number of transient states and a number of absorbing states (S = {s | s €
Sups U Strans})- Such a stochastic process almost surely converges to one of the absorbing
states and remains there.

Example 5.4 Assume that {s(t)};cz+ is a stochastic process with Vs = {1,2,3,4,5},
where states {1,5} are absorbing and states {2,3,4} are transient. The fully connected
graph of such a process is shown in Figure 5.9. Note that the process should start from
one of the transient states to have a random walk.

Definition 5.14 Time until absorption is denoted by Tpps := min{t € Z" | s(t) € Sups}-

Consider a finite state-space Markov chain with Sgs = {0,1,...,p — 1} and Sirans =
{p, ..., q}. Figure 5.10 shows the probability matrix obtained by canonical decomposition.

Figure 5.9: The corresponding graph of Fxample 5.4.

Figure 5.10: Probability matrix obtained by canonical decomposition.
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In the formed matrix, the pxp matrix () represents the probability of switching from one
transient state to another transient state, the px ¢—p-+1 matrix R includes the probabilities
of switching from a transient state to an absorbing state. [ isa ¢—p+1xg—p+1 identity
matrix stating the fact that the process stays in an absorbing state once it enters the state.
Finally, the zero matrix in the down left block represents the fact that the probability of
switching from an absorbing state to a transient state is 0.

Remark 5.10 Once the probabilities are obtained by canonical decomposition, based on
the initial transient state, one can sample to create the random walk and finally converge
to one of the absorbing states. There is no unique way to sample from the matrix. So, an
empirical algorithm is implemented to generate the random walk.

Proposition 5.2 The algorithm implemented works based on the simple fact that the col-
umn summation of the elements of canonically decomposed probability is 1. Once starting
from one of the transient states, say i € Sirans, it holds that 1 = Z?’:O P, = Z?;é Qij +
Z?:p R;;.In this context, we partition a line of unit length based on the probabilities of each
state. So, each partition represents one of the states. Then, draw a random variable from
Unif(0,1), and see the number falls in which of the segments, and based on that, jump to
the corresponding state.

Proof. To prove the proposed algorithm works properly, and samples based on the prob-
abilities assigned to each of the states in a specific row of transition probability matrix,
it is sufficient to show that by means of uniform distribution, we can sample from a set
of discrete random numbers. Let z be a random variable that can take values from a
discrete set {aq, as, ..., ag, ...}, with corresponding probabilities {p, pa, ..., pk, ...}, satisfying
the condition ), _, pr = 1. By dividing the closed unit interval [0, 1] into H1, Ho, ..., Hy, ...
with Hy = (hg_1, hi], such that hg = 0, by, = p1 + pa + ... + px, and Ug—1Hy = [0, 1], it can
be interpreted that each sub-interval represents a unique value for random variable z. So,
it holds that by generating a random variable u ~ Unif(0,1) and verifying the interval
‘Hi that the observed value belongs to, one actually assign z to a; from the actual set,
because:

Pr(z=ag) =Pr(u € Hy) =Pr(hg1 <u<hg)=hp—h1 =pg .
This completes the proof. [

Example 5.5 Assume that an absorbing state stochastic process with the following in-
formation are available:

Strans = {172} asabs = {374}a

02 0.3 04 01
©= {0.1 0.4} R= [0.3 0.2]
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Let’s say the process starts from initial state so = 2. Then, Py = 0.1, Pys = 0.4, P53 = 0.3
and Ppy = 0.2. To take a random walk s1, a random variable u is drawn from Unif(0, 1).
Let’s say the random variable is u = 0.56. Since 0.56 € (0.5, 0.8], we conclude that s; = 3.
Also, note that 3 is an absorbing state, so the process will stay there and no other jump
can take place.

Remark 5.11 Let’s say j € Sus. By using the algorithm proposed in Proposition 5.2
(which is originally implemented to generate a random walk), one can also calculate
Pr(sr,, = j | so = i). Note that R;; only represents the probability of jumping from
i to j, and is different from the probability of absorbing to state j, conditioning on starting
from state 7.

To ascertain the acceptable precision of the proposed algorithm, a validation test is
performed. Fortunately, there is a theoretical formulation to determine the exact value of
Pr(sr,. = Jj | so = i) for a given absorbing state stochastic process. By comparing the
theoretically obtained value with the empirical one obtained from the proposed algorithm,
we can check the performance of the method. Note that since the proposed method is
empirical and stochastic, the expected value over independent simulation is compared to
the theoretical value.

Theorem 5.4 Let {s(t)}ez+ be a finite state absorbing stochastic process with Sups =
{0,1,....;p — 1}, Strans = {p, .-, ¢} and canonically decomposed probability matriz P which
has block matrizes @), R, I and 0, as stated previously. Also, let T,s be the time until
absorption. Define o;; == Pr(sr,,, = j | so = 1), and the matriz O such that O(i,j) = 0;;.
Then, it holds that O = (I — Q) 'R.

Proof. The proof is followed by the first step analysis strategy, and the fact that {s(t) };ez+
has Markov property. By the first step analysis, we get:

q
0ij == Pr(sr,, =Jj| so=1) = ZPT(STM =j|so=1,81 =k)Pr(sg =k|so=1),where
k=0

Pr(STabs :J ’ So = k) if k € ’Strans

Pr(sr,. =jlso=1ts1=k)=<1 ifk=j , that implies:
0 if k€ Saps, k # J
p—1 q p—1
05 = ZPT(STabS =7 | So = k?)pzk + pi; + 0 x Zpik = Rij + ZijQik.
J

In the matrix form, it gives O = R+ QO, and thus, O = (I — Q) 'R. O
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The only remaining issue is to determine the time of absorption, i.e. T,;s. It is possible
to theoretically determine the expected value of T, based on the properties of a given
absorbing state stochastic process.

Definition 5.15 The expected time until absorption, condition on starting from transient
state i € Sups is denoted by e; := E[ Typs | 50 =1 |-

Theorem 5.5 Let {s(t)}ez+ be a finite state absorbing stochastic process with Sups =
{0,1,...,p — 1}, Strans = {p, ---,q} and canonically decomposed probability matriz P which
has block matrizes @), R, I and 0. Also, let Tys be the time until absorption. Form the
vector € = {eq, ...,e,_1}. Then, it holds that e = (I — Q) '1,x;.

Proof. The proof can be done by means of the first step analysis, as follows:

q
ei = E| Tys | sozi]:ZE[Tabs|30:i,31:k] Pr(sy =k | so=1) ,where
k=0

1 E Ta s - ]{? f k Srcms
E[Tws | so=1i,s1=k]|= + B Tabs | 50 ) 1 € o , therefore
1 if k€ Sups
p—1 q p—1
€i=ZE[Tabs|So=i,S1=/€] Pr(si=k|so=1)+1 szik:1+zeink~
k=0 k=p k=0

This implies that € = Qe + 1,51, which means e = (I — Q) '1,y;. O

Based on the given information, it is possible to simulate the driver’s behavior on road
using the proposed algorithm, and also to validate it by the result of Theorem 5.4 and
Theorem 5.5.

5.5 Simulation Results

This section is organized in two sub-sections. Firstly, the results of desired trajectory
generation is given, and thereafter, the simulation pertinent to speed estimation is provided.

5.5.1 Desired trajectory generation

In this sub-section, based on the details given for desired trajectory generation, an al-
gorithm is developed for estimating a desired reference to steer the control commands
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towards decreasing vehicle body displacement on road. As mentioned, the most important
step is to design a realistic / reasonable graph G(V, &, W) comprising of some nodes /
states (representing the possible values of vehicle displacement), and an appropriate set
of edges indicating the possibility of jumping from a node to the others (each jump is
equivalent to the variation of vehicle displacement), and also to assign proper weights to
each of the edges of the considered graph. The second step is to form the mean-weight
cycle cover C = {cy, ca, ..., ¢, }. Based on the mentioned information, MLE-TMC can find
an optimal desired trajectory. It is worth noting that in all of the cases, when applying
the algorithm for generating a trajectory, the initial state can be read from the sensor (the
current displacement of vehicle body) and the final state is the stable point 0.

In what follows this sub-section, MLE-TMC is used for a possible simulation scenario
to get a desired trajectory. Note that, the goal of this experiment is to validate the
performance of the algorithm, which makes it possible to use it in Chapter 8 at the heart
of the trajectory building module of LBMPC.

Consider a vehicle which traverses a bumpy road, and at some point passes a pothole
or bump which results in the vibration of axels and consequently the displacement of
vehicle body. Let’s assume that at the time of passing a pothole, the sensor reads the
displacement of —0.05m (note that for bump, it could be 0.05m) and the goal is to make
a plausible desired trajectory which takes into account the other unmeasured sources of
uncertainty, and guides the tracking control system (LBMPC in our case) such that the
final vehicle displacement becomes 0. So, for the considered scenario, sqo = —0.05m and
sy = Om. Also, let’s consider a state set with cardinality of 11 (#S = k = 11), and
a transition probability matrix calibrated based on the prior knowledge of expert, and
subjective information regarding the conditional factors affecting the vehicle vibration on
road [H8], as given below:

03 03 02 02 0 0 O
03 03 02 02 0 O
03 03 02 02 0
0 03 03 02 0.2
01 0 07 02 0
0 05 0 05 O
0 02 07 0 01
02 02 03 03 0
0 02 02 03 0.3
0 0 02 02 03 0.3
0O 0 0 02 02 03 0.3

s

I
=NoNoloNoNoNoNo NN e N
cCoocococoocooo
cCoocococoococooo

0
0
0
0
0
0
0
0
0
0

DO DD OO oo oo
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S = {-0.05,-0.04,—-0.03,—-0.02, —0.01, 0,0.01, 0.02,0.03, 0.04, 0.05} .

Also, based on the given information, a graph G(V, £, W) with the following properties
is considered for generating optimal desired trajectory:

Vv ={1,23,4,5,6,7,8,9,10,11} ,

&= {612,61376147615, €23, €24, €35, €26, €34, €35, €36, €37, €45, €46, €47, €48, €54, €56, €57, €65, €67, €75

€76, €78, €84, €85, €86, €87, €95, €96, €97, €98, €10,6, €10,7, €10,8, €10,9, €11,7, €11,8, €11,9, 611,10} )

1.2 12 16 1.6
1.2 12 16 1.6
1.2 1.2 16 1.6
1.2 1.2 16 1.6
2.3 0.3 1.6
W = 0.7 0.7
1.6 0.3 2.3
1.6 1.6 1.2 1.2
16 1.6 1.2 1.2
16 1.6 1.2 1.2
16 1.6 1.2 1.2

Also, the corresponding graph is shown in Figure 5.11, which is used to form the mean-
weight cycle cover C.

Prior to forming the set of mean-weight cycle cover, it is necessary to extract all of
the existing cycles from the graph. Figure 5.12 indicates the cycles of the graph, and the
resulting acyclic graph.

The mean weight of extracted cycles and acyclic graph are given in Table 5.1.

Now, based on the conditions given in Definition 5.10, and matrix W, the ordered mean-
weight cycle cover set C is obtained which is C = {cy, ¢17, ¢12}. The first two members fulfill
the first condition, and the last member, i.e. c2, is the lowest weight cycle which completes
C, by fulfilling the second condition. The graph resulting from removing the nodes of C is
shown in Figure 5.13 . As seen, the resulting graph is directed and acyclic, and satisfies
the conditions.

Now that the set C is achieved, based on Theorem 5.2, it is possible to proceed with the
calculation of minimum-weight walk sy using MLE-TMC. As mentioned, the initial state is
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Figure 5.11: The corresponding graph for the considered case study.

sg = —0.05m. Due to the properties of the considered transition probability matrix, and the
fact that the body vibration starts after passing a pothole, the anchor walk including nodes
YV =1{1,2,3,4,5,6,7,8} and the edge set of £, = {e12, €23, €34, €45, €56, €67, €78} , w(a) = 8.1,
and |als = 7 would be a logical choice. Based on that, the transition probability matrix of
interest reduces to a 8 x 8 matrix, and the minimum required edges of the walk to make the
use of MLE-TMC possible is 100. Following Theorem 5.2, and looping over all members
in C, the optimum weight walk is determined, as below:

Y

- (45 x |c1le) + |ale + |c1ole = (45 x 2) + 7+ 3 =100
| (45 x @(e1)) + w(a) + w(c1p) = (45 x 1.75) + 1.15 + 0.86 = 80.76

Y

(II) : (45 x [eirle) + |ale + [ciole = (45 x 2) + 7+ 3 = 100
) (45 x w(cy) + w(a) + w(cw) = (45 x 0.5) + 1.15 + 0.86 = 24.51

(1) - (22 X |c12le) + |ale + |cigle = (22 x 4) + 7+ 5 = 100
| (22 x w(cp2)) 4+ w(a) + w(cie) = (22 x 1.45) + 1.15 4+ 1.22 = 34.27
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Figure 5.12: (a) Extracted cycles and (b) acyclic graph obtained from G.

From the above scenarios, the walk obtained by (II) possesses the minimum mean
weight, and is therefore selected. The corresponding desired trajectory is shown in Fig-
ure 5.14.

As can be seen, the trajectory resulting from vibration sounds logical from mechanical
viewpoint. At the beginning steps, it tries to mitigate the significant oscillation and grad-
ually, after getting rid of remarkable vibration, it mitigates the amplitude of vibration and
remains in the safe bound of 0.01m which steers the controller’s commands such that the
vehicle body displacement be damped over the control horizon.
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Table 5.1: The mean weight of extracted cycles and acyclic graph
Sum of weights Number of edges Mean weight

ci 3.5 2 1.75
Co 3.2 2 1.60
C3 9.5 3 1.83
Cy 9.5 3 1.83
Cs 9.5 3 1.83
o 4.9 4 1.22
cy 1 2 0.50
Cg 3.2 2 1.60
Co 4.2 3 1.40
C10 2.6 3 0.86
Ci1 2.6 3 0.86
Ci 5.8 4 1.45
Ci3 6.7 4 1.67
C14 5.8 4 1.45
Ci5 6.7 4 1.67
Cig 6.1 5 1.22
Ciy 1 2 0.50
Cig 4.2 3 1.40
Ci9 4.9 4 1.22
Co0 5.8 4 1.45
Cor 8.1 5 1.62
C22 3.5 2 1.75
g 33.6 24 1.40

Note that, for this simulation, we consider a similar sojourn time for all of the jumps
which can be simply changed based on the results of Theorem 5.3. Using such a trajectory
also ensures the controller designer that the effect of some unmeasured sources of uncer-
tainty is taken into account, which is quite desirable comparing to considering a constant
reference trajectory of 0 for all points of the process. Also, the method has a remarkable
advantage from computational point of view. As seen, once the anchor walk, free cycles
and mean-weight cycle are achieved, the underlying optimization problem is simplified to
some trivial calculations, and there is no need for using a complex optimization algorithm
or heuristic searching process. This is very beneficial, as LBMPC is a real-time controller,
and requires fast computation in all of its modules (including the desired trajectory building
module).
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Figure 5.13: Graph resulting from removing nodes of C from G.
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Figure 5.14: Desired trajectory obtained by MLE-TMC.
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5.5.2 Vehicle speed estimation

As mentioned, for the current simulation, driver’s behavior is modelled by the variation of
speed on road, since it is the most important factor related to vehicle suspension vibration
control. Driver may change the speed due to different external conditions, such as passing
a significant bump or pothole, sudden change in the driving behavior of adjacent vehicles,
and etc.

Among the mentioned issues, the most realistic external condition which is available
and can be considered for simulation is the first element, i.e. passing a significant bump
or pothole. In this context, during the movement of vehicle on road, if the road roughness
estimated in Chapter 4 exceeds a pre-defined threshold, a random perturbation is imposed
to vehicle, which deviates the speed, and consequently results in a set of actions from
driver to re-gain the control of vehicle (return to the standard cruise speed). This process
is modelled by absorbing state stochastic process. The details of the roughness threshold
for perturbing vehicle speed are given in the simulation setup of controller in Chapter 8.
Here, the goal is to validate the performance of the considered process for simulating
driver’s behavior after the perturbation of speed.

Case 1: Let’s consider the case in which the cruise speed of vehicle is V' = 40 m/s,
and the vehicle encounters a pothole on road which causes the perturbation of speed. The
event is modelled by an absorbing state stochastic process with Sians = {1,2,3,4} and
Saps = {5, 6}, for which the following information is obtained after canonical decomposition:

0.1 02 02 0.1 0.3 0.1
0.1 02 03 0.1 0.1 02
Q=102 02 02 02| %= |01 01
0.1 03 02 0.1 0.1 02

Also, the states represent the following speeds:
Vieans = {V1 =35 m/s, Vo =38 m/s, V3 =43 m/s, Vy =45 m/s} ,
Vavs = {Vs =40 m/s, Vo =41 m/s} .

Also, right after perturbation, assume that the process starts from the initial transient
state 2, i.e. sp = 2. Now, based on the algorithm proposed in Proposition 5.2, the process
is simulated. Also, to make the results compatible with the predictive controller, assume
that we are interested in the first NV = 10 walks of the stochastic process, where N is the
horizon length for the predictive controller. Figure 5.15 shows the obtained walks for 4
different simulation.
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Figure 5.15: Speed estimation for the first considered scenario over 4 independent runs.

It can be observed that the proposed algorithm does a very good job, and estimated the
vehicle speed after perturbation until absorption. In all of the plotted scenarios, the ab-
sorption occurs within the horizon length. The obtained results shown that the considered
algorithm is a good choice to be used at the heart of controller for stochastic estimation of
vehicle speed after a random perturbation. The simulation was terminated in 0.001063 sec
which also shown the computational efficiency of the proposed algorithm, and its compat-
ibility with online control algorithms, such as LBMPC. Note that the simulation for the
considered scenario was also conducted by taking the other 3 transient states as the initial
state, and in all of the cases, a similar promising result was achieved.

To further examine the performance of the proposed algorithm, it is applied to a more
complicated scenario with more states, and a more sophisticated probability matrixes.

Case 2: Let’s consider a vehicle with cruise speed of V' = 40 m/s. Again, as a
result of an external disturbance, vehicle speed is perturbed. For this case, the event
is modelled by an absorbing state stochastic process with Syens = {1,2,3,4,5,6,7,8}
and Sups = {9,10,11}, for which the following information is obtained after canonical
decomposition:
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(0.1 02 0.1 01 0.05 0.05 0.05 0.1] [0.05 0.1 0.1]
0.1 0.1 005 01 0.1 0.15 0.1 0.15 0.05 0.05 0.05
0.1 0.05 0.05 0.1 0.1 0.05 0.1 0.05 0.1 0.2 0.1
0= 0.1 0.1 0.1 01 005 01 0.05 0.1 R— 0.1 0.1 0.1
0.05 0.05 0.05 0.1 0.1 0.05 0.1 0.1]" 0.1 02 0.1
0.05 0.1 0.05 0.1 0.1 0.05 0.05 0.1 0.15 0.15 0.1
01 01 0.1 0.1 0.05 0.05 0.05 0.05 0.15 0.1 0.15
[0.15 005 0.1 0.1 0.05 0.15 0.1 0.05] 10.05 0.15 0.05]

Also, the states represent the following speeds:

v _ Vi=35m/s, Vo=36m/s, V3=3Tm/s, Vy=38m/s,
frans =\ Vs =42 m/s, Vs=43m/s, Vo =44 m/s, Ve=45m/s [ ’

Vabsz{‘/f)540 m/s, Vs =41 m/s} .

Also, right after perturbation, assume that the process starts from the initial transient
state 2, i.e. sg = 2. Also, let N = 20. Figure 5.16 shows the obtained walks for 4 different
simulation.

As seen, even after considering a more complicated scenario with more states, and
more uniform-like distribution of probabilities among the states (including transient and
absorbing ones), the proposed algorithm can efficiently estimate the variation of speed
after perturbation untill absorption happens. Again, it can be seen that the absorption
occurs before the end of horizon length, which is a desired issue from control view point.
This is because converging to stable cruise speed reduces one of the sources of disturbances
and helps the controller make a better decision. The average simulation time for this
case is 0.000487 sec, which is very promising. Also, it can be seen that in most of the
simulated walks, the jump between the states is logical and there is not a big variation
in the speed (except for the very initial point of the 1% simulated chain). Note that this
can happen, since in the considered case scenario, the probability to jump from one state
to all of the other states is non-zero. Also, even for the biggest jump (which happens at
the very beginning of the 15 simulated chain), the variation of speed is 7 m/s which is
still completely realistic. All in all, the results of the performed simulation are promising,
and are in favor of using absorbing state stochastic process for estimating the variation of
speed after a sudden perturbation on road.

In the final part of the simulation, it is intended to compare the results of the pro-
posed absorbing chain generation algorithm with those obtained by theoretical probabilis-
tic model. Assume that j € Sus, the goal is to estimate Pr(sr,, = j | so = ). As
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Figure 5.16: Speed estimation for the second considered scenario over 4 independent runs.

mentioned, since the proposed method is empirical and stochastic, the expected values
over 1000 independent simulation are compared to the theoretical values. The theoretical
values of expected absorption time and the probability of absorption to a certain state
given starting from a certain transient state can be calculated by means of Theorem 5.4
and Theorem 5.5. In this way, there are 8 conditions for Case 1 and 24 conditions for Case
2 which should be checked. Table 5.2 summarizes the result of simulation for all of the
considered cases. As it can be seen from the obtained results, the expected theoretical and
empirical values are very close to each other in most of the cases. The acceptable accuracy
holds for both simulation cases, though the second case can be viewed as a challenging
case with a considerable number of transient and absorbing states. Note that, during the
simulation, it was observed that the empirical method can sometimes yield inaccurate re-
sults, which is logical due to the probabilistic nature of the both algorithm and problem at
hand. But, all in all, the obtained results are very interesting, and especially, in almost all
of the cases, the results indicate the generated chain is absorbed to one of the absorbing
states (which is of high interest when the algorithm is used at the heart of LBMPC). Also,
Table 5.2 reports the theoretical expected time until absorption. The simulation indicate
that, to generate a more accurate chain, the proposed algorithm usually requires more
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than the theoretical absorbing time. For our simulation, it was observed that for some of
the cases, the algorithm requires even 20 steps to converge to one of the absorbing states.
However, in general, it is possible to generate an absorbed chain in a time close to the
theoretical expected value.

Table 5.2: The simulation result for the considered scenarios
Case No. T.,s Initial transient Destined absorbing Theoretical Empirical

state state value value
1 3 1 5 0.5860 0.5520
1 3 1 6 0.4140 0.5050
1 3 2 5 0.4348 0.4300
1 3 2 6 0.5652 0.5800
1 4 3 5 0.4876 0.4860
1 4 3 6 0.5124 0.4440
1 3 4 5 0.4295 0.5330
1 3 4 6 0.5705 0.6420
2 3 1 9 0.2688 0.3580
2 3 1 10 0.4089 0.4940
2 3 1 11 0.3223 0.3070
2 4 2 9 0.3010 0.3770
2 4 2 10 0.3990 0.3430
2 4 2 11 0.2999 0.3420
2 3 3 9 0.2762 0.1770
2 3 3 10 0.4438 0.4800
2 3 3 11 0.2799 0.2020
2 3 4 9 0.3049 0.3720
2 3 4 10 0.3890 0.4410
2 3 4 11 0.3061 0.3810
2 3 5 9 0.2764 0.2820
2 3 5 10 0.4461 0.3470
2 3 5 11 0.2775 0.2710
2 3 6 9 0.3252 0.3300
2 3 6 10 0.3987 0.5020
2 3 6 11 0.2761 0.1960
2 3 7 9 0.3250 0.3160
2 3 7 10 0.3463 0.2820
2 3 7 11 0.3286 0.4700
2 3 8 9 0.2722 0.2790
2 3 8 10 0.4540 0.4760
2 3 8 11 0.2738 0.3040
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5.6 Findings

Based on the conducted simulation, the following points were inferred regarding the poten-
tial of stochastic process for handing desired trajectory generation and speed estimation
tasks:

1. The conducted simulation indicated that the algorithm used for designing the most
likely desired trajectory has a promising performance from mechanical point of view,
which is quite important for the design of suspension controller. It was observed that
at the very beginning of the vibration where significant oscillations are expected,
MLE-TMC tries to force the controller to send significant actuation signals (force) to
suspension system to damp the vibration. Thereafter, the desired trajectory imposes
a safe oscillation around the equilibrium point until the vehicle displacement becomes
0.

2. From the computational point of view, it was proven that MLE-TMC has a quite
efficient performance. Unlike most of the optimization algorithms which require a
considerable computational time, MLE-TMC can find the most likely optimum tra-
jectory with trivial heuristic-type calculations, provided that the graph information
including anchor walk, mean-weight cycle cover, and free cycles be available.

3. The algorithm proposed for speed estimation can be easily generalized for whatever
scenario that is designed for simulating the driver’s perception on road. As seen, for
both of the considered scenarios, the algorithm acceptably produced chains which
converged to one of the absorbing states within the predetermined horizon length
(N). Also, the computational time required for generating absorbing chains was very
short. Such facts prove the compatibility of the method to be used at the heart of
LBMPC for the estimation of vehicle speed in an online fashion.

4. The salient asset of the absorbing chain generation algorithm was its simple imple-
mentation concept. By comparing the results of the method with those obtained from
theoretical probabilistic model, it was observed that the empirical chains suggested
by the algorithm have enough accuracy. Hence, the method can be accepted as a
tool for modeling the unknown driver’s perception on road.

Note

All MATLAB and R codes pertaining to the simulation performed in this chapter can be
found in Appendix of the thesis.
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Chapter 6

Learning Based Model Predictive
Control

In this chapter, the mathematical formulation of LBMPC together with the mathematical
proofs for guaranteeing the safety of its performance in real-time are presented. The chapter
is organized in different sections. Firstly, a precise and concise review of the state-of-the-
art of LBMPC is presented, and it is mentioned how this control strategy differs from
the existing learning based predictive controllers proposed so far. Thereafter, the general
formulation of LBMPC is presented. An effective method for the approximation of invariant
set is presented. Also, conditions and theorems required for satisfying the epi-convergence
of oracles (in both parametric and non-parametric forms) used in LBMPC are presented.
At the next step, an investigation is carried out into the potential optimization algorithms
and encoding strategies for the calculation of optimum controlling policy. Finally, the
state-space representation of suspension control is given.

Throughout the chapter, the terms controlling policy, controlling command, and actu-
ation signal are used interchangeably. It should be stressed that it is a common tradition
within the control engineering society to call the system to be controlled as plant. So, the
words plant and real-system are also used interchangeably.

6.1 A Concise Review

As far as the author is concerned, this is the first time that a complete review of the state-
of-the-art of LBMPC is presented. Over the past two decades, learning based adaptive and
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predictive controllers have attracted an increasing interest from the researchers of control
engineering society. Before starting the literature review, it should be mentioned that some
research papers have been published under the name of learning based predictive controllers
and even learning based model predictive control [137, , |. Although that proposals
may share some similarity in their structure and implementation with LBMPC, they are
not as comprehensive. Indeed, a deliberate and wise manipulation is embedded into the
structure of LBMPC which distinguishes its functioning from all of the other variants of
learning based model predictive controllers.

LBMPC was initially proposed by a number of control theoreticians working at Hybrid
System Laboratory at University of California, Berkeley (UC Berkeley) [21]. The salient
asset of LBMPC lies in its theoretical foundation and rigorous analysis which enables it to
(a) handle state and input constraints, (b) take advantage from statistical learning theory
to identify model uncertainty, (c) search for optimal control policies with respect to a
convex cost function, and (d) be provably convergent [18, 110]. From what stated, one
can realize that LBMPC is a kind of robust, adaptive, and optimal predictive controller.
LBMPC uses a decoupled architecture which enables it to handle the performance and
safety criteria separately using well-known theories from reachability analysis [1411, ].
To be more specific, the performance is optimized by determining actuation signals as
solutions of a convex optimization problem, while the safety and robustness of LBMPC
comes from the well-established methods from the field of robust model predictive control
[143, 144]. One of the other advantages which is associated with this innovative decoupled
structure is that LBMPC is robust to mis-learning. By robustness against mis-learning,
we mean that even if the oracle used in LBMPC is badly tuned or poorly designed, the
provably robustness performance of LBMPC provides safety. Fortunately, this distinct
feature of LBMPC was proven theoretically [18] and experimentally [21, 115].

Since LBMPC is rather a recent spotlighted controller, it has not been vigorously
utilized by practitioners, and a limited number of published reports is available in the
literature. However, the existing published papers are authorized by some of the most
well-known scholars, and due to its provably safe performance and rational computational
complexity, it can be viewed as a very good choice for practical applications.

In [18], a seminal investigation was carried out and different theories from statisti-
cal learning, robust MPC, discrete stability analysis, optimal control and probabilistic
theories were taken into account to prove the safe performance of LBMPC. A supplemen-
tary paper to [18] were also published in [110] which completed the theoretical results on
epi-convergence of non-parametric and parametric oracles. To elaborate on the theoret-
ical findings, three real-time control problems, i.e. energy-efficient building automation,
quadrotor helicopter flight control, and Moore-Greitzer compressor control, were taken
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into account. By comparing the performance of LBMPC against linear MPC and non-
linear MPC (NMPC), it was observed that the accuracy of LBMPC is as good as that
of NMPC, and is also quite better than MPC. However, unlike NMPC, LBMPC did not
account for the nonlinearities of the model, which was quite promising. This is because
accurate modeling of the nonlinearities of real systems is very arduous, and increases the
computational complexity of the control-oriented model. Based on the obtained results,
some open issues were also reported which could be a topic for further investigation. Most
importantly, it was stated that selecting the most efficient learning technique among the
existing parametric and non-parametric methods remained an open problem. It is worth
pointing out that one of the main objectives of the current thesis is to answer this open
issue. To do so, in Chapter 7, a wide range of learning methods are adopted from literature,
and are used as oracles in the architecture of LBMPC. Also, it will be tried to extend the
theoretical proofs to the adopted learning algorithms for guaranteeing the epi-convergence.

After the publication of the seminal paper, investigation on LBMPC has been continued
by considering different architectures for LBMPC and applying them to more complicated
control problems. In [I16], hybrid systems modeling as well as hybrid systems control
theory were used for developing a hybrid system LBMPC to improve the energy-efficiency
of heating, ventilation, and air-conditioning (HVAC) systems. Through simulation, it
was indicated that hybrid modeling enabled the authors to simplify the original model of
HVAC, and hybrid system LBMPC used the hybrid simplified model to improve the energy-
efficiency. Significant improvement was achieved through simulation while the occupancy
comfort constraints were not violated.

Research on using LBMPC for HVAC control was continued by applying the controller
to reducing the transient and steady state electricity consumption of HVAC [117]. To
do so, experimental data was collected using Berkeley retrofitted and inexpensive HVAC
testbed for energy efficiency (BRITE), and a novel parameter identification algorithm was
combined with the physics based model for measuring the electrical energy consumption of
BRITE. Also, a convex relaxation method was adopted to render the original function to a
convex format which could be used by LBMPC for calculating the controlling commands.
Random sampling was used to capture an appropriate signal for developing the oracle.
The comparative simulation results indicated that LBMPC was a very good candidate to
be used for BRITE control.

In [118], an extension of LBMPC was proposed which used an efficient numerical al-
gebraic optimizer together with an extended dual Kalman filter for the estimation of un-
measured states. The efficacy of LBMPC was proven by applying it to real-time control of
a quadrotor helicopter. Also a technique was proposed for the approximation of maximal
output admissible disturbance invariant set. In [1418], the simulation was continued by ap-
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plying the proposed variant of LBMPC to a very challenging robotics problem, known as
ball catching. Through repeated experiments, it was observed that quadrotor with LBMPC
can catch the thrown balls for more 90% of trials. In [1411], a comprehensive report was
provided to elaborate on the design, implementation and experiments for quadrotor control.

In [119], numerical experiments were conducted to improve the optimization problem
at the heart of LBMPC. In this context, two benchmark control problems called hovering
control for the quadrotor and on-board control experiments of dynamic quadrotor flight
were taken into account. Also, three optimization algorithms, i.e. primal-dual infeasible
start interior point method and two variants of dense active set solvers, were adopted.
The results of the simulation indicated that each of optimization techniques were suited
for certain applications, and it was recommended that for any given control problem, a
number of optimization techniques should be considered to extract the best one.

All of the recommendations and findings of the above researches are considered by the
author for designing LBMPC for suspension system control. In this regard, this investiga-
tion tries to answer some of the open questions and enrich the literature of LBMPC.

6.2 General Architecture and Formulation of LBMPC

In this section, the general architecture of LBMPC along with the theoretical foundation
required for the safe operation of LBMPC are presented. Understanding these general
theories and concepts, along with the definitions and lemmas behind the development of
LBMPC is essential for the extensions done in this research as well as for specific adjustment
of LBMPC for suspension control. Therefore, it is tried to precisely formulate the general
LBMPC to make it clear how the combination of different modules enables this controller
to be robust, optimal, stable and probabilistically convergent. To give a clear vision of
the block-diagram architecture of LBMPC and its formation, a schematic illustration of
LBMPC is presented in Figure 6.1. As can be seen, LBMPC consists of (1) a nominal
module with disturbance, (2) a learnable module, (3) an optimization module, and (4) a
reference trajectory builder. Having said that the trajectory builder is an extension to
the basic LBMPC, and is required since the suspension control problem can be viewed
as a trajectory tracking problem. The details of reference trajectory builder were given
in Chapter 5, and is not related to this chapter. So, it will be viewed as an abstract
component during the analysis.

Note that, for the sake of completeness, the proofs of the important theorems of LBMPC
are presented in details. Before starting the formulation of different modules of LBMPC and
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Figure 6.1: Schematic illustration of LBMPC architecture.

definitions, lemmas and theories associated with them, that would be necessary to present
some notations and well-known definitions in order to be consistent with the literature of
automation and control.

6.2.1 Notations and preliminaries

Firstly, one should notice that vectors are shown by lower case bold format (a, b and etc.),
matrixes are shown by upper case italic format (A, B and etc.), and sets are shown by
calligraphic upper case italic format (A, B and etc.). As mentioned, LBMPC works with (1)
true system dynamics, (2) nominal system dynamics, and (3) learned system dynamics, and
these three scenarios are distinguished in the carried out analysis. In this context, u € R™,
x € R”, and y € R? indicate the control input vector, state vector and output vector
of the true model, respectively. 1 € R™, X € R”, and ¥y € R? denote the control input
vector, state vector and output vector of the nominal model with bounded disturbance,
respectively. 1 € R™, x € R”, and y € R? denote the control input vector, state vector
and output vector of the model with oracle, respectively. Sub-scripts denote the time.
For example, u; represents the value of control input vector at set-point t. All vectors are
column vectors with the corresponding number of elements, e.g. w; = col(uy ¢, Uaty ..., Umt)-
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Also, AT is used to show the transpose of matrix A. Let’s assume that (a; b) concatenates
the two vectors a and b. For example, if z = (x; u), then z € R"*. Moreover, [A B]
concatenates two matrixes A and B with the same number of rows, and possibly different
number of columns. A positive definite matrix A is shown by A > 0, and for two matrixes
A and B, the condition A > B implies A— B > 0. The term || - ||5 is the standard Euclidian
(L2) norm, and || - || 4, where A is a matrix, represents the weighted norm. For example,
lla]la = vaT Aa. The term || || Frobenius represents the Frobenius matrix norm which is used
when it is intended to calculate the norm of a matrix. A vector of zeros of appropriate
size (for example n x 1) is shown by 0,x;. Also, an identity matrix of appropriate size
(e.g. n x n) is shown by I,. The operator int(7T) represents the interior points of the set
T. For an open set P, the closure of the set is denoted by clo(P). Finally, assume that
ac R"™ and b € R™, and the set 7 C R™ " then, the projection operator is defined as
Proj.(T):={a€R"™ |3b e R™, (a;b) € T}.

Definition 6.1 [150, ] A given function o : Rt — R* is called type-K if «(0) = 0,
and « be continuous and strictly increasing. Having said that function « differs from the class of
type-K o functions, in the sense that the condition a(h) = oo does not hold as h — oo, and thus,
there exists a finite upper bound for the range of a.

Definition 6.2 [151, | A given function 8 : Rt x RT — RT is called type-KL if for fixed
h >0, (-, h) becomes a type-K function, and for each fixed s > 0, 8(s, -) becomes non-increasing,
and satisfies the asymptotic property hlim B(s,h) =0

—00

Definition 6.3 [153] Let’s assume that the state space is constrained by polytope X (i.e. x € X),
and denote the steady-state point by Xgtable, then the function V; : X — RT is said to be a
Lyapunov function for a discrete-time process if for every set-point t € Z™, Xstable lies in the
interior of the domain of V;, Vi (Xstable) = 0, Vi(x¢) > 0 for Vx; # Xstaple and Vi1 (xi41)—Vi(xy) <
0 for Vx; # Xgtable Of dynamics system. Also, al(Hx — )_(stableHQ) <Vi(x) < a2(||x — )_(stableHQ),
where a1 and as are two deliberately selected type-K functions.

Remark 6.1 The steady-state point is defined by a bar on the top of x (note that using bar is
the standard notation for the representation of the nominal model with bounded disturbance), as
all of the robustness and stability conditions are verified and proven by the dynamical behavior
of the nominal model with bounded disturbance. Later, it will be indicated that this innovative
strategy results in the retaining of robust and stable performance even under deficient mis-learning
conditions.

Definition 6.4 [151] Let A, B, and C be three different sets defined in some vector space, then,
the Minkowski sum operator is defined as A@® B :={a+ b |a € A;b € B}, and the Pontryagin
(Minkowski) set difference is defined as A B := {a|a® B C A}. Also, the linear mapping
of the set A by matrix T is TA = {Ta | a € A}. In the proofs of robustness, we will use
these sets together with some of their important properties. In particular, we use the properties
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(AeB)@e@BCA AoBalC)aC C A B,and T(Ao B) C TAS TB. Also, it holds that
ACB <= AaCCBaC.

Definition 6.5 [120] For a random sequence fi;, a constant 1, and a rate r;, the mathematical
term |7y — 2 = Op(r¢) means that there exists € > 0 such that for 3M > 0 and 3 t; € ZT and
ty > 0, we have Pr(||hs —nl|2/re > M) < ¢, for Vt > t;. Now, let’s define fy 2, 1) which represents
lhe — nll2 = Op(re), as 1y — 0.

Based on the above definitions and notations, we can start writing down the formulation of
LBMPC.

6.2.2 Formulation of true model dynamics

In this sub-section, the true model of system dynamics is presented. It is assumed that for a given
plant which is going to be controlled, there exists an exact representation of system dynamics.
Note that this true model is just considered as an ideal reference, not a model to be used at the
heart of LBMPC for the calculation of control commands.

As we know, it is almost impossible to calibrate a system of ordinary differential equations
(ODEs) in either linear or nonlinear formats and assert that it exactly follows the real-system’s
dynamical behavior. Unfortunately, such a mistake is common within the society of control engi-
neering who use model-based schemes for designing their controlling algorithms. As mentioned,
the beauty of LBMPC is that the true model is just considered as an ideal reference, and the
formulation of controller is carried out keeping in mind that it is very optimistic to postulate
that one can calibrate an exact model for designing a model-based controller. Actually, such a
realistic consideration results in the use of two alternative models, i.e. the nominal model with
disturbance and the learnable model with oracle which are approximations of true model.

Taking the above facts into account, in what follows this section, a general model is formulated
as the representative of plant’s true dynamics.

Let’s assume that both control input and state vectors can be represented by convex and
compact polytopes U € R™ and X € R", respectively (u € Y and x € X). This implies that the
constraints on the system dynamics can be represented by a finite number of half-spaces. The
compactness and convexity assumptions make the system amenable for numerical optimization
which is required for the calculation of optimal control policies. The true system dynamics can
be formulated by the composition of a linear term with an un-modeled (usually nonlinear) term,
as below:

{Xt_l’_l = Axy + Bu; + g(x¢, uy) ’ 6.1)

yi = Oxy

where A and B are appropriate n X n and n x m matrixes, and function g : R" x R™ —
R™ determines the un-modeled (usually nonlinear) dynamics. Obviously, g(x¢, us) is used to
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compensate the uncertainty resulting from modeling error. Assume that g(x, u;) is bounded and
lies within a polytope, say W, for Vu; € U and Vx; € X'. Fortunately, there are lots of statistical
and computational inference techniques which enable us quantifying W.

Remark 6.2 Other than the modelling error, we can add the effect of measurement noise to
Eqg. 6.1, and assuming that measurement noise is bounded and is confined within the polytope
D € R™. In such a condition (which is the case for the control problem at hand), we get the
following state updating rule:

Xi+1 = Axy + Bug + g(x¢, we) + e(xq) (6.2)

where e : R™ — R” is either a linear or nonlinear function depending on the measured states of
the system. In such a condition, uncertainty is encapsulated by the set W @ D.

Based on the abovementioned reference model, in the next sub-section, the formulation of
nominal and learnable state-space models are presented.

6.2.3 Nominal model and learnable model dynamics

It is well-known that, in practice, we cannot formulate the function g(x, u;) which exactly cap-
tures the un-modeled system dynamics. Thus, an approximate state-space model is used as a
surrogate model to Eq. 6.1 which uses its linear part together with a prescribed disturbance term,
as below:

Xi+1 = AXy + By + dy (6.3)

where d; represents the disturbance. Since, it is assumed that g(x, u) is quantified by statistical
techniques, the disturbance term is selected in such a way that d; € W. Apparently, in the case
that the measurement noise also contaminates the system dynamics, we get d; € W @& D. The
simulation of the nominal model with disturbance would be convenient as we just need to sample
from d;. Also, we ensure that the nominal model is a logical approximation of the true model
dynamics as the disturbance term is constrained by the same polytope encapsulating g(x;, u).
By imposing the constraints (based on the quantified polytope) on the nominal states and inputs,
we can analyze the feasibility of the states / control signals, and thus, prove the robustness of
the system dynamics.

On the other hand, an independent model called learnable model is defined which operates
independently, and is responsible for improving the performance and convergence of the LBMPC
control law to the ideal control law obtained by using linear MPC with true model (Eq. 6.1) at its
heart. As mentioned, this independency not only prones a good rate of robustness and efficiency
in tandem (which are usually in confliction with each other), but also makes the robustness of
LBMPC independent from possible mis-learning (which is very common in real applications).
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The state updating rule of learned model is given as:
Xir1 = AXy + Bug + Op(Xy, i) (6.4)

where Oy(X¢, 0¢) is a time-varying black-box type identification tool, known as oracle [155].

Through theoretical investigation, it will be proven that the desirable convergence is not
related to the complexity of oracle, and thus, one can use black-boxes with complicated structures
for system identification. Also, the theoretical results remain valid for time-varying and adaptive
oracles. This is a very nice feature as time-varying oracles can be re-trained (using incremental
learning [156] tools such as recursive least square, Gaussian filters, and etc.) to better understand
the system behavior. It is just needed to contrive a sensor in the plant to collect new data, and
re-train the oracle.

Remark 6.3 There are a few issues related to feasibility and convergence which should be
ascertained when designing oracles for the learnable state-space model. Firstly, an oracle should
be selected in such a way that its outputs be bounded and lie in W, i.e. Oy(X¢,1y) € W. Secondly,
since the learned model is responsible for the efficiency of LBMPC, it is important to make sure
the gradients of O;(%x, 0;) are computable, as it is required by numerical optimization algorithm
used for the calculation of optimal control policies [157].

Remark 6.4 LBMPC is a real-time optimal control algorithm. Therefore, the computational
time required for the calculation of control command is of paramount importance. This implies
that though we are free to select whatever architecture for Oy (%¢, ), cares should be taken to
make sure the structure is not too complex, and the estimation and consequent calculation of
optimal actuation signal can be conducted in a reasonable time. Satisfying this criterion is beyond
the results inducing from theoretical proofs, and often needs a careful empirical investigation and
problem-specific experiments.

At this point, the presentation of the architectural formulation of LBMPC is completed. In
the coming sub-sections, we go into the details required for the correct implementation of the
controller.

6.2.4 Construction of invariant set

For discrete time predictive controllers, a well-known strategy for guaranteeing the robust and
safe performance is to determine an invariant set and make sure the terminal state and control
input lie in this set. This can be done by adjusting the constraints on terminal states and control
inputs to ensure they fall within this invariant set Q € R™™™. Obviously, some conservative
conditions and criteria should be satisfied to make sure the invariant set 2 has the required
properties to make the systems dynamics stable, safe and robust. Here, the required conditions
that any invariant set should possess are presented.
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Let’s assume that the pair (A, B) is stabilizable, then one can show that the steady-state
point and steady input are solutions to the following equation [158]:

A— Hn B . Xstable _ 0n><1
C Onxm Ustable Yt
It is possible that this system of equations has a unique solution (Xstable; Ustable) OF multiple
solutions which result in sets, i.e. Xgtable € Xstable and Tstable € Ustable: Apparently, Xstable C

X and Usgaple € U. By calculating the full column-rank matrixes ¢ and 1 of size m x m and
n X m, respectively, using the null-space computation below:

mnge([d}T ¢>T]T> = n“ll([(A —In) - B]> '

we can parameterize the steady-state points and steady control inputs by Ugtaple = ¢6 and
Xstable = Y0, where 8 € R™ and characterizes each solution.

Definition 6.6 [13] A squared matrix is said to be Schur stable if all of its eigenvalues be strictly
less than 1.
Definition 6.7 [159] A squared matrix is said to be Hurwitz stable if all of its eigenvalues be

strictly negative.

Assume that we determine the m x n feedback gain matrix K such that the resulting n x n
square matrix A + BK be either Schur stable or Hurwitz stable, then for the closed loop system
with the following control law [144]:

uy = K(it - istable) + Ustable = K)_(t + (d) - K¢)0 )
the system’s dynamics evolves towards stability, mathematically speaking:

= tf > 0§Vt > ZL/f > H)_(t - )_(stableHQ =0& Hﬁt - ﬁst:able”2 =0.

The above condition holds when no disturbance affects system’s dynamics (d¢ = 0,,x1). How-
ever, as mentioned, we assumed that the nominal model is contaminated by noise to be more
realistic. The above results are still useful to come up with a reachable invariant set to be used
as the terminal constraint. The motivation is that by constructing such an invariant set, one can
ensure that the systems trajectory lies in this set even in the presence of bounded disturbance.
There are so many methods to come up with such an invariant reachable set 2. Given the recom-
mendations of [154, , |, the most useful ones are “maximal output admissible disturbance
invariant set” and “minimal robust positively invariant set” (2 C X x R™). Each element of
such a set is a vector (X; 0). The reachable invariant set obtained not only satisfies the mentioned
condition, but also ensures the feasibility of control inputs and system states. So, an invariant set
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has two properties (a) disturbance invariance, and (b) constraint satisfaction. These conditions
can respectively be expressed as:

A+ BK B(¢— Ki)

0m><p Hm

Q@ {Wx 0,1} CQ, (6.5)

QC{(x;0)|xeX; Y0 e X; Kx+ (¢ — K)@ €U; ¢0 €U} . (6.6)

In practice, the exact calculation of invariant set is quite demanding (known to be an NP-hard
problem), and thus for most of the applications, it is tried to find a good approximation of Q2. As
mentioned, there are a lot of approximation techniques for the calculation of reachable invariant
sets. Later, the algorithm used for the approximation of €2 for our case study will be scrutinized
[162, 163]. Once such a set is identified, it can be used to constraint the terminal state value, in
the optimization problem of LBMPC.

6.2.5 Robustness and stability of LBMPC

Obviously, finding a reachable invariant set and using it as terminal state constraint is very
crucial for having stable performance. However, there are some other conditions for making a
model-based controller robust, which should be considered as well for LBMPC. As an explanation,
other than satisfying the reachability to the invariant set, it is also of eminent importance to make
sure the real-time trajectory of plant dynamics remains in a safe region even in the presence of
disturbance. As mentioned, the suspension control problem can be viewed as a tracking problem,
and there is a desired trajectory that we expect LBMPC to follow in order to reduce the vibrations
of body mass, and consequently, to make passengers more convenient on road.

Within the literature of MPC, the most well-known concept for complying with the above
criteria is the use of tube-based predictive control [160, |. Recall the formulation we provided
for true model and nominal model with disturbance. If we drop the effect of unmolded dynamics
from true model as well as the effect of disturbance from nominal model, then we could strongly
say that two models have an equivalent dynamics. In this context, tube-based MPC works based
on the fact that if we ensure the trajectory of nominal model without disturbance (d¢ = 0,,x1) has
a certain profile, then, the trajectory of true model (including both linear term and un-modeled
dynamics) will always be confined within a finite tube encapsulating the trajectory of nominal
model. Also, the formulation of tube-based MPC enables us to enlarge the tube by changing the
value of feedback gain matrix K.

Just like any other predictive controller, LBMPC renews the control policy after a certain
point of time, using the concept of receding horizon control. In this way, let’s say after each 1
sec, an optimization problem is solved using N future set points in the prediction horizon. So,
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there will be N prediction nodes £ = {0,1,2,..., N}, and at each set-point i € L, an optimal
control input 1; and state value x; should be determined, while satisfying all of the constraints.
Apparently, at each set-point, one needs to construct a tube whose width can be calculated by
set R;. The idea is to shrink the set X at set-point ¢ by the width of R;. Having said that at the
terminal set-point N in which the constraint on state trajectory X, is imposed by the invariant
set Proj, (), (apparently for this case, we are interested in Proj, () since Q@ C X x R™ ), the
tube Ry is used to shrink Proj, (£2) to make sure the true system’s trajectory will also lie in
Proj, () in the presence of un-modeled dynamics, provided that g(xy_1,un—_1) € W. Let’s say
that discrete system is at set-point ¢, then the general optimization problem can be formulated
as:

‘/t(xt) = m@%n Jt (0, )~(t, ceey )NCH_N, ﬁt, ceey ﬁt+N—1) (67)

s.t.

( ~ —
Xt = Xty, Xt =Xt

Xipir1 = AXpri + Bgy; + Op(Xepi, Uprq)
Xirivl = AXyqi + Bl

Ui = KXy + (0 — K0)0y4

Xitit1 E X OR, Wy €EUOS KR,
(Xe4n;0i4n) € QO Afina

where A fing; := {(hn;0mx1) | hy € Ry} and all of its elements live in R, © = (64, ..., 0,1 n—_1),
i € L, Ro has only one element which is 0,,x1, J¢(-) is the cost function, and V;(+) is the value func-
tion. The cost function J¢(-) should be non-negative and continuous. Having said that Proj, (2)
is calculated by R (it will be discussed later).

Remark 6.5 As seen, the control command for both learned system and nominal system is 1.
This allows the controller to try to improve the performance by @ that minimizes J¢(-), and at
the same time, to use the same actuation signal 1 to satisfy the robustness constraints by means
of the nominal model. Such an innovative strategy (i.e. formulating an objective function that
improves the performance by learned model and at the same time satisfies the constraints by
nominal model) automatically handles a traditional conflictive question among control engineers
on how to come up with a trade-off between the efficiency and robustness of controlling commands.

Remark 6.6 The original objective function of LBMPC has two sets of decision parameters [15].
However, due to adding constraints to get a robust feedback-based control input (see Eq. 5 of
Ref. [159]), the decision variables for our simulation are only 6.

Remark 6.7 Although LBMPC can take time-varying value function and time-varying cost
function, for our case study, they considered to be time-invariant. Thus, in the rest of the
formulations, we replace the notations V;(-) and Ji(-) with V(-) and J(), respectively. The
selection of time-invariant cost function J(-) is also essential for proving an important robustness
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property of LBMPC, known as robust asymptotic stability. It is also worth noting that oracle
O¢(-) remains time-varying in our formulation due to the reasons mentioned before.

Remark 6.8 The optimization problem defined for LBMPC fixes the initial state value at each
stage of optimization rather than taking it as a decision variable. This is inflicted on both nominal
and learnable systems. Such an adjustment is based on the own experiments of the author as
well as the recommendations given in [160, | to retain the continuity of the system, and avoid
a shocking spike-type deviation on states’ trajectory.

As can be seen, in our formulation, the controlling output is calculated using a feedback-based
strategy. It is important to prove that by using the objective function defined in Eq. 6.7, such a
control updating rule retains the feasibility while satisfying the robustness constraints.

Definition 6.8 Let’s define p, to be a feasible point at time step ¢ (not necessarily optimal) to the
defined optimization problem. Also, let’s denote the optimal solution by py. Then, the sequence
of predicted states and control inputs based on the feasible solution can be denoted by X;+i[p;] and
Tyti[py). So, the feedback-based control input updating rule will be @ [p,] = KX; + (¢ — K) .

Here, two theories are presented regarding the robustness of LBMPC. It is tried to give the
proofs of these theories in details so that the reader can find out why the results hold. Also, the
author presents some assumption and remarks (when necessary) to facilitate the understanding
of the proofs.

Assumption 6.1 For now, let’s assume that at each set-point i € L, the set R; defining the
width of tube will be determined by R; = @;;%)(A + BK)?W, where R has one element which
is 0,,x1. The reason to this will be discussed later in Section 6.3 in more details.

Remark 6.9 Recall Eq. 20 of Ref. [165]. In their proposition, x; +k|¢ Tepresents the estimated
state of the nominal system at set-point k£ with no disturbance, and x;4 denotes the state of
the true model obtained by adding the effect of disturbance to the nominal state value. Note
that the term Dw; in their true system’s state-space model, which is a specific format of linear
additive disturbance, is set to be the general form g(x;,u;) for our case study. Now, let’s back
to the formulation of our objective function. After obtaining a feasible solution p,, the states
of nominal system without disturbance can be calculated. Thereafter, we jump to set-point
t + 1, an initially set X;11[p;] which is our estimation from the solution of previous stage. By
repeating the optimization which includes simulating the perturbations imposed by disturbances,
an updated solution p;,, is obtained, and now the state can be predicted based on the new
solution X y1[p;,1]. The same process is repeated over the optimization horizon when we jump
from set-point i to ¢ + 1. Based on the mentioned facts, we can say that X;1[p,] is equivalent
to Xy k¢ and Xy 1[pyy4] is equivalent to x4y in Eq. 20 of Ref. [165]. Now, given Eq. 20 of Ref.
[165], our argument, and Assumption 6.1, we get Xyp14i[phs 1] = Keg14i[pty] + (A+ BK)' g(x¢, uy).
Note that the same argument holds for control inputs, provided that the feedback gain K be
determined.
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Theorem 6.1 [18] If the set Q be disturbance invariant and satisfies the constraints on control
inputs and states, and also p, be a feasible solution, then the control updating rule G [p,] =
Kx; + (¢ — Ko)p, with fized initial state X; results in robust feasibility, and there will be a
feasible point p,,y for X;y1.

Proof. [15, 165] Let’s take dyy144[py] = (A + BK)'g(xy, 0i;) where dy4144[p,] belongs to the set
D; = {(A+ BK)'g(x¢, 1) | g(x¢,1;) € W}. First, lets start by investigating the feasibility of
control input based on new solution. Given Remark 6.9, Qyt14i[pty 1] = Qepr4[pbs] + K dpp144 [t
for i € {0,1,..., N — 2}. With respect to Definition 6.8, the feasibility of p, satisfies Gs1144[pt;] €
UOS KRiyq for i € {0,1,..., N —2}. Based on Assumption 6.1, Riy1 = R; ® (A+ BK)"™Ww.
Now, let optimization algorithm operate and yield a solution, say p;,,. Based on the equation
given for Q4 144[pt;41] and the equivalent set for R; 1, the new solution will be encapsulated by
the set Gyy14i[pyy 1) € U © K(R; @ (A+ BK)™™'W) @ K(A+ BK)"™'W. From the properties
presented in Definition 6.4, we get Qip144i[pi1] € U © KR; for i € {0,1,..., N — 2}. This
indicates the feasibility of control input predicted by p,, 1. Now let’s check the feasibility of states.
Based on Remark 6.9, Xjy144[ps41) = Xep144 1) + depr44p] for i € {0,1,..., N — 1}. Based on
Definition 6.8, the feasibility of p, implies that the constraint X;414i[p;] € XS Ry is satisfied for
i€40,1,...,N — 1}. Again, assume that after performing the optimization, algorithm converges
to solution p;, 1. Given Remark 6.9 and the equivalent set for R;;1, the new solution’s state
belongs t0 X4+ 14i[tey 1] € X O (Ri®(A+BK)"™™W) & (A+BK)"™™W. Based on the properties in
Definition 6.4, we get Xyy14i[phey1) € XOR; fori € {0,1,..., N —2}. This proves the feasibility of
state based on the new solution g, ;. What remains is to check the feasibility of control input for
the terminal set-point state X;1 n[pt;,1]. Based on the arguments given for the feasibility of the
state, we get Xypn [y 1] € Proj,(2) © Ry—1 C Proj, (). Given the fact that p;, 1= 0, n[pt]
is nothing but the first solution of the next stage of optimization, i.e. p; 1 := 6¢[p; ], we can
say (Xewn[pip1]; Otlti1]) € QO Afina C Q where 6;[p,, 1] € R™. On the other hand, due to
the constraint Gy n[py] = KXy n[pty] + (¢ — K)py, it can be understood that G4 n[p,] leads
to [K (¢ — K)](Req-n [pe41); O¢[pe11]) which lives in R™. Based on Definition 6.4 (in particular
TA={Ta|aec A} and the property T(A© B) C TASTB), and given the fact that G n[pes 1]
results from linear mapping T'a, where T' = [K (¢ — Kv)] and a = (Ren [t 1]; O[1s41]), we get
Uy N[ ETQO Afina) STQOTAfina = TQO KRy—_1. On the other hand, the constraint
satisfaction property of Eq. 6.5 implies T2 C U, and consequently G n[psyq] € U © KRn_1.
At this point, the proof is complete. [

Corollary 6.1 [13] If the set Q2 be disturbance invariant and satisfies the constraints on control
inputs and states, and also py be a feasible solution with fixed initial state Xo, then the considered
control updating rule results in robust feasibility for all set-points t > 0.

Proof. The proof is given by induction, taking into account the results obtaining from Theorem
6.1. The proof comprises three steps: (a) firstly, it should be indicated that if p is a feasible point
for the cost function with initial condition Xq, then, p; is feasible for X;, (b) it will be assumed
that if g, be a feasible point with initial condition Xy, then, p, ,; is feasible for X;,1, and (c)
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it should be proven that g o is feasible for X2, based on the results of assumption (b). Let’s
start by proving (a). For this case, we are interested in a specific condition where t = 0 and i € L.
Obviously, di ;] € Di, where D; = {(A + BK)'g(xo,1) | g(x0,00) € W}. With respect to
Remark 6.9, Qyi[p] = Q144[po] + Kdi4i[pg] for i € {0,1,..., N —2}. Based on Theorem 6.1, we
get G144(p1] € UOK (R;®(A+BK)"™'W)®K (A+BK)"™'W, which based on the properties given
in Definition 6.4 implies G14[p,] € USKR,; fori € {0,1,..., N—2}. Based on the same argument,
we get X14i[pq] € X © Ry, x14n[p1] € Proj, (), and Q4 n[p] € U © KRy—_1. Therefore, the
control inputs and states based on p; are feasible, and also the final terminal invariant set
constraint is satisfied, and thus, (a) is proven. Now useful results from assumptions made in (b)
should be inferred to prove (c), and thus, finalize the proof. From assumption (b), it can be
inferred that for ¢ = k + 1, ¢ is a feasible point for initial condition Xj1, which satisfies the
conditions Qg 14it1[ppy1] EUOS KRiqq fori € {0,1,..., N — 2}, and Ky 14541 [Mpr 1) € X ORi1
for i € {0,1,....,N — 1}. In the light of the stated results, the last step of proof, i.e. (c) the
feasibility of p,; o for initial condition X;4o is taken. Suppose that we let the optimization to
operate and we converge to solution gy, o from .. By the same reasoning done in Theorem
6.1, as well as the properties presented in Definition 6.4, we get Gy ioyit1[py,2] € U © KR; for
1€ {0, 1,..., N—Q}, ik+2+i+1[“k+2] e XOR,; fori e {0, 1,...., N— 1}, ik+2+N[“k+2} S PTOjX (Q),
and Qo4 N[y o] €U © KRy_1. Thus py, o is feasible and satisfies the terminal invariant set
constraint. This completes the proof. [

Theorem 6.2 [18] If the set Q be disturbance invariant and satisfies the constraints on control
inputs and states, and also p, be a feasible solution, then the control updating rule Gp,) =
Kx;+ (¢ — K) py with fized initial state X; results in robust constraint satisfaction, which means
true system state x¢41 € X .

Proof. [18] The proof is rather easy. Based on the definition of robust feasibility, we only need to
write-down the dynamics of the true system as a function of the dynamics of the nominal system
without disturbance plus an additive uncertainty, and then show that such a system satisfies the
constraints given the feasibility of p;. As mentioned in Remark 6.9, once we entered the stage
t + 1, the solution pu, from the previous stage has not been exposed to disturbance, and thus
X¢+1[p¢] represents the nominal state vector without the effect of disturbance. Based on Eq. 6.1
and Eq. 6.3, we can easily represent the true system state as X1 [ty = X1 [e] + 9(Xe[tee], we[pes])
where g(x:[p,], ue[p]) € W. Based on Theorem 1, the feasibility of p, implies X;y1[p,] € X ©
W. Based on the formulation given for the true state as the function of nominal state, we get
Xe+1[py] € (X ©W) @ W. Finally, based on the properties given in Definition 6.4 (in particular
(AeoB)®BC A), weget (XoW)dW C X, and thus, x.41[p] € X. At this point, the proof
is complete. [

Corollary 6.2 [18] If the set Q be disturbance invariant and satisfies the constraints on control
inputs and states, and also pg be a feasible solution with fixed initial state Xo, then the considered
control updating rule satisfies the robust constraint satisfaction of the true state, i.e. x4 € X, for
all set-points t > 0.
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Proof. Again the proof should be performed by induction. This time, it is needed to (a) show
that if p, be a feasible point for the cost function with initial condition X, then the true state
x1 € X. (b) It will be assumed that if u; be a feasible point with initial condition Xy, then the
true state x;41 € &, and finally (c) based on the assumptions made in (b), we get x;42 € X. Let’s
start by proving (a). In this case, we are interested in ¢ = 0. Based on the arithmetic we gave
for relating the true state value and nominal value, we get x1[p] = X1[po] + 9(xo[re0], wo[teo])-
Then, in the light of Theorem 6.2, it can be easily shown that x; € X. Based on the assumptions
made in (b), as well as the results obtained in Theorem 6.1, it can be inferred that when p,, is
a feasible point with initial condition X, after conducting the optimization at stage k + 1 and
converging to a solution, say py,, it will also be a feasible solution for X;,1. Now, given the
feasibility of p;,; for X541 as well as the results obtained in Theorem 6.2, we can easily prove
that xgo € X. This completes the proof. [J

One of the other optional design procedures at the heart of LBMPC is the selection of cost
function. In what follows this sub-section, the remaining fundamentals theories regarding the
proper selection of a continuous cost function J(-) for satisfying other important aspects of the
system robustness will be presented. To do so, given the recommendations of [18, , , ],
the first step would be to prove a lemma regarding the continuity of the value function V(-)
defined in the formulation of the objective function.

Based on what presented so far, it is clear that the set of feasible solutions will create a
feasible sub-space in the polytope X'. Here, we present a new set of feasible states, which will be
used later on.

Definition 6.9 Let’s denote the feasible sub-state-space by Xfeasible- Then, it can be mathe-
matically expressed as Xgeasible = {X¢[tts] | Vit }. Apparently, Xfeasible C X

Also, three classical optimal control theories are required for the proof of the main result in
the coming lemma. Consider the general constrained optimal control problem below:

V(x) = min {(x, u) , (6.8)

~ u
u*(x) = arg min J(x,u)
st. ueY(x)

where the cost function J : R™ x R”™ — R is continuous, V : R™ — R is the value function, and
T : R® — R™ is possibly a multi-valued (set-valued) function, as the optimal solution to the
control problem may not be unique.

Theorem 6.3 [111] Suppose that the cost function J : R" xR™ — R be continuous. Also, suppose

that the polytope U be compact and the function T : R™ — R™ be continuous for allx € X. Then,
V(+) is continuous, and u*(x) is outer semi-continuous.
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Proof. See the proof of Theorem C.28 of [111]. O

Definition 6.10 Let’s define a polytope Z which lives in R™ x U, and just like before, U is a
polytope in R™. Let z = (x; u) € Z, then X = Projx(Z2).

Now, based on Definition 6.10, Eq. 6.8 can be reformulated as:

V(x) = minJ(x,u) ,
u*(x) = arg min J(x,u)
st. ze€Z

Also, the multiple-valued function T can be defined as Y(x) :={u € R™ |z € Z}.

Theorem 6.4 [111] Suppose Z is as defined in Definition 6.10, then the multiple-valued function
T as defined above is continuous in X.

Proof. See the proof of Theorem C.33 of [114]. O
Theorem 6.5 [1141] Suppose J : R" x R™ — R and Z be as defined in Definition 6.10, then, V (-)

is continuous, and u*(X) is outer semi-continuous. Also, if u*(x) be the unique optimal solution
at each x € X, then u* : R™ — R™ is continuous in X.

Proof. See the proof of Theorem C.34 of [144]. O

Now, we can prove the continuity of the value-function defined in LBMPC in the light of the
above theories.

Lemma 6.1 [18] If Xfeasible be the set defined in Definition 6.9, and also J(-) and O(-) be
continuous functions, then V(-) is continuous on int(Xfeasible) -

Proof. [18] Based on the above arguments, we should first reformulate an equivalent optimization
problem for LBMPC which is consonant with the preliminaries for using the above theories. In
particular, Eq. 6.7 can be reformulated as:

V(Xt) :ngnJ(O,it,...,it+N) s (69)

0*(x;) = arg min J(0, Xy, ...,Xi+N)

st. 0eY(x)

where J : R" x R"™ — R is the the cost function, V : R® — R is the value function, and
T : R™ — R™ is a multi-valued (set-valued) function. If we can show that J and Y are continuous,

then according to Theorem 6.3, V(-) is continuous and u*(x) is outer semi-continuous. The
continuity of T directly results from Theorem 6./, as all of the constraints of LBMPC in Eq. 6.7
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are linear. Now, since, due to the assumption, the original cost function J(-), and the oracle
O¢(-) are continuous, then V(-) which is the composition of these continuous functions will be
continuous according to [167]. Finally, by the convex formulation of the optimization problem,
we can ensure the solution 6*(x;) is unique, and according to Theorem 6.5, we can manipulate
the controller to make sure 8* : R™ — R™ is continuous. This completes the proof. [

Remark 6.10 Tt is worth noting that satisfying the continuity of 8*(x;) is not of our primary
interest. Rather, we just intended to mention that it is possible to have a continuous optimal
solution as well. The main goal of Lemma 6.1 was to prove the continuity of the value function.
This allows us to even formulate a multi-modal non-convex optimization problem (neglecting the
uniqueness of 8%, and as a result the continuity condition for @), and prove further robustness
results, in the light of the continuity of the value function V(-). So, we are allowed to converge
to sub-optimal solutions by means of a linear optimization problem, even when a multi-modal
nonlinear non-convex objective function is formulated, and at the same time satisfy the continuity
of V(-), and prove further robustness results. This is obviously very advantageous with respect to
computational cost, especially when LBMPC is applied to real-time control of plants with crazy
nonlinear dynamics.

Now, we are able to prove one further result concerning the robust asymptotic stability (RAS)
of LBMPC, which is another criterion to verify the robustness of controlling commands [166]. RAS
states that if the controlling command for the nominal model without disturbance converges to
Xstable, then the same controlling command can steer the true system within a bounded distance
from Xstable-

Definition 6.11 A controller is said to be RAS in the vicinity of Xgtaple, if a type-KL function
B(-,-) can be found such that for all d; satisfying max; ||d¢||2 < 0, where 6 > 0, we have x; € X
and there exists € > 0 such that ||x; — Xstable||2 < 8(||x0 — Xstable||2,t) + €, for all V¢ > 0.

As mentioned, the goal is to prove the RAS for LBMPC. Based on the objective of RAS and
what we mentioned above, to prove the RAS of LBMPC, two steps should be taken. Firstly, it
should be indicated that LBMPC without disturbance (O; = d; = 0,,x1) is convergent. There-
after, it should be proven that the trained oracle O; is bounded.

Remark 6.11 LBMPC with O; = dy = 0,,x1 and X = X is equivalent to standard linear MPC
knowing the true model with no disturbance.

Before proceeding with the statement of the theorem, one definition and one proposition
should be presented.

Definition 6.12 A function f : X — Y is said to be continuous in ¢ € int{X'}, if there exists
Jde > 0 and 30 € int{X'} > ||d]|2 > 0 such that for all elements x in its domain (x € X), satisfying
lx — c|l2 < ||d — c]|2, the inequality || f(x) — f(c)||2 < € holds.

Proposition 6.1 [18] If there exists a Lyapunov function W (-) which is continuous on int( Xfeasible)
then the controlled system steered by feedback-based control command is RAS on int(Xfeasible)-
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Proof. See the proof of Proposition 8 of [166]. O

Theorem 6.6 [13] Suppose that (a) the set Q be disturbance invariant and satisfies the constraints
on control inputs and states, (b) py be a feasible solution with fized initial state xg, (c) the cost
function J(-) is time-invariant, strictly-convez, and continuous, and finally (d) we can find a
Lyapunov function W(-) for nominal system without disturbance when calculating the control
commands using linear MPC. Then, under the condition that O be continuous and satisfies
maxy x i |Oll2 < 6, it can be assured that the control law of LBMPC with bounded disturbance
dt is RAS.

Proof. [18] Let’s show the optimal solution to linear MPC and LBMPC by ﬁ ; and py, respec-
tively. It follows that the optimal solution is unique since it is assumed that J(-) is strictly-convex.
Also, recall that the initial state is set to be fixed and is the same for both of the systems. Based on
these assumptions, the linear MPC and LBMPC models trajectory obtained by optimal solution
can be formulated as:
{m[u 1= AR {] + Baylp ]+ dy
X1 [pi] = AXe[pi] + By [pf]

Now, let’s define g; to be the state-dependent disturbance, as below:

~

ot := B(tuy[p;] — iy [p i) +de
By construction, we get:
Rep1[pf] = R [p {1+ o -
Based on the results of Corollary 6.1, Corollary 6.2, and Proposition 6.1, as well as Definition
6.11, it holds that given e¢ > 0, a type-CL function B(-,-) can be found such that for all g;
satisfying max; ||g¢||, < &', we have x; € X and ||x¢ — Xstablell, < B(]|X0 — Xstablell,,t) + €, for
all vt > 0. To complete the proof, it is needed to indicate that such a ¢’ exists. Now, based on

Theorem 6.5, Lemma 6.1, and the continuity and the boundedness of O; (as assumed), we get p;
to be continuous.

As mentioned, the first step was to find the solution of linear MPC ﬁ ¥ under O; = 0,1 (the

solution obtained by enforcing O (X[t 7], Ge[pt {]) = Onx1). Now, because of the continuity of
control input, and keeping in mind that (due to the assumed boundedness of oracle) the solution

of LBMPC is at most a bounded perturbation from that of linear MPC, i.e. ||uf — p #||, < 8",

and also because of Definition 6.12, it holds that ||oy[p}] — ay[p F]|l, < €. For the ease of
representation, let’s take € = 0" /2||B||Frobenius- Now, because of the assumed continuity of
oracle as a function of control input, and again given Definition 6.12, we get:

1O0e(Xe[pa7], Qe [pr]) — Ot(it[ﬁ :Lﬁt[ﬁ Dl = 10s(Xe i ], e[y, < €' =6 .
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Now, based on the construction of g;, and the boundedness of the term B(f[p;] — @ " 1),
it holds that o; belongs to a bounded polytope, and therefore, §’ exists. So, the proof will be
completed by using {O; | [|O¢|]2 < 6} and taking 6 = min{é"’ /2, §'}. O

Now, the only thing that remains is to select a cost function J(-) which results in Lyapunov
function W (+) as required in the statement of proof for Theorem 6.6). One of the most applicable
cost functions within the realm of optimal control that satisfies this condition is a quadratic cost
function with linear model and bounded uncertainty. Therefore, based on recommendations given

in seminal books [144, | as well as the arguments of [18, ], the following cost function is
selected:
N-1
J = ||%esn — V0]B + ||Xstable — V0|7 + (I%e+i — VOIS + [18ers — 00|%) (6.10)
i=1

where P, T, ), and R are positive definite matrixes, used for tracking Xstaple € Astable- 1t is
worth noting that T', @, and R are selected based on the designer preference, and P (known as
Lyaponov matrix) is determined by solving the following equation:

(A+BK)'P(A+ BK) - P=—(Q+ K'RK) . (6.11)

By means of the results from converse Lyapunov theory [152, ], it will proven that selecting
the above cost function can afford a Lyapunov function W (-) for the steady-state point Xgtaple Of
the nominal model without disturbances. Before stating the proof, a lemma is presented which
can be used for the proof.

Lemma 6.2 [159] For linear MPC' defined based on Remark 6.11, if K be a desired control gain,
and also the Lyapunov matriz P be determined by Eq. 6.11, and Xgtable € Xstable kept fized, if
the optimal solution satisfies ||x — wO*Hé =0, then ||Rstable — V0% = 0.

Proof. See the proof of Lemma 3 of [159]. O

Remark 6.12 The same results hold when ) and T" are both identity matrix, and thus, | - |l
and || - ||z can be replaced with || - ||2.

Theorem 6.7 [159] For the cost function defined in Eq. 6.10, provided that A+ BK be either
Schur stable or Hurwitz stable, and Xstapble € Xstable kept fized, and also the Lyapunov matriz P
be determined by Eq. 6.11, there always exits a Lyapunov function for Xsgapble 0f nominal system
without disturbance when calculating the control commands using linear MPC.

Proof. [159] Due to Remark 6.11, for linear MPC, we have X = x. Also, according to the results

of converse Lyapunov theory [169] as well as Remark 6.12, for the cost function Eq. 6.10, such

a Lyapunov function exists if: (a) it asymptotically holds that tlim |X: — Xstablell, = 0, for all
—00

X0 € Xfeasible, and (b) for every € > 0, one can find § > 0 such that [|Xg — Xstable||, < 0 implies
that ||X; — Xstablell, < 0, for all t > 0. First, we start by proving (a). Let’s denote the optimal
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solution of linear MPC at time ¢ by ﬁ 7, and consequently the predicted states and control inputs
by %¢[p ] and f[p §]. Let’s denote the optimal value function at set-point ¢ by V;*(X¢[p 7]), and
the value function for any other solution by V;(X¢[u ¢]). Given the feasibility results obtained in

Corollary 6.2, it comes that we can find the optimal feasible solution ﬁ 11 in the next step. Due
to the properties of Lyapunov function presented in Definition 6.3, and also the cost function J,
it holds that:

V(R [ ]) < V&l ) < Vil 1) — %0 — Ketabtell? - (6.12)

Due to the properties of Lyapunov function ( tlim V*(&e[pe 7)) = V(Rstable) = 0 ), and the non-
—00
negativity of .J, it can be concluded that ltlirn |X¢ — XstablellQ = 0. Based on Remark 6.12, we get
—00
tlim ||X¢ — Xstable|l2 = 0. This finishes the proof of (a). Now let’s start proving part (b). Since Q
— 00

and T are positive definite matrixes, we have:
3S>=0>3> Q-S>=0&T-S5=0.

Based on Eq. 6.10, Eq. 6.12, and also the triangular inequality, we get:
||)~(t - istable”% = ||7~(t - ¢0 + 1/J0 - istable”%

< [I%¢ — 9OII% + (140 — Kstabre |3
< Hit - WHZ) + HW - }_{stable”% <J

If we perform the optimization on the both sides of the inequality above, we get:
. ~ _ 2 . .
min [[X; — Xstable|[s < minJ =: V(x)

s.t.

Xt =Xt, Xt =Xt

Xitit1 = AXpi + By + Op(Xigi, Qi)
Xiyir1 = ARpqi + By

U = KX + (0 — K0)0y4

Xititl1 E X OR;, Wy €eUOS KR,

{ (X4 N3 0i4n) € QO Apinar

Also, based on Lemma 6.1, Definition 6.12, and the results of part (a) of the proof (in particular
V(Xstable) ), it holds that for every € > 0, one can find § > 0 such that V(Xg) < € implies
IXo — Xstablel||, < 0. Based on the non-negativity of J, and the properties of Lyapunov function,
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for all t > 0, we get ||X¢ — Xstablell, < V(Xt) < V(Xo) < €, which completes the proof of part (b).

At this point, the proof is complete. O

By finalizing the proof, we proved that for the cost function given in Eq. 6.10, there exists a
Lyapunov function which is required for proving RAS of LBMPC in Theorem 6.6.

In this sub-section, the fundamental theories regarding the feasibility, stability and robustness
of controlling command at the heart of LBMPC were proven. Now, we can investigate the
properties of oracle to come up with fundamental theories to justify the use of learning at the
heart of LBEMPC.

6.2.6 Adaption and learnability of LBMPC via oracles

In this sub-section, some general description regarding the properties of oracles used at the heart
of learnable model is presented. Also, some general fundamental theoretical properties regarding
the convergence of oracles whose range are bounded and are continuous are given. As precisely
explained in the previous sub-section, it is important that a selected oracle be continuous and
bounded to make sure LBMPC is robust and stable, even under mis-learning.

More detailed and specific information on how to select oracles and how to theoretically
prove their convergence are given later in this chapter. Because all of the oracles used in this
study have statistical foundation, as usual, it should be ensured that the general explanation and
properties presented here are valid for both parametric and non-parametric oracles. As mentioned
before, oracles are either interpolator or extrapolator black-boxes which use a number of input
and output pairs for estimation and forecasting [155]. As stated in the original paper [15], two
main questions should be answered regarding the application of learning systems (in particular
oracles) to LBMPC design. Firstly, that would be interesting to find out which type of oracles
can result the best performance and are best suited to be used at the heart of LBMPC. Secondly,
it is very important to choose oracles such that the controlling commands computed by LBMPC
with learnable model can converge to that of MPC (linear or nonlinear) that uses the true model.

As mentioned before, the beauty of LBMPC is that all of the nonlinearities of the system
can be captured by the oracle which itself appears as an uncertain additive element to a linear
model. So, the computation of optimal controlling command of LBMPC is not as computationally
extensive as nonlinear MPC (NMPC), and at the same time, it can be ensured that the controlling
command is computed without neglecting important nonlinear features of plant.

Let’s give the standard definitions and notations for both parametric and non-parametric
oracles, and then, proceed with fundamental theories required for selecting an oracle for LBMPC.

Definition 6.13 An oracle is called parametric if it has a well-defined fixed structure, say
Op(Xe, 1) = ee(Xe, Tr | Ap), where Ay = (A1, A2, ..., \p) € Q includes the parameters of the
model, and Q is a set encapsulating the possible values of coefficients, and lives in RP [170].
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The parametric model (X, 0 | A¢) can take both linear and nonlinear structures, and tries to
precisely capture the behavior of un-modeled dynamic g(x¢, u;) in true model. Usually, supervised
training techniques with a bunch of labeled data are used to find the optimal values of the
parameters, which can be mathematically expressed as:

t
A =37 (et — (A% + Biy) — (& | M)
7=0

Such type of models have been vigorously used over the decades by control engineers for
designing efficient model-based controllers, especially for adaptive control applications [171]. The
salient asset of such models refers to their simplicity and easy-tuning; however, they usually have
a high-biased, and also cannot be considered as robust models.

Note that, here, we only present the general definition and formulation of parametric oracles
and the process of training them. The detailed information on statistical learning for selecting
parametric oracles, and remarks on how to use them will be given later.

Definition 6.14 An oracle Oy (X, 1) is called non-parametric if it does not assume any a priori
fixed structure for capturing the behavior of g(x¢, u;) in true model. Also, it should be mentioned
that the term non-parametric does not imply that such models do not have any parameter.
Rather, it means that the number and nature of parameters are flexible and depend on training
data, instead of being fixed beforehand.

Fortunately, in recent decades, and extensive research has been conducted by statisticians and
the researchers of computational intelligence society to develop efficient non-parametric models
for classification and regression [172]. Non-parametric models can often take complicated black-
box type structures which are unknown. Thanks to the stability and robustness proofs we made
previously, that would be possible to use complex non-parametric tools such as artificial neural
network, deep learning machines, and etc., provided that the resulting oracle be bounded and
continuous. Non-parametric models are very useful tools, especially because they can be trained
in such a way that their performance be robust, and due to this advantage, their combination
with controllers has been becoming very popular [18, ]. Cares should be taken when designing
non-parametric models for real-time application, as they may have complicated structure and take
a long time for inference. Further information on selecting non-parametric oracles for LBMPC
design and their challenges and advantages will be given later.

Remark 6.13 As real-time fast computation and robustness are of highest importance when us-
ing LBMPC, it should be ensured that the chosen parametric or non-parametric oracle is bounded
and its differential can be calculated easily for the calculation of optimal control command.

Until now, some preliminary explanation regarding the first general concern, i.e. finding that
which types of oracles are prone to be used at the heart of LBMPC, has been given. In the next
sub-section, the other issue is taken into account.
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6.2.7 Convergence properties of oracles

In this sub-section, it is mainly tried to provide a reasonable answer to the second question
regarding the use of oracle, i.e. ensuring that the chosen oracle is such that the controlling
commands computed by LBMPC with learnable model can converge to that of a MPC with true
model.

It should be mentioned that for both LBMPC and MPC, the optimal control policy is cal-
culated based on a sequence of stages of optimization problems. Therefore, by convergence, the
intention is to ensure the convergence of the minimizers of a sequence of optimization problems
to the minimizer of a limiting optimization problem of the same nature. This will happen if the
time-varying oracle Oy(X;, i) stochastically converges to true un-modeled dynamics g(x;, u;). As
the oracle Oy(X¢, 0;) is time-varying, and at each stage of optimization, the time-varying oracle
can take different forms, the formulated optimization problem can vary at each stage. Note that
by Remark 6.7, we fixed the formulation of functional J(-); however, its output still can vary
due to the variation of O;(x¢,0;) over time. Under such a condition, the only possible option
is to investigate the point-wise convergence of Ou(X¢, U;) to g(x¢,u:), which is insufficient for
proving the convergence of the minimizer of a sequence of optimization problems to a limiting
optimization problem [174].

Thus, a modified convergence theorem, known as epi-convergence, is applicable for proving
the convergence of the control laws of LBMPC and linear MPC with true model.

Definition 6.15 Let’s define Epif;(-,u), the epi-graph of a given function f;(-,u) as the set of
all points lying on or above the function f;(-,u), and denote it by Epifi(-,u) := {(x,7) | 7 >
fi(x,u)}. So, it is clear that Epifi(-,u) € X x R.

"y . . I—prob .
Definition 6.16 Let’s assume that fi(x,u) is a cost function. The term f; % fo is defined
as epi-convergence, and means that the epi-graph of the cost function fi(x,u) (with constraints)
of the sequence of optimizations converges in probability to the epi-graph of the cost function
fo(x,u) (with constraints) in the limiting optimization problem.

. l—prob L. .
Remark 6.14 if f; % fo holds, then the convergence of the sequence of minimizers is proven

[18]. Note that for a fixed u, the support of function f is X.

The notions of epi-graph and epi-convergence help us to prove the convergence of the control-
ling commands of LBMPC and linear MPC with the true model. For clarification, let’s denote
how the objective function of the true model can be derived.

Remark 6.15 1f we replace Oy(X¢, ;) in the formulation of the constraint of the optimization
problem of LBMPC with g(x¢, u;) and calculate the cost function based on the values of x, the
resulting controller is linear MPC with the true model.

Keeping the above remark for the standard formulation of objective function presented in
Eq. 6.7 in mind, let’s consider that the optimization problems of both LBMPC and linear MPC
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are formulated in the format given in Eq. 6.9. Also, let’s denote the cost function of linear MPC
by Jo. If we can show that the cost function of LBMPC, i.e. J, which depends on O (%, i)

converges in an appropriate manner to Jy, which depends on g(x¢, u;), then we get the convergence

of the controlling commands calculated by LBMPC and linear MPC formulated based on Remark
6.15. Obviously, the support of J at time ¢ is Y(x;) (for interpretation, just imagine we are using

a heavy-side penalization, and simply execute the violating solutions).

The above claim is ascertained in the light of theoretical findings of [174] pertaining to epi-
convergence. There are a number of tools and concepts within the realm of mathematical statistics
that are required for understanding the logic of the proof. So, before stating the proof, it is in-
tended to clarify the definitions and their implications to ease the understanding of the underlying
proof.

Let’s start by providing a schematic illustration for Epifi(-,u) on 2D space. Recall the
definition of epi-graph stated in Definition 6.15. A typical Epifi(-,u) for a fixed up, and x; €
X C R (with only one element n = 1) is expressed as Figure 6.2.

It is clear that the epi-graph of a function is itself a set. So, as the epi-convergence studies the
convergence of Epi J € J to Epi Jy € Jy, we need a measure of distance between two compact

sets J € RT and Jy € RT. . In particular, we are interested in a type of distance measure which

gives the lowest possible distance of two sets (by identifying the closest points of two sets). The
notion of distance between two sets is defined as:

Dist — inf { inf {]Jo—J|}} .
ist(J, %) igz{ég%{lg JI}}

~

A typical schematic illustration is given in Figure 6.3 to visualize the output of the above
metric.

Epif, (x,ug)

Figure 6.2: Schematic illustration of epi-graph for a given function with fixed up.
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Figure 6.3: Schematic illustration of considered distance between two sets.

Now, it is the time to present two key definitions and discuss what they imply.
Definition 6.17 Let’s define the set of all compact subsets of R” by C".
Definition 6.18 An open ball in X centered at p € X with radius r is denoted by B, (p), and

is mathematically expressed as:

B.(p) ={xeX|[x—pl2<r}.

Definition 6.19 A set S C X is called the r-neighborhood of a set P C X if it contains all
points x € X that are located in a distance less than r from P. It can be also interpreted as
the union of all open balls B,.(p) € X, for Vp € P. We denote such a set by S,P. This can be
mathematically expressed as:

87“7) - U Br(p) .

PEP

Figure 6.4 presents the schematic illustration of the definition above. Apparently, we have
P C S,P. Note that this set is an open set, as it is the union of unit balls.

Definition 6.20 The closure of S, P is denoted by clo(S,P).
Definition 6.21 Recall that X € R"™. For two functions f;, hy : R® x U — RT, we define:

Dy (s ey X5) = { clo(Bpify(-,w) O {clo(S10X) x RF ) p\ {S{Epi (-, ) N {X x RF}}} .
In English, the set Dy ,(f;, ht, X';u) includes each point of the epi-graph of f; in the argument

S1/2&, but with a distance greater than or equal to r from the epi-graph of h; in the argument
X.
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——
———————
-

J"*-. N 4——}\‘

-

Figure 6.4: Schematic illustration of r-neighborhood of a set.

Epif?(”uo)

~
\ [

L | S
L S o
b Y *—L‘
Y radius of 14

D, (f;: hn"%,;“o)

:S'%J’

Figure 6.5: Schematic illustration of Dy, (f:, ht, X;up) for a fixed up. The blue profile
represents h;(-,u), and the red profile represents f;(-, u), respectively.

In Figure 6.5, a 2D view is presented with fixed up, and x; € X C R (with only one element
n = 1) to make the understanding of D, (f;, ht, X';u) easier. In this figure, the set above the
blue line represents Epi h(-,up), and the set above the red line represents Epi fi(-,up). Note
that the x-axis covers the whole R. The region of interest, i.e. S;/&, and the set formed by this
argument is separated by two vertical lines. The parts of Epi h:(-,up) in this region is shown by
blue color. Note that Epi f;(-,up) in this region includes all of the space above the red profile,
i.e. the red color region, the white region and the blue region. The region in red represents the set
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Dy (ft, e, X;u0), with a distance greater than or equal to r from Epi h(-,up). This distance
is represented by the white region between the sets D;,.(f;, ht, X';u0) and Epi h(-,up), and is
selected such that:

Dist ({clo(Epift(', u) N {clo(S;/2X) % R+}) }a {Epi hi(-,u) N {X x R+}}) =

So, it is clear that Dy, (f;, he, X;u) € X x RT.

l—prob

Definition 6.21 enables us to derive a probabilistic description for f; —> fo given in
Definition 6.16. In this way, we have f; —— Azprob, fo, if:
Vr >0, Yk e C"*! 3 Jim Pr({u| Dy, (fi, fo, X;u) Nk #0}) =0 (6.13)
—00

=00

Based on the mathematical representation given in Eq. 6.13, and also the geometrical scheme
presented in Figure 6.5, that would be easy to interpret Definition 6.16. In this context, Eq. 6.13
simply implies that the red region in Figure 6.5 gradually contracts so that it asymptotically
becomes an empty set, i.e. probabilistic convergence occurs, since we cannot find any u that
results in the red region. Having said that the difference of this approximate type of convergence
with deterministic convergence comes from the threshold r. The lesser the value of r, the better
we can identify the differences between the two functions f; and fy, and the more strict we become
regarding the convergence of the two functions.

Note that since J Jo R"™ x4 — R™T, all of the above probabilistic measures and concepts can

be applied to them. The element u in the general definitions can be interpreted as the control

input of LBMPC. In the same fashion, it can be stated that Eq. 6.13 makes it possible to have an

. . . . . l .

interpretation from the control view point. In this context, .J % Jo states that for any given
Xt ~

control command u, the two cost functions Jo and J will converge to each other probabilistically.

Again, the tolerance of approximation depends on the rate 7.

Based on the detailed explanation of the probabilistic and geometric implications of the above
tools, now, we can proceed with the final fundamental proof.

— prob

Theorem 6.8 [171] IfJ Jo for all {x¢ | Y(x¢) # 0} (which is the subset of state space for

which all of the constmmts are satzsﬁed), then the set of minimizers converges, i.e.:

arg min{{ |6 € T(x)} —L s arg min{Jo | 0 € T(x¢)} .
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Proof. The proof follows from the concept of inclusion. Let’s define two events as:

event 1: {J % Jo} .
~ Xt ~

event 2: arg min{J | 0 € T(x;)} — s arg min{Jo | 0 € T(x¢)} .

The proof of the theorem follows by showing that event 1 Nevent 2 = event 2. Just note that
due to stability concerns, we have used a feedback-based control law calculation, and thus, u is
itself the function of @, which is the true decision variable vector. So, the probabilistic analysis is
carried out using @ as the control input. Also, recall that the objective function of the controller
is subjected to constraints, and we penalize the solutions violating the constraints, i.e. the value
function for 6 ¢ Y(x;), is penalized. Such a manipulation brings us to the conclusion that:

tll>I£l() PT({O | xté%{‘Xt) {(Xt) 9) > max { Xteingt) {ZJO(Xt’ 0)760 (0)}}) - 1 ’

where £, : U — R, and tlggo sup{&} < &,, almost surely. It is also a property of penalization

techniques that they try to gradually steer the solutions towards the feasible region, and thus, the
rate of penalization decreases gradually so that the value function of penalized solution finally
converges to the value function of feasible solutions. Based on this, and also the explanation we
gave for probabilistic “soft” convergence, it is true that for some r, we get:

l—prob

inf  J(x¢,0) ——— inf  Jp(x¢,0) . 6.14
thT(Xt)N( t ) XteT(Xt) r\(/)( t ) ( )

. l—prob ..
Also, based on the assumption of the theorem, we know that J %) Jo. Now, the remaining
~ T Xt ~

part of the proof is to show that under the assumptions made in the theorem and the condition
derived in Eq. 6.14, it holds that event 1 Nevent 2 = event 2. It is very important to keep in
mind that, according to Remark 6.15, the objective function of linear MPC with the true model
always remains the same, and is not time-varying. So, we have that Jy and Epi Jy(-, up) remain

constant for fixed up. However, the cost function of LBMPC, i.e. J, iNs time—varyiwng and changes
over time because of O (X, 0;). Thus, Epi J(-,up) varies over tiNme7 for a fixed up. To have a
vision, just refer to Figure 6.5 ( the red pro;ile and the space above it constitute Epi J(-,up),
and the blue profile and the space above it form Epi Jy(-,up) ). Also, be noticed that based

on the definition, we have that x; € T(x;) <= X; € Xfeasible- Now, the proof can be easily
completed, as for some r, it holds that:

{6 inf J(x,0)<A & inf Jo(y,0) >A+r}
xt €Y (x4) ~ yi€Y(ye) ~
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C {O0]3x € YT(x¢) > J(x4,0) <A & inf Jy(y:,0) > A+r}
~ yi€X(yt) ~

- {0 | Dl,r({» JOaXfeasib1e§0) N {Xfeasible X [A7A + T]} ?é @}, Vi e RT .

Thus, event 1 N event 2 = event 2, and the proof is complete. [

At this point, all of the fundamental theories and information regarding the general architec-
ture and the formulation of LBMPC are given. In next sections, more details are presented to
complete the steps and issues pertinent to the safe implementation of LBMPC.

6.3 Tube-based MPC and Invariant Set Approximation

For the current simulation, the author restricts himself to the concept of robust positively invariant
set for the calculation of €2. Here, we give two definitions which precisely clarify the meaning of
MRPIS.

Definition 6.21 The minimal robust positively invariant set (MRPIS) is a set that is a sub-set
of every other robust positively invariant set. Let’s denote such a set by R, (for our case, it can
be interpreted as Proj,(€2) ). We are in particular interested in finding MRPIS, as it reduces
the conservativeness of control law. It can be interpreted that R, is the limit set of all possible
trajectories of system’s dynamics under bounded disturbance.

As mentioned, it is usually impossible to calculate R, since it is an NP-Hard problem. Thus,
approximated versions are used for real-life applications. It is important for any approximated
invariant set to retain the properties given in Eq. 6.5 and Eq. 6.6. Due to the existence of
low computational complexity algorithms for approximating MRPIS, as well as the fact that it
retains the properties given in Eq. 6.5 and Eq. 6.6, it is vigorously being used by mature control
theoreticians [161].

Definition 6.22 The approximated invariant set is denoted by Q C X x R™. It is clear that
the approximation deals with Proj, (€2), which contains the set of states for which the system’s
dynamics remains in this set for any control input that lives in R™, provided that the disturbance
be bounded. So when (x;0) € Q, we mean that x € R(w,s), where the set R(w,s) is an
approximation of Proj, ().

In this sub-section, we present an efficient computational tool which, for any disturbance
represented by a polytope, not only results in an approximated €2 close to €2, but also retains the
properties given in Eq. 6.5 and Eq. 6.6.

Remark 6.16 Since the considered approximated invariant set still satisfies the constraint sat-
isfaction and disturbance invariant properties, all of the theoretical results presented before for
the original €2 are still valid when using Q2 to formulate the controlling command of LBMPC.
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Remark 6.17 The approximated invariant set is needed since we use it in the terminal state
constraint in the formulation of our objective function. As mentioned, in Eq. 6.7, the tube R
is equivalent to Proj, (). By approximation, Proj, () is obtained by the approximated set
R(w, s).

Here, we present an important geometric definition which is useful for approximating R

Definition 6.23 The p-norm ball in R" is defined as B} (¢) := {x € R" | [|x[[, < €} where |||,
denotes the p-norm.

Based on ‘B;(e), the outer and inner e-approximation of an arbitrary finite set A can be
defined.

Definition 6.24 For ¢ > 0 and a given finite set A € R", B € R™ is an inner e-approximation
of Aif BC AC B®By(e).

Definition 6.25 For € > 0 and a given finite set A4 € R", B € R™ is an outer e-approximation
of Aif AC BQ.AEB%;}(E).

For a given strictly positive integer number s, let the compact and convex set Rs be defined

as:
s—1

Rs = DA+ BKYW. (6.15)
j=0
Recall that R¢ has only one element which is 0,,%1. The set R is itself a sub-set of R,. Since
A+ BK is stable, Ry — Roo as s — 0o. This means that for a given € > 0, one can choose an s
such that R becomes an inner e-approximation of R.. Based on Eq. 6.15, the exact Proj, (Q2)
can be obtained by §Z,(A + BK YW, which is computationally intractable.

Remark 6.17 1t is apparent that Ry C R

It can be inferred from Eq. 6.15 that if we can find an s, and a scalar w € [0,1) such that
(A+ BK)* = wl, , then Ry = (1 — @) 'Ry, because:

o0

:é A+ BK)W = (d}l A+ BK) JW) <@(A+BK)J’W)
j=0

j=s

b

=R, ®(A+ BE)*W @ (A+ BK)*(A+ BK)W® (A+ BK)*(A+ BK)*W &
=R, ®wl,W @w(A+BEK)W S w(A+ BK)*Waw(A+BK)*Wa ...

=Ry @ w<@(A+BK)jW) =Rs ® wRoo
=0

Also, it can be inferred from Eq. 6.15 that if (A+ BK) be nilpotent for s, i.e. (A+BK)® =0,
then Ro, = Rs , because:
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o0

:é A+ BK)YW = (@1 A+ BK) JW) <€B(A+BK)J‘W>
j=0

j=s

k:

Rs ®(A+ BK)*W @ (A+ BK)*(A+ BK)W @ (A+ BK)*(A+ BK)*’W @
=Rs @ (0px1)W @ (0px1)(A+ BE)W ® (0,x1)(A+ BEK)*W @ ...
=TRs .

By the same argument, it can be easily concluded that for (A + BK) which is not nilpotent,
it is impossible to find a finite s such that Ry = Re. Given Remark 6.18, and Definition 6.24,
it can be inferred that without having a nilpotent (A + BK), none of the sets in the sequence
{Rs|s=0,1,2,...} can be an exact inner approximation of the set R

Fortunately, when (A + BK) is not nilpotent, it is possible to have an outer approximation
for the set Ro. As mentioned before, it is important to make sure the outer approximated set is
as close as possible to R, and thus, the concept defined in Definition 6.25 can be of great use.
As far as the author is concerned, in [163], one of the most efficient strategies for approximating
R oo is presented.

In this context, an outer approximation of R, is conducted by first computing a sufficiently
large s, and constructing R, accordingly, and then, scaling it suitably by w. The authentic-
ity of the method proposed in [163] lies in its theoretical foundation which indicates that such
an approximation is capable of resulting invariant set, which is a very important concern for
guaranteeing the robustness and safe performance of the controller.

Theorem 6.9 [175] If 0,,x1 € int(W) and there exists a finite integer s and a scalar w € [0,1)
such that (A + BK)* W C @wW, the set R(w,s) := (1 — w) 'R, is a conver and compact
robust positively invariant set for Eq. 0.3, Onx1 € int(R(w,s)), and also R(w,s) is an outer
approzimation of MRPIS R, i.e. Roo C R(w,s).

Proof. [175] The theory comprises of different parts. Firstly, it can be understood from Eq. 6.15
that R(w, s) is compact and convex since R is the Minkowski sum of a finite set of convex and
compact sets. The proof of the main claim of this theorem is straightforward and can be given
as follows:

s—1
(A+ K)R(w,s) ©W = (A + K) <(1 ~@) ' P+ BK)WV) oW
j=0
=(1-—w)! ESB(A +BK)YW oW
j=1
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s—1
=(1-w) YA+ BK)'W®a ((1 ~w) ' P+ BK)WV) OW .
j=1

Now, from the properties given in Definition 6.4 (in particular A C B <— A@®C C B&C), and
the assumption that (A + BK)*W C wWV, the proof can be proceed as:

s—1
(1—w)1(A+BK)W@< 1@A+BKJW> oW
7j=1

Cl-w)lawaewe <(1 — )1 @(A + BK)WV)
j=1
s—1

i we (1-w) @(MBK)JW)

s—1
=(1-w) ' Wea ((1 ~w) ' P+ BK)jW)

j=1

|
—

S

= (1-w) ' EP(A+ BK)W = R(w, s) .

O

j=

This implies that (A + BK)R(w,s) ® W C R(w,s). Therefore, R(w,s) is robust positively
invariant. Also, since R is the minimal robust positively invariant set, based on Definition 6.21,
it holds that R~ C R(w,s). Now, given that 0,x1 € int(W), it is inferred that 0,x1 € int(Rso),
which directly implies that 0,,x1 € int(R(w, s)). So, the proof is complete. [

Though the above theorem states that Roc C R(w, s), it is not enough to make sure R(zw, s) is
a good approximation of Ro,. As mentioned, it is also important to make sure the approximated
set is close to the original one. Apparently, the structure of R(w, s) is related to the selected w and
s. Therefore, the limiting behavior and the properness of the error bound of the approximation
will be investigated theoretically with respect to selecting a sufficiently large s or equivalently
selecting a small w.

Now, the goal is to investigate the limiting behavior of R(w,s). Prior to proceeding with
the main theorem, a mathematical tool is defined which then will be followed by a lemma and a
well-known theorem.

Definition 6.26 If A and B be two non-empty and compact sets in R™, then the Hausdorff
metric is defined as:

(A, B) = max{ig{gggua—Bup};igg{;ggnb — A}
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Lemma 6.3 [161] If A € R™ be a convex and compact set containing the origin and w € [0,1),
then it holds that B(A, (1 — @) tA) < w(l — @) Lsup|all, -
acA

Proof. See the results in Appendiz II of [161]. O
Theorem 6.10 [151] The sequence {Rs | s =0,1,2,...} is Cauchy, and thus, N := lim sup |x||,
S$—00 XERS
is finite.
Proof. See the proof of Theorem 4.1 of [154]. O
Remark 6.19 Since Rs C R, it holds that N := sup ||x||, < Noo < 00, for all s.
XER s
Theorem 6.11 [161] Let w*(s) := min{w € R" | (A+ BK)*W C @wW} for a given s (note that

w*(s) € [0,1) if s be sufficiently large), and s*(w) := min{s = 0,1,2,... | (A+ BK)*W C wW}
for a given w € [0,1). If 0px1 € int(W), then (a) R(w*(s),s) = Roc, as s — o0, and (b)
R(w, s*(w)) = Roo, as w (0 .

Proof. [161] The proof of each part is given separately. Let’s start by proving (a). The proof
can be easily derived by taking into account Lemma 6.3 and Remark 6.19. From Lemma 6.3,
it holds that U(Rs, (1 — @w*(s)) " Rs) = B(Rs, R(w*(s),s)) < w*(s)(1 — w*(s)) "' Ns. Based on
Remark 6.19, we know N5 < Ny < oo, for all s. So, since w*(s) \, 0, as s — o0, it holds
that O(Rs, R(w*(s),s)) — 0, as s — co. On the other hand, based on the definition, we have
Rs € Roo € R(w*(s),s) for all s, and Ry — Reo, as s — 00, we get that R(w*(s),s) = Reo,
as s — oo. This completes the proof of (a). A relatively similar argument holds for (b). Again,
from Lemma 6.3, O(Rg+ (), (1 — w)*le*(w)) = U(Rs+(w), R(w, 5" (w))) < w(1 — w)fl/\/s*(w).
Based on Remark 6.19, N () < Noo < 00, for all @ € [0,1). So, (R (x), R(w,5(w))) = 0,
as @ N\ 0. Also, @w “\, 0 implies s*(zw) — oo. Again, based on the definition, we have R () C
Roo € R(w,s*(w)) for all w € [0,1), and Ryx() — Roo, as @ \ 0. Thus, it can be concluded
that R(w, s*(w)) = Reo, as @ \( 0. This completes the proof. [

So far, it has been theoretically proven that there exists an outer approximation (R(w, s)) for
Roo. Also, it has been shown that R(w, s) asymptotically converges to Ro. he only remaining
issue is to find out how well this approximation could be. Apparently, the precision of the
approximated set depends on the controlling parameters, i.e. w and s. In general, if Theorem
6.11 holds, and also we have that:

e>w(l—w) " sup x|, =w(l-w)" min{¢ | Ry © BH(O)} (6.16)
XERs
then, Roo € R(w, s) € Reo ® B (€), which based on Definition 6.25, means that R(w, s) is an
outer e-approximation of R. In the next step, a theoretical result is given, which provides an
evaluation of the precision of outer approximation.

Theorem 6.12 [161] If 0,x1 € int(W), then for all € > 0, there exists w € [0,1) and s such
that (A + BK)*W C wW and w(l — w) 'Ry C By (e) holds, and thus, R(w,s) is an outer
e-approrimation of Reo .
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Proof. [161] The proof is easy and straightforward. We know Rs C Ro. Recall from Theorem

6.9 that if 0,,x1 € int(W), then Ry and R are convex and contain the origin. Also, recall

from Theorem 6.10 that Noo = lim sup [|x||,, and 0 < N < oo. Due to the convexity of R
§—00 XERS

and R, it directly follows that w(l — @) 'Ry C @w(l — @) 'Ruo, for any s and @ € [0,1).
If w(l - @) N < ¢, it holds that w(1 — )~ lim sup ||x[|, € {x | ||x|l, < €}, and thus,
S5—00 XGRS

w(1—w) "Rae C B (€). So, by selecting w € [0, e(e+Noo) ™), the validity of w(1—w) "Ny <€
can be assured. Also, a corresponding s*(w) can be selected to ensure (A+ BK)*WW C @wW holds
as well. On the other hand, it holds that R(w,s) = w(l — @) 'Ry = (1 + w(l — @) )Rs =
Rs ® w(l — @) 'R,. Since, we have Ry C Roo, and @w(l — @) "R C B(e), it can be
concluded that R(w, s) C By (€). Also, since R(w,s) = Rs @ R(w, s), it can be concluded that
R(w,s) € Rs @ B(€). This implies R(w, s) € Roo @ By (€). Based on Definition 6.25, it can be
inferred that R(w, s) is an outer e-approximation of R... Hence, the proof is complete. [

Remark 6.20 As can be inferred from condition (A + BK)*W C w)V, a lower bound can be
obtained for @, and based on Theorem 6.12, an upper bound, i.e. @™ = ¢(e + Ny )™}, can be
found for w. These bounded span assists us to come up with an algorithm for the calculation of
R(w, s).

Remark 6.21 As scrutinized before, it is arbitrary to whether set the s first and verity w*(s)
afterward or to set w first and verify s*(w) accordingly. However, it is more computationally
efficient to find the smallest s and then verify the corresponding w*(s). This is because the larger
value of s can increase the computational cost, though w is just a scale, and its magnitude does
not increase the computational complexity.

Based on the above theoretical result, an efficient computational frame is presented for the
calculation of R(w,s). Having said that the algorithm is valid for cases that W is a polytope
(which is the case for our study).

Definition 6.27 Let’s define the support function of a set W at point a as:

Tyy(a) := sup {alw} .
wew

Definition 6.28 Let’s consider the general definition of polytope for representing W, i.e. W :=
{weR" | h]w<g;; i€}, where h; € R" | g; € R*, and T represents the index set.

If the representation of VW be the one given in Definition 6.28, it holds that [154]:

(A+ BK)'W C@W <= Uy ((A+ BK)°h,) <wg;, VieTl. (6.17)

Since g; € RT, Eq. 6.17 enables us to calculate a lower bound for w, as below:
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By the same strategy, it can be verified whether R is contained in the polytope B that can
be represented as B:= {b € R" [17b < d; ; j € J}, where 17 € R", d; € RT, and J represents

the index set. Based on the same argument given in [154], this holds when:
s—1 '
RsCB <= > Uy((A+BK)'h;) <dj, VjieJ.
i=0

Also, it can be easily inferred that:

s—1
R(w,5) CB < R, C(1-w)B <= > Uw((A+BK)'h;) < (1-w)d;, VjeJ.
=0

Given the results of Theorem 6.12, i.e. w(l — @) "Ry C B2(e) and @™ = e(e + Noo)
and the argument given above as well as the condition given in Eq. 6.16, an upper bound can be
obtained for cw:

w(l— @) 'Ry CBL(() = w<

€
N (6.19)

Calculation of the above upper bound would be easy when using an co-norm, since we have:

N = sup [[x], = min{¢ | R, € B(C)} (6.20)
XERs ¢
s—1
:JG{SX,”}{ZQW ((A+ BK)' Z\IJW (A+ BK)'e )},

where € represents the basis of the space in which the unit ball of the p-norm is defined.

It is apparent that Eq. 6.18 and Eq. 6.19 represent the lower and upper bounds of w, re-
spectively. The above results enable us to come up with an algorithm to compute R(w, s). The
algorithmic flowchart for the computation of R(w, s) is given in Figure 6.6. Having said that
the computation of Ry and consequently R(w,s) for a given s is performed using a standard
computational geometry software for computing the Minkowski sum of polytopes [170, ].

6.4 Epi-convergence of Oracle

In this section, the general proofs discussed for the epi-convergence of the control law of LBMPC
to linear MPC that knows the un-modeled dynamics will be extended for two types of parametric
and non-parametric oracles. The necessary condition for ensuring the validity of the theoretical
results presented in this section is sufficient excitation (SE). SE states that the control input
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Set / define the initial values:

ABE W ,s5=0, =10

.
>

v

s=5+1

v

Compute @ (5) using Eq. 6.18

and set @ = E.F. (Sj

Y

Compute 1/ using Eq. 6.20

Yes

Scale X, using @ |= Compute 7,

Figure 6.6: The block diagram for computing R(w, s).

(actuation signal) and the state trajectory of a dynamic system should be chosen such that all
of the modes of the system be excited. SE plays an important role for identifying dynamics
systems, as it is important to make sure the learned system correctly captures the possible
dynamics behavior of the true model, as a function of an actuation signal. There are so many
ways to come up with a trajectory to sufficiently explore the state-input space X x Y. One
of the most important ones is the reinforcement learning, which was scrutinized in Chapter 5.
So, under SE (or at-least using a technique to ensure SE approximately holds), the theoretical
results presented here can be easily extended to any choice of parametric and non-parametric
oracles. Having said that ensuring SE affects the efficiency of the trained oracle, and does not
have anything to do with the stability results presented before. Therefore, even if SE does not
hold, thanks to the nominal model and the objective functioned used at the heart of LBMPC, it

142



CHAPTER 6.LEARNING BASED MODEL PREDICTIVE CONTROL

can be still assured that the stability and robustness conditions are valid.

Let’s first start by proving the epi-convergence for the class of parametric oracles. Recall that
a parametric oracle is represented by Oy(X¢, ) = ©(X¢, U | Ar), where Ay = (A, Ao, ..., \p) €
Q includes the parameters of the model, and Q is a set encapsulating the possible values of
coefficients, and lives in R?. Before proceeding with the statement of the main theorem, two
definitions, one remark and a well-known theorem should be presented.

Definition 6.29 Suppose that f is a function of x, u and g(x,u), then f(x, u, h(x,u | A))
represents an approximation of f where h(x,u | A) is a shape function for approximating g(x, u)
with parameters A € RP.

peﬁnition 6.30 Suppose that x € X CR", ue d CR™ and A € Q C RP, then a function
f:R"™M x RP — R is said to be lower semi continuous in X x U x Q if for each xg € X, ug € U,
and Ag € Q, it holds that lim inf{f(x,u, h(x,u| X))} = f(x0, o, h(x0, uo [ Ao))-

0

u—ug
A‘))\o

Remark 6.22 Obviously, the cost function J of LBMPC can be interpreted as a lower semi
continuous function. Also, it is obviously an agproximation of Jy, and replaces the true dynamic
model g(x,u) of linear MPC with p(%;, 0z | A¢). Also, under the condition that Ao be the true
vector of parameters, we get J Jo Actually, Definition 6.30 makes the interpretation of the
lower semi continuity of J easy. As the cost function of LBMPC, there exists an optimal solution
Xo € X amd ug € U for J Also, there exists an optimal parameter set Ag for J Even a little bit
deviation from these Optlmal values results increases the error of J compared to Jo This means

that:
xli—>11;clo inf{J(x, u,h(x,u | )\))} 2 J(XO,UQ, h(Xo,llo | )\0)) = Jo .

~

u—ug
>\—>>\0

Theorem 6.13 [171] For a lower semi continuous function f with properties presented in Defi-
nition 6.30, it holds that:

s l—prob ;
h(Xu\)\t>—>h(Xu’>\0):>ft—>p fo
Proof. [174] Since the function h(x,u | A;) depends on the coefficient vector A, h(x,u | A;) &

h(x,u | Ag) implies that A; & Ag. Let’s consider sequences {u;};ez+ and {x;};cz+ such that
u; — ug and x; — xg asymptotically. Recall the Definition 6.18. Given the lower semi continuity
of fi at xg, ug and Ag, there exist € > 0 and 0 > 0 such that:

Fi(xe,ug, h(xg,ug | Ar)) > fxo,u0, h(xo,ug | X)) + ¢ Vu € B,(ug),Vx € B,(xq), VA € B,.(Ao) .
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In other words, there exists a ¢y , such that:

ft(xuut,h(xt,ut | Ar)) > f(X07u07 h(xo,u0 | Ao)) +€ Vit € tole) -

which asymptotically gives:

tlir&inf{ft(xtaut7h(xtaut | A¢))} > f(x0, 10, h(x0,u9 | Ao)) .

~ l—prob

which, by definition, is equivalent to ft fo This completes the proof. [

Given the results of the above theory as well as Remark 6.22, the epi-convergence of LBMPC
with parametric oracles can be proven.

Theorem 6.14 [18] For J with properties presented in Definition 6.30, it holds that:

- o~ - o~ l—prob
O(Xe, 0y | N) —2— (s, 1y | Xog) = J(qut,)\t) ﬁ Jo(x,u, Ag) .

Proof. [18] From Remark 6.22, we know that J is lower semi continuous, we can use the results

of Theorem 6.13. Tt is expected that the solution of a sequence of optimization problems tends to
converge to the solution of true optimization problem asymptotically. Also, the selected oracle is
time-varying (which makes J time-varying) and is updated as time passes so that it asymptotically

converges to the oracle with true parameters. Therefore, under such conditions, we have u; — ug,
x; — X, and (X, U | Ap) LN (X, 0t | Ap) (or equivalently Ay LN Ao). Given the lower
semi continuity of J at ug, xg and Ag, there exist € > 0 and § > 0 such that:

J(xt,ut,)\t) > Jo(X, u, Ao) +€ Yue BT(UO),\V/X S Br(Xo),V)\ S BT(AO) .

So, there exists a tg, such that:

J(xp,ug, Ag) > Jo(x,u,Ng) +€, Vi€ tole),

which asymptotically gives:

tli)m inf{J(x¢, ue, Ap) } > Jo(x,u, Ag) <= J(x¢, 1, Ar) oprob, Jo(x,u, Ag) .

Xz) ~

This completes the proof. [

The next step is to prove the epi-convergence for the class of non-parametric oracles. The
presented theory is general and can be applied to any variant of non-parametric oracles at the
heart of LBMPC. Before presenting the main result, it is required to adopt a theory regarding
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the convergence in probability of the composition of functions which individually converge in
probability.

Theorem 6.15 [110, | Let Z, C R%, Z,, C R® and R C R¢ be closed and compact sets.
Assume that we have a sequence of functions V,(z) : Z, = 2y and Gp(z) : Z4 — R such that
sup [|[Vi(2) =V (2)|l2 = Op(re) and sup ||Gi(z) —G(2)]l2 = Op(st) . Let G be Lipschitz continuous

2EZy ZEZy
with constant Lg. Also, assume that the range of the function on the inside of V,,(-) lies within the

domain of convergence of the function on the outside of G,,(-), then sup ||G¢(Vi(2))—G(V(z2))]|2 =
2€Zy

Op(ct) where ¢; = max{ry, s¢}.
Proof. [110] The proof of the theory can be done by using the triangular inequality and bounding
the resulting probabilistic events. In this context, we have that:

sup [|G(Vi(2)) = G(Vi(2)) + G(Vi(2)) = G(V(2)]2 /ex

ZEZ’U

< sup [|G(Vi(2)) = G(Vi(2))l2 /er + sup [[G(Vi(2)) = G(V(2)]2 /er

2EZ, ZEZ,

which implies that:

PT(ZSEHP 1G:(Vi(2)) = G(Vi(2)) + G(Vi(2)) = G(V(2))ll2 /ex = €) (6.21)
< PT(ZSEHZP 1G:(Vi(2)) = G(Va(2)ll2 /ex =€) +7’7"(Zseup 1G(Vi(2)) = G(V(2)l2 [er =€) -

Based on the assumption, the first term on the right hand side can be bounded as below:

Pr(sup [[Gi(Vi(2)) = G(Vi(2))l2 /er = €) < Pr(sup [|Gi(2) = G(2)]l2 [er > €) -

ZEZ, ZEZy

Also, due to sup ||G¢(2) — G(2)||2 = Op(s¢), the limiting behavior will be:
zZEZ v

Jim Pr(sup [[Gi(Vi(2)) = GVa(2))ll2 /er 2 €) < lim Pr(sup [|Gi(2) = G(2)|]2 /e > €) = 0.

ZEZ’U ZGZ’U

which means:

Jim 777“(28611; 1Ge(Ve(2)) = G(Vi(2))|l2 /er = €) = 0.

Based on the Lipschitz continuity of G, the second term in Eq. 6.21 can be bounded as:
Pr(sup [G(2) = GV(lz /e =2 0 < Pr( L. sup Vi) = V(e fer = )
Z2EZy zZ2EZy

On the other hand, due to the assumption sup ||Vi(2) — V(2)||2 = Op(r¢), we have the following
2EZ, v

limiting property:
Jim Pr(sup [|G(Vi(2)) = G(V(2)l2 fer 2 €) < lim Pr( Lg. sup [[Vi(2) = V(2)2 /ev 2 €) =0,

ZGZU ZEZ’U
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which implies tlim Pr(sup |G(Vi(z)) — G(V(2))|l2 /et > €) = 0. Therefore, the limit of the
—00 ZEZ’U
right hand side of Eq. 6.21 is 0, which implies sup ||G¢(Vi(2)) — G(V(2))|l2 = Op(ct) where
ZEZ’U
¢ = max{r, s¢}. This completes the proof. [

Now that it has been proven that the convergence in probability is preserved under the
composition of functions that converge in probability, it is possible to prove the convergence of
LBMPC with non-parametric oracles.

Theorem 6.16 [18] For LBMPC with non-parametric oracle, if SE holds and sup ||Oy(X¢, 0) —
XxU

g(x¢,ue)|l2 = Op(re), then, the control law converges in probability to the control law of linear
MPC which knows the true model.

Proof. [110] By means of the results of Theorem 6.15, and the assumptions made, as well as
the results of continuous mapping presented before, it is possible to finalize the proof. Based
on the recursive updating rule of the nominal model given in Eq. 6.4, that would be possible to
define X;4;+1 as a function of X; = x; and 64, (see the constraint set in Eq. 6.7). Due to the
continuous mapping theorem, and the assumption of the theory, we get  sup  ||X¢44i(x¢, Or) —
x¢| T (x¢)#0
Xi+i(X¢, 9)||]2 = Op(ry) where r; is the convergence rate, by assumption. The continuity of the
cost function enables us to compose it with x;y;. Therefore, based on the same argument we

have had in Theorem 6.15, it can be inferred that  sup |J — Jo| = Op(r¢). Due to the
xe|T(xe)20 ~
continuity of the cost function, and Definition 6.12, for a point x¢ and the sequence of solutions

o= (67,.., 0?+N—1)T7 there exists a neighborhood region / set, let’s denote it by Y, such that
for all ¢ within this region, we get [Jo(¢) — Jo(x0,0)| < §. Now, it holds that:

Pr( inf{J({)} < {o(xo,a') —¢€) < Pr(supl|J(€) — Jo(x0,0)] >€) .

i
¢CeEN "~ cen ™~ ~

Since |Jo(¢) — Jo(x0, )| < §, the equation above can be further simplified, as below:

~

Pr( inf {J(Q)} < Jo(x0,0) — € ) < Pr(sup|J(¢) — Jo(¢) > 5 ) -
¢en ~ ¢en ~ 2

Now, because of  sup |J — Jo| = Op(r¢), the limit of right hand side goes to 0, and thus,
xt|T(xe)#0 ~ ™~
Pr( éng{J(C)} < Jo(x0,0) —€ ) = 0. Hence, based on Definition 6.16, the proof is complete. [
EX ~ ~

In above, all necessary theoretical results for the epi-convergence of the oracles of both para-
metric and non-parametric forms were presented, which will be used later to prove the theoretical
convergence of different types of oracles for our problem.
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6.5 Optimization Module

Along with the theoretical results presented previously, selection of a proper optimizer plays an
important role on the efficiency of LBMPC. As mentioned before, the theoretical results are valid
as long as the controlling command is feasible. The role of optimization algorithm at the heart
of LBMPC is to guarantee the feasibility of the calculated command, and at the same time, to
search for the actuation signals that minimize the cost functions as much as possible.

In a pioneering work on the selection of an optimization module for LBMPC [119], some
variants of optimization algorithms were selected, and applied to different control problems. The
results indicated that each of the considered optimization algorithms have their own pros and
cons. The recommendation was that when using LBMPC for a certain problem, it would be
logical to adopt a number of optimization algorithms and apply them to the problem at hand to
find out which one works better. Such a consideration is indeed in line with a well-established
theoretical result in the field of optimization, known as No Free Lunch Theorem (NFL) [179].
NFL states that a certain optimization algorithm cannot beat all of the other optimizers for all
class of optimization problems, and thus, it is logical to conduct an experimental study to identify
the best optimizer for a certain problem. Also, it was recommended that the best optimization
algorithm is the one that not only has a good searching potential, but also can calculate the
command in a very short period of time. In this context, the notion of fast MPC has attracted
the attention of control engineers in recent years, and is becoming more and more interesting

[150].

Given the above stated issues into account, for our case study, a number of optimization
scenarios are considered, and compared with respect to the performance and computational time
to find out which one works better. In a previous work on selecting an optimization algorithm for
MPC to design an active suspension control system, a technique called multiplexed MPC (MMPC)
were used [181]. By comparing the results obtained by MMPC and standard MPC, it was observed
that MMPC can beat MPC in both computational time and performance. The idea behind the
proposition of MMPC is to optimize a sub-set of decision variables at a time rather than optimizing
all of the decision variables simultaneously [182]. MMPC has proven its efficient performance
especially when the control problem is multivariate, as is the case for suspension control problem.
As stated in [57], the philosophy of using such an optimization scenario is that “do something
sooner” is more logical than “do the optimal thing later”. Let’s assume that, the control horizon
is N and the optimization algorithm involves m actuation signals, then the complexity of the
underlying optimization problem becomes O ((N X m)3), if all of the decision variables be updated
simultaneously at each sampling time instance. However, for MMPC, the m control inputs are
optimized successively in a cyclic manner. This means that only one input is optimized at
a certain time, which decreases the computational complexity significantly [183]. Since this
optimization scenario works very well for active suspension control, it is adopted and used for
our case study as well. To have a preliminary vision on how multiplexed optimization algorithm
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works, a schematic illustration of pattern moves for m = 3 (u € R3 u = (u(1),u(2),u(3))) is
given in Figure 6.7. Also, the updating of control inputs for a standard predictive control is
given for the better understanding of control updating via multiplexed scenario. As can be seen,
instead of a simultaneous optimization, the control inputs are updated successively. By doing
S0, the required time for calculating the optimal command and dispatch it to the plant decreases
significantly, and at the same time a near optimal solution is expected.

Here, the general formulation of multiplexed LBMPC is presented, and it is discussed how it
is going to be solved. The key point for implementing multiplexed optimization scenario is that
the control input vector should be decomposed into scalar elements. In this way, the updating
rule can be represented as:

Repr = AR+ Y b(i) 0 ()) + Oy, i) (6.22)
=1

where 1(5) is the 5 element of the control input ; = ( ,
represents the j' column of matrix B = [b(1) b(2) --- b(m)].

I I I BRE I I
i L
am—l_!_' I um—l_?_g_l—'_:
I I I I (I I I
! ! a1
w(2) = 1 u(2) L 1
I I (I I ]
I I . (I I ]
|—- I (I
u(3) | &1.3.I—|1—'||_|_:_I_:
I I Lo I I
1 1 1 1 > | I | 1 1 >
—r T
T T
(@ 3 (b)

Figure 6.7: The updating rule of (a) standard MPC and (b) multiplexed MPC. As seen, the
control commands are updated sooner when using multiplexed optimization scenario. Also,
it can be seen that unlike parallel updating of multiple inputs in standard optimization
scenario, multiplexed optimizer does the job successively.
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Equation 6.22 helps us to study the impact of each control input on the dynamics of the entire
system. Let’s open Equation 6.22:

X1 = A% +b(1)af +b(2)a7 + - - - + b(m)a + Oy (X, )
then, for example, the effect of the 1! actuation signal on the systems dynamics can be given as:

X1 = A%y + b(1)a] 4+ Oy(Xs, 1)

As can be inferred from Figure 6.7, the actuation signals and consequently the system states
are updated successively, following the rule below:

)~(t+1 == A)Nit + b(O't)’LALgt + Ot(it, ﬁt) s (623)

where o, = (t mod m) + 1, is an index indicating the control channel that should be moved at
time t. The considered indexing function enables us to activate all of the contributing control
inputs successively. Figure 6.8 indicates the activation style of o, when there are 3 inputs, for 10
successive set-points.

In this way, the standard model can be represented with emphasis on specific control input
at each time. Also, based on the results of Lemma 6.2 and Theorem 6.7, the standard predictive
objective function can be presented as:

N-1
J = % n — Rstaptellp + Y (IRe4i — Rstablel[§ + [[01i — Dstablel|?) -
=1
5 T T T T T T
3
;: < > > >
33 * ‘ * | * ‘
2 I | | I
2 | | | :
IR
[ | | | !
E 1 . 1 . 1 .
5
* g|
W2 3« 5 s 71 8 8 w0

time

Figure 6.8: The activation style of o; for m = 3, in 10 set-points.

149



CHAPTER 6.LEARNING BASED MODEL PREDICTIVE CONTROL

Obviously, some modification should be done to make the objective function appropriate to
be used for multiplexed optimization. In particular, the modification should be made such that
at each optimization stage, the optimization be done with respect to a certain controlling input
and the other control inputs remain unchanged. Let’s define Nyeyy = (IV — 1)m + 1, as the new
prediction horizon. The objective function can be defined as:

Nnew_l Nnew_l )
Vi(xe) =min - [|Xp4y — Ratablel|p + Y [Kiti — Rstavtellp + Y 75 — Bstable(0r14) | %
1=1 =0
w.r.t. (6.24)

~ . m
Uty it = o4 op+m, op+2m, ..., Nyew — ~
t

s.t.

Xt =X, Xt =Xt

Xipirl = AXppq + By + Op(Xeqq, Upyg)

Xipit1 = ARy + By

Uy = KXy + (¢ — K¢)o,,, 077 (01 14)

Ripirl € X O Ry, Uy € U(op4i) © K(0v44)Ri
(Xer N3 Uy N) € QO Afpina

where (¢ — K),,,,, is the column of the resulting m x m matrix, U(o4;) corresponds to the
o4 th edge of the polytope, and K(ot4;) is the o4 th row of matrix K. Since the controller is
robust, and a feedback-based updating rule is used, it is important to note that at each updating
stage t 4 4, all of the elements of control input vector G;4+; should be updated with respect to the

measured states KX;y;, and also the destined control channel ﬂﬁ: moves further using vector

i (o¢4i), with all of its elements set to be 0 except the o;4; th element which is Hffg", e.g.

7(4) = (0,0,0, 0444, ...,0)T. Also, the matrix P can be obtained by:
T
(A + b(Ut+Nnew)K(Ut+Nnew)> P<A + b(Ut+Nnew)K(Ut+Nnew)) - P

= —(Q+ K" (@14, K (018,0) )

where r is the o4y n, ., th diagonal element of matrix R. Note that the updating rule in Equa-
tion 6.24 differs from that of Equation 6.23, since it uses the matrix B to update the states.
This is because the considered control updating rule is feedback based which uses the measured
states of the previous stage to update the control commands. This means that at each updating
set-point all of the controlling commands are updated at-least by means of state feedback KX ;.

At this point, the general formulation of the objective function via multiplexed programming
is finished. In the rest of this section, the detailed representation of the problem is derived which
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turns Equation 6.24 to a quadratic programming (QP) problem. The Ny, -step prediction model
can be given using block-matrix representation, as below:

X, =IIx; + EU; + Pred - 1,1 ,

where 1,,x1 is a column vector with elements 1, and:

%ot i, A B 0 ... 0
_ %00 | iy A2 AB B ... 0
Xt = . 7Ut - . 7H == . , == . . . . )

Res N BN, 1 ANnew ANnewlB . AB B

Oy (X, ) 0 e 0

AOt(it,ﬁt) Ot(f(t,ﬁt) R 0

Pred = . . . .

AN"e“’_IOt(SCt, flt) e AOt (it, ﬁt) Ot(it, flt)

The above block-matrix presentation enables us to derive the algebraic form of the objective
function: } )
J=XI'QX; + UIRU; ,
where Q = diag{Q, Q, ..., P} and R = diag{R, R, ..., R}.

The remainder of the QP implementation is the verification of constraints via block-matrix
representation. The equality constraints can be easily implemented using the augmented repre-
sentation, as below:

X; =%, + 20, ,

U, =1X;,  +vOr"

where
K 0 ... 0 (¢ — K1)y, 0 0
. 0 K 0 o 0 (gZ)—Kllb)gtJr1 0 |
00 .. K 0 0 (b= K)oy
07" (o¢)
erew — 0;%Y (.Ut—&-l)

e Novew —1 (Tt Ny e —1)

As mentioned before, the polytopes can be represented by a number of half-spaces, as inequal-
ity constraints. Keeping this in mind, the remaining constraints (that are inequality constraints)
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are implemented using block-matrix representation. So let’s assume that the last three constraints
are implemented as below:

Ririt1 € X OR; = gl (j)Riiva < vilj); €T, (6.25)

a?jf;’ [= U(Ut+i) O K(Ut+i)Ri = 'LAL?_T_J;Z < ll ’th<’l = 0¢, O +m, o+ 2m, ,Nnew - ’72—‘) )
(6.26)

(Re N U y) € QO Afina = i v () Reeni tuan) < fron(k); k€E (6.27)

where J and £ are index sets indicating the number of inequality constraints required for repre-
senting the polytopes. The next step is to turn the above formulation to the N,.,-step prediction
model using block-matrix representation. Note that the number of edges of each polytope equals
the cardinality of the index sets. So, assume that #J = hy and #& = he. Now let’s de-
fine time-varying matrix G (that is hy x n) and matrix C' (that is he X n + m), that are the
row-wise concatenation of vectors g! (j) and ¢/ y(k), ie. Gi = [g] (1);8](2);...;8] (hy)] and
C = lefn()icfn(2)i el (he)]-

The predictive form of Equation 6.25 can be represented as:

¢ Xt S ,
where _ . r y
G1 0 Ce 0 0 Vi
0 Gy ... 0 0 V2
e=|: : S I I
O 0 e GNnew_l 0 VNnew_l
0 0 ... 0 0 | Onyx1

where v; is a h7 x 1 vector. Also, Equation 6.27 can be represented as:
Cziy <fiyn,

where fiyn = [ fiyn(1) firn(2) o fran(hg)]", and z = (Xey v 0 ).

For constraint presented in Equation 6.26, it should be noticed that only a limited number

of elements of Ijt with ¢ = oy, or +m, ot +2m, ... , Npew — [ZE-‘ should be considered. Let’s

define a new vector ﬂ? including the elements of interest. Then, Equation 6.26 can be expressed
as:
Uy <1,
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So, the resulting QP optimization problem can be given as:
V(x;) = min xTQX; + UTRU;

s.t.

Xt =X¢, Xp=X¢

X, = II%; + 2U; + Pred - 1,4,
X, = Iz, + 20,

U, =1X 1+ 007

¢ X < x

Cziny <fiyn
Uy <1

At this point, the general formulation of the optimization algorithm at the heart of LBMPC is
presented. The solution to the above QP can be obtained by Newton’s method. Note that to have
a fair comparison on the performance of the proposed optimization problem, other variants of
optimization scenarios are applied to the same problem. In particular, the standard optimization
scenario in which all of the control input channels are optimized at the same time is considered.
Also, golden sectioning search (GSS) and simulated annealing (SA) algorithms are used to solve
the formulated optimization problem.

6.6 Implementation of Controller for Vehicle Suspen-
sion System

The implementation of the controller is exactly based on the descriptions given in previous sec-
tions. The remaining step is to specify the states and control inputs as well as the sources of
uncertainty by means of bounded polytopes. As mentioned in Chapter 3, other than the un-
certainties resulting from state measurement error and etc., some other sources of uncertainties
including SU-2 (number of passengers and load) and SU-3 (model-plant mismatch) are taken into
account. As can be inferred, the nature of SU-2 and SU-3 are different from other sources of un-
certainty, and cannot be covered by the additive polytopes in the state-space. So, the most logical
choice is to consider a number of distributions for them based on the belief of the expert and
the author’s own findings, take sample from distributions representing SU-2 and SU-3, and then
simulate the process, and report the statistical results. Having said that the detailed descriptions
and quantification of the prior distributions will be given later in Chapter 8, which is dedicated
to the results of vehicle suspension control. So, let’s start by giving a formal representation for
SU-2 and SU-3, and perform the simulation accordingly.
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Recall the equivalent linear system presented in Equation 3.2 of Chapter 3. The representation
enables us to formulate the time-varying linear term of state-space model. Let the states of the
system be defined as:

X= (Zbl 'ébl Zby 2172 Zuy Zuy Pug Fug )

So, x € R®. Also, the half-car vehicle suspension model has 2 actuators u = [F‘“], ie.
u € R2.

As we know, the model formulated based on vehicles dynamics is continuous ordinary dif-
ferential equation (ODE), and thus, it should be discretized to be used at the heart of LBMPC
which is a discrete controller. There are so many ways for verifying the differenced form of ODE.
For the current simulations, the first order difference approximation is considered:

a(t) ~ a(t + lA)t— a(t) ’
where At is the time difference between two sequential set-points, and by considering a small value,
the approximation error will be very trivial. For our simulation, At = 10~ sec is considered. So,
the rest of the formulation and details are given keeping in mind that the ODE is transformed to
the equivalent difference form. For more details on this issue, the interested readers may refer to

[58]-

Now the linear part of the nominal model can be formulated using Equation 3.2 and vector
x defined above, as below:
X1 = Az, + Bu, ,
where A and B are uncertain linear maps used in the model. The quantification of the uncer-
tainties of A and B depends on so many physical and environmental factors, and should be done
by means of a prior belief as well as expert’s knowledge. For now, let’s consider the general rep-

resentation of distribution for A and B, , i.e. A 4 (Agve, X 4) and B4 (Bave, X2B). Apparently,
Agve and Bgye can be determined from the underlying physics of the model:

0 1 0 0 0 0 0 0

—C(l)cg‘l —Coczl _“::2 —ulcfiz Cko;fl Ccozl m;;z mel,
* * * * * * * *
kzl /My Czl/mul 0 0 (=kty — kzl)/mul (—cty *Czl)/mul 0 0
0 0 0 0 0 1
0 0 ki, /muy €5, /Mug 0 0 (=kty —k3))/Muy  (—cty — c5,)/Muy
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0 —C 0 —u 0 1/my, 0 1 17

Bave = | 0 =y 0 0 0 1/my,

The main terms defining the uncertainties are ¥4 and ¥pg. Later on, these matrixes
will be quantified by means of a Bayesian argument using expert’s knowledge.

Also, as discussed in Chapter 4, unlike the common belief of automotive engineers, the
road roughness does not necessarily follow a white noise distribution. Therefore, we carried
out an experimental analysis and estimated this variable using statistical forecasting tools.
Actually, this increases the authenticity of our state-space representation, since the road
roughness is estimated based on real-data rather than allocating a bounded polytope to
simulate its effect on states. Therefore, fixed part of the model is updated as

Xi+1 = A%, + Ba, + Dr

where t = [ry 7y 75 5|7 and

00000 ky/my 0 0 17
H_ 00000 ¢/m, 0 0
00000 0 0 ky/mg
00000 0 0 cpfm

In the above representation, r; and r, are the deflections of the front and rear tires,
and 71 and 7 are the rate of the deflection of the front and rear tires, respectively.

Indeed, r; is the forecasted roughness obtained from statistical model. Keep in mind
that, as discussed (see Equation 6.2), as long as the data-driven statistical model of road-
roughness be bounded, we can include it in a polytope, say D. It is logical to consider the
other unknown sources of additive uncertainties and represent them by means of bounded
polytope W. According to the argument we have had for formulating Equation 6.2, the
new polytope will be W™ = W @ D. This assures that all of the theoretical results
presented before are valid. Now let’s formulate the final form of the nominal model with
road roughness forecasting module and unknown disturbance:

)_(t-‘,-l = A)_(t + Bﬁt + Drt + dt ,

Apparently, the learnable state-space can be presented as:
)N(H_l = Ait + Bflt + DI't + Ot(it, ﬁt> s
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Note that the quantifying of W is based on the sources of uncertainty defined in SU-5,
i.e. the uncertainties due to the rapture of sensors and internal components of vehicles.

At this point, the detailed description regarding the theoretical and structural proper-
ties of LBMPC is completed, and the details on how to use it for suspension control will
be given in the the coming chapters.
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Chapter 7

Development and Evaluation of
Statistical and Soft Oracles

In this chapter, a comparative study is carried out to develop an appropriate oracle for
learning-based model predictive control (LBMPC). Also, the polytope W entailing the
unmeasured disturbance (defined in Chapter 6) is quantified with the aid of the sources
of uncertainty within the category SU-5, i.e. the uncertainties due to the malfunction of
sensors as well as the internal components of vehicles. Note that considering WV as an ad-
ditive term in the state-space makes sound from physical viewpoint, since the malfunction
of sensors usually appears as measurement noise and affects the measured values of the
internal states of vehicles.

The rest of the chapter is organized as follows. Firstly, a critical discussion is made
regarding the applicability and potential of statistical and soft computing models for de-
signing oracles. Thereafter, the mathematical formulation of the considered models from
both statistical computing and soft computing domains are presented. Then, the exper-
iments pertaining to the quantifying of W is given, and based on that, the considered
models are used to develop an efficient oracle for LBMPC. Finally, some recommendations
regarding the design of oracles are given.

7.1 Statistical Models vs. Soft Computing Models

Given the applicability of both statistical and soft computing methods for modeling under
uncertainty and imprecision, and also given the promising reports on their usage for sus-
pension control (see Chapter 2), here, both of the concepts are considered for designing
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oracles to be used at the heart of suspension systems state-space model. Before going into
the mathematical details of the considered models, a critical discussion is given and a fair
comparison between those two concepts is carried out. In the author’s view, both of the
methods have their own pros and cons, and each of them could be appropriate for certain
classes of problems.

Usually, when using statistical machine learning tools, there is some logic behind each
stage of training process, as hypothesis testing and theoretical analysis is made to ensure
one follows a meaningful training path. To comply with such an objective, there are a
number of pre-requisites which should be provided. Firstly, the available data should be
precisely analyzed to get some clues about selecting the proper classes of statistical model-
ing tools. Also, it is necessary to adopt theoretically well-established model diagnosis and
hypothesis testing tools to ensure the trained model is reliable for treating the available
dataset. One can claim that without having a descent background of statistical mathemat-
ics, it would be very hard for one to use statistical machine learning tools for the proper
treating of a given dataset.

If all of the considerations above be satisfied and a fine analysis (at all model selection,
parameter estimation and model diagnosis stages) be conducted, one can realize that sta-
tistical methods are best suited for inference, and can yield fruitful information regarding
the properties of the dataset at hand.

Soft computing methods follow an entirely different philosophy for dealing with datasets.
Soft computing has been developed by engineering society fostering the concept that by
using complex structural models, it would be possible for anyone to come up with an ap-
proximation of any function. As discussed in Chapter 2, the structure of such methods
is taken fixed beforehand (which is usually a complicated black-box structure) for any
type of datasets. In the case that some of the variants of soft computing methods include
model selection or hyper-parameters, those parameters are usually tuned with either a trial
and error procedure or a heuristic search, such as genetic algorithm (GA), and ete. [131].
Also, practitioners usually give less attention to data analysis to find out which class of soft
models better match the available dataset. This is because most of such methods are black-
boxes with universal approximation capability, and can be used for any dataset. Moreover,
after estimation, the model diagnosis is simply done by reporting the mean error, and
std. values, and other important aspects are usually left untouched. Therefore, it is usu-
ally impossible to justify why a certain soft computing method, e.g. artificial neuro-fuzzy
inference system or artificial neural network, is used for a given function approximation
problem.

On the other hand, because of the convenience of using such methods, and also their
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good point estimation results (thanks to their complex structures and universal approx-
imation capability), they are frequently used by engineers and researchers, especially for
engineering problems [135]. Tt is worth noting that because of such convenient implemen-
tation suit, and taking less energy from users to get the results, soft computing methods
are also called computational intelligence machines, with the belief that they are smart
enough to learn in a self-adaptive fashion and yield a (usually) nonlinear map between a
set of inputs and outputs.

Allin all, it can be stated that statistical machine learning mostly reclines on the knowl-
edge of the user, and the effort is to make the model simple yet efficient, which can be later
used for inference and analysis. On the other hand, intelligent machine learning focuses on
using complicated black-box structures with the capability of universal approximation so
that anyone can apply them for regression and classification tasks. Such methods are nei-
ther proper for inference nor for extracting knowledge from the model, but can be viewed
as very good point approximation tools, and have successfully come to the aid of engineers
over the past two decades.

7.2 Notations and Preliminaries

To be consistent and avoid possible confusion, some notations should be clarified before
formulating the considered methods.

7.2.1 General notations

Throughout the chapter, vectors are shown by lower case bold fonts (a, b, and etc.), sets
are shown by calligraphic upper case italic format (A, B, and etc.), and matrixes are given
by upper case italic format (A, B, and etc.). The vectors are presented in columns, i.e.
a = col(ay,as, ..., a,) where a € R™ (unless something else be mentioned). A’ is the
trnspose of A. The Euclidian (L) norm is shown by || - ||2. The inner product between
two vectors a and b is shown by (a,b). A vector of one’s of appropriate size (e.g. n x 1)
is shown by 1,,x1. An identity matrix of appropriate size (e.g. n X n) is shown by [,,. The
notation (a; b) concatenates the two vectors a and b, and [A B] concatenates two matrixes
A and B with the same number of rows, and possibly different number of columns.
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7.2.2 Representation of a dataset

For a given dataset which can be presented by n x p + ¢ matrix S, n shows the num-
ber of available data pairs in the dataset, p is the number of independent variables (in-
puts), and ¢ is the number of dependent variables (outputs). Mathematically speak-
ing, S = [ s;sl;- - s ], where s; = (z;;65(2:)), 20 = (214, 22,4, .-, 2ps), and fi(z;) =
(f1(2:), f2,1(2:), ..., fqi(z;)). In this presentation, z is the p-variate input vector and f(z)
is the ¢-variate output vector. The goal of using statistical and soft tools is to find an
approximation f (z) based on the available dataset S and an appropriate distance measure,
which can be used later as an approximation of the true output vector for unseen p-variate
data zg, such that: R
f(zo) = f(z0) + €,

where €y = (€10, €20, ---, €50), and € is a Gaussian noise with Ee] = 0. Note that E|] is the
expectation operator.

7.3 Statistical Oracles

In this section, the mathematical formulation of the adopted statistical machine learning
methods are given, which will be used later for developing oracles for LBMPC. Based on
the discussion we had in Chapter 6, non-parametric statistical methods are chosen, as they
give more structural flexibility to oracles, which can be useful especially for real-world
applications. Also, recall that to satisfy the theoretical convergence and stability criteria
of LBMPC, it is necessary to select continuous and differentiable models.

7.3.1 Kriging

Kriging or Wiener-Kolmogorov predictor is a type of Gaussian process regression which
is used for interpolation based on the prior covariance matrix of observed data [130].
Indeed, Kriging interpolates the unseen values based on their distance from observed data
in training dataset (by linear combination of data points). Let’s say n data are available,
and based on that, we would like to estimate f(zg) for a data point located in zy. Then,
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the estimated value is given by:

£(z2)

where w = (wy,wy, ..., w,)T is a n x 1 vector including combination weights.

There are different variants of Kriging methods that can be used for interpolation, from
which ordinary Kriging is the most applicable one. Ordinary Kriging assumes a constant
unknown mean (4) only over the search neighborhood of a given point zy. The structure of
Kriging includes an optimization procedure for finding the optimum combination weights
w while satisfying two important criteria: (1) lack of bias which implies that the mean of
estimated value should be equal to the mean of real value, i.e. E|[f(zo)] = E[f(zo)] =,
and (2) minimum variance which implies that the mean of squared deviations should be
minimal. Obviously, in the case that a group of estimated values are more disperse than
the corresponding real observed values, the estimation is not precise. Let’s formulate the
estimation error as:

f(z1)
cta0) = flao) — z0) =" ~1] |/ | =S eapta - )
f(zy) -

then, the lack of bias criterion, i.e. E[f(zo)] = E[f(zo)} = u, yields:

Ele(zo)] =0 <~ ZwiE[f(zi)]—E[f(zo)} =0 <= MZ%—M:O — 17 w=1.

i=1 i=1

The above condition means that the combination weights should sum up to 1. Also, as
mentioned, the minimum variance criterion minimizes:

f(z1) f(z1)
Var[e(zo)] = Var | [w" —1] . f<Z2) = [w! —1] . Var f(z2) . [Sl}
f(zn) f(z)
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LG Sl Y
where
f(z1) f(z1)
Var,, = Var | | (:Z2> | Var,, = Var[f(zo)] , and Covy, 5, = / <:Z2)  f(z0)
() ()

Apparently, Var,, is a n X n matrix, Var,, is a number, and Cov,, 5, is a n x 1 vector.

By some algebraic calculations, Var [e(zo)] can be represented as:

Var|[e(zg)] = w” . Var,, . w — Cov,, , . w—w". Covy, 5 + Vary, .

Now, the optimization problem can be formulated as:

V(w) =min w’ . Var,, . w—Covl . w—w’. Cov,,,, + Var,

w Z;,z0
s.t.
T —
1, w=1,

where V'(+) is the value function. By making use of Lagrangian approach, the solution to
the optimization above can be given as:

-1

Y(f(z1), f(z1)) - A(f(z1), f(zn)) 1 v(f(21), f(20))

F{ i S @) e A f@)) 1| () )
1 1 0 1

where A is the Lagrange multiplier, and:
V(f(2i), f(2;)) = ELf(2:)-f(2;)] — Elf ()] - E[f(z)] -

The above procedure can be easily extended to the multi-output version of ordinary
Kriging model, ie. f (zo) = (f1.0(z0), f2,0(20), ...,fq’O(Zo))T. In this case, all of the in-
formation above remain the same, and we just need to estimate distinct linear combi-
nation vectors w; for each of the outputs ¢ = 1,...,¢q. This means that ¢ optimization

problems are formulated to get the ¢ x n matrix W = [a;f;a)g; ...;GJZ], and estimate

fo(Z()) = (.]EL()(Z()), fg}o(Zo), ey fqp(Zo))T, as:
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fj,l(Zl)
fA‘%O(ZO> _ (,:};1 fj,2:<Z2> L= 1’ q
fin(Zn)

7.3.2 Mixture of experts with expectation maximization

Mixture of experts (MoE) models are powerful statistical tools that can be used for variety
of applications such as clustering, classification and regression [187]. Let’s denote f(z) by
y. As we know, regression studies the relation between y and covariate vector z by means
of a conditional density function, say ¢g(y | z; ¥), where W is the parameter vector of
density function. The idea of using MoE is to decompose the conditional density function
g(y | z; ¥) into a convex weighted sum of k regression components, as below:

x>

9(yi | 269) = m(zi; ) gnlyi | 2 %),
h=1

where 7, (z; o) is called the gate function which represents the mixing proportion for ht*
component, and satisfies the following criteria:

Wh(Z;ah) >0, Vh
k

Y mn(zyap) =1

h=1

One appropriate choice of experts g5 (y; | z;; ¥5) for regression is the use of Gaussian
distribution:

:
9(yi | 2::%) =Y malziian) Niu(yi | plzi:8y). 07),
h=1

where 3, is a p x 1 vector, u(z;; 3,) is the component mean and o7 is the component vari-
ance. For the current study, the component means p(z;; 3;) are defined as the projection

of z; on By, i.e. p(zi;B,) = ﬁ;‘fzz
MoE model is trained using expectation maximization (EM) algorithm. To use EM, it
is necessary to define indicator variables vy;, where:

1, if 3; belongs to ht*component
Uhi = . :
" 0, otherwise
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Thus, the missing data v can be presented as a vector including all of the indicator
variables. Now, it would be possible to define the gate function as the probability that vy,
is one, which can be mathematically expressed as:

Wh(Zi;ah) = PT(UM =1 ’ Zi) .

The log-likelihood of the complete data (z;v) can be given as:

n k
log Lc(¥) =log L(¥ | z,v) = szhi(logﬂ'h(zi;ah) +log Nu(yi | 1(2i; By, 07)) -

i=1 h=1

The E-step includes determining the conditional expectation of the log-likelihood of
complete data given observed data formed by ¥ which is known as Q-function and can
be given as:

Q¥ ¥Y) = By [log Lo(®) | 2,y]

n k
= Zqum [Uni | Zi,yi](logﬂh(zi; ay) +1og N (yi | M(Zz‘;ﬁh)aai)) :

i=1 h=1
Note that Eg[-] only operates on wvy;, since log Lo (W) is linear in vy,. Let’s define:

T}E? = Thi(‘I’(t)§Zi,yz') = E\I;(f) [Um' \ Zi,yi} .

Then the posterior probability 73,,(¥; z;, y;) is given by:

i an) Nip(yi i 81), 0%
Thi<q’;zi,yi) _ PT’(UM -1 | Zi,yi) _ ;:_T}IL(Z h) h(y | M(Z /Bh) O'h) :

> mi(zi; ou) Ni(yi | N(Zi;ﬁl)va?)

=1

~

for h =1,2,....k — 1. Now, the M-step updates the parameter vector ¥V by measuring
the Q-function, as below:
Pl — arg max Q(T, w)
€

So, the updated estimate for the parameters agfﬂ), BSH), and o7 (t+1) can be respec-
tively given as:
. (t)alOg'fTh(Zi;ah) B .
> =0, h=1,. k-1, (7.1)
aah

=1
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. . 2

T],(L:)alog Nh(yl | /’L(ZHIBh)vah) — 0 ’ h — 1’ ,k o 17
B,

Z (t)alOgNh Yi | M(szﬁh) Uh)

do?

i=1

=0, h=1,...k—1.

Fortunately, for Gaussian regression components with u(z; 3;) = ﬁzzi, one can an-

alytically update the parameters BSH), and o7 (t+1) by deriving score and information
functions. The closed-form solution can be given as:

Z Tm Yizi Z T;(L?(yi - ,3:;5 (H1)g,)2
A i e —
Z Thi Z?Zi > TIS?
i=1 =1
(t+1)

where h =1, ..., k. For updating «;, ", there is no closed-form solution and it is necessary
to use iteratlve methods. This can be done by using iterative reweighted least square

(IRLS) algorithm [188].

The gating function can be modelled by multinomial logit function, as below:
T

exp(a;, z;

(2 o) = k—l( ) ,

1+ > exp(alz)
I=1

1

h—1
1+ Zexp(al Z;)

is a null-vector. So, Eq. 7 1 can be represented as:

n T,.
> (n&? bl ) )zizo, h=1lok-L
)

i=1 1+ > exp(alz
i=1

, which is not a function of ay. This means that oy

where mg(z;; ) =

This results in a system of equations with (k — 1)p unknown parameters, and is solved
using IRLS, as below:

-1
2
o)V = agf)Jrf(aZ 2 (t)) o ;o h=1 k=1

al Oa oo’
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where ¢ < 1 is the learning rate. Just like any other numerical optimization algorithm, the
above iterative process terminates if the convergence happens or the algorithm reaches the
maximum number of iteration numbers.

Obviously, the multi-output version of MoE can be implemented by using multivariate
(g-variate) normal components, vector gating functions (with ¢ outputs), and the same
training strategy used for single output version. However, due to the assumed independency
of the output elements f(z) = (fi(z), fo(2), ..., f4(2)), the training process can be replaced
with the training of ¢ independent single output MoE model with the same number of
components and the same training data, and then, forming the vector gating function and
g-variate normal components with diagonal covariance matrix.

7.3.3 Support vector regression

Support vector regression (SVR) is ‘a powerful statistical regression tool which has been
proposed with the goal of finding f(z) with at-most € deviation from f(z) (let’s call it
output target y) [189]. Consider the linear regression model below:

~

f(z) =(B.2) + p,

where 3 is the 1 x p parameter vectors, and p is the intercept. The values of parameter
vector can be obtained using the following convex optimization problem:

1
V(8) = min 58]

s.t.
Yi — (B, 2i) —p <€
<ﬂ7zz>+/'6_yz SE

where ¢ = 1,2,...,n. In order to have a feasible solution, it is necessary that a function
f(z) with at-most € deviation from f(z) exists. However, this may not be true for all of
the regression problems, and a way to get rid of infeasibility is to use slack variables & and
¢!, and formulate the following objective function:

V(B) = min J[IBI + ¢ 3 (6 + €) (7.2
i=1
s.t.
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yi—(Bzi) —p < et§
<ﬁ7zl>+ﬂ_y2§€+£@* )
where ¢ = 1,2,...,n, and ¢ > 0, which can be viewed as trade-off parameter between

regression accuracy (flatness of f(z)), and the amount of admissible deviations larger than
€, which can be viewed as an e-intensive loss function, defined as:

_ {o, if || <

|€| — €, otherwise

€

To solve the primal objective function given in Eq. 7.2, one way is to use Lagrangian
function, which can be derived by unifying the primal objective function and constraint
sets with the aid of dual variables, and considering the fact that the formed Lagrangian
function has a minimax point with respect to primal and dual variables at the solution
point. This means that the partial derivative of Lagrangian function with respect to primal
variables should be equal to 0 for optimality. The Lagrangian function L can be defined

as:
n n

L= HIBIE+ > 6+ €)= Sk + i)

2 , ,
i=1 =1

=Y e+ &=yt (Boz) +p) = D aile+ & +ui— (Boa) —p)
i=1 i=1

where 3, u, & and & are primal variables, and n;, 7}, a;, and « are dual variables (La-
grangian multipliers). Apparently, Lagrangian multipliers should be non-negative. Based
on the above information, the dual optimization problem can be formulated as:

* 1 . . * * . * . *
Vi, a*) = max —o ZZ(ai_O{i)(Oéj_Oéj)<Zi,Zj> —GZ(ai—l—ai)—l—Zyi(ai—ai)
' 1 i=1

i=1 j=1 i=

s.t.

n

> (as = a}) =0

=1 )
a;, af € [0,

in which the model parameters and estimated function can be given as:

B=> (a—a))z
i=1
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flzo) = (oi = )z, 20) + o

i=1

For solving the above dual optimization problem, interior point method can be taken
into account. Also, p can be computed using Karush-Kuhn-Tucker (KKT), which states
that the product of dual variables and corresponding constraints becomes 0 at the point
of optimal solution. Note that the inner product (z;,z¢) in the above formulations can be
replaced with any kernel, including Gaussian kernel. For the current simulation, SVR with
Gaussian kernel is taken into account, which results in:

n n _ o 2
f(zo) = ;(ai —aj )2z, Z0) + p = p+ ;(ai o) ker(z;,z0) = u+ Z ) exp (HZ;U2ZO|2> .

For extending the above procedure to the multi-output version of ordinary SVR, i.e.
estimating fo(zo) = (fl,O(ZO); fao(20), .., fqp(zo))T, one needs to solve ¢ dual optimization
problems to get the optimal value of dual parameters for each output, and the kernel
remains the same for all of the models.

7.3.4 Projection pursuit regression

Projection pursuit regression (PPR) [77] is a general supervised learning method with the

form below: .
=> 98z
=1

The above formulation offers an estimation via the combination of nonlinear maps of
the feature spaces 3} z. Functions ¢; (known as ridge functions) are always estimated along
the direction of 3, using a smoothing method. Also 3]z represents the projection of z on
the unit length vector 3;. The reason behind using the name projection pursuit is that we
should also estimate vector 3; such that the final model fits well. The following objective
function is used to train the PPR model:

Z (760 - Zg (szi))Q

Suppose that an initial guess for vector 3, (I = 1, ..., k) be available, then the functions
g1(+) can be estimated by spline smoothing method, as below:

5 o0 St ()
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T
Now, let’s define the vector m = (g(BTzl), ...,g(,BTzn)> . Apparently, the first term

of the above objective function is fixed, and we need to minimize the second term. The
minimizer of the above problem yields a cubic spline with knots at z; (i = 1,...,n). Now,
given that a spline function can be represented as the linear combination of B-splines
(spline basis), we get:

9(B"z) = Zg(ﬁTzz-)Bi(ﬁTZ) :

which means that the second term in the objective function can be presented as:

- 2
/ (g”(BTZ)> dz =m’ Am |

where A is a n x n matrix with elements [ B/(8"z)B// (8" z).dz. The objective function
can now be viewed as a penalized least square (Tikhonov):

[ly — m|[3 + A(m" Am) ,

with solution m = (I, + AA)~'y. After estimating the function g, the parameter 3 vector
should be estimated using Quasi Newton-Raphson algorithm. Let’s denote the current
parameter vector by 3,,,, then the estimate of 8 will be:

9(B"2;) = g(Blazi) + 9 (Bhaz:)(B" — BL)zi -

So, we get:

n

2 n N T . 2
Z (f(zz> _ g(ﬁTZz')> ~ Zg/(ﬁggdziy (ledzi + f(Zz) g(ﬁoldzz) . ﬂTzz‘> '
i=1

i=1 9'(Boiazi)

The minimization of the above objective function can be viewed as a weighted least-
f(z) — Q(BOTMZ@')

gl(ﬁoTlei) '
Now, if deemed required, one more component can be added to the system and the

functions g;(-) can be estimated by backfitting procedure, and the weights can be obtained
using Quasi Newton-Raphson algorithm.

square problem with weights ¢'(8%,z;)? and targets 37, ,z; +

Note that for cases with multiple outputs, multiple PPR models should be trained
separately. This will not result in computationally expensive model, since PPR usually
require few components to learn the map between input and output spaces.
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7.4 Soft Oracles

In this section, the mathematical formulation of the considered soft machine learning meth-
ods are derived for developing oracles. All of the considered models are differentiable and
continuous.

7.4.1 Multi-layer perceptron

Multi-layer perceptron (MLP) is a type of neural network which uses a deep structure
for generating appropriate feature spaces, and then linearly combines them to get the
output [190]. The deep structure includes a number of adjacent layers (known as hidden
layers) which contain a number of hidden nodes. MLP with one hidden layer is the most
applicable variant, as increasing the number of hidden layers remarkably increases the
system complexity, and makes the training of the resulting network intricate. MLP with
one hidden layer shares some structural similarities with PPR. The main difference between
MLP and PPR is that the function g (called activation function) is fixed in MLP, and the
training just affects the connection weights. Although this results in a simpler training
philosophy, the final model may not be so efficient, since the activation functions may not
match the dataset.

For the current study, MLP with one hidden layers and £k hidden nodes are used. The
mathematical formulation of the model can be given as:

f2) = wi-g(872) .

where functions ¢(-) are fixed activation functions, w, are scalar weights assigned to each
hidden node, £ is the number of hidden nodes, and 3; is a p x 1 parameter vector which
linearly maps the input data to feature space (known as input-hidden weights). As can
be inferred, the above formulation offers an estimation via the weighted combination of
nonlinear maps of the feature spaces to output space. The activation function used in each
hidden node of MLP is the sigmoid function with range [0, 1], defined as:

__exp(v)
9lv) = 1+ exp(v) ’

where v = 37z is a scalar variable. Training of MLP is performed by back-propagation
via gradient-descend algorithm. Here, the optimization parameters are w; and 3, for [ =
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1,..., k. The objective function used for training MLP is:

n

Z (f(zi) - iwz 'Q(ﬂzTZz‘)>2 :

=1

Then, the parameter values can be obtained by calculating the derivative of the above
function with respect to the model parameters. Note, that no biased (intercept) is consid-
ered for the model.

Unlike PPR, the training of MLP weights are done simultaneously, by considering a
fixed number of hidden layers (k). This can be done via trial and error, and depends on the
properties of data at hand, such as number of input variables, size of collected data, having
imbalanced data, and etc. Also, MLP can be easily extended to multi-output version with
the same back-propagation via gradient-descend algorithm.

7.4.2 Randomized neural network

Randomized neural network (RNN) is a class of multi-layer feed-forward neural networks
which are based on random feature transformation of inputs, and analytically calculating
the hidden-output weights [191]. Compared to other versions of neural networks, RNN
enjoys a very fast training method. The structure of RNN is exactly the same as MLP,
but with one hidden layer, and can mathematically be expressed as:

k
flz)=> w-g(Blz+b).
=1

where g() is sigmoid activation function, b; is the bias of /" hidden node, and the rest of
the parameters are the same as those of MLP. Assume that n data are available. Let’s
form the so-called hidden layer output matrix H and vector y, as below:

9(Biz1+b1) ... g(Brz1+1by) Y1
Q(B{Zn +01) ... Q(B;{Zn + bp) Yn

For training RNN, the vectors B, and bias b, are assigned randomly, and then, the
following penalized objective function is used to determine w:

V(w, A) =min [ly — Hw||; + A [|wl]; .
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The above objective function is called Tikhonov regularization, and has the following

analytical solution:
w=(H"H+\L,) 'Hy .

The value of A can be verified using methods such as Akaike information criterion (AIC)
or trial and error. RNN can be easily extended to be used for multi-output applications.
To do so, again the values of 3, and b; are assigned randomly, and the weight vectors
wi, ...,w, are analytically determined using Tikhonov regularization method.

7.4.3 Adaptive neuro-fuzzy inference system

Adaptive neuro-fuzzy inference system (ANFIS) is a powerful soft function approximation
tool which represents the idea of fuzzy function approximation in the form of neural archi-
tecture [192]. Let’s call the original input vector the crisp input vector. The first step of
forming ANFIS is to transfer the input vectors to feature space, which is known as fuzzifica-
tion. To do so, each element of z = (21, 2, ..., 2,)7 can be represented by r fuzzy linguistic
expressions as {hgj), hgj), s hg,j)}, where j = 1,2, ....,p. Each of these fuzzy linguistic ex-
pressions are indeed shape functions representing the membership of crisp values. The
constraint is that the sum of membership values of each z to linguistic functions should
add up to 1. Here, Gaussian shape function is used to represent each of the linguistic

expressions h. These expressions form the antecedent part of fuzzy rule-base.

After fuzzification of crisp data, each of the resulting linguistic expressions enters the
formed rule base (equivalent to hidden layer of ANNs) for inference. ANFIS uses Takagi-
Seugeno-Kang (TSK) technique to form the rule-base with k£ = r? components (rules):

R = {IF 2 is B AND -+~ AND z,is h") THEN o, | I, ...1, € {1, ...,r}}

where [ = 1, ..., k. The consequent parameter o; is set to be a constant. The firing strength
of each rule can be calculated as:
w; = H hl(j) s

j=1
where [ = 1, ..., k. Now, the normalized firing strength of each rule can be determined as:

Wi

f— k .
21:1 Wi

Wi
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The output of each rule can be calculated as:

g =w oy

The crisp output of ANFIS is the summation of the outputs of each rule:

ANFIS uses a hybrid learning technique to optimize the model parameters. To do
so, the antecedent parameters (parameters of Gaussian functions h) are initialized, and
based on that the output is calculated. Then, least square method is used to calculate the
consequent parameters , and the mean square error between estimate and output data are
calculated. Then, the error is back-propagated and the antecedent parameters are tuned
using gradient descend algorithm.

For the case with multiple outputs, separate ANFIS models should be used for each of
the outputs.

7.4.4 Genetic programming

Genetic programming (GP) is a type of symbolic regression which uses evolutionary com-
puting operators such as crossover and mutation to get the approximated model. In par-
ticular, multi gene GP (MGGP) has proven its power for function approximation [193]. In
MGGP, each potential model is represented as a chromosome including a number of equal
length genes, and the number of genes in each chromosome cannot exceed the maximum
number of genes. Each gene represents a tree with a predetermined depth and contains
a set of operators, e.g. sin, cos, log, x, —, 4+, /, tanh, and etc, as well as a number of
operands which appear at the leaf of the three, that include constants values and decision
variables (predictors). Let’s say that & genes are used to represent a chromosome. Then,
the function approximation by each chromosome can be presented as:

fz) =3 wi-g,8,2) .

where g; is the I gene, B3, is the parameters in the tree resulting from gene g; and w is
the linear combination weight which sums up the output of each tree (gene) to get the
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approximated value. The parameters of each gene are the operators defined above which
are obtained using selection, recombination and mutation (by GA). After forming the trees,
the matrix G' and output vectors can be defined as:

a(By,z1) ... gp(ﬁ;nzl) Y1
H— : . . .

gl(ﬁ'b Zn) cee gp(/B;w Zn) yn

Just like RNN, the combination weights are obtained analytically by Tikhonov regu-
larization, as below:

w=(G"G+\L,)'G"y .

Note that to foster the diversity of the obtained models, a chromosome cannot have
duplicate genes in its structure. Also, other than the usual combination and mutation
operators which evolves the structure of each tree, MGGP uses a hyper-crossover (two-point
crossover) which allows replacing the genes (distinct trees) between different chromosomes.
Let’s say that each chromosome can have up to 5 genes (maximum number of genes equals
5). Then, two typical chromosomes can be:

Chrom, = (91;93) & Chromy = (92795796,98> .

As an example, the two point crossover can create the following chromosomes from the
parents:

Parent; = (g1, (g3)) N Childy = (91, 95, ge)
Parenty = (g2, (95, 96), 98) Childy = (g2, 93, gs)

For case that the number of genes in a child exceeds the number of maximum genes,
structure pruning is performed by randomly removing genes from the structure until the
number of genes reaches the maximum admissible number.

MGGP is a powerful function approximation system. However, the resulting models
are usually very complicated and cannot be used for inference. Also, the evolutionary
computation can be computationally expensive especially for big datasets.

Just like ANFIS, MGGP is best suited for approximating a single output function, and
for multi-output systems, distinct models should be trained.
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7.5 Quantifying SU-5

As pointed out, SU-5 represents the sources of uncertainty due to sensors malfunction
and rapture of the internal components of vehicle, which has an unknown nature. So,
some assumptions should be made to quantify this source of uncertainty in an appropriate
fashion. Given the fact that sensors are responsible for measuring system states, the
sensor malfunction can be viewed as an additive disturbance / noise in the state space
model resulting in state measurement error. Based on the details given in Chapter 6, this
source of uncertainty can be tamed by LBMPC using a properly trained oracle.

To extract information from dynamic state space model of vehicle suspension system,
some steps should be taken. Firstly, it should be ensured that the system has a stable
nature, so that it can be controlled. Thereafter, techniques from random perturbation
and dynamic linear programming should be used for sufficient excitation of the system
dynamics which give us a view for quantifying the uncertainty. Recall from Chapter 6 that
the true model dynamics is presented as:

X1 = Axy + Buy + g(Xg, wy) (7.3)

where g(x;, u;) is an unknown term, and A and B are known matrixes. As mentioned, the
unknown term should be quantified based on the expert’s opinion, statistical tools, and
random perturbation tools, which will be then used for determining the polytope W as
well as training oracle O;(X;, @), for nominal and learned models, respectively:

Xt—l—l = Ait + Bﬁt + dt 5 (74)

Xir1 = AXy + By + O(Xy, Uy)
where d; € W.

To check the adopted model’s behavior, the standard dynamics of the system (presented
in Chapter 3) with stablizable actuation signal (calculated by feedback gain, i.e. u; =
Kx;) is investigated by enforcing an initial external force of 1000 N for 0.006 sec to both
rear and front tires (recall that u, = (F,,, F,,)T). The gain matrix K is selected such
that the poles of the system states X = (25, 2ty Zbys Zba> Zurs Zurs Zusy 2us ). be placed at
(—2,-0.5,—1,—5,—3,—1.5,—4,—6)T, so that the stability be assured. Also, the value
of poles are selected to have distance from each other to avoid numerical issues when
calculating the gain matrix K online [194]. The state and control signals for the considered
simulation are shown in Figure 7.1 and Figure 7.2, respectively.
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Figure 7.1: The known part (x;11 = Ax; + Buy) of true system’s dynamics under stabiliz-
able actuation forces. As seen, system is stable and the base model is proper to be used
for further analysis.
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Figure 7.2: Stabilizable actuation forces of front and rear axels.
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As can be seen, the control input as a function of feedback gain can make the system
states stable (states become 0), and thus, the base model works properly. Also, the actu-
ation forces do not exceed the bounds [-5000 N, 5000 N], which shows that the system is
stabilizable by the defined range of actuation force.

Now that the stability potential of the system is verified, a perturbation strategy com-
bined with dynamic linear programming should be used for sufficient excitation of system
dynamics to get the required data for quantifying W as well as training oracle.

If the true state-space model presented in Eq. 7.3 be available, the required data for
quantifying W and training O,(X;, 0;) can be obtained by:

e = Xy — (AXt_l + But_l) .

Apparently the system state value x; and consequently e, depends on both unknown
term g(x;_1,u;_1) and actuation signal u;_;.

For the current investigation, the matrixes A and B are known, and are obtained by
physical law of motion (see Chapter 6). Also, the range of variation for actuation signal
u is available. However, there is no exact information on how ¢(x;, u;) behaves. To come
up with an appropriate dataset for training oracle, it is necessary to make sure the system
states are excited by means of a wide spectrum of actuation signals, and almost all possible
actuation conditions are considered. This can be done by random perturbation techniques
to enforce the sufficient excitation / persistent excitation of states [195]. Also, the effect of
unknown term g(x, u) can be studied by means of statistical tools which use the knowledge
of expert for calibration of uncertainty. This is the only choice since it is impossible to
find an exact (or even approximately exact) expression for g(x,u). To the best knowledge
of the author, in such conditions, Bayesian dynamic models [196] are the most applicable
tools for approximating g(x, u), since the structure of the state-space has a linear dynamic
nature plus an unknown uncertain term. In the rest of the section, the details for treating
each of the two elements affecting e; are scrutinized.

To make sure the actuation signal u sufficiently excites the states, an additional term
called exploratory signal (u®?) is added to the original control command, which can be
mathematically expressed as u, = Kx; + u;™” [195, 197]. Based on the recommendation
given in [197], the best choice for exploratory signal is to consider a rich set of sine and cosine
waves of different amplitudes and frequencies, and combine them randomly by weight vector
w, whose elements are drawn from uniform distribution Unif(0, 1), and are normalized to
sum up to 1. For the current simulation, 9 sine and 9 cosine waves with amplitudes 100,
1000, and 2000, and frequencies 1, 2 and 4 are taken into account. All possible combinations

of the current waves are shown in Figure 7.3 (a).
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Figure 7.3: All possible combinations of considered sine and cosine waves to form ex-
ploratory signals.

Also, the 18 periodic waves in time domain are shown in Figure 7.3 (b). The simulation
is conducted for 5 sec with resolution 0.001 sec. Figure 7.3 (a) shows 5000 possible values
of the 18 signals which can be randomly combined over the process. Apparently, the space
covered by the considered waves (includes 5000 combinations) is very rich. This can be
also verified from the time-domain plot presented in Figure 7.3 (b).

What remains is to use Bayesian dynamic model for approximating the effect of g(x, u).
Recall the true state-space model presented in Eq. 7.3, and note that at this point, we have
enough tools and measurements to treat the linear part Ax; + Bu,. Let’s take p = (x;u)
and F' = [A B], then, one way for approximating Eq. 7.3 with unknown uncertainty g(x, u)
is the use of Bayesian dynamic model, as below:

X1 = Fp, +wy,  wyp ~ N(0gu1, W),

By = by + Vi, vi ~ N(010x1,V) ,
s.t.

w = Kx; +uy™

Here, W and V are covariance matrixes, and based on the prior information Zy, it is

known that:
o | Zo = (0,0,0,0,0,0,0,0, 1000, 1000)T )

Since g(x,u) in Eq. 7.3 is uncertain, there is no choice but to find a distribution
for the unknown term, and repeat the simulation to get the expected variation of states
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over independent simulation. For the current investigation, this is done by means of the
considered Bayesian dynamic model. It can be seen that the Bayesian model breaks the
total uncertainty into two different uncertain dynamic equations (known as observation and
state equations respectively) with additive noises following normal distributions. Indeed, in
the case that no exact information for calibrating the uncertain term g(x,u) be available,
using normal distribution seems to be the most logical choice. Now, the remaining step is
to find logical W and V matrixes for the model. It is most likely that the measurement
error for each of the state signals be independent of each other, and can happen at any time
due to sensor malfunction. This offers using diagonal matrix W. Also, for V' which stands
for the uncertainty of parameter, it is known that the measurement noise of actuation
signals and state signals are independent from each other. The variation of state values of
passive model (suspension system without any actuation force) when subjected to an initial
external force of 1000 N for 0.006 sec is shown in Figure 7.4. The obtained results indicate
that the range of variation of states in suspension system equipped with an actuator almost
surely remains within the following lower and upper bounds:

xp = (—0.0029, —0.0348, —0.0028, —0.0253, —0.0032, —0.3638, —0.0034, —0.4147)"
X5 = (0.0009, 0.0300, 0.0006, 0.0209, 0.0073, 0.2966, 0.0077, 0.3210)" .

%1073
N‘Q— 0"\/— 'NJ:— 0

3
g x10 : : : 0.05

0.01 T T T 0.5

-0.01 - . - -0.5

time time

Figure 7.4: Variation of state values of passive model subjected to an initial external force.
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So, the mean value of each state based on the above bounds is:

Xave = (—0.0010, —0.0024, —0.0011, —0.0022, 0.0021, —0.0336, 0.0021, —0.0469)” .

As mentioned, since the values of suspension system equipped with an actuator almost
surely remains within the obtained bounds, the standard deviation (std.) of each state
values for 99% confidence interval (CI) will be:

Xqa, = (0.0007,0.0126,0.0007,0.0090, 0.0020, 0.1282, 0.0022, 0.1429)" .

Also, std. of actuation signals is set to be uyy = (10,10)7. So, it is a logical choice
to set diag(V) = (x2,,;u%,). Also, it is apparent that any measurement error pertain-
ing to the displacement of rear and front sprung and unsprung masses affects the ve-
locity of displacement. Based on the author’s experimental evaluation, and also the ob-
tained bounds, this dependencies are realized as Cov(zy,, 2, ) = 0.000006, Cov(zs,, 2p,) =
0.000003, Cov(zy,, 2, ) = 0.0001, and Cov(zy,, 2,,) = 0.0001. Also, the variation of actua-

tion signals are independent. To sum up, V' can be expressed as:

r0.00072  0.000006 0 0 0 0 0 0 0 07
0.000006 0.01262 0 0 0 0 0 0 0 0
0 0 0.00072  0.000003 0 0 0 0 0 0
0 0 0.000003  0.00902 0 0 0 0 0 0
V = 0 0 0 0 0.0020> 0.0001 0 0 0 0
- 0 0 0 0 0.0001 0.12822 0 0 0 0
0 0 0 0 0 0 0.00222 0.0001 0 0
0 0 0 0 0 0 0.0001 0.14292 0 0
0 0 0 0 0 0 0 0 102 0
.0 0 0 0 0 0 0 0 0 102

Also, the same approach should be followed to find a proper value for W. This can
be done by finding a bound for x; — Ax;_; of the passive model. Although it cannot be
assured that the variation of x; — Ax;_; for the passive model encapsulates that of active
model, it can be viewed as a good approximation. By following the same procedure (this
time considering 90% CI), W is set to be:

W = diag(0.0001, 0.0076,0.0001, 0.0057,0.0001, 0.0284, 0.0001, 0.0281) .

Now that the Bayesian dynamic model is verified, Monte-Carlo Markov chain and
bootstrap techniques are used to quantify state measurement error e, and based on that
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verify W, and also extract dataset for training Oy(X;, ;). As mentioned, the simulation is
conducted for 5 sec with step-time 0.001 sec to capture the dynamics of the model under
uncertainty. So, at the end of the simulation, a profile with 5000 points are archived. The
state measurement under uncertainty can be viewed as an iterative procedure with 5000
iteration. To improve the precision of the obtained results, bootstrap method is taken into
account. To do so, each iteration is itself repeated for 100 times, so that the dataset has
the following configuration:

iter 1: eﬁ”, e§2), ey 5100)
iter 2: eé”, 952)7 ey 5100)
. 1 2 100
iter 5000 : eéo)om eéo)om "'7eé000)

After the collection of dataset, at each iteration (set-pint), the bootstrap estimate and
bootstrap std. are calculated using the following equations:

np
NI o W0
€hoot = e ’
ny <
=1

ny

1 . .
Std'boot - Ty — 1 Z(eboot - e(Z))2 )

=1

The results of simulation are indicated in the form of bootstrap estimate and 95%
bootstrap CI in Figure 7.5. The mean profile is obtained by calculating €p,,; at each
iteration, and also the bounds are obtained by std.,.,; at each iteration. Two datasets are
extracted from the simulation results. The first dataset is obtained by €p.,,; Which is used
for training oracles, and the second dataset is collected by calculating €p,o; = 1.96 std.poor
and will be used for determining W in a nonparametric fashion.

As mentioned in Chapter 6, polytope W is represented by a number of half-spaces,
acting as inequality constraints. This means that ¥V consists of a set of inequality bounds
that are imposed on each of the 8 elements of vector e, and this inequality bounds are
derived such that they encapsulate the uncertainty of g(x,u) by a certain degree of confi-
dence. As mentioned, the inequality bounds forming WV are obtained in a non-parametric
fashion based on the results of conducted simulation. To do so, the empirical cumulative
density function (CDF) of the obtained distribution for each element of &, is calculated
and the two tail quantiles affording a 95% CI are determined. So, it is expected that the
empirically developed W encapsulates the true uncertainty with 95% confidence.
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Figure 7.5: Bootstrap estimates (in blue) with their corresponding 95% CI (in red).

The first step is to sort €., profiles with their corresponding std.,..;. The sorted
profiles are shown in Figure 7.6. By having the sorted €., profiles, the empirical CDF
can be obtained using the following equation:

. 1 <& e <
Fn(a):EZI(eiga):M a€eR,
=1

n

A

where I(.A) is the indicator function of A. It can be easily shown that Er[[F),(a)] = F(a),
which means that F,(a) is an unbiased estimator of F(a). Once the empirical CDFs are
obtained, the 95% CI bound for each elements of e, i.e. e € [dnin, dmaz), (recall from
Eq. 7.4 that d; € W is a vector representing the disturbance in state-space model), can be
obtained by:

Prie < dmin) = Fo(dpmin) = 0.025 |

d
Pr(e < dmaz) = Fp(dmaz) = 0.975 .
Apparently, d,,;, and d,,,, are two data points in the sorted bootstrap estimate profiles
shown in Figure 7.6, and each of them also varies between bounds €pp0; == 1.96 std.poer- SO,

even a better choice for finding bounds is to first determine [dnin, dmaz], and then, extract
the margin of variation of each bound from the corresponding bootstrap Cls, as below:
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Figure 7.6: Sorted bootstrap estimates (in blue) with their corresponding 95% CI (in red).

dmin € [dmm —1.96 5td-boot(dmin) ) dmin + 1.96 Std-boot(dmin)] )
dmax S [dmaw —1.96 Std-boot(dmax) y Wmax + 1.96 Std-boot(dmax)] .

Empirical CDFs are presented in Figure 7.7.

Based on the obtained CDF's, the following bounds are obtained for the elements of e:
—0.0019 < ey <£0.0019 ,

—0.0184 < ey < 0.0177 ,
—0.0019 < e5 < 0.0020 ,
—0.0144 < ¢4 < 0.0161 |
—0.0019 < e5 < 0.0020 ,
—0.0478 < e < 0.0484 |
—0.0020 < ey < 0.0020 ,
—0.0649 < eg < 0.0546 |,

In the next section, the detailed comparative results regarding the use of the considered
statistical and soft computing machine learning tools for developing an efficient oracle for
LBMPC are presented.
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Figure 7.7: Empirical CDFs of each error term e.
7.6 Comparative Study

This section is devoted to the detailed numerical simulation for developing an efficient
oracle for LBMPC. In the first sub-section, the simulation setup is presented, and in the
second sub-section, the detailed results of the numerical simulation are given.

7.6.1 Simulation setup

As mentioned, the first dataset obtained from bootstrap simulation is used for training
oracles, and has n = 5000 data points (5 sec simulation with step-point 0.001 sec), with
10 inputs (p = 10) and 8 outputs (¢ = 8). Note that the input dataset is obtained from
the known piece-wise linear part of the true state-space model in which the actuation
force is determined by stabilizable feedback gain. To excite the suspension system, an
external force of 1000 N is imposed on both front and rear tires for 0.006 sec. The
input vector is z = (2u,, 2b,s Zby» bys Zurs Surs Zuns Suss Fays Fuy)?, and the output vector is
f(z) = (fi(z) = ey, fo2(z) = €9, ..., f3(z) = eg)?. The input profiles used for training the
models are shown in Figure 7.1 and Figure 7.2. Also, the output profiles used for training
are the bootstrap estimates (blue profiles in Figure 7.5).
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The considered models are PPR, mixture of Gaussian experts (MoGE), Kriging, SVR,
MLP, RNN, ANFIS, and MGGP. Based on empirical sensitivity analysis and using model
selection tools, PPR with 3 components, MoGE with 2 Gaussian regressors and 1 iteration
of EM, MLP with 3 hidden layers (respectively with 10, 5 and 2 hidden nodes), RNN with
40 hidden nodes, ANFIS with 2 linguistic expressions and Gaussian membership functions,
and MGGP with 4 genes, 100 iteration of evolutionary optimization, operators x, —, +, /,
and maximum tree depth of 6 are used for simulation.

To have a fair comparison among the adopted machine learning tools, the regression
process is repeated 10 times and the statistical results are reported. The considered per-
formance evaluation metrics are mean absolute error (MAE), max absolute error (MaxE)
and std. Also, graphical tools such as QQ-plot and ACF of residuals, correlation between
model estimates and true data, and estimated profile of the chosen model are taken into
account for better interpretation and facilitating the analysis.

Note that since the dataset has a time-varying nature and the order of data points are
important, based on the argument given in Chapter 4, k-fold forward chaining process is
used instead of k-fold cross-validation for simultaneous training and testing / validation.
k = 10 is found proper for the current simulation.

After training the models, it should be assured that the models are bounded and contin-
uous, which are necessary for theoretical results presented in Chapter 6. Thus, the training
model is exposed to different unseen input profiles and the boundedness and continuity of
outputs are checked.

Due to the fact that the models will be used at the heart of state-space model in a
real-time fashion, to avoid numerical problems which leads to unacceptable simulation,
it is better to normalize the input dataset. This is because, for the current database,
neglecting this issue can result in the multi-scalability of input variables, which means
that some variables excessively affect the fitting, and incur an incorrect performance of
trained models. The normalization of input dataset is done in such a way that all data fall
within the range [0, 1] to make the dataset compatible with sigmoid activation function
used in MLP and RNN.

It should be noticed that the trained model is used as an additive term in the state-
space model of vehicle suspension system which has a dynamic nature. So it is important
that the range of the trained model be compatible with the range of the variation of state-
space model. Since, we are not sure what are the maximum and minimum possible values
of additive disturbance, it is not wise to use a normalized output dataset for training (we
cannot reliably transform the estimated normalized output to the true disturbance space).
So, it is decided to let the output dataset remain in its true form so that the oracle can
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directly read the states and actuation signals measured by sensors in real-time, normalize
them, and then, estimate the additive disturbance.

Also, due to the linear correlation found between some of the variables and to improve
the functioning of the methods, one more pre-processing is done on the input data by using
principle component analysis (PCA). In this way, a proper orthogonal transformation is
made to get a set of values of linearly uncorrelated variables, which are used for training.

All of the simulation are conducted in MATLAB and R software on a Pentium IV DELL
laptop, with Windows 7 operating system, Intel Dual core 2.2 GHz, and 2 GBs RAM.

7.6.2 Numerical results

At the first stage of the numerical analysis, the performance of the methods are compared
in terms of the adopted visualization tools and metrics. Figure 7.8 depicts the results
obtained by PPR. As seen, in some of the cases, the correlation between the estimated
values and data points are weak, and it seems that PPR cannot successfully cover the
range of the possible state measurement error values. This is even clearer from the last
sub-plot which belongs to the estimated values. With regard to the obtained residuals,
QQ-plot and ACF plot indicate that the model residuals follow normal distribution and
are not correlated.

Figure 7.9 visualizes the performance of MoGE. It seems that MoGE suffers from the
same flaws, and is not able to cover all range of possible outcomes. Also, for es, ey, €g,
and eg cases, the ACF plots significantly violate the 95% CI, which augurs the incapability
of MoGE to wash out the dependencies among the residual errors. Having said that the
estimated values of MoGE are smooth, which can be viewed as a positive point, especially
for the current problem that the developed oracle needs to be differentiable.

Figure 7.10 indicates the performance of Kriging method. It is obvious that Kriging has
a very good estimation power and in most of the cases, its 95% estimation interval covers
the output dataset. Also, QQ-plot has a good shape and the model residual quantiles
match the theoretical quantiles. Note that slight violation at some points (lags 1 and 2 of
ey, es, and eg) can be observed for the ACF which are negligible.

Figure 7.11 visualizes the performance of SVR. It can be observed that SVR performs
a weak estimation, and for most of the cases, the model output remains constant. This
means that the method cannot be used for time dependent estimation application (time-
varying estimation). The method obviously fails to capture the underlying dynamics of
the datasets. Also, as a result of such a performance, the residual errors have dependency
for some of the cases.
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Figure 7.8: Visualization of PPR performance for ey, es, €3, ey4, €5, €, €7, and eg.
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Figure 7.9: Visualization of MoGE performance for ey, e, e3, ey, €5, €g, €7, and eg.
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Figure 7.10: Visualization of Kriging performance for ey, es, €3, e4, €5, €6, €7, and eg.

189



CHAPTER 7. DEVELOPMENT AND EVALUATION OF ORACLES

)
=10 4 1
5
] s
2 05 & 0.5
o e o ™
0 Q p g
£ : : £ 0
-5
-4 0.5
-8 7.5 -7 6.5 g o 5 10 15 20 4.4 4.2 -4 -3.8 0 5 10 15 20
output %108 lag output x1074 lag
“ -3 3 w -3 =3
g 4x|l) 4)dﬂ % 4)(“) 4x|l)
F o £ s
] 5
32 32
g K] o £
= o K] 2
] ]
@ o H o 3
2o - 2ol oo
] P ] -
E E
0.4 9 .4
E 4 -2 0 2 4 100 200 300 400 500 E 4 -2 o 2 4 100 200 300 400 500
standard normal quantiles data standard normal quantiles data
apto? 1 402 1
s 0
o, ° o0 o
2 2 o o ©, o
g 0.5 £ o om R 0.5
g w T % esfenode w
S g P ot ot 5
H < 5 P¥e o <
= 0 = 0P B0, ©
2 - 2 o
— 0.5 -4
3 2.5 0 5 10 15 20 288 29 292 294 296 298 o 5 10 15 20
output lag output %107 lag
8 4 x10 x107 8 4 x10° 4 210°
D:‘ : E 2 ©
B o s 2
= ] = ]
H 8 H i
Baf 22 -
= 2 © oof
E] - i B
S . S .4
E .4 2 0o 2 4 0 100 200 300 400 500 E 4 -2 o 2 4 o 100 200 300 400 500
standard normal quantiles data standard normal quantiles data
-+
4 210% . *10 1
o 8 Sa%
2 o y
s -
£ . 05 g6 e 05
L] P 5 ~Toge w
0 c 4 - @
c £ <
g . e g ° o= ;
¥ L [ S— ———— 2 L % ° ¢
- ol o,
-4 0.5 0
4 2 o 2 n 0 5 10 15 20 4 -2 0 2 4 6 [ 5 10 15 20
output %105 lag output x10%% lag
-3 3
g 4 x10° 4207 210 x10°
: ° g .
S 2 3 2
3 ® = &
= E s 5
20 £ g £
H 3 i $
[0 e .2
= a T
] - k] o &F
©.a 24
E .4 2 0 2 4 100 200 300 400 500 E 4 2 2 4 0 100 200 300 400 500
standard normal quantiles data standard normal quantiles data
45102 \ 410 1
2 ©
9 oo o _o
5 2 8620 o s’
E o 05 £ 05
< w < u
c 0 o c 0 o
£ < = < 4
s 0 & P e e e e e e e
L 3 e e — 5,
2 PR A 2
-4 0.5 -4
3 32 34 36 o 5 10 15 20 0.5 1 1.5 2 o 5 10 15 20
output #10° lag output %103 lag
8 4210 4 210 8 4 x10® %103
E . g
] & 2 o
S2 El
£ ® £l N
z ] w0 ]
20 E E E
3 K 7
2 © g ¢
= o - — a4t o E
] - 3 -
e -4 8- -4
E 4 -2 o 2 4 o 100 200 300 400 500 E -2 4 o 100 200 300 400 500
standard normal quantiles data standard normal quantiles data

Figure 7.11: Visualization of SVR performance for ey, es,

190

€4, €5, €6, €7,

and eg.



CHAPTER 7. DEVELOPMENT AND EVALUATION OF ORACLES

-3
4210 1 0.04 1
e o -
- 0.02 X -
L 05 £ - 0.5
- 5 . ‘ 5
1 -4 £ <
. 0 - T ]
< 002 — "
ks
05 -0.04 .
0 2 4 004 002 0 002 o 5 10 15 20
output x10% output lag
-3
4210 0.04
E o o
22 e 0.02 s
= ® ®
v ]
@ H
2o | -0.02
] > ¢
3z -
S -0.04
£ 2 o 2 4 -4 2 [ 2 4
standard normal quantiles data standard normal quantiles data
-3
400 1 0.04 1
o - -
2 0.02 % -
£ - 05 g - 05
] - w T ’ w
0 P 9 = 0 -~ 9
® -t w - —_—
g - 01— £ e e e e e |
F a2 - * 002
- 05 -0.04 L 2.
2 0 2 4 0 5 10 15 004 002 0 002 0 5 10 15 20
output %103 output lag
-3
X0 0.04 0.04
] ° £
s 4 s 2
22 e 2 ooz .
T = " s
] o]
@ @
L. £ 002
3 * ]
Q-4 4 © -0.04
E - 0 2 4 0 100 200 300 400 500 E -4 2 0 2 4 100 200 300 400 500
standard normal quantiles data standard normal quantiles data
&)
4 210 1 0.1 - 1
2 - 0.05 -
£ - 05 £ °R - 0.5
5 - 5 T 9 5
e 0 P g £ B 2
= - ol g e S —
g - T H L
Fa - -0.05
05 0.1 0.
B 0 2 a 0 5 10 15 01 005 0 005 0. 0 5 10 15 20
output %1078 lag output lag
» a5 " ®
2 40 420 2 o0 0.1
] £
d S ous g
2 s Ll ]
z £ = ®
E E ER E
3 H 2 =
k- # ] g
2. ® 2005
= 3 B
K] ]
S -4 4 e 01 0.1
E . 2 2 4 o 10 200 300 400 soo | E -4 -2 0 2 4 0 100 200 300 400 500
standard normal quantiles data standard normal quantiles data
%103
4 1 01 5 1
o
2 0.05
e 05 g 0.5
' & 8 g
0
< £ <
0 £
= 005
0.5 04
2 4 o s 10 15 0 0.1 -0.05 0 0.05
x10°3 lag output
w
o 4 x10? 4 x107 01
5 g B
5 o E o
EX 3 005 o
] 5 ®
g0 E £
] k- ¥
@
2a 2 .0.05
3 & ] *
e -4 2 01
E - 0 2 4 0 100 200 300 400 00| E T .4 2 o 2 4
standard normal quantiles data standard normal quantiles data

Figure 7.12: Visualization of MLP performance for ey, ey, €3, ey, €5, €g, €7, and eg.
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Figure 7.13: Visualization of RNN performance for e, es, €3, ey, €5, €g, €7, and eg.
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Figure 7.14: Visualization of ANFIS performance for ey, ey, e3, e4, €5, €g, €7, and eg.
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Figure 7.12 depicts the results of MLP. The performance of the method is better than
SVR (better estimation for some of the cases and more coverage of the data points). QQ-
plots obtained by MLP residuals follow Gaussian distribution and the ACF does not have
significant values which is a positive aspect of the method.

Figure 7.13 depicts the estimation results of RNN. It seems that RNN and MLP have
very close estimations (MLP is slightly better). Also, based on QQ-plot and ACF plot, it
seems that RNN output residuals are independent.

Figure 7.14 belongs to the ANFIS model. As seen, the method has a good approxi-
mation, and clearly outperforms the other models (except Kriging). Also, the ACF and
QQ-plot results are promising, and the model errors are independent. Compared to Krig-
ing, it seems that the 95% estimation bound of Kriging has a better coverage of data points
for most of the cases.

Figure 7.15 indicates the visualization results of MGGP. The performance of the method
is not satisfactory, and for some of the cases, the estimated values are constant. Also,
significant spikes are observed for some cases, which makes its performance and smoothness
questionable. Moreover, for some cases, the model residual errors have dependencies and
ACF values violate the 95% CI bounds.

From the visualization plots, it can be concluded that the best performance in terms
of estimation power and independency of residual errors belongs to Kriging. In almost all
of the cases, the model’s estimations follow the trajectory of data profile, meaning that it
captures the dynamic trend of data points.

To complete the evaluation regarding the estimation power of the methods, the values of
performance metrics are reported in Table 7.1. The best results are shown in bold. It can be
seen that Kriging surpasses the other methods for all of the cases in terms of the considered
metrics. ANFIS and PPR take the second and third places with respect to the performance
evaluation metrics. The only point is that ANFIS has a much complicated structure
compared to Kriging and PPR, which can undermine its applicability for our case study
in which the oracle used at the heart of LBMPC should be adaptable, and fast. The other
methods have a very close performance (except MGGP) with SVR and MoGE being slightly
weaker than MLP and RNN. Apparently, MGGP cannot compete with the other models
and yielded unsatisfactory results. Also, in terms of MaxE metric, the worst performance
belongs to MGGP, meaning that it has the largest deviation among the considered methods.
Having said that the largest deviation of MoGE is also considerable.

Finally, the estimated profile of the best model (Kriging) for all 5000 data points
(corresponding to 5 sec of simulation) is shown in Figure 7.16 for eg, which is the most
complicated simulation scenario.
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Table 7.1: Simulation results for the considered models

Methods Metrics €1 €9 €3 €4 €5 €6 €7 €s
MAE 0.0008  0.0067  0.0007  0.0053 0.0007  0.0168  0.0008 0.0178
PPR MaxE 0.0031 0.0275  0.0033  0.0232 0.0029  0.0653  0.0032 0.0900
std. 0.0009  0.0086  0.0010  0.0067  0.0009  0.0210  0.0010  0.0224

MAE 0.0008 0.0073 0.0007  0.0063 0.0007  0.0194 0.0008 0.0246

MoGE MaxE 0.0032 0.0295 0.0034  0.0246 0.0032 0.0752 0.0034 0.1016
std. 0.0010 0.0091 0.0010 0.0078 0.0009 0.0239 0.0010 0.0286

MAE 0.0004 0.0041 0.0004 0.0036 0.0004 0.0100 0.0004 0.0102

Kriging MaxE 0.0024 0.0221 0.0024 0.0190 0.0024 0.0490 0.0025 0.0557

std. 0.0006 0.0058 0.0006 0.0051 0.0006 0.0139 0.0006 0.0142
MAE 0.0007  0.0072 0.0007  0.0062 0.0007  0.0189 0.0008 0.0227
SVR MaxE 0.0032 0.0289 0.0034  0.0242 0.0032 0.0736 0.0034 0.0966
std. 0.0009 0.0090 0.0009 0.0077  0.0009 0.0235 0.0010 0.0277

MAE 0.0007  0.0071 0.0007  0.0061 0.0007  0.0167  0.0008  0.0182

MLP MaxE 0.0032  0.0284  0.0034  0.0242  0.0032  0.0668  0.0034  0.0748
std. 0.0009  0.0089  0.0009  0.0076  0.0009  0.0209 0.0010  0.0228

MAE 0.0007  0.0071 0.0007  0.0061 0.0007  0.0175  0.0008  0.0205

RNN MaxE 0.0032  0.0289  0.0034  0.0243  0.0031 0.0690  0.0034  0.0820
std. 0.0009  0.0089  0.0009  0.0076  0.0009  0.0219  0.0010  0.0257

MAE 0.0007  0.0063  0.0007  0.00564  0.0007  0.0149  0.0007  0.0155

ANFIS MaxE 0.0029  0.0264  0.0031  0.0220  0.0030  0.0590  0.0032  0.0679
std. 0.0009  0.0080  0.0008  0.0068  0.0008  0.0187  0.0009  0.0196

MAE 0.0009  0.0086  0.0009  0.0122  0.0029  0.0286  0.0008  0.0282

MGGP MaxE 0.0092  0.1258  0.0200 1.2819  0.6603  2.2160  0.0035  0.1195
std. 0.0012  0.0133  0.0016  0.0740  0.0315  0.1367  0.0010  0.0347

Obviously, the 95% estimation bound of Kriging entails most of the data points, which
unveils the reliability of the model to be used at the heart of LBMPC for real-time appli-
cation.

One of the important properties of Kriging lies in its estimation strategy which is
interpolation based on the observed data. So, in real-time, by adding new chunks of
acquiesced data to the model, one can improve its estimation performance. This means that
it is also a very good choice for incremental and adaptive learning, which are of paramount
importance for real-time / online applications, such as active suspension control.

All in all, soft and statistical methods show comparable results. In particular, two sta-
tistical methods, i.e. Kriging and PPR, and one soft method, i.e. ANFIS, yield promising
results. The worst performance belongs to MGGP which is a soft method. By further
investigation, it was realized that the complex structure of MGGP and a lot of hyper
parameters made it hard for GA to efficiently evolve the MGGP architecture.
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Figure 7.16: Kriging estimated profile for all of the available training data (5 sec simula-
tion).

As mentioned, the remarkable structural complexity of soft methods impede an efficient
training of the model, especially when too many model parameters are involved.

Now, it is intended to compare the computational efficiency of learning systems used
for training each of the models.

Table 7.2 summarizes the average simulation time of each model for all of the estimation
cases. As expected, RNN possesses the fastest training algorithm, which is simply the
randomized selection of input-hidden connection weights, and calculation of output weights
by means of Lo regularization. PPR, MoGE and Kriging also favor fast learning strategies
while MGGP has the slowest learning system, which is not surprising, as it uses GA that
is a population-based metaheuristic and involves different searching operators (selection,
recombination, mutation, and hyper two-point crossover).
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Table 7.2: Average training time of the rival methods (in sec)
Methods e1 es es ey es e er es tave
PPR 0.0217 0.0131 0.0152 0.0315 0.0217 0.0142 0.0162 0.0223 0.0195
MoGE 0.0548 0.0497 0.0459 0.0534 0.0518 0.0466 0.0469 0.0479 0.0496
Kriging 0.0809 0.0766 0.0787 0.0851 0.0797 0.0802 0.0724 0.0725 0.0783

SVR 3.4623 3.3935 3.4996 3.5964 3.4947 3.5824 3.7102 3.5481 3.5359
MLP 0.2600 0.2770 0.2416 0.2932 0.2526 0.3309 0.2479 0.3061 0.2762
RNN 0.0009 0.0010 0.0010 0.0010 0.0012 0.0009 0.0008 0.0008 0.0009

ANFIS 6.9177 6.7323 6.8323 6.7761 6.7861 6.8276 6.8106 6.8522 6.8169
MGGP 17.004 14.357 12.168 14.764 13.392 14.149 17.444 16.355 14.954

To have a better interpretation and a more comprehensive comparison, the computa-
tional time of MGGP is considered as a base, and the speed of other methods are deter-
mined by determining how many times faster they are, as below:

T(MGGP)

rate(method) := ~(method) *

where 7(-) is a function measuring the simulation time of training a model, and can be calcu-
lated by tic / toc command in MATLAB and by system.time command in R. rate(method)
shows how many times a model is faster than MGGP.

The log value of the rate function for each model is shown in Figure 7.17. The plot
provides a good comparison of the considered methods. As stated, in spite of the good
performance of ANFIS, it has a complex hybrid learning structure which makes its training
slow, especially when the dataset has more than three input variables (based on the author’s
assessment).

Also, it can be understood from Figure 7.17 that SVR has a slow learning method.
This is rather obvious, since SVR formulates a dual objective function with different types
of parameters and constraints, which requires the use of interior point algorithm for tuning
the parameters. For example, it was observed that the training speed of RNN is 4435 times
faster than that of SVR for eg. Such observations bring us to the conclusion that SVR is
not efficient for regression compared to the other methods (from both computational time
and efficiency prospectives), though its classifier counterpart, i.e. support vector machine
(SVM), is a very powerful and well-consensuse classification method.

To sum up, it seems that statistical models PPR, MoGE, and Kriging are faster than
soft methods such as MLP, ANFIS and MGGP. Also the fastest and lowest models are

RNN and MGGP, which both belong to soft methods. It can be concluded that three
statistical and one soft models favor a computationally efficient learning systems.
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Figure 7.17: Comparison of the computational speed of learning systems used in rival
models.

Another important issue pertains to the interpretability of the considered models. As
mentioned, one drawback of soft models is their complicated structures, which deters the
users from utilizing them for inference. As an example, MGGP suggests the following
symbolic model for estimating e;:

1.299 x 1075 1.299 x 1075)22
er = 7.966 x 107° + (1.299 x 107°) 2y — ( a Ja_ | X )24
zZ3 — 221 — 2324 21 — %4

_ (5663 X 10_5)Zl<22 — 23>(23 — 1)
21 — 29

—(1767 X 1072)2124<22 — 23)(23 — 1)(23 — 22 + 1) .

+(9.794 x 107" 2124(21 — 20 + 24) (21 — 22 + 23 + 1)

It seems that the model is sparse, as it removed some variables from the derived symbolic
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map. However, the formula is highly nonlinear and too complicated to be used for studying
the effect of variables on output or any other type of inference.

Finally, it should be pointed out that to ensure Kriging can be used at the heart of
LBMPC, its estimated profile for all of the available data and all of the case studies were
checked, and it was observed that the model is continuous and bounded (within 95% CI
which never violates the output space specified in the previous section). So, among the
adopted models, Kriging is chosen as oracle O,(x;, ;) for LBMPC.

7.7 Some Recommendations
Based on the simulation conducted in this chapter, the following remarks are observed:

1. It was observed that Bayesian uncertain models can be efficiently used for quantifying
the uncertainty of un-modelled dynamics in control state-space models. The salient
asset of such probabilistic tools was that they could efficiently compensate the lack
of knowledge in the true control state-space model by replacing the un-modelled
dynamic term (which could be either linear or nonlinear) with additive uncertain
noise. Also, several important concepts such as bootstrap could be used for improving
the precision of uncertainty quantification.

2. The prominent asset of Bayesian type uncertainty quantification was that the model
could be improved over time by updating the knowledge regarding the dynamic model
parameters. Indeed, such models not only are found appropriate for inference, but
also can be effectively used for incremental learning, as the model can be improved
over time by updating the prior information representing the experts opinion regard-
ing the process.

3. It was observed that bootstrap could be used to come up with a rich dataset for
efficient quantification of uncertainty influenced suspension system’s dynamics. The
results obtained by bootstrap simulation was very compatible with physical nature
of the suspension system, and it could be concluded that the considered Bayesian
dynamic model together with bootstrap estimate were reliable, at-least for the current
application. Also, the non-parametric CDF obtained from the conducted simulation
was very accurate, thanks to the richness of the obtained dataset, which was used for
determining a polytope that encapsulates the uncertainty with 95% CI. To the best
knowledge of the author, this is the first time that a precise statistical analysis is
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done for the accurate quantification of suspension system’s state measurement error,
and also there is a reasonable logic behind verifying the polytope W.

4. By performing a thorough comparative study on the considered soft and statistical
machine learning methods via different performance evaluation metrics, it was ob-
served that Kriging method is the best choice for developing oracle. In particular, the
method was able to robustly estimate the additive unmeasured disturbance, and its
training speed was remarkably fast. Also, due to its boundedness and differentiable
formulation, it possessed the required features of an efficient oracle which satisfies
the theoretically guaranteed robustness and stability of LBMPC.

5. During the experimentations, it became even more transparent that the salient asset
of statistical methods is their firm mathematical foundation as well as their inter-
pretability. Due to the fact that there is a logic behind each step of forming a
statistical model, it is possible for the one who manipulates them to adapt/tune
their structures for certain datasets to get the best results. This is when, in spite of
their interesting nature and very acceptable performance, soft computing methods
are not interpretable, and usually have black-box like structures with the capability
of universal approximation.

Note

All MATLAB and R codes pertaining to the simulation performed in this chapter can be
found in Appendix.
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Chapter 8

Simulation Results and Comparative
Study

In this chapter, the simulation results pertaining to the use of learning-based model pre-
dictive controller (LBMPC) for vehicle suspension control problem are presented. The
chapter is organized as follows. Firstly, the detailed information regarding the simulation
setup are given. Also, the whole simulation and uncertainty quantification performed in
the previous chapters are reviewed. Thereafter, the simulation results are presented, and
the performance of LBMPC is compared with different well-known controllers. The simu-
lation is then followed by applying the obtained results to the nonlinear suspension system
model to validate the performance of LBMPC. Finally, based on the obtained results, the
pros and cons of using LBMPC for the current problem are enumerated.

8.1 Simulation Setup

Recall the vehicle suspension model derived in Chapter 3. The model has 8 states x =
(Zbys 2015 Zbys 2y Zuys Py Zuss 2up)t and 2 control inputs, i.e. u = (F,,, F,,)T. Also recall
from Chapter 6 that, to ensure the stability of LBMPC, the control command is calculated
as u; = KX, + (¢ — Kv)8, where ¢ is a 2 x 2 matrix, K is a 2 X 8 gain matrix, ¢ is
a 8 x 2 matrix, and @ € R? is the solution of the optimization problem formulated in
LBMPC. Based on sensitivity analysis and experts’ opinion which were in agreement with
the physical properties of the vehicle, the constraints on the states are chosen as —0.05 <
zp, < 0.05, —0.5 < 2, < 0.5, —0.05 < z, <0.05, —0.2 < 2, <0.2, =0.1 < z,, < 0.1,
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-1<2, <1, -01 < 2, <01, and -1 < 2,, < 1. Also, the constraints of actuation
signals are —5000 < F,, < 5000 and —5000 < F,, < 5000. The piece-wise linearization
of the nonlinear model is done around time-varying equilibrium / operating points (d;)o,
(62)o0, (51)0, and (52)0, defined in Chapter 3. The sampling time for discretization is 1073
sec. Apparently, using time varying operating points yields a linear parameter varying
(LPV) system from the original nonlinear model, which is a more reliable approximation
than using a linear parameter invariant approximation of the original model. The initial
condition for the current simulation is xq = Ogyx1 and ug = 09y1.

To make the linearized model stable, the feedback gain matrix K is selected such that
the poles of the closed-loop system x;,1 = (A + BK)x; be placed at (—2,—0.5,—1,—5,
—3,—1.5,—4,—6)T. Note that the poles are selected to have distance from each other to
avoid numerical difficulties when calculating K in the loop. To calculate the invariant set
2, the well-known minimal robust positively invariant set (MRPIS) method (see Definition
6.21) is taken into account. In this context, at each set-point i, the projection of invariant
set € on state-space X € R?® is determined using R; = @;;t (A+ BK)’W, where Ry only
has one element which is the origin Og.;. The detailed steps taken for determining the
polytope W which encapsulates the uncertainty due to measurement error were presented
in Chapter 7. For the current investigation, geometric computations for determining set R;
are done in MATLAB. Having said that one can use the computational geometry facilities of
the multi-parametric tool-box (MPT) available online at http://people.ee.ethz.ch/ mpt/3/.

The dataset required for training the oracle O(%;,0;) were obtained using Bayesian
dynamic programming, and bootstrap simulation. Based on a comprehensive numerical
investigation, a powerful non-parametric model called ordinary Kriging is selected as the
oracle (see Chapter 7 for details). Thanks to the structural flexibility of the learning system
used in Kriging, it can be used as an adaptive / incremental / time-varying oracle, if deemed
necessary. Also, the model is differentiable and bounded which is required for satisfying
Theorem 6.6. Also, given that the dataset used for training Kriging was obtained under
sufficient excitation (using a rich set of sine and cosine waves with different amplitudes
and frequencies), and also given the continuity of the quadratic objective function defined
in Eq. 6.10, the epi-convergence of Kriging, as a non-parametric oracle, can be easily
proven (it can be shown that Theorem 6.16 is satisfied), provided that the assumption

sup ||O¢(x¢, 0y) — g(X¢, ug)||2 = O,(re) holds. It can be shown that this condition can be
X' xU

satisfied when [|Oy (X, 0y)||2 < ||g(x¢, ug)l]o-

Theorem 8.1 For the trained Kriging model Oy(X;,0;) and the true unknown disturbance
model g(x¢, 1), with mean 0 and unknown variance, if ||Oy(Xe, Uy)l|, < ||g(xe, we)ll,, it
holds that )s(u% |Op(Xe, Gr) — g(Xe, 1) ||, = Op(14).

X
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Proof. Recall from Chapter 7 that the learning system used in Kriging satisfies the lack of
bias condition, i.e. E[O:(X¢,0r)] = Elg(x:, ur)] = p (it is assumed that g = Ogyy). Also,
note that Kriging estimation can only vary within a bounded interval. On the other hand,
it is impossible to ensure the boundedness of the unknown model g(x;, u;). So, it is always
true that the variances of the outputs of O;(X, W), say 03,03, ..., 02, are less than or equal
to the variances of the corresponding outputs of g(x;,u;). Also, the variance of the Kriging
Oy(%;,1;) estimates are finite, i.e. 0 < 0%, 03,...,02 < co. Indeed, for the trained model,
llo|ls = 4.55 x 107* << 1 (see Table 7.1), where o = (0%,02,...,02)T. Now, it can be
indicated that:

de>0,3r,  Prl|Ox, w) — g(x, )], > 7 - €)

= Pr(||Oux, 1) — E[Ox(Xs, Wy)] + Elg(xs, u)] — g(xe, w), > 14 - €)

< Pr(||0(xe, 1) — E[Ox(Xs, W)]|[, + || Elg(xs, wr)] — g(xp, we)|[, > 71 - €)

< Pril|Oux;, a) = [0, @]l > - 5) -

The proof can be completed by using the extended multivariate version of Markov’s in-
equality, known as Ferentinos inequality [195] and taking into account that ||o||s < 1, as
below:

1 1
1 ~ o~ ~ o~
Pr(ry 10, 0e) — B[O, 0[], > e~ lofl,) < 5 < e TlollL e
This means that for € = 2¢ - ||o||, and Jry, it holds that:
-1 - . 1
Pr(r, ||Ou(xe, 1) — g(xe,wy)|], > €| < = (8.1)

Based on Definition 6.5, Eq. 8.1 implies that sup ||Oy(X¢, 0) — g(x¢, w)||, = O, (). Hence,
XxU

the proof is complete. [

To satisfy the robust feasibility and robust constraint satisfaction theorems ( Theorem
6.1 and Theorem 6.2), it is necessary to determine matrixes ¢ and 1, and calculate 0
such that the inequality constraint u[@;] = Kx; + (¢ — K1), be satisfied. For matrixes A
and B defined in Section 6.6 of Chapter 6, obtained by values reported in Table 3.1, the
null-space of the 8 x 10 matrix [(A —[,,) — B] is a set containing the following vectors:

w1 = (—5.08x107% —5.08x 1076, —1.33x 1078, -1.33x 1078, -5.24 x 1076, —5.24 x 1076, —9.57 x 1071%, —9.57 x 10719, 1,2.41 x 107 1})

8 8 6 6 10

vy = (—1.33x107%, -1.33x 1078, —5.04x 107 %, —5.04 x 1076, —9.57 x 10~ 10 6 6 oy

,—9.57x 10710, —5.24x107%, —5.24x 1075, —2.43 x 10~
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Now, matrixes ¢ and 1 can be calculated such that range ([7 ¢*]7)T includes v; and
V9, as follows:

5.08 1.33 x 10~2]

5.08 1.33 x 1072
1.33 x 1072 5.04
1.33 x 1072 5.04 - —1076 2.43 x 107°
Y= 5.24 9.57 x 1074]| ¢ = 2.43 x 107° —1076

5.24 9.57 x 10~*
9.57 x 1074 5.24
19.57 x 1074 5.24

The control decision variables can vary within the range —4 x 1076 < §; < 4x107% and
—4x107% < 6, <4 x107° to get feasible actuation signals u[@;]. The horizon length N is
chosen to be 10, and the tunable weight matrixes of objective function defined in Eq. 6.10
are selected as: (a) R is a 2 x 2 diagonal matrix with diagonal elements 10~7, (b) @ is
a 8 x 8 diagonal matrix with diagonal elements 1, and (c) 7" is a 8 x 8 diagonal matrix
with diagonal elements 10. Also, to ensure the stability of the system through satisfying
Theorem 6.7, the time-varying 8 X 8 Lyapunov matrix P is determined by solving the
discrete-time Lyapunov equation, defined in Eq. 6.11. The desired trajectory is determined
using reinforcement learning (RL) combined with a graph theoretic based approach called
maximum likelihood estimation of trajectories in a Markov chain (MLE-TMC). For detailed
theories and algorithmic structure of the method, one can refer to Chapter 5.

The importance of the above setup is that the theoretical requirements for (1) robust
constraint satisfaction, (2) robust feasibility, (3) Lyapunov stability of system dynamics,
(4) epi-convergence of oracle, and (5) robust asymptotic stability of feed-back based control
command are satisfied.

The other important issue which should be mentioned refers to the strategies taken
to cope with the 5 sources of uncertainty (SU-1 to SU-5) mentioned in Chapter 3. SU-1
which represents the driver’s behavior, and appears as the variation of cruise speed on road,
is important because after the prediction of future road profile for the front tire, one can
determine the time that the rear tire passes the predicted profile as a function of speed (see
Eq. 5.1 and description therein). This makes sense because the road profile remains the
same along the road, and instead of using two road prediction modules for both tires, all
one needs is to do the prediction once (for the front tire) and calculate the time of passing
the profile for rear tire as a function of cruise speed. For the estimation of vehicle speed,
an absorbing state stochastic process is taken into account. It was theoretically proven in
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Chapter 5 that the considered concept is a realistic scenario for the estimation of speed
under uncertainty. For our simulation, whenever the deflection of front rear (z,) exceeds
+0.04 (can be viewed as a bump / pothole), a random perturbation of speed is imposed
to vehicle, and the considered algorithm is automatically activated to model the driver’s
behavior under uncertainty. For SU-2 which stands for the number of passengers and load,
a logical range of 580 kg to 850 kg with uniform distribution is taken into account. So, for

each independent simulation, M, L Uni £(580,850) is drawn randomly and the simulation
is conducted accordingly, and the statistical results are reported at the end. For SU-3 which
deals with model-plant mismatch, a relatively same approach is followed. In this way,
independent normal distributions are defined for all of the non-zero / non-unit elements
of matrixes Ay and Bg,.. Let’s say a is such an element in A, then it follows the

distribution & < N (Gape, 0.01aae). So, for each independent simulation, a value is drawn
from this distribution, the simulation is performed, and the statistical results are reported.
For SU-4 which represents the randomness of road roughness, a thorough comprehensive
study using different statistical forecasting methods was conducted in Chapter 4. The
importance of using such a strategy is that unlike conventional controllers which use a
predefined unrealistic road profile for simulation, the proposed strategy uses experimental
data for training the road roughness forecasting method. Recall from Chapter 6 that Dr,
represents the effect of road roughness in state-space model, ie. X;11 = Ax, + Bu, +
Dr; + Oy(x4,1;). For SU-5 which represents the uncertainty due to the malfunction of
sensors and actuators, a comprehensive statistical analysis was carried out using Bayesian
dynamic programming and bootstrap, and an empirical cumulative density function (CDF')
was obtained to quantify the uncertainty. This source of uncertainty was used to develop
the polytope W which was then used at the heart of MRPIS algorithm for the calculation
of invariant set €.

As optimal controller, LBMPC uses an optimization module to calculate the control
command. For the current study, the implemented quadratic objective function is solved
using Newtons method (NM), golden sectioning search (GSS) [199], and simulated anneal-
ing (SA) [200]. GSS can be viewed as a deterministic direct search method which does not
use the derivatives for the calculation of optimal solution. Also, it does not have any hyper-
parameter, and its implementation is straight-forward. Once the bounds of the solution
domain are defined, GSS deterministically converges to a solution (usually a local solu-
tion). Thanks to its simple and efficient structure, GSS can be used as a reliable technique
for real-time optimization of the control objective function of LBMPC. It is worth men-
tioning that GSS handles a multivariate optimization problem cooperatively by optimizing
decision variables one by one. SA is a single agent metaheuristic optimization algorithm
which performs a chain of stochastic jumps in the solution domain until converging to a
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solution. Upon fine tuning, SA has the potential of global optimization. To run SA, the
initial temperature of 10, final temperature of 0.001, and cooling factor of 0.9996 are used.
To jump to a new point, Gaussian proposal distribution with variance 0.1x (upper bound
— lower bound) is considered. The acceptance-rejection sampling method [201] is used to
decide whether the proposal (new solution) should be accepted.

The block-diagram of the control paradigm implemented in Simulink software is shown
in Figure 8.1. The figure provides a schematic view of the parameters and modules involved
to get the results. As seen, the control paradigm includes desired trajectory generation
module (the orange block), road roughness prediction module (the magenta block), vehicle
speed estimation module (the yellow block), LBMPC controlling module (the green block),
and a high-fidelity nonlinear model of suspension system (the red block). The controlling
commands calculated in LBMPC are fed to the coupled high-fidelity nonlinear model to
get the true state values of the suspension system. As mentioned, the states measured
by LBMPC and those of nonlinear model are acquiesced in an archive, which is used for
validating the veracity of the control-oriented model.

To have a better view regarding the performance of LBMPC, a number of well-known
control algorithms are also taken into account, and are applied to the same vehicle suspen-
sion system. The methods are extended iterative learning proportional-integral-derivative

(EIL-PID) [202], sky-hook controller (SHC) [203], sliding mode controller (SMC) [35], dy-
namic matrix controller (DMC) [160], dynamic matrix PID (DM-PID) [204], constraint
variable structure controller (CVSC) [205], and dynamic matrix CVSC (DM-CVSC) [58].

From the considered controllers, EIL-PID, SHC, SMC, and CVSC are continuous, non-
predictive and non-optimal controllers, and DMC, DM-PID, DM-CVSC, and LBMPC are
discrete, predictive and optimal controllers, capable of constraint satisfaction. DM-CVSC
and DM-PID calculate the optimal commands using sequential quadratic programming
(SQP), since the control law results in nonlinear equality constraint when written in
the standard quadratic format. DMC calculates the optimal commands using standard
quadratic programming (QP). The horizon length N is chosen to be 10 for all predictive
controllers. The state and control input constraints for optimal controllers are the same
as those of LBMPC, and the initial condition for all rival controllers are xq = Ogyx; and
uy = 0y;. Since the considered rival controllers are not equipped with any strategy /
module for the prediction of road roughness, one should use a predefined road rough-
ness to conduct the simulation. It is a deep-seated tradition among automotive control
engineers to use sine shaped road profiles for simulation. For the current simulation, a pre-
defined road profile together with 4 different types of disturbances are considered [5]. The
considered simulation scenarios have different features, and can be viewed as acceptable
approximations of road roughness.

207



CHAPTER 8.SIMULATION RESULTS AND COMPARATIVE STUDY

muacawatne  macmeineer

RexrTiR Force o Tre Fore

=

S pr—— =

Prdihe Cortmler ) { o =

o — g
P4 _.|: E
e b =
{0} {0
commvmman conmiema

Figure 8.1: Block-diagram of the LBMPC coupled with a nonlinear high fidelity model of
suspension system in Simulink software.

To have a better understanding on the performance of the considered methods and
to have a fair comparison with LBMPC, at one stage of the numerical experiments, the
road roughness forecasting module is replaced with this 4 predefined simulation cases and
the results are reported together with those of the conventional controllers. This lets us
evaluate the power of learning module at the heart of LBMPC, since the other methods are
not learnable. Thereafter, the simulation is carried out using LBMPC equipped with both
learning module and road roughness prediction module to show the power of LBMPC in
yielding more realistic results, compared to conventional controllers which use predefined
road profiles. Also, note that, unlike LBMPC, the considered controllers neither estimate
the vehicle speed on road nor use an online desired trajectory building mechanism. So, the
simulation is performed, considering the rival controllers as state regulators (to make the
body deflection 0 on road).

A number of performance evaluation metrics are considered to compare the performance
of the controllers. The first metric which evaluates the potential of controllers in minimizing
the body mass deflection is called the sum of the center of gravity of body mass vertical
displacement. The second metric is the time required for making the body displacement 0.
This is important since a reliable controller should be powerful enough to withstand against
external excitations and stabilize the vehicle body to provide comfort for passengers. The
third and fourth metrics are called the maximum and average absolute value of actuation
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force. These metrics are important as they represent the maximum transient effort of
actuators. The less the value of the metrics, the greater the life cycle of actuator. The fifth
metric is the mean squared trajectory tracking error, which obviously should be minimized.

The simulation for the 4 artifact cases are conducted for 5 sec with sampling time 1073
sec, which results in 5000 working points for discrete controllers. For Waterloo road, the
simulation is conducted for 10 sec. In particular, a segment of road from 70" second to
79" second of Figure 4.5 is chosen.

A spline smooth fit with high precision is fitted to the selected segment to capture 5000
working points. To be consistent with the results of artifact scenarios, the 5000 data points
are used with step-size of 0.001 to get 5 seconds of simulation. So, notice that the data are
extracted from portion time of [70, 79] sec and are mapped to a [0, 5] sec interval, without
changing the shape of the original profile. For clarification, the performed transformation
is shown in Figure 8.2.

0.03 T T T T T T T T

0.02

0.01
0

original profile

_001 L I 1 1 | 1 L 1
70 71 72 73 74 75 76 77 78 79

time

0.03 T T T T T T T T T

0.02
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spline smooth profile

time

Figure 8.2: Waterloo road roughness data used for simulation: (a) original, (b) spline
smooth version.
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As seen, unlike the artifact profile which is used by conventional controllers [58], the
profile is not a stable profile, which is expectable, since the data comes from the real road.
Given the properties of the data, it can be understood that it is not logical to implement
the control problem as a regulation problem, since we cannot make the displacement 0.
But, the better way is to implement the control problem as a tracking problem with the
goal of making the displacement of vehicle body mass stable (making the variation of
displacement 0). This is indeed the idea behind the implementation of LBMPC.

All of the simulation are conducted in MATLAB and R software on a Pentium IV DELL
laptop, with Windows 7 operating system, Intel Dual core 2.2 GHz, and 2 GBs RAM.

8.2 Simulation Results

At the first stage of the experiment, a comparative study is carried out using the adopted
performance evaluation metrics to find out which of the considered optimization methods is
more powerful to be used at the heart of LBMPC. Apparently, two conflicting factors play
part when comparing the performance of optimization methods for real-time applications.
These factors are the calculation speed and the efficiency of an optimization method.
Among the considered methods, NM uses a gradient searching strategy, while GSS and
SA are deterministic and stochastic direct search methods, respectively. Note that the
simulation is conducted on the 4 artifact cases and Waterloo road roughness data, as
explained in Chapter 4. The sum of body mass center displacement for the considered
cases are listed in Table 8.1. It can be realized that LBMPC-NM outperforms the other
LBMPC versions for the 4 artifact cases. This is expected since the NM algorithm uses
gradient information to converge to a solution, and can be viewed as a very powerful
method, provided that the optimization problem be well-defined. For the Waterloo scenario
in which the considered road segment is not stable, it was observed that NM cannot satisfy
the constraints and converge to an infeasible solution. This indicates the importance of
using a robust gradient-free optimization method which can explore the objective function
landscape even when the optimal control problem is demanding. All in all, the results
indicate that NM surpasses the direct search methods when the control problem is well-
defined and steady; however, for a challenging road profile NM may converge to irrelevant /
infeasible actuation signals. Thus, direct search methods could be more useful when using
LBMPC for real road profiles. Among the direct search optimizers, the best performance
belongs to SA. The simulation details indicated that GSS cannot compete with SA since it
coped with the multivariate optimization problem in a cooperative fashion by optimizing
the decision variables one by one.
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Table 8.1: Sum of body mass center’s displacement over the control period

Case 1 Case 2 Case 3 Case 4 Waterloo
LBMPC-SA 0.0806 0.0822 0.0840 0.0946 0.1459
LBMPC-GSS 0.1043 0.0926 0.0979 0.0951 0.1750
LBMPC-NM 0.0370 0.0579 0.0411 0.0375 -

Such a feature enforces GSS to converge to premature solution especially when the op-
timization problem is non-separable. Unlike GSS, SA optimizes all of the decision variables
at the same time, and thus, can manage to converge to an acceptable solution even when
the objective landscape is complicated (multi-modal) and non-separable. Also, another
reason behind the superior performance of SA over GSS is its stochastic direct searching
mechanism which gives it a chance to jump from a premature solution to a more qualified
solution. The simulation also indicated that NM algorithm requires more computational
time to yield the optimum solutions compared to SA and GSS. This is probably because
of the need for the calculation of first and second order differentiations which takes more
time compared to direct searching methods.

Table 8.2 indicates the required portion of time for the regulation of the vehicle body
mass displacement states (25, and z;,). Notice that the reported values are the exact points
in which the body mass displacement states fall within a predefined manifold with center 0
and radius € (which is a very little number). This is the same as the concept of trajectory
tracking with predefined funnels as defined in [160]. As mentioned before, the Waterloo
road data cannot be considered as a regulation problem, since the road profile is unstable.
For the 4 artifact cases, it can be seen that LBMPC-NM and LBMPC-SA are capable
to make the displacement 0, and LBMPC-GSS fails to stabilize the rear body mass. As
expected, the best performance for these 4 cases belongs to LBMPC-NM. Having said that
the results of LBMPC-SA are close to those of LBMPC-NM.

Table 8.2: Required portion of control time for the regulation of the body displacement
states

Case 1 Case 2 Case 3 Case 4 Waterloo

Front actuator

LBMPC-SA 255 /5 277 /5 2.65 /5 2.65 /5 —

LBMPC-GSS 255 /5 4.86 /5 299 /5 271 /5 —

LBMPC-NM 1.37 /5 1.41 /5 1.40 / 5 1.38 / 5 —
Rear actuator

LBMPC-SA 290 /5 292/5 2.65/5 261 /5 —

LBMPC-GSS — — - - -

LBMPC-NM 1.37 /5 1.38 /5 1.40 / 5 1.38 /5 —
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Table 8.3 and Table 8.4 list the maximum absolute actuation force and mean absolute
actuation force of the rival LBMPC variants, respectively. As seen, all of the methods
reach the maximum 5000 N actuation force during the control period. It can be discerned
that for the 4 artifact cases, the lowest mean absolute actuation force belongs to LBMPC-
NM and LMBPC-GSS. Note that the results of LBMPC-SA is comparable to the other
two methods with respect to this metric. Most importantly, LBMPC-SA surpasses both
LBMPC-NM and LMBPC-GSS for Waterloo simulation. Hence, LBMPC-SA was found
to be a reliable method since it not only yields close results to LBMPC-NM, but also could
handle the Waterloo simulation scenario.

Table 8.5 lists the results of the LBMPC variants in terms of mean squared trajectory
tracking error. It can be seen that for all of the cases, the best performance belongs
to LBMPC-SA. Given the importance of this metric, and also the results obtained with
respect to the other metrics, it can be concluded that SA is the best optimization method
to be used at the heart of LBMPC for the current case study.

Table 8.3: Performance of LBMPC with different optimizers in terms of max |u| metric

Case 1 Case 2 Case 3 Case 4 Waterloo

Front actuator

LBMPC-SA 5000 5000 5000 5000 5000

LBMPC-GSS 5000 5000 5000 5000 5000

LBMPC-NM 5000 5000 5000 5000 -
Rear actuator

LBMPC-SA 5000 5000 5000 5000 5000

LBMPC-GSS 5000 5000 5000 5000 5000

LBMPC-NM 5000 5000 5000 5000 -

Table 8.4: Performance of LBMPC with different optimizers in terms of mean|u| metric

Case 1 Case 2 Case 3 Case 4 Waterloo

Front actuator

LBMPC-SA 501.26 482.37 457.48 450.41 4107.60

LBMPC-GSS 349.56 350.89 350.89 350.84 4744.10

LBMPC-NM 428.85 493.37 841.61 469.02 —
Rear actuator

LBMPC-SA 543.65 546.60 547.23 543.50 4069.10

LBMPC-GSS 1911.20 1284.70 1083.60 1212.81 4699.80

LBMPC-NM 363.57 449.30 461.06 391.54 —
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Table 8.5: Performance of LBMPC with different optimizers in terms of tracking error

Case 1 Case 2 Case 3 Case 4 Waterloo

Front actuator

LBMPC-SA 5.62e-05 5.21e-05 5.45e-05 5.92e-05 8.19e-04

LBMPC-GSS 7.03e-05 7.12e-05 6.98e-05 7.50e-05 1.00e-03

LBMPC-NM 7.15e-05 7.19e-05 6.90e-05 7.58e-05 -
Rear actuator

LBMPC-SA 3.40e-05 3.81e-05 3.39¢-05 5.02e-05 7.99e-04

LBMPC-GSS 1.85e-04 9.52e-05 8.50e-05 7.40e-05 9.83e-04

LBMPC-NM 8.22¢-05 8.20e-05 7.58e-05 8.15e-05 -

From the computation speed point of view, SA can be considered as an acceptable
method since unlike most of the existing stochastic heuristic search methods, it only uses
a single agent to search the solution domain and mostly relies on probabilistic jumps to
converge to a solution rather than time consuming interaction which takes place among
agents of population based / swarm-based metaheuristics.

After realizing the best optimization method to be used at the heart of LBMPC, the
simulation is continued by comparing the performance of LBMPC with the conventional
control methods on the 4 considered artifact scenarios. Recall that the 4 cases use the
same road profile for the simulation. The difference among the cases is the disturbance
that contaminates the road profile information, and makes the control problem noisy. This
can be viewed as a good mean for evaluating the robustness and stability of the adopted
control methods, and comparing them to LBMPC. Since, the goal of the simulation is to
compare the performance of the controllers (regardless of the optimization algorithm used
at their heart), the results for LBMPC are reported considering both NM and SA methods.

Table 8.6 lists the sum of body mass center displacements for the rival controllers as well
as the passive model. Obviously, the successful controllers in terms of this metric are SHC,
CVSC, DM-CVSC and LBMPC-NM. By paying a much precise attention to the obtained
results, one can easily infer that, except for Case /, the performance of LBMPC-NM is
close to the other successful controllers. Given the results, one can infer that LBMPC-NM
and DM-CVSC are superior to the other optimal predictive controllers for almost all of
the cases. It is worth pointing out that DM-CVSC and DM-PID are nonlinear controllers,
and require a considerable computational time as well as a complicated optimization for-
mulation to get the optimal solutions.

Table 8.7 tabulates the required portion of time for the rival controllers to regulate the
vehicle body mass displacement. LBMPC-NM remarkably surpasses the rival methods in
terms of the considered metric. It can be seen that unlike all of the other rival controllers,
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for all of the cases, LBMPC-NM successfully regulates the vehicle displacement. DM-
CVSC takes the second place among the other rival controllers. It seems that SHC could
regulate the displacement of front body mass, but fails to stabilize the rear part. Also,
CVSC could regulate the displacement of the rear part and fails to stabilize the front body
mass. By taking a precise look into the results, one can realize that the performance of
LBMPC-NM and DM-CVSC are the same for Case 1 and Case 4, but DM-CVSC fails to
regulate for Case 3 and also shows remarkably inferior result for Case 2.

Table 8.6: Sum of body mass center’s displacement over the control period

Case 1 Case 2 Case 3 Case 4

Passive 0.0817 0.0817 0.0817 0.0817
SHC 0.0251 0.0304 0.0252 0.0252
EIL-PID 0.0472 0.0491 0.0502 0.0492
CVSC 0.0643 0.0439 0.0516 0.0114
SMC 0.0314 0.0905 0.0718 0.0232
DMC 0.0238 0.4350 0.2718 0.0825
DM-PID 0.0189 0.0985 0.1136 0.0371
DM-CVSC 0.0166 0.0476 0.1060 0.0232
LBMPC-NM 0.0370 0.0579 0.0411 0.0375

Table 8.7: Required portion of control time for the regulation of the body displacement
states

Case 1 Case 2 Case 3 Case 4
Front actuator
SHC 4.79 /5 497 /5 452 /5 459 /5
EIL-PID 273 /5 — — 255 /5
CVSC 461 /5 - — -
SMC 462 /5 — — —
DMC 1.37 /5 — — —
DM-PID 1.37 /5 — — —
DM-CVSC 1.37 /5 492 /5 — 1.38 /5
LBMPC-NM 1.37 /5 1.41 /5 1.40 / 5 1.38 /5
Rear actuator
SHC — — — —
EIL-PID 2.96 /5 — — 2.60 / 5
CVSC 4.71/5 494 /5 — —
SMC 483 /5 — - —
DMC 1.38 /5 — — —
DM-PID 1.38 /5 — — —
DM-CVSC 1.37 /5 491 /5 — 1.38 /5
LBMPC-NM 1.37 /5 1.38/ 5 1.40 / 5 1.38/5
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It can be concluded that LBMPC-NM beats the other methods in terms of this metric,
which can be enumerated as one of the most important metrics (if not the most important
one).

Table 8.8 and Table 8.9 list the maximum absolute actuation force and mean absolute
actuation force of the rival LBMPC variants, respectively. It can be inferred from the
results that EIL-PID and DM-PID show the superior performance with respect to this
metric. This suggests the usefulness of defining a proportional-integral-derivative type
control rule for calculating the actuation force, especially when minimizing the control effort
/ energy is of highest importance. Also, it can be seen that DM-CVSC shows acceptable
results in terms of these two metrics, and can compete with DM-PID. Apparently, LBMPC-
NM cannot compete with DM-PID and DM-CVSC and only beats SMC and CVSC with
respect to this performance metric. Note that although this metric is important for the
current case study, but the controllers were developed with the goal of minimizing the
vehicle body displacement to provide ride comfort. Indeed, there is a conflicting trade-off
between this metric and ride comfort.

Table 8.8: Performance of LBMPC with different optimizers in terms of max |u| metric
Case 1 Case 2 Case 3 Case 4
Front actuator

Passive — — - —

SHC — - - —
EIL-PID 4112 4354 4263 4433
CVSC 4552 4851 3871 4208
SMC 4702 4109 4351 4870
DMC 5000 4883 5000 4978
DM-PID 5000 4452 5000 5000
DM-CVSC 3424 4236 4005 3664
LBMPC 5000 5000 5000 5000

Rear actuator

Passive — — — —

SHC - — — —
EIL-PID 4837 4657 4012 4211
CVSC 4699 4966 4399 4785
SMC 4650 4709 4553 5534
DMC 4966 5000 5000 4968
DM-PID 5000 5000 4755 5000
DM-CVSC 2975 3730 4856 4949
LBMPC 5000 5000 5000 5000
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Table 8.9: Performance of LBMPC with different optimizers in terms of mean|u| metric
Case 1 Case 2 Case 3 Case 4
Front actuator

Passive — — — —
SHC — - — —
EIL-PID 14.37 19.77 28.33 32.98
CVSC 680.94 730.98 1590.00 1188.2
SMC 409.72 566.11 1198.90 2004.60
DMC 148.13 147.51 293.01 145.46
DM-PID 7.85 50.44 271.06 46.24
DM-CVSC 39.51 76.62 205.93 53.91
LBMPC-NM 428.85 493.37 841.61 469.02
Rear actuator
Passive — — — —
SHC — — — —
EIL-PID 12.16 16.30 12.90 14.33
CVSC 681.73 1669.90 441.69 345.69
SMC 447.64 1140.1 388.59 550.14
DMC 141.23 190.10 222.84 137.92
DM-PID 8.55 84.14 57.64 27.67
DM-CVSC 19.97 115.25 148.77 56.24
LBMPC-NM 363.57 449.30 461.06 391.54

Since, LBMPC outperforms the other methods in terms of ride comfort (see Table 8.7),
it can still be considered as a successful controller even if it uses greater (yet feasible)
actuation force compared to the other predictive controllers for the considered problem.

Table 8.10 lists the obtained results in terms of the mean squared tracking error. The
reported results indicate that the performance of all of the considered methods are close
to each other in terms of this metric, and most of them yield the best result at-least
for one of the cases. All in all, the best performance belongs to DM-CVCS, and CVSC.
This is mainly because of the tracking power of the controlling rule implemented at the
heart of CVSC and DM-CVSC, which defines a sliding surface near the desired trajectory
and calculates the actuation signals such that the controller steers the system towards the
desired trajectory. SHC, LBMPC-SA and SMC also show acceptable results for this metric
and beat the other methods for 2, 1, and 1 cases, respectively. To summarize the results
reported so far, the number of times a given controller beats the other methods (the bold
numbers in the above tables) are reported in Table 8.11. It is obvious that LBMPC with
10 times of success and DM-CVSC with 8 times of success outperform the other methods.
It is important mentioning that, unlike LBMPC, DM-CVSC is a nonlinear controller, and
requires solving a more sophisticated optimization problem to get the results.

216



CHAPTER 8.SIMULATION RESULTS AND COMPARATIVE STUDY

Table 8.10: Performance of the rival controllers in terms of mean squared tracking error

Case 1 Case 2 Case 3 Case 4

Front actuator
SHC 1.56e-05 2.58e-05 1.57e-05 1.59e-05
EIL-PID 1.50e-05 1.86e-05 1.69e-05 1.73e-05
CVSC 4.99e-05 3.09e-05 1.55e-04 4.92e-05
SMC 1.29e-05 1.43e-05 7.47e-05 1.41e-04
DMC 2.79e-05 5.00e-04 3.57e-04 5.48e-05
DM-PID 1.56e-05 6.42e-05 1.32e-04 3.03e-05
DM-CVSC 1.32e-05 2.95e-05 7.57e-05 2.71e-05
LBMPC-SA 5.62e-05 5.21e-05 5.45e-05 5.92e-05

Rear actuator
SHC 7.55e-05 9.28e-05 7.58e-05 7.62e-05
EIL-PID 8.18e-05 7.11e-05 8.08e-05 8.17e-05
CVSC 5.03e-05 1.09e-04 1.84e-05 2.17e-05
SMC 1.66e-05 5.04e-05 1.16e-05 8.11e-05
DMC 2.51e-05 6.36e-04 2.59e-04 6.71e-05
DM-PID 1.55e-05 9.44e-05 5.19e-05 3.71e-05
DM-CVSC 1.26e-05 3.33e-05 5.38e-05 2.17e-05
LBMPC-SA 3.40e-05 3.81e-05 3.39e-05 5.02e-05

Table 8.11: Performance of the rival controllers in terms of mean squared tracking error
SHC EIL-PID CVSC SMC DMC DM-PID DM-CVSC LBMPC
2 6 2 3 1 3 8 10

In line with such a fact, the conducted simulation indicated that LBMPC calculates the
control commands quite faster than DM-CVSC, and thus, is more appropriate for real-time
applications.

For further evaluation of the performance of LBMPC, and for complementing the com-
parative study, some graphical tools are used to visualize the performance of the rival
controllers. Figure 8.3 depicts the front and rear body mass vertical displacements for
all of the considered cases using non-predictive, non-optimal controllers. It can be seen
from the figure that for most of the cases, all of the considered controllers can regulate
the states. One of the interesting observations pertains to the acceptable performance of
SHC for all of the disturbance scenarios. It seems that, as a semi-active controller, SHC
can neatly resist against the effect of unmeasured disturbances, and its controlling rules
can regulate the considered states for most of the cases. Furthermore, it seems that CVSC
and SMC show relatively the same performance. The displacement profiles under EIL-PID
control have relatively the same shape as passive scenarios. However, the amplitude of the
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resulting sinusoidal-like state profile is less than the passive one, and the considered states
reach zero in a shorter period of time.
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Figure 8.3: Displacements of front and rear body mass for the non-predictive / non-optimal
controllers for the four case studies.
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The main problem of the above non-optimal controllers is that they cannot guarantee
the constraint satisfaction. This is because there is no module in their structure which
takes either an optimization problem or a set of constraints. The only method which has
an instinct conservativeness to indirectly handle the constraints is CVSC. However, it can-
not still be considered as a method that can guarantee the constraint satisfaction. This
is a fact that the control problem becomes more complicated when there is a constraint
on the actuation force, and a remarkable effort should be made by a controller to yield
feasible solutions, especially when a significant rate of disturbance contaminates the ex-
ternal information (for example the road profile plus noise scenario). Figure 8.4 illustrates
the actuation force computed by SMC and LBMPC for Case 4. It can be seen that the
constraint is violated when using SMC, which results in an infeasible solution, since the
actuator used in the suspension system has a limited maneuverability and cannot process
the control commands when the force is greater than 5000 or less than —5000. This is the
main problem with the non-optimal controllers which makes their reliable applicability to
the considered problem a bit questionable.
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Figure 8.4: Constraint handling for LBMPC and SMC for Case 4.

219



CHAPTER 8.SIMULATION RESULTS AND COMPARATIVE STUDY

Figure 8.5 indicates the front and rear body mass vertical displacements obtained by
predictive controllers. The results indicated that all of the methods successfully satisfied
the constraints. It can be seen that LBMPC-NM is the only method which yields a
smooth profile, and the other controllers have significant fluctuations, and emphasize on the
abrupt regulation of the displacement. It will be indicated that this feature undermines
the performance of DMC, DM-PID and DM-CVSC significantly when the profiles are

contaminated with noises.

Figure 8.6, Figure 8.7, and Figure 8.8 indicate the obtained results for the rest of the
simulation scenarios. It becomes apparent that DMC, DM-PID and DM-CVSC sacrifice
the ride comfort in favor of obtaining feasible control solutions in the presence of external
disturbance. However, LBMPC retains its quality (because of using stabilizable feedback
gain for calculating the control commands) for all of the cases, and regulates the vehicle
displacement successfully.

Also, LBMPC is the only optimal controller which yields smooth displacement profiles,
and the displacement resulting from the actuation signal of other optimal controllers are
non-smooth with abrupt changes during the control period. The findings is in agreement
with the theoretical proofs pertaining to the guaranteed stability of LBMPC. This is more
apparent in Case 2 and Case 3, where the solutions of the other optimal controllers are
not stable at all.

Another observation pertinent to the above figures is the robustness of LBMPC. As
mentioned, the 4 scenarios consider the same road profile plus different sources of distur-
bances. It is apparent that the solutions obtained by LBMPC are very close for the 4
cases, meaning that LBMPC successfully rejects the external disturbances, identified the
road profile, and calculate the controlling commands accordingly.

This is when the other optimal controllers are remarkably affected when the road in-
formation is contaminated with noises, and cannot calculate the correct control signal,
which results in a very non-smooth and improper displacement of vehicle body mass. The
resistance of LBMPC against disturbances augurs the veracity of theoretical findings re-
garding the guaranteed stability of LBMPC. All in all, it can be concluded that LBMPC
is the most qualified method among the considered controllers for handling the suspension
control problem.
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Figure 8.5: Displacements of front and rear body mass for predictive controllers, Case 1.
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Figure 8.6: Displacements of front and rear body mass for predictive controllers, Case 2.
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Another importance issue which is the main idea behind the design of LBMPC is the
use of statistical learning tools to forecast the road roughness. It is indeed the most
prominent aspect of LBMPC compared to the conventional controllers. As mentioned,
since the considered optimal and non-optimal controllers are not equipped with a module
for forecasting the road roughness, the only choice is to use a predefined road profile and
conduct the simulation. For the current simulation, the author used one of the most
applicable road profiles (which is considered as a standard base) for calculating the control
commands. Figure 8.9 indicates the Waterloo road profile, the predefined road profile,
and the road profile forecasted by ARMA(2, 3) at the heart of LBMPC. It is obvious
that the solution obtained by LBMPC can be far more realistic, since it uses a very good
approximation of the real road profile for calculating the control command. It can be also
observed that how much inaccurate is the standard basic predefined road profile compared
to the real road profile.

Figure 8.10 indicates the complete state values obtained by LBMPC for Waterloo road.
As seen, LBMPC can successfully stabilize all of the states after the first significant upward
bump at 0.8 sec. Note that at time 4.5 sec, the vehicle experiences the second remarkable
road disturbance (downward pothole) which is apparently at the end of the considered
road segment, and LBMPC does not have any time to stabilize the states at this segment.
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Figure 8.9: Comparison of (a) Waterloo road profile, (b) predefined road profile used by
conventional controllers, and (¢) LBMPC road profile forecasted by ARMA(2, 3).

223



CHAPTER 8.SIMULATION RESULTS AND COMPARATIVE STUDY

0.05 T T T T T T 0.2

= = 0 ———/\ﬁ
N0 ‘N
0.2
-0.05 . . . . . . 24 . . . . . .
0o 05 1 15 2 25 3 35 4 45 5 0o 05 1 15 2 25 3 35 4 45 5
0.05 : | : : . : 0.2 : | : | . T
<
l\]é 0 w0 a
0.05 02 . . . . . .
[ - 15 2 25 3 35 4 45 5 0 05 1 15 2 25 3 35 4 45 5

0.05 T T T T T T 0.5

L
x

-0.05 L L L L L L 0.5

0.05 T T T T T T 0.5

Z“:
Zuz

.0.05 L L L L L L 0.5

Figure 8.10: Variation of state values of LBMPC for Waterloo road.

It is apparent that the variations of un-sprung and sprung masses (the four right hand
side sub-plots) become 0 shortly after encountering the first significant road disturbance,
which indicates the stabilization power of LBMPC when used on road.

The last stage of the experiment deals with the power of LBMPC-SA to withstand
against the variation of passengers and loads (SU-2) and model-plant mismatch (SU-3).
To do so, the uncertain parameters are drawn 10 times from the specified distributions, and
the simulation are conducted accordingly. Figure 8.11 indicates the graphical visualization
of drawn samples for clarification of their diversity. Since matrix A has randomly drawn
elements, its final form is depicted as 2D color maps. Note that the 0 and 1 arrays remain
the same (which correspond to black and white arrays). It can be seen that the resulting
color maps have different gray cells and represent a diverse set of the quantifications of
model-plant mismatch. Also, the values for vehicle body mass are diversely drawn from
uniform distribution, and cover the considered range. So, this test bed can reliably give us
information on how well LBMPC can resist against SU-2 and SU-3.

The statistical results obtained for the considered performance metrics are presented in
the form of box-plots in Figure 8.12. By a precise look into the obtained results, one can
realize that the range of variation of the metrics is minor, and the box plots are dense. It
can be seen that only the mean absolute actuation force of the front body mass has outliers,
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and the other metrics always vary within a small range over 10 independent simulation.
The findings are in a good agreement with the robustness of LBMPC, and it seems that
the variation of SU-2 and SU-3 have negligible impact on the performance of LBMPC.
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Figure 8.11: Variation the drawn samples (a) the variation of matrix A is shown in the
form of color map, and (b) the variation of body mass drawn from a uniformly distribution,
shown in a 2D field foe better visualization.
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Figure 8.12: Statistical results in terms of the performance metrics obtained over 10 inde-
pendent simulation.

In the next sub-section, the controlling commands obtained by LBMPC are fed to
the true nonlinear model to find out whether the controller can reliably stabilize the real
suspension system.

8.3 Validation Using Nonlinear Model

After calculating the control commands using LBMPC, a validation test is conducted to
evaluate the precision of the piece-wise linear model (plus disturbance) at the heart of
LBMPC with the true nonlinear model of the plant. Figure 8.13 reveals the states of
the true nonlinear model as well as those of LBMPC obtained by feeding the calculated
actuation signals to the system.
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Figure 8.13: Comparison of the states of true nonlinear model (plant model) with the

states of piece-wise linear model used in LBMPC.

The obtained results are very promising and indicate the high precision of the state-
space model used for calculating the commands of LBMPC. The results also endorse the
statistical experiments performed in Chapter 7 to quantify the uncertainty in the linear
model due to the un-modelled dynamics. Moreover, the results verify the authenticity of
using LBMPC for stabilizing the real-plant. It can be seen that when the states measured
by LBMPC become stable, the corresponding states of the true plant model are also stable.
All in all, the findings of the model verification are totally in favor of using LBMPC for

real-time control of vehicle suspension system.
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8.4 Pros and Cons of LBMPC

Based on the conducted simulation, the following remarks are observed:

1. The conducted simulation considering LBMPC with different optimization modules
indicated that the controlling commands can be obtained using both gradient-based
and direct searching techniques. However, the selection of the proper optimization
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algorithm depends on the properties of the control problem at hand. For vehicle
suspension control, it was realized that LBMPC with NM can afford efficient control
commands, provided that the objective function be convex, unimodal with straight-
forward constraints. However, by exposing LBMPC with NM optimizer to more
tricky suspension control scenarios, the simulation indicated that NM could easily
converge to infeasible solutions. Also, the simulation results unveiled that GSS is
only proper when the underlying optimal control problem be separable (decision
variables be independent). Among the considered optimization scenarios, LBMPC
with SA optimizer was found to be the most appropriate choice, since it could suc-
cessfully satisfy the constraints, and also converge to a near optimal solution (due to
its stochastic direct searching strategy), especially when the objective function was
multimodal, non-separable with different types of constraints. Also, because of using
a single agent, SA was quite fast, and a good fit for real-time applications.

2. It was theoretically and empirically indicated that the oracle at the heart of LBMPC
can predict the uncertainties due to the state measurement error, and increase the
robustness of the control commands. Also, by applying LBMPC to different types
of road roughness scenarios, it was observed that it could successfully reject the
external disturbances and calculate the proper controlling commands to stabilize the
suspension system. This was not the case for the considered rival controllers, as
they fail to manage the suspension system when the road profile information was
contaminated with noises. Also, it was observed that, non-optimal controllers could
violate the operating constraints, while the optimal ones (including LBMPC) always
calculated the control commands such that the actuation signal remain within the
feasible bound.

3. By defining distributions for SU-2 (uncertainty of the number of passengers and load)
and SU-3 (uncertainty due to model-plant mismatch), drawing samples from them,
and repeating the simulation, it was indicated that LBMPC could successfully with-
stand against these sources of uncertainty. The results were shown in the form of
box plots, which were dense and had no outliers (except for one out of five perfor-
mance measures). The robustness of LBMPC against these two sources of uncertainty
guarantees that it has enough potential to be mounted in the vehicle for real-time
hardware in the loop application.

4. The conducted simulation demonstrated the usefulness of the proposed forecasting
system for the online forecasting of road roughness. It is a deep-seated tradition to use
a predefined road profile for conventional controllers and calculate the control com-
mands accordingly. By comparing one of the most applicable standard profiles with
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the Waterloo road profile and also with the road roughness forecasted by LBMPC,
it was proven that how superior LBMPC is in terms of calculating the commands
based on a more realistic profile. In particular, the road roughness forecasted by
ARMA (2, 3) at the heart of LBMPC was very close to the Waterloo road profile,
which resulted in realistic control commands.

5. The results of LBMPC model validation versus true nonlinear model endorsed the
reliability of the calculated control commands for stabilizing the plant (real suspen-
sion system). It was observed that when the states measured by LBMPC become
stable, the corresponding states of the true nonlinear model also become stable. The
results of model validation proved the potential of LBMPC for the safe stabilization
of the true suspension system on road.

Note

All MATLAB codes pertaining to the simulation performed in this chapter can be found
in Appendix.
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Chapter 9

Conclusions and Future Work

In this chapter, the general concluding remarks obtained by simulation are presented. Also,
several insights into the future research potentials of LBMPC are pointed out. It is tried
to mention different aspects of this powerful and flexible controller, and also to discuss
why it can be a good fit for emerging control problems arising in automotive industry, in
particular for designing autonomous vehicles. Also, the compatibility of the architecture of
LBMPC with one of the most interdisciplinary and sophisticated fields of science, known
as artificial intelligence (Al), is analyzed.

9.1 Conclusions

Based on the conducted simulation, the following conclusions were derived regarding the
potential of LBMPC for the safe control of vehicle suspension system:

1. The results of simulation conducted in Chapter 4 indicated that statistical forecast-
ing methods and their related model diagnosis tools provided simple yet efficient
means for the real-time forecasting of road profiles. It was observed that most of
the considered forecasting models possessed at-most 2 to 4 structural parameters,
and could be tuned in a short period of time. Also, one can manage to tune such
models in a way that their forecasted values fall within a bounded interval with 95%
confidence, which is quite desirable when they are used at the heart of a controller
where the boundedness of estimation results in a stable and safe control performance.
Also, it was observed that Bayesian forecasting methods have a very good potential
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to be used for forecasting the road roughness profiles. The salient asset of such tech-
niques is that they can be always improved by collecting more information about the
road roughness, and choosing more appropriate prior distributions for the system
parameters.

2. The simulation results obtained in Chapter 5 indicated that the probabilistic method
proposed for determining the most likely desired trajectory can afford reliable out-
comes. In particular, the conducted simulation indicated that whenever the vehicle
passes a bump / pothole, where significant oscillations were expected, the proposed
method steered the controller to send significant actuation signals to suspension sys-
tem for damping the vibration. Thereafter, the desired trajectory imposed a safe
oscillation around equilibrium point until the vehicle displacement became 0. Also,
from computational viewpoint, it was observed that the graph theoretic model used
for the calculation of the most probable trajectory could afford the optimal solution
in a short period of time with low computational effort, provided that the graph infor-
mation including anchor walk, mean-weight cycle cover, and free cycles be available.
Also, the absorbing state stochastic process proposed for vehicle speed estimation was
capable of producing chains which converged to one of the absorbing states within the
predetermined control horizon length (N) in a short period of time. Such a feature
made the proposed method compatible with the predictive objective function used
at the heart of LBMPC for estimating the vehicle speed in an online fashion.

3. The results of simulation obtained in Chapter 7 indicated that the combination of
dynamic programming and Bayesian uncertain models could afford a powerful tool
for quantifying the uncertainty of un-modelled dynamics in approximated piece-wise
linear control state-space model. The salient asset of such probabilistic tools was that
they could efficiently compensate the lack of knowledge in the true control state-space
model by replacing the un-modelled dynamic term (which could be either linear or
nonlinear) with additive uncertain noise. Also, it was realized that bootstrap could
be used to come up with a rich dataset for the efficient quantification of uncertainty
which influences suspension system’s dynamics. Furthermore, the validation tests
indicated that the non-parametric cumulative distribution function obtained from
bootstrap simulation was accurate due to the richness of the obtained dataset, which
was then used for determining a polytope that encapsulates the uncertainty with
95% confidence. The importance of the statistical analysis was that this was the first
time that a thorough statistical analysis was done for the accurate quantification
of suspension system’s state measurement error. The other important simulation
conducted in Chapter 7 was the design of efficient oracle for LBMPC. In particu-
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lar, comparison was conducted using different statistical and soft machine learning
tools considering a wide range of performance evaluation metrics. The results demon-
strated the superiority of statistical methods over soft methods, due to their accuracy
and interpretable structure. Among the considered methods, ordinary Kriging was
selected to be used as the oracle of LBMPC. Also, the boundedness and continuity of
Kriging allowed the author to theoretical prove the epi-convergence of Kriging, as a
non-parametric oracle (which was an important factor of the oracle used at the heart
of LBMPC).

4. The simulation conducted in Chapter 8 indicated that the structure of LBMPC is
flexible enough to accept both gradient-based and direct-search heuristics for the
calculation of control commands. This was found to be an important feature since,
due to the no free lunch theorem, each control problem can be efficiently handled
by a certain optimization algorithm. One of the other interesting findings was the
ability of LBMPC to reject different types of noises from the upcoming road profile
information, and come up with stable and robust control commands. The results of
comparative study indicated that traditional controllers were incapable of handling
this important task, mainly because of the lack of theoretical foundation to guarantee
the robustness of the control commands. Also, the simulation results derived the
author to the conclusion that the use of forecasting module at the heart of LEMPC
made the controller more efficient than the conventional controllers which calculate
the control commands based on a predefined standard road profile. Indeed, it was
observed that the road profile estimated by LBMPC (using ARMA(2, 3) for the
current study) was very close to the real profile, and accordingly resulted in realistic
control commands. Most importantly, the validation test between the piece-wise
linear model and the true nonlinear model proved the reliability of using LBMPC for
the safe stabilization of vehicle suspension system on road.

All in all, it can be concluded from the results of the current study that LBMPC could
afford accurate, stable, and robust control commands even if the model at the heart of
LBMPC was uncertain. Also, the comprehensive study conducted in this thesis demon-
strated the efficacy of using statistical learning and forecasting tools for both quantification
of uncertainty and forecasting the upcoming road profile in a real-time fashion.

Moreover, the findings of the current thesis answered some of the challenging open
problems within the realm of vehicle suspension control. In particular, it was demonstrated
that by combining the well-established theories for designing optimal, stable and robust
controllers with the theoretical achievements within the realm of statistical learning, one
can develop an efficient and robust predictive controller which accurately forecasts the
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future behavior of the system, as well as the upcoming road roughness to come up with
control commands which stabilize the displacement of vehicle body mass on road, and
accordingly provide ride comfort.

9.2 Towards Autonomous Vehicle Design

In this sub-section, it is tried to draw the attention of readers to a very attractive re-
search field within the realm of automotive industry, called autonomous systems [2006].
Undoubtedly, designing fully automated mechatronic machines have been initiated in the
last decades of 20" century, when engineers have exerted a lot of effort to make their
optimistic vision of designing smart robots a reality. Providing a detailed review of the
chronological advancements and encountered challenges for designing autonomous robots
is beyond the scope of this thesis, and thus, the interested readers are referred to seminal
review papers [207, ]. Tt is sensible for most of the people living in the 215 century that
autonomous robots are playing important servicing roles all around the world. A recent
report indicates that smart / autonomous robots and machines are even prone to take
further steps and handle very complex tasks without any human intervention [209]. At
the engineering level, what attained a considerable interest reclines in the much efficient
performance of autonomous robots, such as probe robots and mining robots. Indeed, after
the invention and successful utilization of such robots, it has been unveiled that not only
they are capable of completing the objects with high precision, but also have lots of benefits
from economical and life hazard viewpoints. As an example, using autonomous firefighting
robots can afford better results, and at the same time, it can be ensured that there is no
life-hazard threat. The feedback of initial tests even augurs a possibility to completely
replace human with autonomous robots for handling such tasks. Interestingly, automotive
and robotic industries share considerable technological similarities, due to the fact that
aerial/ground vehicles and robots are sort of mechatronics systems. The astonishing pro-
gresses on designing autonomous robots have elevated the expectation and awareness of
people around the world, and have indirectly inflicted a meaningful pressure on automotive
industrialists to consider designing autonomous vehicles as a grand strategy [210].

It is also quite understandable that designing fully-autonomous vehicles requires more
technical efforts and much advanced technological infrastructures, due to the complicated
architecture of vehicles compared to most of the existing robotic systems. This is why even
the current significant achievements attained by autonomous robotics researchers can be
viewed as a starting stage for the successful completion of designing a fully-autonomous
vehicle. As a result, autonomous engineers are now trying to design cooperative cruise
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system for vehicles hoping to gradually turn this semi-automated vehicle system to a smart
fully automated one [211]. There are several key factors which make designing a reliable
and practically feasible autonomous vehicle so challenging. It is worth pointing out that
the potential challenges are abound. Here, the most important ones are scrutinized.

1. Modern vehicles are complex mechatronics systems comprising different components
which should work cooperatively. Any delay in encoding and decoding of control-
ling commands and other operating signals can make entire system instable. Also,
it should be ensured the independent controlling units handling each of the con-
trol objectives, such as fuel consumption control, power management, cruise control,
suspension control, tire stability control and etc., have enough computational and
structural aptitude to have a sense from each other’s performance. This is crucial
mainly because an autonomous vehicle must have a central controller (something
like a core) which evaluates the performance of independent controllers and possibly
satisfies a number of control objectives concerning the performance of entire system.
So, independent controllers should be aware of any delay in the performance of other
controlling units to somehow adapt themselves, and ensure the controlling signals
and state information dispatched to the core controller has an acceptable correspon-
dence. One of the most practical ways to comply with this important task is to use
model based controllers which make decision based on a unified control objective.
This control objective may contain states related to the performance of other con-
trolling units, and by optimizing such an objective function, it can be assured that
the independent controllers are in a good compromise. Also, other than considering
a model-based optimal controller, it may be also beneficial to define the unified ob-
jective function in a predictive fashion. In such a way, if a good predictive model
be used, one can increase the reliability of calculated commands, as the final calcu-
lated controlling command of each control unit depends on future state values of the
other control units. Obviously, the successful implementation of such a sophisticated
yet necessary objective function requires so many theoretical and analytical efforts
which ensure the system stability, the reachability of states, and the feasibility (in
terms of actuation and state constraints) of actuation signals. As a remedy to such
a complicated and cumbersome problem, one can think of using learning paradigms
to somehow reduce the amount of theoretical considerations and conservatisms from
control side [83].

2. It is clear that designing a fully-autonomous vehicle falls within the category of
vision-based autonomous navigation system design. This means that autonomous
vehicles should be equipped with efficient image and video processing technologies
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which make the computer vision feasible [212]. Autonomous vision in dynamic en-
vironment is a very challenging task, in particular for automotive applications in
which the dynamics of the underlying system is remarkably fast, and also they may
be several details at each sampling time which should be correctly captured with the
aid of image processing and feature extraction techniques. At the sensing level, the
computer vision unit should be capable of denoising and also handling parallel image
processing tasks, hopefully by considering a multiobjective optimization problem and
multitask inference, as there is a possibility that specific pieces of information cap-
tured through autonomous vision be fed to independent control and decision making
units with certain obligations. Even if the visioning and inference of autonomous ve-
hicles become highly precise and efficient, the process will not be completed unless it
is ensured that control and decision making units receiving the information are accu-
rate and robust enough to not only reject the remaining noises from the information,
but also be prepared for abrupt changes. As an example, a controlling / decision pro-
cessing unit may capture information regarding a sudden accident. Then, it should
be flexible enough to instantly adapt its controlling commands / decisions. There
are so many other concerns with a relatively same flavor which should be considered
and possibly satisfied to make the visioning system efficient, and respectively, make
the applicability of an autonomous vehicle feasible [213].

3. Fault diagnosis controlling units should be very accurate since any functioning de-
ficiency can easily get the passengers into serious troubles. In so many cases, the
experience of drivers helps them to somehow feel or even predict that the vehicle is
going to undergo a deficient functioning. This incurs a proper action and deters pos-
sible functioning flaws when vehicles are on roads. However, advanced autonomous
vehicles are expectedly operating independently, and there is a possibility that the
upcoming faults not be predicted by passengers, probably because of the lack of
experience. Also, an autonomous vehicle has a remarkably more complicated archi-
tecture which itself introduces so many new concerns, and that would be necessary
to devise a new family of fault detection systems responsible for detecting possible
faults of components such as computer vision unit, information processing unit and
etc. The abovementioned facts disclose the necessity of considering two important
factors when designing fault detection units for autonomous vehicles. The first one
is the use of predictive systems (maybe in the form of predictive models) which can
in some sense play the role of an experienced driver and alarm the core controlling
unit before the vehicle encounters any problem. The other important issue which de-
serves consideration is the formulation of fault detection algorithms in the sense that
they become robust to measurement noises and unmeasured disturbances [214]. This

235



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

will help fault detection units to send alarm commands when it is really necessary,
and not react to any simple and possibly irrelevant deviation which could mostly be
the result of disturbances. Fortunately, nowadays, designing predictive and robust
learning and controlling systems has become a must and this will definitely come to
the aid of engineers working on autonomous vehicle design.

4. Autonomous systems should be equipped with highly efficient sensors and adaptable
estimation algorithms. This is very essential as such type of vehicles do not use
any human inference and should correctly read information from ambient. Also,
the decision processing units should be significantly robust and accurate to not only
filter the noises which contaminate the main signals, but also make a fast and correct
decision to make the functioning of autonomous vehicles optimal. From an economic
viewpoint, equipping autonomous vehicles with too many accurate and expectedly
expensive sensors can make their applicability questionable. This is because even a
basic autonomous vehicle may become too expensive and does not gain popularity
in markets. Therefore, automotive industrialists should make a reasonable trade-
off between the expense of final products and their safety. In spite of a dramatic
confliction between those two key issues, optimal satisfying of both of them becomes
a must at-least when the goal is to design autonomous vehicles. So, there are so
many philosophical and technical concerns which should be treated somehow. From
technical viewpoint which is of interest to engineers and applied mathematicians, the
controlling, sensing and state estimation units should be designed such that they can
operate based a comprehensive and multi-criteria objective function which takes the
mentioned key issues into account.

5. The information processing center of autonomous vehicles should be very powerful
since a considerable volume of information should be captured from ambient. Thus,
to comply with the requirements of an autonomous system, the information process-
ing center should take advantage from a variety of techniques, such as compressed
sensing, optimal filtering and feature selection, to make sure (a) it will not archive
remarkably noisy information, (b) the saved data and signals are sparse, and (c) it
has potential to organize different sort of information, separate them and fed them
to correct computational units for further operations. Obviously, this is not an easy
task and algorithm designers have a long way ahead to successfully design such a
desirable unit. The issue even becomes more challenging as it is possible that the
resulting database becomes tremendously large (in terms of both dimensionality and
frequency). Under such circumstances, two important phenomenon may be encoun-
tered. Firstly, it is possible that a large portion of captured information be redundant
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or yield trivial knowledge, and thus, a lot of optimization type computation should
be performed for pruning the database. This may not be practical in dynamic en-
vironment, as any unexpected delay can result in the accumulation of information
which exponentially increases the computational demand for information pruning
[215]. The second scenario is that the captured information be of high importance
and, instead of pruning, the processing unit should devise a policy to cope with possi-
bly a remarkably high dimensional database. In such a condition, another important
problem can be experienced. Through seminal theoretically supported studies, statis-
tician have proven that in large dimensions, several unpredictable phenomenon may
occur which drastically change the properties of databases [216]. Therefore, it is
possible that the implemented information processing rules become entirely useless,
which itself can directly result in a systematic collapse.

Obviously, from the above remarks, one can realize that learning and inference, op-
timal design, and controllability are three key factors which take part for improving the
functioning of autonomous vehicles. That is to say, the best choice is to design the general
architecture of a control unit such that it enjoys from learning, optimization and control.
As discussed in details, fortunately, the flexibility of LBMPC makes it possible to consider
all of the abovementioned issues. Also, being predictive and robust are intrinsic features of
LBMPC which are essential for designing each of the control and fault detection units at
the heart of an autonomous vehicle. The other interesting fact is that by a simple modifi-
cation, the learning module at the heart of LBMPC can turn to a classification, regression
and prediction unit which enables LBMPC to be used at the heart of fault-detection units,
control units, and decision makers connected to computer vision center. Also, the opti-
mization module makes it possible for LBMPC to be used as independent controller for
handling sole control tasks as well as the core controller which requires the formulation
of an objective function which takes into account the optimality of controlling commands
calculated at each independent control unit. Also, as discussed, it is expected that the
objective function of each independent controller be formulated using the states of other
independent controllers (preferably in a predictive fashion) to make sure controllers are
working cooperatively. This is also feasible by a wise formulation of objective function at
the heart of LBMPC. It is also worth mentioning that the distinct architecture of LBMPC
which uses both nominal and learning based versions of state-space in tandem can play
a remarkable role for complying with robustness concerns, which are crucial for design-
ing fault detection units as well as control units which should be able to properly reject
disturbances to neatly calculate the controlling commands.

All of the mentioned issues can be an inspiration to choose LBMPC (of different types)
for designing autonomous vehicles. It is worth mentioning that LBMPC has already proven

237



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

its high potential for designing a complicated autonomous aerial system, i.e. quadrotor
helicopter. This endorses the author’s claim regarding the potential of using LBMPC for
designing autonomous vehicles.

9.3 LBMPC as Low-level Controller for Network of
Connected Vehicles

Before starting the discussion, it should be pointed out that by hyper-level control, we
refer to those controllers which try to control a general behavior of the network of interest,
and by low-level control we focus on those type of controllers used for handling an internal
task in each node of the network. It is apparent that based on the conditions of the defined
problems, both hyper-level and low-level controllers can be deterministic or stochastic.

In general, a network of vehicles can be formed to comply with any predefined objective.
For example, a network of connected vehicles can be formed to serve as a communication
system transmitting information about monitoring the safety of roads, traffic on roads,
intense accidents, and etc. Such an advanced and interesting paradigm which can be
somehow viewed as a generalization of vehicle-to-vehicle (V2V) communication can be
very beneficial, as it can serve as a mean for capturing a large amount of information
useful for decision making and control units devised in smart modern vehicles [217].

However, there are so many challenges at the network design level since one encounters
a mobile network with nodes having stochastic performance. Therefore, initially, it comes
to one’s mind that different key elements such as the robustness of objective function
that the formed network should cope with, stability issues, denoising during information
transmission, and etc. should be taken into account simultaneously. Also, there are so
many challenges related to choosing the proper devices to form the network. Obviously,
each node (vehicle) can be activated in so many fashions, ranging from using an advanced
communication component devised in vehicle to using smart phones for communication.
Up to now, several initial steps have been taken to make the designing of such a complex
mobile network pragmatic. Most of the existing proposals rely on the communication of a
very limited number of vehicles to improve the safety of cruise controllers [218, 14]. There
are also some reports on using V2V connection for improving the performance of active
suspension controllers [219, ]. In all of the above referred researches, emphasis has
been placed on using the transmitting information to improve the performance of low-
level controllers. This seems to be logical, as the main goal of automotive engineers is to
focus on improving the performance of vehicles (which can be viewed as active nodes in a
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network of connected vehicles). Therefore, some sophisticated problems that usually arise
at the network design level and are related to hyper-level controllers are none of automotive
engineers concern. Therefore, by conceding this fact, here, the author will leave the open
issues within the realm of vehicular communication network improvement and efficient
hyper-level controller design untouched. Rather, all focus is put on discussing the potentials
for the optimal utilization of transmitting information to improve the performance of low-
level controllers.

In spite of the improvements reported in [218, 14, , ], there exist so many open
questions. This is because remarkable assumptions have been made to investigate the
potential of V2V for low-level controller design. To name only a few, the following remarks
can be pointed out:

1. In most of the conducted researches, the number of connected vehicles remains con-
stant during the control process. This is very optimistic to proceed with such an as-
sumption, especially for designing safety-oriented controllers. Let’s give a subjective
example for better clarification. Assume that within the context of safety-oriented
control design, an optimal controller be formulated as the sum of linear/nonlinear
functionals which depend on the sum of the distances of proceeding vehicles. Also,
consider that the controller works online, and there is a perpetuate connection be-
tween active vehicles. In such a condition, any sudden event such as stirring or
stopping of one of the proceeding vehicles will affect the control objective function
value (usually appears as a sudden increase / decrease in the magnitude based on
the property of the objective function), which in turn changes the calculated control-
ling command. However, if an adaptive frame be designed which only considers the
connection between vehicles in a limited region, it can be ensured that the network
has a logical stability and the transmitted information can be reliably used for low-
level control. This very simple example reveals why it is meaningless to design V2V
based controllers which have constant number of vehicles in the loop. On the other
hand, it is expected that efficient design of a mobile V2V-based low-level controller
with adaptive number of vehicles be a very complicated issue. This is because, by
any change in the number of connected vehicles, the objective function of low-level
controller should be adapted which may also require the calculation of new stability
criteria. This seems to be necessary as the network of connected vehicles are mobile
in essence, and due to so many factors, the number of connected nodes may vary
during the process. This very simple argument indicates that a controller without
having an adaptive entity or without being capable of the optimal calculation of
control command cannot be considered as a practical choice for such applications.
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2. A lot of the existing researches have not considered a significant randomness effect in
their proposed models to deal with the uncertainties of each connected vehicle. As
mentioned before, due to so many reasons (e.g. systematic faults), it is very likely
that information coming from one of the connected vehicles be contaminated with
a significant amount of noise. Consequently, using such information for calculating
control commands can result in serious problems. To the best knowledge of the
author, there exist no report in the literature which highlights this negative aspect of
the proposed V2V-based controllers. The author’s impression is that an independent
and thorough investigation has to be conducted to realize the major related sources
of uncertainty, and authentic statistical and probabilistic models should be proposed
to get a view on their properties. After all, that would be necessary to get stuck in
robust control theories to come up with controlling rules working under the outlined
sources of uncertainty.

3. It can be strongly claimed that the existing low-level controllers can at-most use the
information captured from the other connected vehicles to control an internal prop-
erty of the corresponding vehicle. By rapid technological advancements, it is not
intangible these days to use more computationally expensive controllers in modern
vehicles [221]. This allows automotive engineers to design much sophisticated con-
trolling architectures probably having a learning module at their heart. By doing so,
low-level controllers can be equipped with techniques which make it possible for them
to do statistical inference. This in turn allows low-level controllers of independent
nodes to be connected to each other. So, it would be possible to have a vehicular
communication network in which adaptive and trainable low-level controllers can in-
crementally learn from each other. Obviously, having such a controlling scheme can
be very beneficial for the better guidance of active suspension and safety-oriented
controllers. Although such propositions are a little bit far from the reality (due to
the expense of equipping all vehicles with such infrastructures), but they can be a
hot practical research topic in very near future. So, at-least at the simulation level
and software-in-the-loop implementation, that would be necessary to seriously start
working on using learnable low-level controllers which are able to communicate with
each other, and to investigate the possible benefits with respect to a wide range of
control objectives.

As can be inferred from the abovementioned remarks, LBMPC can be a very good can-
didate to be used as V2V communication based low-level controller. Apparently, it has a
very good adaptive nature, and also calculates the controlling codes in an optimal fashion.
This can be a compatible feature to use LBMPC in a mobile network of connected vehi-
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cles. In this way, any change in the structural property of mobile network, e.g. exclusion
or inclusion of a node, can be sensed and respective adaptation be made to LBMPC. Also,
by means of the stability theorems developed for LBMPC, it can be ensured any sudden
unwanted change or entropy in macroscopic scale will not result in a microscopic collapse.
In other words, even if the performance of low-level controller be affected by the infor-
mation transmitting among connected vehicles, there is a certain degree of independency
at low-level control. The beauty of using LBMPC mainly lies in its ability to maintain a
desirable rate of robustness when calculating the controlling commands. Such a feature
makes LBMPC a very good solution for practical usage, as that would not be possible to
use a low-level controller incapable of withstanding against the noise and disturbances as-
sociated with the upcoming information form the other networks. It has theoretically and
numerically been proven that LBMPC can use an oracle which is capable of learning a wide
range of structured and unstructured uncertainties, and making efficient reactions to re-
ject those noises from original state signals. This trainable learning module at the heart of
LBMPC is also a good fit for designing low-level controllers which somehow directly share
information with other low-level controllers in connected vehicles. Upon implementation,
such a beneficial feature can play an important role in designing novel control objectives
with the primary goal of increasing the awareness of low-level controllers. Along with the
mentioned features, it is also necessary to be able to implement a low-level controller for
both regulation and trajectory tracking applications. For example, in [11], it was indicated
that the low-level safety-oriented controller should track a trajectory to retain the vehicles
in a safe distance from each other. On the other hand, in [220], the low level V2V-based
controller takes information from other vehicles to regulate / stabilize the suspension sys-
tem of the corresponding vehicle. Fortunately, as a variant of MPC, the control rule of
LBMPC can be easily adapted to be used for both regulation and tracking applications.

All in all, the above discussion indicates that LBMPC can be used as low-level con-
troller for a network of connected vehicles since it combines all learning, optimization, and
robustness theories in a unified architecture. Without any prejudice, in this section, the
author has tried to draw the attention of readers to the great potentials of LBMPC for
handling such a control objective. Also, several open questions have been pointed out
which deserve lots of research preferably by using LBMPC or any other controller which
has features like learnability, optimality, stability, and robustness.
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9.4 On Compatibility of LBMPC with Al: Is It a Po-
tential Pragmatic Solution?

Nowadays, there is a compromise among different groups of engineering society that the
success and fruitfulness of future research is strongly related to the advancements in Al.
That would not be an exaggeration if one claims that Al will soon play a meaningful role
in different fields ranging from control to engineering design [222]. To the author’s best
knowledge, the main reasons to support the above claim are twofold: (a) the astonishing
progress of computational and technological facilities which enables the humanbeing to
design remarkably powerful and intelligent machines, and (b) the urge for exploring new
ideas which are usually beyond the scope of classical mathematics and statistical sciences.
The former issue can be easily sensed in real-life.

By a simple comparison of the available facilities and technologies in the late 20
century with those available today, one can easily realize that most of the technological
facets have evidenced an unexpected promotion. Such a rapid technological growth can
be realized in automotive industry, robotics, medical engineering, chemical engineering
and etc. It is transparent that the recently emerged engineering problems within the
mentioned realm are usually intricate, and in most of the cases, they require a supervisory
architecture capable of inference and decision making. Inference and decision making
may rely on solving a number of clustering, estimation and classification problems which
are quite nonlinear with different types of constraints. Therefore, one logical choice for
handling such problems could be the use of AI, which in turn encompasses so many powerful
techniques beneficial for inference, estimation and classification [223]. One the other hand,
the latter issue which refers to the tendency of researchers to take steps beyond the existing
mathematical frames and try to solve complicated problems with the aid of nature-inspired
techniques has been attracting a great attention [224]. This sub-field of Al which is known
as nature-inspired computing or bio-inspired computing advocates the philosophy that
inexact solvers inspired from the existing natural phenomena enable researchers to solve
recently spotlighted overwhelming problems. By taking a glance into the exiting literature,
one can easily endorse the fact that a great deal of effort is made to propose novel nature-
inspired solvers or improve the existing ones with the hope of improving the performance
of classical optimization, estimation and clustering techniques [225]. All of the above facts
augur the high possibility that Al plays a pivotal role in future, and surpasses the other
problem representation paradigms.

Also, during the past decade, Al has found reputation among control engineers. In this
way, control engineers have successfully applied Al techniques to design intelligent optimal

242



CHAPTER 9. CONCLUSIONS AND FUTURE WORK

controllers, nonlinear controllers, predictive controllers, real-time controllers, and etc. For
more information on the progresses of Al based controller design, one can refer to [220].
Through theoretical analysis and numerical simulation, it has been proven that techniques
from AI have a significant potential to be used in the core of controlling architectures.
There are a number of obvious similarities between Al and modules used in control which
justify their hybridization for practical applications. In below, we present the similarities
between Al and important control paradigms (i.e. optimal control, model-based control,
predictive control, and heuristic control):

1. Optimal controllers foster the use of an optimization problem to calculate the most
efficient controlling commands [168]. The difficulty of the underlying optimization
problem directly depends on the nature of the control problem at hand, and can be
convex /non-convex, constrained/unconstrained, multivariate, linear/nonlinear, dy-
namic, and etc. In so many cases, the difficulty of the underlying problem can make
it very hard for an optimizer to converge to an optimal solution, especially when the
optimization problem should be solved in a real-time fashion. There is a huge amount
of archived research from Al research society which explore using stochastic nature-
inspired algorithms for global optimization in complicated solution landscapes. It
has theoretically and numerically been indicated that Al optimization methods can
converge to near global optimal solutions even if the objective function be highly
nonlinear, constrained and dynamic [227]. This interesting asset has been identi-
fied by control engineers, and the potential of Al optimizers for designing optimal
controllers has been evaluated using different control problems. The results are, in
general, in favor of using Al based optimal controllers, and such paradigms can im-
prove the quality of actuation signals, especially when the raised control problem
is highly nonlinear. Therefore, it is expected that in the near future, controllers
having optimal property be further explored and be combined with Al optimization
techniques to handle difficult control problems.

2. Model-based controllers mainly rely on a model which represents the behavior of the
system to be controlled. Such type of controllers cannot operate unless a proper
state-space model be formulated which includes a number of states. Based on a pre-
defined rule, a model-based controller calculates the actuation commands. Since its
inception, such a controller has vigorously been applied to different control problems,
and the feedbacks of the conducted research indicate its good operational poten-
tial [228]. However, a remarkable portion of such controllers use mathematical and
physics-based models at their heart. Such models usually cannot fully capture the
behavior of real system, especially when it is highly complex. Therefore, due to the
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limited accuracy of physics-based models, the performance of model-based controller
can be degenerated. In such a circumstance, control practitioners have reached the
conclusion to start working on testing the potential of Al based models for designing
model-based controllers [229]. In this context, a remarkable progress has been done
by adopting and efficient designing of Al based models as control-oriented models.
The main positive aspect of such statistical and soft AI models lies in the fact that
they heavily rely on the data obtained from real system to develop a model. In this
way, by using an efficient design of experiment (DoE) method or sensing technique,
and by capturing a comprehensive database, it can be assured that the resulting Al
models retain a good trade-off between accuracy and robustness, and can be reli-
ably used as control-oriented models. One of the other promising assets of such Al
model-based controllers lies in their capability to produce a fast and computationally
efficient model representing the nonlinear and complicated behavior of real-system.
Such desirable features of AI models have given them versatility and authenticity to
be used for controlling of highly complicated plants. The promising reports have per-
suaded the researchers to consider model-based controllers, usually with AT models,
as one of the most practical choices for handling emerging control problems. There-
fore, that would not be far from imagination that those type of controllers which have
the potential to be fused with an Al model be a target of comprehensive investigation
in a near future.

3. Predictive control can be viewed as one of the most peculiar and powerful variants
of controllers which is finding its place among industrialists [160]. The salient asset
of such controllers emanates in their operational property which is based on using
the predicted behavior of the considered system to make optimal control decision.
As can be inferred, such type of controllers are advanced version of model-based
controllers which not only are capable of using a model representing the behavior
of the considered system, but also are equipped with prediction methodologies to
somehow forecast the upcoming values of system states. Due to this specific fea-
ture, the controlling rules calculated by such controllers can be very efficient and
reliable, compared to those controllers making decision based on the current states
of the considered system. Classical prediction and sampling techniques have origi-
nally been proposed to come up with such controllers. However, after independent
achievements by Al society on designing fast, accurate and robust predictors, it has
come to researchers’ mind to adopt Al-based prediction methods for predictive con-
trol. For detailed information on the compatibility of Al with predictive control,
one can refer to [230]. As data-derived models, Al predictors can usually forecast
the future behavior of any system with an acceptable accuracy, regardless of their
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intrinsic nonlinearity and randomness. Therefore, it is expected that Al-predictors
play a key role in future for designing robust and accurate predictive controllers.

4. Heuristic controllers are among the oldest and most applicable variants of controllers
used in todays’ industry. The main reason is their easy implementation and simple
design logic as well as their independency from any system model. Usually, heuristic
models work based on a number of rules that are gathered in a rule-base for making
inference [231]. The resulting rule-base can be viewed as an experimentally designed
map. Due to their versatility, control practitioners have put a great amount of
energy to develop automated rule-base designing algorithms which enjoy a good
generalization, and can be used for different applications. Fortunately, AI plays a
significant role within the realm of rule-base design. Among the existing statistical
and soft methods, one can refer to genetic programming, decision trees, neural trees,
fuzzy logic, statistical symbolic computing and etc. From a control prospective, upon
a good module-based architecture design, a model-based controller can be easily
turned to a heuristic controller, provided that the state-space model be replaced
with a bunch of rules. Researchers of fuzzy control have played around such an idea
for a long time and their simulation results indicate that this strategy can afford a
promising control outcome. Hence, Al will make a prominent contribution in the
coming years to promote the efficacy of heuristic controllers. It is worth mentioning
that LBMPC hosts an oracle in its architecture which can be easily turned to a
rule-based system, if required.

From the above arguments, it can be concluded that LBMPC shares several similarities
with the mentioned properties of a desirable controller, and its architecture is prone to
be fused with Al. From an architectural viewpoint, the author believes that, given the
control problem at hand, the optimization module, the oracle, the prediction strategy,
and the learning module can easily be equipped with methods from Al for performance
improvement. Also, the interesting and innovative architecture of LBMPC enables it to be
combined with any type of Al techniques as long as the robustness of controlling command,
and the convergence of oracle-based model to the nominal state-space model be proven.
Therefore, the author believes that LBMPC can be at the core of attention, and rigorous
investigations can be conducted to clearly explore the potential of methods form Al for
performance improvement.
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9.5 Open Computational and Fundamental Challenges

In this thesis, several simulation and analysis were carried out to present a comprehensive
result on the potential of LBMPC for active suspension control. Due to the nonlinearity
of the problem at hand, the obtained simulation results provided us with interesting and
promising findings regarding the power of LBMPC. All in all, the obtained results were
in favor of using LBMPC for active suspension control. However, such promising findings
cannot put a closure to fundamental questions regarding the generalization and reliability
of LBMPC as an efficient controlling algorithm. Actually, a relatively same argument holds
for most of the existing control schemes, and it cannot be claimed that a certain type of
controlling algorithm can outperform the other existing variants of controllers.

In general, concerns about choosing an appropriate controller can be viewed from com-
putational and theoretical viewpoints. In other words, to have a firm judgement on the
performance of a controller, it should be assured that its formulation and control rule calcu-
lation strategy have enough theoretical flexibility to prepare it to be used for a wide range
of problems within the realms of nonlinear control, robust control, stochastic control, and
optimal control. On the other hand, to be practical, the implementation of a controlling
rule should not take a lot of computational power from processor. Such a feature is essential
to make the hardware-in-the-loop (HIL) implementation of controller feasible. Fortunately,
one can place LBMPC among those controllers which have an acceptable mathematical
foundation. As clarified in this thesis, LBMPC is the result of several theoretical analy-
sis to guarantee its stability, robustness, trajectory tracking and convergence capabilities.
Other than the acceptable theoretical foundation of LBMPC, a number of HIL-tests have
been conducted which also augur the real-time implementation capability of this controller.
Having the mentioned fact into mind, in what follows this section, the author highlights
some of the existing open issues which deserve further investigations and analysis. The
provided remarks are divided into two different parts explaining the existing theoretical
and computational concerns.

The following remarks can be pointed out concerning the open theoretical questions on
using LBMPC:

1. Standard LBMPC has been developed in the light of a strong theoretical analysis
proving the convergence and stability properties of the oracle used at the heart of
learning module. Under several assumptions, it has been proven that the state-space
with learning oracle will be stable and can converge to its nominal uncertain state-
space counterpart. However, the structure of learning algorithm used for analysing
the oracle is not so complicate. In many of the practical problems, the oracle should
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be much more complicated, maybe a deep learner, and under such a condition, it can
be very difficult or even impossible to make sure the same stability and convergence
conditions hold. This fact has been drawn to the attention in this thesis, and it
was indicated that considering a simple learning algorithm enables us to conduct a
theoretical analysis. However, the prediction error of such an oracle becomes large
when the underlying system is nonlinear. On the other hand, considering complicated
and generalized learning algorithm can improve the accuracy of learning module, but
that would be very arduous to comment on stability and convergence potentials of
such methods. In view of such facts, one way for improving the performance of
LBMPC is trying to implement more powerful, and usually complicated learning
algorithm, as oracle, and at the same time, providing mathematical proofs on their
convergence properties and stability.

2. By precise reading of the existing literature devoted to LBMPC, one can discern that
the performed robustness analysis is not comprehensive. In general, it is well-known
that the uncertainty can either be structured or unstructured with different proper-
ties. However, in the available literature, the conducted robustness analysis is rather
general, and limited sources of uncertainty are added to the nominal state-space
model for robustness analysis. It sounds that the investigation on this special aspect
of LMBPC should be better organized, definitely under the light of well-established
probabilistic and stochastic process theories. This enables control engineers to cate-
gorize most of the uncertainty scenarios possibly occurring in practice, and to develop
corresponding strategies to cope with the uncertainties.

3. Less attention has been given in the literature to the improvement of the optimization
module of LBMPC. This is when the conducted investigation on improving/analysing
the optimization algorithm at the heart of standard MPC is abound. In this context,
due to the particular architecture of LBMPC, an independent study should be carried
out, perhaps by considering the results of theoretical optimization analysis on MPC,
to elicit the most powerful optimization scenarios for LBMPC. Also, efforts should be
made to explore and evaluate the existing constraint handling strategies to improve
the performance of LBMPC when the underlying constraint optimization problem
is difficult. It is suggested that those optimizers with firm theoretical foundation
be selected for analysis. The main reason is that a theoretically well-established
optimization method would yield much authentic information about key factors such
as convergence speed, multi-modality handling, constraint handling, scalability, and
etc. As indicated in this thesis, a proper optimizer can be selected from both the
deterministic and stochastic optimization paradigms.
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4. The potential of LBMPC to be implemented as a component of more complicated
control paradigms such as hybrid switching controllers, hierarchical controllers, dis-
tributed controllers, and etc. should be verified. As we know, each of the mentioned
paradigms have their own theoretical foundations which can expand the applicability
of LBMPC. This key idea has been given full consideration for most of the powerful
controllers such as PID, LQR, and Hy/H,. Hence, it is impossible for LBMPC to find
its place among control practitioners unless making sure that it has enough flexibility
to be implemented as a component of much more advanced control architectures.

Also, the following issues deserve a deep and comprehensive analysis to establish an
acceptable foundation addressing the computational concerns about using LBMPC:

1. It is well-known to the control society that a large part of the existing control prob-
lems really require computationally efficient controlling algorithms. As a matter of
fact, it is a common practice in so many cases to sacrifice the efficiency of a con-
troller in favor of its computational speed. This is actually the main reason that
the most applicable controller in nowadays industrial applications is the simplest
one, i.e. PID. It sounds logical that to make LBMPC a competitive controlling
scheme, at-least for nowadays industrial applications, there is no choice but to put
a considerable effort for optimizing the general architecture of LBMPC as well as
applying well-known model-reduction tools. The above recommendation is general
but can take different forms based on the properties of problems at hand, and also
based on the experience of control engineers. For example, when handling a vehicle
system with complicated dynamics and different sub-components, the most empha-
sis should be exerted on applying efficient model reduction techniques to present a
simple and approximately precise surrogate dynamical model. As another example,
when handling a data-derived control problem, the most emphasis should be exerted
on adopting efficient sparse representation and regularization techniques to simplify
the representative machine to the highest possible extend. Thus, this general rec-
ommendation deserves independent studies for different applications, with the hope
of making LBMPC (which unfortunately has a complex architecture) as simple as
possible.

2. Other than searching for simple modules to form the architecture of LBMPC, an
independent attempt should be made to reduce the algorithmic complexity of the
techniques used in each module. By a precise investigation into the literature, one
can realize that for most of the applications, there exist several methods with a rel-
atively same efficiency but entirely different computational cost. For example, this
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fact can be easily sensed when we try to choose an oracle for the estimation of dis-
turbances or other sort of signals (maybe a same prediction can be performed with
a simple statistical model or a complex deep learning system). In application, other
than the theoretical concerns, it is also very important to make sure the consid-
ered modules have a fast calculation speed and can react in a reasonable portion of
time. Thus, empirical investigation for obtaining the most computationally efficient
(and theoretically safe) oracles and optimization algorithms is still open, and indeed
deserves a thorough attention.

The above computational and fundamental challenges are among the most important
elements which deserve independent empirical and theoretical studies on numerical bench-
marks and real-world systems. The author believes that due to the very promising and
reliable feedbacks on the applicability of LBMPC, control engineers will give attention to
this peculiar control architecture and put lots of efforts to improve it from different as-
pects. So, the above information can play a key role for interested researchers working
on the improvement of LBMPC. Having said that the author does not claim that the
abovementioned remarks are complete, and several other issues can raise when applying
LBMPC to real-world control problems. As a final remark, it is worth to draw the at-
tention of the readers to a relatively recent review paper on MPC [232] in which different
theoretical and computational aspects have been considered. As a model predictive control
scheme, the same arguments may hold for LBMPC, and thus, a complete investigation on
the advantages and downsides of LBMPC would require taking very similar steps.
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Appendix A

Codes Required for Simulating the
Results

A.1 Codes implemented in Chapter 4

The simulation conducted in Chapter 4 includes a MATLAB code for pre-processing of
data, and a R code which tests several forecasting methods to get the best one for controller
design.

A.1.1 MATLAB code for pre-processing of road roughness data

Mfile for reading the times from cell arrays and identify the new
% set-points (with the length of 1 sec for our simulation)

clc; clear;

load(’RecordedTimes_2’),

data=RecordedTimes_2;

% convert to strings (each arrays shows the second in which the acceleration is measured)
mcs = cellfun(@(x) (mat2str(x)),data,’uniformoutput’,false);

% find unique arrays in the resultung matrix. There are several records in each second

% So, by extracting unique arrays, we find out the number of rec

[uniqueCells, idx0fUnique,idxYouWant] = unique(mcs);

Time_Change=idx0fUnique;

% Extracting the displacement profile
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load(’Acceleration_2’),
load(’Time_Change_2’),

for i=1:1:size(Time_Change_2,1)

if i==size(Time_Change_2,1)

Acc(i)= mean(Acceleration_2(Time_Change_2(i):end));

else

Acc(i)= mean(Acceleration_2(Time_Change_2(i):Time_Change_2(i+1)));
end

end

VOo=-1; % initial vertical velocity

Acc=Acc-0.25; % taking off the intercept to get the mean-adjusted stationary profile
Acc=Acc’;

for i=1:1:size(Acc,1)

if i==

Velocity(i) = VO + (Acc(di)) ;

else

Velocity(i) = Velocity(i-1)+ (Acc(i)) ;
end

end

Velocity=Velocity’;

X0=0; % initial vertical displacement

for i=1:1:size(Velocity,1)

if i==

Displacement (i) = X0 + (Velocity(i)) ;

else

Displacement (i) = (Velocity(i-1)+ (Velocity(i))) ;
end

end

% Turning the displacement to cm
Displacement = 0.01*Displacement;

plot(Displacement),
figure,
plot(Velocity)
figure,

plot(Acc, ’r’)

% Differencing Experiment

Acc_diff1=diff(Acc); % first order differenced version of mean adjusted acceleration
pp= cumsum ([Acc(1);Acc_diff1]); % check the difference

figure,

plot(Acc,pp,’0’)

figure,

histfit(Acc,10, ’normal’)
figure,

plot(Acc_diff1)

figure,

histfit(Acc_diff1,10, ’normal’)
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A.1.2 R code for analysis of forecasting models

setwd("C:\\Users\\Desktop\\Statistical Learning-and Stochastic Process for Robust Predictive Control")

X=0

Z=c()

X<-read.csv("Acc.csv" ,header=TRUE)
Z<- X[1:165,1]

ts.plot(Z)

hist(2)

HHHHHE forkkokkokokokokkokk STep 1 kskskskkskokskokokokokok
# Original time series

par (mfrow=c(2,2))

plot.ts(Z, xlab="Time", ylab="Acceleration")
hist(Z)

# The first order difference

27=diff (2)

ts.plot(ZZ,xlab="Time", ylab="1st order difference")
hist(ZZ)

BRI oRkRoRkkk kR Step 2 kkkkkkkkkrkkk I
Dataa=ZZ
par (mfrow=c(3,1))

## the qq norm indicates that the obtained results are trustable for analysis
qgnorm(Dataa,xlim=c(-2,2),ylim=c(-2,2))

qqline(Dataa)

acf(Dataa, lag.max = 15,

plot = TRUE, na.action = na.fail, demean = TRUE)

pacf (Dataa, lag.max = 15,

plot = TRUE, na.action = na.fail, demean = TRUE)

HHEHE fooookokookkk Step 3 kkkkkkkokkokkokk  HHEER#R
# Based on analysis, we have some clues to search for reasonable models
# fit for this dataset, i.e. ARMA and MA.

#
# Fit MA based on AIC and OLS
#
Dataa=ZZ[1:160]

d=0

p=0

q=3

fit.ma <- arima(Dataa, order = c(p, d, q),
xreg = NULL, include.mean = FALSE,
transform.pars = TRUE,

fixed = NULL, init = NULL,

method = c("CSS-ML", "ML", "CSS"),

SSinit = c("Gardner1980", "Rossignol2011"),
optim.method = "BFGS",

optim.control = list(), kappa = 1e6)

# analyzing the fitted MA
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tsdiag(fit.ma)

# Use the identified paramaeters for simulation

Siml=c()

Sim2=c()

Sim3=c()

Simd=c()

# Siml <- arima.sim(list(ma = c(-0.9951)) ,n=length(Dataa),innov=Dataa)

# Sim2 <- arima.sim(list(ma = c(-1.0290,0.0381)) ,n=length(Dataa),innov=Dataa)

Sim3 <- arima.sim(list(ma = c(-1.0161,-0.0702,0.1065)) ,n=length(Dataa),innov=Dataa)

# Sim4 <- arima.sim(list(ma = c(-1.0209,-0.0725,0.1375,-0.0261)) ,n=length(Dataa) ,innov=Dataa)
MA_fit_val=Sim3

# calculate the 10-fold training MSE
seg.length= length(Dataa) / 10
err=c()

fff=MA_fit_val-Dataa

for(jj in 1:10)

{

ffff = £ff [((jj-1)*seg.length)+1:(jj*seg.length)]
err[jjl= sum((££££f[1:16]1)°2) / seg.length

ffff = c()

}

mean.error=sum(fff)/length(Dataa)

std= (sqrt(sum(( (fff) - mean.error)~2) )) /length(Dataa)
m.s.error= mean(err)

par (mfrow=c(3,2))

# TRAINING PART

qqnorm((MA_fit_val-Dataa), main="qq-plot for residuals")

qqline ((MA_fit_val-Dataa))

ccc=seq(from =-2, to = 2, by = 0.1 )

plot(Dataa,MA_fit_val, xlim=c(-2,2), ylim=c(-2,2), xlab="data", ylab="MA fit")
lines(ccc,ccc, type="1", col="blue")

# TESTING PART

PredLength=5

Newdataa=ZZ[(length(Dataa)+1) : (length(Dataa)+PredLength)]

pred <- predict(fit.ma, n.ahead = PredLength)
plot.ts(Dataa,xlim=c(1,length(Dataa)+PredLength), ylab="series and forecast",main= paste("MA of order",q))
lines(pred$pred,col="blue", lwd=3,type="1")
lines(pred$pred+1.96*pred$se,col="red",lwd=3,type="1")
lines(pred$pred-1.96*pred$se,col="red",lwd=3,type="1")

# check the accuracy of the interval

MeanPred = as.numeric(pred$pred) # ECTRACT THE MEAN VALUES from model

SEPred= as.numeric(pred$se) # ECTRACT THE STD from model

plot (Newdataa,col="blue", ylim=c(-3,3), xlab = "predicting future", ylab = "predicted value vs. real data")
lines (MeanPred,col="red")

lines(MeanPred+1.96%SEPred,col="red",1lwd=3,type="1")

lines(MeanPred-1.96%SEPred,col="red",1lwd=3,type="1")

## Best model estimate

ts.plot(Dataa,col="blue",ylab="series values",main= paste("MA of order",q))
lines(MA_fit_val,col="red")

legend("bottomright", inset=.05,c("Data","MA fit"),cex=.8,
col=c("blue","red") ,pch=c(9,9))
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#
# Fit ARMA based on AIC and OLS
#
Dataa=ZZ[1:160]

d=0

p=1

q=1

fit.arma <- arima(Dataa, order = c(p, d, q),
xreg = NULL, include.mean = FALSE,
transform.pars = TRUE,

fixed = NULL, init = NULL,

method = c("CSS-ML", "ML", "CSS"),

SSinit = c("Gardner1980", "Rossignol2011"),
optim.method = "BFGS",

optim.control = list(), kappa = 1e6)

# analyzing the fitted ARMA

tsdiag(fit.arma)

# Use the identified paramaeters for simulation

Simi=c()

Sim2=c()

Sim3=c()

Simd=c()

Siml <- arima.sim(list(ar = c¢(-0.0299), ma = c(-0.9916)) ,n=length(Dataa),innov=Dataa)

# Sim2 <- arima.sim(list(ar = c(-0.2816), ma = c(-0.7118,-0.2822)) ,n=length(Dataa),innov=Dataa)

# Sim3 <- arima.sim(list(ar c(-0.0012,-0.1124), ma = c(-1.0194,0.0408)) ,n=length(Dataa) ,innov=Dataa)
# Sim4 <- arima.sim(list(ar c(-0.5934, -0.9778), ma = c(-0.4283,0.4432,-0.9905)) ,n=length(Dataa) ,innov=Dataa)
ARMA_fit_val=Siml

# calculate the 10-fold training MSE

seg.length= length(Dataa) / 10

err=c()

fff=ARMA_fit_val-Dataa

for(jj in 1:10)

{

ffff = £ff [((jj-1)*seg.length)+1:(jj*seg.length)]
err[jjl= sum((£f££f£f[1:16]1)°2) / seg.length

ffff = c()

}

mean.error=sum(fff)/length(Dataa)

std= (sqrt(sum(( (fff) - mean.error)”2) )) /length(Dataa)
m.s.error= mean(err)

par (mfrow=c(3,2))

# TRAINING PART

qqnorm( (ARMA_fit_val-Dataa), main="qq-plot for residuals")

qqline ((ARMA_fit_val-Dataa))

ccc=seq(from =-2, to = 2, by = 0.1 )

plot(Dataa,ARMA_fit_val, xlim=c(-3,3), ylim=c(-3,3), xlab="data", ylab="ARMA fit")
lines(ccc,ccc, type="1", col="blue")

# TESTING PART

PredLength=5

Newdataa=ZZ[(length(Dataa)+1) : (length(Dataa)+PredLength)]

pred <- predict(fit.arma, n.ahead = PredLength)
plot.ts(Dataa,xlim=c(1,length(Dataa)+PredLength), ylab="series and forecast")
lines(pred$pred,col="blue", lwd=3,type="1")
lines(pred$pred+1.96*pred$se,col="red",1lwd=3,type="1")
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lines(pred$pred-1.96*pred$se,col="red",lwd=3,type="1")

# check the accuracy of the interval

MeanPred = as.numeric(pred$pred) # EXTRACT THE MEAN VALUES from model

SEPred= as.numeric(pred$se) # EXTRACT THE STD from model

plot (Newdataa,col="blue", ylim=c(-3,3), xlab = "predicting future", ylab = "predicted value vs. real data")
lines(MeanPred,col="red")

lines(MeanPred+1.96%SEPred,col="red",1lwd=3,type="1")

lines(MeanPred-1.96*SEPred,col="red",1lwd=3,type="1")

## Best model estimate

ts.plot(Dataa,col="blue",ylab="series values",main= paste("ARMA of order","(",p,",",q,")"))
lines (ARMA_fit_val,col="red")

legend("bottomright", inset=.05,c("Data","ARMA fit"),cex=.8,

col=c("blue","red") ,pch=c(9,9)

#
# Fit APARCH model
#
Dataa=ZZ[1:160]

d=0

p=1

q=1

fit.arma <- arima(Dataa, order = c(p, d, q),
xreg = NULL, include.mean = FALSE,
transform.pars = TRUE,

fixed = NULL, init = NULL,

method = c("CSS-ML", "ML", "CSS"),

SSinit = c("Gardner1980", "Rossignol2011"),
optim.method = "BFGS",

optim.control = list(), kappa = 1e6)

# analyzing the fitted ARMA
tsdiag(fit.arma)

# Use the identified paramaeters for simulation

ARMA_fit_val=c()

ARMA_fit_val <- arima.sim(list(ar = c(-0.0299), ma = c(-0.9916)) ,n=length(Dataa),innov=Dataa)
# residual errors

res.error = ARMA_fit_val-Dataa

plot.ts(res.error)

# use t-series package

library("tseries")

res.garch <- garch(res.error, order=c(1,1), trace=F) # fit a GARCH(1,1) model
summary (res.garch)

plot(res.garch$series)

acf ((res.garch$residuals[3:160])"2)

qgnorm(res.garch$residuals[3:160])

qqline(res.garch$residuals[3:160])

# Also use "rugarch" package for GARCH (1,1) with t distribution
library("rugarch")

garchllt <- ugarchspec(variance.model=1list(model="sGARCH", garchOrder=c(1,1)),
mean.model=1ist (armaOrder=c(0,0,0)), distribution.model="std")
res.error.garchlit <- ugarchfit(data=res.error, spec=garchilt)
res.error.garchl1t@fit$coef # this gives us the coefficients, note 6 df for t
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garchlltres <- res.error/res.error.garchl1t@fit$sigma # creating residuals

par (mfcol=c(1,2))

acf (as.numeric(garchiltres)~2)
library("qqtest")

qqtest(garchlltres, dist="student", df=6)

# estimation based on the fitted model
e=c()

w=c()

sigma=c()

sigma.square=c()

a0=8.828e-02

al1=3.884e-01

b1=5.662e-16

w = rnorm(1, mean = 0, sd = 0.2)

e[1] = res.error[1]

sigma[1] = e[1] / w

for(i in 2:160)

{

sigma.square[i] = a0 + (al * (e[i-1]1"2)) + (bl * (sigmali-1]1"2))
sigmal[i] = sqrt(sigma.square[i])

w = rnorm(1, mean = 0, sd = 0.2)

el[i] = sigmalil * w

}

plot.ts(e)

ee=res.error - e

plot.ts (ee)

m.s.error=sum((ee) "2)/length(res.error)
m.s.error

# APARCH estimation

APARCH_fit_val = ARMA_fit_val + e

m.s.error=sum( (APARCH_fit_val-Dataa)"2)/length(Dataa)
mean.error=sum(APARCH_fit_val-Dataa)/length(Dataa)

std= (sqrt( sum(( (APARCH_fit_val - Dataa) - mean.error)~2) )) /length(Dataa)

par (mfrow=c(3,2))

# TRAINING PART

qqnorm( (APARCH_fit_val- Dataa), main="qq-plot for residuals")
qqline ((APARCH_fit_val- Dataa))

ccc=seq(from =-2, to = 2, by = 0.1 )
plot(Dataa,APARCH_fit_val, xlim=c(-2,2), ylim=c(-2,2), xlab="data", ylab="APARCH fit")
lines(ccc,ccc, type="1", col="blue")

# TESTING PART

PredLength=5
Newdataa=ZZ[(length(Dataa)+1) : (length(Dataa)+PredLength)]
pred <- predict(fit.arma, n.ahead = PredLength)

# Pred Garch (1, 1)

eee=c()

w=c()

sigma=c()

sigma.square=c()

a0=8.828e-02

al=3.884e-01

b1=5.662e-16

w = rnorm(1, mean = 0, sd = 0.2)
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eee[1] = res.error[160]

sigma[1] = eee[1] / w

for(i in 2:(PredLength+1))

{

sigma.square[i]l = a0 + (a1l * (e[i-11"2)) + (b1 * (sigmali-11"2))
sigma[i] = sqrt(sigma.square[i])

w = rnorm(1, mean = 0, sd = 0.2)

eee[i] = sigmalil * w

}

MeanPred= as.numeric(pred$pred) + eee [2:(PredLength+1)]
mean.error=sum(MeanPred[1:4]-Newdataal[1:4])/(length(Newdataa)-1)

SEPred= (sqrt( sum(( (MeanPred[1:4]-Newdataa[1:4]) - mean.error)”2) ))/(length(Newdataa)-1)
plot.ts(Dataa,xlim=c(1,length(Dataa)+PredLength-1), ylab="series and forecast",main= "APARCH model")
lines(MeanPred,col="blue", lwd=3,type="1")

lines(MeanPred+1.96*SEPred,col="red",1lwd=3,type="1")
lines(MeanPred-1.96%SEPred,col="red",1lwd=3,type="1")

# check the accuracy of the interval

plot (Newdataa,ylim=c(-3,3),xlab ="predicting future",ylab ="predicted value vs. real data",main="APARCH model")
lines(MeanPred,col="red")

lines(MeanPred+1.96%SEPred,col="red",1lwd=3,type="1")

lines(MeanPred-1.96*SEPred,col="red",1lwd=3,type="1")

## Best model estimate
plot.ts(Dataa, xlim=c(1,length(Dataa)+PredLength),col="blue")
lines (APARCH_fit_val, col="red")

par (mfrow=c(2,2))
acf ((res.garch$residuals[3:160])°2)
acf (APARCH_fit_val- Dataa)

#
# Fit DLM
#
Dataa=Z[1:160]

mO=mean (Dataa)

var (Dataa)

plot.ts(Dataa)

simpledlm <- dlm(mO=mean(Dataa),CO=var(Dataa),FF=1,V=2.59,GG=1,W=3) # create the dlm model

# parameters V and W are calculated using dImMLE function as follows:

d1mMLE (Dataa,par=c(1.85, 0.10),build=function(x){dlm(mO=mean(Dataa),CO=var (Dataa),FF=1,V=x[1],GG=1,W= x[1]1*x[2])})
# then take the first parameter ($par) value as V and the product of the two parameters as W.

Dataa.simpledlm <- dlmFilter(Dataa, simpledlm) # fit the model to the data
Dataa.simpledlm$f # these are the one-step-ahead forecasts i.e. Y2|Y1, Y3|Y2,Y1, Y4|Y3,Y2,Y1, etc

PredLength=5

plot.ts(Dataa.simpledlm$y, xlim=c(1,length(Dataa)+PredLength))
lines(Dataa.simpledlm$f, col="red")

pred <- dlmForecast(Dataa.simpledlm , nAhead = PredLength)

MeanPred = as.numeric(pred$f) # EXTRACT THE MEAN VALUES from model
SEPred= sqrt(as.numeric(pred$Q)) # EXTRACT THE STD from model
lines(MeanPred,col="blue",lwd=3,type="1")
lines(MeanPred+1.96*SEPred,col="red",1lwd=3,type="1")
lines(MeanPred-1.96%SEPred,col="red",1lwd=3,type="1")
m.s.error=sum((Dataa.simpledlm$f-Dataa) "2)/length(Dataa)
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mean.error=sum(Dataa.simpledlm$f-Dataa)/length(Dataa)
std= (sqrt( sum(( (Dataa.simpledlm$f - Dataa) - mean.error)”2) )) /length(Dataa)

par (mfrow=c(3,2))

# TRAINING PART

v=Dataa.simpledlm$f-Dataa

qqnorm(v, main="qq-plot for residuals")

qqline(v)

plot.ts(Dataa.simpledlm$y, col="blue", xlim=c(1,length(Dataa)+PredLength))
lines(Dataa.simpledlm$f, col="red")

ccc=seq(from =-2, to = 2, by = 0.1 )

plot(Dataa,Dataa.simpledlm$f, xlim=c(-2,2), ylim=c(-2,2), xlab="data", ylab="DLM fit")
lines(ccc,ccc,type="1", col="blue")

acf(v,main="ACF of residuals")

#-——mm - differenced version for comparison with the other techniques
plot.ts(ZZ[1:160],col="blue",lwd=1)

lines(diff (Dataa.simpledlm$f),col="red",lwd=1)

m.s.error=sum((diff (Dataa.simpledlm$f)-ZZ[2:160])"2)/length(Dataa)

v=diff (Dataa.simpledlm$f)-ZZ[2:160]

qqnorm(v, main="qq-plot for residuals")

qqline(v)

acf (v)

A.2 Codes implemented in Chapter 5

The simulation conducted in Chapter 5 includes MATLAB codes for desired trajectory
generation (extracting mean-weight cycle cover of graph, calculating minimum-weight walk
using MLE-TMC), a R code for graphical models analysis, and a MATLAB code for speed
estimation using absorbing state stochastic process.

A.2.1 MATLAB code for mean-weight cycle cover extraction

% Matlab code for forming the means-weight cycle cover of a directed graph
clc; close all; clear;

%hhhhhh Section 5.4.1: Trajectory Estimation %%h%%hh%

% Weight matrix of the graph

W=[Inf 1.2 1.2 1.6 1.6 Inf Inf Inf Inf Inf Inf
Inf Inf 1.2 1.2 1.6 1.6 Inf Inf Inf Inf Inf
Inf Inf Inf 1.2 1.2 1.6 Inf Inf Inf Inf
Inf Inf Inf Inf 1.2 1.2 1.6 Inf Inf Inf
Inf Inf Inf 2.3 Inf 0.3 Inf Inf Inf Inf

Inf Inf Inf Inf 0.7 Inf Inf Inf Inf Inf
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Inf Inf Inf Inf
Inf Inf Inf 1.6
Inf Inf Inf Inf
Inf Inf Inf Inf Inf
Inf Inf Inf Inf Inf Inf

Inf 2.3 Inf Inf Inf
Inf Inf Inf Inf
Inf Inf Inf
.2 Inf Inf
1.2 1.2 Infl;

o e
o oo
= = = O
oo w
i
IO
o e
o 0N
-
N

% number of edges in the original graph AND its average wieght

kk=find(W”=Inf); W_G=sum(W(kk))/size(kk,1);
G_edgesNum=size(kk,1); kk=[];

%% Calculation of mean-weight cycle cover
% Identify the direct edges going out from each node (i—)j)
E=zeros(size(W,2),2,size(W,2)); % Initially, assume that a full connected graph could be available

for i=1:1:size(W,1)

find(W(i,:)~=Inf);

j=find(W(i,:) "=Inf);
E(1:size(j,2),:,i)=[i*ones(size(j,2),1) j’];
end

% Weight of the extracted simple cycles
w_C1=W(4,5)+ W(5,4);

w_C2=W(4,8)+ W(8,4);

w_C3=W(4,8)+ W(8,5)+ W(5,4);
w_C4=W(4,7)+ W(7,8)+ W(8,4);
w_C5=W(4,7)+ W(7,5)+ W(5,4);
w_C6=W(4,7)+ W(7,6)+ W(6,5)+W(5,4);
w_C7=W(5,6)+W(6,5);

w_C8=W(5,7)+W(7,5);
w_C9=W(5,4)+W(4,6)+W(6,5);
w_C10=W(5,4)+W(4,8)+W(8,5);
w_C11=W(5,7)+W(7,6)+W(6,5);
w_C12=W(5,6)+W(6,7)+W(7,5);
w_C13=W(5,4)+W(4,6)+W(6,7)+W(7,5);
w_C14=W(4,5)+W(5,7)+W(7,8)+W(8,4);
w_C156=W(5,4)+W(4,8)+W(8,6)+W(6,5) ;
w_C16=W(5,4)+W(4,8)+W(8,7)+W(7,5);
w_C17=W(5,6)+W(6,7)+W(7,8)+W(8,4)+W(4,5);
w_C18=W(6,7)+W(7,6);
w_C19=W(6,7)+W(7,8)+W(8,6);
w_C20=W(5,6)+W(6,7)+W(7,8)+W(8,5);
w_C21=W(4,6)+W(6,7)+W(7,8)+W(8,4);
w_C22=W(6,7)+W(7,8)+W(8,5)+W(5,4)+W(4,6);
w_C23=W(7,8)+W(8,7);

% Edges of the extracted simple cycles
Cycles=zeros(22,10);

Cycles(1,1:4)=[4 5 5 4];
Cycles(2,1:4)=[4 8 8 4];
Cycles(3,1:6)=[4 8 8 5 5 4];
Cycles(4,1:6)=[4 7 7 8 8 4];
Cycles(5,1:6)=[4 7 7 5 5 4];
Cycles(6,1:8)=[4 7 7 6 6 5 5 4];
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Cycles(7,1:4)=[5 6 6 5];
Cycles(8,1:4)=[5 7 7 5];
Cycles(9,1:6)=[5 4 4 6 6 5];

Cycles(10,1:6)=[5 7 7 6 6 5];
Cycles(11,1:6)=[56 6 6 7 7 5];
Cycles(12,1:8)=[6 44 6 6 7 7 5];
Cycles(13,1:8)=[4 5 57 7 8 8 4];
Cycles(14,1:8)=[5 4 4 8 8 6 6 5];
Cycles(15,1:8)=[54 4 8 8 7 7 51;

Cycles(16,1:10)=[5 6 6 77 8 8 4 4 5];
Cycles(17,1:4)=[6

7
Cycles(18,1:6)=[6 7 ]
6
6

Cycles(19,1:8)=[5 51;
Cycles(20,1:8)=[4 4];
Cycles(21,1:10)=[6 7 7 8 8 5 5 4 4 6];
Cycles(22,1:4)=[7 8 8 7];

o o NN
o 0 &
00 00 w-

w_ave=[1.75 1.6 1.83 1.83 1.83 1.22 0.5 1.6 1.4 0.86 0.86 1.45 1.67 1.45 1.67 1.22 0.5 1.4 1.22 1.45 1.62 1.75];

D=[Cycles w_ave’];
[o 1]=sort(D(:,11),’ascend’);
D=D(1,:); % sorted cycles based on mean-weight

o=[1;

% Forming the mean-weight cycle set
Cycles_container=D;
C=zeros(30,10);

t=1;

while t<=size(D,1) % a large number
if t==

C(t,:)=D(t,1:10);

else

nodes=zeros(1,size(W,2)); % at-most we can have size(W,1) nodes
% Identifying the nodes of the previous members of C

for i=1:1:t-1

o=find(C(i,:)~=0);

o=0(1,1:2:end);

sss(i)=size(0,2); ’ identify the number of nodes in each cycle
if i==

nodes(1:sss(i))=C(i,0);

else

nodes (1+sss(i-1) :sss(i-1)+sss(i))=C(i,o0);

end

end

% Retain non-zero elements of nodes

iii=find(nodes==0); nodes(iii)=[];

% Remove the duplicated nodes

nodes=unique(nodes) ;

% Removing nodes and corresponding edges of the previous members of C
111=[];

for uu=1:1:size(nodes,2)

for ii=1:1:size(Cycles,2) ’ check all of the simple cycles
ppp=find(Cycles(:,ii)==nodes(uu));

111=[111; pppl;

end

end
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111=unique(111l); % remove duplicate / repeated numbers (nodes) from the vector
Cycles_container(111,:)=[1;
end

% A condition for stopping the search

if t==

t=t+1;

elseif isempty(Cycles_container)==1 & t~=1
break

elseif t™=1

% Select the member with lowest weight

C(t,:)=Cycles_container(1,1:10); % since elements in container are already sorted
% Restore the set of simple cycles and continue

Cycles_container=D;

t=t+1;

end

end

% remove duplicated rows from set
C = unique(C,’rows’);

A.2.2 MATLAB code for minimum-weight walk calculation via
MLE-TMC

% Matlab Code for determining minimum weight walk using MLE-TMC

clc; close all; clear;

% Load the weigh matrix

W=[Inf 1.2 1.2 1.6 1.6 Inf Inf Inf Inf Inf Inf

Inf Inf 1.2 1.2 1.6 1.6 Inf Inf Inf Inf Inf
Inf Inf Inf 1.2 1.2 1.6 1.6 Inf Inf Inf Inf
Inf Inf Inf Inf 1.2 1.2 1.6 1.6 Inf Inf Inf
Inf Inf Inf 2.3 Inf 0.3 1.6 Inf Inf Inf Inf
Inf Inf Inf Inf 0.7 Inf 0.7 Inf Inf Inf Inf
Inf Inf Inf Inf 1.6 0.3 Inf 2.3 Inf Inf Inf
Inf Inf Inf 1.6 1.6 1.2 1.2 Inf Inf Inf Inf
Inf Inf Inf Inf 1.6 1.6 1.2 1.2 Inf Inf Inf
Inf Inf Inf Inf Inf 1.6 1.6 1.2 1.2 Inf Inf
Inf Inf Inf Inf Inf Inf 1.6 1.6 1.2 1.2 Inf];

W=w(1:8,1:8);
% Load the simple cycles matrix and corresponding mean weights

Cycles=zeros(22,10);

Cycles(1,1:4)=[4 5 5 4];
Cycles(2,1:4)=[4 8 8 4];
Cycles(3,1:6)=[4 8 8 5 5 4];
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Cycles(4,1:6)=[4 7 7 8 8 4];
Cycles(5,1:6)=[4 7 7 5 5 4];
Cycles(6,1:8)=[4 7 7 6 6 5 5 4];
Cycles(7,1:4)=[5 6 6 5];
Cycles(8,1:4)=[6 7 7 5];
Cycles(9,1:6)=[5 4 4 6 6 5];
Cycles(10,1:6)=[56 7 7 6 6 5];
Cycles(11,1:6)=[56 6 6 7 7 5];
Cycles(12,1:8)=[5 4 4 6 6 7 7 51;
Cycles(13,1:8)=[4 5 57 7 8 8 4];
Cycles(14,1:8)=[5 4 4 8 8 6 6 5];
Cycles(15,1:8)=[5 4 4 8 8 7 7 5];

Cycles(16,1:10)=[5 6 6 77 8 8 4 4 5];

Cycles(17,1:4)=[6 7 7 6];
Cycles(18,1:6)=[6 7 7 8 8 6];
Cycles(19,1:8)=[5 6 6 7 7 8 8 5]1;
Cycles(20,1:8)=[4 6 6 7 7 8 8 4];

Cycles(21,1:10)=[6 7 7 8 8 5 5 4 4 6];
Cycles(22,1:4)=[7 8 8 7];

w_ave=[1.75 1.6 1.83 1.83 1.83 1.22 0.5 1.6 1.4 0.86 0.86 1.45 1.67 1.45 1.67 1.22 0.5 1.4 1.22 1.45 1.62 1.75];
D=[Cycles w_ave’];

% Load the mean-weight cycle cover

C=[66650000; 67760000; 46677838 4];
w_C=[1.75 0.5 1.45];

% Determine the length of walk

k=size(W,2);

t=(k"2)+(k*(k+1)/2);

% Set the Anchor node

A=[1 223344556677 8];

% size (number of edges) of A

pp=unique(A);

jj=find(pp==0); pp(jj)=[]; % check whether there is any O
A_edge_num=size(pp,2)-1; % "minus 1" BECAUSE it is not a cycle
w_A=1.15;

% calculate the number of edges in the free cycle

for ii=1:1:size(Cycles,1)

% distinct nodes in each member of free cycle
pp=unique(Cycles(ii,:));

jj=find(pp==0); pp(jj)=[1; % check if there is any O and remove it
% number of edges

Cycles_edge_num(ii)=size(pp,2);

end

% Add cycle sizes to archive D
D=[D Cycles_edge_num’];

%% Calculation of the walk

S=zeros(size(C,1),40); % this threshold "length of column" may change
m=zeros(1,size(C,1));

r=zeros(1,size(C,1));

for ii=1:1:size(C,1) % loop over all members of mean weight cycle cover

% distinct nodes in each member of C
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pp=unique(C(ii,:));

jj=find(pp==0); pp(jj)=[]; % check if there is any O and remove it
% number of edges

C_edge_num(ii)=size(pp,2);

kkk=C_edge_num(ii);

% find the number of repetitions

m=floor ((t-A_edge_num-(kkk+1))/kkk); % -2 is used to make sure the remainder is not "1"
M(ii)=m;

% find the remaining edges

r=t-A_edge_num- (m*kkk) ;

R(ii)=r;

% £ill the remaining edges with memebers of free Cycle
qq=find(D(:,end)==r);

LL=D(qq,:);

[i qqql=sort(LL(:,end-1),’ascend’);

LL=LL(qqq,:);

w_LLL=LL(1,end-1);

LLL=LL(1,1:end-2); jjjj=find(LLL==0); LLL(jjjj)=[1;
S(ii,1:(size(A,2)+size(LLL,2)))=[A LLL]; % form S by adding anchor walk to selected edge
w_S(ii)=w_A+w_LLL;

% total weight

w_total(ii)=w_S(ii)+(M(ii)*w_C(ii));

end

% select the walk with minimum weight

[111 oool=min(w_total);

SS=S(000,:); jjjj=find(SS==0); SS(jjjj)=[1;
€C=C(000,:); jjjj=find(CC==0); CC(jjjj)=[1;

% form the final walk based on the obtained results
s0=1;

sf=6;

repeat_CC = repmat(CC’, M(ooo0), 1);

SSS = [SS(1:10) repeat_CC’ SS(11:end)];

S_opt=[s0 SSS(1:2:end) sfl;

% plot the desired trajectory

displace=[-0.05 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04 0.05];
trajectory=S_opt;

for ii=1:1:size(displace,2)

jjj=find(S_opt==ii);

trajectory(jjj)=displace(ii);

end

plot(trajectory)

A.2.3 R code for graphical model analysis

# R Code for directed graph in Section 5.4.1: Trajectory Estimation
library(igraph)
g=graph.formula(1-+2,1-+3,1-+4,1-+5,2-+3,2-+4,2-+5,2-+6 ,3-+4,3-+5,3-+6,3-+7 ,4-+5,4-+6,4-+7 ,4-+8,

5-+4,5-+6,5-+7,6-+5,6-+6,6-+7,T-+5,7-+6,7-+8,8-+4,8-+5,8-+6,8-+7,9-+5,9-+6,9-+7,9-+8, 10-+6,
10-+7,10-+8,10-+9,11-+7,11-+8,11-+9,11-+10)
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layout=matrix(c(2,12, 3.5,9.5, 9,6, 0,9, 8,14, 12,7, 7,4, 2,5, 14,5, 10,3, 10,0) ,byrow=TRUE,nrow=14) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2",6"3",6"4" "5" "6",
w7, g, 10", "11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2,edge.curved=TRUE)

# Plot the graph without cycles in the original graph
g=graph.formula(1-+2,1-+3,1-+4,1-+5,2-+3,2-+4,2-+5,2-+6,3-+4,3-+5,3-+6,3-+7,9-+5,9-+6,9-+7,9-+8,10-+6,
10-+7,10-+8,10-+9,11-+7,11-+8,11-+9,11-+10)

layout=matrix(c(2,12, 3.5,9.5, 9,6, 0,9, 8,14, 12,8, 7,4, 2,5, 14,5, 10,1.5, 10,-1) ,byrow=TRUE,nrow=14) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2" 6"3",6"4" "5",

nen, T, 8", "9, "10","11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2)

##H - Plot the cycles

# C1

g=graph.formula(1,2,3,4-+5,5-+4,6,7,8,9,10,11)

layout=matrix(c(2,13, 3.5,8.5, 9,6, 0,9, 8,14, 12,7, 7,4, 2,5, 14,5, 10,3, 10,0) ,byrow=TRUE,nrow=14) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2",6"3", "4" "5",

"et, 7,8, "9","10","11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2,edge.curved=TRUE)

# C2

g=graph.formula(1,2,3,4,5,6,7,8,9,10,11,4-+8,8-+4)

layout=matrix(c(2,13, 3.5,8.5, 9,6, 0,9, 8,14, 12,7, 7,4, 2,5, 14,5, 10,3, 10,0),byrow=TRUE,nrow=11) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2" "3",6"4" "5" "6",
nyn, gt ot 10", "11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2,edge.curved=TRUE)

# C3

g=graph.formula(1,2,3,4,5,6,7,8,9,10,11,4-+8,8-+5,5-+4)

layout=matrix(c(2,13, 3.5,8.5, 9,6, 0,9, 8,14, 12,7, 7,4, 2,5, 14,5, 10,3, 10,0),byrow=TRUE,nrow=11) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2" "3",6"4" "5" "6",
"re,ngt,mon, 10", "11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2,edge.curved=TRUE)

# C7

g=graph.formula(1,2,3,4,5,6,7,8,9,10,11,5-+7,7-+5)

layout=matrix(c(2,13, 3.5,8.5, 9,6, 0,9, 8,14, 12,7, 7,4, 2,5, 14,5, 10,3, 10,0),byrow=TRUE,nrow=11) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1","2" "3",6"4" "5" "6",
nre,ngt,mon, 10", "11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2,edge.curved=TRUE)

#H-——m - Plot the graph resulting from removing nodes from cycle cover
g=graph.formula(1,2,3,4,5,6,7,8,9,10,11,1-+2,1-+3,2-+3,10-+9,11-+9,11-+10)

layout=matrix(c(2,12, 3.5,9.5, 9,6, 0,9, 8,14, 12,8, 7,4, 2,5, 14,5, 10,1.5, 10,-1),byrow=TRUE,nrow=14) # location
plot.igraph(g,layout=layout,edge.color="black",vertex.color="white", vertex.label=c("1",6"2",6"3", "4" "5" "@g",
nre,ngt,mon, 10", "11") ,vertex.size=20,vertex.label.cex=1, vertex.label.color="black",edge.width=1,
edge.arrow.size=0.6,edge.arrow.width=1.2)

A.2.4 MATLAB code for absorbing state speed estimation

% Matlab Code for generating random walk from cannocically decomposed probability
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% matrix of an absorbing state stochastic process

clc; clear; close all;

tic,

%hhhhhh Code for Section 5.4.2: Vehicle Speed Estimation %%%h%%A%
Case=2;

hh

if Case==

%% 1st simulation scenario

N=10; % horizon length of interest

% Transient speeds

V_trans=[35,38,43,45];

% Absorbing speeds

V_absorb=[40,41];

% The information coming from canonically decomposed probability matrix
Q=[0.1 0.2 0.2 0.1

o O o

i
HHHHBHMH
o O O
[ BN
w NN

o
o O O
[
NN W
o O O
N =

e
—

""UOOO

o
=2}
]

% Generating Random walk until absorbtiomn
V=[V_trans V_absorb];

t=1;

j=2; % the element number in transient set
s(t)=V(j);

while t<=1000 7% Note that if the process is absorbed, loop will terminate automatically
t=t+1;

1=P(j,:);

% Draw a random number from UNIF(0,1)
u=rand;

for i=1:1:size(P,2)

if i==

if 0<=u&u <= 1(1)

j=1i;

end

else

pl=sum(1(1:i-1));

p2=sum(1(1:1i));

if pl < u & u <= p2

j=i;

end

end

end

s(£)=V(j);

if s(t)==V_absorb(1) | s(t)==V_absorb(2)
break

end

end

elseif Case==

%% 2nd simulation scenario
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N=20; % horizon length of interest

% Transient speeds

V_trans=[35,36,37,38,42,43,44,45] ;

% Absorbing speeds

V_absorb=[39,40,41];

% The information coming from canonically decomposed probability matrix
Q=[0.1 0.2 0.1 0.1 0.05 0.05 0.05 0.1

0.1 0.1 0.05 0.1 0.1 0.15 0.1 0.15
0.1 0.05 0.05 0.1 0.1 0.05 0.1 0.05
0.1 0.1 0.1 0.1 0.05 0.1 0.05 0.1
0.05 0.05 0.05 0.1 0.1 0.05 0.1 0.1
0.05 0.1 0.05 0.1 0.1 0.05 0.05 0.1
0.1 0.1 0.1 0.1 0.05 0.05 0.05 0.05
0.15 0.05 0.1 0.1 0.05 0.15 0.1 0.05];
R=[0.05 0.1 0.1

0.05 0.05 0.05

0.1 0.2 0.1

0.1 0.1 0.1

0.1 0.2 0.1

0.15 0.15 0.1

0.15 0.1 0.1

0.05 0.15 0.05];

P=[Q R];

% Generating Random walk until absorbtiomn
V=[V_trans V_absorb];

t=1;

j=2; % the element number in transient set
s(£)=V(j);

while t<=1000 7 Note that if the process is absorbed, loop will terminate automatically
t=t+1;

1=P(j,:);

% Draw a random number from UNIF(0,1)
u=rand;

for i=1:1:size(P,2)

if i==

if 0 <=u&u <=1(1)

j=1i;

end

else

pl=sum(1(1:i-1));

p2=sum(1(1:i));

if pl < u & u <= p2

j=i;

end

end

end

s(t)=V(j);

if s(t)==V_absorb(1) | s(t)==V_absorb(2) | s(t)==V_absorb(3)
break

end

end

end

%% Make the walk compatible with LBMPC based on horizon length
kk=s(end) ;

if size(s,2)< N

for i = size(s,2)+1:1:N
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s(i)=kk;

end

elseif size(s,2)> N
s(N+1:end)=[];

end

toc,

%% Visualization
plot(s);

A.3 Codes implemented in Chapter 7

The simulation conducted in Chapter 7 includes MATLAB codes for quantifying the un-
certainty due to sensor malfunction as well as R and MATLAB codes for designing oracle
for learning-based model predictive controller (LBMPC).

A.3.1 MATLAB code for Bayesian dynamic model and boot-
strapping for uncertainty quantification

% Bayesian Dyamic model and booststrap for quatifying "e"
clc; clear; close all;

global A B F
F= [A B];
load(’wave’)

%% Nonliner model based on equations of motion

=== System parameters

V=20; % Vehicle Forward Velocity

% Vehicle‘s Body parameters

Mb=580; Jb=1100; m_ul=40; m_u2=35.5; L1=1.5; L2=1;
Delta=(1/Mb)+((L1°2)/Jb);
Etta=(1/Mb)-((L1xL2)/Jb);
Zetta=(1/Mb)+((L272)/Jb);

% Dampers and Springs coefficients

K_1_s1=14000; K_1_s2=K_1_s1;

K_nl_s1=2.35e4; K_nl_s2=K_nl_si;

K_t1=190e3; K_t2=K_t1;
C_1_s1=800; C_1_s2=700;
C_nl_s1=400; C_nl_s2=C_nl_s1;
C_sym_s1=400; C_sym_s2=C_sym_s1;
C_t1=80; C_t2=70;
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=== Initial state values
% Vehicle body states
xb1=0; xb2=0;

xc=0; teta_c=0;

% Suspension system and sprung mass systems

xul=0; xu2=0;

% Disturbances ** {measurement noises, road irregularities}
xr1(1)=0; xr2(1)=0; % road disturbances

%% Initialization of States

X(1,1)=xbi; Y%
X(2,1)=0; % X(2)=xb_dot_1
X(3,1)=xb2; %
X(4,1)=0; % X(4)=xb_dot_2
X(5,1)=xul; VA
X(6,1)=0; % X(6)=xu_dot_1
X(7,1)=xu2; Y%
X(8,1)=0; % X(8)=xu_dot_2

%% Operating time

t0=0.0;

dt=0.001;

ng=5000; % Number of working points
ts=ng*dt; % Active control duration

%% Bayesian Dynamic Model and Bootstrap

for b=1:1:100 % number of bootstrap sampling

% Initial state and initial actuation signal

U=ones (2,5001) *1000;

mu(:,1)=[X(:,1);UC:,1)];

% mu = [1=xbl; 2=xb_dot_1; 3=xb2; 4=xb_dot_2; 5=xul; x6=u_dot_1; 7=xu2; 8=xu_dot_2 Fa_1 Fa_2]
Xsystem(:,1)=mu(1:8,1);

for n=1:1:ng

h ————= Equal Parameters for liniarization

z1=mu(5,n)-mu(l,n);

z2=mu(7,n)-mu(3,n);

z_dot_1=mu(6,n)-mu(2,n);

z_dot_2=mu(8,n)-mu(4,n);

eps=2.2204e-16;

K_eq_s1=3*K_nl_s1*(z1"2);

K_eq_s2=3*K_nl_s1%*(z2"2);
C_eq_s1=(-C_sym_s1*(z_dot_1/abs(z_dot_1+eps)))+(C_nl_s1*(0.5*(z_dot_1/abs(z_dot_1+eps))+...
*((abs(z_dot_1+eps))~-0.5)*sign(z_dot_1)));
C_eq_s2=(-C_sym_s2*(z_dot_2/abs(z_dot_2+eps)))+(C_nl_s2*(0.5%(z_dot_2/abs(z_dot_2+eps))+...
*((abs(z_dot_2+eps))~-0.5)*sign(z_dot_2)));

Kstar_s1=K_1_s1+K_eq_s1;

Kstar_s2=K_1_s2+K_eq_s2;

Cstar_s1=1*(C_l_s1+C_eq_s1);

Cstar_s2=1%(C_1_s2+C_eq_s2);

% f1 and f2 for calculation of body acceleration
f1_System(n)=(Kstar_si*z1)+(Cstar_si*z_dot_1);
f2_System(n)=(Kstar_s2*z2)+(Cstar_s2*z_dot_2);

=== State Space Parameters Updating
A=[0 1 000000
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-(Delta*Kstar_s1) -(Delta*Cstar_s1) -(Etta*Kstar_s2) -(Etta*Cstar_s2) (Delta*Kstar_s1) (Delta*Cstar_s1)...

(EttaxKstar_s2) (Etta*Cstar_s2)
00010000
-(EttaxKstar_s1) -(EttaxCstar_sl) -(ZettaxKstar_s2) -(ZettaxCstar_s2) (Etta*Kstar_s1) (EttaxCstar_sl)...
(Zetta*Kstar_s2) (Zetta*Cstar_s2)
00000100
(Kstar_s1/m_ul) (Cstar_si/m_ul) 0 O (-K_t1-Kstar_s1)/m_ul (-C_t1-Cstar_s1)/m_ul 0 O
00000001
0 0 (Kstar_s2/m_u2) (Cstar_s2/m_u2) 0 0 (-K_t2-Kstar_s2)/m_u2 (-C_t2-Cstar_s2)/m_u2];
B=[0 0
—dt*Delta -dt*xEtta
00
-dt*xEtta -dt*Zetta
00
(1/m_ul) ©
00
0 (1/m_u2)];
% The constraint of the dynamic model
if n > 30
% Calculate stabilization gain matrix K
pole=[-2 -0.5 -1 -5 -3 -1.5 -4 -6];
K_gain = place(A,B,pole);
% Explanatory signal obtained by random combination of considered waves
aa=rand(1,size(wave,1));
bb=aa/sum(aa); % randomly generated numbers are normalized such that they sum up to 1
Ue(n)=bb*wave(:,n);
% Calculate actuation signal
U(:,n)=(-K_gain*mu(1:8,n)) ;%+Ue(n);
% Check for possible bound violation
if U(1,n) > 5000
U(1,n)=5000;
elseif U(1,n)<-5000
U(1,n)=-5000;
end
if U(2,n) > 5000
U(2,n)=5000;
elseif U(2,n)<-5000
U(2,n)=-5000;
end
mu(9:10,n)=U(:,n);
else
mu(9:10,n)=U(:,n);
end

% updating Bayesian dynamic model
V=[0.0007"2 0.000001 0 0 0 0 0 0 0 O
0.000001 0.012672 0 O

000000O0
0 0 0.000772 0.000003 0 00 00O
0 0 0.000003 0.0090°2 0 0 0 00O
0000 0.002072 0.00010 0 0 0 0
0000 0.00010 0.128272 0 0 0 O
000000 0.002272 0.00010 0 O
000O0O0O0 0.00010 0.1429°2 0 0
0000000 0 100 O
0000000 0 0 100];

W=blkdiag(0.0001,0.0076,0.0001,0.0057,0.0001,0.0284,0.0001,0.0281) ;
v=mvnrnd (zeros(1,10),V); v=v’;
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w=mvnrnd(zeros(1,8),W); w=w’;
mu(:,n)=mu(:,n)+v;

mu(1:8,n+1)=((dt)* (F*mu(:,n)))+mu(1:8,n)+w;
Xsystem(:,n+1)=mu(1:8,n+1);

end

%---- Calculate the error signal

kk=1;

for jj=2:1:size(Xsystem,2)

e(:,kk)= Xsystem(:,jj)-((dt*((A*Xsystem(:,jj-1)) + (B*xU(:,jj-1))))+Xsystem(:,jj-1));
kk=kk+1;

end

E_boot(:,:,b)=e;

Xsystem=[]; mu=[]; U=[]; e=[];

end

% Bootstrap Estimate

for n=1:1:ng

e_boot (1,n)=sum(E_boot(1,n,:))/b;
e_boot(2,n)=sum(E_boot(2,n,:))/b;
e_boot(3,n)=sum(E_boot(3,n,:))/b;
e_boot (4,n)=sum(E_boot(4,n,:))/b;
e_boot(5,n)=sum(E_boot(5,n,:))/b;
e_boot (6,n)=sum(E_boot(6,n,:))/b;
e_boot (7,n)=sum(E_boot(7,n,:))/b;
e_boot (8,n)=sum(E_boot(8,n,:))/b;
end

% Bootstrap standard deviation

for n=1:1:ng

std_boot (1,n)= sqrt((1/(b-1))*(sum((e_boot(1,n)-E_boot(1,n,:))."2)));
std_boot(2,n)= sqrt((1/(b-1))*(sum((e_boot(2,n)-E_boot(2,n,:))."2)));
std_boot (3,n)= sqrt ((1/(b-1))*(sum((e_boot(3,n)-E_boot(3,n,:))."2)));
std_boot(4,n)= sqrt((1/(b-1))*(sum((e_boot(4,n)-E_boot(4,n,:))."2)));
std_boot (5,n)= sqrt((1/(b-1))*(sum((e_boot(5,n)-E_boot(5,n,:))."2)));
std_boot (6,n)= sqrt((1/(b-1))*(sum((e_boot(6,n)-E_boot(6,n,:))."2)));
std_boot(7,n)= sqrt((1/(b-1))*(sum((e_boot(7,n)-E_boot(7,n,:))."2)));
std_boot (8,n)= sqrt((1/(b-1))*(sum((e_boot(8,n)-E_boot(8,n,:))."2)));
end

% Bootstrap 95% CI intervals

for n=1:1:ng

CI_boot(1,n,1:2)=[e_boot(1,n)-(1.96*std_boot(1,n)); e_boot(1,n)+(1.96*std_boot(1,n))];
CI_boot(2,n,1:2)=[e_boot(2,n)-(1.96*std_boot(2,n)); e_boot(2,n)+(1.96*std_boot(2,n))];
CI_boot(3,n,1:2)=[e_boot(3,n)-(1.96*std_boot(3,n)); e_boot(3,n)+(1.96*std_boot(3,n))];
CI_boot(4,n,1:2)=[e_boot(4,n)-(1.96*std_boot(4,n)); e_boot(4,n)+(1.96*std_boot(4,n))];
CI_boot(5,n,1:2)=[e_boot(5,n)-(1.96*std_boot(5,n)); e_boot(5,n)+(1.96*std_boot(5,n))];
CI_boot(6,n,1:2)=[e_boot(6,n)-(1.96*std_boot(6,n)); e_boot(6,n)+(1.96*std_boot(6,n))];
CI_boot(7,n,1:2)=[e_boot(7,n)-(1.96*std_boot(7,n)); e_boot(7,n)+(1.96*std_boot(7,n))];
CI_boot(8,n,1:2)=[e_boot(8,n)-(1.96*std_boot(8,n)); e_boot(8,n)+(1.96*std_boot(8,n))];
end

time=t0:dt:ts; time(end)=[];
figure,

subplot(4,2,1), plot(time,e_boot(1l,:)), hold on, plot(time,CI_boot(1l,:,1)), hold on, plot(time,CI_boot(1,:,2)),
subplot(4,2,2), plot(time,e_boot(2,:)), hold on, plot(time,CI_boot(2,:,1)), hold on, plot(time,CI_boot(2,:,2)),
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subplot(4,2,3), plot(time,e_boot(3,:)), hold on,
subplot(4,2,4), plot(time,e_boot(4,:)), hold on,
subplot(4,2,5), plot(time,e_boot(5,:)), hold on,
subplot(4,2,6), plot(time,e_boot(6,:)), hold on,
subplot(4,2,7), plot(time,e_boot(7,:)), hold on,
subplot(4,2,8), plot(time,e_boot(8,:)), hold on,

plot(time,CI_boot(3,
plot(time,CI_boot (4,
plot(time,CI_boot (5,
plot(time,CI_boot(6,
plot(time,CI_boot(7,
plot(time,CI_boot(8,

:,1)),
:,1)),
:,1)),
:,1)),
:,1)),
1),

h ——m—- Non-parametric calculation of 95, interval to form the polytope
[e_sort(1,:), indil]=sort(e_boot(1l,:),’ascend’);
[e_sort(2,:), ind2]=sort(e_boot(2,:),’ascend’);

[e_sort(3,:
[e_sort(4,:

[e_sort(6,:
[e_sort(7,:
[e_sort(8,:

% Plot
figure,

), ind3]=sort(e_boot(3,:),’ascend’);
), ind4]=sort(e_boot(4,:),’ascend’);
[e_sort(5,:), ind5]=sort(e_boot(5,:),’ascend’);
), ind6]=sort(e_boot(6,:),’ascend’);
), ind7]=sort(e_boot(7,:),’ascend’);
), ind8]=sort(e_boot(8,:),’ascend’);

subplot(4,2,1), plot(time,e_sort(1l,:)), hold on,
subplot(4,2,2), plot(time,e_sort(2,:)), hold on,
subplot(4,2,3), plot(time,e_sort(3,:)), hold on,
subplot(4,2,4), plot(time,e_sort(4,:)), hold on,
subplot(4,2,5), plot(time,e_sort(5,:)), hold on,
subplot(4,2,6), plot(time,e_sort(6,:)), hold on,
subplot(4,2,7), plot(time,e_sort(7,:)), hold on,
subplot(4,2,8), plot(time,e_sort(8,:)), hold on,

% —————= Empirical CDFs

[F_1,e_1] = ecdf(e_sort(1,:));
[F_2,e_2] = ecdf(e_sort(2,:));
[F_3,e_3] = ecdf(e_sort(3,:));
[F_4,e_4] = ecdf(e_sort(4,:));
[F_5,e_5] = ecdf(e_sort(5,:));
[F_6,e_6] = ecdf(e_sort(6,:));
[F_7,e_7] = ecdf(e_sort(7,:));
[F_8,e_8] = ecdf(e_sort(8,:));

figure,

subplot(4,2,1), plot(e_1,F_1,°b’),
subplot(4,2,2), plot(e_2,F_2,°b’),
subplot(4,2,3), plot(e_3,F_3,°b’),
subplot(4,2,4), plot(e_4,F_4,’b’),
subplot(4,2,5), plot(e_5,F_5,’b’),
subplot(4,2,6), plot(e_6,F_6,’b’),
subplot(4,2,7), plot(e_7,F_7,°b’),
subplot(4,2,8), plot(e_8,F_8,’b’),

% Find the bounds of
[e_1(max(find (F_1<=0.
[e_2(max(£find (F_2<=0.
[e_3(max (find (F_3<=0.
[e_4(max(find (F_4<=0.
[e_5(max (find (F_5<=0.
[e_6(max (find (F_6<=0.
[e_7(max (find (F_7<=0.
[e_8(max (find (F_8<=0.

polytope

025))) e_1(min(find(F_1>=0
025))) e_2(min(find (F_2>=0
025))) e_3(min(find(F_3>=0.
025))) e_4(min(find (F_4>=0.
025))) e_5(min(find(F_5>=0.
025))) e_6(min(find(F_6>=0.
025))) e_7(min(find(F_7>=0.
025))) e_8(min(find(F_8>=0

hold on,
hold on,
hold on,
hold on,
hold on,
hold on,

plot(time,CI_boot(1,ind1,1)), hold
plot(time,CI_boot(2,ind2,1)), hold
plot(time,CI_boot(3,ind3,1)), hold
plot(time,CI_boot(4,ind4,1)), hold
plot(time,CI_boot(5,ind5,1)), hold
plot(time,CI_boot(6,ind6,1)), hold
plot(time,CI_boot(7,ind7,1)), hold
plot(time,CI_boot(8,ind8,1)), hold

.975)))1
.975)M)1

975)))1
975) 1)1
975)))1]
975)))1]
975) )1

.975)))1
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plot(time,CI_boot(3,:,2)),
plot(time,CI_boot(4,:,2)),
plot(time,CI_boot(5,:,2)),
plot(time,CI_boot(6,:,2)),
plot(time,CI_boot(7,:,2)),
plot(time,CI_boot(8,:,2)),

on,
on,
on,
on,
on,
on,
on,
on,

plot(time,CI_boot(1,ind1,2)),
plot(time,CI_boot(2,ind2,2)),
plot(time,CI_boot(3,ind3,2)),
plot(time,CI_boot(4,ind4,2)),
plot(time,CI_boot(5,ind5,2)),
plot(time,CI_boot(6,ind6,2)),
plot(time,CI_boot(7,ind7,2)),
plot(time,CI_boot(8,ind8,2)),
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A.3.2 MATLAB code for adaptive neuro-fuzzy inference system

% Adaptive Neuro Fuzzy Inference System (ANFIS) code
clc; clear; close all;

%% Data
load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:),[1 2 5 6 7]);
ydata=0utp_dataset (IND(rr,:),7);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

n=size(xtrain,2); % Number of input variables
m=size(ytrain,2); % Number of output variables

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);
end

tic,

%% Training

TrainData=[xtrain ytrain];

% Create FIS Rough Structure

nInputMFs=[2 2 2 2 2];

InputMFType=char (’gaussmf’,’gaussmf’,’gaussmf’,’gaussmf’,’gaussmf’) ;
fis=genfisl(TrainData,nInputMFs, InputMFType) ;

% Train ANFIS

[fis err]=anfis(TrainData,fis,60);

%% Results
Output=evalfis(TrainData(:,1:end-1),fis);
toc,

error=(TrainData(:,end)-Output) ;
CI_lb=0Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics

% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE(rr)=max(abs(error));

% std.
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Std(rr)=std(error);
end

% MAE
disp(’MEA’)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% —--- plot
figure,
% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),’0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)
subplot(2,2,3), qgplot(error)
subplot(2,2,4), hold on, plot(ytrain(:,1),’.

A.3.3 MATLAB code for Kriging

% Kriging code

% Download the tool box from "http://www2.imm.dtu.dk/projects/dace/"

% AND run the code below:

clc; close all; clear;

%Load the variables xtrain, ytrain, xtest and ytest and assign to gp structure

load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining

b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’),

plot(CI_ub,’-r’),

IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:),[1 2 5 6 7]);
ydata=0utp_dataset (IND(rr,:),7);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

n=size(xtrain,2); % Number of input variables

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);

end

%% Training
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tic,

corr=’corrgauss’;

regr=’"regpoly0’;

theta0=0.2;

[dmodel, perf] = dacefit(xtrain, ytrain, regr, corr, theta0);

%% Results
Output = predictor(xtrain, dmodel);
toc,

error=0utput-ytrain;
CI_1b=Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics
% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE (rr)=max(abs(error));

% std.

Std(rr)=std(error);

end

% MAE
disp(’MEA*)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% plot

figure,

% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),’0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)

subplot(2,2,3), qgplot(error)

subplot(2,2,4), hold on, plot(ytrain(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’), plot(CI_ub,’-r’),

A.3.4 MATLAB code for multi gene genetic programming

% Multi Gene Genetic Programming (MGGP) code

% Download the tool box from "https://sites.google.com/site/gptips4matlab/"
% AND run the code below:

clc; close all; clear;

global xtrain ytrain
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%#Load the variables xtrain, ytrain, xtest and ytest and assign to gp structure
load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

close all;

xdata=Inp_dataset (IND(rr,:),[1 2 5 6 7]);
ydata=0utp_dataset (IND(rr,:),1);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

n=size(xtrain,2); % Number of input variables

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);
end

%% Training GP
tic,

gp=rungp (’my_config’) ;
runtree(gp, ’best’)

% renderLatex(gp, ’best’)
gpmodel2mfile(gp,’best’, GPfit’);
%% Results

Output = GPfit(xtrain);

toc,

error=0utput-ytrain;
CI_lb=0Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics
% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE(rr)=max(abs(error));

% std.

Std(rr)=std(error);

end

% MAE
disp(’MEA’)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)
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% plot

figure,

% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),’0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)

subplot(2,2,3), qgplot(error)

subplot(2,2,4), hold on, plot(ytrain(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_1lb,’-r’), plot(CI_ub,’-r’),

A.3.5 MATLAB code for multi-layer perceptron

% Multi Layered Perceptron (MLP) code
clc; clear; close all;

%% Data
load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:),[1 2 5 6 7]1);
ydata=Outp_dataset (IND(rr,:),7);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

n=size(xtrain,2); 7% Number of input variables
m=size(ytrain,2); % Number of output variables

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);
end

%% Training

tic,
net = feedforwardnet([10 5 2]); % 2 hidden layers
net = train(net,xtrain’,ytrain’);

% Results

Output = net(xtrain’);
Output=0Output’;

toc,

error=(ytrain-Output) ;
CI_lb=0Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));

% Calculation of performane metrics
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% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE(rr)=max(abs(error));

% std.

Std(rr)=std(error);

end

% MAE
disp(’MEA*)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% --- plot

figure,

% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),%0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)

subplot(2,2,3), qgqplot(error)

subplot(2,2,4), hold on, plot(ytrain(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’), plot(CI_ub,’-r’),

A.3.6 MATLAB code for mixture of Gaussian experts

% Mixture of Gaussian Experts (MoGE) with Expectation maximization code
clc; close all; clear;

%Load the variables xtrain, ytrain, xtest and ytest and assign to gp structure
load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:),[1 2 56 6 7]);
ydata=0Outp_dataset (IND(rr,:),8);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

n=size(xtrain,2); % Number of input variables

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);
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end

%% Training process

tic,

% Assign label to data (two components)
k=2; 7 Number of components

Lables=ones (size(ydata,1),1);
ind1=find(ytrain>=0) ;
ind2=find(ytrain<0);

Lables(indl)=1;

Lables(ind2)=2;

% Gaussian components

Beta=ones(size(xtrain,2),2);

sigma2= ones(k,1);

% Analytically find the optimized values using Score function

% Beta
xtrain=xtrain’;
for h=1:1:k

%#Generate Indicator matrix for each expert

Tau_h=diag(Lables==h) ;

Beta(:,h)=(((xtrain*Tau_h*xtrain’)+(0.01l*eye(length(xtrain(:,1))))) -1)*((Tau_h*xdata)’)*(ytrain);
end

%sigma2

for h=1:1:k

%Generate Indicator matrix for each expert
Tau_h=diag(Lables==h) ;
err_h=((Tau_h*ytrain)-((Tau_h*xtrain’)*Beta(:,h)))."2;
sigma2(h)=(sum(err_h))/(sum(sum(Tau_h)));

err_h=[];

end

xtrain=xtrain’;
Beta=Beta’;

% Gate functions (multinomial / softmax) is a function of alpha and input
% Fit a nominal or ordinal multinomial regression model

alpha = mnrfit(xtrain,Lables,’Interaction’ ,’on’);

%Gating Function values for input input x

% Predict values for a nominal or ordinal multinomial regression model
x=xtrain;

% Calculation of pi(alhpa,x)
Probability =mnrval(alpha ,x,’Interaction’ ,’on’);
% Draw numbers from Gaussian components
g=zeros(2,1);

Output=ones(size(x,1),1);

for i=1:1:size(x,1)

for h=1:1:k

mu=10*x (i, :)*(Beta(h,:))’;

g(h,1) = normrnd(mu,sigma2(h));

end

Output (i,1)=Probability(i,:)*g;

eg=01;

end
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toc,

%% Results

error=0utput-ytrain;
CI_lb=0Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics
% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE (rr)=max(abs(error));

% std.

Std(rr)=std(error);

end

% MAE
disp(’MEA*)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% plot

figure,

% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),%0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)

subplot(2,2,3), qqplot(error)

subplot(2,2,4), hold on, plot(ytrain(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’), plot(CI_ub,’-r’),

A.3.7 R code for projection pursuit regression

# Projection Pursuit Regression (PPR) code
setwd("C:\\Users\\amozaffa\\Desktop\\Regression Models\\PPR")

# Load input dataset
Inp.dataset<-read.csv("Inp_dataset.csv",header=FALSE)

# Load output dataset
Outp.dataset<-read.csv("Outp_dataset.csv",header=FALSE)
xdata=Inp.dataset[1:500, c(1,2,5,6,7)]
ydata=Outp.dataset[1:500, 1]

coeff= prcomp(xdata, center = FALSE, scale. = FALSE)
xdata=xdataxcoeff$rotation

xtrain=xdata

ytrain=ydata

# normalize data

300



APPENDICES

xx=c()

for (i in 1: ncol(xtrain) ){
xx=(xtrain[,i]l-min(xtrain[,i]))/(max(xtrain[,i])-min(xtrain[,i]))
xtrain[,i]=xx

xx=c()
}
# train PPR

system.time ({

nterms = 3

Output.ppr <-ppr(xdata, ydata, nterms = 3, max.terms = nterms, optlevel = 2,
sm.method = c("gcvspline"),

bass = 0, span = 0, df = 5, gcvpen = 1, trace = FALSE)

# Results
Output = predict(Output.ppr)
B

error=0Output-ytrain
CI.1lb=Output-(1.96 * sd(Output))
CI.ub=0Output+(1.96 * sd(Output))

# MAE

MAE=(mean (abs (Output - ydata), na.rm = TRUE))
# MaxE

MaxE=max (abs (Output - ydata))

# std.

Std=sd(error)

# Plot
par (mfrow=c(2,2))

ccc=seq(from =-0.1, to = 0.1, by = 0.001 )

plot (Output,ydata, xlim=c(-0.1,0.1), ylim=c(-0.1,0.1), xlab="PPR fit", ylab="data")
lines(ccc,ccc, type="1", col="red", lty=4)

acf (error)

qgqnorm(error, main="qq-plot for residuals")

qqline((error), col="red", lty=4)

plot(ydata, col=’blue’, type="p", cex = .4)

lines(Output,col="black", lwd=1,type="1")

lines(CI.ub,col="red",lwd=1,type="1")

lines(CI.1lb,col="red",lwd=1,type="1")

A.3.8 MATLAB code for randomized neural network

% Randomized Neural Network (RNN) code
clc; clear; close all;
%% Data

load(’Inp_dataset’),
load(’Outp_dataset’),

301



APPENDICES

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:),[1 2 6 6 7]);
ydata=Outp_dataset (IND(rr,:),1);

coeff = pca(xdata);

xdata=xdata*coeff;

xtrain=xdata;

ytrain=ydata;

% parameters

N=size(xtrain,1); % Number of Samples
n=size(xtrain,2); J Number of input variables
m=size(ytrain,2); Y’ Number of output variables
N_HN=round(0.08%*N); % number of hidden neurons;

if N<N_HN
error (’number of samples should be greater than hidden nodes’)
end

% Normalizing the data base within unity [0,1]

for ii=1:1:n

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(N,1)*Min_X_train))/(Max_X_train-Min_X_train);
end

%% Training
tic,

% Randomly generate the weights of input-hidden connective synaps
W_IH=rand(n,N_HN); % [NumInputs NumHiddenNodes]
bias_IH=rand(1,N_HN);

% Generate the "hidden layer output matrix (H)"

% Activation Function logsig ==> logsig(n) = 1 / (1 + exp(-n))
H=logsig((xtrain*W_IH)+(ones(N,1)*bias_IH)); % [N N_HN]

% Finding the optimum weights of hiddesn-out put using pseudoInverse technique
LAMBDA=0.01;

uu=eye (size(H’*H,1));
H_Pseudoinverse=(((H’*H)+(LAMBDA*uu)) ~-1)*H’ ;

% Determine the optimum values of hidden-output weights

% depends to number of outputs

W_HO=H_Pseudoinverse*ytrain;

%% Results
Output=H*W_HO;

toc,

error=0utput-ytrain;
CI_lb=Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics

% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE(rr)=max (abs(error));

% std.
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Std(rr)=std(error);
end

% MAE
disp(’MEA’)
mean (MAE)

% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% plot

figure,

% correlation plot

subplot(2,2,1), plot(Output(:,1),ytrain(:,1),’0’)

% ACF plot and QQ-plot

subplot(2,2,2), autocorr(error)

subplot(2,2,3), qgplot(error)

subplot(2,2,4), hold on, plot(ytrain(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’), plot(CI_ub,’-r’),

A.3.9 MATLAB code for support vector regression

% Support Vector Regression (SVR) code
clear; clc; close all;

load(’Inp_dataset’),
load(’Outp_dataset’),

% 10 fold-forward chaining
IND= [1:500;501:1000;1001:1500; 1501:2000; 2001:2500; 2501:3000; 3001:3500; 3501:4000; 4001:4500; 4501:5000] ;

for rr=1:1:10

xdata=Inp_dataset (IND(rr,:), [1 2 5 6 7]1);
ydata=Outp_dataset (IND(rr,:),1);
xtrain=xdata;

ytrain=ydata;

% Normalizing the data base within unity [0,1]

for ii=1:1:size(xtrain,2)

Max_X_train=max(xtrain(:,ii)); Min_X_train=min(xtrain(:,ii));
xtrain(:,ii)=(xtrain(:,ii)-(ones(size(xtrain,1),1)*Min_X_train))/(Max_X_train-Min_X_train);
end

tic,

%% Training

% model parameters
c=4;
epsilon=0.000000025;
kernel=’gaussian’;
varargin=0.0005;
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lambda = varargin;
kernel_function = @(x,y) exp(-lambda*norm(x.feature-y.feature,2)"2);

ntrain = size(xtrain,1);
alpha0 = zeros(ntrain,1);

for i=1:ntrain

for j=l:ntrain

xi(i,j).feature = xtrain(i,:);

xj(i,j) .feature = xtrain(j,:);

end

end

Set up the Gram matrix for the training data

M = arrayfun(kernel_function,xi,xj);

M = M + 1/c*eye(ntrain);

Train the SVR by optimising the dual function ie. find alpha_i’s
options = optimoptions(’quadprog’,’Algorithm’,’interior-point-convex’);
H = 0.5%[M zeros(ntrain,3*ntrain); zeros(3#*ntrain,4*ntrain)];

1b = [-c*ones(ntrain,1); zeros(ntrain,l1); zeros(2*ntrain,1)];

ub = [ c*xones(ntrain,1); 2*c*ones(ntrain,1); c*ones(2*ntrain,1)];

f = [ -ydata; epsilon*ones(ntrain,l);zeros(ntrain,1);zeros(ntrain,1)];
z = quadprog(H,f,[]1,[],[],[],1b,ub, [],options);

alpha = z(1:ntrain);

==

=

% Calculate b
for m=1:ntrain

bmat (m) = ydata(m);

for n = l:ntrain

bmat(m) = bmat(m) - alpha(n)*M(m,n);

end

bmat (m) = bmat(m) - epsilon - alpha(m)/c;
end

b = mean(bmat) ;

%% —-—-- Results

xtest=Inp_dataset (IND(rr,:),[1 2 6 6 7]);

ytest = Outp_dataset(IND(rr,:),1);

y=ytest;

Output = svr_eval(xtest,xtrain,alpha,b,kernel_function);

toc,

error=0utput-y;

CI_lb=0Output-(1.96 * std(Output));
CI_ub=0Output+(1.96 * std(Output));
% Calculation of performane metrics
% MAE
MAE(rr)=sum(abs(error))/size(xtrain,1);
% MaxE

MaxE (rr)=max(abs(error));

% std.

Std(rr)=std(error);

end

% MAE

disp(’MEA’)
mean (MAE)
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% MaxE
disp(’MaxE’)
mean (MaxE)

% std.
disp(’std.’)
mean (Std)

% plot

figure,

% correlation plot

subplot(2,2,1), plot(Output,y,’o’)

% ACF plot

subplot(2,2,2), autocorr(y-Output)

% QQ-plot

subplot(2,2,3), qgplot(y-Output)

% Estimation plot

subplot(2,2,4), hold on, plot(y(:,1),’. b’), plot(Output(:,1),’-k’), plot(CI_lb,’-r’), plot(CI_ub,’-r’),

A.4 Codes implemented in Chapter 8

The simulation conducted in Chapter 8 includes MATLAB codes for implementation of
learning-based model predictive controller (LBMPC), golden sectioning search (GSS) op-
timizer and simulated annealing (SA) optmizer, as well as several conventional controllers.
Here, the codes for the implementation of the most successfull controller (the proposed
LBMPC) are provided.

A.4.1 MATLAB code for learning-based model predictive con-
troller

% Learning-Based Model Predictive Controller (LBMPC)
clc; clear; close all;
global A B

%% Nonliner model based on equations of motion
=== System parameters

V=20; % Vehicle Forward Velocity

% Vehicle‘s Body parameters

Mb=580; Jb=1100; m_ul=40; m_u2=35.5; L1=1.5; L2=1;
Delta=(1/Mb)+((L1~2)/Jb);
Etta=(1/Mb)-((L1%L2)/Jb);
Zetta=(1/Mb)+((L2°2)/Jb);

% Dampers and Springs coefficients

K_1_s1=14000; K_1_s2=K_1_s1;
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K_nl_s1=2.35e4; K_nl_s2=K_nl_si;

K_t1=190e3; K_t2=K_t1;
C_1_s1=800; C_1_s2=700;
C_nl_s1=400; C_nl_s2=C_nl_s1;
C_sym_s1=400; C_sym_s2=C_sym_s1;
C_t1=80; C_t2=70;

%% Operating time

t0=0.0; % Control start time
dt=0.001; % Sampling time

ng=5000; % Number of working points
ts=ngxdt; % Control termination time

%% Initial state and initial actuation signal
hh=———- Initial state values

% Vehicle body states

xb1=0; xb2=0;

xc=0; teta_c=0;

% Suspension system and sprung mass system
xul=0; xu2=0;

Xsystem(1,1)=xbl; % xb_1
Xsystem(2,1)=0; % xb_dot_1
Xsystem(3,1)=xb2; % xb_2
Xsystem(4,1)=0; % xb_dot_2
Xsystem(5,1)=xul; % xu_1
Xsystem(6,1)=0; % xu_dot_1
Xsystem(7,1)=xu2; % xu_2
Xsystem(8,1)=0; % xu_dot_2
=== Initial actuation signals

U=zeros(2,ng+1) ;

%% Control input Stabilization matrixes (U_stable)
Saii=[5.08 1.326e-02

5.08 1.326e-02

.326e-02 5.04

.326e-02 5.04

.24 9.57e-04

.24 9.57e-04

.57e-04 5.24

.57e-04 5.24];

O O U0

Phaii=[-10e06 2.43e-05
2.41e-05 -10e06];

% Domain of variation of Theta
Theta_min= [-4%10e-6; -4%10e-6];
Theta_max= [ 4%10e-6; 4%10e-6];
Theta=zeros(2,ng+1);
U_stable=zeros(2,ng+1);

%% Road roughness Disturbances

% Four simulated cases and the true road model
Case=1;
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% in design, we can easily adjust the coefficients of D to make sure the signal is feasible
if Case==

D=[0 0 0 O

0000

0000

0000

0000

0.3*K_t1/m_ul 0.3*C_t1/m_ul 0 O
0000

0 0 0.3*%K_t2/m_u2 0.3%C_t2/m_u2];

elseif Case==2 J, road disturbance + body states noise

D=[0 0001000

00000100

00000010

00000001

0000000O0

0.3*K_t1/m_ul 0.3*C_t1/m_ul 0 0 0 0 0 O
0000000O0

0 0 0.3*%K_t2/m_u2 0.3%C_t2/m_u2 0 0 0 0];

elseif Case==3 J, road disturbance + unsprung states noise

D=[0 0000000

00000000O0

000000O00O0

000000O0O0

00001000

0.3*K_t1/m_ul 0.3*C_t1/m_ul 0 0 0 1 0 O
00000010

0 0 0.3*K_t2/m_u2 0.3*C_t2/m_u2 0 0 0 1];

elseif Case==4 ¥, % road disturbance + all states noise
D=[0 00010000000
000001000000

000000100000

000000010000O0

000000001000O0

0.3*K_t1/m_ul 0.3%C_t1/m_u1 0 000000100
000000000010

0 0 0.3*K_t2/m_u2 0.3*C_t2/m_u2 0 0 0 0 0 0 0 1];
end

% Road roughness vecor

road=1;

if road==1 J, shaped function

% r = [r_1 r_dot_1 r_2 r_dot_2]

r_1=zeros(1l,ng+1);
r_2=zeros(1l,ng+l);

LambdA=5; % Input disturbance wavelength

Amp=0.11; % Bump amplitute
td=1+((L1+L2)/V); % delay time
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ii=0;
for tt=tO+dt:dt:ts
ii=ii+l1;

% Front tyre disturbance

if tt>=1 & tt<=1+(LambdA/V)
r_1(ii)=(Amp/2)* (1-cos(2*pi*V*tt/LambdA)) ;
else

r_1(ii)=0;

end

% Rear tyre disturbance

if tt>=td & tt<=td+(LambdA/V)
r_2(ii)=(Amp/2)* (1-cos (2%pi*V* (tt+((L1+L2)/V))/LambdA)) ;
else

r_2(ii)=0;

end

end

for i=1:ng-1
r_dot_1(i)=(r_1(i+2)-r_1(i))/(2*dt);
r_dot_2(i)=(r_2(i+2)-r_2(i))/(2*dt);
end

r(:,1)=r_1(1:end);

r(:,2)=[r_1(1) r_dot_1 r_1(end)];
r(:,3)=r_2(1:end)’;
r(:,4)=[r_2(1) r_dot_2 r_2(end)];
r=r’;

elseif road==2 J, waterloo data
load(’roadroughness’)
r=roadroughness(70:79) ;

xxx = 0:5/9:5;

t0=0.0;

dt=0.001;

ng=5000; % Number of working points
ts=ng*dt; % Active control duration

xXxxXx = t0:dt:ts;

r_1 = spline(xxx,r,XXxX);
r=[1;

td=((L1+L2)/20); % delay time

r_2(1:round(td/dt))=0;
r_2(round(td/dt)+1:size(r_1,2))=r_1(1:end-(round(td/dt)));

for i=1:ng-1
r_dot_1(i)=(r_1(i+2)-r_1(i))/(2xdt);
r_dot_2(i)=(r_2(i+2)-r_2(i))/(2*dt);
end

r(:,1)=r_1(1:end);

r(:,2)=[r_1(1) r_dot_1 r_1(end)];
r(:,3)=r_2(1:end)’;
r(:,4)=[r_2(1) r_dot_2 r_2(end)];
r=r’;

end
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%% Quantiifed uncertainty polytope W
W_1b = [-0.0019; -0.0184; -0.0019; -0.0144; -0.0019; -0.0478; -0.0020; -0.0649];
W_ub = [ 0.0019; 0.0177; 0.0020; 0.0161; 0.0020; 0.0484; 0.0020; 0.0546];

% Form a set with 1000 points taken from the intervals

W=[W_1b(1): (W_ub(1)-W_1b(1))/999:W_ub(1)
W_1b(2) : (W_ub(2)-W_1b(2))/999:W_ub(2)
W_1b(3): (W_ub(3)-W_1b(3))/999:W_ub(3)
W_1b(4): (W_ub(4)-W_1b(4))/999:W_ub(4)
W_1b(5) : (W_ub(5)-W_1b(5))/999:W_ub(5)
W_1b(6) : (W_ub(6)-W_1b(6))/999:W_ub(6)
W_1b(7) : (W_ub(7)-W_1b(7))/999:W_ub(7)
W_1b(8): (W_ub(8)-W_1b(8))/999:W_ub(8)];

%% Kriging Oracle

load(’KrigingModell’),
load (’KrigingModel2’),
load(’KrigingModel3’),
load(’KrigingModel4’),
load(’KrigingModelb’),
load(’KrigingModel6’),
load(’KrigingModel7’),
load(’KrigingModel8’),

% inp = [x_1 x_2 x_5 x_6 u_1]

min_inp = [-0.0559; -0.0268; 0.0000; -0.0024; -3.1857e-04];

max_inp = [ 0.2937; 0.1565; 0.0581; 0.0061; 1.3724e-05];
inp_size=5; 7 input data can be more than 1 (up to horizon length N)

load(’PCA_coeff’),
% inp=inp*PCA_coeff;

% Normalizing inputs within unity [0,1]

% for ii=1:1:inp_size

% inp(:,ii)=(inp(:,ii)-(ones(size(inp,1),1)*max_inp(ii)))/(max_inp(ii)-min_inp(ii));
% end

% Output = predictor(xtrain, KrigingModell);

%% Control Loop
% Horizon length
N = 10;

% Objective function parameters
R=blkdiag(0.0000001,0.0000001) ;
Q=blkdiag(10,10,10,10,10,10,10,10);
T=blkdiag(10,10,10,10,10,10,10,10);

% Bounds of states and control inputs

X_1b = [-0.05; -0.5; -0.05; -0.2; -0.1; -1; -0.1

X_ub = [ 0.05; 0.5; 0.05; 0.2; 0.1; 1; 0.1; 1];
U_lb= [-5000; -5000];

U_ub= [ 5000; 5000];
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X_set=[X_1b(1): (X_ub(1)-X_1b(1))/999:X_ub(1)
X_1b(2): (X_ub(2)-X_1b(2))/999:X_ub(2)
X_1b(3) : (X_ub(3)-X_1b(3))/999:X_ub(3)
X_1b(4) : (X_ub(4)-X_1b(4))/999:X_ub(4)
X_1b(5): (X_ub(5)-X_1b(5))/999:X_ub(5)
X_1b(8) : (X_ub(6)-X_1b(6))/999:X_ub(6)
X_1b(7): (X_ub(7)-X_1b(7))/999:X_ub(7)
X_1b(8): (X_ub(8)-X_1b(8))/999:X_ub(8)];

U_set=[U_1b(1): (U_ub(1)-U_1b(1))/999:U_ub(1)
U_1b(2) : (U_ub(2)-U_1b(2))/999:U_ub(2)];

for n=1:N:ng

xs=Xsystem(:,n);

%ol —===== PIECE-WISE LINEARIZATION ------ YANA

z1=xs(5)-xs(1);

2z2=xs(7)-xs8(3);

z_dot_1=xs(6)-xs(2);

z_dot_2=xs(8)-xs(4);

eps=2.2204e-16;

K_eq_s1=3*K_nl_six*(z172);

K_eq_s2=3*K_nl_s1*(z2"°2);
C_eq_s1=(-C_sym_s1*(z_dot_1/abs(z_dot_1+eps)))+(C_nl_s1*(0.5*(z_dot_1/abs(z_dot_1+eps))...
*((abs(z_dot_1+eps))~-0.5)*sign(z_dot_1)));
C_eq_s2=(-C_sym_s2*(z_dot_2/abs(z_dot_2+eps)))+(C_nl_s2x(0.5*(z_dot_2/abs(z_dot_2+eps))...
*((abs(z_dot_2+eps))~-0.5)*sign(z_dot_2)));

Kstar_s1=K_1_s1+K_eq_s1;

Kstar_s2=K_1_s2+K_eq_s2;

Cstar_s1=1%(C_1_s1+C_eq_s1);

Cstar_s2=1*%(C_1_s2+C_eq_s2) ;

% £1 and f2 for calculation of body acceleration
f1_System(n)=(Kstar_si*z1)+(Cstar_si*z_dot_1);
£2_System(n)=(Kstar_s2*z2)+(Cstar_s2*z_dot_2);

=== State Space Parameters Updating
A=[01 000000

-(Delta*Kstar_s1) -(DeltaxCstar_sl1) -(Etta*Kstar_s2) -(Etta*Cstar_s2) (DeltaxKstar_s1) (Delta*Cstar_s1)...

(Etta*Kstar_s2) (EttaxCstar_s2)

00010000

-(EttaxKstar_s1) -(EttaxCstar_sl) -(ZettaxKstar_s2) -(ZettaxCstar_s2) (Etta*Kstar_s1) (EttaxCstar_sl)...
(Zetta*Kstar_s2) (Zetta*Cstar_s2)

0000O01O00O0

(Kstar_s1/m_ul) (Cstar_si/m_ul) 0 O (-K_ti1-Kstar_s1)/m_ul (-C_t1-Cstar_s1)/m_ul 0 O

0000O0O0O01

0 0 (Kstar_s2/m_u2) (Cstar_s2/m_u2) 0 O (-K_t2-Kstar_s2)/m_u2 (-C_t2-Cstar_s2)/m_u2];

B=[0 0

-dt*Delta -dt*Etta
00

-dt*Etta -dt*Zetta
00

(1/m_ul) O

00

0 (1/m_u2)];

YUY —————m OPTIMIZATION LOOP ------ Dol
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Optimizer=2; % 1: SA; 2: GSS; 3: Newton Method

% Calculate stabilization gain matrix K
pole=[-2 -0.5 -1 -5 -3 -1.5 -4 -6];
K_gain = place(A,B,pole);

% Calculate Lyapunov matrix P using Discrete time Lyapunov Equation
aa = (A + (B*K_gain))’;

aa=aax0.00001;

bb = (Q + ((K_gain’)*R*K_gain));

bbb = chol(bb); % Cholesky Decomposition: bb = bbb’ * bbb

P = dlyapchol(aa,bbb’);

% Calculate the invariant sets

H(:,:,1) = [min(W’); max(W’)];

for ii=2:1:N

C = ((A + (B*K_gain))~(ii-1))*W; C=C’;

cc = H(:,:,ii-1);

cc_1b = cc(1,:);

cc_ub = cc(2,:);

CC=[cc_1b(1): (cc_ub(1)-cc_1b(1))/999:cc_ub(1)
cc_1b(2): (cc_ub(2)-cc_1b(2))/999:cc_ub(2)
cc_1b(3): (cc_ub(3)-cc_1b(3))/999:cc_ub(3)
cc_1b(4): (cc_ub(4)-cc_1b(4))/999:cc_ub(4)
cc_1b(5): (cc_ub(5)-cc_1b(5))/999:cc_ub(5)
cc_1b(6) : (cc_ub(6)-cc_1b(6))/999:cc_ub(6)
cc_1b(7): (cc_ub(7)-cc_1b(7))/999:cc_ub(7)
cc_1b(8): (cc_ub(8)-cc_1b(8))/999:cc_ub(8)];
CC=CC’;

[Msum,MsumRange] =MinkSum(C,CC) ;

H(:,:,ii) =MsumRange;

ce=[1; C=[1; cc=[1;

end

% Calculate the bounds for X and U
X_set_horizon=[]; U_set_horizon=[];

for ii=1:1:N

cc = H(:,:,ii);

cc_1b = cc(1,:);

cc_ub = cc(2,:);

CC=[cc_1b(1): (cc_ub(1)-cc_1b(1))/999:cc_ub(1)
cc_1b(2): (cc_ub(2)-cc_1b(2))/999:cc_ub(2)
cc_1b(3): (cc_ub(3)-cc_1b(3))/999:cc_ub(3)
cc_1b(4): (cc_ub(4)-cc_1b(4))/999:cc_ub(4)
cc_1b(5) : (cc_ub(5)-cc_1b(5))/999:cc_ub(5)
cc_1b(6): (cc_ub(6)-cc_1b(6))/999:cc_ub(6)
cc_1b(7): (cc_ub(7)-cc_1b(7))/999:cc_ub(7)
cc_1b(8):(cc_ub(8)-cc_1b(8))/999:cc_ub(8)];
CC=CC’;

PdiffRange=PontDiff (X_set’,CC);
X_set_horizon(:,:,ii)=PdiffRange;
PdiffRange=[];

KCC=K_gain*CC’ ;

PdiffRange=PontDiff (U_set’,KCC) ;
U_set_horizon(:,:,ii)=PdiffRange;

ce=[1; Cc=01; cc=[1;
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end
% Calculate the road disturbance "R*r"

if Case==1 ) just road disturbance
ds(:,n:n+N-1)=r(:,n:n+N-1);
elseif Case==2 % road disturbance + body states noise
for kkk=n:1:n+N-1
ds(:,kkk)=[r(:,kkk); 0.005*sin(2*pi*kkk/ng); 0.01*(pi/ng)*cos(2*pi*kkk/ng); 0.002*sin(0.1*dt*kkk);...
0.0002*cos (0.1*dt*kkk)];
end
elseif Case==3 J, road disturbance + unsprung states noise
for kkk=n:1:n+N-1
ds(:,kkk)=[r(:,kkk); 0.005*sin(2*pi*kkk/ng); 0.01*(pi/ng)*cos(2*pi*kkk/ng); 0.002*sin(0.1*dt*kkk);...
0.0002*cos (0. 1*dt*kkk)];
end
elseif Case==4 J, % road disturbance + all states noise
for kkk=n:1:n+N-1
ds(:,kkk)=[r(:,kkk); 0.0001*sin(2*pi*kkk/ng); 0.0002*(pi/ng)*cos(2*pi*kkk/ng); 0.0001*sin(0.1*dt*kkk);...
0.00001*cos (0. 1*dt*kkk) ;0.0001*sin(2*pixkkk/ng) ;...
0.0002* (pi/ng)*cos (2xpi*xkkk/ng) ; 0.0001*sin(0.1*dt*kkk); 0.00001*cos(0.1*dt*kkk)];
end
end

Dr= D*ds(:,n:n+N-1); % n*N matrix

% Calculate the oracle prediction
xXxX=xs;

inp(1:8,1)= xXx;

inp(9:10,1)= [1000;1000] ;

for ij=1:1:N-1

inp(1:8,ij+1)=( dt*( (A*xXx) + (10*B*omnes(2,1)) ) ) + xXx;
inp(9:10,ij+1)= [1000;1000]1;
xXx=inp(1:8,ij+1);

end

inp([3 4 7 8 10],:)=[1;

inp=inp’;

inp=inp*PCA_coeff;

for ij=1:1:inp_size

ind=find(inp(:,ij)<min_inp(ij)); inp(ind,ij)=rand(size(ind,1),1)*min_inp(ij);
ind=find (inp(:,ij)>max_inp(ij)); inp(ind,ij)=rand(size(ind,1),1)*max_inp(ij);
end

% Normalizing inputs within unity [0,1]

for ii=1:1:inp_size
inp(:,ii)=(inp(:,ii)-(ones(size(inp,1),1)*min_inp(ii)))/(max_inp(ii)-min_inp(ii));
end

Oracle(:,1) = predictor(inp, KrigingModell);
Oracle(:,2) = predictor(inp, KrigingModel2);
Oracle(:,3) = predictor(inp, KrigingModel3);
Oracle(:,4) = predictor(inp, KrigingModel4);
Oracle(:,5) = predictor(inp, KrigingModelb);
Oracle(:,6) = predictor(inp, KrigingModel6);
Oracle(:,7) = predictor(inp, KrigingModel7);
Oracle(:,8) = predictor(inp, KrigingModel8);
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Oracle=(10"-4)*0racle;
Oracle=0racle’;

% Calculate the optimal U_stable

if Optimizer==1 7 Simulated Annealing

ttheta = SA(Theta_min,Theta_max,Dr,A,B,K_gain,Phaii,Saii,xs,0Oracle,R,Q,T,P);
elseif Optimizer==2 J, Golden Sectioning Search
ttheta = GSS(Theta_min,Theta_max,Dr,A,B,K_gain,Phaii,Saii,xs,0Oracle,R,Q,T,P);

elseif Optimizer==3 J, Newton’s Method
end

Oracle=[];
Theta(:,n:n+N-1)=ttheta;

U_stable(:,n:n+N-1)=(Phaii-(-K_gain*Saii))*Theta(:,n:n+N-1);

uu=(-K_gain*xs)+U_stable(:,n);
% Check for possible bound violation

ind1=find ((uu(1,:)-U_set_horizon(2,1,:))>0);
ind2=find ((uu(l,:)+U_set_horizon(1,1,:))<0);
ind1=find((uu(2,:)-U_set_horizon(2,1,:))>0);
ind2=find ((uu(2,:)+U_set_horizon(1,1,:))<0);

U(:,n)=uu;
ot —===== STATE UPDATING ------ AN
for ij=n:1:n+N-1

uu(1,ind1)=U_set_horizon(2,1,ind1);
uu(1,ind2)=U_set_horizon(1,1,ind1);
uu(2,ind1)=U_set_horizon(2,1,ind1);
uu(2,ind2)=U_set_horizon(1,1,ind1);

ind1=[];
ind2=[];
ind1=[];
ind2=[];

Xsystem(:,ij+1)=( dt*( (A*Xsystem(:,ij)) + (BxU(:,ij)) + (Dxds(:,ij)) ) ) + Xsystem(:,ij);

% Calculate the actuation signal

uu=(-K_gain*Xsystem(:,ij+1))+U_stable(:,ij+1);

% Check for possible bound violation

ind1=find((uu(1,:)-U_set_horizon(2,1,:))>0);
ind2=find ((uu(l,:)+U_set_horizon(1,1,:))<0);
ind1=find ((uu(2,:)-U_set_horizon(2,1,:))>0);
ind2=find ((uu(2,:)+U_set_horizon(1,1,:))<0);

U(:,ij+1)=uu;
end

n
end

time=t0:dt:ts;
figure,

subplot(4,2,1), plot(time,Xsystem(1,:),
subplot(4,2,2), plot(time,Xsystem(2,:),
subplot(4,2,3), plot(time,Xsystem(3,:),
subplot(4,2,4), plot(time,Xsystem(4,:),
subplot(4,2,5), plot(time,Xsystem(5,:),
subplot(4,2,6), plot(time,Xsystem(6,:),
subplot(4,2,7), plot(time,Xsystem(7,:),
subplot(4,2,8), plot(time,Xsystem(8,:),

)

figure,

b)),
),
’b’),
b)),
),
b)),
),
b)),

subplot(2,2,1), plot(time,U_stable(1,:))
subplot(2,2,2), plot(time,U_stable(2,:))

subplot(2,2,3), plot(time,U(1,:))
subplot(2,2,4), plot(time,U(2,:))

uu(1,ind1)=U_set_horizon(2,1,ind1);
uu(1,ind2)=U_set_horizon(1,1,ind1);
uu(2,ind1)=U_set_horizon(2,1,ind1);
uu(2,ind2)=U_set_horizon(1,1,indl);
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A.4.2 MATLAB code for golden sectioning search

function Theta = GSS(Theta_min,Theta_max,Dr,A,B,K_gain,Phaii,Saii,xs,0Oracle,R,Q,T,P)
N=size(Dr,2); % Horizon Length

dt=0.001;

D=size(Theta_min,1)*N; % Dimesnion of the problem

% Intial solution
Xsol = zeros(1,D);
Soll = zeros(1,D);
Sol2 = zeros(1,D);

% GSS Controlling parameters
iter=1;
phi=1.6181;

for jj=1:1:D
a=Theta_min(1);
b=Theta_max (1) ;

while iter<=50
So0l11(jj) = b-((b-a)/phi);
S012(jj) = a+((b-a)/phi);

% Evaluate the fitness of the two individuals

% Soll

Theta(1,1:N)=So0l1(1:N);

Theta(2,1:N)=Sol1(N+1:D);
U_stable=(Phaii-(-K_gain*Saii))*Theta;
U(:,1)=(-K_gain*xs)+U_stable(:,1);

Xsystem(:,1)=xs;

for ij=1:1:N-1

Xsystem(:,ij+1)=( dt*( (A*Xsystem(:,ij)) + (B*U(:,ij)) + (Dr(:,ij)) + Oracle(:,ij) ) ) + Xsystem(:,ij);
U(:,ij+1)=(-K_gain*Xsystem(:,ij+1))+U_stable(:,ij+1);
end

SumX=0;

SumU=0;

for ij=2:1:N-1

SumX=SumX+((Xsystem(:,ij)-(Saii*Theta(:,ij))) *Q*(Xsystem(:,ij)-(Saii*Theta(:,ij))));
SumU=SumU+((U(:,1j)-(Phaii*Theta(:,1j))) >*R*x(U(:,1j)-(Phaii*Theta(:,1ij))));

end

h_Soll= ((Xsystem(:,N)-(Saii*Theta(:,N)))’*P*(Xsystem(:,N)-(Saii*Theta(:,N))))...
+((-(Saii*Theta(:,N))) ’*T*(-(Saii*Theta(:,N))))+SumX+SumU;

Xsystem=[]; U=[]; Theta=[]; U_stable=[];

% Sol2

Theta(1,1:N)=S012(1:N);

Theta(2,1:N)=S012(N+1:D);

U_stable=(Phaii-(-K_gain*Saii))*Theta;

U(:,1)=(-K_gain*xs)+U_stable(:,1);

Xsystem(:,1)=xs;

for ij=1:1:N-1

Xsystem(:,ij+1)=( dt*( (A*Xsystem(:,ij)) + (B*U(:,ij)) + (Dr(:,ij)) + Oracle(:,ij) ) ) + Xsystem(:,ij);
U(:,ij+1)=(-K_gain*Xsystem(:,ij+1))+U_stable(:,ij+1);
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end

SumX=0;

SumU=0;

for ij=2:1:N-1

SumX=SumX+((Xsystem(:,ij)-(Saii*Theta(:,ij))) *Q*x(Xsystem(:,ij)-(Saii*Theta(:,ij))));
SumU=SumU+((U(:,1j)-(Phaii*Theta(:,1j))) > *R*x(U(:,1j)-(Phaii*Theta(:,1j))));

end

h_Sol2= ((Xsystem(:,N)-(Saii*Theta(:,N)))’*P*(Xsystem(:,N)-(Saii*Theta(:,N))))...
+((-(Saii*Theta(:,N)))’*T*(-(Saii*Theta(:,N))))+SumX+SumU;

yA
if h_Soli<h_Sol2
b=S011(jj);
Xs01(jj)=S011(jj);
else

a=S012(jj);
Xsol(jj)=S012(jj);
end

iter=iter+1;

end

end

end

A.4.3 MATLAB code for simulated annealing

function Theta = SA(Theta_min,Theta_max,Dr,A,B,K_gain,Phaii,Saii,xs,0Oracle,R,Q,T,P)
N=size(Dr,2); % Horizon Length

dt=0.001;

iter=0;

D=size(Theta_min,1)*N; % Dimesnion of the problem

% SA Controlling parameters

tempi=1; % Initial Temperature
temps=0.001; % Final Temperature
cf=0.9996; % Cooling Factor
temp=tempi; % Current Temperature

SigmAaa=0.1*(Theta_max(1)-Theta_min(1)); % A parameter in the Gaussian proposal

% Intial solution
Xsol=Theta_min(1)+(rand(1,D)*(Theta_max(1)-Theta_min(1)));

% Point estimate of the target distribution

Theta(1,1:N)=Xs0l(1:N); Theta(2,1:N)=Xsol(N+1:D);

U_stable=(Phaii-(-K_gain*Saii))*Theta; U(:,1)=(-K_gain*xs)+U_stable(:,1);

Xsystem(:,1)=xs;

for ij=1:1:N-1

Xsystem(:,ij+1)=( dt*( (AxXsystem(:,ij)) + (B*U(:,ij)) + (Dr(:,ij)) + Oracle(:,ij) ) ) + Xsystem(:,ij);
U(:,ij+1)=(-K_gain*Xsystem(:,ij+1))+U_stable(:,ij+1);

end

SumX=0; SumU=0;
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for ij=2:1:N-1

SumX=SumX+((Xsystem(:,ij)-(Saii*Theta(:,ij))) *Q*x(Xsystem(:,ij)-(Saii*Theta(:,ij))));
SumU=SumU+ ((U(:,1ij)-(Phaii*Theta(:,1j))) *R*(U(:,1j)-(Phaii*Theta(:,ij))));

end

h_X= ((Xsystem(:,N)-(Saii*Theta(:,N)))’*P*(Xsystem(:,N)-(Saii*Theta(:,N))))...
+((-(Saii*Theta(:,N))) ’*T*(-(Saii*Theta(:,N))))+SumX+SumU;

Pai_X=exp(-h_X/temp) ;
Fmin=h_X;

while temp > temps
iter = iter+l; temp=cfx*temp;

%-- Proposal distribution "P(X,Y)" (Gaussian pdf)
Ysol = normrnd(Xsol,SigmAaa);
ind=find(Ysol>Theta_max(1)); Ysol(ind)=Theta_max(1); ind=find(Ysol<Theta_min(1)); Ysol(ind)=Theta_min(1);

% Point estimate of the target distribution

Theta(1,1:N)=Ysol(1:N); Theta(2,1:N)=Ysol(N+1:D);

U_stable=(Phaii-(-K_gain*Saii))*Theta; U(:,1)=(-K_gain*xs)+U_stable(:,1);

Xsystem(:,1)=xs;

for ij=1:1:N-1

Xsystem(:,ij+1)=( dt*( (A*Xsystem(:,ij)) + (B*U(:,ij)) + (Dr(:,ij)) + Oracle(:,ij) ) ) + Xsystem(:,ij);
U(:,ij+1)=(-K_gain*Xsystem(:,ij+1))+U_stable(:,ij+1);

end

SumX=0; SumU=0;

for ij=2:1:N-1

SumX=SumX+((Xsystem(:,ij)-(Saii*Theta(:,ij))) ’*Q*x(Xsystem(:,ij)-(Saii*Theta(:,ij))));
SumU=SumU+((U(:,ij)-(Phaii*Theta(:,1j))) > *R*x(U(:,ij)-(Phaii*Theta(:,1ij))));

end

h_Y= ((Xsystem(:,N)-(Saii*Theta(:,N)))’*P*(Xsystem(:,N)-(Saii*Theta(:,N))))...
+((-(Saii*Theta(:,N)))’*T*(-(Saii*Theta(:,N))))+SumX+SumU;

Pai_Y=exp(-h_Y/temp);

%-- Acceptance-Rejection determination

% 1: Draw "u" from Uniform Distribution [0,1]
u=rand;

% 2: Verify to accept or not

alphA=min(1, (Pai_Y/Pai_X));

if u<=alphA % Accept the new state

Xsol=Ysol;

h_X=h_Y;

Pai_X=Pai_Y;

else 7 Reject

end

% Archive the best solution found so-far
Fmin=min(Fmin, h_X);

Gbest (iter)=Fmin;

% Variation of objective value through the movement of the chain
ObjVal(iter)=h_X;

end

end
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