
Study of Implementation of CNN on
Low-power Platform for Smart

Traffic Optimization

by

Zhizhou Li

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

© Zhizhou Li 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Accompanied with the rise of smart city and the development of IoT (Internet of
Things), people are looking forward to monitoring and regulating the traffic in a smarter
way. Since the deep neural network has shown its great value in vehicle detection area, peo-
ple may wonder what kind of impact would be brought by the combination of IoT and deep
learning techniques. In this work, an exploration of implementation of CNN (convolutional
neural network) on low-power platform for smart traffic optimization has been conducted.
During the research, a new optimization approach, which aims at S-CNN (Sparse Con-
volutional Neural Network) optimization from architecture level, has been proposed; and
outstanding performance has been obtained when compared to mainstream deep learning
frameworks, such as Tensorflow. In the experiments, the new proposed S-CNN optimiza-
tion approach is as twice fast as Tensorflow on 94% sparse model and becomes 5 times
faster on 98% sparse model. Besides, the author also verified the feasibility of real-time
CNN implementation on ARM platform and Jetson TX1 embedded system, which reveals
the shortage of computational resource on ARM platform and the potential of Jetson series
to become the low-power platform for CNN implementation.

iii

Acknowledgements

First and foremost, I would like to show my deepest gratitude to my supervisors, Dr.
Kshirasagar Naik and Dr. Justin Eichel. They are respectable, responsible and resourceful
scholars, who have provided me with valuable guidance in every stage of the writing of this
thesis. Without their enlightening instruction, impressive kindness and patience, I could
not have completed my thesis.

I shall also extend my thanks to ECE Graduate Office and the staff for their kindness,
help and sponsorship. I would also like to thank all my teachers who have helped me to
develop the fundamental and essential academic competence.

Last but not least, I would like to thank all my friends for their encouragement and
support.

iv

Dedication

I dedicate this thesis to my parents, who gave me the first book in my life.

v

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xii

Nomenclature xiv

1 Introduction 1
1.1 Motivation . 1
1.2 Thesis Architecture . 4

2 Background 5
2.1 Convolutional Neural Network . 5

2.1.1 Sparse Convolutional Neural Network 9
2.1.2 Evolutionary Neural Network . 10

2.2 Hardware Platform . 11
2.2.1 GPU . 11
2.2.2 CPU . 13
2.2.3 ARM . 13
2.2.4 Jetson TX1 . 15

2.3 Software Platform . 15

vi

2.3.1 Tensorflow . 16
2.3.2 Caffe . 17

3 Problem Formulation 18
3.1 Power Consumption . 18
3.2 Runtime . 19

4 Solution Strategy and Experiment Setup 21
4.1 Optimization on S-CNN . 21

4.1.1 Motivation . 21
4.1.2 Details . 22

4.2 Optimization on General CNN . 24
4.2.1 Motivation . 24
4.2.2 Details . 26

4.3 Experimental Environment . 27
4.3.1 Model . 27
4.3.2 Software Platform . 27
4.3.3 Hardware Platform . 29

5 Experimental Results 30
5.1 GPU and CPU Platform Benchmark . 30
5.2 Effectiveness of S-CNN Optimization . 31
5.3 Feasibility of ARM Platform . 32
5.4 Feasibility of Jetson TX1 Platform . 34
5.5 Power Measurement . 36

6 Conclusion and Discussion 39
6.1 Hardware Platform for Research . 39
6.2 Hardware Platform for Low-power Control 39
6.3 Hardware Platform for Widely Distributed Vehicle Detection System . . . 40
6.4 Software Improvement . 40

vii

7 Future Work 41

7.1 Research on Jetson TX Series . 41
7.2 Dedicated Convolutional Chip . 41
7.3 S-CNN Optimization on GPU . 42

References 43

APPENDICES 46

A S-CNN Optimization Implementation Superclass 47

B S-CNN Optimization Implementation Header 48

C S-CNN Optimization Implementation Code 49

viii

List of Tables

1.1 Comparison of On-road Traffic and Off-road Traffic 2

2.1 Convolution of a 3×3 kernel on a 5×5 input without padding, stride 1 . . . 11
2.2 Module Technical Specification of Jetson TX1 15

4.1 Model Specification . 27
4.2 Software Specification . 28
4.3 Hardware Platform Spec . 29

5.1 GPU and CPU Benchmark . 31
5.2 Verification of S-CNN Optimization . 34
5.3 Feasibility of ARM Platform . 34
5.4 Feasibility of Jetson TX1 Platform . 36
5.5 Power Measurement . 37

ix

List of Figures

1.1 The Basic Components of Smart City . 2
1.2 Vehicle Detection via convolutional neural networks 3

2.1 An example of 2D convolution, credits to vImage Programming Guide . . . 6
2.2 A standard VGG13 architecture. The post-fix number represents the layer

number, for example, Conv3 1 means the first sublayer of the third convo-
lutional layer. 8

2.3 How GPU acceleration works(need to be replaced with a better one) 12
2.4 The ARM hardware platform used in the experiment provided by Miovision

Technologies . 14
2.5 Demonstration of Nodes and Data Flow in Tensorflow 16

3.1 Monthly Wind Speed Average in 2016 (Waterloo Region) 19
3.2 Monthly Solar Power Average in 2016 (Waterloo Region) 20

4.1 The process of S-CNN optimization from pre-trained model to deployable
code . 22

4.2 Indexing of A 3 by 3 Input . 23
4.3 An Example of Sparse Transformation . 23
4.4 Code Generation Process . 25
4.5 Class Diagram of General Optimization . 26
4.6 Proposed Work Schema . 28

x

5.1 GPU and CPU Benchmark . 32
5.2 Effectiveness of S-CNN Optimization . 33
5.3 Feasibility of ARM Platform . 35
5.4 Power Measurement . 37
5.5 Power Consumption of ARM Platform during Runtime 38

xi

List of Abbreviations

API Application Programming Interface 17

ARM Advanced RISC Machine 13, 15, 17, 21, 22, 29–32, 36, 39

BLAS Basic Linear Algebra Subprograms 17

CNN Convolutional Neural Network 3–5, 7, 9, 12, 21, 24, 27, 32, 34, 41, 42

CPU Central Processing Unit 11–13, 17, 29–32, 34, 36, 39, 42

FLOPS Floating-point Operations Per Second 9

GPS Global Positioning System 2

GPU Graphics Processing Unit 11–13, 15, 17, 29–31, 34, 36, 39, 42

IoT Internet of Things 1

NEMA National Electrical Manufacturers Association 19

NN Neural Network 5

ReLU Rectified Linear Unit 7, 10

RISC Reduced Instruction Set Computing 13

SIMD Single Instruction Multiple Data 13

STL Standard Template Library 22

xii

TPU Tensor Processing Unit 42

VGG Visual Geometry Group 7, 9, 10

xiii

Nomenclature

S-CNN A type of convolutional neural network, whose parameters contain a lot of zeros.
9, 10, 21, 22, 24, 26, 27, 30–32, 40, 42

xiv

Chapter 1

Introduction

1.1 Motivation

“Smart City” is a recently invented terminology in Internet of Things (IoT) area. It
utilizes the technology of IoT and other modern technique to implement informatilization,
industrialisation and urbanization. According to the evaluation criterion of University of
Vienna[13], a smart city should include the following six characteristics: smart economy,
smart people, smart governance, smart mobility, smart environment and smart living.
Figure 1.1 shows the concept of smart city intuitively. The smart city, as an organic whole,
consists of these indispensable components.

Since we have already known that smart mobility could help improve the intelligence
of a city, we may also want to know how we can make the mobility smarter. For better
analysis, it is useful to divide the whole traffic system into two parts: traffic on the road
and traffic off the road. Table 1.1 shows the difference between these two types of traffic.
Compared to the off-road traffic, the on-road traffic is the bottleneck of smart mobility
based on its features. First, the on-road traffic consists of various land vehicles, which
means it is hard to optimize the traffic based on type and size of vehicles. Second, the
controllability of on-road traffic is quite low because current traffic regulation system lacks
real-time compulsory control. For example, a local driver may still drive on his daily
route towards home even though he has already knew there may be congestion around the
rush hour today. Lastly, the biggest problem of optimization for on-road traffic is its high
burstiness. The burstiness comprises two parts: the predictable one and the unpredictable
one. The predictable burst could be mostly avoided by advanced notification and smart
route planning, but the unpredictable burst is hard to keep track immediately and regulate

1

Figure 1.1: The Basic Components of Smart City

Table 1.1: Comparison of On-road Traffic and Off-road Traffic
Traffic Type On-road Traffic Off-road Traffic
Composing Unit Various vehicles (most of

them are private cars),
pedestrians, cyclists, etc.

Large-scale transportation sys-
tem, such as railways and air-
lines.

Controllability Low High
Burstiness High Low

correspondingly. Although with such difficulty, it is without doubt that people are looking
forward to optimization for current on-road traffic, such as reducing congestion and real-
time road situation monitoring.

By summarizing the problems mentioned above, to optimize on-road traffic requires
real-time and widely distributed measurement. Only with such dynamic and detailed
information, people are allowed to develop appropriate algorithms for the smart mobility.
This kind of measurement is to know the road situation, such as the location of vehicles,
pedestrians and cyclists, so that the system could analyze the congestion situation and
plan as a whole. There are many methods to locate a car, like Global Positioning System
(GPS) and vehicle detection via computer vision technique. The GPS measurement is
limited by the availability and accuracy of GPS equipment in the cars and cannot cover
widely enough to support large-scale traffic optimization. Therefore, the vehicle detection

2

Figure 1.2: Vehicle Detection via convolutional neural networks

method using computer vision technique could be the most suitable way to obtain expected
road situation for now.

The vehicle detection requires computers to recognize the vehicles and related contents
in a picture. The state-of-art method of pattern recognition in computer vision is using
Convolutional Neural Network (CNN), and it could achieve satisfactory results after enough
training and careful deployment. Figure 1.2 shows several vehicle detection effects using
CNN.

However, the normal vehicle detection system is power-consuming, which means it
cannot be deployed widely and become self-powered. Hence, how to realize a low-power
vehicle detection system becomes a popular topic.

3

1.2 Thesis Architecture

This thesis focuses on low-power vehicle detection system design and tries to figure out
a feasible solution to improve CNN implementation on such low-power platforms. The
general idea of the thesis is to test several software-hardware combination and sort out the
most feasible solution among them. The following chapters display the research progress
and results.

Chapter 2 introduces the background knowledge needed for this thesis. Chapter 3
proposes the research problem and its further analysis. Chapter 4 explains the experiment
setup details and the solution strategy. Chapter 5 reports the experiment results with
corresponding explanation. Chapter 6 shows conclusions based on previous experiments
and related discussion. The last chapter illustrates some future work according to current
research and exploration.

4

Chapter 2

Background

This chapter introduces the background knowledge needed for understanding this thesis.

2.1 Convolutional Neural Network

Convolutional Neural Networks (CNNs) is a variant of ordinary Neural Networks. LeNet[12]
is one of the earliest CNNs, which has boosted the development of Deep Learning[11].
Firstly, it is necessary to understand what is the 2D convolution in computer vision area.
Figure 2.1 demonstrates a simple example of 2D convolution. In this example, the convo-
lution operation could be seen as the process of feature extraction[5]. At the beginning,
when people tried to apply machine learning algorithms (for example, regression models)
to solving image recognition problem, matrix multiplication is used between each lay-
ers to simulate the connection of biological neurons. Instead of using large-scale matrix
operations, CNNs use multiple small-scale matrix convolutions for feature detection and
abstraction. The benefit of replacing matrix multiplication with convolution is obvious.
The number of trainable parameters of the entire network becomes much smaller compared
to ordinary Neural Network (NN).

5

Figure 2.1: An example of 2D convolution, credits to vImage Programming Guide

R1 = I1 ∗K1 (2.1)

I1 =

0 1 0
1 0 0
0 0 0


K1 =

[
0 1
1 0

]

R1 = I1 ∗K1 =
[
2 0
0 0

]

6

R2 = I2 ·K2 (2.2)
I2 =

[
0 1 0 1 0 0 0 0 0

]

K2 =



0 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
0 1 1 0
0 0 0 1
0 0 1 0
0 0 0 1
0 0 0 0


R2 = I2 ·K2 =

[
2 0 0 0

]
For example, this thesis hereby uses ∗ to represent the operation of convolution and

· to represent the operation of matrix multiplication. In convolution, no preprocessing
is needed for the input, therefore it could keep its spatial features during the operation.
On the other hand, the input of matrix multiplication has to be flatten into a vector in
order to validate the matrix multiplication. Equation 2.1 and 2.2 show that in order to
detect the existence of diagonal (R1, R2) in a 3 by 3 image (I1, I2), the parameters for
convolution (K1) are 4 because the diagonal feature only needs to be detected in a 2 by
2 square. However, in order to attain the same result, the kernel of matrix multiplication
(K2) requires 4× 9 = 36 parameters, with the input size of 9 and the output size of 4.

Usually, a CNN is built up with six types of layers according to some connection rules,
and these six types of layer are: input, convolutional, Rectified Linear Unit (ReLU), pool-
ing, fully connected and output. The Figure 2.2 demonstrates a standard Visual Geometry
Group (VGG) model for image recognition, revealing that most of the computation hap-
pens in the convolutional layers. In a common CNN model, the convolutional layers are
responsible for feature extraction and followed by ReLU layers in order to add non-linearity
to the system. After several convolution layers and ReLU layers, a pooling layers will be
interpolated into the model so that the system could reduce the dimensionality of the input
and perform feature extraction on higher level. At last, the fully connected layers will take
the results after all the convolution as input and gradually transform it into label-like infer-
ence. The convolutional layers are composed of many convolutional filters (kernels), each
parameter in the filters is obtained after the training of backward propagation. Most of

7

Figure 2.2: A standard VGG13 architecture. The post-fix number represents the layer
number, for example, Conv3 1 means the first sublayer of the third convolutional layer.

8

the computation happens in the convolutional layers and the computational complexity is
determined by the size of inputs and kernels. For instance, the 8-layer AlexNet[10] involves
60 million parameters and requires over 729 million Floating-point Operations Per Second
(FLOPS) to classify one image per second. One of the problems this thesis tries to tackle
is to reduce the unnecessary FLOPS based on some special conditions in convolution.

With the development of CNNs and Deep Learning, some new architectures have been
developed for better accuracy on image recognition, and VGG[15] model proposed by
University of Oxford is one of them. Opposite to the AlexNet, the size of convolutional filter
in VGG becomes smaller and most of them are 3 by 3 filters. However, the contribution
of VGG is exactly the smaller filters. By using multiple 3 by 3 convolutional filters, VGG
can imitate the effect of the larger receptive field. VGG has been used in transfer learning
for object localization tasks, making it a suitable starting point for vehicle localization in
traffic applications, monitoring crowd movement for public security and so on. This is
also the reason why this thesis selects several pretrained VGG models as the benchmark
for different implementation. Accompanying the improvement of accuracy, the size of the
model becomes larger, even type A of VGG model still contains 133 million parameters.
That means heavy computational burden is not only for training the model but also for
the implementation.

2.1.1 Sparse Convolutional Neural Network

There is a special representation of CNN named sparse Convolutional Neural Network (S-
CNN). The sparsity of a CNN is the percentage of zero placeholder in its entire network and
if the network has more than 50% sparsity, people can define it as an S-CNN. One of the
useful features of S-CNN is: if a kernel is full of zeros, the result of the convolution on any
input will also become zeros. In other words, with this predetermined characteristic, the
simplification of S-CNN implementation becomes extracting non-zero values for meaningful
calculation.

Even if the kernel is not totally filled up with zeros, the improvement of computational
efficiency on S-CNN is also huge after some omission of calculation. For discrete, two-
dimensional variables A and B, the following equation defines the convolution output C
of A and B[20]:

C (j, k) =
∑

p

∑
q

A (p, q) B (j − p + 1, k − q + 1) (2.3)

where p and q run over all values that lead to valid subscripts of A (p, q) and
B (j − p + 1, k − q + 1).

9

Based on this definition, it is possible to calculate the number of multiplications and
additions during the convolution for a given input and kernel. If zero multiplications
and additions could be removed from the convolution, the number of multiplications and
additions required in a convolution could be defined as Equation 2.4 and 2.5:

N1 = NZV ×NRF (2.4)

N2 =
(NZV − 1)×NRF NZV ≥ 2

0 NZV = 0, 1
(2.5)

where N1 and N2 correspondingly represent the number of multiplications and additions
required in the convolution, NZV represents the number of non-zero values in the kernel
and NRF represents the number of receptive fields (convolutional areas).

According to Equation 2.4 and 2.5, the number of multiplication and addition is mono-
tonically increasing with the number of non-zero values in the kernel. Table 2.1 shows
the reduction of floating-point operations on sparsity. The number of receptive fields in
this convolution is 9 and the number of non-zero values in the kernel is decreasing by
one each time. This table hereby combines both multiplication and addition as the to-
tal computation and calculate the difference among different sparsity. As the percentage
of computation reduction shown in the table, the computation decreases along with the
increase of sparsity (less non-zero values in the kernel).

The generation of S-CNN comes from ReLU layer originally. The evolutionary neural
network, which will be introduced in the next section, also yields the controllable sparsifi-
cation during the training. The ReLU layer as the activation layer, intercepts the negative
values of the input and turns them to be zeros. Because ReLU layers are added after every
convolutional layer in VGG models, the latter layers could easily become highly sparse so
that the sparsity of the model also increases.

2.1.2 Evolutionary Neural Network

From the above section, the potential of S-CNN to improve computational efficiency on
convolution is obviously great. Then a new question may arise from this desire to simplify
the convolution: how to make the weight tensors sparser. There are many ways to get
this job done, and the method used by this thesis is evolutionary neural network[14].
Simply speaking, the evolutionary neural networks use iteration to update and optimize
its architecture. The next generation of the network is modified based on the previous

10

Table 2.1: Convolution of a 3×3 kernel on a 5×5 input without padding, stride 1
Kernel Type # of multiplication # of addition computation reduction
fully dense 81 72 0%
8 non-zero value 72 63 11.80%
7 non-zero values 63 54 23.50%
6 non-zero values 54 45 35.30%
5 non-zero values 45 36 47.10%
4 non-zero values 36 27 58.80%
3 non-zero values 27 18 70.60%
2 non-zero values 18 9 82.40%
1 non-zero value 9 0 94.10%
empty 0 0 100%

generation. If the accuracy of the previous generation of the network is above the accuracy
requirement, the next generation of the network will be pruned or sparsified by some
predefined rules; Otherwise, the next generation of the network will continue training to
fill up the sparse tensors for higher accuracy.

The advantages of doing so is obvious: by imitating the evolution laws in biology, this
Markov process will produce the best-optimized output under current constraints.

2.2 Hardware Platform

This section introduces the hardware platform to execute the CNN models, including
normal GPU, CPU, ARM and Jetson TX1.

2.2.1 GPU

A Graphics Processing Unit (GPU) is a specialized electronic circuit that originally de-
signed for high-speed graphics processing, including rapid memory reallocation and fre-
quent image manipulation. The parallel structure of GPUs makes them more efficient
when compared to general-purpose Central Processing Unit (CPU)s for algorithms pro-
cessing large block of data. Therefore, pioneered by NVIDIA in 2007, GPU accelerators
become an important part of supporting deep learning development. Figure 2.3 shows
how GPU acceleration works for software application. In simple words, GPU will take

11

Application Code

Sequential CPU
Code

•CPU

Compute-intensive
Function

•GPU

Sequential CPU
Code

•CPU

Figure 2.3: How GPU acceleration works(need to be replaced with a better one)

the computational tasks from CPU and perform operations independently. After that, the
output of GPU will converge into main data stream for following process.

With the support of this acceleration, starting from 2010 by Dan Claudiu Cireşan
at el.[4], implementing deep learning algorithms and CNN models on GPU is now the
tendency, and this paper also shows the advantage of GPU on run-time in the following
section. However, GPUs as the implementation platform also have their disadvantages.
First of all, the price of high-speed GPU chip is not low enough for widely distributed
application. The price of a normal GPU used for model training could be up to 2000
USD. Second, the power consumption of GPU is another an obstacle when people want
to deploy them in some energy-insufficient environments. Based on the illustration of
Figure 2.3, GPU cannot complete computational tasks alone without task assignment from
CPU. That means a GPU computational system must include at least one CPU, therefore
the power consumption of GPU system should be more than the general CPU system.

12

2.2.2 CPU

CPU has a longer history than GPU. In general, CPU represents a series of logical machine
that can execute complicated computer programs. This definition could easily include the
early stage computers which already exist before the widespread of the word “CPU”,
nonetheless, at least from 1960’s, the word “CPU” has been widely used in electronic
computer industry.

The performance of the CPU mainly depends on the the clock rate and the instructions
per clock. It is worth mentioning that the clock rate cannot be increased dramatically be-
cause of the accompanying increased amount of heat dissipated by the CPU. Therefore,
current improvement on computational ability of CPU is focusing on parallel computa-
tion, which includes instruction level parallelism and thread level parallelism. Meanwhile,
the invention of Single Instruction Multiple Data (SIMD) and multi-core techniques also
enormously strengthen the computational ability on chips.

Compared to GPU, CPU has a lot of advantages: higher accessibility, lower power
consumption and price, and ability to work alone without adding control system. However,
the parallel computation resource of CPU is much less than that of a normal GPU, which
is a shortcoming in CPU-based system.

2.2.3 ARM

An Advanced RISC Machine (ARM) is an another type of micro processor and the hardware
architecture of Reduced Instruction Set Computing (RISC) for computer processor. In
other words, ARM can be treated as a weakened CPU which supports less instructions
and owns less computational resource, but of course it has lower power consumption and
price. These characteristics are desirable for light, portable and battery-powered devices.
With the benefits mentioned above, the ARM processor has huge potential to become the
suitable hardware solution to the topic of this thesis.

Figure 2.4 shows a prototype machine designed by Miovision Technologies which is us-
ing ARM as the computing core. The aim of this device is to collect and analyze visual
traffic data with wide distribution, even in some energy-insufficient environments, such as
mountain trails. As shown in the figure, this platform could be powered by rechargeable
battery which validates it is used for low-power application. However, being limited by
its processing power and memory, the ARM platform cannot afford a massive operating
system running on it. Instead, to avoid extra overhead, this platform is running a nearly
blank Linux OS, which only supports the execution of C++ programs after designated

13

Figure 2.4: The ARM hardware platform used in the experiment provided by Miovision
Technologies

14

Table 2.2: Module Technical Specification of Jetson TX1
GPU NVIDIA Maxwell, 256 CUDA cores
CPU Quad ARM A57/2 MB L2

Memory 4 GB 64 bit LPDDR4
25.6 GB/s

Data Storage 16 GB eMMC, SDIO, SATA
Other UART, SPI, I2C, I2S, GPIOs
USB USB 3.0 + USB 2.0
Connectivity 1 Gigabyte Ethernet, 802.11ac WLAN, Bluetooth

compilation. This is one of the disadvantages of ARM, which means it is not supported
by mainstream deep learning frameworks and requires some dedicated native C++ imple-
mentations.

2.2.4 Jetson TX1

Generally speaking, Jetson TX1 is an embedded system instead of a specific kind of chip.
Jetson TX1 is the latest AI computing module invented by NVIDIA. From Table 2.2,
it is obvious that this module is the combination of GPU and ARM, in which the ARM
processor takes charge of computational task assignment and the specific low-power GPU is
in charge of real-time computing. This combination tactfully takes advantages of both GPU
and ARM so that it can guarantee the run-time performance. Meanwhile, the choice of
low-power GPU and ARM allows people to deploy their systems in some power-constrained
environments.

Another point worth mentioning is that Jetson TX1 comprises larger memory and data
storage, which allows it to support a more functional operation system. The benefits are
obvious: with the help of functional operating system, the implementation could directly
utilize the existing frameworks, accelerators, libraries with which people are already famil-
iar. This advantage would greatly shorten the circle of development of applications and
reduce the risk of infeasible solutions.

2.3 Software Platform

This section introduces two mainstream deep learning frameworks that will be used in the
thesis: TensorFlow and Caffe.

15

Figure 2.5: Demonstration of Nodes and Data Flow in Tensorflow

2.3.1 Tensorflow

TensorFlow[1][25] is an open source software library for numerical computation using data
flow graphs. The most important concepts in TensorFlow are nodes and tensors. Tensors
are the multidimensional data arrays that store the results after operations and will be
treated as the input to next operation if applicable. Correspondingly, nodes in the graph
represent mathematical operations according to the network structure.

Figure 2.5 shows an example of working paradigm of Tensorflow. The model in the
figure is logistic regression model which is used for inference of an input with given size
and trained by stochastic gradient descent method. The black lines with arrow represent
the data flow in the model and different colorful blocks are different operations performed
in the process, which are the nodes in Tensorflow’s terminology.

16

As the most popular deep learning framework in the world, TensorFlow supports a
great variety of models and owns a vigorous, growing community. Meanwhile, TensorFlow
was originally developed by researchers and engineers working on the Google Brain Team,
and those people are still maintaining TensorFlow and keep upgrading it. Based on this
advantage, this thesis mainly uses TensorFlow as the benchmark to evaluate the runtime
performance of the proposed solution.

2.3.2 Caffe

Caffe[8] is a deep learning framework developed by Berkeley AI Research and its community
contributors. Caffe uses blobs[16] to store computational data, where a blob is an N-
dimensional array stored in a C-contiguous fashion and can be synchronized between CPU
and GPU. Besides, Caffe defines various layers[17] for different mathematical operations,
including convolution, pooling, activation, loss, etc. Combining layers with blobs as their
inputs/outputs forms the desired network.

One of the advantages of Caffe is its speed because it utilizes Basic Linear Algebra
Subprograms (BLAS) to accelerate the inner matrix computation. However, the selected
ARM platform for experiment does not support this Application Programming Interface
(API) standard, so the Caffe library cannot be transplanted to the ARM platform directly.
This thesis uses Caffe with Jetson TX1 to achieve better runtime performance because
NVIDIA has already developed an acceleration library named TensorRT on Jetson TX1
for caffemodel.

17

Chapter 3

Problem Formulation

In order to design a deployable traffic monitor system, there are two aspects that deserve
researchers’ attention. First, To achieve wide distribution, it means the systems could
be deployed at the locations that lack infrastructure. Therefore, the system should be
equipped with self-powering and power-harvesting components, and at the same time, the
power of the whole system should be as low as possible. Second, the expected system should
have reliable runtime performance, in other words, its computational speed should be fast
enough to support dynamic image recognition at a minimum frame rate with the acceptable
accuracy. However, the above two points are relevant. The higher computational speed
requires more computational units, which would increase the power of the system and
vice versa. Therefore, how to balance these two requirements is the main problem of the
research in this thesis. This chapter introduces what specifications of the expected system
are, including the power consumption and runtime performance requirements.

3.1 Power Consumption

Since users hope that the system could be deployed everywhere and maintain self-operation
for more than a year (battery wastage neglected), the maximum power of the system should
depends on how much power a modern power harvest technique could provide. According
to the weather data in Waterloo region[21], this thesis drew Figure 3.1 and 3.2 for further
analysis.

Even though the monthly wind speed is high during winter based on Figure 3.1, when
applying small-scale turbines to wind power harvesting, the total energy provided by wind

18

2 4 6 8 10 12

6

8

10

12

Months

Sp
ee

d/
(k

m
/h

)

Monthly Wind Speed Average

Figure 3.1: Monthly Wind Speed Average in 2016 (Waterloo Region)

power in 2016 is less than 4kWh, which means the utilization of wind power could support
the device with power consumption below 0.5W.

On the other hand, based on the result of Figure 3.2, even applying small-scale solar
panel to solar power harvesting, the total energy provided by solar power in 2016 could
be up to 47kWh. Thus the device powered by solar panel could also have the power
consumption more than 5W.

Based on the calculation above, both wind power and solar power cannot provide much
energy to the system. This fact also validates that the expected system should be low-
power enough to become widely deployable. Since it is still an exploration stage of the
research now, this thesis will adopt the reasonable rough estimation of 6W (combining wind
power and solar power, then rounding up to an integer) as the ideal power consumption of
the expected system.

3.2 Runtime

According to the related regulations governing traffic and transportation, such as National
Electrical Manufacturers Association (NEMA)[2], the traffic optimization system should

19

2 4 6 8 10 12

50

100

150

200

250

Months

W
/m

2

Monthly Solar Power Average

Figure 3.2: Monthly Solar Power Average in 2016 (Waterloo Region)

have the ability to process at least 5 frames per second. In real world, the frame rate is
acceptable for traffic signal processing and decision making, therefore, 200ms per frame is
used as the benchmark for runtime requirement in the following sections.

20

Chapter 4

Solution Strategy and Experiment
Setup

This chapter will introduce mechanism of optimization on S-CNN and general CNN, and
also setup the environment required for the following experiments.

4.1 Optimization on S-CNN

It has been mentioned in Chapter 2 that S-CNN contains tremendous potential to be
optimized, it is worth research how people can optimize the computation on an S-CNN.

4.1.1 Motivation

Since many well-optimized deep learning frameworks exist today, it is needed to know
whether current frameworks have been optimized for S-CNN. After checking the related
documents of Tensorflow, it has been found that Tensorflow does not get S-CNN compu-
tation optimized to a system level. Although Tensorflow provides sparse matrix opera-
tions as its built-in functions, the implementation process will not automatically call those
functions. Besides, considering the limitation of ARM platform, current frameworks are
established with many dependencies on normal desktop Ubuntu system and thus become
so difficult to be transplanted to a tiny, less functional operating system. Hence, to further

21

S-CNN Model Preprocessor Code-generator
Deployable

Implementation

Figure 4.1: The process of S-CNN optimization from pre-trained model to deployable code

reduce computation and become adjusted to ARM platform, a native C++ solution sup-
ported by Standard Template Library (STL) is the main optimization method proposed
in this thesis.

4.1.2 Details

Figure 4.1 displays the process of S-CNN optimization during the proposed implementation.
First of all, the pre-trained model as the input will be analyzed by a preprocessor. The
responsibility of the preprocessor is to select the useful information and send it to a code-
generator in a compact data format. At last the code-generator will generate the optimized
code for specific implementation environment.

The preprocessor traverses the S-CNN, detects the non-zero values, extracts the non-
zero values and their position information, then reorganizes the kernel data format for the
code-generator in the following steps. Figure 4.2 shows the indexing of a 3 × 3 × 3 kernel,
which demonstrates how this thesis represents the values of each position. To generate a
sparse representation of the data, the transformation schema must contain both a position
and a value. The position index can be obtained by unwrapping the 3d convolutional kernel
into three separate matrices and these indices are going to be used in sparse formatting.

An example of sparse formatting is shown in Figure 4.3. After analysis on the sparsity

22

Figure 4.2: Indexing of A 3 by 3 Input

Figure 4.3: An Example of Sparse Transformation

23

of the kernel, a new data format is generated by combining the non-zero values and their
position in the kernel. Kernel #0 is represented as (0|1) because there is a non-zero value
in position 0 (where the red digit represents the position in kernel). NA is used to indicate
that all entries are zero for the kernel.

Using the sparse representation illustrated in Figure 4.3, the code-generator can easily
avoid unnecessary calculations. For example, once the code-generator knows that any
kernels in the convolutional layer are empty, it can just skip all the computation for those
output channels leaving the result all zeroes. Moreover, with further analysis, this output
channel will become a part of the input for the next convolutional layer, which means even
if the kernels of next layer are not all zero for this input channel, the related computation
is also avoidable and could be set to zero during processing. Figure 4.4 is used for example
to illustrate the generation process. This figure displays how to cache the m × n × 3
image into an array according to the convolutional area. Then combine with the sparse
representation, extract the non-zero value for arithmetic operation. Finally, auto-generated
code is attained.

Moreover, the proposed solution uses some caching techniques to reduce memory con-
sumption and improve computational efficiency. The idea of caching is based on memory
addressing. Addressing in a massive block of memory takes more time than that in a smaller
block of memory. Therefore, the proposed solution copies the values in the convolutional
area into a smaller array, turning the wide-range addressing to the smaller one.

4.2 Optimization on General CNN

During the research of the optimization on S-CNN, the CV team in Miovision also wants
to know the performance of network pruning besides sparsification. Thus, the proposed
optimization solution should also include optimization on a general CNN.

4.2.1 Motivation

Because current frameworks have many active communities, they have been optimized well
enough for general CNN on the normal platform. However, as mentioned in the previous
section, the main obstacle is portability. Besides, transplantation is also complex and time-
consuming because all their dependencies have to be recompiled for the specific platform
hierarchically. To play a better supporting role with S-CNN optimization, a native C++
optimization solution is proposed for general usage.

24

Figure 4.4: Code Generation Process

25

Figure 4.5: Class Diagram of General Optimization

4.2.2 Details

The main idea of general optimization is constructing a C++ implementation by simulating
current deep learning frameworks. Rather than optimizing training and implementation
both at the same time, the author’s idea is trying to reduce the size and procedure of the
executable file which only aims at implementation.

In effect, the proposed general optimization is to utilize the hierarchical architecture of
Caffe but remove the unnecessary or unaccessible components of it. Given a specific model,
it is possible to slightly optimize the run-time consumption after analysis. For example, if
the network is sequentially executed, it is possible to reduce the number of storage blobs
by clearing previous input blob for the output of next layer instead of assigning a storage
blob for each layer. Figure 4.5 displays the class design of general optimization.

Eventually, by combining both S-CNN optimization and general optimization, this

26

Table 4.1: Model Specification
Model S-CNN1 S-CNN2 Reduced CNN
Type VGG VGG VGG

Foreground Accuracy 96% 94% 92%
Sparsity 94% 98% 0%

Number of Parameters 14714688 14714688 60315

thesis concludes a work schema as shown in Figure 4.6.

4.3 Experimental Environment

This section will explain what kinds of models are going to be used in the following exper-
iments, and introduce the software-hardware environment setup.

4.3.1 Model

In the following experiments, there are three different CNN models in use: S-CNN with 94%
sparsity, S-CNN with 98% sparsity and reduced CNN (pruning instead of sparsification).
All of them are VGG models with foreground accuracy above 92% which has ensured the
accuracy for image recognition application, and only conv1-1 to conv5-3 layers are selected
for experiments to the effect of a series of optimization aimed at CNN. Table 4.1 shows the
specification of those models. Being limited by the time, this thesis could only conduct the
experiments on two different sparse models. Models with more various sparsity are still
training and the same experiments will be conducted on them in the future.

4.3.2 Software Platform

In the following experiments, the author used Tensorflow for benchmark and Caffe to
support Jetson TX1 implementation. Meanwhile, the proposed sparse optimization utilized
Eigen[22], which is a C++ template library for linear algebra, as the support to S-CNN
optimization. Table 4.2 lists the information of the software.

27

Figure 4.6: Proposed Work Schema

Table 4.2: Software Specification
Software Tensorflow Caffe Eigen
Version rc1.0 1.0 3.3

API Python C++ C++

28

Table 4.3: Hardware Platform Spec
System AWS Server Desktop ARM Platfrom Rudi Embedded System
Chip TITAN X Intel i7-

4770
Freescale
MCIMX6UL-EVK

Jetson TX1

RAM 12GB 16GB 512MB 4GB
Cost (core
chip)

1200USD 312USD ∼200CAD 299USD

Clock
Speed

1417MHz 3.4GHz 696MHz N/A

Storage N/A 1TB 4GB (via uSD Card) 16GB

4.3.3 Hardware Platform

In the following experiments, four different hardware platforms are used and the run-time
performance of them are observed. Both GPU and CPU platform are power-consuming
and not satisfied with the design requirement, therefore they are used for benchmark and
comparison. The ARM platform is designed by Swift Lab, which aims at low-power envi-
ronment. Besides, the Jetson TX1 has been integrated in an embedded system designed by
Connecttech Technologies for the following experiments. Table 4.3 shows the specification
of each platform.

29

Chapter 5

Experimental Results

In this chapter, five experiments are introduced and explained. They are GPU and CPU
benchmark, effectiveness of S-CNN optimization, the feasibility of ARM platform, the
feasibility of Jetson TX1, and power measurement.

5.1 GPU and CPU Platform Benchmark

This experiment is to set up the benchmark of GPU and CPU for the following experiments.
The reason of setting GPU and CPU as benchmark is because their power is much higher
than the expectation. However, they are the most popular deep learning hardware platform
today, which makes them valuable as the benchmark.

Because of the excellent computational ability of GPU, the GPU platform should be
able to decrease the runtime by at least one order of magnitude compared to the runtime
of CPU platform. The CPU implementation in multi-threading mode should also be faster
than that in single thread mode. At the same time, the runtime of implementation on
both GPU and CPU platform should depends on the number of parameters in the models.

The results of experiment are shown in Table 5.1 and Figure 5.1. It is obvious that the
runtime of a given model on a given hardware platform is related to the size of the model
and the computational ability of that platform. For example, as shown in both Table 5.1
and Figure 5.1, S-CNN2 and S-CNN1 share similar runtime on GPU platform (13ms vs.
14ms). However, the performance of Reduced CNN is much better and only requires one
third of the runtime of sparse models. When compared the number of parameters of
them in Table 4.1, Reduced CNN is much smaller than those sparse models and this fact

30

Table 5.1: GPU and CPU Benchmark
Hardware Software Model Runtime/(ms)

GPU Tensorflow
S-CNN2, 98% 13
S-CNN1, 94% 14
Reduced CNN 4

CPU, 7 threads Tensorflow
S-CNN2, 98% 706
S-CNN1, 94% 713
Reduced CNN 81

CPU, 1 thread Tensorflow
S-CNN2, 98% 2370
S-CNN1, 94% 2374
Reduced CNN 227

indicates that the size of model will impact the runtime performance. Being limited by
the computational ability, even the CPU platform with multi-threading could not beat the
GPU platform on runtime.

5.2 Effectiveness of S-CNN Optimization

This experiment is designed to verify the effectiveness of CPU-based S-CNN optimization.
Once the CPU-based S-CNN optimization has been proven as effective, the process of
experiment will be moved forward to feasibility of implementation on ARM platform.

Because the CPU-based S-CNN optimization is well-optimized for S-CNN on the archi-
tecture level, it should have better performance than CPU-mode Tensorflow. Meanwhile,
the runtime of this optimization algorithm should also be decreased with multi-threading.

The results of experiments are shown in Table 5.2 and Figure 5.2. As indicated in
Table 5.2, the proposed optimization algorithm outperforms Tensorflow on both two sparse
models. the speed of the proposed algorithm is almost as twice fast as that of Tensorflow on
model with 94% sparsity and 5 times faster on model with 98% sparsity. Compared to the
non-optimization of Tensorflow on sparse models, the result of this experiment verified the
effectiveness of the proposed optimization on highly sparse models. However, Figure 5.2
tells the result that the optimization algorithm is still not good enough because the runtime
of such an algorithm would greatly increase wiht slight drop of sparsity (from 118ms to
490ms, when sparsity drops from 98% to 94%).

31

S-CNN2, 98% S-CNN1, 94% Reduced CNN

0

1,000

2,000

13 14 4

706 713

81

2,370 2,374

227

Ru
nt

im
e/

(m
s)

GPU, Tensorflow CPU 7 threads, Tensorflow CPU 1 thread, Tensorflow

Figure 5.1: GPU and CPU Benchmark

5.3 Feasibility of ARM Platform

This experiment is designed to verify the feasibility of CNN real-time implementation on
ARM platform. Being limited by the operating system on the platform, transplanting
mainstream deep learning framework onto the ARM platform is quite difficult. On the
other hand, since the S-CNN optimization algorithm has been proven that it outperforms
Tensorflow on sparse models, the implementation on ARM platform will adopt the proposed
native C++ solution.

Even though the S-CNN has greatly improve the computation, the limitation of hard-
ware itself may bring bad impact over the optimization on algorithm. The runtime of ARM
platform may be out of the expectation.

The results of experiment are shown in the Table 5.3 and the Figure 5.3. The results of
experiment have verified the hypothesis that the selected ARM platform could not achieve
the goal of runtime for real-time application. The processing speed of this ARM platform is
quite slow (more than 40 second to process a frame) because it has lowest clock frequency
among these four hardware platform. Except for low clock frequency, the ARM platform
is also constrained by small RAM and simple instruction set, which makes it impossible to
process massive computation in a short instructional period. On the other hand, the code
immigration from CPU platform to ARM platform is successful, and the proposed S-CNN

32

CPU
7 thr

ead
s,

Tens
orfl

ow

CPU
7 thr

ead
s,

Nati
ve

C++

So
lut

ion

CPU
1 thr

ead
,

Tens
orfl

ow

CPU
1 thr

ead
, Na-

tiv
e C++

So
lut

ion

0

500

1,000

1,500

2,000

2,500

706

118

2,3
70

488
713

490

2,3
74

1,4
16

Ru
nt

im
e/

(m
s)

S-CNN2, 98% S-CNN1, 94%

Figure 5.2: Effectiveness of S-CNN Optimization

33

Table 5.2: Verification of S-CNN Optimization
Hardware Software Model Runtime/(ms)

CPU, 7 threads
Tensorflow S-CNN2, 98% 706

S-CNN1, 94% 713

Native C++ Solution S-CNN2, 98% 118
S-CNN1, 94% 490

CPU, 1 thread
Tensorflow S-CNN2, 98% 2370

S-CNN1, 94% 2374

Native C++ Solution S-CNN2, 98% 488
S-CNN1, 94% 1416

Table 5.3: Feasibility of ARM Platform
Hardware Software Model Runtime/(ms)

CPU, 1 thread

Tensorflow
S-CNN2, 98% 2370
S-CNN1, 94% 2374
Reduced CNN 227

Native C++ Solution
S-CNN2, 98% 488
S-CNN1, 94% 1416
Reduced CNN 1548

ARM Native C++ Solution
S-CNN2, 98% 43703
S-CNN1, 94% 175792
Reduced CNN 40981

optimization algorithm keeps working well on sparser model.

5.4 Feasibility of Jetson TX1 Platform

This experiment is designed to test the feasibility of real-time CNN implementation on
Jetson TX1 platform. Because this hardware platform is released to public recently, the
author do not have enough time to implement many models on this platform. On the other
hand, NVIDIA released a related acceleration library TensorRT[23] for pre-trained CNN
implementation, which could cooperate with Caffe to obtain excellent runtime performance.
According to the result of GPU and CPU benchmark experiment, current mainstream deep
learning frameworks work well with small model and have less runtime than the proposed
general CNN optimization. Thus, the combination of Caffe and reduced CNN is inferred

34

S-CNN2, 98% S-CNN1, 94% Reduced CNN

0

50

100

150

200

2.3
7

2.3
7

0.2
3

0.4
9

1.4
2

1.5
5

43.
7

175
.79

40.
98

Ru
nt

im
e/

(s
)

CPU 1 thread, Tensorflow
CPU 1 thread, Native C++ Solution

ARM, Native C++ Solution

Figure 5.3: Feasibility of ARM Platform

35

Table 5.4: Feasibility of Jetson TX1 Platform
Hardware GPU CPU, 7 threads ARM Jetson TX1
Software Tensorflow Tensorflow Native C++ Solution Caffe + TensorRT
Model Reduced CNN Reduced CNN Reduced CNN Reduced CNN
Runtime/(ms) 4 81 40981 12

as the best combination on Jetson TX1 based on current knowledge.
Because Jetson TX1 is the combination of GPU and ARM, its runtime should be

guaranteed by the computational ability of its embedded GPU. However, the GPU of
Jetson TX1 platform is not as powerful as the selected GPU platform in this thesis by
comparing the number of their computational cores (256 CUDA cores vs. 3584 CUDA
cores). Thus the runtime of Jetson TX1 platform should be more than that of normal
GPU platform.

As the result shown in Table 5.4, the Jetson TX1 platform has extraordinary perfor-
mance (12ms per frame) compared to the best case of CPU platform (81ms per frame).
However, the processing speed of the Jetson TX1 platform is still twice slower than that
of a normal GPU platform, which reflects that the computational resource, such as the
number of parallel computational cores, has great impact on runtime.

5.5 Power Measurement

This experiment is designed for measuring the power consumption of each platform. Ac-
cording to the specification of the data sheet and the real data from measurement, the
results could be used as a reference for future design evaluation.

According to the specification of NVIDIA TITAN X and Intel i7-4770, their power
consumption is out of the design requirement, so that the power of GPU and CPU platform
is not measured and assumed the same as mentioned in the specification sheet. The ARM
platform designed by Swift Lab for low-power environment should have the best power
performance among these four platforms.

The results of experiment are shown in the Table 5.5 and Figure 5.4. On one hand,
the VIP lab at the University of Waterloo has conducted a simple experiment for power
measurement of Jetson TX1 by recording the data from related monitoring software. Those
data reveal that the power consumption of Jetson TX1 platform varies from 7 watts to

36

Table 5.5: Power Measurement
Hardware GPU CPU ARM Jetson TX1
Power/(W) 250[19] 35[18] 1.4 15

GPU
CPU

ARM

Jet
son

TX1

0

100

200

250

35
1.4 15

Po
we

r/
(W

)

Figure 5.4: Power Measurement

14 watts. Therefore, to retain more design margin, this thesis adopted 15 watts as the
standard power consumption of Jetson TX1 platform.

On the other hand, the ARM platform designed by Swift Lab fulfills the power require-
ment proposed in Chapter 3. As displayed in Figure 5.5, this platform has an active status
with around 1.4 watts power consumption. Even during the communication session of this
platform, its power consumption has just increased from 1.4 watts to 1.8 watts. It is ob-
vious that this device has excellent low-power performance while sacrifices computational
speed. Therefore, the improvement of this platform should be focused on increasing the
power for more computational resource.

37

Figure 5.5: Power Consumption of ARM Platform during Runtime

38

Chapter 6

Conclusion and Discussion

6.1 Hardware Platform for Research

According to the experiments in the previous chapter, the most suitable hardware platform
for deep learning research is still the normal GPU. Benefited from the multiple cores and
parallel computation, the GPUs could achieve astonishing computational speed on 2-D
convolution.

In research environment, computational speed is the main factor in choosing hardware
platform. Meanwhile, because in most cases the research environment could provide stable
and sufficient power for high-speed computation, the power consumption would not become
the constraint for the platform selection. To accelerate the training process, the GPU
platform is recommended for researchers.

6.2 Hardware Platform for Low-power Control

Unlike the GPU platform, the ARM platform mentioned in the previous chapters requires
very low power to complete the computational tasks. However, it needs much longer
processing time.

In effect, the ARM processor should take the place of CPU to become the main processor
in the smart traffic applications. That is what Jetson TX1 did in its architecture. In
Jetson TX1, the low-power ARM takes charge of computational task assignment and the
low-power GPU is focusing on the massive computation.

39

6.3 Hardware Platform for Widely Distributed Vehi-
cle Detection System

Based on the experiments so far, the Jetson TX1 Platform has the greatest potential to
become the applicable hardware platform for the proposed widely distributed system in
this thesis. Even though its power consumption is a little higher than the requirement,
this does not impede the hardware architecture becoming the effective one for real-time
CNN implementation.

At least in the near future, the power of the Jetson TX series module could become low-
power enough to complete such amount of computation in the acceptable time. The recent
release of Jetson TX2 added the functionality of clock speed adjustment, which allowed
users to adjust the clock speed for faster computation or lower power consumption.

6.4 Software Improvement

Another gain from the previous experiments is that the current deep learning frameworks
have not pay much attention to the potential of S-CNN for reducing the computation.
Because the model is fixed during the implementation, and it is allowed to generate well
optimized code after analysis, current frameworks should take the S-CNN scenario into
consideration as well.

Although the experiments show the Tensorflow works well with the pruning network,
which is fully dense, it does not mean Tensorflow with the reduced network could always
become the substitution for S-CNN implementation. It should be noticed that the accu-
racy of pruning network has decreased compared to those S-CNNs. The “0” placeholders in
the S-CNNs are not meaningless, instead they contain the necessary information for object
detection and classification. In addition, the larger architecture of S-CNNs also helps im-
prove the accuracy. Therefore, in some specific cases with requirement of higher accuracy,
the pruning network may not be the best option. That is the reason why preprocessing the
model and the related analysis is recommended. With better understanding of the model,
the designers could choose the most suitable implementation methods for their application.

40

Chapter 7

Future Work

Though the author has verified many combinations of hardware, software and models, and
also drawn some conclusions based on current technique, there is some future work that
needs to be done.

7.1 Research on Jetson TX Series

Since the Conclusion Chapter has mentioned that the Jetson TX series has great potential
to implement real-time CNN computation, such hardware platform deserves more future
attention. Actually, the matched library, TensorRT is also evolving, which has already
released 2.0 version for developers. One of the reasons why the research could not conduct
more experiments on Jetson TX1 is because the TensorRT still has many bugs and the
source code has not become open source yet. This deep learning system invented by
NVIDIA is worth the wait.

7.2 Dedicated Convolutional Chip

Another idea of hardware acceleration for CNN implementation is the invention of a ded-
icated computational chip based on convolution structure. The basic idea is to simulate
the convolution process physically. By applying a large number of multiplication unit to
simulate the convolutional kernel, the data could be piped in with higher efficiency. The

41

simulation could be done on FPGA[6] to see the potential impact on CNN implemen-
tation. In effect, more and more companies has aimed at the next generation of deep
learning hardware platform. For example, Tensor Processing Unit (TPU)[9] designed by
Google is a shock to current situation leading by NVIDIA and its GPUs. The author
hopes to get access to more hardware platforms and understand their performance during
implementation.

7.3 S-CNN Optimization on GPU

Someone may have noticed that the proposed S-CNN optimization is based on CPU. The
author also believes that this optimization algorithm could be applied to GPU acceleration.
Future improvement of this optimization method should include the GPU implementation
and multi-threading adjustment.

42

References

[1] Mart́ın Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In Proceedings of the 12th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI). Savannah, Georgia,
USA, 2016.

[2] National Electrical Manufacturers Association. NEMA Standards Publication TS 2-
2003 (R2008). National Electrical Manufacturers Association, 2008.

[3] Andrew S Cassidy, Paul Merolla, John V Arthur, Steve K Esser, Bryan Jackson, Ro-
drigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M Wong, Vitaly Feldman,
et al. Cognitive computing building block: A versatile and efficient digital neuron
model for neurosynaptic cores. In Neural Networks (IJCNN), The 2013 International
Joint Conference on, pages 1–10. IEEE, 2013.

[4] Dan Claudiu Cireşan, Ueli Meier, Luca Maria Gambardella, and Jürgen Schmidhuber.
Deep, big, simple neural nets for handwritten digit recognition. Neural computation,
22(12):3207–3220, 2010.

[5] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep
learning. arXiv preprint arXiv:1603.07285, 2016.

[6] Pedro Ferreira, Pedro Ribeiro, Ana Antunes, and Fernando Dias. Artificial neural
networks processor–a hardware implementation using a fpga. Field Programmable
Logic and Application, pages 1084–1086, 2004.

[7] Paul Fieguth. Statistical image processing and multidimensional modeling. Springer
Science & Business Media, 2010.

43

[8] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. arXiv preprint arXiv:1408.5093, 2014.

[9] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al.
In-datacenter performance analysis of a tensor processing unit. arXiv preprint
arXiv:1704.04760, 2017.

[10] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. In Advances in neural information processing
systems, pages 1097–1105, 2012.

[11] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,
521(7553):436–444, 2015.

[12] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[13] Giffinger Rudolf, Christian Fertner, Hans Kramar, Robert Kalasek, Natasa Pichler-
Milanovic, and Evert Meijers. Smart cities-ranking of european medium-sized cities.
Rapport technique, Vienna Centre of Regional Science, 2007.

[14] Mohammad Javad Shafiee and Alexander Wong. Evolutionary synthesis of deep
neural networks via synaptic cluster-driven genetic encoding. arXiv preprint
arXiv:1609.01360, 2016.

[15] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[16] Website. Caffe blob introduction. http://caffe.berkeleyvision.org/tutorial/
net layer blob.html, 2014. Accessed June 6, 2017.

[17] Website. Caffe layer catalogue. http://caffe.berkeleyvision.org/tutorial/
layers.html, 2014. Accessed June 6, 2017.

[18] Website. Specification of i7-4770, intel. http://ark.intel.com/products/75122/
Intel-Core-i7-4770-Processor-8M-Cache-up-to-3 90-GHz, 2016. Accessed July
26, 2017.

44

http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
http://caffe.berkeleyvision.org/tutorial/net_layer_blob.html
http://caffe.berkeleyvision.org/tutorial/layers.html
http://caffe.berkeleyvision.org/tutorial/layers.html
http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz
http://ark.intel.com/products/75122/Intel-Core-i7-4770-Processor-8M-Cache-up-to-3_90-GHz

[19] Website. Specification of titan x, nvidia. https://www.nvidia.com/en-us/geforce/
products/10series/titan-x-pascal/, 2016. Accessed July 26, 2017.

[20] Website. 2-d convolution. https://www.mathworks.com/help/matlab/ref/
conv2.html?requestedDomain=www.mathworks.com, 2017. Accessed August 23, 2017.

[21] Website. Current readings for uw weather station. http://weather.uwaterloo.ca/,
2017. Accessed August 23, 2017.

[22] Website. Eigen. http://eigen.tuxfamily.org/index.php?title=Main Page, 2017.
Accessed August 23, 2017.

[23] Website. Nvida tensorrt. https://developer.nvidia.com/tensorrt, 2017. Accessed
August 23, 2017.

[24] Website. Nvidia jetson tx1 supercomputer-on-module drives next wave of autonomous
machines. https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-
supercomputer-on-module-drives-next-wave-of-autonomous-machines, 2017.
Accessed July 26, 2017.

[25] Website. Tensorflow main page. https://www.tensorflow.org/, 2017. Accessed June
6, 2017.

45

https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.nvidia.com/en-us/geforce/products/10series/titan-x-pascal/
https://www.mathworks.com/help/matlab/ref/conv2.html?requestedDomain=www.mathworks.com
https://www.mathworks.com/help/matlab/ref/conv2.html?requestedDomain=www.mathworks.com
http://weather.uwaterloo.ca/
http://eigen.tuxfamily.org/index.php?title=Main_Page
https://developer.nvidia.com/tensorrt
https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines
https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx1-supercomputer-on-module-drives-next-wave-of-autonomous-machines
https://www.tensorflow.org/

APPENDICES

46

Appendix A

Implementation Superclass of S-CNN
Optimization

#pragma once

class ConvLayerImp {
public:

virtual ˜ConvLayerImp() {}

virtual int rows() const = 0;
virtual int cols() const = 0;
virtual int channels() const = 0;
virtual int kernels() const = 0;

virtual void calcConvolutions(const float* p, float* r) = 0;
};

47

Appendix B

Implementation Header of S-CNN
Optimization

#pragma once
#include "conv_layer_imp.h"

class Conv1_1: public ConvLayerImp {
public:

Conv1_1() {}

static const int kRows = 321;
static const int kCols = 321;
static const int kChannels = 3;
static const int kKernels = 64;

virtual int rows() const {return kRows;}
virtual int cols() const {return kCols;}
virtual int channels() const {return kChannels;}
virtual int kernels() const {return kKernels;}

virtual void calcConvolutions(const float* p, float* r);
};

48

Appendix C

Implementation Code of S-CNN
Optimization

#ifndef GENERATE_CODE
#include <math.h>
#include "conv1_1_imp.h"

void Conv1_1::calcConvolutions(const float* p, float* r) {
float pv[27];
int i = 0;
for(int y=0; y<kRows-2; ++y) {

int ysj=kChannels*kCols*y;
for(int x=0; x<kCols-2; ++x) {

int xsj=kChannels*x;
int j=xsj+ysj;

pv[0]=p[j+0];
pv[1]=p[j+3];
pv[2]=p[j+6];
pv[3]=p[j+963];
pv[4]=p[j+966];
pv[5]=p[j+969];
pv[6]=p[j+1926];
pv[7]=p[j+1929];
pv[8]=p[j+1932];

49

pv[9]=p[j+1];
pv[10]=p[j+4];
pv[11]=p[j+7];
pv[12]=p[j+964];
pv[13]=p[j+967];
pv[14]=p[j+970];
pv[15]=p[j+1927];
pv[16]=p[j+1930];
pv[17]=p[j+1933];
pv[18]=p[j+2];
pv[19]=p[j+5];
pv[20]=p[j+8];
pv[21]=p[j+965];
pv[22]=p[j+968];
pv[23]=p[j+971];
pv[24]=p[j+1928];
pv[25]=p[j+1931];
pv[26]=p[j+1934];

r[i]=0.856957f+0.473209f*pv[0]+0.562472f*pv[9]+0.447497f*pv[10]+ c

-0.467997f*pv[14]+-0.521685f*pv[17]+-0.441567f*pv[23];
r[i]=(r[i]>0?r[i]:0.0f); ++i;

↪→

↪→

++i; // r[++i]=0.0379315; // constant
++i; // r[++i]=0; // constant
r[i]=1.07578f+-0.459466f*pv[7]+0.358358f*pv[10]+-0.538050f*pv[16 c

]+-0.432798f*pv[22]+-0.503271f*pv[25];
r[i]=(r[i]>0?r[i]:0.0f); ++i;

↪→

↪→

r[i]=0.200453f+0.307489f*pv[11]; r[i]=(r[i]>0?r[i]:0.0f); ++i;
++i; // r[++i]=0.699564; // constant
++i; // r[++i]=0; // constant
++i; // r[++i]=0.448339; // constant
r[i]=0.406981f+-0.351085f*pv[17]; r[i]=(r[i]>0?r[i]:0.0f); ++i;
++i; // r[++i]=0; // constant
/*More expressions*/

}
}

}
#endif

50

	List of Tables
	List of Figures
	List of Abbreviations
	Nomenclature
	Introduction
	Motivation
	Thesis Architecture

	Background
	Convolutional Neural Network
	Sparse Convolutional Neural Network
	Evolutionary Neural Network

	Hardware Platform
	GPU
	CPU
	ARM
	Jetson TX1

	Software Platform
	Tensorflow
	Caffe

	Problem Formulation
	Power Consumption
	Runtime

	Solution Strategy and Experiment Setup
	Optimization on S-CNN
	Motivation
	Details

	Optimization on General CNN
	Motivation
	Details

	Experimental Environment
	Model
	Software Platform
	Hardware Platform

	Experimental Results
	GPU and CPU Platform Benchmark
	Effectiveness of S-CNN Optimization
	Feasibility of ARM Platform
	Feasibility of Jetson TX1 Platform
	Power Measurement

	Conclusion and Discussion
	Hardware Platform for Research
	Hardware Platform for Low-power Control
	Hardware Platform for Widely Distributed Vehicle Detection System
	Software Improvement

	Future Work
	Research on Jetson TX Series
	Dedicated Convolutional Chip
	S-CNN Optimization on GPU

	References
	APPENDICES
	S-CNN Optimization Implementation Superclass
	S-CNN Optimization Implementation Header
	S-CNN Optimization Implementation Code

