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Abstract 

Type 2 diabetes mellitus (T2D) is characterized by chronic hyperglycemia and peripheral 

insulin resistance.  In response to elevated blood glucose levels, pancreatic β-cells release insulin 

which occurs in a biphasic manner.  First-phase insulin secretion occurs via the KATP channel-

dependent pathway during the first 10 minutes after a glucose load.  Second-phase insulin 

secretion, KATP channel-independent pathways, results in a slow and sustained release of insulin, 

which can last for several hours after a glucose load.  The mechanisms underlying KATP channel-

independent pathways remain incompletely understood.  It is suggested that anaperlosis, 

increased production of tricarboxylic acid (TCA) cycle intermediates, regulates second-phase 

insulin secretion.  Anaplerotic pathways involve the production of cytosolic α-ketoglutarate 

(αKG) that may enhance prolyl 4-hydroxlase (PHD) activity. PHDs are well-established 

regulators of the hypoxia response pathway.  However, PHD may play a role in insulin secretion 

with both short- and long-term effects through prolyl hydroxylation of key proteins.  Inhibition 

of PHD via dimethyloxalylglycine (DMOG) decreased oxygen consumption rate (OCR) in both 

INS-1 832/13 cells and primary mouse islets.  DMOG treated primary mouse islets demonstrated 

enhanced second-phase insulin secretion when stimulated with high glucose (HG).  

Intraperitoneal glucose tolerance tests (ipGTTs) in male C57BL/6J mice treated with DMOG 

revealed improved glucose tolerance during second-phase insulin secretion and improved insulin 

sensitivity during first-phase insulin secretion.  The results presented in this thesis reveal that 

PHD plays a role in both first- and second-phase insulin secretion and may be a potential target 

for the treatment of T2D.   
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Chapter 1: Introduction 

1.1 Diabetes mellitus 

1.1.1 Background 

The incidence of diabetes is increasing worldwide.  In 2014, 6.7% of Canadians 12 years 

of age or older reported to be diagnosed with diabetes, consisting of 7.5% for males and 5.8% for 

females.
1
 According to the World Health Organization (WHO), 422 million adults are living 

with type 1 diabetes (T1D) or type 2 diabetes (T2D) with 1.5 million deaths in 2012 related to 

diabetes complications and 2.2 million deaths related to elevated blood glucose levels.
2
 The 

incidence of diabetes cases has emphasized the need to develop effective treatment options and 

implement strategies to promote diabetes prevention through lifestyle changes. 

T1D is less common compared to T2D and is an autoimmune disorder that is commonly 

diagnosed in younger individuals.
3
 The immune system is unable to recognize autoantigens 

presented on β-cells, which include glutamic acid decarboxylase (GAD), insulin, insulinoma-

associated antigen-2 (IA2), and zinc transporter 8.
3,4  

B-lymphocytes produce autoantibodies 

directed against β-cell autoantigens.
3 ,4 

T-cells and macrophages target autoantibodies inducing 

inflammation by increasing cytokine levels.
3
 Increased levels of cytokines, such as tumor 

necrosis factor α (TNFα), interleukin-1β (IL-1β), and interferon γ (IFN-γ), suppress insulin 

secretion and result in β-cell dysfunction and apoptosis.
3
 Serum levels of these autoantibodies is 

indicative of T1D development, with the presence of multiple autoantibodies resulting in 

approximately 70% risk of T2D development.
4  

In contrast to T1D, T2D has a slower progression and accounts for 90% of all diabetes 

cases.
5,6

 T2D is associated with obesity resulting from nutrient overload from fat and refined 

carbohydrates, physical inactivity and a genetic predisposition.
3
 Aside from obesity, major risk 
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factors for T2D include a body mass index (BMI) of ≥ 25 kg/m
2
; ethnicity, with a higher 

incidence in Native Americans, African-Americans and Hispanic Americans; age of ≥ 45 years; 

hypertension of ≥ 140/90 mmHg; elevated cholesterol or triglyceride levels, and a family history 

of T2D.
3
  

Glucose metabolism is the main stimulus for pancreatic β-cell insulin secretion where 

insulin demonstrates systemic effects in adipose tissue, skeletal muscle and liver.  Approximately 

98% of the pancreas mass consists of acinar tissue, which produces exocrine enzymes for 

digestion.
7
 The remaining 2% of the pancreas mass is the endocrine portion and consists of the 

islets of Langerhans.
5,7

 Pancreatic islets consist of α, β, δ, ε and γ cell types.
7
 β-cells secrete 

insulin; α-cells secrete glucagon, which increases hepatic glucose production during 

hypoglycemic conditions to increase blood glucose levels; δ-cells secrete somatostatin, an 

inhibitor of both insulin and glucagon; ε-cells secrete ghrelin, a hormone that increases appetite; 

and γ-cells secrete pancreatic polypeptide, a regulator for gastrointestinal secretion.
7
 Although 

islets consist of 2% of the pancreas, they are highly vascularized and receive 10-20% of the total 

blood flow.
5
    

Obesity from chronic over-nutrition and physical inactivity results in peripheral insulin 

resistance.
3
 Pancreatic β-cells respond to insulin resistance via insulin hypersecretion to maintain 

normal blood glucose levels, known as normoglycemia, which is between 4-6 mmol/L.
3,7,8

 In this 

prediabetes state, pancreatic β-cells undergo compensation involving increased β-cell mass, 

insulin biosynthesis and nutrient-stimulated insulin secretion.
3,5,8

 Susceptible β-cells begin to 

fatigue due to increased oxidative stress and endoplasmic reticulum (ER) stress from increased 

proinsulin, the precursor to insulin, production.  β-cell fatigue results in increased blood glucose 

levels, known as hyperglycemia, and β-cells are no longer able to sustain compensation.
8
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Glucolipotoxicity, elevated blood glucose and lipid concentrations, peripheral and pancreatic 

inflammation and oxidative stress eventually leads to β-cell failure, β-cell apoptosis and T2D 

diagnosis.
5,7 

T2D is associated with chronic low-grade inflammation and is associated with increased 

pro-inflammatory cytokines, including TNFα, IL-1β, and IFN-γ in the periphery and in the 

pancreas, which are insulin secretion suppressors and lead to β-cell apoptosis.
3,5

  Throughout the 

progression of T2D, islet inflammation, glucolipotoxicity and ER stress resulting from increased 

insulin secretion during compensation ultimately leads to β-cell apoptosis and subsequent 

hyperglycemia.
5
 T2D is a complex disease, affecting peripheral tissues including the liver, 

skeletal muscle and adipose tissue that rely on insulin for anabolic pathways.
7
 There are several 

anti-hyperglycemic medications that work to restore normoglycemia through various 

mechanisms within the peripheral tissues and the pancreas. 

 

1.1.2 Treatment options 

Glycated hemoglobin (A1C) is considered the gold standard for the diagnosis of T2D.
9
 

Glycated hemoglobin is the binding of glucose to the amino group of valine on the β chain of 

hemoglobin.
10

 The binding of glucose to hemoglobin is correlated to blood glucose 

concentrations over 8 to 12 weeks.
10

 T2D is diagnosed when a patient displays A1C levels ≥ 

6.5%.
11

  Despite A1C values to be the gold standard for T2D, there are limitations due to 

differences in glucose metabolism and hemoglobin glycation between individuals.
9
 When A1C 

levels are ≥ 6.5%, lifestyle modifications through diet and exercise are initiated and anti-

hyperglycemic agents are often prescribed to lower A1C levels.  Metformin is the most 
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commonly prescribed anti-hyperglycemic agent and can be used alone or in combinational 

therapy if A1C levels are not obtained.
12

 

Metformin, part of the biguanide drug class, is the first line of defense for the 

management of hyperglycemia.  Metformin decreases hepatic glucose production and glucose 

absorption in the small intestine, as well as, increases glucose uptake and utilization to restore 

normoglycemia.
12,13

 Metformin is involved in the phosphorylation and activation of AMP-

activated protein kinase (AMPK), increasing glucose uptake in skeletal muscle and liver for 

glucose storage and utilization.
13

 Double-blind placebo control clinical trials proved a significant 

effect for metformin on reducing blood glucose levels and after a three month period metformin 

was able to reduce A1C levels by approximately 1%.
14

 Metformin has been shown to work in the 

small intestine, liver and kidney via the liver specific organic cation transporter (OCT) 1 and 

kidney-specific OCT2.
12,13

    

Aside from metformin’s effects on restoring blood glucose levels, metformin may have 

other beneficial effects including cardiovascular protective effects via anti-inflammatory 

properties.
15,16

 Metformin has been shown to inhibit macrophage differentiation by AMPK 

activation, playing a beneficial role in the reduction of insulin resistance and atherosclerosis.
15

  

Metformin is the first anti-hyperglycemic agent prescribed as it presents the least side 

effects, including hypoglycemic events and weightgain.
16 

Metformin has also been shown to 

have beneficial effects on atherosclerosis, a complication that arises from chronic 

hyperglycemia.
16

 Metformin was found to reduce atherosclerosis in mice fed a high fat diet 

(HFD) by inhibiting angiotensin II type 1 receptor via AMPK.
17

   

Another class of anti-hyperglycemic agents includes the insulin secretogogue’s 

sulfonylureas and meglitinides.  These drug classes inhibit KATP channels on the β-cell 
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membrane, leading to depolarization and increased insulin secretion.
6
  Both sulfonylureas and 

meglitinides bind to the sulfonylurea receptor (SUR) subunits, SUR1 and SUR2, on the KATP 

channels.
18

 Sulfonylureas are glucose-independent, leading to continuous inhibition of KATP 

channels resulting in increased basal insulin secretion, which increases the risk for 

hypoglycemia.
18

  Meglitinides however, are glucose-dependent, leading to increased insulin 

secretion postprandially.
6,18,19

 

Sulfonylureas are metabolized by cytochrome P450 (CYP) 2C9, whereas meglitinides are 

primarily metabolized by CYP 3A4.
20,21

 However, genetic variants of these liver enzymes lead to 

differences in efficacy and side effects.
20

   Despite the side effects of sulfonylureas, they have 

been found to reduce A1C levels by approximately 1.0 to 1.25%.
14 

Other anti-hyperglycemic agents work to improve insulin sensitivity in adipose tissue.  

Thiazolidinediones (TZD) target peroxisome proliferator-activated receptor-gamma (PPAR-γ) to 

promote adipocyte differentiation to recover insulin sensitivity.
6,22-24

 Aside from adipocyte 

differentiation, PPAR-γ also increases glucose transporter 4 (GLUT4) expression for glucose 

uptake in adipose tissue.
25

 PPAR-γ regulates TNFα, adiponectin and leptin, which all play a role 

in insulin sensitivity.
24,25

 Despite the beneficial effects of TZD’s in improving insulin sensitivity 

and its ability to significantly decrease A1C levels by approximately 1.25%, there are side effects 

including fluid retention, weight gain and congestive heart failure.
14,25

 Many TZDs have been 

removed from the market due to liver failure and only pioglitazone and rosiglitazone remain 

available.
24

  More recently, rosiglitazone was linked with increased risk of myocardial 

infarction.
24

   

Other anti-hyperglycemic agents work to decrease glucose absorption in the small 

intestine to maintain blood glucose levels.  Acarbose is a competitive inhibitor of α-
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glucosidase.
26

 α-glucosidase is a small intestine brush border enzyme that breaks 1,4α-bonds, 

digesting starch and disaccharides to produce glucose.
26

 Acarbose inhibits the breakdown of 

starch and disaccharides, decreasing blood glucose levels and insulin secretion postprandially.
26 

Insulinotropic hormones, glucose-dependent insulinotropic peptide (GIP) and glucagon-

like peptide 1 (GLP-1), are gastrointestinal peptides secreted from small intestine endocrine 

cells.
24,27,28

 GIP and GLP-1 are secreted to increase glucose-stimulated insulin secretion 

(GSIS).
27

 GIP and GLP-1 have a short duration of action and are inactivated by the enzyme 

dipeptidyl peptidase-4 (DPP-4).
27

 GLP-1 is a potent insulinotropic hormone and GLP-1 agonists 

aid in sustaining insulin secretion.
24

 GLP-1 agonists significantly improve A1C levels, promote 

weight loss and have a low risk of hypoglycemia.
29

 There are numerous side effects including 

nausea, vomiting, and indigestion and is not suggested for patients with gastrointestinal 

diseases.
24 

DPP-4 cleaves at proline or alanine residues on the N-terminus of GIP and GLP-1.
24

 

DPP-4 inhibitors prevent the degradation of GLP-1 by DPP-4, sustaining GSIS and delaying 

hyperglycemia in T2D patients.
24,27,28

 DPP-4 inhibitors also work to increase cell proliferation 

and decrease cell apoptosis to maintain β-cell mass.
24,27,28

 Clinical trials reveal that DPP-4 

inhibitors show a moderate effect on A1C levels, decreasing A1C levels by approximately 

0.75%.
14

  DPP-4 inhibitors display a low risk for hypoglycemia and do not result in weight 

gain.
30

 However, randomized control trials assessing the risk of saxagliptin, a DPP-4 inhibitor, 

for heart failure found that patients who had a family history of cardiovascular disease treated 

with saxagliptin were more likely to develop heart failure compared to placebo controls.
30

  

However, according to a recent meta-analysis, the association between saxagliptin and heart 

failure remains unknown.
30
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The newest class of anti-hyperglycemic agents, sodium-dependent glucose transporter 2 

(SGLT-2) inhibitors, prevent glucose reabsorption from the kidneys and promote glucose 

excretion in the urine.
31-33

 Approximately 180 grams of glucose is filtered by the kidneys and 

almost all is reabsorbed by the kidneys via SGLT-2.
33

 Preventing glucose reabsorption decreases 

blood glucose levels, insulin levels and promotes weight loss.
32,33

 SGLT-2 inhibitors were also 

found to improve risk factors for cardiovascular disease including blood pressure, arterial 

stiffness, and dyslipidemia.
31

   

Although there are numerous beneficial effects of SGLT-2 inhibitors, there are several 

side effects and the long-term consequences of altered electrolyte balance that occurs with 

SGLT-2 inhibitors is unknown.
33

 As well, clinical trials consisting of patients treated with the 

SGLT-2 inhibitor dapagliflozin, reported a small number of cases of breast and bladder cancer 
33

  

Apart from the oral anti-hyperglycemic agents described above, insulin therapy has been 

primarily used as a treatment option for T1D to replace the loss of β-cell insulin secretion.
34

 

Although anti-hyperglycemic agents are effective at reducing A1C levels, typically between 

0.8% and 2.0%, more than half of T2D patients fail to maintain normoglycemia.
35

 In order to 

decrease the risk of diabetic complications that arise from chronic hyperglycemia, insulin 

therapy is introduced as an add on to oral medications to stimulate basal insulin secretion.
35,36

 

Insulin therapy includes mixed insulins or insulin coformulations targeting blood glucose levels 

in a fed and fasted state.
35

 If normoglycemia is not achieved then a combination of mixed 

insulins and rapid-acting insulin is introduced, which is injected before a meal targeting blood 

glucose levels in a fed state.
35

 Personalized treatment plans are required when introducing insulin 

therapy in combination with other anti-hyperglycemic agents, as the risk of hypoglycemia is 

increased, particularly with sulfonylurea treatment.
36

 Anti-hyperglycemic agents and insulin 
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therapy work to improve insulin sensitivity and attain normoglycemia as measured by A1C 

levels.   

All treatment options work through different mechanisms of action, targeting the 

pancreas, skeletal muscle, liver and adipose tissue.  T2D is a highly complex disease affecting 

multiple tissues with the pancreas as the central organ for regulating glucose homeostasis.  

Sulfonylureas and meglitinides target first-phase insulin secretion in the pancreas to stimulate 

GSIS.  However, second-phase insulin secretion accounts for approximately 70% of total insulin 

secretion, emphasizing the need to investigate potential targets of second-phase insulin secretion 

for drug development.
37

     

1.2 Glucose-stimulated insulin secretion pathway 

1.2.1 KATP channel-dependent pathway 

GSIS from pancreatic β-cells is biphasic.  First-phase insulin secretion occurs within the 

first 10 minutes after a glucose load, whereas, second-phase insulin secretion displays a slow and 

sustained release of insulin for up to two to three hours after a glucose load.
38

 The well-studied 

model of insulin secretion begins with increased blood glucose levels.  Glucose is taken up by 

glucose transporter 2 (GLUT2) in the pancreas and is metabolized generating pyruvate, which 

feeds into the tricarboxylic acid (TCA) cycle.
38-41

 Pyruvate can enter the TCA cycle via pyruvate 

dehydrogenase (PDH) or pyruvate carboxylase (PC).
38-41 

This subsequently leads to an increase 

in the ATP/ADP ratio, which closes the ATP-sensitive K
+
-channels causing membrane 

depolarization.
38-41

 Membrane depolarization opens voltage-gated calcium channels and allows 

for an influx of calcium ions.  Increased intracellular calcium ions causes insulin granule 

exocytosis.
38-41  

Insulin granules that are in close proximity to the plasma membrane and are 

docked near voltage-gated calcium channels are known as the “readily releasable pool” (50 to 
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100 granules).
38,42 

The release of this readily releasable pool of insulin granules is regulated by 

the KATP channel-dependent pathway or the “triggering pathway”.
39,40

 The KATP channel-

dependent pathway is critical for first-phase insulin secreton.
38-40

 Second-phase insulin secretion 

may either stimulate the production of new insulin granules, or exocytosis of a larger pool of 

insulin granules located further from the calcium channels.
42

 It is suggested that the KATP 

channel-dependent pathway is not the only pathway for GSIS and a second pathway exists KATP 

channel-independent pathways.
43
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Figure 1.1: KATP channel-dependent pathway. 

A schematic representation of the KATP channel-dependent pathway is shown above.  Two 

pyruvate molecules are produced from one molecule of glucose via glycolysis in the cytosol.  

Pyruvate enters the mitochondrial matrix via mitochondrial pyruvate carrier (MPC) and enters 

the TCA cycle via PDH or PC.  The TCA cycle generates cofactors that enter the electron 

transport chain (ETC) to pump protons into the intermembrane space forming the proton motive 

force.  Protons enter the mitochondrial matrix via ATP synthase to generate ATP.  Increased 

ATP/ADP leads to an influx of calcium ions and insulin granule exocytosis from the ‘readily 

releasable pool’.  Illustration reproduced courtesy of Dr. Jamie Joseph. 

 

 1.2.2 KATP channel-independent pathways 

 KATP channel-independent pathways, also called “amplifying pathways”, are suggested to 

regulate second-phase insulin secretion.
43

 Anaplerosis is the net production of TCA cycle 
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intermediates and is suggested to be important for second-phase insulin secretion.
43

 Pyruvate 

produced via glycolysis in the cytosol can enter the TCA cycle by PDH to produce acetyl-CoA 

or PC to produce oxaloacetate, a substrate in the TCA cycle.
37,44

 PDH and PC are expressed in 

the pancreas with 40-50% of the pyruvate generated during glycolysis entering the TCA cycle 

via PC.
44

 

 Oxaloacetate production by PC leads to the conversion of TCA cycle intermediates 

including citrate, isocitrate and malate.
37

 These TCA cycle intermediates translocate to the 

cytosol with subsequent reconversion to pyruvate.
37 

This “pyruvate cycling” produces by-

products αKG and NADPH that may stimulate insulin secretion and involves three pyruvate 

cycling pathways.
37,45,46

 The malate/pyruvate and the citrate/pyruvate pathways produce NADPH 

via malic enzyme, whereas, the isocitrate/pyruvate pathway produces NADPH and αKG via 

NADP
+
-dependent isocitrate dehydrogenase (ICDc).

37
  When these pathways are inhibited, there 

is a significant reduction in pyruvate cycling and GSIS.
46 

In the isocitrate/pyruvate pathway, oxaloacetate is converted to citrate via citrate 

synthase, which is then translocated to the cytosol by the citrate isocitrate carrier (CIC) and 

isomerized to isocitrate.
3745,46

 Once in the cytosol, isocitrate produces αKG and NADPH via 

ICDc. αKG can then re-enter the mitochondrial matrix via the 2-oxoglutarate carrier (OGC) to 

stimulate production of TCA cycle intermediates.
37,45,46

 Cytosolic αKG is a β-cell secretagogue 

but the mechanism remains inconclusive.
37 

αKG is a co-substrate for the enzyme prolyl 4-

hydroxylase (PHD), which may play a role in the regulation of insulin secretion via KATP 

channel-independent pathways.
47,48
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Figure 1.2: Pyruvate/isocitrate pathway. 

A schematic representation of the pyruvate/isocitrate pathway is shown above.  PC converts 

pyruvate to oxaloacetate which enters the TCA cycle.  Oxaloacetate produces citrate via citrate 

synthase and citrate is translocated to the cytosol via CIC.  In the cytosol, citrate is isomerized to 

isocitrate which produces NADPH and αKG via ICDc.  αKG may re-enter the TCA cycle in the 

mitochondria via 2-OGC but may also act as a co-substrate for PHD to regulate GSIS. 

1.3 Prolyl 4-hydroxylases 

1.3.1 PHD isoenzymes  

There are three isoforms of prolyl 4-hydroxylases (PHD): PHD1, PHD2 and PHD3.  

Other names for the PHD enzymes include Egl nine homolog (Egln), as well as, hypoxia 

inducible factor prolyl 4-hydroxylases (HIF-P4H).
49-53

 Previously described PHDs are 

responsible for altering collagen for exocytosis .
54

 Type I and type II collagen PHDs regulate 

collagen formation and are localized in the ER.
55

 Bruick and colleagues (2001) hypothesized that 

a novel class of PHDs were responsible for regulating the hypoxia response pathway by 



 

13 
 

hydroxylating proline residues on hypoxia inducible factor α (HIFα).  HIFα is localized in the 

cytosol and is, therefore, unlikely that type I and type II collagen PHDs proline hydroxylate 

HIFα.
55

 

In humans, PHD1, PHD2 and PHD3 are composed of 407, 426 and 239 amino acids, 

respectively.
49,52

 A transmembrane PHD (PHD-TM) has also been described that consists of a 

502 polypeptide located in the ER with the catalytic domain within the lumen between residues 

59 and 82.
49

 At the amino acid level, PHD1, PHD2, and PHD3 are 42-59% identical to each 

other.
49

 These isoenzymes contain the hydroxylase domain at the C-terminal end, with 55% 

identity.
52

 However, the N-terminal ends of each isoenzyme vary where PHD3 has a shorter N-

terminal sequence.
52

  

A key difference between PHD1-3 includes different subcellular localizations.  PHD1 

was found to be exclusively expressed in the nucleus; PHD2 mainly expressed in the cytosol and 

PHD3 expressed in almost equal proportions in the cytosol and nucleus.
56

 Another study 

determined all PHDs to be expressed mainly in the cytosol in a wide variety of human tissues, 

including both islets and acinar tissue of the pancreas with PHD3 also expressed in the nucleus.
57

 

PHD2 is expressed in many tissues and cell lines studied, whereas the highest mRNA levels of 

PHD1 and PHD3 were found in the placenta and heart, respectively.
49

 PHD-TM mRNA levels 

were highest in the human brain and pancreas.
58 

PHDs are part of the 2-oxoglutarate dioxygenase superfamily and require molecular 

oxygen and αKG as co-substrates, and Fe
2+

 and ascorbate as cofactors.
49,51-53,59,60

 The catalytic 

site for all dioxygenases is located in a double-stranded β-helix jelly-roll core.
49

 Originally, it 

was determined that PHDs have a Km value for oxygen between 230 and 250µM but is now 

suggested to be approximately 100µM.
51-53

 This Km value, which is the concentration of oxygen 
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required for the half-maximal catalytic rate, is significantly higher than required in tissues, 

making molecular oxygen necessary for PHD activity.
51-53

 One oxygen atom contributes to the 

oxidative decarboxylation of αKG generating succinate and CO2 and the second oxygen atom 

contributes to the hydroxylation of proline.
53

 αKG is an electron donor that is oxidized to 

succinate.  Succinate and fumarate, substrates in the TCA cycle, inhibit PHD activity via 

competitive inhibition.
53,59,60

 Fumarate and succinate inhibit all PHD isoenzymes with fumarate 

having a Ki value, the concentration for half maximal inhibition, of 50-80µM and succinate 

having a Ki value of 350-460µM.
60

 The use of iron chelators that competitively inhibit Fe
2+

 that 

were used to stabilize HIFα before the discovery of PHDs validate the requirement of Fe
2+ 

for 

PHD activity.
54,61

 The Fe
2+

 binding site is contained in residues H313, D315 and H374 in human 

PHD2.
49

 In mice, the Fe
2+

 binding site is contained in residues H271 and D273 for PHD1, H290 

and D292 for PHD2 and H135 and D137 for PHD3.
62

  Ascorbate ensures maximal catalytic 

activity and has been reported to reduce Fe
3+

 from increased ROS production back to Fe
2+

.
52,53

 

The canonical pathway for PHD is through the regulation of HIFα in the hypoxia response 

pathway. 

 

1.3.2 Role of PHD in the hypoxia response pathway 

PHD’s ability to regulate HIFα in the hypoxia response pathway, an adaptive pathway for 

temporary cell survival when oxygen levels are insufficient, has been well documented.
49,63

 

Human HIFα consists of three isoforms, HIF1α, HIF2α and HIF3α.
49,53,64

  HIF contains an 

unstable α subunit and a stable β subunit and is the main regulator for oxygen homeostasis.
51,53,59

  

PHD2 is the main regulator in the hypoxia response pathway, as conditional knockout (KO) of 

PHD2 in adult mice leads to excessive angiogenesis, a process that is upregulated with HIFα 
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stabilization.
49

 PHD2 is preferential to HIF1α compared to HIF2α, whereas the opposite is true 

for PHD3.
49

 PHDs hydroxylate proline residues at Pro-402 and Pro-564 in –Leu-X-X-Leu-Ala-

Pro sequences located in the oxygen-dependent degradation domain (ODDD) of HIFα in 

normoxic environments, where there is sufficient oxygen availability.
49,51-53

 Both proline 

residues in HIFα are located on the C-terminal end of the polypeptide.
51,52

 

The hydroxylated proline residues are recognized by the von Hippel-Lindau protein 

(pVHL) E3 ubiquitin ligase complex and targeted for ubiquitination and proteasomal 

degradation.
51-53,59,63-65

 However, under hypoxic conditions, PHD is inhibited and HIFα is 

stabilized HIFα localizes to the nucleus and forms a heterodimer with HIFβ.
49,51-53,59,63

 The 

activated heterodimer binds to hypoxia-response elements (HREs) located in the regulatory 

regions of over 100 genes involved in decreasing oxygen consumption and increasing oxygen 

availability.
53

 These genes include those involved with angiogenesis, such as VEGF; 

erythropoiesis, energy metabolism, apoptosis and cell proliferation.
53,59,63

 In particular, HIFα 

upregulates genes that shunt glucose away from oxidative metabolism in the mitochondria and 

increase glycolysis.
66

   Glucose transporter 1 (GLUT1), lactate dehydrogenase (LDHA) and 

pyruvate dehydrogenase kinase 1 (PDK1), which phosphorylates and inhibits pyruvate 

dehydrogenase and acetyl-CoA production, have all be shown to increase with HIFα 

stabilization.
66

  

PHD2 KO mouse models lead to complications including polycythemia, increased ratio 

of red blood cell concentration to blood volume, and congestive heart failure.
64

 Rishi and 

colleagues (2015) performed femoral artery ligations in PHD1 and PHD3 double KO mice.  

They determined that PHD1 and PHD3 double KO mice displayed increased VEGF levels and 

improved blood flow.
50

 In contrast, Takeda and colleagues (2008) determined that not only did 
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PHD2 KO mice lead to overexpression of erythropoietin (EPO) resulting in polycythemia, but 

PHD1 and PHD3 double KO mice also led to polycythemia to a lesser extent.  Hyperinsulinemia 

in T2D creates a hypoxic microenvironment, stabilizing HIFα to upregulate genes inducing 

oxidative stress and proinflammatory cytokines, resulting in insulin resistance.
68

 There is 

evidence that the hypoxia response pathway plays a role in the pathogenesis of T2D.  

 

 

Figure 1.3: Hypoxia response pathway. 

A schematic representation of the regulation of HIFα by PHD is shown above.  PHDs 

hydroxylate proline residues on HIFα in normoxic conditions.  Prolyl hydroxylated HIFα is 

recognized and targeted by pVHL for degradation.  In hypoxic conditions, HIFα localizes to the 

nucleus and forms a heterodimer with transcription factor HIFβ.  HIFα/HIFβ binds to HREs on 

DNA to upregulate genes involved in increasing oxygen availability and decreasing oxygen 

consumption including genes involved in angiogenesis and glycolytic enzymes.  
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1.3.3 Role of the hypoxia response pathway in T2D 

There is conflicting evidence regarding the specific roles of the hypoxia response 

pathway in β-cell metabolism, function and development.  Heinis and colleagues (2010) cultured 

rat embryonic β-cells to determine the role of oxygen tension in β-cell differentiation.  When rat 

embryonic β-cells were exposed to hypoxia, HIF1α was stabilized and neurogenin 3 (Ngn3) was 

reduced.
69

 Ngn3 is a transcription factor that is expressed in endocrine progenitor cells during 

embryogenesis and induces β-cell differentiation.
69

 Embryonic β-cells exposed to hypoxia or 

treated with dimethyloxalylglycine (DMOG), a PHD inhibitor, increased HIF1α expression and 

decreased β-cell differentiation.
69

 In a subsequent study, Heinis and colleagues (2012) 

demonstrated that Ngn3 and, therefore, β-cell development was decreased in pVHL depleted 

embryonic islets at E13.5.  It was found that increased HIF1α resulted in decreased β-cell 

differentiation, potentially due to decreased ATP levels when HIF1α is upregulated.
70

 

MIN6 cells, a mouse-derived β-cell line, and primary mouse islets display cellular 

hypoxia when stimulated with high glucose.
71

 Glucose leads to a significant increase in oxygen 

consumption and consequent β-cell hypoxia.
71

 Mild hypoxia during increased insulin secretion 

leads to HIF1α upregulation, causing a shift to anaerobic metabolism to alleviate the high oxygen 

demand.
71

 Hypoxia, upregulated by increased oxygen consumption during GSIS, is exacerbated 

when oxygen availability is compromised.
71

 Sato and colleagues (2011) determined oxygen 

availability to be impaired in both C57BL/6J mice on a HFD and leptin-deficient (ob/ob) mice.  

This was associated with defective microcirculation and blood supply that is seen in T2D.
71

 

Inducing HIF1α via hypoxia would perhaps reduce insulin secretion but also play a protective 

role during severe hypoxia.
72
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Similarly, INS-1 832/2 glucose unresponsive cells showed increased HIF1α and 

anaerobic metabolism compared to INS-1 832/13 glucose responsive cells.
73

 Spegel and 

colleagues (2011) observed LDHA expression in glucose unresponsive cells, which was not 

expressed in 832/13 glucose responsive cells.  Higher HIF1α protein levels were associated with 

impaired GSIS.
73

 Another study demonstrated that hypoxia was correlated with a 23% decrease 

in insulin content and a 35% decrease in insulin biosynthesis in primary rat islets.
74

 However, 

when primary islets were exposed to diazoxide, a KATP channel activator, prior to hypoxia the 

negative effects of hypoxia were counteracted and β-cell death was decreased.
74

 Preconditioning 

with diazoxide opens KATP channels and inhibits Ca
2+

 influx, reducing basal glucose-stimulated 

mitochondrial metabolism.
72,74

 Preconditioning altered basal mitochondrial metabolism and 

upregulated target genes of HIF1α prior to being exposed to hypoxia, possibly having protective 

effects.
74 

In contrast, a study using β-cell specific HIF1α KO mice determined that HIF1α is 

essential for β-cell function.
75

 Cheng and colleagues (2010) observed that mitochondrial ATP 

production was significantly reduced in HIF1α KO mice.  As well, this decrease in ATP 

production resulted in impaired glucose tolerance and β-cell dysfunction.
75

 Iron chelators, 

deferoxamine (DFO) and deferasirox (DFS), were used to inhibit PHD, stabilizing HIFα and 

significantly improving glucose tolerance and insulin secretion in wild type (WT) mice on a 

HFD.
75

 HIF1α displayed a dose-response relationship with β-cell function and an increase in 

glucose transporters was observed with iron chelators.
75

 A modest increase in HIF1α appeared to 

have beneficial effects on β-cell function but overexpression seen in severe hypoxia resulted in 

toxicity.
75
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Chronic hyperglycemia in diabetic patients may in part, regulate the hypoxia response 

pathway via HIF1α.  Sergiu-Bogdan and colleagues (2004) demonstrated that the protective 

effects of HIF1α are impaired by hyperglycemia using human primary dermal fibroblasts and 

endothelial cells.  These observations were reproduced in vivo using biopsies of diabetic chronic 

foot ulcers displaying both hypoxia and hyperglycemia compared to chronic venous ulcers, 

which display a similar hypoxic environment.
76

 HIF1α protein levels were lower in diabetic 

chronic foot ulcers compared to control chronic venous ulcers.
76

 However, the data presented 

may be more relevant to treating the complications that arise from T2D, as the interaction 

between hyperglycemia and hypoxia may be a causal factor in other diabetic complications, 

including retinopathy, neuropathy and kidney disease.
76

 These observations may not be pertinent, 

specifically in the regulation of insulin secretion but rather the global effects of hyperglycemia 

seen in diabetic patients. 

Rodent models have been used to study the role of hypoxia in β-cell GSIS.  PHD 

hypomorph mice, expressing reduced amounts of whole body PHD2 mRNA, were fed a chow or 

HFD.
77

   PHD2 hypomorph mice on both diets had less adipose tissue, smaller adipocytes and 

decreased adipose tissue inflammation resulting in improved glucose tolerance and insulin 

sensitivity.
78

 PHD2 hypomorph mice also displayed increased HIF1α stabilization and 

upregulation of HIF1α target genes, involving glucose transporters and glycolytic enzymes.
78

 

These results were replicated with oral administration of the PHD2 inhibitor FG-4497 in WT 

mice on both diets.
78

 

Taniguchi and colleagues (2013) explored the effects of HIFα on insulin sensitivity using 

hepatic specific PHD3fl/fl mouse.  PHD3fl/fl hepatocytes were infected with an adenovirus 

containing Cre recombinase, which targets the loxP sites within the PHD3 gene to generate a 
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knockdown.
79

  Acute hepatic PHD3 knockdown resulted in HIF2α stabilization and improved 

glucose tolerance and insulin sensitivity.
79

 The same results were shown in hepatic specific 

PHD3 KO mice.
79

 This resulted in a 30% decrease in blood glucose levels, as well as a 50% 

decrease in plasma insulin levels.
79

 HIF2α stimulated insulin receptor substrate 2 (IRS2), which 

is necessary for insulin sensitivity.
79

 Interestingly, additional KO of other PHD isoforms led to a 

further increase in HIF2α which did not improve insulin sensitivity but rather led to toxicity and 

hepatic steatosis.
79

 

There are several models used to demonstrate the role of the hypoxia response pathway in 

T2D and specifically β-cell function, including HIFα, pVHL and PHD KO animal models.  

However, in humans, T2D is associated with severe hypoxia, as excessive glucose from nutrient 

overload places a high demand on the mitochondria and oxidative phosphorylation, leading to 

decreased ATP production in the β-cell.
71

 HIFα is also thought to be associated with glucose 

intolerance and insulin insensitivity in β-cells but may have beneficial effects with diabetic 

complications.
76

 It is plausible that HIFα is beneficial at low levels but could lead to toxicity if 

overexpressed.
75

 PHDs are the main regulators of HIFα , however, PHDs also regulate non-HIFα 

targets; with PHD3 having the widest range of targets.
80

 PHD has been shown to prolyl 

hydroxylate other proteins that may be involved in regulating insulin secretion.  

 

1.3.4 Other targets of PHDs 

PHDs prolyl hydroxylate other proteins apart from HIFα.  Particularly, PHD3 is thought 

to play a significant role in apoptosis and tumor development.
81

 Growing tumors have poor 

vasculature leading to decreased oxygen availability, which triggers the hypoxia response 

pathway as a means of temporary cell survival.
81

 PHD3 is downregulated in many types of 
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cancer such as pancreatic, colon and metastatic melanoma.
82

 PHD3 regulates cell proliferation, 

differentiation, and migration and therefore, may play a role in metastatic cancers.
82,83

  

 Actin filaments are required for cell motility and dysregulation of actin is associated with 

cancer development and metastasis.
82

 Luo and colleagues (2014) demonstrate that PHD3 is a 

negative regulator of F-actin, which inhibits metastasis via hydroxylation on proline residues -

307 and -322.  Inhibition of F-actin production led to decreased cell migration and, therefore, 

metastasis.
82

 Paired box 2 (Pax2) is a transcription factor that regulates cell differentiation, 

proliferation, migration, and survival.
84

  Pax2 is expressed in a variety of cancers including 

leukemia, breast, prostate, kidney, and bladder.
84

  PHD3 was found to hydroxylate and target 

Pax2 for degradation post transcriptionally; however, the mechanism remains unclear.
84

  

Sprouty homolog 2 (SPRY2) inhibits cell surface receptors tyrosine kinases, which 

regulate cell proliferation and migration.
83

 Anderson and colleagues (2011) showed that PHD3 

has a stronger interaction with SPRY2 proteins compared to PHD1 and PHD2 through 

immunoblot analysis in HeLa cells.  PHDs interact with SPRY2, inhibiting proliferation and 

migration.
83

 Receptor tyrosine kinase, c-kit plays a role in β-cell maturation and function and 

islet vascularization.
85 

β-cell specific mutation of c-kit resulted in impaired vasculature and β-cell 

function whereas, overexpression in mice significantly improved islet vasculature and β-cell 

function.
85 

PHD3 regulation of SPRY2 elucidate PHD3 as a potential target for the treatment of 

cancer but further research is warranted to investigate whether regulation of these proteins by 

PHD plays a role in β-cell function.  

Activating transcription factor 4 (ATF4) is a regulator of the unfolded protein response, 

determining cell fate.
65

 Koditz and colleagues (2007) showed that PHD3 interacts with the 

leucine zipper motif, or zipper II, of ATF4, negatively regulating ATF4.  Inhibition of PHDs via 
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DMOG and incubation in 1% oxygen induced ATF4 activity in HeLa cells.
65

 More recently, it 

was shown that ATF4 interacts with PHD1.
86

 PHD1 positively regulated ATF4 in HeLa and 

HEK293T cells, contrary to PHD3.
86

 Immunoprecipitation experiments, where proline residues 

were mutated to alanine, did not affect the interaction of PHD1 or PHD3 with ATF4, suggesting 

that PHD1 and PHD3 do not regulate ATF4 via prolyl hydroxylation.
85

 ATF4 induced 4E-BP1 in 

MIN6 β-cells and primary mouse islets, promoting β-cell survival under ER stress.
87

 4E-BP1 KO 

mice displayed increased ER stress-induced β-cell apoptosis.
87

 PHD interacts with ATF4 in 

cancer cell lines but PHD could potentially interact with ATF4 in β-cells to regulate ER stress 

induced-apoptosis.   

β2-adrenergic receptors (β2AR) are G-protein coupled receptors that regulate receptor 

homeostasis and play a role in cardiovascular disease and pulmonary function.
88

 Hypoxia present 

in patients with heart failure and asthma, stabilizes β2AR and increases catecholamine release.
88

 

This adaptation works to increase cardiac output and peripheral vasodilation to increase oxygen 

availability.
88

 Xie and colleagues (2009) found that siRNA inhibition of PHD3 increased β2AR 

and PHD3 deficient mice displayed increased blood pressure and heart contractility via prolyl 

hydroxylation of β2AR at proline residues -382 and -395.  PHD targets proteins that are involved 

in a variety of cancers and cardiovascular disease, for which T2D is a major risk factor.  PHD 

also targets glycolytic enzymes that alter glucose metabolism and could potentially play a role in 

insulin secretion. 

 

1.3.5 The role of PHD in altering glucose metabolism 

The hypoxia response pathway is an adaptation for temporary cell survival and works to 

increase oxygen availability and decrease oxygen consumption. Proteins that are prolyl 
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hydroxylated via PHD are recognized by pVHL ubiquitin E3 ligase complex and targeted for 

degradation.  pVHL plays a role in oxygen sensing and energy homeostasis.
89

 Vhlh gene KO, the 

gene encoding pVHL, in β-cells of adult mice using the Cre-lox system resulted in β-cell 

dysfunction, impaired glucose tolerance and reduced GSIS in vivo.
89

 Interestingly, insulin 

secretion was normal compared to WT controls at basal conditions but when glucose stimulus 

was increased, insulin secretion was impaired in vivo.
89 

PDH catalyzes the conversion of pyruvate to acetyl-CoA, which enters the TCA cycle for 

ATP production.
90

 PDH is composed of E1α, E1β, E2 and E3 subunits.
90

 PDH activity is 

determined by phosphorylation and dephosphorylation via PDK1, where PDK1 is upregulated in 

hypoxic environments.
90

 PDK1 inhibits PDH by phosphorylating the E1α subunit, decreasing 

acetyl-CoA production and oxidative metabolism.
90

 Kikuchi and colleagues (2014) determined 

that PHD3 KO mouse embryonic fibroblasts (MEFs) and PHD3-depleted MCF7 breast cancer 

cells showed decreased PDH function via immunoprecipitation and western blot analysis PHD3 

KO MEFs were resistant to cell death during prolonged hypoxia.
90 

PHD3 was shown to interact 

with the E1β subunit of the PDH complex and positively regulate PDH to increase acetyl-CoA 

production.
90

 

 PHD3 has also been shown to interact with pyruvate kinase M2 (PKM2), which catalyzes 

the final reaction in glycolysis, producing pyruvate and ATP.
91

  PHD3 acts as a coactivator by 

binding to PKM2 to enhance PKM2’s interaction with HIFα, stabilizing HIFα and increasing 

GLUT1, lactate dehydrogenase A (LDHA) and PDK1.
91

 These proteins enhance glucose uptake, 

lactate production, and inhibit oxidative metabolism, respectively, resulting in the Warburg 

effect.
91

  The Warburg effect is a metabolic shift towards glycolysis to reduce oxygen utilization 

in many types of cancer cells.
91 

 PHD3 knockdown in HeLa, MEFs, RCC4, Hep3B and 
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HEK293T cells via retrovirus or lentivirus resulted in reduced glucose uptake and lactate 

production, and increased oxygen consumption.
91

  It was determined using in vitro hydroxylation 

assays that PHD3 hydroxylates proline residues at positions -403 and -408 on PKM2.
91 

 Some cancers, such as acute myeloid leukemia rely on fatty acid oxidation (FAO).
92

 

PHD3 was shown to inhibit FAO by hydroxylating proline residues at position -450 and 

activating acetyl-CoA carboxylase 2 (ACC2) in 293T cells.
92

 ACC2 inhibits carnitine palmitoyl 

transferase 1 (CPT1), thereby reducing long-chain fatty acid translocation from the cytosol into 

the mitochondria for oxidative metabolism.
92

 Repression of FAO by PHD3 resulted in increased 

apoptosis and PHD3 overexpression resulted in a 50% reduction of FAO in cells.
92

  

 Cell lines and animal models using siRNA inhibition and pharmacological inhibitors 

including broad and specific inhibitors have been used to study the role of PHD in a variety of 

pathways.  A well-established PHD inhibitor used in the experiments that are presented in this 

thesis is the synthetic αKG analogue, DMOG, to investigate the role of PHD in GSIS.   

1.4 Pharmacological inhibitors of PHDs 

1.4.1 Dimethyloxalylglycine (DMOG) 

DMOG is a competitive inhibitor of all PHD isoforms and other members of the 2-

oxoglutarate dioxygenase superfamily.
93,94

 DMOG is a synthetic amide analogue of αKG and
 
is 

able to penetrate cell membranes where it is then converted to N-oxalylglycine (NOG) via 

carboxylesterases.
93,94

 DMOG also increases the amount of substrate that binds to PHDs.
95

  

Zhdanov and colleagues (2015) measured ATP production in HCT116 cancer cells 

treated with DMOG and deprived of glucose.  There was a significant decrease in ATP 

concentration in cells deprived of glucose 30 minutes after DMOG treatment and ATP levels 

were almost depleted after four hours of DMOG treatment compared to control cells.
93

 These 
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results reveal that DMOG is fast-acting and may alter metabolism faster than HIF-dependent 

mechanisms.
93 

DMOG has been used to study oxygen-induced retinopathy (OIR).
96,97

  The first phase of 

OIR hyperoxia results from decreased VEGF due to destabilization of HIFα.
96,97

  OIR rats were 

intraperitoneally injected with 200µg/g DMOG causing systemic reduction in PHD, stabilizing 

HIFα.
96,97

  Intraperitoneal injection of 200µg/g was sufficient to upregulate HIFα and provide 

protective effects in hyperoxic OIR rats.
96,97

  Before the discovery of PHD, iron chelators were 

used to induce HIFα expression.  More recently, selective PHD inhibitors have been developed, 

some of which are in clinical trials for end stage renal disease. 

 

Figure 1.4: Comparing αKG and DMOG. 

The chemical structures of the TCA cycle intermediate αKG and the PHD inhibitor DMOG.  

Images were designed using the open source web-based program MolView. 
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1.4.2 Other inhibitors of PHD 

Other PHD inhibitors include iron chelators and selective PHD inhibitors.
47,94,98

 The iron 

chelator ethyl-3,4-dihydroxybenzoate (EDHB) is a competitive inhibitor of PHD, creating an 

iron deficient environment  resulting in decreased PHD activity.
98

 EDHB also displays a strong 

inhibition towards αKG and ascorbate.
98

  Huang and colleagues (2016) found EDHB reduced 

GSIS in 832/13 cells at 100 and 2000µmol/L but increased GSIS at 200 and 500µmol/L.  EDHB 

reduced the ATP/ADP ratio and TCA cycle intermediates including pyruvate, citrate, fumarate, 

and malate in 832/13 cells, suggesting PHD plays a role in oxidative metabolism.
47

 However, 

EDHB is not as specific as other PHD inhibitors and is suggested to play a negative role in iron 

metabolism.
98

    

FG-4592, also known as Roxadustat, is a hypoxia mimetic and is currently in phase III 

clinical trials for the treatment of anemia and chronic kidney disease via upregulation of 

erythropoietin (EPO) through HIFα stabilization.
99,100

 FG-4592 treated HEK293T cells displayed 

increased GLUT1, hexokinase 2, and LDHA, upregulating glycolysis by 25%.
99

 FG-4592 shunts 

carbon away from aerobic metabolism and towards anaerobic metabolism in both a hypoxic and 

normoxic environment.
99

 FG-4592 may also play a beneficial role in mitochondrial dysfunction 

and a potential treatment option for T2D.
99,100

 Clinical trials using another hypoxia mimetic, 

GSK1278863, reported decreased serum cholesterol levels and improved HDL/LDL lipoprotein 

profiles as side effects.
101 

FG-2216 (IOX3) was used in a phase I clinical trial in 12 end-stage renal disease patients 

who were on dialysis.
102,103

 Oral administration of 20mg/kg body weight FG-2216 increased 

endogenous EPO production.  However, this study lasted 7 days and the long-term effects of FG-

2216 is unknown.
102

 Chronic HIFα stabilizers could potentially lead to polycythemia.
102

 Chan 
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and colleagues (2016) assessed the regulation of hypoxia-regulated genes and found that FG-

2216 resulted in a 35% increase in HIFα gene targets, compared to DMOG, which resulted in a 

50% increase in HIFα gene targets.    

IOX2 is a selective PHD2 inhibitor, where the thiazole ring displaces the side chain of 

αKG.
103

 IOX2 has a 400-fold selectivity for PHD2, whereas IOX4 has an 857-fold selectivity for 

PHD2 but is also suggested to be a potent inhibitor of PHD1 and PHD3.
103

 Mice were injected 

with IOX2, IOX4 and DMOG to assess potency.
103

 IOX2 was shown to have the strongest 

induction of HIF1α and HIF2α with DMOG displaying the lowest induction.
103

However, Chan 

and colleagues (2016) concluded that DMOG better represented the hypoxic response compared 

to  selective PHD inhibitors through in vitro hydroxylation assays in MCF-7 cells compared to 

cells incubated in 0.5% oxygen.  HIF1α and HIF2α were significantly upregulated by both 

hypoxia and DMOG and upregulated to a lesser extent by FG-2216 and IOX2.
94 

PHD inhibitors 

have been used in multiple cell lines, rodent models and  human clinical trials to assess the role 

of PHD and HIFα in disease states.  The experiments presented in this thesis focus on exploring 

the role of PHD using  DMOG in primary mouse islets and male C57BL/6J mice, as well as, 

discussing future research exploring the role of PHD in a transgenic mouse model.   

1.5 Animal models 

1.5.1 Cre-lox System 

Another approach to studying the role of specific genes in disease states is to use a 

transgenic mouse model, which can either overexpress or KO a gene of interest.  The Cre-lox 

system is done by homologous recombination in embryonic stem cells and introduces nucleotide 

sequences, or loxP sites, on either side of an exon within a gene, flanking the gene to be 
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deleted.
104

 These loxP sequences are recognized by the Cre-recombinase (Cre) enzyme, which 

recognizes the loxP sites to generate a KO.
104

  

  Mice that contain loxP sequences around a specific exon within a gene are crossed with 

mice that express Cre under a tissue-specific promotor to allow deletion of the gene in a 

particular tissue.
104

 Previous models used Cre expressed on the rat Ins-2 gene, but Ins-2 is also 

expressed in the hypothalamus in both embryonic and adult mice.
104

 Thorens and colleagues 

(2015) generated mice expressing Cre on the β-cell specific Ins-1 gene.  Mice expressing Cre on 

the eostrogen receptor fusion protein (Cre
ERT2

), in which Cre is activated via tamoxifen 

injections to induce a knockdown in a time-controlled manner.
104

 Cre
ERT2 

may be beneficial 

when studying disease states with later onsets, such as T2D.   

 Thorens and colleagues (2015) demonstrated the selectivity of expressing Cre on the Ins-

1 gene by crossing Ins-1
Cre

 and Ins-1
CreERT2

 mice with Rosa26-eYFP mice to determine tissues 

containing loxP site recombination by immunofluorescence.  Recombination was exclusively in 

β-cells for both Ins-1
Cre

 and Ins-1
CreERT2

 mice.
104

 It was concluded that four injections of 

tamoxifen over a two week period in 10 week old male mice resulted in a knockdown with 60-

70% recombination.
104 

Ins-1
Cre

 and Ins-1
CreERT2 

mice can then be crossed with mouse models 

containing loxP sites around an exon within a particular gene, such as PHD, to generate PHD KO 

mice. 

 

1.5.2 PHD transgenic mice 

In the experiments presented in this thesis, transgenic PHD123fl/fl mice and PHD2fl/fl 

mice were used, with loxP sequences around exon 2 for PHD2 and PHD3, and loxP sequences 
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around exon 3 for PHD1.
62

 All of the loxP sites are approximately 230 base pairs long and 

located in the intron sequences.
62 

When PHD123fl/fl and PHD2fl/fl mice are crossed with C57BL/6J mice expressing Cre 

recombinase exclusively in pancreatic β-cells, the result is offspring with exon 2 or exon 

3deleted, generating PHD KO mice in β-cells.
62

 These exons contain residues His-271 and Asp-

273 in PHD1, His-290 and Asp-292 in PHD2, and His-135 and Asp-137 in PHD3.
62

 These 

histidine and aspartate residues are required for Fe
2+

 binding, and therefore PHD activity.
62

      

1.6 Rationale 

The complexity of T2D poses a major issue in treatment and management, often leading 

to combinational therapy with adverse effects.  Understanding the mechanisms of pancreatic β-

cell insulin secretion, particularly involvement of KATP channel-independent pathways, is needed 

to develop more effective treatment strategies.  Therefore, our lab studies the role of PHD in 

second-phase insulin secretion utilizing cytosolic αKG as a co-substrate to regulate insulin 

secretion.  Previous studies elucidate the importance of pyruvate cycling through PC to generate 

metabolites, such as αKG, that results in increased GSIS.
105 

Pyruvate enters the mitochondria and undergoes oxidative metabolism to increase insulin 

secretion.  Pancreatic β-cells express abundant PC and PDH and in approximately equal 

proportions.
105-107

 In gluconeogenic tissues, the formation of glucose from non-glucose 

precursors such as the liver, PC plays a major role.
107

 Gluconeogenic enzymes 

phosphoenolpyruvate and fructose-1,6-bisphosphotase are rate-limiting but are not expressed in 

pancreatic β-cells, signifying another role for PC in islets.
107 

 In particular, PC is reduced in β-

cells of T2D rodent models.
105

 siRNA inhibition of PC in 832/13 cells and dispersed rat islets 

demonstrated decreased insulin secretion, proliferation in 832/13 cells and TCA cycle 
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intermediate concentrations of oxaloacetate, malate, ATP and NADPH, suggesting that PC is 

required for anaplerosis.
105

 Overexpression of PC led to increased insulin secretion and 

proliferation, whereas, inhibition of PDH in 832/13 cells did not significantly reduce insulin 

secretion.
105

  

Pyruvate cycling plays a role in stimulating insulin secretion and depends on the transport 

of TCA cycle metabolites to the cytosol.
46

 TCA cycle intermediates including NADPH and αKG 

may function as coupling factors linking glycolysis in the cytosol to cellular respiration in the 

mitochondria leading to increased GSIS.
46,108

 There are three pathways involved in pyruvate 

cycling: the pyruvate/malate pathway, pyruvate/citrate pathway, and pyruvate/isocitrate pathway 

that generate NADPH and αKG, important signaling molecules that are involved in insulin 

secretion.
46

 In the pyruvate/malate pathway, malate is transported to the cytosol by dicarboxylate 

carrier (DIC) and malic enzyme converts malate to pyruvate, producing NADPH.
46,108

 Inhibition 

of DIC resulted in inhibition of the pyruvate/malate shuttle and reduced NADPH and GSIS in 

832/13 cells and primary rat islets.
46

  

The citrate isocitrate carrier (CIC) transports citrate and isocitrate from the mitochondria 

to the cytosol and is involved in the pyruvate/citrate and pyruvate/isocitrate shuttles.
46

 

Pharmacological inhibition of CIC resulted in decreased GSIS in 832/13 cells and primary rat 

islets in first- and second-phase insulin secretion.
109

 As well, overexpression of CIC resulted in 

increased GSIS, demonstrating the importance of cytosolic citrate and isocitrate in insulin 

secretion.
109

 NADP-dependent isocitrate dehydrogenase (ICDc) converts cytosolic isocitrate to 

αKG, producing NADPH as a by-product.
46,110

 Ronnenbaum (2006) and colleagues found that 

siRNA inhibition of ICDc resulted in decreased GSIS in both 832/13 cells and primary rat islets, 

highlighting the importance of cytosolic αKG and NADPH in insulin secretion.         



 

31 
 

 Using liquid chromatography/mass spectrometry, Lorenz and colleagues (2013) observed 

a transient decrease in αKG after a glucose stimulus but a 3- to 4- fold increase at later time 

points.  The later increase supports the role of αKG in anaplerosis to augment second-phase 

insulin secretion via pyruvate cycling.
112

 Huang and Joseph (2014) revealed that αKG levels did 

not increase until 10 minutes after a glucose load in 832/13 cells and continued to rise through 

the 60 minute period.  These results suggest that αKG is a coupling factor in KATP channel-

independent pathways.
40 

Transportation of αKG from the mitochondria to the cytosol is 

facilitated by the 2-oxoglutarate carrier (OGC).
110

 OGC siRNA knockdown in 832/13 cells and 

primary rat islets revealed significantly reduced GSIS.
110

 Pharmacological inhibition of OGC via 

dimethyl-2OG also decreased GSIS.
110

 
 

 αKG plays a role in second-phase insulin secretion but the mechanism remains 

incompletely understood.  Fallon and colleagues (2008) used EDHB in human and rat pancreatic 

islets.  EDHB was found to inhibit PHD by approximately 50% and reduced insulin secretion by 

90%.
48

 It is suggested that αKG translocation to the cytosol is required for insulin secretion by 

serving as a co-substrate for PHDs.
48

 EDHB also inhibited glucose utilization, ATP content and 

TCA cycle intermediates pyruvate, citrate, fumarate and malate.
47

  siRNA inhibition of PHD1, 

PHD2, and PHD3 in 832/13 cells determined that PHD1 and PHD3 knockdown decreased GSIS 

whereas PHD2 did not affect GSIS.
47

  Our lab chose to further explore the role of PHDs in 

pancreatic β-cell insulin secretion using the pharmacological inhibitor DMOG in both INS-1 

832/13 cells and primary mouse islets to study acute effects of PHD inhibition.  We have also 

generated PHD KO transgenic mice to explore both short- and long-term effects of PHD in 

insulin secretion.   
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Figure 1.5: TCA cycle intermediate transport carriers. 

CIC transports citrate and isocitrate from the mitochondria to the cytosol.  ICDc converts 

isocitrate to αKG and produces NADPH.  NADPH and αKG may be signaling molecules that 

stimulate insulin secretion.  αKG also acts as a co-substrate for PHD, which may directly 

regulate insulin secretion.  Illustration reproduced courtesy of Dr. Jamie Joseph.  
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Chapter 2: Objectives and Hypothesis 

2.1 Hypothesis 

 Nutrient-stimulated anaplerosis increases cytosolic αKG, enhancing PHD activity 

resulting in short- and long-term effects on insulin secretion.   

2.2 Objectives 

1. Confirm expression and subcellular localization of PHD1, PHD2, and PHD3 in INS-1 

832/13 cells and primary mouse islets by western blot analysis and immunofluorescence. 

2. Assess the role of PHDs using DMOG in vitro by measuring oxygen consumption rate 

and both static and dynamic insulin secretion. 

3. Assess the role of PHDs using DMOG in vivo by measuring blood glucose levels and 

plasma insulin levels in response to an exogenous glucose load. 

4. Identify prolyl hydroxylated proteins by PHDs in INS-1 832/13 cells via MALDI mass 

spectrometry. 
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Chapter 3: Methods 

3.1 PHD expression and subcellular localization 

3.1.1 Western blot 

 Protein samples were collected from 832/13 cells and primary mouse islets after an 

insulin secretion assay.  Protease inhibitor cocktail (Sigma, Oakville, ON) was diluted in a 1X 

lysis buffer (diluted in milliQ H2O) (Cell Signaling, Danvers, MA, USA) (1:400) and was added 

to 832/13 cells or a 3X lysis buffer (diluted in milliQ H2O) (Cell Signaling, Danvers, MA, USA)   

was added to isolated islets (120-150 islets/treatment) infected with shGFP, RIP Cre adenovirus 

(Vector Biolabs, Malvern, PA, USA) or no treatment (NT).  832/13 cells were treated with low 

glucose (LG) (2mM) and islets were treated with LG (2mM), high glucose (HG) (16.7mM), LG 

(2mM) + KCl (30mM) + diazoxide (200µM), HG (16.7mM) + KCl (30mM) + diazoxide 

(200µM) or HG (16.7mM) + dimethyl maleate (DMM) (10mM) + dimethyl α-ketoglutarate 

(DMαKG) (10mM).  All treatments were diluted in cell Krebs-Ringer bicarbonate buffer (KRB) 

(KRB stock (4.32mM KCl, 1.20mM MgSO4, 1.5mM KH2PO4), 129mM NaCl, 10mM HEPES, 

5mM HCO3, 3.11mM CaCl2, 0.1% BSA, pH 7.4) or islet KRB (KRB stock (120mM NaCl, 

4.8mM KCl, 2.5mM CaCl2, 1.2mM MgCl2), 5mM HEPES, 24mM HCO3, 0.1% BSA, pH 7.4).  

832/13 cells were scraped and centrifuged at 12,500 rpm for 30 minutes at 4˚C.  Islets were 

incubated on ice for 15 minutes and centrifuged at 12,500 rpm for 30 minutes at 4˚C.  Protein 

concentration for 832/13 cells was determined by a bicinchoninic acid (BCA) protein assay.  

NuPAGE LDS sample buffer (4X) (ThermoFisher Scientific, Carlsbad, CA), NuPAGE reducing 

agent (10X) (ThermoFisher Scientific, Carlsbad, CA) and deionized water were added to 

approximately 20µg of protein from 832/13 cells and total protein for islets (120-150 

islets/treatment).  Samples were heated at 70˚C for 10 minutes and run on a NuPAGE 10% Bis-
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Tris SDS polyacrylamide Mini Gel (ThermoFisher Scientific, Carlsbad, CA) with 1X running 

buffer (Life Technologies, Carlsbad, CA) (supplemented with NuPAGE antioxidant 

(ThermoRisher Scientific, Carlsbad, CA)) for 50 minutes with a maximum voltage of 200V.   

A 0.45 µM pore size Invitolon PVDF membrane (Life Technologies, Carlsbad, CA) was 

activated using methanol and protein samples were transferred to a PVDF membrane for 1.5 

hours with a maximum voltage of 30V in 1X transfer buffer (ThermoFisher Scientific, Carlsbad, 

CA) (supplemented with NuPAGE antioxidant (ThermoFisher Scientific, Carlsbad, CA)).  PVDF 

membranes were washed twice for five minutes with tris-buffered saline (TBS) (0.1% tween).  

PVDF membranes were incubated for 30 minutes with superblock blocking buffer 

(ThermoFisher Scientific, Carlsbad, CA).  PVDF membranes were incubated for two hours for 

all primary antibodies and one hour for all secondary antibodies at room temperature with three 

five minute washes in between with TBS (0.1% tween).  The following antibodies were used: 

rabbit Anti-PHD1/prolyl hydroxylase (1:1000) (Abcam, Toronto, ON), rabbit PHD2/Egln1 

Rabbit mAb (1:1000) (Cell Signaling, Danvers, MA), rabbit Anti-PHD3 (1:1000) (Abcam, 

Toronto, ON), Anti Rabbit IgG (1:10000) (Sigma, Oakville, ON), Anti-Mouse IgG (1:10000) 

(Sigma, Oakville, ON) and mouse Monoclonal Anti-γ-Tubulin (1:10000) (Sigma, Oakville, ON).  

Images were detected using Kodak Image Station 4000 MM Pro using 1mL Luminata Crescendo 

Western HRP Substrate (Millipore, Billerica, MA).  Western Blot images were analyzed using 

Imagej (https://imagej.nih.gov/ij/) (Bethesda, MD, USA). 

 

3.1.2 Immunofluorescence  

 Male mouse pancreases were isolated and fixed in Z-fix solution (Anatech, LTD, MI, 

USA).  Fixed pancreases were sent to the Animal Health Laboratory at the University of Guelph 

https://imagej.nih.gov/ij/
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to be mounted on formalin-fixed, paraffin-embedded slides.  Slides were placed in three xylene 

baths for five minutes each.  Slides were then placed in two 100% ethanol baths for five minutes 

each and then 70% ethanol once for five minutes.  Slides were rinsed under running water for 

approximately 30 seconds.  400mL 1X antigen retrieval solution (Dako, Mississauga, ON) was 

microwaved on high for four minutes.  Slides were then placed in the antigen retrieval solution 

and microwaved on high for an additional five minutes.  Slides were cooled for one minute under 

running water.  Slides were blocked with superblock solution (Thermo Scientific, Mississauga, 

ON) for 30 minutes.  

 Rabbit mAb PHD1 (1:100), Rabbit mAb PHD2 (1:50) or Rabbit pAb PHD3 (1:100) 

antibodies were diluted in superblock solution and 1mL of diluted antibody was placed on each 

slide and incubated overnight at 4˚C.  The following morning, slides were washed three times for 

five minutes with PBS.  Alexa Fluor® 647 anti-rabbit IgG secondary antibody (1:500) (Life 

Technologies, OR, USA) was diluted in superblock solution and 1mL of diluted antibody was 

placed on each slide and incubated for two hours at room temperature.  Slides were washed three 

times for five minutes with PBS.  Guinea pig anti-insulin antibody (1:600) (Dako, Mississauga, 

ON) was diluted in superblock and 1mL was added to each slide and incubated for two hours at 

room temperature.  After incubation, slides were washed three times for five minutes with PBS.  

Anti-Guinea Alexa Fluor® 488 secondary antibody (1:500) (Jackson Immunoresearch, PA, 

USA) was diluted in superblock and 1mL was added to each slide and incubated for two hours at 
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room temperature.  After incubation, slides were washed three times for five minutes with PBS 

and then rinsed for 30 seconds under running water.  Slides were placed in 50%, 70% and 100% 

ethanol baths for one minute each.  Slides were then placed in three xylene baths for five minutes 

each.  One drop of Prolong Gold (Life Technologies, Mississauga, ON) was added to a cover slip 

and placed on each slide.  Slides were set to dry overnight at room temperature.  

Immunofluorescence was analyzed using a Nikon Eclipse Ti microscope (Mississauga, ON, CA).   

3.2 In vitro experiments 

3.2.1 Oxygen consumption rate (OCR) 

 Oxygen consumption was measured using Seahorse Bioscience XF24 Respiration Assay 

(Lexington, MA, USA).  832/13 cells were plated at a concentration of 100,000 cells per well 

and islets were plated at a concentration of 45 islets per well.  Cells were plated on a XF24 V7 

culture microplate and grown for five days.  Islets were plated on a V17 TC-treated XF24 islet 

capture microplate the following day after islet isolation.  Each well of the utility plate in the 

XF24 extracellular flux assay kit was filled with 1mL of calibrant solution and hydrated 

overnight (37˚C, no CO2).  Cell media (RPMI-1640 supplemented with 50mL FBS, 11mL 50X 

INS (200mM glutamine, 100mM Na pyruvate, 35.2µL 2-mercaptoethanol) and 5mL P/S 

antibiotic) or islet growth media (RPMI-1640 supplemented with 0.5mL of HEPES (1M, pH 

7.4), 5mL FBS, 0.1mL P/S/F (10000U/mL penicillin G sodium, 10000µg/mL of streptomycin 

sulfate, 25µg/mL of amphotericin B as fungizone) and 0.55mL 200mM glutamine) was replaced 

with LG (2mM) KRB for two one hour washes for 832/13 cells and two 30 minute washes for 

islets (37˚C, 5% CO2).  After two washes, wells were replaced with fresh LG (2mM) KRB.  Port 

A row A in the sensor cartridge of the utility plated contained 16.7mM glucose.  Port A in rows 
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B, C and D contained 200µM, 500µM, and 1000µM DMOG diluted in HG (16.7mM) KRB, 

respectively for 832/13 cells and 1mM, 5mM, and 10mM DMOG diluted in HG (16.7mM) KRB, 

respectively for islets.  Port B in all rows contained 10µM oligomycin for 832/13 cells and 20µM 

oligomycin for islets, port C in all rows contained 50µM 2,4-dinitrophenol (DNP) + 20mM 

sodium pyruvate for 832/13 cells and 100µM DNP + 5mM DMM + 5mM DMαKG for islets, 

and port D in all rows contained 5µM of rotenone + 5µM myxothiazol for 832/13 cells and 

10µM rotenone + 10µM myxothiazol for islets.  75µL of all drugs were added to each port in the 

cartridge sensor and all drugs were diluted in HG (16.7mM) KRB.  The utility plate with the 

cartridge sensor was placed in the instrument tray and calibrated.  The utility plate containing the 

calibrant solution was replaced with the cell or islet plate after calibration.  The mix-wait-

measure cycles were three minutes, two minutes, and three minutes, with at least three cycles for 

each injection.  

Spare respiratory capacity was calculated by subtracting basal oxygen consumption rate 

(OCR) from pyruvate + DNP or DNP + DMM + DMαKG OCR values.  Proton leak was 

calculated by subtracting rotenone + myxothiazol OCR values from oligomycin OCR values.  

ATP turnover was calculated by subtracting oligomycin OCR values from basal OCR values.  

Non mitochondrial oxygen consumption was calculated from rotenone + myxothiazol OCR 

values. 
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Figure 3.1: Seahorse Bioscience XF24 Respiration Assay sensor cartridge. 

 Drugs were loaded into respective ports in wells containing 832/13 cells or islets.  Port A row A 

contained 75µL of HG (16.7mM) KRB, Port A rows B, C and D contained 75µL of 200µM, 

500µM, and 1000µM DMOG diluted in HG (16.7mM) KRB, respectively for 832/13 cells and 

1mM, 5mM, and 10mM diluted in HG (16.7mM) KRB, respectively for islets.  Port B in all rows 

contained 75µL of oligomycin, port C in all rows contained 75µL of pyruvate + DNP for 832/13 

cells and DNP + DMM + DMαKG for islets and port D in all rows contained 75µL of rotenone + 

myxothiazol.  All ports in wells A1, B4, C3, and D5 contained 75µL of deionized water as 

blanks.  Illustration reproduced courtesy of Dr. Jamie Joseph. 

 

3.2.2 Islet isolation 

 Pancreatic islets were isolated from C57BL/6J male mice aged 10-14 weeks (Jackson 

Laboratories) or PHD123fl/fl male mice aged 10-14 weeks (University of Connecticut, USA).  

Mice were anesthetized with 100mg/kg body weight pentobarbital (54.7mg/mL solution, CEVA 

Sante Animale).  Incisions were made in a T-shape form and the common bile duct was located. 

The bile duct was first sutured distally, where the bile duct meets the duodenum.  A second 

suture was made proximally where the bile duct meets the liver.  A small incision was made 
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approximately 1/3 below the proximal suture.  A 27 ¾ G needle attached to a syringe containing 

digestion media (Hanks dissociation buffer supplemented with 10mM HEPES, 1.28µg/mL 

DNase I, and 0.4 wu units/mL of Liberase TL Research Grade (Roche)) was used to cannulate 

the common bile duct.  The pancreas was perfused with approximately 2-3mL of digestion 

media.  A blunt dissection was performed to remove surrounding tissue and to isolate the 

pancreas.  After islets were digested in a water bath for 30 minutes at 37˚C, islets were washed 

three times to remove debris and prevent DNA contamination.  Islets were placed in a petri dish 

and picked under a stereomicroscope and cultured in 3mL islet growth media (RPMI-1640 

supplemented with 10mM HEPES, 10% FBS, 0.1mL P/S/F and 2.2mM glutamine) in a 6-well 

plate until the day of assay (37˚C, 5% CO2). 

 Approximately 150 islets per treatment from PHD123fl/fl male mice were picked into a 

6-well plate containing 2mL of islet growth media.  Islets were infected with a shGFP control 

virus or a RIP Cre adenovirus at a concentration of 2µL/mL compared to NT.  20mM glucose 

was added to all treatments and incubated for 18 hours overnight.  The following day, the islets 

were washed with PBS and fresh islet growth media was added to each treatment.  GFP and RFP 

were analyzed using a Nikon Eclipse Ti microscope on day two and three.  On day four, an 

insulin secretion assay was performed and insulin concentrations were measured by a 

radioimmunoassay (RIA) (Millipore, Toronto, ON). 

 

3.2.3 Islet dispersion 

 Approximately 120-150 islets were collected into each 1.5mL Eppendorf tube.  Islets 

settled to the bottom and the media was removed.  Islets were washed with 1mL of PBS.  Islets 

settled to the bottom and PBS was removed.  250µL of trypsin + 2µL of DNase were added to 
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each tube and islets were transferred to a 48-well plate.  The 48-well plate was incubated (37˚C, 

5% CO2) for two minutes at a time and checked for disintegration under a stereomicroscope and 

pipetted up and down to mix.  The plate was incubated for a total of 10 minutes.  

 Once 70% of islets were dispersed in each well, 500µL of ice cold islet growth media 

was added to each well.  Each well containing dispersed islets was transferred to a 1.5mL tube 

and centrifuged at 3,000 rpm for two minutes at 4˚C.  A pellet was formed and the supernatant 

was removed.  Another 500µL of ice cold islet growth media was added and the pellet was re-

suspended.  Dispersed islets were centrifuged at 3,000 rpm for two minutes at 4˚C.  The 

supernatant was removed and the pellet was re-suspended in 1mL ice cold islet growth media.  

500µL of dispersed islets was added to each well in a 48-well plate.  The media was changed 

every day until an insulin secretion assay was performed.   

 

3.2.4 Glucose-stimulated insulin secretion (GSIS) assay  

 Approximately 48 hours after islet dispersion, wells were washed twice with 200µL LG 

(2mM) KRB.  The plate was rocked back and forth and inverted to remove LG (2mM) KRB.  

Wells were incubated (37˚C, 5% CO2) twice with LG (2mM) KRB for 30 minutes and washed 

with 200µL LG (2mM) KRB in between incubations.  

 After two washes, wells were treated with LG (2mM) KRB, HG (16.7mM) KRB, LG 

(2mM) KRB + DMOG (5mM) or HG (16.7mM) KRB + DMOG (5mM).  Wells containing 

treatments were incubated (37˚C, 5% CO2) for one hour.  After one hour incubation, 150µL of 

dispersed islets were collected and transferred to a 96-well plate.  Samples were stored at        -

20˚C until an RIA was performed.   
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 Islets infected with shGFP, RIP Cre adenovirus or NT were washed twice with LG 

(2mM) KRB and incubated twice for 30 minutes (37˚C, 5% CO2) with LG (2mM) KRB.  After 

incubations, islets were washed once with LG (2mM) KRB and incubated for one hour in the 

following treatments: LG (2mM) KRB, HG (16.7mM) KRB, LG (2mM) KRB + KCl (30mM) + 

diazoxide (200µM), HG (16.7mM) KRB + KCl (30mM) + diazoxide (200µM) and HG 

(16.7mM) KRB + DMM (10mM) + DMαKG (10mM) with 30 islets per treatment.  

 

3.2.5 Islet perifusion 

 Islet perifusion was performed the following day after islet isolation using the Biorep 

Perifusion System (Biorep Teachnologies, FL, USA).  Islets were incubated (37˚C, 5% CO2) 

overnight.  The peristalic pump was set up, connecting the solutions to the main pump and the 

main pump to the chambers.  The chambers were set up and a fiberglass filter was placed on the 

bottom of each chamber.  Chambers were filled with approximately 275µL of LG (2mM) KRB.  

25 islets were washed and picked into each chamber.  The solutions were delivered by the main 

pump to the islets contained within the perifusion chambers.  The Perifusion System was primed 

to prevent air bubbles from forming within the tubes.  The Perifusion System was then heated to 

37˚C.  

 All treatments were perfused at a flow rate of 300µL/minute.  Islets within all chambers 

were stimulated with LG (2mM) KRB for 70 minutes total, baseline measurements of insulin 

secretion were obtained in the first 60 minutes and samples were collected for the latter 10 

minutes.  Islets within the chambers were then stimulated with HG (16.7mM) KRB or HG 

(16.7mM) KRB + DMOG (5mM) for 40 minutes.  Islets within all chambers were stimulated 

with HG (16.7mM) KRB + KCl (30mM) for the last 15 minutes.  
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 Insulin samples (300µL) were collected in a 96-well plate and stored at -20˚C.  The 

fiberglass filter containing islets in each chamber was collected in a 1.5mL tube.  100µL of acid 

ethanol (150 ethanol:47 H2O:3 HCl) was added to each tube and samples were stored overnight 

at 4˚C and then stored at -20˚C until the day of assay.  All insulin samples were measured by an 

RIA.   

 

3.2.6 Radioimmunoassay (RIA)  

 Insulin samples from islet insulin secretion and islet perifusion assays were measured 

using a Sensitive Rat Insulin Radioimmunoassay Kit (RIA) (Millipore, Toronto, ON).  The RIA 

kit was able to cross react with insulin samples secreted from mouse islets.  
125

I-insulin sensitive 

tracer, a radioactive tracer, and a rat insulin antibody were added to each sample in equal 

amounts.  The 
125

I-insulin tracer and the unlabeled insulin samples compete for binding sites on 

the rat insulin antibody.  Samples containing the rat insulin antibody and 
125

I-insulin tracer were 

centrifuged at 3,000 g for 20 minutes at 4˚C and decanted.  The bound 
125

I-insulin tracer to 

unlabeled antigen ratio in the supernatant was measured using a gamma counter (PerkinElmer, 

Waltham, MA, USA).  The less 
125

I-insulin tracer present in the supernatant, the more insulin 

was present in the sample.   

3.3 In vivo experiments 

3.3.1 Intraperitoneal glucose tolerance tests (ipGTT)  

 C57BL/6J male mice aged 10-14 weeks were fasted for 16-17 hours prior to a glucose 

challenge.  Mice were injected with 200µg/g DMOG or PBS control intraperitoneally 30 minutes 

prior to a glucose challenge.  All mice were injected with 1.5g glucose/kg body weight 

intraperitoneally.  Tail clips were performed and blood from the tail vein was measured with a 
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glucometer (Contour
®
 Next, Bayer, Mississauga, ON, CA) at baseline, 10, 20, 30, 60, 90 and 120 

minutes after an exogenous glucose load.  Blood samples were collected at baseline, 10 and 30 

minutes.  Samples were centrifuged at 8,000 g for 10 minutes.  Plasma was isolated and stored at 

-20˚C until day of assay. Plasma insulin was measured using an enzyme-linked immunosorbent 

assay (ELISA). 

 

3.3.2 Enzyme-linked immunosorbent assay (ELISA)  

 Plasma insulin levels from ipGTTs were measured using a Rat/Mouse Insulin ELISA Kit 

(Millipore, Toronto, ON).  Plasma insulin levels were added to a microtiter plate coated with 

mouse monoclonal anti-rat insulin antibodies.  A rat/mouse insulin detection antibody (pre-

titered biotinylated anti-insulin antibody) was added to the unknown samples to immobilize 

plasma insulin.  To develop the plate, enzyme substrate 3,3’,5,5’-tetramethylbenzidine was 

added to the samples.  A stop solution (0.3M HCl) was added to terminate the colour 

development and the colour change was measured spectrophotometrically at an absorbance of 

450 nm.   

 

3.3.3 Genotyping and development of a KO mouse model 

 Transgenic mouse lines PHD123fl/fl and PHD2fl/fl were purchased from Dr. Guo-Hua 

Fong from the Center of Vascular Biology from the University of Connecticut (Farmington, CT, 

USA).  Ins-1
Cre

, Ins-1
CreERT2

, and male C57BL/6J mice were purchased from Jackson 

Laboratories at four weeks of age (Bar Harbor, ME, USA).  PHD and Ins-1
Cre

/Ins-1
CreERT2

 mouse 

models were previously described.
62,105

 DNA was collected from ear clippings and a DNA 

extraction was performed using a GeneJET Genomic DNA Purification kit (Thermo Scientific, 
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Mississauga, ON).  DNA was amplified by polymerase chain reaction (PCR) using 2x Phusion 

Master Mix with GC or HF buffer (Thermo Scientific, Mississauga, ON), 1µM of each primer 

and corrected to a final volume of 20µL.  The following primers were used: PHD1 forward: 5’-

TGA GAC CAG GCA GAG GGA GTT-3’, PHD1 reverse: 5’-GGA GCT GGA GTT CTA GGT 

CAG GTT-3’, PHD2 forward: 5’-GTG TAC CTC AAC CTC CGC TC-3’, PHD2 reverse: 5’-

AGG GGA TTT GTA GTT GGC CG-3’, PHD3 forward: 5’-GCT CGG AGA ACT TGA CAC 

GA-3’, PHD3 reverse: 5’-TGA CCT CGT AGG GCT CAG AT-3’, Ins-1 Cre common: 5’-GGA 

AGC AGA ATT CCA GAT ACT TG-3’, Ins-1 Cre WT: 5’-GTC AAA CAG CAT CTT TGT 

GGT C-3’, Ins-1 Cre mutant: 5’-GCT GGA AGA TGG CGA TTA CG-3’.  Primers were 

obtained from Integrated DNA Technologies (Coralville, IA, USA) or Jackson Laboratories (Bar 

Harbor, ME, USA).  The PCR products were separated by gel electrophoresis on a 1.2% agarose 

gel.  The following band lengths were determined: WT PHD1: 500 base pairs (bp), floxedPHD1: 

600 bp, WT PHD2: 1440 bp, floxedPHD2: 1900 bp, WT PHD3: 1070 bp, floxedPHD3: 1550 bp, 

WT Cre: 488 bp, and mutant Cre: 675 bp.  

3.4 Protein identification 

3.4.1 Protein isolation 

 Cells were plated in a 12-well plate at a concentration of 750,000 cells per well and 

grown to 100% confluency for five days.  Wells were incubated (37˚C, 5% CO2) twice with LG 

(2mM) KRB for one hour.  After incubations, wells were treated with 500µL of cell media, LG 

(2mM) KRB, HG (16.7mM) KRB, 500µM DMOG, 10mM DMαKG, 0.1mM palmitate or 10mM 

glutamine + 10mM leucine and incubated for two hours (37˚C, 5% CO2).  After incubation, 

media containing treatments was removed and 200µL of cell extraction buffer (supplemented 

with 1mM PMSF and protease inhibitor cocktail (1:100)) (Invitrogen, Mississauga, ON) was 
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added.  Wells were scraped and wells containing the same treatment were combined and 

transferred to a 1.5mL tube and stored at -20˚C. 

 Protein samples were thawed and centrifuged at 12,500 rpm for 20 minutes at 4˚C.  The 

supernatant was transferred to a 1.5mL tube.  Protein concentration was measured using a BCA 

assay.  Protein samples were stored at -20˚C until co-immunoprecipitation was performed. 

 

3.4.2 Co-immunoprecipitation 

 Co-immunoprecipitation was performed using Dynabeads
®

 Protein G co-

immunoprecipitation kit (Novex by Life Technologies, Mississauga, ON).  Dynabeads
®
 were re-

suspended by vortexing for 30 seconds and 50µL was transferred to a 1.5mL tube for each 

treatment.  The tubes were placed on a DynaMag
™ 

magnet (Life Technologies, Mississauga, 

ON) and the supernatant was removed.  Anti-hydroxyproline antibody (Abcam, Toronto, ON) 

was diluted in antibody binding and washing solution (Novex by Life Technologies, 

Mississauga, ON) and 200µL was added to each tube containing Dynabeads
®
.  Dynabeads

®
-Ab 

complex was incubated for 10 minutes using the HulaMixer
®
 Sample Mixer (Life Technologies, 

Mississauga, ON).  The supernatant was removed and the Dynabeads
®
-Ab complex was washed 

with antibody binding and washing solution.  

 Dynabeads
®

-Ab complex was crosslinked using 5mM crosslinking reagent 

bis(sulfosuccinimidyl)suberate (BS3) (100mM BS3 stock diluted in PBS) (Thermo Scientific, 

Mississauga, ON) to prevent co-elution of the anti-hydroxyproline antibody.  200µL of 5mM 

BS3 solution was added to each tube and incubated at room temperature for 30 minutes using the 

sample mixer.  12.5µL of Quenching Buffer (Thermo Scientific, Mississauga, ON) was added to 

each tube and incubated for 15 minutes using the sample mixer.  Tubes were washed once with 
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200µL of antibody binding and washing solution and the supernatant was removed using the 

magnet.  175µL of protein sample containing approximately 1mg of protein was added to each 

tube and incubated for 10 minutes using the sample mixer.  After incubation, the tubes were 

placed on the magnet and the supernatant was removed and transferred to a new 1.5mL and 

stored at -20˚C.  

 The Dynabeads
®

-Ab-antigen complex was washed three times with 200µL of washing 

buffer (Novex by Life Technologies, Mississauga, ON).  The tubes were placed on the magnet 

and the supernatant was re-suspended with 100µL of washing buffer.  The bead suspension was 

transferred to a new 1.5mL tube.  The tubes were placed on the magnet and the supernatant was 

removed.  20µL of Elution Buffer and 10µL of premixed NuPAGE
®
 LDS Sample Buffer and 

NuPAGE Sample Reducing Agent (Life Technologies, Mississauga, ON) were added to each 

tube containing the Dynabeads
®

-Ab-antigen complex.  The tubes were re-suspended by inverting 

and samples were heated for 10 minutes at 70˚C.  The tubes were placed on the magnet and the 

supernatant containing 1mg of antigen was loaded onto a NuPage
®
 10% Bis-Tris SDS 

Polyacrylamide Mini Gel (Thermo Scientific, CA, USA) for 50 minutes.  The gel was placed in 

10% methanol, 10% glacial acetic acid overnight at 4˚C.  

 

3.4.3 Silver staining 

The gel containing prolyl hydroxylated protein was removed from 10% methanol, 10% 

glacial acetic acid solution and washed twice with deionized water and then washed three times 

for 10 minutes in deionized water on a shaker.  The gel was incubated in sodium thiosulfate 

(0.04g in 5 mL milliQ water) for 90 seconds.  The gel was washed three times with deionized 

water and silver nitrate was added (0.09g in 50mL milliQ water) and incubated for 10 minutes on 
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a shaker, staining the gel.  The gel was washed three times with deionized water.  Developer 

solution (1g potassium carbonate, 2mL diluted sodium sulfate, 23.1µL of 37% formaldehyde) 

was added and incubated until protein bands appeared.  Developer solution was removed and the 

reaction was stopped with destain solution (10% methanol, 10% glacial acetic acid) for less than 

five minutes.  Destain solution was removed and the gel was placed in milliQ water and stored at 

4˚C until protein bands were excised.  

Protein bands were excised using a blade washed with 70% ethanol between each cut to 

avoid contamination.  Bands were cut 1-1.5mm wide and placed in 250µL of 5% acetic acid. 

Samples were stored at 4˚C until delivered to the MALDI-MS facility in the department of 

biochemistry at Western University for protein identification by MALDI-MS. 

 

3.4.4 Matrix assisted laser desorption/ionization mass spectrometry (MALDI-MS) 

 Excised protein bands were delivered to the MALDI MS facility at Western University 

where an in-gel digestion was performed using a MassPREP automated digester station 

(PerkinElmer, Waltham, MA, USA).  Protein bands were reduced using 10mM dithiotreitol 

(DTT) followed by alkylation using 55mM iodoacetamide (IAA) and digested using trypsin 

(prepared in 50mM ammonium bicarbonate, pH 8).  Samples containing trypsin were incubated 

overnight at 20˚C to allow for trypsin absorption.  The samples were incubated at 40˚C for seven 

hours.  Peptides were extracted from the gel using 1% formic acid, 2% acetonitrile.  Peptides 

were lyophilized and stored at -20˚C.  Prior to MALDI TOF/TOF, peptides were reconstituted in 

10% acetonitrile, 0.1% trifluoroacetic acid (TFA).  

 MALDI TOF/TOF MS was performed using AB Sciex 5800 TOF/TOF System 

(Framingham, MA, USA).  The samples containing unknown peptides were mixed with the 
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MALDI matrix α-cyano-4-hydroxycinnamic acid (CHCA) (prepared as 5mg/mL in 6mM 

ammonium phosphate monobasic, 50% acetonitrile, 0.1% trifluoracetic acid) at a 1:1 ratio.  The 

matrix-peptide solution was spotted on a MALDI plate and vaporized, which allowed the matrix 

and unknown peptides to co-crystallize.  A 349 nm Nd:YLF OptiBeam On-Axis laser was aimed 

at the crystals to desorb and ionize the matrix crystals.  The laser pulse rate was 400 Hz.  The     

unknown peptide crystals were protonated via the ionized matrix.  The same amount of kinetic 

energy was applied to all ions produced, allowing the ions to accelerate towards the reflectron 

detector.  The reflectron mode was externally calibrated at 50 ppm mass tolerance and internally 

at 10 ppm.  Each mass spectrum was collected as a sum of 500 shots.  Using KE=1/2mv
2
, the 

mass of each ion was determined, as the ions reached the detector at different times.  

The instrument performed partial peptide sequencing and identification of post-

translational modifications of selected ions.  Sequence databases were searched using MASCOT. 

SwissProt, NCBIprot and EMBLE EST division databases were used for peptide mass 

fingerprinting and protein identification.  Contaminants and CRAP databases were used to search 

for common contaminants present in the unknown peptide samples.  

3.5 Statistical analysis 

 All results are expressed as mean ± SEM.  Statistical significance was measured using 

Student’s t-test or one-way or two-way ANOVA followed by multiple comparisons with a 

Holm-Sidak correction. 
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Chapter 4: Results 

4.1 Confirmation of PHD expression in 832/13 cells by western blot analysis 

 PHD1, PHD2, and PHD3 expression was confirmed in 832/13 cells by western blot 

analysis.  Approximately 20µg of isolated protein sample from 832/13 cells were incubated with 

LG (2mM) KRB for one hour (37˚C, 5% CO2) to stimulate basal insulin secretion.  Primary 

antibodies for PHD1, PHD2, PHD3, and tubulin were used to determine protein expression semi-

quantitatively using Imagej (fig.4.1).  Background noise was subtracted and relative density was 

calculated. All three PHD isoenzymes are expressed in 832/13 cells (fig.4.2). 
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Figure 4.1: Western blot analysis using Imagej. 

 PHD1 peaks in 832/13 cells stimulated with LG (2mM) KRB are shown in the profile plot 

above.  Relative density for each protein band was measured and background noise was 

subtracted.  The percentage of the total size of the peak was measured using Imagej and 

corrected using tubulin.  The average corrected value was calculated using two protein samples 

treated with LG (2mM) KRB and the relative density was calculated by dividing the corrected 

values by the average.  Relative density calculations for PHD1, PHD2, and PHD3 are 

summarized in table 4.1.    
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Table 4.1: Imagej calculations for PHD1, PHD2 and PHD3 in 832/13 cells.   

 Band 

Size 

(kDa) 

Treatment Area 

(Under 

peak) 

Percentage 

(% of total 

size of all 

peaks) 

Corrected Average Relative 

Density 

(% 

expressed) 

PHD1 44 LG1 13975.05 56.832 1.142214 1.000691 1.141426 

  LG2 10615.15 43.168 0.859167  0.858574 

PHD2 50 LG1 1200.59 24.138 0.485127 0.499928 0.970395 

  LG2 12857.54 25.862 0.514728  1.029605 

PHD3 47 LG1 7283.426 49.787 1.000623 1.000003 1.00062 

  LG2 7345.841 50.213 0.999383  0.99938 

Tubulin 50 LG1 10616.45 49.756    

  LG2 10720.45 50.244    

 

Area under the peak and percentage of the total size of the peak were calculated using imageJ.  

The percentage of the size of the peak was corrected using tubulin and the corrected values were 

averaged for each isoenzyme.  Two samples for each isoenzyme were used to calculate protein 

expression (LG1 and LG2).  The relative density of the protein bands were calculated by 

dividing the corrected value by the average. 
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Figure 4.2: PHD expression in 832/13 cells by western blot analysis.  

Approximately 20µg of total protein was isolated from 832/13 cells and protein concentration 

was determined by a BCA protein assay.  Protein samples were analyzed by western blot for 

expression of all three PHD isoenzymes.  Tubulin was used as a control.  Results shown are from 

two samples treated with LG (2mM) KRB and protein intensity was measured by Imagej.  PHD1 

was determined to be approximately 44 kDa, PHD2 50 kDa, PHD3 47 kDa and tubulin 50 kDa. 
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4.2 Confirmation of PHD expression in mouse pancreases by immunofluorescence 

 Expression and subcellular localization of PHD1, PHD2, and PHD3 was confirmed by 

immunofluorescence in mouse pancreases.  Primary antibodies for PHD1, PHD2, PHD3, and 

insulin; and Alex Fluor® 488 and Alexa Fluor® 647 secondary antibodies were used.  It was 

determined that all three isoenzymes are expressed in the mouse pancreas with distinct 

subcellular localizations.  Insulin is exclusively expressed in the cytosol within β-cells of islets 

(fig.4.3 A).  PHD1 was found to be expressed in the cytosol of both islets and acinar tissue 

(fig.4.3 B).  PHD2 was found to be expressed mainly in the cytosol of both islets and acinar 

tissue with a weak nuclear stain (fig.4.3 C), whereas PHD3 was found to be expressed mainly in 

the nucleus of both islets and acinar tissue with a weak cytosolic stain (fig.4.3 D).  All PHD 

isoenzymes were expressed in islets and overlapped with insulin, suggesting that all three 

isoenzymes are present in β-cells.  
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Figure 4.3: PHD expression in mouse pancreases. 

Immunofluorescence staining of mouse pancreases aged 10-14 weeks.  Formalin-fixed paraffin-

embedded tissue slides were stained using primary antibodies for PHD1, PHD2, PHD3, and 

insulin.  Alexa Fluor® 488 and Alexa Fluor® 647 secondary antibodies were used for insulin 

and PHD primary antibodies, respectively.  Insulin alone was used as a control. (a) Staining with 

insulin antibody alone showed a strong stain for insulin exclusively in the cytosol of β-cells. (b) 

Staining with insulin and PHD1 antibodies showed a strong cytosolic stain for PHD1 in acinar 

tissue and islets. (c) Staining with insulin and PHD2 antibodies showed a strong cytosolic stain 

for PHD2 in both acinar tissue and islets and a weak nuclear stain. (d) Staining with insulin and 

PHD3 antibodies showed a strong nuclear stain for PHD3 in acinar tissue and islets with a weak 

cytosolic stain.  
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4.3 OCR is decreased in 832/13 cells and primary mouse islets treated with DMOG using 

Seahorse Bioscience XF24 Respiration Assay 

 OCR was measured in 832/13 cells and primary mouse islets to determine if oxygen 

consumption, and therefore, mitochondrial respiration was affected in cells and islets treated with 

the pharmacological inhibitor, DMOG.  Oxygen consumption was measured in 832/13 cells 

treated with 200µM, 500µM, and 1000µM DMOG compared to NT containing HG (16.7mM) 

KRB (fig.4.4 A) and mouse islets treated with 1mM, 5mM, and 10mM DMOG compared to NT 

containing HG (16.7mM) KRB (fig.4.5 A).  OCR was significantly reduced in 832/13 cells at 

200µM, 500µM and 1000µM DMOG compared to NT when stimulated with HG and pyruvate + 

DNP.  Area under the curve (AUC) was calculated from (fig.4.5 A).  Islets treated with 5mM 

DMOG displayed significantly reduced OCR values compared to NT when islets were 

stimulated with HG (p<0.05) and DNP + DMM + DMαKG (p<0.05) (fig.4.5 B) 

Oligomycin treatment resulted in decreased oxygen consumption in both 832/13 cells 

(fig.4.4 A) and primary islets (fig.4.5 A), representing the ATP that would be produced via 

mitochondrial respiration.  Oligomycin OCR values were used to calculate ATP turnover and 

proton leak.  Proton leak was not statistically different in DMOG treated cells compared to NT 

(fig. 4.4 B).  However, there was a reduced trend in proton leak in 832/13 cells treated with 

DMOG at all concentrations, suggesting more H
+ 

are contributing to ATP production via ATP 

synthase.  There was a statistically significant reduction in ATP turnover in 832/13 cells at 

200µM (p<0.01), 500µM (p<0.001) and 1000µM (p<0.001) DMOG (fig.4.4 C) and at 1mM 

(p<0.05) and 5mM (p<0.05) DMOG in primary islets (fig. 4.5 D).  ATP turnover represents ATP 

produced from mitochondrial respiration.   Inhibition of PHD via DMOG results in reduced 

oxygen consumption leading to reduced ATP production from mitochondrial metabolism.  These 
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results suggest that PHD plays a role in oxidative metabolism, decreasing the ATP/ADP ratio 

required for the KATP channel-dependent pathway.  

Pyruvate, DMM, and DMαKG are TCA cycle intermediates that stimulate oxidative 

metabolism.  DNP, a proton ionophore, dissipates the H
+
 gradient and collapses the proton 

motive force allowing electron flow through the ETC to be uninhibited.  These drugs were used 

to stimulate maximal respiration and to measure spare respiratory capacity.  Spare respiratory 

capacity measures the ability of the cell to respond to an increase in energy demand, an indicator 

of cell fitness.  Spare respiratory capacity was significantly reduced at 1000µM DMOG (p<0.05) 

in 832/13 cells (fig. 4.4 D). 

Rotenone and myxothiazol, inhibitors of complex I and complex III in the ETC, 

respectively, were used to measure non mitochondrial oxygen consumption.  Rotenone and 

myxothiazol treatment measures oxygen consumption that continues when oxidative metabolism 

is inhibited due to enzymes that consume oxygen, such as PHD.  Non mitochondrial oxygen 

consumption was significantly reduced at 1000µM DMOG (p<0.001) in 832/13 cells (fig. 4.4 E).  

There was a reduced trend in non-mitochondrial oxygen in primary islets treated with 5mM and 

10mM DMOG (fig. 4.5 C).  

Respiration assays in 832/13 cells and primary mouse islets show that inhibition of PHD 

via DMOG results in decreased oxygen consumption and alters parameters of mitochondrial 

function.  Decreased OCR when PHD is inhibited may indicate improved mitochondrial 

efficiency.    
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Figure 4.4: OCR in 832/13 cells. 

Mitochondrial respiration summary in 832/13 cells is shown above.  OCR was measured over 

150 minutes using Seahorse XF24 Respiration Assay. (n=5). Assay was repeated 4 times.  Data 

are mean ± SEM. (a) OCR was measured in the presence of HG (16.7mM) KRB for 40 minutes, 

oligomycin (10µM) for 25 minutes, DNP (50µM) + pyruvate (20mM) for 30 minutes, and 

rotenone (5µM) + myxothiazol (5µM) for 30 minutes.  832/13 cells were treated with 200µM, 

500µM, and 1000µM DMOG compared to NT. ***p<0.001 at 200µM, 500µM, and 1000µM 

DMOG, **p<0.01 at 200µM and 500µM DMOG, ***p<0.001 at 1000µM DMOG by a paired t-

test. (b) Proton leak was calculated by subtracting rotenone + myxothiazol OCR values from 

oligomycin OCR values. (c) ATP turnover was calculated by subtracting oligomycin OCR 

values from HG (16.7mM) OCR values.  **p<0.01, ***p<0.001, ***p<0.001 by a paired t-test.  

(d)  Spare respiratory capacity was calculated by subtracting basal OCR values from DNP + 

pyruvate OCR values. *<0.05 by a paired t-test.  (e) Non mitochondrial oxygen consumption was 

determined by rotenone + myxothiazol OCR values. ***p<0.001 by a paired t-test.    
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Figure 4.5: OCR in primary mouse islets. 

Mitochondrial respiration summary in primary mouse islets from male C57BL/6J mice aged 10 

weeks.  OCR was measured over 220 minutes using Seahorse XF24 Respiration Assay. (n=5).  

Assay was repeated twice.  Data are mean ± SEM.  (a)  OCR for primary mouse islets treated 

with 1mM, 5mM, and 10mM DMOG injected with HG (16.7mM) KRB for 60 minutes, 20µM 

oligomycin for 50 minutes, 100µM DNP + 10mM DMM + 10mM DMαKG for 45 minutes, and 

10µM rotenone + 10µM myxothiazol for 40 minutes.  (b)  AUC of A. *p<0.05, *p<0.05 by a 

paired t-test.  (c)  Non mitochondrial oxygen consumption was determined by rotenone + 

myxothiazol OCR values.  (d)  ATP turnover was calculated by subtracting oligomycin OCR 

values from basal OCR values. *p<0.05, *p<0.05 by a paired t-test.   

4.4 PHD inhibition using DMOG may enhance pancreatic β-cell insulin secretion 

 A GSIS was performed to assess whether PHD plays a role in pancreatic β-cell insulin 

secretion.  Islets were isolated from male C57BL/6J mice and incubated overnight (37˚C, 5% 

CO2).  The following day, islets were dispersed and a GSIS was performed on day 3.  Dispersed 

islets were treated with LG (2mM) KRB, HG (16.7mM) KRB,  LG (2mM) KRB + 5mM 

DMOG, or HG (16.7mM) + 5mM DMOG for one hour (fig. 4.6).  Insulin secretion remained 
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unaltered in dispersed islets treated with 5mM DMOG compared to NT when stimulated with 

LG (2mM) KRB.  There was an increased trend in insulin secretion in dispersed islets treated 

with 5mM DMOG compared to NT when stimulated with HG (16.7mM) KRB.  Acute inhibition 

of PHD via DMOG may play a role in GSIS.   

 

Figure 4.6: GSIS in primary mouse islets treated with 5mM DMOG. 

Insulin secretion from C57BL/6J male mice aged 10-14 weeks.  Dispersed islets were treated 

with 5mM DMOG compared to NT.  Insulin secretion was measured in response to either LG 

(2mM) or HG (16.7mM) KRB.  Insulin secretion was determined by RIA. Assay repeated three 

times in triplets.  Data are mean ± SEM.  

4.5 Inhibition of PHD using DMOG increases second phase insulin secretion 

 The role of PHD in second-phase insulin secretion was investigated by performing a 

perifusion assay.  Dynamic insulin secretion was measured to determine whether there is a 

difference between first- and second-phase insulin secretion in primary mouse islets using 5mM 
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DMOG.  Islets were stimulated with LG (2mM) KRB for the first 10 minutes to measure basal 

insulin secretion, HG (16.7mM) KRB or HG (16.7mM) KRB + 5mM DMOG for 40 minutes, 

and HG (16.7mM) KRB + KCl (30mM) for 15 minutes.  Insulin secretion was significantly 

increased at 45 minutes (p<0.05) and 48 minutes (p<0.05) when treated with HG (16.7mM) KRB 

+ 5mM DMOG compared to HG (16.7mM) KRB (fig.4.7 A).  AUC revealed a statistically 

significant increase in GSIS in islets treated with HG (16.7mM) KRB + 5mM DMOG in the 

latter 30 minutes compared to NT (p<0.01) (fig.4.7 B).  These results demonstrate that inhibition 

of PHD via DMOG enhances second-phase GSIS when stimulated with HG.   

 Total insulin content was measured in each chamber containing islets with the addition of 

extraction buffer.  Total insulin content remained unchanged in DMOG treated islets compared 

to NT (fig.4.7 C).  
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Figure 4.7: Perifusion in primary mouse islets treated with 5mM DMOG. 

Islet perifusion measuring dynamic insulin secretion from C57BL/6J male mice aged 10-14 

weeks over 65 minutes.  Insulin secretion was determined by RIA. Assay repeated three times in 

triplets.  Data are mean ± SEM.  (a)  Islets were stimulated with LG (2mM) KRB for 10 minutes, 

HG (16.7mM) KRB or HG (16.7mM) KRB + 5mM DMOG for 40 minutes and HG (16.7mM) 

KRB + KCl (30mM) for 15 minutes. *p<0.05, *p<0.05 by a one-way ANOVA.  (b)  AUC of A. 

**p<0.01 by a one-way ANOVA.  (c)  Total insulin content in primary mouse islets compared to 

NT. 
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4.6 Inhibition of PHD using DMOG improves glucose tolerance in C57BL/6J male mice 

 Inhibition of PHD via 5mM DMOG resulted in enhanced second-phase insulin secretion 

in vitro.  The role of PHD in glucose homeostasis was next assessed in vivo using C57BL/6J 

male mice aged 10-14 weeks was assessed.  Mice were injected intraperitoneally with 200µg/g 

body weight DMOG or PBS 30 minutes prior to an exogenous glucose load.  All mice were 

injected intraperitoneally with 1.5g/kg body weight glucose and blood glucose levels were 

measured over a two hour period.  Blood glucose levels remained unchanged during the first 30 

minutes after a glucose challenge.  Mice injected with 200µg/g body weight DMOG 

demonstrated improved glucose tolerance compared to PBS control mice at 90 minutes (p<0.05) 

and 120 minutes, although not statistically significant, after a glucose challenge (fig.4.8 A).  

These results further support the role of PHD in second-phase insulin secretion.  Blood samples 

from the tail vein were collected at baseline, 10 and 30 minutes after a glucose injection and 

plasma insulin was measured by ELISA.  Despite unchanged blood glucose levels during the 

first 30 minutes, mice injected with 200µg/g body weight DMOG demonstrated significantly 

reduced plasma insulin levels at 10 minutes (p<0.01) after glucose injection (fig.4.8 B).  These 

findings suggest inhibition of PHD via 200µg/g body weight DMOG results in improved insulin 

sensitivity compared to PBS control mice.  Inhibition of PHD via DMOG results in improved 

glucose tolerance during second-phase insulin secretion but may also play a role in first-phase 

insulin secretion, as revealed by ELISA. 
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Figure 4.8: In vivo glucose homeostasis in C57BL/6J mice treated with DMOG. 

Effects of DMOG (200µg/g body weight) on in vivo glucose homeostasis in C57BL/6J male 

mice aged 10-14 weeks. (n=12). Data are mean ± SEM.  (a)  Blood glucose levels during an 

ipGTT over a two hour period. *p < 0.05 at 90 minutes by a one-way ANOVA.  (b)  Plasma 

insulin levels measured by an ELISA at baseline, 10 minutes and 30 minutes. **p<0.01 at 10 

minutes by a one-way ANOVA.  



 

67 
 

4.7 Development of a β-cell specific KO model 

 Two transgenic mouse lines with floxed exons (exon 3 for PHD1 and exon 2 for PHD2 

and PHD3), PHD123fl/fl and PHD2fl/fl, were bred with C57BL/6J mice for three backcrosses 

and genotyped monthly (fig.4.9).  The PHD123fl/fl line was isolated, generating PHD1+/fl 

(fig.4.10 A) and PHD3+/fl (fig.4.10 C) and these mice were bred with Ins-1
Cre

 mice (fig.4.10 D).  

Heterozygous mice for PHD1 and PHD3 with Cre recombinase inserted into the β-cell specific 

Ins-1 gene to target loxP sites on either side of exon 3 or exon 2 for PHD1 and PHD3, 

respectively were generated (PHD1+/fl/Cre, PHD3+/fl/Cre).  After back crossing with 

C57BL/6J mice for three generations PHD2+/fl (fig.4.10 B) mice were isolated from the 

PHD2fl/fl mouse line.  PHD2+/fl mice were bred with Ins-1
Cre

 and heterozygous mice for PHD2 

with β-cell specific Cre recombinase were generated (PHD2+/fl/Cre).   

 PHD1+/fl/Cre, PHD2+/fl/Cre and PHD3+/fl/Cre mice were bred together (not from the 

same litter) to generate WT (PHD+/+/Cre), heterozygous (PHD+/fl/Cre) and KO (PHDfl/fl/Cre) 

mice for each PHD isoenzyme.  The objective of developing three independent transgenic mouse 

lines is to conduct in vitro and in vivo experiments, assessing the long term effects of PHD in 

regulating pancreatic β-cell insulin secretion in a KO animal model.  These results suggest 

pharmacological inhibition of PHD via DMOG augments second-phase insulin secretion in vitro 

and improves glucose tolerance in vivo, demonstrating the role of PHDs in short term regulation 

of insulin secretion.  Future work involving β-cell specific PHD KO mice from the time of birth 

will investigate the long term effects of PHD in regulating insulin secretion and will explore 

which isoenzymes contribute to insulin secretion both in vitro and in vivo. 
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Figure 4.9: Genotyping of PHD123fl/fl and PHD123+/fl F1 generation mice by PCR 

analysis. 

The PHD123fl/fl mouse line was purchased from Dr. Guo-Hua Fong from the University of 

Connecticut (Farmington, CT, USA).  C57BL/6J mice were used for back crossing and were 

purchased from Jackson Laboratories (Bar Harbor, ME, USA).  Primers were obtained from 

Integrated DNA Technologies (Coralville, IA, USA).  (a)  Genotyping for PHD1fl/fl and 

PHD1+/fl mice.  WT protein band was 500 bp and floxed protein band was 600 bp.  (b)  

Genotyping for PHD2fl/fl and PHD2+/fl mice.  WT protein band was 1400 bp and floxed protein 

band was 1900 bp.  (c)  Genotyping for PHD3fl/fl and PHD3+/fl mice.  WT protein band was 

1070 bp and floxed protein band was 1550 bp. 
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Figure 4.10: Genotyping of PHD+/fl/Cre, PHD+/+/Cre, and Ins-1
Cre

 mice by PCR analysis. 

PHDfl/fl mice were back crossed three generations with C57BL/6J mice.  PHD+/fl were crossed 

with Ins-1
Cre

 to generate PHD+/fl/Cre and PHD+/+/Cre F1 mice.  Ins-1
Cre

 mice were obtained 

from Jackson Laboratories (Bar Harbor, ME, USA).  Primers were obtained from Jackson 

Laboratories (Bar Harbor, ME, USA) or Integrated DNA Technologies (Coralville, IA, USA).  

(a)  Genotyping for PHD1+/fl X Ins-1
Cre

 mice.  WT protein band was 500 bp and floxed protein 

band was 600 bp.  (b) Genotyping for PHD2+/fl X Ins-1
Cre

 mice.  WT protein band was 1400 bp 

and floxed protein band was 1900 bp.  (c)  Genotyping for PHD3+/fl X Ins-1
Cre

 mice.  WT 

protein band was 1070 bp and floxed protein band was 1550 bp.  (d)  Genotyping of Ins-1
Cre 

mice.  Common (WT) protein band was 488 bp and mutant (Cre expressing) protein band was 

675 bp.  
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4.8 Identifying prolyl hydroxylated proteins by PHD 

 Short term inhibition of PHD via DMOG plays a role in GSIS in vitro and improves 

glucose tolerance in vivo.  Since PHDs regulate proteins via prolyl hydroxylation, the next 

objective was to identify proteins with proline hydroxylation to explore whether PHD prolyl 

hydroxylated proteins have short term effects on insulin secretion.  Co-immunoprecipitation 

using whole cell lysates from 832/13 cells was performed.  An anti-hydroxyproline antibody was 

used to bind proteins with hydroxylated proline residues from protein samples treated with NT 

(cell growth media), LG (2mM) KRB, HG (16.7mM) KRB, glutamine (Glu) (10mM) + leucine 

(Leu) (10mM) and palmitate (Pal) (0.1mM) to investigate whether nutrient stimuli alters protein.  

Protein samples containing 1mg of protein were also treated with DMαKG (10mM) and DMOG 

(500µM) as positive and negative controls for PHD, respectively.  After co-immunoprecipitation, 

gel electrophoresis was performed followed by silver staining of the polyacrylamide gel (fig. 

4.11).    

 Protein bands from LG (2mM) KRB (38 kDa and 41 kDa), NT (20 kDa, 30 kDa, 38 kDa, 

40 kDa, 60 kDa and 140 kDa), palmitate (0.1mM) (20 kDa, 38 kDa and 140 kDa) and DMαKG 

(10mM) (40kDa) were excised using a razor blade and delivered to Western University for 

protein identification (Table 4.1).   
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Figure 4.11: Silver stained gel containing prolyl hydroxylated protein from 832/13 cells. 

Protein bands were excised from a silver stained polyacrylamide gel containing prolyl 

hydroxylated protein from 832/13 cells.  38 kDa and 41 kDa protein bands were excised from 

LG (2mM) KRB; 20 kDa, 30 kDa, 38 kDa, 40 kDa, 60 kDa and 140 kDa protein bands were 

excised from NT (cell media); 20 kDa, 38 kDa and 140 kDa protein bands were excised from 

palmitate (0.1mM) treatment; and a 40 kDa protein band was excised from DMαKG (10mM) 

treatment.  Protein band lengths are approximate.  

 

 Glucose (LG, HG), amino acids (glutamine + leucine) and saturated fatty acids 

(palmitate) were used to investigate whether prolyl hydroxylated protein expression was affected 

by nutrient stimuli.  20 kDa and 38 kDa protein bands were observed to be downregulated when 

treated with LG (2mM) KRB, palmitate (0.1mM), and glutamine (10mM) + leucine (10mM) 

compared to NT.  As well, 140 kDa protein bands appeared to be downregulated when treated 
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with palmitate and glutamine + leucine and unobserved in the LG treatment compared to NT; 

however, we were unable to excise protein bands from glutamine + leucine treatment.  These 

observations suggest that nutrient stimuli regulate prolyl hydroxylated proteins.  It is 

hypothesized that the unidentified proteins are proline hydroxylated via PHD and are regulated 

by nutrient stimuli.  Previous experiments suggest that short term inhibition of PHD results in 

enhanced second-phase insulin secretion.  It can be suggested that inhibition of PHD results in 

upregulation of unidentified proteins to enhance insulin secretion.  

 Protein bands were excised using a razor blade.  Excised protein bands were stored in 5% 

acetic acid and delivered to the MALDI-MS Facility at Western University (London, ON, CA) 

for protein identification by MALDI-MS.  Peaks Software using the hydroxyl modification of 

proline was used; however, prolyl hydroxylated proteins in the samples were unable to be 

identified.  Table 4.2 shows a list of the protein samples with the approximate band lengths. 
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Table 4.2: Protein identification by MALDI-MS data 

Sample Size (kDa) 

LG (2mM) 41 

LG (2mM) 38 

NT 140 

NT 60 

NT 40 

NT 38 

NT 30 

NT 20 

Palmitate (0.1mM) 140 

Palmitate (0.1mM) 38 

Palmitate (0.1mM) 20 

DMαKG (10mM) 40 

 

12 Protein bands were excised from a silver stained polyacrylamide gel treated with LG (2mM), 

NT, Palmitate and DMαKG.  Protein bands of approximate size were excised across treatments 

for comparison.   
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Chapter 5: Discussion 

5.1 Summary 

 The data presented in chapter four reveal the acute effects of PHD in oxidative 

mitochondrial metabolism and GSIS using the pharmacological inhibitor DMOG.  PHD 

inhibition via DMOG resulted in a significant reduction in ATP turnover, spare respiratory 

capacity and non-mitochondrial oxygen consumption in 832/13 cells.  Similarly, inhibition of 

PHD via DMOG resulted in decreased ATP turnover in primary mouse islets.  The role of PHD 

in GSIS and glucose homeostasis was also assessed.  Inhibition of PHD via 5mM DMOG 

resulted in enhanced second-phase insulin secretion in vitro, suggesting PHD plays a role in 

KATP channel-independent pathways.  PHD inhibition in C57BL/6J male mice led to improved 

glucose tolerance at 90 and 120 minutes after an exogenous glucose load in vivo, further 

supporting PHD’s involvement in second-phase insulin secretion.  ELISA revealed inhibition of 

PHD results in decreased plasma insulin levels 10 minutes after a glucose challenge despite 

unchanged blood glucose levels.  Improved insulin sensitivity at 10 minutes in vivo and 

decreased ATP turnover in vitro suggests that PHD may also play a role in the KATP channel-

dependent pathway. 

5.2 Expression of PHD isoenzymes in 832/13 cells and primary mouse islets 

 Western blot analysis using specific PHD primary antibodies, determined that PHD1, 

PHD2, and PHD3 are expressed in 832/13 cells.  As well, all PHD isoenzymes are expressed 

with unique subcellular localizations in mouse pancreases, which was determined by 

immunofluorescence.  PHD1 is expressed exclusively in the cytosol within acinar tissue and 

islets, PHD2 is expressed mainly in the cytosol within acinar tissue and islets with a weak 
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nuclear stain, and PHD3 is expressed mainly in the nucleus within the acinar tissue and islets 

with a weak cytosolic stain.  

 However, PHD expression differs between the mouse and human pancreas.  In the human 

pancreas, PHD1 and PHD2 are expressed in the cytosol within islets, acinar tissue and pancreatic 

ducts, whereas PHD3 is expressed in the cytosol and nucleus within islets, acinar tissue and 

pancreatic ducts.
57

 Differences in PHD expression between mice and human pancreases may be 

associated with differences in islet composition and organization.   

 Several rodent models have been developed to study pancreas physiology in T2D.
113

 It is 

important to consider the differences between human and mice pancreases since findings from 

rodent models are generalized to humans.
113

 Anatomically, the human pancreas is definite, with a 

distinct head, body, and tail, whereas the mouse pancreas is divided into 3 less-defined lobes.
113

 

The endocrine portion of the pancreas consists of 50-70% and 60-80% β-cells within the islet for 

humans and mice, respectively.
113,114

 In rodents, β-cells comprise the core of the islet surrounded 

α-cells.
114

 In humans, islets form a trilaminar plate consisting of a layer of β-cells surrounded by 

two layers of α-cells, which forms a U or O-shaped islet.
113

 Human β-cells  respond to lower 

blood glucose concentrations compared to mice.
113,115

 Despite differences in endocrine cell 

distribution between mice and humans, islet size remains relatively the same in both species.
115

   

 Rodents and humans also display differences in oxidative metabolism and β-cell insulin 

secretion.  PC is involved in pyruvate cycling, producing NADPH and αKG via the 

pyruvate/isocitrate pathway.  It is hypothesized that cytosolic αKG acts as a co-substrate for 

PHD to regulate insulin secretion.  However, PC was found to be reduced by 80-90% in human 

islets compared to mouse islets and 832/13 cells.
43

 Similarly, pyruvate entering the TCA cycle in 
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human islets through PC was 20 to 30%, whereas pyruvate entering the TCA cycle through PC is 

approximately 50% in rodent models.
43,44 

5.3 OCR in 832/13 cells and primary mouse islets 

5.3.1 In vitro findings of OCR in 832/13 cells  

 Oxidative metabolism was significantly decreased in 832/13 cells treated with DMOG.  

Proton leak, H
+
 that is not coupled to ATP production, can be an indication of mitochondrial 

damage or a means of regulating ATP production.  Proton leak was not significantly altered in 

DMOG treated cells but a reduced trend was observed.  ATP turnover was decreased at all 

concentrations of DMOG, and spare respiratory capacity and non-mitochondrial oxygen 

consumption was significantly decreased at 1000µM DMOG. 

 

5.3.2 In vitro findings of OCR in primary mouse islets 

     Oxidative metabolism was reduced in primary mouse islets treated with DMOG.  OCR 

was decreased in islets treated with 5mM DMOG compared to NT when stimulated with  HG 

(16.7mM) KRB and HG (16.7mM) KRB + DMM (10mM) + DMαKG (10mM) .  There was a 

decreased trend for non-mitochondrial oxygen consumption, which is due to pathways other than 

oxidative respiration, with the greatest decrease at 5mM DMOG.  ATP turnover was 

significantly reduced at 1mM and 5mM DMOG.  Respiration assays demonstrate the role of 

PHD in mitochondrial metabolism.  Inhibition of PHD via DMOG decreased OCR and 

parameters of mitochondrial function, which may affect GSIS.  
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5.3.3 OCR levels are decreased with PHD inhibition in 832/13 cells and primary mouse islets 

  OCR experiments reveal insights into metabolic activity by measuring parameters of 

mitochondrial metabolism in real time.  These results show a significant decrease in oxygen 

consumption when 832/13 cells and primary mouse islets were treated with DMOG at HG 

(16.7mM) KRB.  β-cells demonstrate increased rates of oxidative metabolism, requiring large 

quantities of oxygen for survival.
116

 Islets are exposed to a higher partial pressure of oxygen 

compared to acinar tissue and are highly vascularized, demonstrating the metabolic demand of β-

cells.
116

 OCR is a parameter of β-cell function and represents the amount of energy released 

during oxidative metabolism.
116

 Komatsu and colleagues  (2016) incubated human islets in either 

a hypoxic, normoxic or hyperoxic environment and measured OCR.  OCR levels were increased 

in islets incubated in a hyperoxic environment.  DMOG is an effective hypoxia mimetic and 

inhibition of PHD via DMOG resulted in reduced OCR levels in 832/13 cells and islets.  Leung 

and colleagues (2017) investigated the role of HIF1α in oxidative metabolism and HIF1α 

knockdown in ME180 and FaDu cells resulted in decreased lactate production and significantly 

increased OCR levels when exposed to a hypoxic environment, possibly resulting in increased 

hypoxia.
117

 Inhibition of PHD via DMOG may lead to HIF1α stabilization at higher 

concentrations, and the findings presented in chapter four indicate that inhibition of PHD in both 

832/13 cells and primary mouse islets results in decreased OCR compared to NT.  The potential 

role of HIFα in decreasing OCR levels cannot be eliminated however; these results demonstrate 

the acute effects of PHD, which may be involved in non-HIFα-dependent pathways.  

 Glucose metabolism via mitochondrial respiration is linked to insulin secretion.
118

 First-

phase insulin secretion relies on increased ATP production from mitochondrial metabolism and 

impairments in first-phase insulin secretion is indicative of both T1D and T2D, more 
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specifically, impairments with mitochondrial membrane potential.
118

 A decreased response of 

membrane potential to a glucose stimulus decreases OCR levels and negatively affects 

mitochondrial bioenergetics.
118

       

 Inhibition of PHD via DMOG was shown to alter parameters that represent mitochondrial 

function in both cells and islets.  There was a reduced trend in proton leak in 832/13 cells treated 

with DMOG at all concentrations.  Proton leak is the amount of H
+
 that does not contribute to 

ATP production and is dissipated as heat.  Increased proton leak could be a sign of mitochondrial 

damage or a means to regulate ATP production.  Decreased proton leak suggests more H
+
 ions 

are contributing to ATP production by ATP synthase.  Uncoupling protein-2 (UCP-2) is an inner 

mitochondrial membrane protein that dissipates the proton motive force when glucose and fatty 

acids are abundant.
8,119

 UCP-2 is induced in chronic glucose and fatty acid overload to aid in 

ROS reduction.
8
  However, UCP-2 results in reduced ATP production and is associated with β-

cell dysfunction and the development of T2D.
8,119

 Hu and colleagues (2017) showed that 

palmitate treatment in 832/13 cells triggers UCP-2 activity resulting in impaired GSIS.  ATP 

turnover was significantly reduced in both 832/13 cells and primary mouse islets.  Reduced ATP 

synthesis via mitochondrial metabolism eventually leads to impaired GSIS and the onset of 

T2D.
119

 Despite observing reduced ATP turnover in 832/13 cells and primary mouse islets, 

insulin secretion was increased in GSIS assays in primary mouse islets treated with DMOG in 

vitro.  Gerenscer (2017) and colleagues determined that proton leak and ATP turnover regulate 

steady state membrane potential at LG (2mM) but not at HG (10mM) via determination of 

membrane potential values by fluorescence microscopy.  

Spare respiratory capacity was decreased at 1000µM DMOG in 832/13 cells and is the 

cell’s ability to respond to an increase in energy demand, such as glucose surplus.  These 
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findings suggest that perhaps at high concentrations of DMOG in 832/13 cells, the β-cell is 

unable to effectively respond to an increase in energy demand but may also be due to off target 

effects.  Decreased ATP production and spare respiratory capacity are correlated to T2D and 

indicate mitochondrial dysfunction.
120

 Inhibition of PHD via DMOG reduces ATP production 

and spare respiratory capacity and in part, may regulate the KATP channel-dependent pathway by 

decreasing the ATP/ADP ratio at high concentrations of DMOG.   

Non mitochondrial oxygen consumption is the amount of oxygen consumption that 

continues due to other metabolic pathways or enzymes.  Non mitochondrial oxygen consumption 

was significantly reduced at 1000µM DMOG in 832/13 cells and reduced at 5mM and 10mM 

DMOG in primary mouse islets.  PHD requires molecular oxygen as a co-substrate; therefore, 

inhibition of PHD via DMOG represents less oxygen being consumed by PHD for activity.    

ATP production and oxygen consumption by mitochondrial respiration is linked to GSIS 

and appears to reach saturation at 16mM glucose in the pancreas.
121

 Chronically elevated glucose 

levels that are characteristic of T2D leads to β-cell compensation and an increase in oxidative 

metabolism with a subsequent increase in OCR levels.
7
 Therefore, decreased OCR levels with 

DMOG treatment suggests that 832/13 cells and primary mouse islets display more efficient 

GSIS compared to NT.  As well, TCA cycle intermediates, notably citrate and isocitrate, increase 

in response to a glucose stimulus and lead to enhanced GSIS.
121

 It is hypothesized that increased 

TCA cycle intermediates in response to glucose are involved in futile pyruvate cycling, 

generating cytosolic αKG.  Cytosolic αKG acts as a co-substrate for PHD and may be involved 

in regulating GSIS.  However, chronic hyperglycemia, a hallmark of T2D, impairs oxidative 

metabolism subsequently leading to reduced ATP production and GSIS.
120

 Alarcon and 

colleagues  (2016) measured OCR levels in diabetic mice (db/db) and isolated protein to measure 
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proinsulin concentration.  Proinsulin biosynthesis in the ER, the precursor to insulin, was found 

to be increased with HG, linking oxidative metabolism to GSIS.
122

   

  PHD inhibition reduced oxidative metabolism in both 832/13 cells and primary mouse islets 

when stimulated with HG (16.7mM) KRB, altering parameters that indicate mitochondrial 

function and viability.  In vitro and in vivo experiments assessing GSIS resulted in increases 

insulin secretion when PHD is inhibited in rodent models.  Therefore, reduced OCR levels when 

PHD is inhibited suggest better mitochondrial efficiency.  Further research is needed to 

determine if these results hold true for human islets and to determine the mechanisms by which 

PHD affects GSIS.  
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Figure 5.1: ATP production by oxidative metabolism. 

Reducing equivalents from the TCA cycle enter the ETC via complex I and complex II.  Electron 

flow pumps H
+ 

ions into the intermembrane space, generating the proton motive force.  H
+
 ions 

produce ATP in the mitochondrial matrix via ATP synthase.  H
+
 may also be dissipated as heat 

and does not contribute to ATP production.  Image was reproduced from Servier Medical Art by 

Servier, licensed under CC BY 3.0.  

5.4 Insulin secretion in male C57BL/6J primary mouse islets 

5.4.1 In vitro findings from GSIS assays in primary mouse islets 

 Inhibition of PHD via 5mM DMOG led to alterations in glucose-stimulated 

mitochondrial respiration, including reduced ATP production and spare respiratory capacity.  
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This suggests that PHD inhibition decreases the KATP channel-dependent pathway by decreasing 

the ATP/ADP ratio.  OCR levels were measured in real time and were reduced throughout the 

entire time period, suggesting that PHD is involved in KATP channel-independent pathways.  

These findings may lead to changes in insulin secretion.  The acute effects of DMOG treated 

islets in static GSIS were next assessed.  Primary islets were treated with 5mM DMOG for one 

hour stimulated with LG (2mM) KRB or HG (16.7mM) KRB compared to NT.  There was an 

increased trend in increased insulin secretion with 5mM DMOG stimulated with HG (16.7mM) 

KRB.    

 

5.4.2 In vitro findings from perifusion assays in primary mouse islets 

 Inhibition of PHD via DMOG alters mitochondrial metabolism by decreasing OCR levels 

alluding to alterations in KATP channel-independent pathways in both 832/13 cells and primary 

mouse islets.   5mM DMOG increased static insulin secretion in primary mouse islets via an 

insulin secretion assay when islets were stimulated with HG (16.7mM) KRB.  A perifusion assay 

was performed in islets treated with 5mM DMOG to distinguish between first- and second-phase 

GSIS.  There was a reduced trend in insulin secretion when DMOG treatment was initiated in 

primary islets with HG (16.7mM) KRB.  These findings, along with reduced ATP turnover, 

suggest that inhibition of PHD via DMOG leads to reduced insulin secretion via the KATP 

channel-dependent pathway.  It cannot be eliminated that PHD may alter first-phase insulin 

secretion, which occurs within the first 10 minutes after glucose stimulation.  However, PHD 

may play a greater role in KATP channel-independent pathways through anaplerosis.  There was a 

statistically significant increase in insulin secretion in islets treated with DMOG in the latter 30 

minutes when stimulated with HG (16.7mM) KRB.     
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5.4.3 In vivo findings from ipGTTs in primary mouse islets 

 Acute systemic effects of PHDs were assessed by ipGTTs.  Blood glucose levels were 

measured over a two hour period in C57BL/6J male mice aged 10-14 weeks injected with 

200µg/g body weight DMOG compared to PBS controls.  In vitro experiments using primary 

mouse islets treated with DMOG resulted in increased GSIS.  It was hypothesized that C57BL/6J 

male mice injected with DMOG would display similar findings in vivo.  Inhibition of PHD via 

DMOG resulted in decreased blood glucose levels at 90 and 120 minutes after an exogenous 

glucose load.  Blood glucose levels remained unchanged in the first 30 minutes after a glucose 

challenge.  Plasma insulin samples were collected at baseline, 10 and 30 minutes after glucose 

injection and an ELISA was performed to measure plasma insulin levels.  Plasma insulin levels 

were significantly reduced in mice injected with DMOG at 10 minutes despite unchanged blood 

glucose levels.   

The results discussed in chapter four suggest that PHD plays a role in both first- and 

second-phase GSIS.  Mice injected with 200µg/g BW DMOG showed improved glucose 

tolerance at 90 and 120 minutes and improved insulin sensitivity at 10 minutes.  

 

5.4.4 PHD inhibition via DMOG alters first- and second-phase insulin secretion 

 In vitro insulin secretion assays and in vivo ipGTTs demonstrate that acute inhibition of 

PHD leads to alterations in insulin secretion; however the exact mechanism remains 

inconclusive.  There are three pyruvate cycling pathways producing NADPH and αKG that may 

be involved in the regulation of GSIS.
123

 There is evidence that increased cytosolic αKG leads to 

sustained second-phase insulin release.
123

 C57BL/6N mice fed a HFD showed reduced serum 

TCA cycle intermediates including pyruvate, citrate and αKG, suggesting impaired anaplerosis 
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in a T2D rodent model.
124

 CIC, which transports citrate and isocitrate to the cytosol, and ICDc, 

which catalyzes the conversion of isocitrate to αKG and producing NADPH, are involved in 

GSIS.
109,123

 Inhibition of CIC in 832/13 cells and primary rat islets using the pharmacological 

inhibitor 1,2,3-benzenetricarboxylate (BTC) significantly inhibited first- and second-phase 

insulin secretion.
109

 siRNA knockdown of ICDc in 832/13 cells and primary rat islets also led to 

a significant reduction in GSIS.
111

 However, Guay et al. (2013) found that ICDc negatively 

regulated GSIS in 832/13 cells and primary rat islets.  RNAi knockdown of ICDc in 832/13 cells 

and primary rat islets resulted in enhanced GSIS with unaltered glucose metabolism.
125

 

Inhibition of ICDc increased mitochondrial isocitrate, acetyl-CoA and ATP and it is suggested 

that increased mitochondrial TCA cycle intermediates is coupled with increased GSIS.
125

          

 Currently, there is no specific role of cytosolic αKG in the pyruvate/isocitrate 

pathway.
48,123

 αKG is a known co-substrate for PHD and it is suggested that PHD plays a role in 

GSIS.  It is hypothesized that PHD may be one mechanism by which αKG regulates GSIS.  

832/13 cells and primary rat islets were treated with the PHD inhibitor EDHB, which resulted in 

reduced GSIS.
47,48

 siRNA knockdown for each PHD isoenzyme determined that PHD3 led to a 

greater reduction in GSIS compared to PHD1, and PHD2 did not reduce GSIS in 832/13 cells.
47

  

 Together, in vitro and in vivo experiments presented in this thesis assessing the role of 

PHD in GSIS via DMOG determined the opposite to be true.  These differences could be due to 

variations in drug mechanisms and concentrations.  Fallon and colleagues (2008) observed 

decreased GSIS with 1mM EDHB, an iron chelator, in primary rat islets and Huang and 

colleagues (2016) observed increased GSIS with 50µmol/L EDHB whereas 500µmol/L and 

1000µmol/L EDHB significantly reduced GSIS.  Respiration assays determined that 5mM 

DMOG displays alterations in oxidative metabolism compared to 1mM and 10mM DMOG.  
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5mM DMOG was continued for insulin secretion assays and there was an increased trend in 

insulin secretion.  It is hypothesized that acute inhibition of PHD leads to enhanced insulin 

secretion, possibly through compensatory mechanisms affecting both first- and second-phase 

insulin secretion.  Mice fed a HFD displayed impaired anaplerosis and reduced αKG levels, 

suggesting that TCA cycle intermediates are reduced in a diet-induced obesity rodent model, 

inhibiting PHD activity and leading to impaired GSIS.
124

 Further research is warranted to 

investigate whether and how long term inhibition of PHD affects GSIS.   

5.5 Protein Identification         

5.5.1 Proline hydroxylation in 832/13 cells  

 Protein was isolated from 832/13 cells treated with LG, HG, leucine + glutamine, 

palmitate, DMOG, DMαKG and NT.  Co-immunoprecipitation was performed using an anti-

hydroxyproline antibody to isolate protein containing hydroxylated proline residues from whole 

cell lysate samples.  Protein samples with hydroxylated proline residues were run on a 

polyacrylamide gel, which was then silver stained to identify band lengths for each treatment.  

Protein bands were excised and delivered to the MALDI-MS Facility at Western University for 

protein identification by MALD-MS.  However, Proteins containing proline hydroxylation were 

unable to be identified by MALDI-MS.  Silver staining may be more sensitive than MALDI-MS 

and therefore, the protein concentration was too low to be detected.  Coomassie Brilliant Blue 

staining is less sensitive and may be a better method for gel staining for detection by MALD-

MS. 
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5.5.2 Protein identification by MALDI-MS findings 

 Glucose, amino acids and fatty acids were observed to be downregulated compared to 

NT, suggesting that nutrient stimuli regulate prolyl hydroxylated protein expression.  In the 

presence of PHD, prolyl hydroxylated protein appeared to be downregulated upon nutrient 

stimuli.  Previous experiments demonstrated short term inhibition of PHD via DMOG results in 

enhanced second-phase insulin secretion.  It is hypothesized that acute inhibition of PHD will 

result in upregulation of unidentified proteins to increase insulin secretion. 

 PHD, particularly PHD3, hydroxylates and regulates other proteins involved in altering 

glucose metabolism.  However, it is currently unknown how these metabolic changes affect 

pancreatic β-cell insulin secretion.  PHD3 interacts with the E1β subunit of PDH, the enzyme 

that catalyzes the conversion of pyruvate to acetyl-CoA, which feeds into the TCA cycle, 

coupling glycolysis with mitochondrial respiration.
90

 PHD3 positively regulates PDH, however 

not through proline hydroxylation.
90 

PHD3 also regulates pyruvate kinase M2, which catalyzes 

the last step of glycolysis, converting phosphoenolpyruvate and ADP to pyruvate and ATP.
91

 

PHD3 is suggested to act as a co-activator via hydroxylation of PKM2 to enhance PKM2’s 

interaction with HIF1α.
91 

Upregulation of HIF1α results in alterations in glucose metabolism by 

upregulating  genes that reduce oxygen consumption and increase oxygen availability.
91

 PHD3 

plays a role in tumor proliferation and apoptosis that are independent of HIF1α.
81

 Cancer cells 

treated with αKG showed increased cell apoptosis and decreased cell proliferation, which 

occurred independently of HIF1α but required PHD3.
81 

 

PHD3 is involved in the regulation of proteins that may be involved in altering glucose 

metabolism and potentially influence insulin secretion.  From these experiments, it can be 

conferred that cytosolic αKG is required for PHD activity.  PHD hydroxylates and regulates 
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currently unidentified proteins that may alter insulin secretion.  Experiments discussed in chapter 

four reveal a novel role for PHDs that could be a potential target for drug development in the 

treatment of T2D.  However, further research is needed to explore the mechanisms by which 

PHD regulates insulin secretion and determine which proteins are involved.  The experiments 

discussed investigate the role of PHD in 832/13 cells and primary mouse islets but future work is 

needed to determine if these results translate to human islets. 

5.6 Limitations and future work 

 One limitation of the experiments presented in this thesis is that all experiments apart 

from ipGTTs are performed in vitro.  Isolated islets are removed from their natural environment 

and lack vasculature.  Isolated islets are incubated (37˚C, 5% CO2) for 18-72 hours prior to the 

day of assay.  During this time, the islet core begins to die, particularly in larger islets, due to 

lack of oxygen diffusion.
126

 Islets become less responsive to glucose stimuli, which causes 

impairments in metabolic activity.
126

 However, we were able to perform in vivo ipGTTs to assess 

glucose tolerance in C57BL/6J male mice injected with DMOG and these observations showed 

similar trends to our in vitro experiments.  Plasma insulin levels revealed improved insulin 

sensitivity upon DMOG injection.  Future work should investigate the role of PHDs in insulin 

sensitivity by performing insulin tolerance tests (ITTs) in mice injected with DMOG.  This will 

measure the effects of PHD inhibition on insulin sensitivity over a two hour period, allowing us 

to distinguish between first- and second-phase insulin secretion.   

 Another limitation of the experiments performed is that all experiments involved PHD 

inhibition using a pharmacological inhibitor.  DMOG inhibits all three isoenzymes of PHD; 

therefore we cannot be certain if a specific isoenzyme plays a greater role in the regulation of 

insulin secretion.  Further work investigating the role of PHD in pancreatic β-cell insulin 
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secretion involves the development of a transgenic mouse model using the Cre-lox system.  Our 

lab is currently generating β-cell specific PHD1, PHD2, and PHD3 KO mouse models using Cre 

recombinase.  Future work will involve performing in vitro and in vivo experiments using PHD 

KO mice, allowing us to address the long term effects of PHD in regulating insulin secretion.   

 We were able to conduct experiments using 832/13 cells and primary mouse islets.  

However, differences in islet architecture and metabolic activity between human and rodent 

islets have been addressed.  Our results show strong evidence that PHD plays a role in oxidative 

metabolism and both first- and second-phase insulin secretion.  Moving forward, studies using 

human islets should be performed to investigate if our findings translate to human islets. 

 Prolyl hydroxylated protein was isolated from 832/13 cells and silver staining for 

MALD-MS protein identification was performed.  However, we were unable to identify prolyl 

hydroxylated protein within our samples.  Future work will continue co-immunoprecipitation 

experiments followed by MALDI-MS to identify proteins that may be regulating insulin 

secretion.  Coomassie Brilliant Blue staining is less sensitive and may be more compatible with 

MALD-MS.  Identification of prolyl hydroxylated proteins in 832/13 cells would allow us to 

perform hydroxylation assays to determine which isoenzyme is involved in the hydroxylation of 

these proteins.  Protein identification would provide insight into the mechanisms by which PHD 

regulates insulin secretion and future experiments investigating the role of these proteins in GSIS 

are needed. 

5.7 Significance of the work 
 

 PHDs have been well-studied for their role in the hypoxia response pathway, where HIFα 

upregulates genes including EPO and VEGF that improve blood flow and oxygen availability in 

chronic kidney disease, cardiovascular disease, and cancer.
50,99

 T2D is also associated with a 
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hypoxic environment, where HIFα becomes stabilized and forms a heterodimer with HIFβ to 

upregulate genes that promote angiogenesis  and alter glucose metabolism including glycolytic 

enzymes and LDHA.
66

      

 KATP channel-independent pathways involve anaplerosis, where increased production of 

TCA cycle intermediates such as αKG are associated with second-phase insulin secretion.
39,111

 

αKG is produced in the pyruvate/isocitrate pathway which is positively correlated with increased 

GSIS.  However, a defined pathway has not been identified for αKG.  Our results reveal a novel 

pathway for PHD in the regulation of insulin secretion, whereby cytosolic αKG acts as a co-

substrate for PHD, regulating insulin secretion.  

 However, there is conflicting evidence regarding the role of PHD in insulin secretion.  

Pharmacological inhibition of PHD was found to inhibit GSIS in both cells and primary rat 

islets.
47,48

 Our results reveal that short term inhibition of PHD increased GSIS and affects both 

first- and second-phase insulin secretion.  Further research is warranted in defining the 

mechanisms by which PHD affects insulin secretion both acutely and chronically.  Nonetheless, 

PHDs are involved in pathways that are independent of HIFα and are a potential target for the 

treatment of T2D. 

 T2D is now considered a global epidemic and is associated with the development of other 

diseases, including CVD and stroke.
119,127,128

 Currently, there are several approved anti-

hyperglycemic agents that are used to treat and manage T2D that are effective at maintaining 

blood glucose levels.
127

 Anti-hyperglycemic agents target one mechanism of a highly complex 

disease, resulting in patients often being prescribed a combination of agents. As well, emerging 

evidence reveals that these approved agents may be correlated with serious adverse effects and 

the long term use of these agents remains unclear.
127

 The pancreas is the central organ for 
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glucose homeostasis and current anti-hyperglycemic agents targeting the pancreas include 

sulfonylureas and meglitinides, which target the KATP channel-dependent pathway.  There are 

currently no anti-hyperglycemic agents that target KATP channel-independent pathways, which 

contributes 70% of total insulin secretion.
37

  Understanding the mechanisms involved in KATP 

channel-independent pathways is of importance to development effective treatment options for 

T2D.     With the findings presented in this thesis, PHD may be a potential target for drug 

development for the treatment and management of T2D.   
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Appendix 

 

A.1 Assessing the role of PHD in PHD123fl/fl primary mouse islets using a RIPCre 

adenovirus 

 After islet isolation, approximately 120-150 islets per treatment from PHD123fl/fl male 

mice were picked into 6-well plates containing 2mL of islet growth media.  Islets were infected 

with 2µL of shGFP control virus or RIPCre adenovirus compared to NT.  20mM of glucose was 

added to each well and islets were incubated for 18 hours overnight (37˚C, 5% CO2).  Islets were 

analyzed for GFP and RFP and 60-72 hours after infection, an insulin secretion assay was 

performed.  After GSIS, islets were either snap frozen where protein extraction was performed 

for western blot analysis or insulin secretion was measured by RIA.   

 PHD knockdown was measured by western blot analysis using primary antibodies for 

PHD1, PHD2, PHD3, HIF1α and tubulin as a control.  A significant PHD knockdown for all 

isoenzymes was not detected, which may be due to experimental methods.  This may be due to 

inaccurate concentrations of viruses, incubation time of viral infection or the quality of the 

RIPCre adenovirus, as islets treated with shGFP were 100% infected and islets treated with the 

RIPCre adenovirus were approximately 30-40% infected.   
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Figure A.1: PHD knockdown using a RIPCre adenovirus by western blot. 

Total protein was isolated from PHD123fl/fl primary islets.  Protein samples were analyzed by 

western blot for PHD knockdown of all three PHD isoenzymes and HIF1α.  Tubulin was used as 

a control.  Protein samples contained 120-150 islets and protein intensity was measured by 

Imagej.  PHD1 was approximately 44kDa, PHD2 50 kDa, PHD3 47 kDa, HIF1α 132 kDa and 

tubulin 50 kDa. 

 

 To assess whether PHD plays a role in insulin secretion, a GSIS was performed using 

primary islets from PHD123fl/fl male mice treated with a shGFP virus, a RIPCre adenovirus or 

NT.  Islets were treated with LG (2mM) KRB, HG (16.7mM) KRB, LG (2mM) KRB + KCl 

(30mM) + diazoxide (200µM), HG (16.7mM) KRB + KCl (30mM) + diazoxide (200 M) and HG 

(16.7 M) KRB + DMM (10mM) + DMαKG (10mM) in KRB for one hour (37˚C, 5% CO2).  

Insulin secretion was measured by RIA.  A significant difference in insulin secretion in the 

RIPCre treated islets compared to shGFP and NT was not detected, possibly due to experimental 
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methods, as a measurable difference in protein knockdown by western blot analysis was unable 

to be measured.  It is thought that the RIPCre adenovirus containing Cre recombinase would be 

able to target loxP sites in PHD123fl/fl male mice to induce a knockdown.  PHD knockdown via 

viral infection would be able to determine if PHD plays a role in insulin secretion.   

 

Figure A.2: Islet GSIS in PHD123fl/fl male mice using viral infection. 

shGFP, RIPCre, and NT islets treated with LG (2mM) KRB, HG (16.7mM) KRB, LG (2mM) 

KRB+ KCl (30mM) + diazoxide (200µM), HG (16.7mM) KRB+ KCl (30mM) + diazoxide 

(200µM) and HG (16.7mM) KRB + DMM (10mM) + DMαKG (30mM) for one hour.  (n=6-9).  

Data are mean ± SEM.  
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A.2 Antibody information 

Table A.1: Primary and secondary antibodies 

Target Clonality Host 

Species 

Application Manufacturer 

PHD1 EPR2745 Rabbit Western 

blot/immunofluorescence 

Abcam 

PHD2 D31E11 Rabbit Western 

blot/immunofluorescence 

Cell Signalling 

PHD3 Polyclonal 

#196344 

Rabbit Western 

blot/immunofluorescence 

Abcam 

HIF1α Sc-10790 Rabbit  Western blot Santa Cruz 

Tubulin Monoclonal 

T8328 

Mouse Western blot Sigma 

Insulin Polyclonal 

A0564 

Guinea pig Immunofluorescence Dako 

Alexa Fluor® 

488 

Polyclonal Rabbit Immunofluorescence Jackson 

ImmunoResearch 

Alexa Fluor® 

647 

Polyclonal A-

21246 

Rabbit Immunofluorescence  ThermoFisher 

Scientific 

Hydroxyproline  Polyclonal 

#37067 

Rabbit Co-immunoprecipitation Abcam 

 

A.3 Primer information 

 

Table A.2: Primers for genotyping 

Gene Orientation Sequence (5’ to 3’) Primer 

length 

(nt) 

Amplicon 

length 

(nt) 

Reference 

PHD1 Forward TGAGACCAGGCAGAGGGAGTT 21 WT 500, 

f/f 600 

Takeda K, 

8337, 2006 

 Reverse GGAGCTGGAGTTCTAGGTCAGGTT 24   

PHD2 Forward GTGTACCTCAACCTCCGCTC 20 WT 1900, 

f/f 1400 

Designed by 

SJ 

 Reverse AGGGGATTTGTAGTTGGCCG 20   

PHD3 Forward GCTCGGAGAACTTGACACGA 20 WT 1070, 

f/f 1550 

Designed by 

SJ 

 Reverse TGACCTCGTAGGGCTCAGAT 20   

INS-

1
Cre

 

Common GGAAGCAGAATTCCAGATACTTG 23  Jackson 

Laboratories 

 WT  GTCAAACAGCATCTTTGTGGTC 22 488 Jackson 

Laboratories 

 Mutant  GCTGGAAGATGGCGATTAGC 20 675 Jackson 

Laboratories 

 

  


