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Abstract 

Glaucoma is a chronic disease associated with progressive dysfunction of the retinal ganglion cells 

(RGC), reduction of the retinal blood flow, thinning of the retinal nerve fiber layer (RNFL) and 

deformation of the optical nerve head (ONH). It is the second leading cause of blindness 

worldwide, with an estimate of 64.3 million people between the ages of 40 to 80 years affected in 

2013, 76.7 million by 2020, and 111.8 million by 2040. Currently, there is no cure for glaucoma 

and any clinically available pharmaceutical or surgical approaches to treating the disease can only 

slow its progression. Therefore, early detection and treatment are essential for managing the 

glaucoma progression. Elevated intraocular pressure (IOP) is one of the most well studied and 

documented pathogenic risk factors for open-angle glaucoma (OAG), and as such, numerous 

animal models have been developed to study the acute and chronic IOP elevation effect on the 

ONH structure, retinal blood perfusion and RGC function. However, most of these studies utilized 

static chronic IOP elevation, while the relation between the IOP dynamics and the progression of 

glaucoma is still poorly understood. Joos et al. proposed a rat model of glaucoma that utilized a 

dynamic approach to IOP elevation by use of a vascular loop that consists of short duration (~1h), 

intermittent IOP elevations. This model resembles closely the daily IOP spiking observed in 

glaucomatous patients, especially during the early stages of the disease. Better understanding of 

how the retina (human and animal) responds to such intermittent spikes of the IOP can provide 

ophthalmologists with valuable information on the origins and early stages of glaucoma 

development when treatment would be most efficient, as well as insights into developing new 

therapeutic approaches for glaucoma.  

Over the past few decades, a number of ex-vivo and in-vivo optical imaging modalities ranging 

from histopathology to confocal microscopy and optical coherence tomography (OCT) have been 

used to image changes in the morphology of the retina and the optic nerve head (ONH) in human 

subjects and animal models of OAG. Laser Doppler Flowmetry, Doppler OCT (DOCT) and 

Optical Coherence Tomography Angiography (OCTA) have been utilized to image and quantify 

changes in the total retinal blood flow and the blood perfusion in retinal capillaries during IOP 

elevations. Furthermore, electroretinography (ERG) has been used to assess changes in the retinal 
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function (response to visual stimulation) during elevated IOP. However, all previous studies 

collected information about the morphological, functional and blood flow/perfusion changes in the 

retina during elevated IOP separately, at different time points, which prevented the researchers 

from correlating those changes and uncovering the relationship between them, typically referred 

to as neurovascular coupling. 

Since OCT provides both intensity and phase information in a single acquisition, this imaging 

technology is able to assess changes in the retinal morphology, function and blood flow/perfusion 

in-vivo and simultaneously. Therefore, the main goals of this PhD project were to: 

 Develop a combined OCT+ERG imaging system that can image in-vivo and record 

simultaneously, changes in the retinal morphology, retinal electrophysiological response 

to visual stimulation and retinal blood flow/perfusion at normal and elevated IOP. 

 Test the performance of the OCT+ERG system in a rat model of glaucoma. 

 Utilize the OCT+ERG technology and the dynamic IOP rat model of glaucoma based on 

the vascular loop, to investigate the effects of acute and chronic IOP elevation to 

ischemic and non-ischemic IOP levels on the rat retina. 

 Utilize the OCT+ERG technology to investigate neurovascular coupling in the rat retina 

at normal and abnormal IOP levels. 

Results from this PhD research have been published or summarized in manuscripts that are 

currently under review. Therefore, this PhD thesis was prepared in such a way that individual 

manuscripts represent separate thesis chapters.  
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Chapter 1 

Introduction and Overview 

1.1 Glaucoma 

Glaucoma is the second leading cause of blindness worldwide, with an estimate of 64.3 million 

people between the ages of 40 to 80 years affected in 2013, 76.7 million by 2020, and 111.8 million 

by 2040[1]. The whole population of people with glaucoma worldwide will increase 74% from 

2013 to 2040. A recent systematic review predicts a glaucoma population increase of 19% in the 

United Kingdom, 9% in Europe and 18% in the United States in the next decade[2].  

Glaucoma is usually characterized with progressive RGC loss[3]–[5], altered retinal vascular[6]–

[8] and morphological change of the ONH including the remodeling of the lamina cribrosa[9]–[11] 

and physiological cupping[12]–[15]. Recently, factors such as retinal autoregulation[16], [17] and 

retinal neurovascular coupling[18]–[23] have been shown to be associated with glaucoma. Early 

glaucoma is usually quiet and asymptomatic, thus it lacks awareness until sever and irreversible 

vision loss happens. Therefore, early diagnosis and treatment plays an important role to prevent 

vision loss. However, so far, the exact mechanism of this disease and the factors that cause disease 

progression are still not fully understood.  
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Figure 1.1 Circulation of the aqueous flow. Reproduced with permission from [4], Copyright Massachusetts Medical Society. 

High IOP is a well-known risk factor in open-angle glaucoma, therefore, lowering IOP is still the 

main choice for clinical treatment of glaucoma. IOP is regulated by the balance of the production 

and drainage of the aqueous humour in the anterior chamber of the eye. As shown in Figure 1.1, 

the production of aqueous humour occurs in the ciliary epithelium, which is controlled by the 

ciliary body in the posterior chamber of the eye. The aqueous humour flows into the anterior 

chamber and provides metabolic supply to the iris, lens and cornea. Afterward, the aqueous 

humour is collected by a spongy tissue, named the trabecular meshwork, and drains into the tube-

shaped Schlemm’s canal. Clogging of the trabecular meshwork, obstruction or collapse of the 

Schlemm’s canal, and the increased resistance of the inner canal wall could all cause in-balance of 

the aqueous humour circulation, resulting in IOP elevation and progression of OAG. For this 

reason, investigators use elevated IOP as an approach to study its effect on the retinal structure and 

function, and attempt to correlate the high IOP induced damage to the progression of glaucoma in 

human subjects.  

Experimental glaucoma with IOP elevations aims to study the mechanism of IOP-induced 

alterations in the eye and bridge the fundamental pathological studies and clinical management of 
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the disease. Previously, several animal models have been used in experimental glaucoma, such as 

rabbits[24]–[26], rodents[27]–[39], cats[40], dogs[40], pigs[41], zebrafish[42] and monkeys[10], 

[43]–[47]. Among all of the above animal models, rodents are the most widely used because of 

certain advantages[48]. First, rodents are relatively affordable, easily available, and easy to 

maintain in an animal facility. Second, rats are mammals that have anatomical[49] and 

developmental[50] anterior chamber, aqueous outflow and ONH similar to that of humans. Third, 

the habitual IOP level, as well as IOP elevation in response to retinal and ONH operation are 

similar to the human ones. One limitation of the rodent models of glaucoma is that rat retina does 

not have a macula, however, since glaucomatous pathogenesis occurs commonly at the ONH and 

its periphery this limitation is not very significant.  

Over the past several decades, numerous IOP elevation protocols have been developed, which 

include genetic, chronic, acute, and intermittent IOP elevations. Based on the different levels of 

IOP elevation, they can also be differentiated into non-ischemic and ischemic IOP elevation. 

Below is a brief description of these IOP elevation protocols.  

The genetic glaucoma animal model, especially, DBA/2J mice[51], [52], is associated with 

mutation of two genes, Gpnmb and Tyrp1, and an enzyme related to melanin synthesis, which 

results in alteration of the iris’s stroma and causes change to the aqueous outflow. This strain of 

mice develops elevated IOP as early as 9-12 months after birth, pronounced ganglion cell loss has 

been observed as early as 10 months of age, and progressive optic nerve atrophy and ONH cupping 

occurs as early 12 months of age. This animal model of static IOP elevation has several limitations. 

One, there is no control eye in this model to provide baseline information for the retinal structure, 

function and blood flow/perfusion. Second, large variations of the elevated IOP level and as well 
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as onset of the IOP elevation have been reported, which could affect negatively the conclusions 

from animal research studies utilizing this model of IOP elevation. 

Cannulation of the anterior chamber method requires connection of an external reservoir with 

physiological solution to the anterior chamber through a needle. The level of IOP elevation is 

adjusted by changing the height of the reservoir relative to the eye. Bui[31], [53], [54] used ERG 

and STR to show that by using cannulation to raise the IOP acutely, retinal function is attenuated 

temporally for the duration of the elevated IOP and recovered back to baseline shortly after the 

IOP returned to a normal value[55], [56]. Zhi et al. [57]–[59] also used cannulation to increase the 

IOP from 30 mmHg to 100 mmHg, and by utilizing DOCT and OMAG, he demonstrated that the 

TRBF and the retinal capillary density in the IPL and the OPL of the rat retina decreased with the 

increase of the IOP elevation level. The same study also showed acute deformation of ONH and 

rearrangement of the lamina cribrosa[60] that returned to baseline shortly after normalization of 

the IOP. A recent publication points out that the cannulation method is associated with 

inflammation of the retina[61], and the injected liquid can cause higher optical aberrations that 

will affect the quality of the optical images, as well as change the impedance of the electrical signal, 

which will affect the ERG recordings, and therefore, the conclusions from the study based on the 

analysis of the corrupted optical images and ERG data. 

Photocoagulation of the trabecular meshwork and the episcleral veins could generate longitudinal 

IOP elevation over time and 16.1% RGC loss has been reported with this method as early as one-

week post operatively[62]. In another study, retinal function was attenuated as early as 24h post 

operatively, as shown by reduced ERG and STR amplitudes[63]. One major disadvantage of this 

method is that the IOP elevation level cannot be controlled precisely. An IOP spike is typically 
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observed immediately after the operation, followed by progressive IOP drop over time, and IOP 

normalization can happen as early as 5 days after the operation. Moreover, IOP spikes could 

introduce temporal retinal ischemia, which would cause a damage to the retinal structure and 

function and has different physiological mechanism than moderately IOP elevation alone. 

Injection of polystyrene microbeads into anterior chamber can cause partial blockage of the 

aqueous outflow in trabecular meshwork and the Schlemm’s canal. Chronic, moderate IOP 

elevation can be introduced with this method, and animal studies based on this method showed 

that degeneration of the RGCs reached 50% after 8 weeks post-injection[64]. By combining 

microbeads injection and laser coagulation[65], more sustainable IOP elevation can be achieved 

within 18 weeks compared to injection of microbeads or coagulation alone. Animal studies have 

reported significant thinning of the RNFL at 8 weeks, as well as between week 8 and 15, while 

changes in the retinal function were insignificant.  

Episcleral vein injection of hypertonic saline can cause trabecular meshwork sclerosis and 

obstruction of the aqueous outflow[66]–[70]. Sustained moderate IOP elevation has been recorded 

within 200 days post-op and diurnal IOP fluctuation pattern has been reported[71]. Progressive 

RGC loss, alteration of the retinal function and optic nerve atrophy have been reported 32 weeks 

after for IOP elevation using this method.  

More recently, circumlimbal suture with compression of the equator of the eyeball with a tight 

suture was used to induce a mild IOP elevation[34], [72], [73]. The sustained IOP elevation was 

initiated by a IOP spike that occurred within the first 3 hours of the suture placement. At week 15, 

there was a significant attenuation of RGC function and thinning of the RNFL, while no significant 
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reduction of RGC function or RNFL thinning was reported at week 8[34]. This method showed 

no pronounced effect on the anterior chamber and no evidence of inflammation process, however, 

circumlimbal suture placement requires specific skills and results (IOP level) vary significantly 

with the personnel performing the procedure.  

All of the aforementioned IOP elevation protocols generate a static, longitudinal IOP elevation, 

which causes difficulty when comparing results from the animal with those of clinical studies on 

OAG patients. One major difference is that OAG patients exhibit dynamic changes of the IOP over 

the course of 24h[74], [75], and results from most recent studies show that intermittent IOP spiking 

to moderate levels of ~ 35 mmHg also results in RGC loss and RNFL thinning[30], [76]. A 

headstand yoga posture (Sirsasana) had been reported to elevate IOP immediately, and routine 

practitioners could eventually develop glaucoma[77], [78]. In other studies, recurrent uveitis and 

its treatment has been shown to cause intermittent IOP spiking that can also lead to glaucoma 

uveitis[79], [80].  

Therefore, an animal model with intermittent IOP elevation that can accurately mimic IOP spiking 

in glaucomatous patients is needed. Gramlich et al used suction-cup oculopression[76] to elevate 

the IOP to 30-35 mmHg for one hour a day, and reported significant loss of RGC density in the 

treated eye after 30 repeated procedures over a period of 6 weeks. Joos et al[30] used an adjustable 

vascular loop to elevate the IOP to 35 mmHg for an hour per day on 6 days of the week over a 

period of 6 weeks, and reported up to 25% thinning of the RNFL, 7%–10% loss of RGC somas, 

and axonal degeneration in the optic nerve in the treated eye. Compared to the suction-cup 

approach, the vascular loop method has a relatively lower cost and is easier to apply. Moreover, 

there is no need to anesthetize the animal since the rats were tolerant to the vascular loop. This is 
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an important point, as studies suggest that different types of anesthesia have accumulative effect 

on the retinal function. Last but not least, the vascular loop is placed anterior to the eye chamber 

and thus has only a weak effect on the transmission of the optic beam (slight increase in the axial 

eye length, anterior chamber length and curvature of the cornea), which does not affect strongly 

the in-vivo optical imaging of the retina during IOP elevation.  

As the vascular loop provides a dynamic animal model of OAG, the question remains: what is the 

acute and progressive (chronic) change of the retinal morphology, blood perfusion and function in 

this rat model of glaucoma. This thesis aims to answer the question above and to provide insight 

to the understanding of the progression of glaucoma.  

1.2 Chapter Overview 

This thesis is organized based on several journal manuscripts (published or currently in review):  

Chapter 2 describes the concept of ERG, Spectral Domain OCT and its extensions, like phase 

resolved Doppler OCT and OCT angiography (OCTA). Also, it briefly discusses the advantages 

for OCT to assessing the morphology, blood perfusion, and function of the rat retina in our model 

of glaucoma.  

Chapter 3 focuses on the effect of acute IOP elevation to a moderate level (35 mmHg) and 

reversible recovery of the ONH depression and the retinal function in the rat’s eye.  

Chapter 4 examines the effect of different levels of acute IOP elevation from normal (10 mmHg) 

to ischemic (70 mmHg) levels. ONH morphology, retinal total blood flow, retinal blood perfusion 

and retinal function were assessed.  
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Chapter 5 focuses on a chronic rat model of glaucoma. It studies the effect of intermittent, 

moderate level IOP elevation over a period of 8 weeks, on the rat retinal morphology and function.  

Chapter 6 discusses a modified OCT+ERG system setup and data acquisition protocol for 

simultaneous measurement of visually evoked retinal blood flow and retinal function changes.  

Chapter 7 Summarizes results from a study where the same imaging system and data acquisition 

protocol as the ones used for the study in Chapter 6, were used to investigate the effect of IOP 

elevation on the retinal neurovascular coupling. 

Chapter 8 Describes a new scanning protocol and an automatic retinal blood vessel segmentation 

algorithm designed to measure more accurately pulsatile retinal blood flow. It enables the accurate 

quantification of pulsatile retinal blood flow with a relatively slow camera, and it can be easily 

transferred to human clinical studies. 

Chapter 9 Summarizes the results from this PhD thesis and discusses potential future studies.  

 

 

 

  



 

 9 

Chapter 2 Optical Coherence Tomography (OCT) and 

Electroretinography (ERG) 

2.1 Theory of Optical Coherence Tomography 

The word tomography originated from the ancient Greek tomos, meaning ‘section’. OCT is a non-

invasive imaging technology that utilizes the coherence properties of backscattered light to 

generate cross sectional images of the imaged object. The first clinical application of OCT was for 

non-contact, in-vivo imaging of the structure of the human retina back in 1991. Over the past 25 

years, advances in laser and camera technologies have allowed for dramatic improvement of the 

spatial resolution, sensitivity, scanning range and image acquisition rate of OCT. Furthermore, 

utilization of different scanning protocols, as well as phase information in addition to intensity, 

has resulted in the development of OCT extensions such as Doppler OCT and OCT angiography 

(OCTA) that are currently used to image and quantify blood flow and blood perfusion of biological 

tissue, including the retina. Over the past 25 years, OCT and its functional extensions have found 

a broad range of clinical and fundamental research applications other than in ophthalmology: for 

example, in cardiology, dermatology, dentistry, etc. Today, the majority of the clinical and 

commercial OCT systems are still used mainly for retinal imaging due to the semi-transparent 

properties of the retina, and the distinct retinal layered structure visible in a single OCT cross-

sectional image. This section presents an overview of the general principles of operation of OCT 

and some of the configurations and OCT extensions that that were utilized in this PhD research 

project.  
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2.1.1 Spectral Domain Optical Coherence Tomography 

 At the core of most OCT systems is an interferometer design that was developed in 1889 by Albert 

Abraham Michelson and is currently referred to as “Michelson interferometer”. 

A general schematic of a typical fiber-based Spectral Domain OCT (SD-OCT) system is shown in 

Figure 2.1. The output of a low coherence light source is connected to a 2×2 fiber coupler that 

divides the light into sample and reference arms. Backscattered light from different depths within 

the imaged object is coupled back into the sample arm fiber and interferes with the light back-

reflected from the mirror in the reference arm of the interferometer. The interferometric pattern is 

projected though a spectrometer onto a linear array camera at the detection end of the SD-OCT 

system. Therefore, the intensity of the interference pattern, I, can be expressed as a superposition 

of the reference and sample arm beam: 

 𝐼 =
𝜂

4
{𝐼𝑟 + 𝐼𝑠 + 2√𝐼𝑠𝐼𝑟 cos[ 2𝑘(𝑧𝑠 − 𝑧𝑟)]} (2.1) 

where 𝜂 is the detector responsibility, 𝐼𝑟 and 𝐼𝑠 are the back scattered intensity from the reference 

and sample arms, respectively. 2𝑘(𝑧𝑠 − 𝑧𝑟)  is the phase difference between the sample and 

reference beams, where 𝑘 = 2𝜋/𝜆0 is the wavenumber and λ0 is the central wavelength of the light 

Figure 2.1 A typical setup of fiber based SD-OCT system 
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source measured in free space, and 𝑧𝑠 − 𝑧𝑟 is the OPD between the same and reference beams. 

When the imaged sample has spatially varying refractive index that can generate reflections from 

multiple depths inside the imaged object (e.g. biological tissue) and the light source has broad 

bandwidth emission spectrum that can be expressed as 𝑆(𝑘), then equation 2.1 can be modified to: 

 

𝐼(𝑘) =  
𝜂

4
 𝑆(𝑘) (𝑅𝑟 + ∑ 𝑅𝑚

𝑛

𝑚=1
)  

                    + 
𝜂

4
∑ 𝑆(𝑘)√𝑅𝑟𝑅𝑚 cos [ 2𝑘(𝑧𝑟 − 𝑧𝑚)]

𝑛

𝑚=1

           

                                 +
𝜂

4
∑ 2𝑆(𝑘)√𝑅𝑙𝑅𝑚 cos [ 2𝑘(𝑧𝑙 − 𝑧𝑚)]}

𝑛

𝑚≠𝑙=1

 

(2.2) 

where 𝑅 is the spectral-dependent reflectivity of the imaged object. Here, the first term is the DC 

component from the reference mirror that appears as background in the OCT image. The second 

term is called the cross-correlation term, representing the interference component between 

multiple reflections from different depths inside the imaged object and the reference mirror. The 

last term is called the auto-correlation term, representing the interference between multiple 

reflections from different depths within the imaged object. In order to detect the spectral signal, 

SD-OCT employs a diffraction grating to separate different frequency components into different 

diffraction angles, and all the frequency components are recorded by a linear array CCD or CMOS 

camera. By taking the Fourier transform of 𝐼(𝑘), the depth-dependent reflectivity profile, I(z), for 

the multiple layers in the imaged object can be generated.  
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𝐼(𝑧) = ℱ𝑘→𝑧[𝐼(𝑘)] =  
𝜂

8
𝑖(𝑧) (𝑅𝑟 + ∑ 𝑅𝑚

𝑛

𝑚=1
)  

                + 
𝜂

8
∑ √𝑅𝑟𝑅𝑚𝑖(𝑧) ∗ δ (𝑧𝑟 − 𝑧𝑚)

𝑛

𝑚=1

   

                              +
𝜂

8
∑ 2√𝑅𝑙𝑅𝑚 𝑖(𝑧) ∗ δ (𝑧𝑙 − 𝑧𝑚)

𝑛

𝑚≠𝑙=1

 

(2.3) 

where 𝑖(𝑧) = ℱ𝑘→𝑧[𝑆(𝑘)]. Note that because of the conjugate symmetry of the Fourier transform, 

there is a factor of 2 difference between the intensity profile and the recorded interferogram. The 

DC and the auto-correlation components appear close to the zero-delay line since the OPD between 

the individual layers in the sample is small compared to the OPD between the beam splitter and 

the imaged object. Therefore, by adjusting the OPD between the reference arm and the sample 

arm, the cross-correlation components can be separated from the background. The cross-

correlation components contain information about the depth-dependent reflectivity of the sample, 

R(z). A one-dimensional OCT scan along depth (z direction) is referred to an “A-scan”. By 

scanning the OCT imaging beam laterally over the imaged object with a galvanometric scanner or 

by translating the object in transverse direction (e.g. X) relative to the OCT imaging beam while 

acquiring OCT A-scans continuously, a 2D cross-sectional OCT image can be generated (also 

called an OCT B-scan). By scanning the imaging beam along two orthogonal transverse directions 

(X and Y) with two galvanometric scanners, or by translating the imaged object relative to the 

OCT imaging beam in a 2D transverse raster pattern, a 3-D image of the object can be 

reconstructed.  
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Figure 2.2 (A) Interferometric fringe recorded from camera provides information of different sinusoidal frequencies. (B) An OCT 

A-scan (1D, depth-dependent reflectivity profile) can be generated by taking the Fourier transform of the interferometric fringe.  

(C) An OCT B-scan of a rat retina generated by stitching the A-scans from different transverse positions. Logarithmic scale with 

contrast adjustment can be applied for optimal visualization. (D) A volumetric OCT image of the rat retina centered at the ONH. 

Axial resolution 

The axial OCT resolution, Δz, is defined as the FWHM of the cross-correlation intensity profile 

between reference mirror reflection and single perfect reflection from the sample arm, i.e.  

𝜂

8
√𝑅𝑟𝑅𝑠𝑖(𝑧) ∗ δ (𝑧𝑟 − 𝑧𝑠). Hence, the axial resolution is calculated as the FWHM of 𝑖(𝑧).  

Assuming that the spectrum of the low-coherence light source has a Gaussian profile, which can 

be expressed as:       

 𝑆(𝑘) = |𝑆0|𝑒
−

(𝑘−𝑘0)2

∆𝑘2  (2.4) 
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 𝑖(𝑧) can be calculated as: 

 𝑖(𝑧) = ℱ𝑘→𝑧 𝑆(𝑘) = ∫ 𝑆(𝑘)𝑒−𝑖𝑘𝑧𝑑𝑘
∞

−∞

= |𝐼0|𝑒−𝑧2∆𝑘2
 (2.5) 

where the FWHM of 𝑖(𝑧) is 2√ln2/∆𝑘. The axial resolution can also be expressed in terms of 

the central wavelength, 𝜆0, and the FWHM, ∆𝜆, of the light source, with the relation ∆𝑘 =

𝜋

2ln2

∆𝜆

𝜆0
2 

; ∆z =  
2ln2

𝜋

𝜆0
2

∆𝜆 
. 

Theoretically, the axial resolution in free space is only determined by the spectral characteristics 

of the light source, which means that a shorter central wavelength and a broader spectral bandwidth 

will result in higher axial resolution. In practice, the axial OCT resolution is dependent both of the 

OCT system’s design (transmission properties of the optical and fiber-optic components, the 

number of pixels and the spectral responsivity of the camera) and the optical properties of the 

imaged object (wavelength dependent scattering and absorption). 

Digital axial resolution 

As the interferometric fringes are recorded by a CCD or a CMOS camera with finite number of 

pixels, based on the Nyquist theorem, the maximum sinusoidal frequency that can be detected 

without aliasing is half of the sampling frequency of the detector. Moreover, in OCT, higher image 

depth is associated with higher frequencies in the spectral domain due to the larger OPD, thus the 

limit of the sinusoidal frequency detection gives rise to the corresponded maximum imaging depth: 

 image depth =
𝜆0

2

 4𝛿𝜆
 (2.6) 
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where 𝛿𝜆 is the spectral sampling interval of the detector. Therefore, the axial digital resolution 

can be calculated given the total image depth and the number of pixels in an A-scan: 

 axial digital resolution =
𝜆0

2

 2N𝛿𝜆
 (2.7) 

where N is the total number of pixels of the detector. In order to generate high axial resolution 

OCT image, both high axial resolution and high axial digital resolution are required. High axial 

resolution can resolve small particles in the sample with a broadband light source and short central 

wavelength, while high axial digital resolution is needed to be able to display a small feature in 

the OCT image.  

Lateral resolution 

As in standard and confocal microscopy, the OCT lateral resolution is determined by the central 

imaging wavelength and the effective NA of the focusing lens. When the aperture of the imaging 

lens is properly filled, the lateral resolution can be calculated as the radius of the Airy disk at the 

focal plane: 

 ∆x (Lateral resolution) =  0.61𝜆
𝑁𝐴⁄  (2.8) 

High lateral resolution will compromise the depth of focus, which is defined as twice the 

Rayleigh length 𝑍𝑟: 

 𝐹𝑜𝑐𝑎𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 = 2𝑍𝑟 =
𝜋∆𝑥2

𝜆
 (2.9) 

As shown in Figure 2.3, an imaging lens with high NA generates higher lateral resolution, 

however, the depth of focus is limited due to the short Rayleigh range. In contrast, an imaging lens 
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with low NA yields more uniform lateral resolution over a larger depth range. New numerical 

defocus compensation methods, such as interferometric synthetic aperture microscopy, could 

refocus the light numerically to simulate large depth of focus while maintaining the high lateral 

OCT resolution. For in-vivo retinal imaging, the focusing of the imaging beam is done by the 

corneal curvature and the ocular lens. The ocular NA varies significantly between species and is 

fairly low (NA = 0.2) in dilated human eye, thus the lateral resolution is not expected to change 

significantly from the anterior retina to the choroid (distance of ~500 µm). 

 

Figure 2.3 Samples to show the on focus imaging depth and lateral resolution with low NA and high NA optics 

 

Depending on their intended application, OCT systems can be designed to operate at different 

spectral regions, for example, at ~800 nm, ~1050 nm, ~1300 nm and ~1700 nm central wavelength. 

Since both the axial and lateral OCT resolutions are wavelength dependent, a longer central 

wavelength will result in poorer spatial resolution.  

In the case of retinal imaging, a parallel beam is delivered onto the cornea and the eye focuses the 

collimated beam onto the retina. Therefore, there choice for the spectral region of operation for a 
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retinal OCT system will be determined by a number of factors: 1. The  maximum optical power 

that can be incident on the retinal surface without damage to the retinal tissue as determined by 

the ANSI; 2. The water absorption spectrum has two optical “windows” that correspond to minimal 

attenuation of the optical imaging power; 3. The optical transmission of ocular tissues which is 

determined by the wavelength dependent scattering and absorption properties of the cornea, the 

anterior chamber, the lens, the vitreous and the retina. Based on the aforementioned considerations, 

for this research project, a SD-OCT system operating in the 1060 nm spectral region was developed 

in order to utilize a local minimum in the water absorption spectrum, low scattering of the anterior 

part of the eye and improved transmission through the RPE, to allow for better penetration into 

choroid to visualize the choroidal vasculature. Another reason for selecting this central wavelength 

was to ensure that the OCT imaging beam will not stimulate visually the retinal photoreceptors 

and therefore will not corrupt the retinal function measurements.  

Sensitivity (SNR) 

Sensitivity in an imaging system is defined as the smallest signal that can be differentiated from 

the noise. SD-OCT has the advantage of significantly higher signal-to-noise ratio (SNR of 20 – 30 

dB) compared to TD-OCT due to the fact that SD-OCT utilizes M number of detectors (pixels), 

while TD-OCT uses only 1 detector (or a pair of dual balanced detectors). Theoretically, the SNR 

of a SD-OCT system is M/2 times larger than the SNR of a TD-OCT system, where M is the pixel 

number of photodetector[81]. The factor of 2 is due to the conjugate symmetry of the Fourier 

transform. In a short noise limited SD-OCT system, the noise obeys the Poisson distribution and 

the theoretical SNR at zero delay can be simplified to  
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 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
ηS𝑡

2𝑒
 (2.10) 

where η is the photodiode responsivity, S is the power reflected perfectly back from a mirror in 

the sample arm, t is the integration time for one A-scan, and e is the electronic charge. For 

simplicity, photodiode responsivity remains constant over different wavenumbers, whose typical 

value for silicon based photodetector in the near infrared region (NIR) is between 0.4 and 0.8, 

while for an InGaAs photodetector it is 0.7 - 0.85. According to the ANSI standard, the maximum 

permissible optical power incident on the rat’s cornea is 1.8 mW. For that power level and at 92 

kHz data acquisition rate of the InGaAs camera, the theoretical sensitivity of our 1060 nm SD-

OCT system was evaluated to be ~106 dB. In practice, the value is somewhat smaller (5 dB to 10 

dB) than the theoretical calculation because of factors such as room background illumination and 

intensity fluctuation of the light source.  

2.1.2 Phase-resolved Doppler Optical Coherence Tomography 

Doppler OCT, also called optical Doppler tomography, is an extension of standard OCT that can 

be used to visualize and measure blood flow in arteries and veins, analogues to Doppler ultrasound. 

The principle of Doppler OCT is based on measurement of the Doppler frequency shift between 

the incident optical beam and the backscattered light from moving particles, or more specifically 

the red blood cells in the blood vessels, as shown in Figure 2.4. 
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Figure 2.4 A schematic to show that the Doppler angle (ϴ) is the angle between incident beam and the flow direction. 

 

This Doppler frequency, fD, is dependent on both the velocity of the moving particles (red blood 

cells) and the wavelength of the imaging beam:  

 𝑓𝐷 =
1

2
(𝒌𝒊 − 𝒌𝒔)𝒗 (2.11) 

where 𝒗 is the velocity vector of blood flow and ki and ks are the wavevectors of incident beam 

and backscattered light. Alternatively, this equation can be simplified to 

 𝑓𝐷 =
2𝑣𝑧

𝜆
 (2.12) 

where 𝜆  is the central wavelength and 𝑣𝑧  is the blood flow velocity along the incident beam 

propagation 𝑣𝑧 = |𝒗|𝑐𝑜𝑠θ, as θ the angle between beam propagation and blood flow, also named 

Doppler angle. In phase-resolved OCT, the averaged frequency shift is the rate of phase change 

over time, and given the small time interval T between A-scans, ∆𝜃 becomes the phase difference 

between consecutive A-scans with high oversampling:  
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 𝑓𝐷 =
𝜕∆𝜃𝑛,𝑧

𝜕𝑡
≃

𝜃𝑛+1,𝑧 − 𝜃𝑛,𝑧

𝑇
 (2.13) 

Since the signal 𝐼(𝑧, 𝑛) in spatial domain is a complex number, thus it can be expressed as: 

Re(𝐼(𝑧, 𝑛)) + 𝑖 Im(𝐼(𝑧, 𝑛)) where Re(𝐼(𝑧, 𝑛)) and Im(𝐼(𝑧, 𝑛)) are the real and imaginary part of 

𝐼(𝑧, 𝑛). Then 𝑓𝐷 becomes: 

 

𝑓𝐷

=
1

2𝜋𝑛𝑇
tan−1 

Re (𝐼(𝑧 + 1, 𝑛)) Im (𝐼(𝑧, 𝑛)) −  Im(𝐼(𝑧, 𝑛))Re(𝐼(𝑧 + 1, 𝑛))

Re (𝐼(𝑧 + 1, 𝑛)) Re (𝐼(𝑧, 𝑛)) +  Im(𝐼(𝑧, 𝑛))Im(𝐼(𝑧 + 1, 𝑛))
 

(2.14) 

Substituting with equation 2.12, the velocity along the beam propagation, or axial velocity 

becomes: 

 

𝑣𝑧

=
𝜆

4𝜋𝑛𝑇
tan−1 

Re (𝐼(𝑧 + 1, 𝑥)) Im (𝐼(𝑧, 𝑥)) −  Im(𝐼(𝑧, 𝑥))Re(𝐼(𝑧 + 1, 𝑛))

Re (𝐼(𝑧 + 1, 𝑥)) Re (𝐼(𝑧, 𝑥)) +  Im(𝐼(𝑧, 𝑛))Im(𝐼(𝑧 + 1, 𝑛))
 

(2.15) 

where moving particles perpendicular to the axial direction will not generate any Doppler 

frequency shift. The axial blood flow is the flow velocity integration over the cross-section of the 

blood vessel in an OCT B-scan. As various ocular diseases are associated with change of the retinal 

blood flow, such as glaucoma, AMD, DR, etc., absolute blood flow measurement is important. 

There are two basic approaches to determining the absolute blood flow with OCT. One is called 

en-face Doppler OCT and it in this case the absolute blood flow is determined as integration of the 

axial flow over the cross section of the blood vessel determined from an OCT C-scan[82]–[85]. 

Therefore, the absolute blood flow can be expressed as:  
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𝐹 = ∬|𝑣|

𝑆

𝑑𝑆 = ∬ 𝑣𝑧
𝑆𝑒𝑛−𝑓𝑎𝑐𝑒

𝑑𝑆𝑒𝑛−𝑓𝑎𝑐𝑒 
(2.17) 

This method is Doppler angle irrelevant, therefore it is applicable to cases where the orientation of 

the blood vessel is difficult to identify. However, this method also has limitations: this method 

requires volumetric scan, so the motion artifact will affect the image registration. 

Alternatively, precise knowledge of the Doppler angle between the OCT beam and the blood vessel 

is required for accurate assessment of the absolute blood flow by using point-scanning SD-OCT 

or swept source OCT systems. Pedersen et al.[86] proposed a method to separate the OCT. In this 

case, the absolute blood flow was calculated from 2 OCT B-scans acquired from the same location 

in the imaged object from two different probing angles sequentially. A dual-beam design[87]–[89] 

of the OCT imaging probe was used to detect the blood flow from different angles simultaneously, 

utilizing 2 identical detectors. Singh et al[90] extracted the Doppler angle from a reconstructed 3D 

volume by tracking the orientation of the blood vessels. The Doppler angle can also be simply 

extracted by taking two cross-sectional scans on blood vessels[91], [92], where the distance 

between these two scans are close enough to enable approximation of linear orientation of the 

blood vessels. This method does not require volumetric scans or complicated and expensive OCT 

system design. Furthermore, by acquiring concentric scans around the ONH, the total blood flow 

can be estimated.  

2.1.3 Optical Coherence Tomography Angiography (OCTA) 

OCTA is a dye-free method for generating angiograms of biological tissue. With the recent 

development of commercial OCTA instrument, over the past few years OCTA has found numerous 
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clinical ophthalmic application for investigation of the pathological changes in the retinal blood 

flow and blood perfusion associated with retinal diseases such as AMD, DR, glaucoma. Compared 

with the gold standard fluorescein angiography and ICG based angiography, OCTA does not 

require any intravenous injection of contrast agents, therefore the procedure is shorter and less 

invasive. 

OCTA technologies enhance the contrast of moving particles from the static tissue by evaluating 

the temporal change of the OCT signal. An example of temporal OCT signal fluctuations measured 

from a blood vessel and static tissue is shown in Fig. 2.5. Based on the information type that it 

used for generating the OCTA images, methods can be divided into intensity-based, phase-based, 

and complex signal-based. Specifically, speckle-variance[93], [94] and phase-variance[95], [96] 

method calculate the temporal intensity and phase variance by acquiring multiple B-scans from 

the sample location. Jonathan et al.[97] and Chen et al.[98] calculated the cross correlation between 

adjacent B-scans, based on intensity signal of the image and the imaginary part of the image, 

respectively. Split-spectrum amplitude-decorrelation angiography[99] separates the full spectrum 

into several sub-spectra, and the angiogram is calculated by analyzing the flow images generated 

from the sub-spectra and repeated measurements from the same location. Similarly, the spatial 

angular compounded OCTA[100] splits the full incident beam into different angular components, 

and an angiogram is generated by analyzing the flow images from sub-angular components and 

repeated measurements from the same location. OMAG was proposed first by Wang et al.[59], 

and it simply uses the complex signal from an OCT image to calculate the absolute complex 

difference between adjacent repeated B-scans. As OCTA is a good tool to enhance the contrast of 

the flow in order to separate it from the static tissue, parametric OCTA uses the ratio between the 
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flow signal and the intrinsic signal to filter out the static tissue contribution with high intrinsic 

signal (e.g. skull). In this thesis, complex signal based OCTA was used for some of the animal 

studies because of its simplicity in terms of implementation and lower computational cost: 

 𝑂𝐶𝑇𝐴(𝑥, 𝑦) =
1

𝑛 − 1
∑|𝑆(𝑥, 𝑦, 𝑖) − 𝑆(𝑥, 𝑦, 𝑖 − 1)|

𝑛

𝑖=2

 (2.18) 

 

Figure 2.5 An example to show the difference of temporal OCT signal fluctuations between static tissue and a blood vessel.  

2.2 ERG 

ERG is an electrical method of recording electrical currents in the eye, generated when the eye is 

exposed to visual stimulation. This technology originated in 1865 when Holmgren found out that 

a light stimulus can trigger an electrical signal in the animal eye. Nowadays, ERG is an 

indispensable clinical method for evaluating the normal and abnormal retinal function in patients 
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with various retinal neurodegenerative conditions. It is also widely used in basic and clinical 

research to study the dysfunction of retinal cells in-vitro and in-vivo in animal studies.  

 

Figure 2.6 (A) A schematic to show how the extracellular ERG is recorded. ”+” and “-” label the positive and negative 

electrodes, respectively, and the arrow represents the direction of current pathway. (B-C) Representative OCT B-scan and 

histology to show rat’s retinal with distinctive layers. 

 

As shown in Figure 2.6, when a photoreceptor in the retina is stimulated, it generates an electrical 

current to all the directions, associated with directional flow of Ca2+ and Na+ ions in the retinal 

tissue. Since the photoreceptors in vertebrate eyes are arranged in parallel and the ERG recording 

is associated with a massive number of stimulated photoreceptors, the horizontal electrical current 

is cancelled and only the radial current flows through the inner retinal cells, such as the retinal 

bipolar cells, Müller cells, amacrine cells, and RGCs, and reaches the vitreous. Then the radial 

current flows back through the choroid, sclera and the skin. ERG is recorded in a minimally 

invasive way by placing a positive electrode in the form of a loop or a tip on the corneal surface 

and attaching a reference electrode to the skin in the temples (human subjects) or inserting a needle 

behind the ear or in the tail. The ERG traces can also be recorded directly from the vitreous and 
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the retinal layers by inserting a needle electrode, however this method is more invasive. In this 

thesis, ERG traces were recorded in-vivo from rat eyes by placing a positive electrode in the form 

of a loop on the rat cornea, and negative and reference electrodes between and behind the ear 

respectively. The diameter of the loop electrode was sufficiently large to allow the OCT imaging 

beam to pass through the pupil and image the retina without any obstruction by the loop electrode.  

 

Figure 2.7(A) Origins of ERG components in retina. (B) A representative short duration flash ERG trace and its isolated OP with 

all the components labelled. D-wave is not shown as it can only be separated from long duration (>200 ms) ERG trace. (A) 

Reproduced with permission from [101], Copyright 2017 Webvision: Attribution, Noncommercial, No Derivative Works 

Creative Commons license. 

 

It is important to note that the ERG traces correspond to integrated electrical signal that originates 

from different types of retinal cells. Because the temporal response of different retinal cells overall 

partially in time, one way to analyze and classify ERG traces is to characterize specific positive 

and negative peaks. For example, Ragnar Granit divided the typical ERG trace into three major 
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components, named PI, PII, and PIII, which correspond to a slow positive wave, a fast transition 

to a positive peak followed by a mediated positive amplitude wave, and a fast negative wave, 

respectively. The integrated signal from these three components displayed several distinctive 

peaks and oscillations. An ERG a-wave is defined as the first negative peak, and mainly reflects 

the response from photoreceptors (both rods and cones) in the posterior retina. The ERG b-wave 

is defined as the first positive peak, and its amplitude is usually defined as the voltage difference 

between a-wave and b-wave peaks respectively. B-wave is associated with the integrated response 

from several different types of cells in the retinal INL. Previous studies have shown the Müller 

cells and the ON bipolar cells contribute to the b-wave. OP is the high frequency oscillation 

observed between the a-wave and the b-wave in a typical ERG trace, and it originates from the 

amacrine cells located in the inner retina. The OP frequency ranges from 100 Hz to 150 Hz, and 

based on the latest ERG standard, it can be isolated with a bandpass filter (75 Hz – 300 Hz). The 

ERG C-wave is a slow positive wave that appears after the b-wave and originates from the RPE, 

located in the posterior retina. The C-wave is also associated with the regeneration of the 

photoreceptors. Lastly, the d-wave can only be identified in ERG traces when the stimulation is 

long (>100 ms). It appears after the end of the stimulation and is associated with the response of 

the OFF bipolar cell to visual stimulation. In this project, we used brief single flashes of <10 ms 

duration, or flicker stimuli of 1s or 2s total duration and 10 Hz frequency to study the functional 

retinal response therefore, the c-wave and d-wave will not be discussed in this thesis.  
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Chapter 3 The effect of acute IOP elevation to a moderate level on the 

rat retina morphology and function  

Notes and Acknowledgement 

This chapter summarizes results from a study that aimed to investigate changes in the retinal and 

ONH morphology measured with UHR-OCT and retinal function, measured with ERG, associated 

with acute elevation of the IOP to a moderate level of 35 mmHg in a rat model of glaucoma. The 

content of this chapter is based on the following journal manuscript: 

Choh V, Gurdita A, Tan B, Prasad RC, Bizheva K, Joos KM. “Short-Term Moderately Elevated 

Intraocular Pressure Is Associated With Elevated Scotopic Electroretinogram Responses,” 

Investig. Opthalmol. Vis. Sci. 2016;57(4):2140. doi:10.1167/iovs.15-18770. 
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3.1 Introduction 

Glaucoma is a chronic disease that is characterized by progressive degeneration of the RGC axons 

within the optic nerve resulting in loss of RGCs and eventually blindness. It is the second leading 

cause of blindness worldwide, with an estimate of 64.3 million people between the ages of 40 to 

80 years affected in 2013, 76.7 million by 2020, and 111.8 million in 2040.[102] According to a 

2008 to 2009 survey by Statistics Canada, more than 400,000 people over the age of 45 in Canada 

have glaucoma[103]. Currently, there is no cure for glaucoma; patients can be treated only with 

medications or surgery to slow the progression of the disease. Therefore, early detection and early 

treatment are essential for managing the disease. High IOP remains a risk factor for open-angle 

glaucoma (OAG)[4], [104], [105], and, therefore, a target for early treatment. However, a 

confounding factor is that some patients acquire glaucoma even when their IOPs are normal (IOP 

< 21 mm Hg) during clinic examinations. Fluctuations in IOP may have a role in the development 

of glaucoma since multiple studies have demonstrated nocturnal IOP elevation[106]–[108] or 

elevations with inversion activities[109], [110]. Retinal changes evoked by chronic and acute 

models of IOP elevation are detectable using various components of the scotopic ERG[24], [53], 

[111], [112]. The information collected with full-field flash ERGs typically pertains to the 

photoreceptor and INL cell function. However, components of the scotopic ERG have been shown 

to reflect proximal retinal functions, including the negative and positive responses to very dim 

(typically near rod threshold) light stimuli that are too dim to elicit the b-wave; these components 

are conventionally called STRs[101], [113]. Joos et al.[114] demonstrated that controlled transient 

elevations of IOP in rats led to structural changes in the optic nerve that are similar to the early 
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damage observed in chronic glaucoma models but no information about retinal function was 

available. The present study was done to determine whether acute moderate increases in IOP can 

lead to glaucomatous damage and whether early changes in retinal function can be detected using 

various components of the scotopic ERG. 

3.2 Methods 

All procedures in this study were conducted in accordance with the Guidelines of the Canadian 

Council on Animal Care and conform to the ARVO Statement for the Use of Animals in 

Ophthalmic and Vision Research. All protocols were approved by the University of Waterloo 

Animal Care Committee and/or the Institutional Animal Care and Use Committee (Vanderbilt 

University). 

3.2.1 Animals and anesthesia  

Male Sprague-Dawley rats (11 weeks old, approximately 300 g) were obtained from Harlan Labs 

(Indianapolis, Indiana) and were fed ad libitum. The rats were subjected to a 12-hour light:12-hour 

dark cycle (maximum 257 lux for 3.5 hours a day) in the housing facility, for the duration of the 

study, and 1 week before the start of all experiments. Electrophysiological and morphologic tests 

were done in separate measurement sessions (Table 3.1): binocular STR and ERG (n = 7, Group 

I) recordings were collected during the first IOP elevation session, and sequential monocular 

ultrahigh resolution optical coherence tomogram (UHR-OCT) recordings (n = 6, Group II) were 

collected after two previous IOP elevation sessions, 2 days after the initial IOP elevation. Another 

group of rats underwent the same IOP-raising protocol as the rats used for OCT imaging, and their 

retinas were harvested either for histologic (n = 6, Group III) or for Western blot (n = 4, Group 
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IV) analysis. 

All rats initially were anesthetized with 2.5% isoflurane in oxygen and maintained with 

approximately 2% isoflurane in oxygen. The body temperatures of the rats were maintained using 

heated platforms during anesthesia. Temperatures were monitored using a consumer digital 

thermometer placed under the abdomen, and breathing rate was assessed every 15 minutes. For all 

in vivo procedures, one drop 0.5% proparacaine hydrochloride (Alcaine, topical anaesthetic, 

#1001600; Alcon, Mississauga, ON, Canada) was applied to the eyes, followed by one drop of 

0.5% tropicamide (pupillary dilator; Alcon). The rat corneas were lubricated with artificial tears 

throughout the duration of the experiments to ensure that the corneas stayed hydrated. Injections 

of 5 mL sterile saline (0.9% wt/vol NaCl in water) were administered subcutaneously 

approximately every 1.5 hours during the anesthesia to ensure proper hydration of the animals 

during the experimental procedures. Although isoflurane is known to reduce the 

electrophysiological responses when compared to ketamine:xylazine, Liu et al.[115] recently 

confirmed that it is possible to evoke STRs using isoflurane. 

3.2.2 Protocol for dynamic IOP elevation 

IOP was raised in one eye by placing an adjustable ligature around the eye anterior to the equator 

for 1 hour for each procedure[114]. The adjustable ligature consists of a 12-cm length of a medium-

size vascular loop (Sentinal Loops; Sherwood-Davis and Geck, St. Louis, MO, USA) measuring 

2.5 mm wide and 1.3 mm thick, which was inserted within plastic tubing with 3-mm internal 

diameter and 1.5-cm length. A light coating of silicone oil was applied to the vascular loop as 

needed to permit easy adjustment of the tubing and to produce the desired IOP elevation. 

Additional topical 0.5% proparacaine hydrochloride was applied to the right eye every 20 minutes 
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while the ligature was in place. The targeted IOP was 35 mmHg to represent an elevated but 

nonischemic level (Table 1). In the rat, an elevated IOP of 35 mm Hg is associated with an 

estimated 10% reduction in retinal blood flow, but not with a significant reduction in vessel 

diameter[116]. The fellow control eye for all rats was left untreated. The IOPs were measured 

using a rebound tonometer (Icare Tonolab; Icare Finland Oy, Helsinki, Finland). IOP was 

measured using the mean of 5 readings, which reported the best reproducibility indicator (Table 

3.1). IOPs were monitored throughout the entire experiment and the loop adjusted when necessary. 

Experiment IOP Procedure Treated eye IOP ± SD 

mmHg 

Control eye IOP ± SD 

mmHg 

STR Pre 12.4 ± 1.5  13.1 ± 1.9 

 During 39.7 ± 4.2  10.6 ± 1.1 

 Post 8.9 ± 0.7  9.7 ± 0.8 

ERG Pre 

During 

Post 

12.4 ± 1.6  

38.4 ± 2.7  

9.1 ± 0.5  

13.1 ± 2.1 

10.4 ± 1.0 

9.8 ± 0.8 

OCT Pre 

During 

Post 

9.1 ± 0.6  

32.1 ± 2.9  

6.3 ± 0.3  

9.4 ± 0.3 

10.9 ± 0.6 

8.9 ± 0.7 

Table 3.1 IOP values attained for each procedure. 

3.2.3 STRs and ERG 

Before electrophysiological testing, the animals were dark adapted for at least 12 hours before 

being transferred in lightproof boxes to the appropriate procedure room. All preparations were 

done under red illumination (631 nm, <10.9 lux). Anesthetized rats were placed onto a water-

heated platform maintained at 38°C (TP650, HHP05; Gaymar, Orchard Park, NY, USA), located 

in a large box built for dark-adapting animals. The head of the rat was placed into a custom-made 
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head holder and held in place using Velcro straps. A nose cone attached to the head holder allowed 

continuous delivery of the isoflurane anesthetic to the rats while they underwent the STR and ERG 

recording procedures.  

One drop of artificial tears (Refresh Tears; Alcon) was administered to each eye before placement 

of a custom-made monopolar silver–silver chloride circular loop electrode onto the limbus of each 

eye. Reference electrodes were placed under the skin just above the ears[117], such that the tip of 

electrode was approximately 2.5 mm away from the lateral canthi of each eye. The ground 

electrode was placed at the back of the head. A commercial handheld Ganzfeld stimulator (Espion 

Colorburst; Diagnosys LLC, Lowell, MA, USA) was placed immediately in front of each eye. 

Binocular STRs and ERGs were recorded before increasing the IOP, 45 to 50 minutes into the 1-

hour raised IOP procedure, and 30 minutes after the loop removal. STRs were recorded from 7 

rats over 500 ms at a 1 kHz sampling rate with the system’s built-in filter of 0.3 to 30 Hz, similar 

to the protocol of Bui and Fortune[118]. Following 10 minutes in the light-proof box, the rats were 

exposed to binocular uniform flashes of light with step-wise increases in luminance. Twelve 

luminance levels were used for the STR recordings (-6.64 log cd·s/m2 to -3.04 log cd·s/m2), with 

each luminance level consisting of 60 one-millisecond white flashes, separated by a 2-second dark 

interval. STR protocols were identical for rats, regardless of the targeted IOP. ERGs were recorded 

from the same rats that underwent STR recordings (n=7) at a 2 kHz sampling rate with the built-

in filter set to 0.3 to 500 Hz immediately following the STR luminance series, that is, within the 

1-hour of IOP elevation. The ERG luminance series consisted of 14 single 1 ms white flashes (-

2.79 log cd·s/m2 to 1.46 log cd·s/m2) that were separated by progressively longer dark intervals 

(10–95 seconds). 
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3.2.4 Ultrahigh-resolution optical coherence tomography (UHR-OCT)  

Morphologic images of the retina were acquired in vivo (n=6 rats) using a research-grade UHR-

OCT system designed and built by our group specifically for imaging of rodent retinas. In brief, 

the UHR-OCT system operates in the 1060 nm spectral range (Superlum Ltd., 𝜆c=1020 nm, ∆k= 

110 nm, Pout=10 mW). The UHR-OCT imaging probe consists of 3 broadband NIR achromat 

doublet lenses (f1=10 mm, Ø1=6 mm, f2=60 mm, Ø2=25 mm, f3=30 mm, and Ø3=25 mm; Edmund 

Optics, Barrington, NJ, USA) and a pair of galvanometric scanners (Cambridge Technologies, 

Bedford, MA, USA), and is designed to deliver a collimated infrared beam with 1.5-mm diameter 

and optical power of 1.7 mW to the rat cornea, thus providing approximately 3 µm axial and better 

than 5 µm lateral resolution in the rat retina at an imaging rate of 47,000 lines/second[119]. The 

digital axial resolution is 1.6 µm. For the UHR-OCT imaging procedure, the rats were placed onto 

a heated stage. The treated and untreated control eyes were imaged sequentially. The imaged eye 

was kept open using a custom-made lid retractor and artificial tears were administered every few 

minutes to keep the cornea hydrated. Three dimensional (3D) stacks of cross-sectional OCT 

images (1024 lines/frame × 1024 pixels/line) of the retina were acquired from an approximately 

2×2 mm2 area in the retina centered at the ONH. Pre loop UHR-OCT images were collected 

monocularly on the future control eye, followed by recordings of the future treated eye. The IOP 

was then raised in the treated eye and images from this eye were collected 30 minutes into the 

raised IOP procedure. Recordings for the control eye were collected immediately thereafter, while 

the loop still was on the treated eye. At the end of the 1-hour raised IOP procedure, the loop was 

removed and recordings for the control and then the treated eyes were likewise sequentially 

collected 30 minutes after the removal of the loop. 
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3.2.5 Histology and immunocytochemistry 

Five days after the initial IOP elevation, the rats were killed, and then perfused with heparinized 

saline followed by 4% (wt/vol) paraformaldehyde (#158127; Sigma-Aldrich Corp., St. Louis, MO, 

USA) in PBS. Eyes were enucleated and the orientation of the globe was indicated using a suture 

at the nasal limbus. The globes were postfixed for 2 days in 4% (wt/vol) paraformaldehyde in PBS 

and then briefly stored in PBS.  

The globes that were used for histologic analysis were embedded in paraffin. Eyes from all 6 rats 

were serially sectioned in the sagittal plane passing through the optic nerve at a thickness of 6 lm. 

Representative sections on either side of the optic nerve were stained with hematoxylin (SL90; 

Statlab, Lewisville, TX, USA) and eosin (C.I. 45380; EMS, Hatfield, PA, USA) for light 

microscopy. On other sections, also from either side of the optic nerve, antigen retrieval was 

performed using boiling citric acid treatment (1.8 mM citric acid, 8.2 mM sodium citrate) for 10 

minutes. Sections were allowed to cool at room temperature for 30 minutes. Retinal sections were 

treated with 3% (vol/vol) hydrogen peroxide (20 minutes) to quench endogenous eroxidase and 

then additionally quenched in 0.3% (vol/vol) sodium borohydride (# S678-10; Fisher Scientific, 

Pittsburgh, PA, USA) in PBS for 30 minutes before placing them in 5% (vol/vol) normal goat 

serum in PBS (1 hour) to prevent nonspecific binding. Two primary antibodies were used: rabbit 

polyclonal anti-poly (ADP-ribose) polymerase (PARP) p85 fragment (1:100; #G7341, Promega, 

Madison, WI, USA) to evaluate for apoptosis, and rabbit monoclonal anti–microtubule-associated 

protein light chain 3 (anti-LC3A/B [N-terminus]; 1:100; #MABC176, Millipore, Billerica, MA, 

USA) to evaluate for autophagy. All sections were incubated with primary antibody overnight at 

48C before incubation with Cy3-conjugated AffiniPure Goat Anti-Rabbit IgG (1:200; #111-165-
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144, HþL chains; Jackson Immuno-Research Laboratories, Inc., West Grove, PA, USA) at room 

temperature for 1 hour. Sections then were rinsed in water and allowed to air dry before mounting 

with Aqua-Poly/Mount (#18606-20; Polysciences, Inc., Warrington, PA, USA) under a coverslip. 

Retinal sections were examined using a Zeiss LSM510 Meta confocal microscope (Carl Zeiss 

Meditec, Jena, Germany). 

3.2.6 Analysis of STR and ERG data 

The positive STR (pSTR) amplitude was considered to be the peak positive change in voltage from 

the baseline voltage to the first peak in the STR recording. Since we were interested in RGC 

function, we examined pSTRs, which are considered to involve RGCs[120], [121]. We did not 

examine negative STRs (nSTRs), since they were not consistently present in the records and more 

likely involve amacrine cells[120], [121]. An absence of nSTRs also has been observed in other 

rodent studies[115], [122]. For ERG traces, a-wave amplitudes were measured as the maximum 

change in voltage from the baseline to the first negative trough, while b-wave amplitudes were 

measured as the change in voltage from the a-wave to the peak positive change following the a-

wave. For all three measures (pSTR, a- and b-waves), implicit times were measured from the light 

stimulus onset to the peak amplitude. A few of the ERG recordings were noticeably translated by 

the recording system, where the beginning of the waveforms were not recorded until just before 

the a-wave appeared, indicating a failure in the trigger timing of the recording software. However, 

the intervals between the a- and b-waves, as well as their amplitudes were unaffected, therefore, 

only the implicit times for ERGs that were improperly recorded were adjusted. For each shifted 

ERG recording, the a-wave implicit time was matched to the average of those recordings at the 

same luminance level, same IOP state, and same eye (n=6). The rest of the waveform was shifted 
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by the same correction factor. Oscillatory potentials (OPs) were isolated from ERG recordings by 

applying a customized SigmaPlot bandpass filter (100–300 Hz). For each recording, the RMS 

value for the OP amplitudes were determined for a 60 ms window starting from the a-wave implicit 

time. 

3.2.7 Analysis of UHR-OCT data 

Cross-sectional images of the retina were generated from the raw morphologic UHR-OCT data 

using a custom MATLAB based software (Mathworks, Natlick, MA, USA). Three-dimensional 

reconstruction of the cross-sectional images (Amira; FEI Company, Hillsboro, OR, USA) was 

used to generate a 3D view of the imaged retinal area at and around the ONH. The unique pattern 

of the surface retinal blood vessels was used as a marker to align all 3D image data sets acquired 

before, during, and after IOP elevation to allow for direct comparison of the morphologic changes 

in the rat retina at all the time points of the study. By collapsing the 3D image to a 2D en-face 

projection image, and fitting the end points of the Bruch’s membrane at the ONH with an ellipse, 

we were able to determine the center of the ONH in a consistent manner for image data sets 

acquired at different time points of our study. For our analysis, we considered the end points of 

the Bruch’s membrane to be the points at which the Bruch’s membrane/RPE interface terminates 

on either side of the optic nerve in a cross-sectional image[9], [123]. Once the ONH center was 

determined, the B-scan passing through it was used for the calculation of the cross-sectional 

Bruch’s membrane opening (xBMO) depth, defined here as the average depth orthogonal to the 

plane connecting Bruch’s membrane/RPE interfaces at the edges of the cross sectional image (Fig. 

3.1). Cross-sectional BMO depths were analyzed as a function of loop wear by the same two 
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experimenters for all images. 

 

Figure 3.1 Representative ONH-centered B-scan demonstrating the method used to determine cross-sectional, xBMO depth. Each 

xBMO depth (blue line) was determined relative to the orthogonal plane connecting Bruch’s membrane/RPE interfaces at the 

edges of the cross- sectional image (red line) and averaged. Vertical and horizontal scale bars = 100 µm. 

3.2.8 Statistical Analysis  

For all data, 2-way repeated-measures ANOVA (Statistica 8.0, Statsoft, Boston, MA, USA) was 

used to determine differences in the amplitudes, implicit times, and xBMO depths, with the eye 

used (treated versus control) as one factor and the loop condition (pre-, during, and postloop wear) 

as the second factor. Interaction between the two main effects also was tested. Greenhouse-Geisser 

corrections were used for epsilon values less than or equal to 0.75. Bonferroni-corrected multiple 

comparison tests were used post hoc to determine any differences between the loop conditions. 

For all tests, differences were considered significant for P < 0.05. All means are reported with the 

SD unless otherwise noted. For all tests, differences were considered significant for P < 0.05. All 

means are reported with the SD unless otherwise noted. 
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3.3 Results  

3.3.1 STR and ERG amplitudes  

Peak amplitudes and implicit times were measureable from the STR recordings (Fig. 3.2A) elicited 

with luminance levels greater than -4.24 log cd·s/m2; responses were most consistently observed 

for pSTRs elicited by the highest stimulus luminance (-3.04 log cd·s/m2). Although there were 

exceptions among the individual eyes, higher stimulus intensities were, on average, associated 

with higher pSTR amplitudes (P<0.0001). Loop-associated elevations in pSTR amplitudes were 

consistently observed at luminances greater than -4.24 log cd·s/m2. Increasing the IOP led to 

enhancement of the pSTR peak amplitudes (Figs. 3.2A, 3.2B). In treated eyes, the mean pSTR 

amplitudes (±S.D.) during loop wear (86.4 ± 51.9 µV) were significantly higher (P<0.0001) than 

those before loop wear (7.9 ± 5.1 µV) and higher (P<0.0001) than those after loop removal (20.5 

± 11.3 µV). Positive STR amplitudes before and after loop wear were not significantly different 

(P=1.000). No differences in pSTR amplitudes were detected in the control (untreated eyes) as a 

function of loop wear (P=1.000 for all comparisons), indicating an absence of an IOP-associated 

fellow eye effect. Pre- and postloop pSTR amplitudes were not statistically different between the 

treated and control eyes before loop placement (7.9 ± 5.1 vs. 8.1 ± 6.1 µV, respectively, P=1.000) 

or postloop placement (20.5 ± 11.3 vs. 11.3 ± 6.4 µV, respectively, P=1.000). However, during 

loop wear, the pSTR amplitudes were higher in the treated eyes than in the control eyes (86.4 ± 

51.9 vs. 9.3 ± 5.2 µV, respectively; P<0.0001; Figs. 2A, 2B). In the treated eyes, implicit times 

during loop wear (131.8 ± 16.6 ms) were longer than those during the pre- (112.4 ± 13.4 ms; P < 

0.0001) or postloop (118.9 ± 16.2 ms; P<0.0001) conditions (Fig. 3.2B, inset). Moreover, 

differences were detected between the preloop and postloop conditions in these treated eyes 
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(P=0.0299). Within the control eyes, no implicit time differences were detected as a function of 

loop wear (P=1.000 for all comparisons). Like the patterns observed for the pSTR amplitudes, the 

implicit times were similar between the treated and control eyes for the preloop (112.4 ± 13.4 vs. 

113.8 ± 14.9 ms, respectively, P=1.000) and post loop (118.9 ± 16.2 vs. 116.5 ± 16.5 ms, 

respectively; P=1.000) time-points. However, implicit times were longer for treated eyes than 

control eyes (131.8 ± 16.8 vs. 115.3 ± 19.5 ms, respectively; P<0.0001) during loop wear. 

 

Figure 3.2 (A) Sample STRs from a treated eye (thick black lines) and its control eye (thin grey lines) prior to, during, and 

following 35 mmHg IOP elevation. (B) Mean pSTR amplitudes ± S.E. of STRs for the treated eyes (filled symbols) and control 

eyes (empty symbols) during the various stages of loop-wear. STRs were evident at flash intensities greater than -4.24 log 

cd·s/m² up to -3.04 log cd·s/m². Inset: Mean implicit times ± S.E. of the treated (filled symbols) and control (empty symbols) 
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eyes during the various stages of loop-wear. Asterisks (*) denote significant differences (P < 0.05) relative to the respective pre-

loop condition. Daggers (†) represent differences (P< 0.05) between eyes for the specific loop condition. Please refer to text for 

overall and all other comparisons. 

 

All ERG waveforms consistently showed a- and b-wave amplitudes and OPs on the rise of the b- 

wave at luminances greater than -0.54 log cd·s/m2 (Fig. 3.3A). Like the pSTRs, amplitudes 

generally were greater with higher luminance levels (P=0.0011) and during elevated IOP (Figs. 

3A–C). Specifically, a-wave amplitudes during loop wear (-228.4 ± 29.7 µV) were significantly 

greater in magnitude than those during the preloop (-31.4 ± 9.9 µV; P<0.0001) and postloop (-49.0 

± 12.6 µV; P<0.0001) conditions (Fig. 3.3B). Similarly, b-wave amplitudes during loop wear 

(747.9 ± 74.5 µV) were significantly greater than those before (123.8 ± 29.0 µV; P<0.0001) and 

following (200.0 ± 56.0 µV; P<0.0001) loop wear (Fig. 3.3C). In the treated eyes, there were no 

differences between the pre- and postloop conditions in the a-wave amplitudes (P=0.4602), but b-

waves amplitudes during postloop condition were greater than those before loop wear compare 

200.0 ± 56.0 vs. 123.8 ± 29.0 µV, respectively; P=0.0081). The enhanced a-wave and b-wave 

amplitudes in the treated eyes were significantly greater than those in the control eyes (P<0.0001 

for both; Figs. 3B, 3C). A- and b-wave amplitudes in control eyes did not differ as a function of 

contralateral loop wear (P=1.000 for both ERG components). A-wave implicit times also were 

longer during loop wear (31.6 ± 2.4 ms) than those during preloop (27.8 ± 2.6 ms; P<0.0001) and 

postloop (27.8 ± 1.8 ms; P<0.0001) conditions (Fig. 3.3B, inset). Similarly, b-wave implicit times 

were also longer during loop wear (78.9 ± 5.6 ms) than those during pre- (68.9 ± 5.6 ms; P<0.0001) 

and postloop (73.5 ± 5.2 ms, P=0.0223) conditions (Fig. 3.3C, inset). There were no differences 

between pre- and postloop a-wave implicit times (P=1.000), however, b-wave implicit times for 

postloop conditions were longer than those for preloop (73.5 ± 5.2 vs. 68.9 ± 5.6 ms respectively; 
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P=0.0247) conditions. Implicit times during loop wear for a- and b-waves were greater than control 

eyes (31.6 ± 2.4 vs. 28.5 ± 2.0 ms, P=0.0008 for a-waves; 78.9 ± 5.2 vs. 72.5 ± 3.8 ms, P=0.0054 

for b-waves; insets of 3B and 3C). For both a- and b-wave implicit times, control eyes did not 

change for all comparisons (P>0.1275). Oscillatory potential amplitudes were greater in the treated 

eyes during loop wear (Fig. 3.4A) and the RMS values the OPs during IOP elevation (33.1 ± 10.1 

µV) increased significantly compared to pre- (7.0 ± 1.3 µV; P<0.0001) and postloop (8.4 ± 2.9 

µV; P<0.0001) wear conditions (Fig. 3.4B). For treated eyes, pre- and post-RMS values did not 

significantly differ (P=1.000). RMS values did not change for control eyes for all loop conditions 

(P=1.000). 

 

Figure 3.3 (A) Sample ERG from a treated eye (thick black lines) and its control eye (thin grey lines) prior to, during, and 

following 35 mmHg IOP elevation of the treated eye. Enhanced responses occur with IOP elevation. (B) Mean peak amplitudes ± 

S.E. of the a-waves and (C) b-waves for the treated eyes (filled symbols) and control eyes (empty symbols) during the various 

stages of loop-wear. Inset: Mean (B) a-wave, and (C) b-wave implicit times ± S.E. of the treated (filled symbols) and control 
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(empty symbols) eyes during the various stages of loop-wear. Asterisks (*) denote significant differences (P<0.05) relative to the 

respective pre-loop condition. Daggers (†) represent significant differences (P<0.05) between eyes for the specific loop condition. 

Please refer to text for overall and all other comparisons. 

 

 

Figure 3.4 (A) Sample OPs (isolated via a 100-300 Hz bandpass filter) from a treated (thick black lines) and its control (thin grey 

line) eye prior to, during, and following 35 mmHg IOP elevation of the treated eye at a luminance of 2.88 log cd·s/m². (B) Mean 

RMS values ± S.E. for OPs prior to, during, and following 35 mmHg IOP elevation of the treated (filled symbols) and control 

(empty symbols) eyes. Please refer to text for comparisons. 

3.3.2 Morphology changes (both OCT and histology) 

Ultra-high resolution OCT imaging indicated that IOP elevation had an effect on physiological 

cup morphology; 3-D and 2-D cross-sectional images of the ONH indicated a ‘‘backward 

bowing"[124], [125] of the retina (Fig. 3.5). The xBMOs during IOP elevation (147.1 ± 30.3 µm) 

were significantly deeper than before loop wear (59.5 ± 25.0 µm, P=0.0134, Table 3.2), but not 

significantly deeper compared to postloop wear (80.9 ± 16.1 lm; P=0.0701). However, pre- and 

postloop xBMO depths for the treated eye also were not significantly different (P=1.000), 

indicating a partial recovery after 30 minutes of the xBMO depths to their preloop values. The 

xBMO depths during IOP elevation were greater in the treated eye compared to depths in the 
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control eyes (compare 147.1 ± 30.3 vs. 67.3 ± 11.2 lm, respectively; P=0.0238, Table 3.2), while 

preloop xBMO depths between the eyes were similar (treated versus control, 59.5 ± 24.9 vs. 68.0 

± 38.6 µm; P =1.000, respectively). The control eye xBMO depths did not change as a function of 

contralateral eye loop wear. Hemotoxylin and eosin (H&E) staining of retinal sections revealed no 

apparent differences (Figs. 3.6A, 3.6B) between the treated and control eyes. An absence of a 

difference between the eyes also was noted for specific cell death markers in the retinas. While the 

retinas of the treated and control eyes were moderately labelled with anti-LC3A/B, an autophagy 

marker, in many of the cells within the GCL, and in the IPL and OPL, there appeared to be no 

difference in the intensity or location of labeling between eyes (Figs. 3.6C, 3.6D). Similarly, no 

differences were detected between the control and treated eyes for poly (ADP-ribose) polymerase 

(PARP) p85 fragment (Figs. 3.6E, 3.6F), a marker for apoptosis. Fragment-labeling of PARP p85 

was absent in the inner retina of the treated and control eyes, and labeling resembled that of the 

negative control (Fig. 3.6G). A positive early glaucoma control for PARP p85 fragment shows that 

this marker localizes to the cytoplasm of cells in the GCL (Fig. 3.6H; Joos, unpublished data). 

Thus, the analysis using immunocytochemistry indicated that short-term IOP did not result in 

apoptosis within 5 days of the initial IOP elevation.  
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Figure 3.5 OCT images of the treated eye (A, D) prior to, (B, E) during and (C, F) following loop-wear centered about the ONH. 

Note "posterior bowing" of the ONH in both the (B) three dimensional and (E) cross-sectional images. 2-D image scale bars = 

100 µm. 

IOP Procedure Treated eye BMO Depth ± SD Control eye BMO Depth ± SD 

Pre 59.5 ± 24.9 µm 68.0 ± 38.6 µm 

During 147.1 ± 30.3 µm *† 67.3 ± 11.2 µm 

Post 80.9 ± 16.1 µm 68.4 ± 19.8 µm 

Table 3.2 Mean Bruch’s membrane opening (BMO) depth derived from morphological OCT images of rats in vivo. Asterisks (*) 

denote significant differences (P < 0.05) relative to the respective pre-loop condition. Daggers (†) represent differences (P < 0.05) 

between eyes for the specific loop condition. For more comparisons, please see text. 
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Figure 3.6 Histological cross-sectional images of the retina from (A) a control and (B) a treated eye. No gross differences in the 

retinas were observed. Scale bars = 50 µm. Micrographs of retinas from (C) a control and (D) a treated eye labelled for LC3A/B. 

LC3A/B was detected in the GCL, IPL, and OPL. No differences in the labelling were detected. Autofluorescence was present 

within the photoreceptor layer (PRL) as demonstrated by the primary antibody negative control (not shown). Scale bar = 50 µm. 

Micrographs of retinas from (E) a control and (F) a treated eye labelled for poly (ADP-ribose) polymerase (PARP) p85 fragment. 

Only autofluorescence was detected within the photoreceptor layer, as demonstrated by the primary antibody negative control 

(G). A positive control from a 6-week intermittently elevated IOP glaucomatous rat {unpublished data from Joos et al. \, 2010 

#90} shows the PARP p85 fragment in the cytoplasm of an apoptotic cell in the RGC layer (arrow) (H). Scale bar = 50 µm. 
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3.4  Discussion 

This study was done to determine whether early changes to retinal function in response to acute 

moderately-raised IOP was detectable electrophysiologically and morphologically. In eyes with 

IOPs elevated to approximately 35 mm Hg, the pSTR and ERG a-wave and b-wave amplitudes 

were increased compared to those before loop wear, and also compared to the control eyes (Figs. 

3.2, 3.3). Other investigators typically show reductions in the ERG and pSTR amplitudes, usually 

at IOPs greater than 50 mm Hg, with a consistently low amplitude starting at approximately 80 

mm Hg and above[53], [112]. Our study examined acute, nonischemic moderate levels of IOP that 

were elevated using a vascular loop, while most other studies use cannulation into either the 

anterior or vitreous chamber[53], [126]. The increase, rather than decrease, in pSTR amplitude 

that we observed in this experiment is likely related to the moderate level of IOP and cannot be 

related solely to the use of the vascular loop to increase IOPs, as opposed to IOP elevation based 

on cannulation or microbead injections. Using the same STR protocols, pilot data indicated that 

pSTR amplitudes were unaffected when the loop was on the treated eye without an increase in IOP 

(Fig. 3.8A). However, when IOP levels were elevated with the vascular loop to ischemic levels 

(80 mm Hg), at which blood flow and vessel diameter decrease by 80%[116], a severe reduction, 

rather than an increase, in the pSTR amplitudes was observed (Fig. 3.8B), a finding that is similar 

to the results presented by Bui et al.[112], who show an inflection point at 80 mm Hg, IOPs above 

which result in all ERG components (except for the a-wave) unable to ‘‘with- [stand] this pressure 

level."[112] It also should be noted that in other studies examining the incremental effects of 

acutely elevated levels of IOPs on the pSTR amplitudes, the data for IOPs at or below 30 mm Hg 

imply slight increases in pSTR responses[53], [112] despite the difference in method of IOP 
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elevation. Given that the rats were anesthetized with ketamine, the increase in the pSTR amplitudes 

that was observed in these studies suggest that the increase in amplitudes in our study are 

independent of the anesthetic used. Finally, the different rat strains used in other studies may also 

be a contributing factor when comparing our study to previously published literature. 

 

Figure 3.7 STRs during loop-wear in the treated (thick black lines) and control (thin grey lines) eyes (A) with no increase in IOP 

(10 mmHg) and (B) at 80 mmHg. 

It is possible that using the vascular loop might change the global shape of the eye with backward 

bowing and, therefore, potentially affect the signals received at the cornea. However, as observed 

by Westall et al.[127], reductions rather than the observed increases in ERG amplitudes would be 

expected for longer eyes, while enhancement of the signal would be expected for shorter eyes. The 
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posterior bowing of the retina observed in our experiments, must be related, at least in part, to the 

increase in IOP. Backward bowing of the posterior pole following IOP elevation has been known 

for decades and for a number of structures, including the optic disc in infant humans[128], the 

retina in rats[116], the retinal pigment epithelium Bruch’s membrane[124] in primates, and the 

lamina cribrosa in primates[9] and humans[129]. While most of these studies involve cannulation 

of the anterior chamber[60], [116], [124] or vitreous chamber[129], [130] as the means of elevating 

IOP, Gramlich et al.[76] qualitatively showed that posterior bowing deepened with increasing 

levels of IOP in rats whose IOPs had been raised using a loop around the equator of the eye, and 

Ivers et al. [15] showed deepening of the anterior lamina cribrosa surface following laser treatment 

of the trabecular meshwork in rhesus monkeys. The xBMO depth changes observed in our study 

are comparable to those of the aforementioned investigators. Although morphologic responses 

were measured in rats with IOPs raised before the final assessment, our acute, moderately-elevated 

IOP model revealed no changes to cell death marker levels in the treated eyes relative to the control 

eyes (Figs. 6, 7). This result is consistent with an acute, nonpathologic response, despite IOP 

elevation for the prior 2 sessions. These markers are important because their presence has been 

reported in previous investigations that are more chronic in nature[131]. It is probable that 

additional IOP elevations over longer periods of time would lead to effects on the xBMO depths; 

however, the finding that the control eye preloop xBMO depths (from eyes that had no IOP 

elevation) were not different from the treated eye preloop xBMO depths (IOPs had been elevated 

before the UHR-OCT imaging session; Table 5.2) would seem to indicate that the eye can tolerate 

a small number of IOP elevations. Elevation of the a-wave, b-wave, and OPs in the scotopic ERG 

implies that the outer retina also is affected by moderately elevated IOP. Electrophysiology has 
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demonstrated reduction of these components in animal models with chronic ocular hypertension 

(OHT) including Swiss mice with histologic abnormalities of rod bipolar and horizontal cells.39 

DBA/2NNia mice with thinning of the GCL, IPL, OPL, and rods[132], and DBA/2J mice with 

synaptic abnormalities of outer retinal cells[133]. In humans with advanced glaucoma, reductions 

in scotopic ERG amplitudes for the a-wave[134], b-wave[134], [135], and OPs[135], [136] have 

been reported, as well as loss of the positive peak of the STR[134], and reduced focal ERG 

amplitudes[137]. 

Chen et al.[138] have suggested that a decrease in b-wave ERG amplitudes are indicative of 

ischemia but supranormal ERGs also are suggestive of pathology, rather than a normal variant.47 

Supranormal scotopic a-wave and b-wave amplitudes with normal implicit times have been noted 

in specific conditions, including loss of retinal dopaminergic amacrine cells[139], [140], blockage 

of retinal dopamine receptors[141], [142], gestational low level lead exposure in rats[143] and 

humans[144], loss of a mitochondrial ATP transporter in Ant1/mice[145], and in a microbead 

occlusion mouse model, with an approximate 20%increase in b-wave amplitude present up to 48 

weeks with a 3 to 5 mm Hg mean IOP elevation[111], [146]. Supranormal a-wave and b-wave 

scotopic and photopic ERGs with shortened implicit times also have been found in the Fat-1 mouse 

with deletion of n-6 and accumulation of n-3 fatty acids in the retina[147], and amplitudes were 

likewise increased with implicit time variance in the <6-week-old retinopathy, globe enlarged (rge) 

chicks[148], whereas the scotopic b-wave is supranormal with prolonged implicit times in a human 

cone dystrophy with a genetic mutation in the KCNV2 potassium channel gene[149]. While we 

are not certain what mechanism is responsible for the increase in the amplitudes of all the 

electrophysiological signals, studies by Ward et al.[150] showed an approximately 2-fold increase 
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in the spontaneous firing of excitatory signals in RGCs following IOP elevation by microbead 

injection into the anterior chamber of mouse eyes compared to eyes that had been injected with 

saline only. The increased retinal activity was postulated to be mediated by the transient receptor 

potential vanilloid family of cation channels that is activated in response to IOP-associated 

stress[150]. The enhanced pSTR amplitudes that were observed in the present study may reflect a 

similar elevated IOP-induced increase in RGC electrical activity.  

Nitric oxide (NO) is another possibility for a rapidly acting agent that can mediate the increase in 

electrophysiological signals that we observed. Vielma et al.[151] showed that low level intravitreal 

injections of NO donors into rat eyes were associated with increases in the amplitudes of ERG a- 

and b-waves, OPs and pSTRs. These enhancements were reversible, with ERG amplitudes 

decreasing to match those recorded before the exogenous NO injections. Nitric oxide has a role in 

basic physiological functions such as visual signal processing in the inner retina and in 

photoreceptors[152]–[158], but it also has been associated with dysfunctional retinas of various 

mammalian species[159]–[164]. Several investigators have shown that chronic elevation of IOP 

to less than 35 mm Hg in the rat eye is associated with NO production in the retina[165], [166] 

and the optic nerve[167], [168]. An acute increase in IOP to 35 mm Hg potentially could increase 

NO levels, which presumably would lead to an enhancement of the electrophysiological responses. 

The finding that pathologic markers were not enhanced in this study following acute elevations of 

IOP (Figs. 6, 7) supports the idea of a physiological, rather than pathologic, response to the 

mechanical stress associated with a short-term moderate IOP elevation. Alternatively, pathologic 

changes may not have been captured, given the relatively short time course of the experiment. 

We also note that should a biochemical factor be responsible for mediating the enhanced pSTR 
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and ERG amplitudes, the factor appears to be transient. Although postloop responses were not 

significantly different from those before loop wear, the means were slightly higher after loop 

removal (Figs. 2, 3), suggesting that electrophysiological responses were collected before retinas 

could fully recover to their preloop physiological state. We also have observed that the pSTR 

amplitudes 45 to 50 minutes after loop removal, which is longer than the 30 minutes we used for 

this experiment, return to those of the preloop conditions (data not shown). 

3.5  Conclusion 

In summary, our results indicated measurable changes in the physiological response of retinal cells 

to visual stimuli during acute moderate IOP elevation using a vascular loop. Our study showed 

that IOP elevation to 35 mm Hg in the rat is associated with an increase in the electrophysiological 

response as well as a backward bowing of the ONH. The electrophysiological responses observed 

may have been mediated by transient biochemical factors released in response to the elevated IOP. 

The ability to observe changes in electrophysiological and morphologic responses with UHROCT 

might present a model for detection of moderate, fluctuating IOP elevations. Further work is 

required to fully understand the mechanisms involved in mediating the observed effects and 

whether the early detectable changes are relevant for humans. 
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Chapter 4 The effect of the IOP elevation levels (ischemic vs non-

ischemic) on the rat retina structure, function and blood perfusion 

Notes and Acknowledgement 

This chapter describes the optical design of a combined OCT+ERGs system that was developed 

for simultaneous acquisition of OCT morphological images, Doppler OCT blood flow data and 

ERG recordings. The OCT+ERG system was used in a rat model of glaucoma to investigate the 

effect of ischemic and non-ischemic acute IOP elevation levels on the rat retinal morphology, 

blood flow and perfusion and the retinal response to visual stimulation. The content of this chapter 

is based on the following journal manuscript that was submitted to Scientific Reports: 

B. Tan, B. Maclellan, E. Mason and K. Bizheva. “The effect of acute intraocular pressure elevation 

to ischemic and non-ischemic levels on the rat retinal structure, function and blood perfusion, 

evaluated with a combined OCT + ERG system.”  
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Bingyao Tan analyzed the data and wrote the first draft of the manuscript. 

Kostadinka Bizheva contributed to the interpretation of the results. 
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4.1 Introduction 

Raised IOP is a well-known risk factor in open angle glaucoma and therefore it is the most studied 

pathogenic characteristic of glaucoma. In the past, multiple studies have reported separately the 

effect of IOP elevation on retinal blood flow or retinal function. Blood flow detection methods 

included laser Doppler flowmetry[169], [170], ultrasound[25], and MRI[171], adaptive optics 

OCT[172] and adaptive optics scanning laser ophthalmology[173]. Visually evoked changes in 

the retinal function were typically assessed with ERG or VEP. Previous studies on animal models 

of elevated IOP-induced changes in retinal blood flow and retinal function showed large variability 

of results and conclusions within and between different studies, most likely due to use of different 

imaging systems or focusing on different animal study related parameters such as blood 

pressure[174], animal age[27], [37] and strain[175]. To date, only a few studies have reported 

assessment of both retinal blood flow and function during IOP manipulation[176]. In all of those 

studies, either separate groups of animals were used, or the same animals were re-anesthetized and 

the retinal function and blood flow were measured separately during two successive acute IOP 

elevations. A combined OCT and ERG system would enable simultaneous imaging and assessment 

of retinal morphology, blood flow and function, which will reduce the variance in the acquired 

data and minimize the effect of additional anesthesia on the retinal function and blood flow. Such 

a combined OCT+ERG system has been used recently to assess simultaneously and correlate[119], 

[177] visually evoked intrinsic optical signals and ERG recordings with retinal morphology in 

chicken. The same system was also used to assess neurovascular coupling in the rat retina by 
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measuring simultaneously and correlating visually evoked changes in the retinal blood flow and 

function[178]. Therefore, the OCT+ERG technology combined with various scanning protocols 

for Doppler OCT and OCTA could be serve as a very useful research tool to investigate the 

dynamic correlation between morphological, blood flow and functional changes in the retina for 

various retinal diseases, including glaucoma. 

In animal models of glaucoma, both acute and chronic IOP elevation are well-documented to cause 

both reduction in the retinal blood flow and decrease in the retinal functional response to visual 

stimulation. Specifically, in rodents[53], [179], monkeys[46], [180], and rabbits[24], acute IOP 

elevation is associated with temporary impaired retinal cell function, assessed by ERG, for IOP 

levels of 50 mmHg and higher, while in other studies, reduced retinal blood flow[25], [57]–[59] 

was detected at IOP levels as low as 30 mmHg. The difference in the ways retinal blood flow and 

retinal function are resistant to changes in their responses to acute IOP elevation was partially 

explained by a mathematical model[176] which proposed that increased oxygen extraction ratio 

compensates for the relative ischemia caused by the reduced blood flow in order to sustain retinal 

function. This model was validated through studies on rodents with normal and abnormal blood 

pressure[181] and with/without diabetes[182] where the IOP was elevated using cannulation. In 

those studies, all animals exhibited more preserved retinal function compared to retinal blood flow 

for IOP elevation to moderate levels, while both attenuated retinal function and blood flow were 

observed for ischemic IOP levels (>60 mmHg).  

Recent studies[175], [183], [184] by our research group also examined changes in the rat retinal 

function in response to IOP elevation in different rat strains and under different types of anesthesia. 

The IOP in those studies was elevated to a non-ischemic level of 35 mmHg using a vascular 
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loop[114]. In one of the studies, the IOP was also raised to an ischemic level of 80 mmHg using 

the same method. Results from all of those studies showed temporary increase in the ERG a-wave 

and b-wave magnitudes by ~ 5x to 7x (supra normal ERG) during IOP elevation to 35 mmHg, 

compared to baseline and post-loop measurements, while no significant ERG response was 

observed for IOP elevation to 80 mmHg. Given the close relationship between retinal function and 

retinal blood flow, it is worth investigating what is the retinal blood flow response to acute IOP 

elevation, induced by the vascular loop, as well as what is the correlation between the retinal blood 

flow and functional changes for different levels of IOP spanning from non-ischemic to ischemic 

ones. In this study, we used a combined OCT + ERG system, as well as DOCT and OCTA image 

acquisition protocols to measure simultaneously changes in the rat retina structure, blood flow, 

blood perfusion and function in response to step-wise IOP elevation from 10 mmHg (normal level 

for healthy rat retina) to 70 mmHg (ischemic level).  

4.2 Methods 

4.2.1  OCT+ERG system and data acquisition 

The combined OCT+ERG system used for this study was developed recently by our research group 

for investigating the neurovascular coupling in the rat retina[177], [178], [185] and the effect of 

acutely elevated IOP on the retinal morphology and function. Briefly, the OCT system operates in 

the 1060 nm spectral region and provides ~3.5µm axial and ~5 µm lateral resolution in retinal 

tissue with ~100 dB sensitivity for 1.7 mW optical power of the imaging beam incident on the 

cornea. Ultra-sensitive OMAG protocol was utilized to generate OCTA images of the retina 

around the ONH (3.4 mm x 3.4 mm; 512 A-scans × 512 positions × 4 scans/position). DOCT 

images were acquired with highly overlapped scans from a relatively smaller area centered at the 
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ONH (2 mm x 2 mm, 3000 A-scans x 200 B-scans). The camera image acquisition rate was set to 

92 kHz, resulting in blood flow velocity detection range of [-17.4, 17.4] mm/s. A commercial ERG 

system (Diagnosys LLC, Lowell, MA, USA) was integrated with the OCT system and the data 

acquisition for the two systems was synchronized. A custom visual stimulator was designed and 

integrated with the OCT imaging probe[177], [178]. During the OCT+ERG imaging 

procedure, light from the visual stimulator was focused at the pupil plane of the rat eye in 

order to generate a wide angle, almost uniform Maxwellian illumination of the retina. For 

this study, five scotopic ERG traces, separated by 1-minute dark period, were recorded with white 

light, single flash stimuli of 1 ms duration and 1.23 log scotopic cd·s/m² illumination level. 

Because the vascular loop introduces mechanical deformation of the eye ball that can cause 

changes in the axial length of the eye and corneal curvature, and therefore affect the magnitudes 

of the ERG metrics such as the a-wave, b-wave and oscillatory potentials, we used a swept source 

OCT system (SS-OCT) with sufficiently long scanning range (7 mm in free space) to evaluate 

those changes. Since the SS-OCT system was originally designed for imaging of the human 

cornea, its optical design and performance was described in an earlier publication from our 

group[186]. Briefly, the SS-OCT system utilizes a tunable laser (Axsun Technologies, Inc.) with 

sweep range centered at 1040 nm, sweep rate of 100 kHz and 50% duty cycle. It provides 7 µm 

axial and 15 µm lateral resolution and imaging range of 7 mm in free space. To evaluate changes 

in the shape of the rat eye during IOP elevation to levels ranging from 10 mmHg to 70 mmHg, SS-

OCT volumetric scans were acquired from a 7 mm x 7 mm area centered at the corneal apex (700 

A-scans × 700 B-scans). Because the optical length of the rat eye is larger than 7 mm, the rat eye 

images were wrapped around the SS-OCT zero delay line so that for each measurement the corneal 
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apex overlapped with the RPE layer of the retina, which provided sufficient contrast to allow for 

precise alignment. The axial eye length was then computed as 2x the distance from the top edge 

of the SS-OCT image (corresponding to the zero delay line) and the location of the corneal apex. 

Changes in the corneal curvature were evaluated by measuring the height of the anterior chamber 

(distance between the pupil plane and the corneal apex) and the anterior chamber angle. 

4.2.2 Animal preparation and IOP elevation protocol 

Eleven-week-old, male Brown Norway rats (~300g) were used in this study (n=6 for retina 

structure and function measurement with the OCT+ERG system; n=2 for axial eye length 

measurement with the SS-OCT system). All experiments described here were approved by 

the University of Waterloo Animal Research Ethics Committee and adhered to the ARVO 

statement for use of animals in ophthalmic and vision research. Prior to the experiment, the 

rats were dark-adapted for at least 12 hours and all experiments except for the imaging with the 

SS-OCT system were conducted in a scotopic environment (631nm, <0.9 lux). The rats were 

anesthetized with isoflurane and oxygen mixture maintained at 1.5-2.5% throughout the 

experimental procedures. Afterwards, the rats were placed in a custom stereotaxic animal holder 

that allowed for XYZ and angular adjustment of the animal eye with respect to the stationary 

OCT+ERG imaging probe. Furthermore, the anima holder was designed for 360° rotation in a 

plane perpendicular to the OCT imaging beam, which allowed for easy switch between the left 

and right eye under the stationary OCT+ERG imaging probe. The base of the animal holder was 

lined with a thermal pad (Kent Scientific, Torrington, CT, USA) in order to keep the animal body 

temperature between 36° and 38 °C. One drop of 0.5% proparacaine hydrochloride (Alcaine, 

Alcon, Mississauga, ON, Canada) was applied to each eye, followed by one drop of pupil dilator 
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(0.5% tropicamide, Alcon, Mississauga, Canada). Artificial tears were used frequently to hydrate 

the animal cornea in order to sustain optimal optical clarity of the cornea for the OCT imaging and 

decrease the electrode impedance of the ERG corneal electrode. The positive ERG electrode in the 

form of loop with 4 mm diameter was gently placed on the rat cornea to avoid any IOP fluctuations. 

The negative ERG electrode was placed under the skin behind the ear and the ground electrode 

was placed into the scalp between the ears.  

An adjustable vascular loop (Sentinal Loops; Sherwood-Davis and Geck, St. Louis, MO, United 

States) was placed anterior to the equator of the eyeball of the right eye to provide controllable 

IOP elevations, while the left eye served as a contralateral control. Topical anesthesia (0.5% 

proparacaine hydrochloride, Alcaine, Alcon, Mississauga, Canada) was applied onto the cornea to 

reduce the rats’ sensation to the vascular loop. Different levels of elevated IOP were achieved by 

manually adjusting the tightness of the vascular loop, and the IOP was measured with a pre-

calibrated corneal rebound tonometer (TonoLab, Finland). The IOP was raised unilaterally in steps 

from baseline (~10 mmHg) to 30 mmHg, 50 mmHg, 60 mmHg and 70 mmHg and then normalized 

by loop removal. At each IOP level, the rats were stabilized for ~10 minutes and the IOP was 

measured 3 times prior to the monocular OCT+ERG recordings, and the treated eye was always 

imaged before the control eye.  

4.3 Data Analysis 

TRBF was evaluated using the Doppler angle irrelevant en-face method proposed by Srinivasan 

et al[187], [188], and TRBF of the retina was calculated as an average of the absolute total venous 

and arterial flow around the ONH. The procedure utilized for quantification of the microvascular 

density in different retinal layer involved three steps. First, the morphological OCT images were 
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flattened and the flattening index was used to flatten the corresponding OCTA images. Then, all 

the flattened OCTA images were assembled into a 3D stack. The following retinal layers: the NFL 

together with the GCL, the IPL and the OPL were segmented manually from the morphological 

OCT data. Second, MIP was used to generate microvascular maps for each of these three layers. 

Third, to quantify the vascular density, the microvascular maps were Frangi filtered[189] and 

binary filtered using MATLAB’s Otsu’s threshold function[190]. Capillary density was calculated 

as the number of bright pixels in each layer. Note that the microvascular densities for the IPL and 

OPL were calculated excluding any areas with shadowing artifacts from major blood vessels on 

the retinal surface, where the blood vessels with diameters larger than 36 µm were removed from 

the microvascular density calculation.  

The ERG traces were analyzed in terms of three metrics: amplitude and latency of the a-wave and 

b-wave and the RMS of the OP. The a-wave amplitude is defined as the voltage difference between 

baseline and the negative peak, while the b-wave amplitude was defined as the voltage difference 

between negative a-wave peak and the positive b-wave peak. The OPs were filtered using a 

bandpass filter (100-300 Hz), that was applied to the averaged ERG traces (average of 5 

consecutive recordings), then the OP RMS was calculated as the difference of the RMS within a 

time window from t = 20 ms to t = 70 ms post flash and RMS of the background (t = -50 ms to 

t=0). Since mechanical stress from the vascular loop at elevated IOP levels changes both the axial 

length and the corneal curvature of the rat eye, it will alter the coupling of the visual stimulus light 

into the eye and correspondingly, the illuminated area at the retina surface. Since the amplitude of 

the ERG a-wave is directly proportional to the number of stimulated photoreceptors, it is therefore 

dependent on the illumination spot at the retina. Because we are interested in evaluating 
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physiological changes in the retina associated with the IOP elevation, and separating those from 

any changes induced by the change in the axial length of the eye that may affect the ERG metrics, 

in our study we discussed both the raw, unscaled versions of the b-wave amplitude and OPs RMS, 

as well as their normalized versions, scaled by the a-wave amplitude.  

4.3.1 Statistical Analysis 

One-way repeated-measures ANOVA was used to determine differences in normalized TRBF as 

a function of IOP elevations, and two-way repeated-measures ANOVA was used to determine 

differences in retinal microvascular densities, ERG components, as a function of IOP elevations 

and eyes. Greenhouse-Geisser corrections were used for epsilon values less than or equal to 0.75. 

Bonferroni-corrected multiple comparison tests were used post hoc to determine any differences 

between the loop conditions. 

4.4 Results 

4.4.1 Morphological Changes 

Figure 4.1A shows a morphological OCT image overlaid with its corresponding Doppler OCT 

image at normal IOP. Surface blood vessels (BV) are color coded, where red color represents veins 

and blue color represents arteries. Capillaries appear as white dots in the inner retina (white 

arrows), and bidirectional blood flow is also observed in large choroidal blood vessels. A wide 

angle 3D image of a healthy rat retina is shown in Fig. 4.1B, while Fig. 4.1C shows a representative 

3D image of the anterior rat eye with a vascular loop. Figures 1D-1F show the retinal 

microvasculature for the three segmented retinal layers: NFL+GCL, IPL, and OPL, color coded in 

red, green and blue colors respectively.  
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Figure 4.1 Representative morphological OCT, DOCT and OCTA images of the rat eye. (A) Cross-sectional morphological OCT 

image of the rat retina overlaid with DOCT to show the retinal vasculature with arteries marked in blue and veins in red color. 

(B-C) Volumetric 3D OCT images of the rat retina and anterior eye chamber respectively. (D-F) OCTA images of the retinal 

vasculature (IOP = 10 mmHg) of the NFL+GCL, IPL, and OPL layers respectively. 

Figure 4.2 shows a series of cross-sectional morphological OCT images acquired through the 

center of the ONH for different levels of the IOP. The step-wise IOP elevations caused progressive 

deformation of the ONH. The mechanical deformation of the rat eye ball also caused a focal shift 

of the OCT imaging beam from the surface of the retina toward the posterior retina which is 

noticeable for IOPs > 50 mmHg or higher, resulting in lower contrast of the retinal images. Within 

30 minutes from removal of the vascular loop, the ONH recovered to its original shape, indicating 

possibly no permanent damage to the ONH structure. Morphological images acquired from the 

control eye did not show any significant changes associated with the IOP elevations (data not 
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shown here). 

 

Figure 4.2 Representative cross-sectional OCT images of the ONH showed progressive deformation of the ONH associated with 

elevated IOP (A-E). (F) ONH morphology recovered 30 minutes after loop removal. Image contrast decreased due to a shift of 

the focal plane of the eye beyond the RPE layer when IOP was elevated to higher than 50 mmHg. 

4.4.2 Axial eye length changes 

Analysis of the SS-OCT data showed IOP associated changes in the shape of the rat eyeball. Figure 

4.4 demonstrates the relationship between IOP and the axial eye length. A linear fit of the data 

shows a strong correlation between the IOP and the axial eye length (r-square = 0.95). Further 

analysis of the SS-OCT images showed no significant and measurable changes of the anterior 

chamber depth, suggesting that there were negligible changes to the curvature of the rat’s cornea.  



 

 64 

 

Figure 4.3 Representative anterior chamber 3D volumes and cross-sectional B-scans across the cornea apex when IOP was at 

baseline (10 mmHg) and ischemic level (70 mmHg).  

 

Figure 4.4 Correlation of IOP and the axial eye length. 

4.4.3 TRBF changes 

Figure 4.4 shows maximum projection Doppler OCT images of the retinal blood flow at the ONH 
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and its vicinity. Blue and red color correspond to arteries and veins respectively based on the phase 

polarities. The green arrows in Figure 4.5A-B indicate the apparent loss of blood flow in a small 

vessel for IOP of 30 mmHg, without apparent significant alteration of the blood flow in the larger 

retinal blood vessels. When the IOP was elevated to 50 mmHg and higher, significant reduction 

of the retinal blood flow was observed, and the blood flow in the peripheral area was affected more 

strongly compared to the ONH as shown in Figure 4.5D-E. Pulsation of the retinal arteries 

associated with the cardiac cycle can be observed as dark lines across the blue colored arteries in 

all images in Figure 4.5. For IOP elevation of 70 mmHg, the pulsation in the retinal arteries even 

caused an apparent retinal blood flow direction change, seen as change between blue and red color 

in Figure 4.5E (yellow arrow). The same effect was also observed by Zhi et al.[57] in a retinal 

blood flow study, where anterior chamber cannulation method was used to elevate the IOP in rats.  
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Figure 4.5 Representative en-face max projected DOCT images in response to different IOP levels. Blue and red color represent 

arteries and veins. White arrow: cardiac pulsation effect on the retinal blood flow. Yellow arrow: pulsatile flow direction change 

at highly ischemia level IOP. Green arrows: difference of small blood vessel with IOP elevation to 30 mmHg. Scale bar= 100µm. 

 

Statistical results for the TRBF measured for different levels of IOP are shown in Fig 4.6. TRBF 

change in the treated eye was normalized to the control eye, as the existence of large variance of 

retinal TRBF among animals is well known[191], [192]. Normalized TRBF was significantly 

lower at IOP of 30 mmHg (p<0.01) and decreased monotonically with higher IOP. Specifically, 

TRBF at 30 mmHg and 50 mmHg IOP had a steep decrease from baseline and was at about 70% 

and 20% of baseline compared to the control eye (p <0.01). When the IOP was raised above 50 

mmHg, the decrease gradient was smaller, though the change in the TRBF between those three 

data points was not significant (p=1.00). Note that the blood flow at 70 mmHg is close to the 

detection threshold of our OCT system due to the significantly altered geometry of the eyeball at 



 

 67 

that IOP level. The TRBF measured during the recovery phase (30 min after removal of the 

vascular loop), had a significant increase relative to the measurement at 70 mmHg (p<0.01) and 

fully recovered to the pre-loop level (p=1.00). 

 

Figure 4.6 Effect of IOP on TRBF (Mean ± SE). Data are presented as normalized to the control eye. †Significant difference 

compared to baseline (p<0.01). *Significant difference compared to the previous step (p<0.01). 

4.4.4 Blood perfusion changes 

Representative retinal blood perfusion maps for the OPL, generated for normal and elevated IOP 

are shown in Figure 4.7. For better visualization of the IOP induced changes, the microvascular 

maps were overlaid with their corresponding blood vessel density maps. Shadow artefacts from 

the surface retinal blood vessels were filtered out by excluding the blood vessels with size lager 

than 36 μm (blood vessel size was determined by Euclidean distance transform). 
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Figure 4.7 Representative microvascular map overlaid with density map in OPL at different IOP levels. Different colors denote 

the microvascular density from 0% to 60%. 

Statistical results summarizing the retinal blood perfusion changes in the three segmented retinal 

layers (NFL+GCL, IPL and OPL) associated with the IOP elevation are shown in Figure 4.8. 

Overall, in all three layers, the microvascular densities changed significantly with the elevated IOP 

(p<0.05). Microvascular density in the control eye remained unchanged in all three layers for 

normal and elevated IOP (p=1.00). In the treated eye, in all three layers, the microvascular density 

was significantly lower than the control eye when the IOP was raised to 60 mmHg or 70 mmHg 

(p<0.05). When the IOP was raised to 50mmHg, the significant interocular differences were only 

detected in IPL and OPL. Thirty minutes after loop removal, recovery of microvascular density to 

the baseline in all three retinal layers were observed (p=1.00).  
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Figure 4.8 Microvascular density in (A) NFL+GCL, (B) IPL, and (C) OPL at different IOP levels. Density data in both eye are 

represented in Mean ± SE with fitted polynomial function (dashed lines). Recovery data in the treated eye is excluded from 

fitting. *Significant difference between two eyes. 

4.4.5 Retinal function changes 

The ERG a-wave, b-wave and OP correspond to visually evoked responses from photoreceptors, 

ON bipolar and Müller cells, and amacrine cells, respectively[101]. Representative ERG traces 

and the extracted OPs for different IOP elevation levels, acquired from one animal are presented 

in Figure 4.9A. Black and grey colors correspond to the treated eye and control eye, respectively. 

The control eye response exhibited good stability during the loop-on procedure, indicating lack of 

fellow-eye effect for elevated IOP. Figures 4.9B-D summarize statistical data for the ERG metrics 

(a-wave, b-wave and OPs RMS) from a group of 6 rats. The a-wave amplitude increased 

significantly from baseline to 60 mmHg (p<0.01), but there was no significant statistical difference 

between the data acquired at 30 mmHg, 50 mmHg, and 60 mmHg in the treated eye. When the 

IOP was elevated to 70 mmHg, the a-wave amplitudes measured in the treated eye were on average 

lower than those in the control eye (p=1.00). The ERG b-wave amplitude behaves in a different 

manner. It increased significantly from baseline and peaked for IOP of 30 mmHg (p<0.01), then 

progressively declined to the same value measured in the control eye at ~55 mmHg. For IOP of 60 
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mmHg and 70-mmHg, the b-wave magnitude was significantly lower than the control (both 

p<0.01). Similar to the ERG b-wave amplitude, OPs RMS increased at IOP of 30mmHg (p<0.01), 

and returned to baseline when the IOP reached 50 mmHg (p=1.00). Afterward, it continued to 

decrease to a level significantly lower than the control for IOP of 60 mmHg and 70 mmHg (both 

p<0.01). After loop removal, all ERG components (a-wave amplitude, b-wave amplitude and OP 

RMS recovered to values higher than the control, but the differences were not statistically 

significant (all p>0.05). 

The normalized versions of the ERG b-wave amplitude and the OPs RMS are presented in Figure 

4.9E and 4.9F respectively. In contrast to the unscaled versions, the normalized b-wave amplitude 

and the OPs RMS decreased monotonically with the IOP elevation, and for IOP levels of 50 mmHg 

to 70 mmHg, both the normalized b-wave amplitude and the OPs were significantly lower than the 

ones measured from the control eye (p<0.01 in all comparisons), while no significant intraocular 

difference was detected at 30 mmHg (b-wave: p=1.00; OP: p=0.12). After loop removal, the a-

wave recovered to a value higher than the one measured in the control eye, while the normalized 

b-wave and OP recovered to values lower than the control ones; however, these differences were 

not statistically significant (for all comparisons, p>0.05).  
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Figure 4.9 (A) Representative ERG and the respective OP at different IOP levels. (B-D) Statistics of ERG a-wave, b-wave, and 

OP RMS amplitudes at different IOP levels. (E and F) Normalized b-wave and OPs RMS respectively. *Significant difference 

between two eyes. Data is presented as: Mean ± SE. 

4.5 Discussion 

Morphological data from our study showed that the ONH depression increased progressively in 

magnitude with increasing of the IOP level. Similar changes in the ONH depression depth with 

elevated IOP was observed in a number of studies that utilized different IOP elevation methods, 

including the vascular loop technique, as well as different IOP levels[44], [183], [193]. In our 

study, we also observed a recovery of the ONH to its original shape at about 30 min after loop 

removal even after an IOP insult to an ischemic level of 70 mmHg. This result suggests that a short 
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term, acute elevation of IOP to ischemic levels causes no permanent damage or possibly minimal 

damage to the ONH tissue that is below the detection threshold of the OCT system. Other groups 

have also shown that the ONH shape recovers after acute IOP elevation to 100 mmHg[116], and 

30 minutes after elevating IOP to 70 mmHg for 60 minutes[60], both of which used anterior 

chamber cannulation to raise the IOP. In a recent study, our group showed that IOP elevation to a 

moderate level of 35 mmHg for 1h/day, 6 days/week for 8 weeks is necessary to observe significant 

and reproducible changes in the shape and depression depth of the ONH (data not shown, though 

included in the next chapter of this thesis and the corresponding manuscript).  

By cannulating the anterior chamber to elevate IOP[57], retinal blood flow was reported to 

decrease significantly when the IOP was raised to 30 mmHg, and drop to lower than 50% of 

baseline for IOP higher than 60 mmHg. Our results obtained with the vascular loop method showed 

somewhat similar behavior of the TRBF: significant decrease in the TRBF was observed when the 

IOP was elevated to 30 mmHg. However, for IOP of 50 mmHg, the TRBF was at ~20% of its 

baseline value, or compared to the TRBF of the control eye. One possibility is that the ONH 

deformation was larger for IOP higher than 50 mmHg when the IOP elevation was induced with 

the vascular loop compared to the anterior chamber cannulation method[59], due to the additional 

total eye length change resulting from the mechanical compression of the eye ball during loop 

wear. Therefore, the larger stress applied on the ONH could result in ONH ischemia. One possible 

explanation is that vascular loop-induced IOP elevation by compressing the episcleral vein may 

have a similar effect on the retinal and choroidal flow as sclera buckling or encirclement. Sclera 

bucking and encirclement have been well documented to affect the retinal blood flow and choroidal 

flow[84], [194]–[197]. Specifically, Ogasawara[197] and Regillo[196] reported up to 53% 
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decrease of arterial flow velocity in patients after scleral buckling and circling procedures, and 

Sugawara[195] reported a sustained reduced choroidal flow from 2-4 weeks after sclera buckling. 

Therefore, compression of the ocular tissue with the vascular loop could affect the blood 

circulation in the eye and alter significantly the retinal blood flow and choroidal blood flow.  

Decrease in the capillary density of the IPL and OPL has been observed previously for IOP 

elevation to levels higher than 60 mmHg with the cannulation method[198]. In that study, 

microvascular density in the OPL measured at IOP of 60 mmHg was at 60% of the baseline value. 

In contrast, results from our study showed that with the vascular loop method, the OPL 

microvascular density for the same IOP level was at ~20% of baseline value. Since both studies 

were conducted on the same strain of rats, there are 2 major factors that can contribute to the 

discrepancy in the results from the 2 studies. One factor is the method of IOP elevation. As 

mentioned above, similar to the sclera bucking and encirclement methods, the vascular loop may 

affect blood flow and perfusion in the retina more strongly than fluid pressure in the posterior 

chamber of the eye induced by cannulation. Furthermore, the loop-induced mechanical 

deformation of the eye and resulting increase in the axial eye length cause both shift of the focal 

plane of the eye beyond the RPE layer and possibly larger depression depth of the ONH. It is also 

noted that the Frangi filter may have an effect of quantifying capillary density. The combined 

effect of these factors could cause loss of visibility of capillaries in the capillary maps. A second 

factor to consider is the difference in the OCT systems’ design and performance. Although both 

systems are SD-OCT and provide sensitivity of ~ 100dB, the one used by Wang’s group had an 

image acquisition rate of 240 kHz, while the image acquisition rate for the system used in our 

study was 92 kHz. The OCT systems’ design and image acquisition rate will affect the sensitivity 
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of the OMAG method utilized both research groups to detect microvessels in the OPL layer.  

Measurements of the retinal function for a moderate IOP elevation level (IOP=30 mmHg) and a 

highly ischemic IOP level (70 mmHg) agreed with results from a previous study with a vascular 

loop by Choh et al[183] and also extended the observation of retinal function transit to multiple 

level IOP elevations. The ratio between the b-wave and the a-wave considers photoreceptor’s 

activity as an input and post-synaptic neuronal activity as an output[101].The ERG b/a ratio has 

been proven to serve as a good indicator of diseases caused by retinal ischemia[199], such as 

central retinal vein occlusion[200], [201] and retinal artery occlusion[202]. Moreover, Kong and 

his colleagues[54] used cannulation to raise the IOP acutely in rats, and reported reduction of the 

a-wave and b-wave amplitudes and the OPs RMS with IOP elevation, where the gradient of the b-

wave amplitude and OPs RMS reduction was faster than that of the a-wave amplitude. Results 

from our study are in agreement with Kong et al.: the b-wave/a-wave ratio in our study decreased 

monotonically with IOP and correlated well with the IOP-associated reduction in the TRBF. 

Furthermore, an IOP of 70 mmHg is highly ischemic and results in blockage of the metabolic 

supply to the inner retinal cells. This process can explain the absence of b-wave for IOP of 70 

mmHg. OPs are also sensitive to retinal ischemia[101]. Sperous[203] showed attenuated OPs with 

mild retinal ischemia and OPs were also regarded as an indicator of background retinopathy[204], 

[205], when only small blood vessels are damaged. The RMS of the normalized OPs in our study 

decreased monotonically with increase of the IOP and that response correlated well with the 

observed decrease in the normalized b-wave amplitude and the TRBF. Therefore, normalized b-

wave amplitude and OP RMS, could serve as sensitive markers to study IOP-associated retinal 

ischemia. Our results also showed that half an hour post-loop recovery phase is not sufficient for 
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complete recovery of the retinal function to baseline. For example, at the end of the 30 min 

recovery phase, the a-wave amplitude reached only ~ 50% of its baseline value. Similarly, the 

normalized b-wave amplitudes and the OPs RMS in the treated eye were still ~35% and ~50% 

lower compared to baseline and to the control eye. He et al.[55] found that the recovery time for 

retinal function is dependent on the peak IOP level. He et al. elevated the IOP to 70 mmHg for 30 

minutes by anterior chamber cannulation and observed that retinal function, evaluated by negative 

scotopic threshold responses (nSTR), and recovered only to 50% of its baseline value for a 

recovery time of ~ 30 minutes.  

4.6 Conclusion 

In summary, we used a combined OCT + ERG system to study the retinal structure, function, blood 

flow and blood perfusion in response to acute IOP elevation to ischemic and non-ischemic levels. 

Significant and progressive TRBF reduction was observed for IOP levels as low as 30 mmHg and 

as high as 70 mmHg, while microvascular density in the inner retina was more resistant to IOP-

induced changes for moderate levels of IOP elevation. Analysis of the normalized b-wave 

amplitude and OPs RMS showed good correlation to the retinal ischemia, while supernormal a-

wave amplitude was detected for IOP levels lower than 70 mmHg.  
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Chapter 5 Morphological and functional changes in the rat retina and 

optic nerve head associated with chronic intermittent IOP elevation 

Notes and Acknowledgement 

This chapter summarizes results from a chronic study in a rat model of glaucoma that was 

conducted with the combined OCT+ ERG system. In this study, the IOP of one eye was elevated 

for 1h/day on 6 days of the week over a period of 8 weeks. Morphological images (UHR-OCT) 

and functional retinal data (ERG) were acquired simultaneously from the treated eye and then the 

control eye of all animals at baseline (week 1 of the study) and subsequently at weeks 5 and 9 of 

the study. The content of this chapter is based on a journal manuscript: 

B. Tan, A. Gurdita, V. Choh, K. M. Joos, R. Prasad and Bizheva, Kostadinka. “Morphological 

and functional changes in the rat retina associated with 2 months of intermittent moderate 

intraocular pressure elevation, measured with a combined OCT and ERG system,” submitted to 

the Journal of Biomedical Optics. 
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5.1 Introduction 

Glaucoma is a chronic, degenerative optic neuropathy associated with elevated IOP, resulting in 

morphological changes of the ONH such as size and shape alterations of the ONH cup[13], [28], 

[206], progressive loss of RGC axons[28], [207], RGC death[208] and visual field loss[207]. It is 

the second leading cause of blindness and in 2010 was estimated to have affected over 60.5 million 

people worldwide, with this number projected to reach ~80 million by 2020[1]. High IOP has been 

well documented as one of the main risk factors associated with open-angle glaucoma and previous 

studies have shown that diurnal fluctuations in the IOP may also be a risk factor for glaucoma[74], 

[209], [210]. Previous studies have revealed a link between the cumulative exposure to moderately 

elevated IOP over an extended period of time leading to the progressive dysfunction of RGCs and 

morphological changes of the ONH. In those studies, various methods such as laser 

photocoagulation[39] of the trabecular meshwork, injection of saline into the anterior eye chamber 

(cannulation)[36], injection of ICG dye into the anterior chamber combined with laser 

treatment[211], injection of polystyrene microbeads to block the trabecular meshwork canals and 

to impede the aqueous humour flow in the anterior chamber [64], [65], and surgical circumlimbal 

suture[34], [72], [73], [212] were used to elevate the IOP. All of these methods allow for static 

IOP elevation; however, more recent studies suggest that progressive damage to the ONH and 

glaucomatous vision loss are also associated with intermittent IOP spikes over a prolonged period 

of time18-23. A headstand yoga posture (Sirsasana) was reported to elevate IOP immediately[110], 

and routine practitioners could eventually develop glaucoma[77], [213]. In other studies, recurrent 

uveitis and its treatment can cause intermittent IOP spiking that can lead to glaucoma uveitis[214]. 
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In order to examine the effect of intermittent IOP elevation on the retinal structure and function, 

Joos et al.[30] used an adjustable vascular loop to elevate the IOP to 35 mmHg for an hour per day 

on 6 days of the week over a period of 6 weeks, and reported up to 25% thinning of the RNFL, 

7%–10% loss of RGC somas, and axonal degeneration in the optic nerve in the treated eye. 

Gramlich used suction-cup oculopression[215] to elevate the IOP to 30-35 mmHg for one hour a 

day, and reported significant loss of RGC density in the treated eye after 30 repeated procedures 

over a period of 6 weeks. Both of these studies focused on quantifying structural changes to the 

ONH caused by the chronically elevated IOP by utilizing histopathology. Since IOP can affect the 

retinal function as well, a number of studies explored the effect of acutely elevated IOP on the 

retinal function. Specifically, Abbott[216] utilized 4h and 8h long acute and moderate (≤ 50 

mmHg) IOP elevation in rodents, and showed no evidence of permanent structural damage or 

functional changes in the retina after the stress. More acute IOP elevation studies[29], [54], [55], 

[217] confirmed that the retinal function recovers within several hours after normalization of the 

IOP, and the recovery rate is linearly related to acute IOP exposure[55] and can be affected by 

age[217]. More recently, our research group used a combined OCT+ERG probe to examine and 

correlate structural and functional changes in the rat retina in response to acute, moderate level 

IOP elevation in different rat strains[175], [183]. 

One question that has not been answered yet is whether intermittent IOP spiking to moderate levels 

for a few hours a day over a prolonged period would cause temporary or permanent changes in the 

retinal structure and function during subsequent stress events. Therefore, the purpose of this study 

was to measure and correlate morphological and functional changes in the rat retina and ONH 

associated with intermittent, daily IOP elevations to a moderate level during a 2-month period. 
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5.2 Methods 

5.2.1 Animals, anesthesia and IOP elevation 

All experiments described here were approved by the University of Waterloo Animal Research 

Ethics Committee and adhered to the ARVO Statement for the use of animals in ophthalmic and 

vision research. Six 11-week-old male Sprague-Dawley rats (Harlan Laboratories Inc., 

Indianapolis, IN, USA), weighing ~350 g were used in our study. The animals were fed ad libitum 

and maintained in climate-controlled rooms with a 12-hour light/12-hour dark cycle. An adjustable 

vascular loop (Sentinal Loops; Sherwood-Davis and Geck, St. Louis, MO, USA), placed anterior 

to the equator of one eye, was used to elevate the IOP, following a procedure developed by Joos 

et al.[30]. For the daily, short-term IOP elevation, the rats were placed in a custom, Broome-type 

rodent restraint. One drop of 0.5% proparacaine hydrochloride (Alcaine, Alcon, Mississauga, ON, 

Canada) was applied to the cornea prior to placement of the vascular loop and elevation of the IOP 

to 35 mmHg, and afterward every 10 min for the duration of the loop wear. The IOP was measured 

with a corneal rebound tonometer (Icare® Tonolab, Tuike, Finland) before placement of the 

vascular loop, immediately after loop placement, every 30 minutes during the loop wear, and at 1 

min and 30 min after removal of the loop. Viscous lubricating eye drops (Liquigel, Allergan, Inc., 

Unionville, ON, Canada) were applied frequently to hydrate the cornea. 

Morphological UHR-OCT images and single flash ERG were acquired on weeks 1, 5 and 9 of the 

study. On the experimental days, the rats were dark adapted for at least 12 hours before they were 

transferred in light impermeable cages to the research lab for the OCT imaging and ERG 

recordings. Only a dim, red headlight (631nm, <10.9 lux) was used by the researchers to 

manipulate the animals and the equipment during the experimental procedures and that light was 
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switched off during the OCT and ERG data acquisition. The animals were placed on a heated 

custom animal holder with translational and rotational alignment capabilities to allow for 

alignment of the rat eye under the stationary OCT+ERG imaging probe. During the experimental 

procedures, the isoflurane level was kept at 2 - 2.5% and the animal vital signs, such as 

temperature, breathing rate, and heart rate were monitored every 10 minutes. Subcutaneous 

injections of 5 ml saline were administered immediately after anesthesia and every 1.5 hours 

throughout the experimental procedures to hydrate the animals. One drop 0.5% proparacaine 

hydrochloride (Alcaine, topical anesthetic, Alcon, Mississauga, ON, Canada) was applied to both 

eyes, followed by one drop of 0.5% tropicamide (Alcon, Mississauga, ON, Canada) for pupillary 

dilation. The IOP of the right eye was raised to 35 mmHg for 1 hour using the vascular loop and 

OCT and ERG recordings were acquired at 3 time points: immediately before the IOP elevation, 

after 40 minutes of loop wear and 30 minutes after loop removal on two experimental days. The 

UHR-OCT imaging and ERG recordings took ~ 20 minutes.  

5.2.2 ERG and STRs 

ERG (Diagnosys LLC, Lowell, MA, USA) recordings were acquired sequentially from each eye. 

In addition to the positive loop electrode placed on the cornea, a negative electrode was placed in 

the skin behind the ear and a ground electrode was inserted into the scalp between the ears. The 

calibrated custom visual stimulator generated white light flashes of 7 ms duration and 1.14 log 

scotopic cd·s/m2 intensity[183]. Five ERG traces separated by 30 s intervals were acquired from 

each eye. The duration of each ERG recording was 1 s with a 500 ms pre-stimulus period. The 

ERG recordings were acquired following the order (pre-loop treated, pre-loop untreated, loop-on 

untreated, loop-on treated, post-loop untreated, post-loop treated). The amplitudes of the ERG a-
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wave and b-wave were measured as the maximum change in voltage from baseline to the first 

negative peak, and as the change in voltage from the a-wave peak to the peak positive change 

following the a-wave respectively. Implicit times for the ERG a- and b-waves, were measured 

from the onset of the light stimulus to the respective peak amplitude. Oscillatory potentials (OPs) 

were extracted from the ERG recordings using a Fourier bandpass filter (75-300 Hz) and the OPs 

root mean square (RMS), a metric for the OP amplitude, was calculated for the time period between 

t = 20 ms and t = 70 ms post flash onset.  For intraocular comparison, all ERG components (a-

wave, b-wave and OP RMS) were analyzed relative to the untreated eye (treated - untreated).   

5.2.3  UHR-OCT 

Morphological images of the ONH were acquired in vivo with a research-grade UHR-OCT system, 

that was developed by our research group for various animal retinal studies[175], [177], [178], 

[183]. Briefly, the UHR-OCT system operates in the 1060 nm spectral region and provides ~3 µm 

axial and ~5 µm lateral resolution in the rat retina at an image acquisition rate of 92 kHz. The OCT 

imaging probe was designed to deliver a collimated imaging beam of 1.5 mm diameter and optical 

power of 1.7 mW to the rat cornea, resulting in ~ 5um lateral OCT resolution in the rat retina. The 

OCT imaging probe was integrated with a custom visual stimulator connected to the commercial 

ERG system (Diagnosys LLC, Lowell, MA)[178]. The visual stimulator was designed to focus the 

light from a white LED onto the pupil plane of the rat eye, thus generating a while angle, almost 

uniform Maxwellian illumination of the rat retina. Detailed description of the optical design of the 

integrated OCT imaging probe and visual stimulator is included in a recent publication from our 

research group[178]. While under isoflurane anesthesia, a custom eyelid retractor was used to keep 

the imaged eye open. Artificial tears were administered every 5 minutes to keep the corneas 
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hydrated. Volumetric OCT images (1000 frames x 1000 lines/frame x 512 pixels/line) of the ONH 

were acquired over an area of ~2 mm2 first from the untreated and then from the treated eye. 

Cross-sectional OCT images of the retina were generated from the raw morphological data using 

a custom Matlab-based (Mathworks, Natlick, MA, USA) code. Volumetric UHR-OCT images of 

the rat retina were generated from the stacks of 1000 cross-sectional images by using commercially 

available software (Amira, FEI Visualization Sciences Group; and ImageJ software 

(http://imagej.nih.gov/ij/; provided in the public domain by the National Institutes of Health, 

Bethesda, MD, USA).  A custom Matlab-based sub-pixel registration algorithm was used to 

compensate misalignment between B-scans caused by eye motion. The method we used for 

quantifying the depression of the ONH during loop wear[183] was adapted from an approach first 

proposed by Burgoyne[9], [123]. Briefly, an enface image of the ONH was generated from the 3D 

imaging stack, and the ONH area was pre-segmented using a region growing method[218], then 

the cross-sectional image from the center of the ONH was selected by fitting an ellipse to the 

boundary of the pre-segmented ONH area. Next, the ONH depression was calculated as the 

distance between the terminations of the Bruch’s membrane at the ONH and the line that connects 

the end points of the Bruch’s membrane at the left and right sides of the B-scan. For intraocular 

comparison, the relative ONH depression (treated-untreated) was calculated over weeks and loop 

procedures. 

5.2.4 Histology  

After the last IOP elevation, the rats were anaesthetized with isoflurane until they were 

unresponsive to toe pinches. Rats underwent cardiac perfusion with saline followed by 

4% (w/v) paraformaldehyde in phosphate-buffered saline (PBS) and the optic nerves 
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were harvested. Six-millimeter long segments of the myelinated optic nerve about 2 mm 

behind the globe were post-fixed in 1% glutaraldehyde and 4% paraformaldehyde in 

phosphate-buffered saline for 24 hours. Specimens were postfixed in 2% osmium 

tetroxide (Sigma-Aldrich, St. Louis, USA) for 1 hour and then embedded in Spurr’s low-

viscosity embedding media (Electron Microscopy Sciences, Hatfield, PA). Semi-thin 700 

nm sections were obtained and stained with 1% p-phenylenediamine (Sigma-Aldrich, St. 

Louis). A montage of the entire cross-sectional nerve was produced using a computer-

driven motorized stage with a 100x oil-immersion objective (Provis AX70, Olympus, 

Melville, NY, USA). ImageJ software (http://imagej.nih.gov/ij/; provided in the public 

domain by the National Institutes of Health, Bethesda, MD, USA) was used to measure 

the nerve cross-sectional area. A fixed grid overlay was used to sample 20% of the total 

nerve cross-sectional area. All axons within the grid squares were manually counted by 

a masked person (RP) using ImageJ software to estimate axon density in the nerve 

(axons/mm2) and were categorized as “normal” or “degenerating” axons based upon their 

appearance. Normal axons were defined as possessing a defined myelin sheath 

surrounding clearly visible pale cytoplasm of the axon, and degenerating axons were 

defined as containing unraveling myelin sheaths or cytoplasm that were darkened or 

containing cellular debris. Total number of axons was estimated as the product of the 

mean axonal density and the nerve cross-sectional area following published 

protocols[219], [220]. 

5.2.5 Axial eye length measurement  

Because the loop wear causes deformation of the globe that can alter the amount of light 
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from the visual stimulus that reaches the retina and therefore can affect the metrics of the 

ERG recordings, we conducted additional measurements and developed a simple 

mathematical model to evaluate quantitatively this effect. A swept-source OCT system 

with a 7-mm long scanning range, originally  developed by our research group for imaging 

the human anterior segment[186], was used in this study to measure precisely the rat 

axial eye length at normal and elevated IOP. Since the optical path length in the rat eye 

is longer than 7 mm, the OCT images of the rat eye were wrapped around the OCT zero 

delay line and aligned in such a way that the corneal apex overlapped with the retinal 

pigmented epithelium. Therefore, the axial eye length was computed as 2x the distance 

from the top edge of the OCT B-scan to the location of the corneal apex. 

5.2.6 Statistical Analysis  

Repeated-measures analysis of variance (ANOVA) was used to detect significant 

differences in all data collected from our study. Greenhouse-Geisser adjustment was 

applied for epsilon values < 0.75. Bonferroni-corrected multiple comparison post hoc tests 

were used for determining differences between measurement weeks and loop 

procedures. Differences were considered significant for p value ≤ 0.05. All data are 

presented in the manuscript as mean ± standard deviation and in the figures as mean ± 

standard error. 

5.3 Results 

5.3.1 IOP elevations 

The average pre-loop IOP was 12.5 ± 0.9 mmHg compared to 12.6 ± 1.0 mmHg of the 
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untreated eye (p=1.000). The IOP on the treated eye measured immediately after 

placement of the loop was 40.3 ± 1.1 mmHg and dropped to 34.7 ± 1.4 mmHg (p<0.001), 

and 32.3 ± 0.8 mmHg (p<0.001) after thirty minutes and one hour of loop wear 

respectively (Fig. 5.1A). The IOP of the untreated eye stayed fairly constant during loop 

wear (0 min: 13.0 ± 4.3 mmHg; 30 min: 12.4 ± 3.6 mmHg; 60 min: 11.8 ± 3.4 mmHg) (Fig. 

5.1B). Immediately after loop removal, the IOP of the treated eye dropped to 7.8 ± 0.3 

mmHg, a value significantly lower than the IOP of the untreated eye at the same time 

point (11.4 ± 0.5 mmHg, p<0.001), and recovered to 11.2 ± 0.7 mmHg 30 minutes after 

loop removal. This was not significantly different from the IOP of the untreated eye (11.9 

± 0.6 mmHg, p=1.000) (Fig. 5.1A).  

 

Figure 5.1 IOP data acquired during the ERG and UHR-OCT experimental procedure on weeks 1, 5 and 9 of the study as a 

function of loop-wear (A) and during the daily IOP elevation for the duration of the study. Each data point is an average of three 

measurements acquired from each rat. (B). *Significant differences between the treated and control eyes. 

5.3.2 Morphological changes 

The UHR-OCT images (Fig. 5.2) show that temporary IOP elevation is associated with 
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backward bowing of the ONH and after loop removal, the shape of ONH recovers to a 

form very similar to that of the pre-loop measurement.  

 

Figure 5.2 Representative cross-sectional morphological UHR-OCT images of the ONH, acquired from the treated eye of a rat at 

baseline (week 1) and weeks 5 and 9 of the study. Yellow line: reference for the ONH depression was calculated as the distance 

between the termination of the Bruch’s membrane at the ONH and the ends of Bruch’s membrane at the left and right edges of 

the selected cross-sectional image. Red line: depression of the ONH defined as the average distance from the terminations of the 

Bruch’s membrane to the reference line. 

 

The depression depth of the ONH associated with loop-wear increased over time from week 1 to 

week 9 of the study. Quantitative analysis of the ONH depression (Fig. 5.3) showed that at week 

1 of the study, loop wear caused a relative ONH depression of 57.7 ± 31.9 µm compared to the 

pre-loop (2.1 ± 26.8 µm, p=0.036) and post-loop (20.0 ± 14.1 µm, p=0.555) values, and no 

significant difference between pre-loop and post-loop conditions was detected (p=1.000). Loop 

wear-associated relative ONH depression increased over time with chronic elevation of the IOP.  

Specifically, loop wear-associated, relative ONH depression measured at week 5 and week 9 of 

the study increased by 119% and 172% respectively, compared to week 1 (week 1 vs week 5, 

p=0.057; week 1 vs week 9, p=0.011, week 5 vs week 9, p=1.000). 



 

 87 

 

Figure 5.3 ONH depression as a function of IOP. *Significant difference relative to respective pre-loop and week measurement 

(p<0.05). †Significant difference compared to the week 1 loop-wear measurements on the treated eyes (p<0.05). 

5.3.3 Axial eye length 

Analysis of the SS-OCT images showed 4.3 ± 0.9% increase in the axial length of the rat eye 

during IOP elevation to 35 mmHg. No significant changes were observed in the anterior chamber 

depth or the iris corneal angle.  

5.3.4 Retinal function changes 

Figure 5.4A shows typical ERG recordings acquired pre-, during and post loop-wear with stimulus 

intensity of 1.14 log scotopic cd·s/m2. Temporal increases in the ERG a-wave, b-wave and OP 

amplitudes were observed during elevated IOP in the treated eyes relative to the pre- and post-loop 

conditions. The relative loop-associated enhancements decreased progressively from week 1 to 

week 9 of the study although not significantly (interaction between weeks and loop procedures; a-

wave: p=0.369, b-wave: p=0.511, OP: p=0.885; shown in Fig. 5.4B). The relative a-wave latencies 

did not change significantly as a function of the loop wear (p=0.601) or across weeks (p=0.329; 
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inset of Fig. 5.4B). Although the relative b-wave latencies did not change significantly across 

weeks (p=0.186; inset of Fig. 5.4C), relative b-wave latencies increased significantly during 

elevated IOP in the treated eyes compared to the pre- and post-loop values (loop vs pre, p<0.001, 

loop vs post, p=0.001). 

 

Figure 5.4 Representative ERG traces (1.14 log cd·s/m2) acquired from the treated and untreated eyes of a rat pre-, during, and 

post-loop wear at baseline (A).  The vertical grey line marks the timing and duration of the visual stimulus. ERG a-wave 

amplitude (B) and latency (Inset in B) and ERG b-wave amplitude (C) and latency (Inset in C), and OP RMS (D) measured pre-, 

during, and post-loop wear at weeks 1, 5 and 9 of the study. *Significant difference relative to pre loop measurements averaged 

over weeks. 

5.3.5 Optic Nerve Histology 

Four animals from our study were adequately perfused postmortem in order to examine 

quantitatively the loss of axons in the optic nerve after 8 weeks of intermittent IOP elevation. The 
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total number of axons (Fig. 6B) was significantly lower in the treated eyes (80,397 ± 2620) than 

the untreated eyes (84,440 ± 2553, p=0.039), which constitutes ~5% loss of total number of axons. 

The cross-sectional area of the optic nerve was also assessed (Fig. 5.6C); however, no significant 

change was detected between the treated (0.221 ± 0.010 mm2) and untreated eyes (0.224 ± 0.019 

mm2, p=0.817). The number of degenerated axons in the treated eyes was 2.9x higher than in 

untreated eyes (Fig. 5.6D) and the difference was significant (9.4 ± 1.0% vs 3.3±0.4%, p=0.001). 

Furthermore, in the cross-sectional area, the total number of non-degenerated axons (Fig. 5.6E) in 

the treated eyes (72,847 ± 1865) was significantly smaller than in the untreated eyes (81,648 ± 

2179, p=0.0016).  
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Figure 5.5 Histological images of the optic nerve axonal cross-section, obtained from the untreated and treated eye of one rat (A-

B). Statistical results for the total number of axons (B), the total axonal area (C), the percentage of degenerated axons (D) and the 

total number of non-degenerated axons (E). *p<0.05, **p<0.05, ***p<0.001. 

5.4 Discussion  

For all measurement points of this chronic study, elevation of the IOP to a moderate level of ~35 

mmHg for 1h per day caused a temporary increase in the ONH depression, similar to what we 

observed in earlier acute IOP elevation studies[29], [183]. The fact that the ONH depression 

recovered to pre-loop values after removal of the loop indicates that the mechanical deformation 

of posterior segment structures caused by the elevated IOP did not reach the tissue elastic limit, 

associated with permanent extracellular matrix change[13]. In this 2-month study, we observed 

that the ONH depression during IOP elevation increased over time and was on average ~172% 

larger on week 9 compared to baseline (week 1). This increase in compliance during the loop wear 

suggests possible permanent changes in the mechanical properties of the posterior segment tissues 

that include the retina, ganglion cells axons, as well as the supporting connective tissues, and the 

peripapillary sclera[13]. This hypothesis is supported in part by the axonal degeneration (5.7%) 

and axonal loss (~5%) observed in the histological optic nerve preparations obtained from 4 

animals at the end of our chronic study (Fig. 5). The 5% axonal loss we measured agrees well with 

the 7% axonal loss observed in other studies after 6 weeks of intermittent IOP elevation using the 

loop method shown by Joos et al.[30]. Likewise, deformation of the optic nerve head and changes 

in the peripapillary scleral thickness associated with constantly elevated IOP have been reported 

in the past[9], [13], [44], [60]. Burgoyne et al.[221] showed higher ONH compliance after 5-9 

weeks of constant IOP elevation by laser treatment of the trabecular meshwork, and early-stage 

ONH damage and ONH compliance as early as 1-2 weeks following constant IOP elevation. By 
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using confocal scanning laser tomography and 3D reconstruction, Ivers et al.[10] and Yang et 

al.[44] confirmed hyper-compliance of the ONH and the connective tissue in glaucomatous 

monkey, when IOP was elevated by laser treatment to the trabecular meshwork. Results from all 

of those studies are consistent with the progressive change in the ONH depression during 

continued intermittent 1 hr IOP elevation observed in our study non-invasively with the UHR-

OCT system. 

Recently, our group reported temporary increase of the scotopic ERG a-wave and b-wave 

amplitudes associated with acute, 1h elevation of the IOP to 35 mmHg in different strains of rats 

using the vascular loop procedure[183]. A different study from our group also showed that this 

temporary increase in the amplitudes of the scotopic ERGs is associated with acute elevation of 

the IOP in several rat strains[222]. Although the exact physiological origins of the several-fold 

increase of the amplitudes of the ERG is not exactly known, it is potentially related to increased 

cellular activity in the retina in response to IOP insults. A similar effect has been observed in other 

animal studies[111], [146], where ERG b-wave increased after acute IOP elevation with 

microbeads injection[111], and after chronic IOP elevation with combined microbeads and sodium 

hyaluronate[146]. Results from our 2-month study presented here confirm that both the ERG a-

and b-wave amplitudes are significantly higher during IOP elevation relative to the pre-and post-

loop measurements. Other research groups observed decreases in the amplitudes of scotopic ERG 

a- and b-waves, and OPs with a constant IOP elevation in rodents, sustained for a prolonged period 

of time10,11-12,14–17. Specifically, Grozdanic et al.[211] reported ~25% and ~40% decrease in the 

scotopic ERG a-wave and b-wave amplitudes respectively in mouse retinas after 6 weeks of 

sustained IOP elevation using laser treatment of the trabecular meshwork and ICG dye injection. 



 

 92 

Liu el al.[34], [212] and Zhao et al.[73] used a circumlimbal suture to induce mild, constant IOP 

elevation. Two weeks showed no significant changes in the ERG photoreceptor a-wave and bipolar 

b-wave amplitudes; however, a significant reduction of the ERG photoreceptor a-wave and bipolar 

b-wave were observed as early as week 4[34] and week 8[212] of the study, respectively. 

Moreover, OP amplitudes did not change significantly after 12 weeks of IOP elevation between 

19-33 mmHg by circumlimbal suture while photoreceptor a-wave and bipolar b-wave reduced 

significantly at the same time point[73]. These studies showed that there are permanent structural 

and functional changes of the retina associated with constant moderately high IOP elevation over 

a prolonged period of at least 4 weeks.  

To investigate the potential effect of the loop wear associated increase in the axial eye length on 

the ERG metrics, a simple mathematical model of the rat eye was created. As a first approximation, 

the model assumed that under normal pressure (10 mmHg), the rat eye has a slight elliptical 

shape[224] with transverse length of 6.41 mm, and that the volume of the eye is conserved during 

elevated IOP. From the SS-OCT data, we determined that for IOP of 35 mmHg, the lateral eye 

length decreased to 6.26 mm. The optical design of the custom visual stimulator integrated with 

the UHR-OCT imaging probe focused the stimulus light at the pupil plane with an angular spread 

of ±45°. Based on our theoretical model of the rat eye and taking into account both the increase in 

the axial eye length and the change in the corneal curvature during loop wear, we determined that 

elevation of the IOP to 35 mmHg causes only ~11% increase in the illuminated area of the retina. 

However, since the energy of the visual stimulus beam was constant, the luminance level at the 

retina decreased with the increase of the illuminated area. The 11% increase in the visually 

stimulated area of the retina is insufficient to account for the approximately 4x increase in the 
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amplitudes of the ERG a-wave and b-wave amplitudes. This fact supports our hypothesis that the 

observed increase in the ERG amplitudes is most likely due to a physiological response of the 

retina to the mechanical stress introduced by the loop wear.  

In this study, no significant change of the pre-loop retinal function was observed within the 9-

week period of chronic intermittent IOP elevation. One possible explanation for these results is 

that the integral exposure time of the retina to elevated IOP in our study was 48h (8 weeks x 6 

days/week x 1h/day) which was significantly less than the total exposure time for other studies[34], 

[36], [39], [64], [73], [211], [212] that demonstrated permanent structural and functional changes 

in the retina associated with elevated IOP, as cumulative IOP exposure time is closely related to 

the extent of retinal damage[225]. The fact that we observed a trend towards a decrease over time 

in the peak amplitudes of the ERG a-wave, b-wave and the OPs during the loop-on procedure (Fig. 

5.4) suggests that there is a change of the retinal function that is more pronounced and therefore 

measurable when the retinal tissue is under mechanical stress (elevated IOP). This functional 

change may be related to the 5% axonal loss and reduced mechanical strength suggested by OCT. 

While the exact mechanism of attenuated retinal function in response to IOP elevation is not fully 

understood, He et al.[181], [226] suggested that changes in the retinal function susceptibility to 

acute IOP elevations maybe related to chronic hypertension and blood pressure. Although the 

relationship between IOP and arterial hypertension is complex, several studies have demonstrated 

that IOP elevation could modify the retinal blood pressure and indirectly affect retinal 

function[43], [227]–[229]. Results from our study showed that there were no differences across 

the weeks in the baseline recordings (prior to any IOP elevation) in both the treated and untreated 
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eye. However, it should be noted that the effect sizes were affected by the small samples observed 

and thus the results should be interpreted cautiously. 

5.5 Conclusion 

In conclusion, results from this chapter show that chronic intermittent IOP spiking to moderate 

levels over a limited period of time (8 weeks) leads to temporary changes in the retinal function 

and the ONH shape, that are observed only for the duration of the IOP elevation. The fact that the 

ONH depression assessed during loop wear change increases progressively with time suggests that 

there is some early damage to the retinal structure and function that is only pronounced and 

therefore measurable at elevated IOP when the retinal and ONH are under mechanical stress. This 

hypothesis is supported by the observed permanent degeneration and loss of ganglion axons in the 

ONH. 
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Chapter 6 Neurovascular coupling in the healthy rat retina 

Notes and Acknowledgement 

This chapter summarizes results from a study that investigated the neurovascular coupling 

(correlation of visually evoked changes in the retinal blood flow and function) in the healthy rat 

retina with the combined OCT+ERG system. The content of this chapter is based on a journal 

manuscript: 

B. Tan, E. Mason, B. Maclellan and K. Bizheva. “Measurement of neurovascular coupling in rat’s 

retina measured with combined Functional Doppler Optical Coherence Tomography (fDOCT) and 

electroretinography (ERG),” Investig. Ophthalmol. Vis. Sci., 2017.58:1673–1681. 

DOI:10.1167/iovs.17-21543. 
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6.1 Introduction 

Visual stimulation of the retina evokes neurovascular activity such as neuronal activation, which 

results in higher cellular metabolic demand and subsequent temporary vasodilation and blood flow 
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increase, termed functional hyperemia. Potentially blinding ocular diseases, such as glaucoma and 

DR can cause both temporary and permanent changes in the structure, blood perfusion and 

functional response of the retina[23], [230], [231]. Retinal blood flow (RBF) changes in response 

to visible light stimulation have been measured and studied in the past in both healthy and diseased 

retinas with a variety of optical methods such as the blue field entoptic method[232], scanning 

laser Doppler flowmetry[233], fluorescence based angiography[234] and fluorescence 

microspheres[235]. Because these methods have limited temporal resolution, they are not able to 

provide information about the rapid communication between visually stimulated retinal neurons 

and neighboring blood vessels. Two-photon microscopy[236] and functional magnetic resonance 

(fMRI-BOLD)[170] offer both high temporal and high spatial resolution and have been used in 

the past to image and quantify RBF changes in response functional stimuli. Because both methods 

rely on tracking the motion of red blood cells in individual blood vessels, measurements are limited 

to very small regions of the examined retinal tissue.  

Recently, OCTA was used to investigate detectable changes in the retinal microvasculature density 

in response to visual stimulation in rodents and human subjects[91], [237]–[240]. Doppler OCT 

utilizes phase information to detect and quantify blood flow in retinal blood vessels and provides 

an alternative method for investigation of neurovascular coupling in vivo. In general, Doppler OCT 

averages multiple cross-sectional images (B-scans), acquired from the same location to measure 

blood flow rates in biological tissue. Therefore, by utilizing broad-bandwidth light sources and 

high speed cameras or tunable lasers, both high spatial and temporal resolution Doppler OCT 

imaging data can be acquired, which enables the investigation of the rapid vascular response of 

the retina to visual stimulation. Total axial RBF in the retina can be calculated from circular 
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Doppler OCT scans centered at the ONH by averaging over the blood flow in all retinal blood 

vessels in the B-scan. All of the previous Doppler OCT or OCTA studies mentioned above used 

very long duration (10s to 2.5 minutes) of either single flash or flicker stimuli. It would be of 

interest to determine what is the shortest possible stimulus duration that can evoke changes in the 

RBF that are measurable with Doppler OCT, to correlate the RBF changes with changes in the 

retinal neuronal activity, as well as to investigate any difference in the retinal response to flicker 

and single flash stimuli of the same intensity and color.  

ERG records the electrical activity of visually stimulated retinas and therefore provides a way to 

measure the visually evoked cellular response from different types of retinal cells with millisecond 

scale time resolution. By combining information obtained from ERG recordings and Doppler OCT 

measurements, a more complete model of the neurovascular coupling in the visually stimulated 

retina can be generated. Previous studies have shown that flicker ERG traces and the first two 

harmonic components of ERG recordings are indirectly correlated to changes in the retinal blood 

flow in response to visual stimuli[241], [242]. However, the ERG and Doppler OCT data in those 

studies were not recorded simultaneously and the stimuli durations ranged from 10s to 2.5 minutes. 

In this study we used a combined Doppler OCT and ERG system (DOCT+ERG) to measure 

simultaneously with high spatial and temporal resolution visually evoked changes in the retinal 

neuronal activity and RBF, as well as to determine the shortest single flash stimuli that would 

induce a measurable change in the RBF. Furthermore, in this study we investigate the magnitude, 
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latency and recovery rate of the RBF as a function of the stimulus type, intensity and duration. 

6.2 Methods 

6.2.1 Animal and anesthesia 

Eight-week-old, male, Brown Norway rats (n = 6, Harlan Laboratories Inc., Indianapolis, USA), 

weighing ~250 g were used for this study. The animals were kept at a 12h light/dark cycle and 

dark adapted for at least 12 hours prior to the experimental sessions. The rats were anesthetized 

with ketamine/xylazine cocktail (0.2ml/100g body weight) that was delivered intraperitoneally. 

Subcutaneous injections of 5ml sterile saline were administered immediately after the ketamine 

injection and about every 1 hour afterwards to keep the animal well hydrated. The rats were placed 

on a custom stereotactic stage to reduce head motion artefacts and allow for translational and 

rotational alignment of the imaged eye with respect to the DOCT+ERG system’s imaging probe. 

During the experimental procedures the animals were kept at 38°C with a thermal pad placed under 

belly (Kent Scientific). One drop 0.5% proparacaine hydrochloride (topical anesthetic; Alcaine, 

Alcon) was applied to the imaged eye, followed by one drop of 0.5% tropicamide (pupillary 

dilator; Alcon). Artificial tears were applied every 5 minutes to keep the cornea well hydrated and 

optimize the impedance match between the cornea and the ERG corneal loop electrode. Metacam 

(2ml/100 body weight diluted in sterile water) was administered for pain relief after completion of 

the experiments to help with the animal recovery. All experiments described here were approved 

by the University of Waterloo Animal Research Ethics Committee and adhered to the ARVO 
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Statement for Use of Animals in Ophthalmic and Vision Research. 

6.2.2 Doppler OCT+ERG system 

A research-grade, spectral domain OCT system, designed and built by our group for various 

imaging studies of the rodent retina[185], [243], [244] was modified for use in this study (Fig. 

6.1). Briefly, a broad bandwidth SLD (λc = 1020 nm, Δλ = 110 nm, Pout = 10 mW, Superlum Ltd, 

Ireland) was used to achieve 3 µm axial resolution in retinal tissue and ensure that the Doppler 

OCT (DOCT) imaging beam does not visually stimulate the retina. The DOCT retinal imaging 

probe, comprised of 3 broadband NIR achromat doublet lenses (f1 = 10 mm, f2 = 60 mm, and f3 = 

30 mm; Edmund Optics, Barrington, NJ, USA) and a pair of galvanometric scanners (Cambridge 

Technologies, Bedford, MA, USA), was designed to deliver a collimated imaging beam of 1.5 mm 

diameter and 1.7 mW optical power to the rat cornea, thus achieving ~5 µm lateral resolution in 

retinal tissue. A high resolution spectrometer (P&P Optica, Waterloo, Canada) and a NIR line scan 

camera (1024-LDH2 92 KHz, Sensors Unlimited, USA) were used at the detection end of the 

DOCT system. A commercial ERG system (Diagnosys LLC, USA) was interfaced with the DOCT 

system and the data acquisition was synchronized to allow for simultaneous DOCT and ERG 

recordings. A new, custom built visual stimulator that utilizes a white light LED was integrated 

into the DOCT retinal imaging probe. Light from this LED was focused at the pupil plane (Fig. 

6.1, green line) of the rat eye to generate almost uniform, Maxwellian illumination of the retinal 

surface. The illumination intensity and the temporal pattern of the LED were controlled from the 
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ERG system’s console. 

 

Figure 6.1 Schematic of the combined OCT+ERG system. L1-L6 achromatic doublet lenses; TS-translation stage; M-reference 

mirror; FC-fiber coupler; DCP-dispersion compensation prisms, PC-polarization controller, CL-collimator lens; DG-dispersion 

grating; PDA-linear photodiode array; FFT-Fast Fourier transform.  

6.2.3 DOCT and ERG measurement protocols 

A volumetric (1000 x1000 x 1024) morphological image of the rat retina was acquired from the 

region around the ONH in each animal prior to conducting the visual stimulus tests (representative 

image shown in fig. 6.2A). Subsequently, multiple DOCT cross-sectional images (4000 x 1024) 

were acquired continuously from a circular pattern centered at the retinal ONH at the rate of 12 

fps. The diameter of the circular DOCT scan was set to ~0.8mm (Fig. 6.2B) to allow for 

visualization of cross-sections of the retinal arteries and veins in the vicinity of the ONH and to 

avoid the necessity of phase unwrapping in the calculation of the axial RBF. The axial RBF 

velocity was calculated from the phase difference between adjacent A-scans in the circular cross-

sectional DOCT images. A representative cross-sectional circular OCT scan with color coded 

blood vessels is shown in Figure 2C. One hundred repeated OCT frames (total acquisition time of 
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~8.5s) were acquired to track the axial blood flow velocity over time in response to the stimuli. 

The DOCT data was acquired simultaneously with the ERG recordings. 

 

Figure 6.2 (A) Volumetric OCT image of the rat retina centered at the ONH. (B) Enface projection of the retinal OCT image. The 

white circle marks the DOCT scanning pattern with diameter Ø ~0.8 mm. The major retinal blood vessels are identified (V – vein 

and A – artery). (C) Circular cross-sectional OCT image of the retinal structure and blood vasculature. 

The positive ERG electrode (a 4.5mm diameter silver wire loop) was placed gently on the rat 

cornea to ensure clear aperture for the DOCT imaging and visual stimulus beams. The negative 

and reference needle ERG electrodes were placed under the skin behind the rat’s ears. Single flash 

(10 ms and 200 ms duration, 1.14 log scotopic cd·s/m2) and flicker (10Hz, 20% duty cycle, 1s and 

2s duration, 1.14 and 0.80 log scotopic cd·s/m2) visual stimuli were projected onto the retinal 

surface. The duration of each ERG recording was 8.5s with 1s pre-stimulus baseline. For each type 

(single flash or flicker) of the visual stimulus and stimulus settings (intensity and duration), 5 ERG 

recordings were acquired with 5 min dark adaptation period in between. At least 15 min dark 

adaptation period was used between consecutive sets of recordings, acquired with different settings 
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of the visual stimulus 

6.2.4 Doppler OCT data analysis 

A sub-pixel registration algorithm[245] was used to correct for any bulk motion between 

neighboring OCT B-scans prior to segmentation of the retinal blood vessels. The retinal blood 

vessels were manually selected and the axial blood flow was calculated by integrating the blood 

velocity over the selected blood vessel area. Arterial and venal blood flow was calculated 

separately due to the different polarity of the respective phase changes. Total axial RBF was 

determined as an average of the magnitudes of the arterial and venal RBF. A moving window 

smoothing algorithm (Savitzky-Golay) was used to filter out oscillations in the temporal DOCT 

recordings due to pulsatile blood flow. Figure 6.3A shows a representative recording of the RBF 

measured from one retinal blood vessel over time (black line). The red line shows the filtered RBF 

recording after removal of the pulsatile oscillations. Figures 6.3B and 6.3C show the spatial 

distribution of the measured phase changes within the blood vessel’s cross-section before (t = 0.8 

s) and after (t = 3 s) application of the visual stimulus respectively. Fractional changes in the RBF 

induced by the visual stimuli were calculated relative to the pre-stimulus (baseline) part of the 

recording. A Student’s t-test was used to determine the significant changes in the RBF peak 
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amplitude and latency for the different settings of the visual stimuli. 

 

Figure 6.3 (A) Total axial RBF change as a function of time for a 2s flicker stimulus (grey area). The original RBF data (black 

line) shows pulsatile oscillations due to the animal heart rate. Filtered RBF data are shown in red. Spatial distribution of the 

DOCT signal within the cross-section of a retinal blood vessel at prior to (B) and post visual stimulation (C). 

6.2.5 ERG data analysis 

Analysis of the single flash and flicker ERG recordings followed the International Society for 

Clinical Electrophysiology of Vision (ISCEV) standards[246]. For single flash ERG recordings, 

the amplitude and latency of the a-wave and b-wave were determined. For flicker ERG, the 

amplitude was calculated as averaged voltage differences between peaks to troughs, excluding first 

two peaks.  

6.3 Results 

Figure 6.4 summarizes results from measurements conducted with the 10- and 200-ms single and 

continuous flash stimuli. Representative ERG traces are shown in Fig 6.4A with the gray and 

yellow marked areas corresponding to the duration of the visual stimuli. Fig 6.4B shows the total 
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axial RBF, averaged over all recordings from all animals, as a function of time. For the same 

stimulus intensity, the 200-ms flash resulted in 5X larger RBF peak magnitude compared to the 

10-ms flash, though no significant change in the latency of the RBF peak between the two stimulus 

durations was observed. Although the 10-ms single flash stimulus generated measureable changes 

in the RBF, no reproducible changes in the RBF were measured with 10-ms single flash stimuli 

with intensity <1.14 log scotopic cd·s/m2, or with stimuli with 1.14 log scotopic cd·s/m2 and 

duration shorter than 10 ms. Figure 6.4C presents normalized averaged total axial RBF for the two 

single flash stimuli, which shows that there are no significant differences in the stimulation and 

recovery rates of the RBF (positive and negative slopes of the RBF peak). Fig 6.4D shows 

statistical correlation between the changes in the RBF and the ERG b-wave magnitude for the 10- 

and 200-ms single flash stimulus durations. Although the RBF peak magnitude showed significant 

differences for the two flash durations (P = 0.023), the ERG a-wave and b-wave magnitudes 

showed no significant differences between the two flash durations (P=0.256 and P=0.056, 

respectively). 
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Figure 6.4 Effect of single flash stimulus duration. (A) Representative ERG traces acquired with 10 ms and 200 ms single flash 

stimulus duration. (B) Total axial RBF as a function of time for the 10 ms and 200 ms single flash stimuli, averaged over all 

recordings from all animals. (C) Normalized RBF data showing differences in the recovery rate for the 2 stimulus durations. (D) 

Comparative statistics for the maximum RBF change and the ERG b-wave magnitude data for the two stimulus durations. The 

“*” denotes significant difference between the two groups of data and the data is presented as mean ± SD. 

 

Figure 6.5 summarizes results from the tests with flicker stimuli of different duration. The gray 

and pink shaded areas correspond to the duration of the visual stimuli. Figure 6.5A shows 

representative ERG traces for 1- and 2-second long flicker stimuli. Figure 6.5B shows the total 

axial RBF, averaged over all recordings from all animals, as a function of time. Although the 1-

second flicker stimulus results in ~8% RBF peak change compared to ~10% for the 2-second 

flicker stimulus, the difference in the peak RBF magnitudes are not statistically significant 

(P=0.169, Fig. 6.5D). Statistical results also showed no significant differences in the ERG b-wave 
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magnitude (P=0.086). Also, there is no significant difference in the latency of the RBF peak for 

the 1- and 2-second flicker stimuli. Normalized RBF recordings for the 1- and 2-second flicker 

stimuli are shown in Figure 6.5C. Although there is no significant difference in the RBF rate of 

increase with the application of the visual stimulus, the RBF recovery rate is ~3X faster for the 1-

second stimulus compared to the 2-second flicker stimulus of the same intensity.  

 

Figure 6.5 Effect of flicker stimulus duration. (A) Representative ERG traces acquired with 1s and 2s flicker stimulus duration. 

The pink and grey shaded areas mark the duration of the visual stimuli. (B) Total axial RBF as a function of time for the 1s and 

2s flicker stimuli, averaged over all recordings from all animals. (C) Normalized RBF data showing differences in the recovery 

rate for the 2 stimulus durations. (D) Comparative statistics for the maximum RBF change and the ERG b-wave magnitude data 

for the two flicker stimulus durations. The data are presented as mean ± SD. 

 

Figure 6.6 summarizes results from the tests with 2-second long flicker stimuli of different 

intensities (1.14 and 0.80 log scotopic cd·s/m2). Figure 6.6A shows representative ERG traces for 

the flicker stimuli of different intensities. The total axial RBF, averaged over all recordings from 
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all animals, as a function of time, is shown in Figure 6.6B. The brighter flicker stimulus resulted 

in significantly higher RBF peak magnitude compared to the stimulus of lower intensity (P= 

0.0471, Fig. 6.6D); however, there was no significant difference in the RBF peak latencies for the 

two stimuli. Statistics of the ERG data (Fig. 6.6D) shows that the flicker ERG magnitude is larger 

with higher flicker stimuli intensity (P=0.020). Normalized RBF recordings for the 1- and 2-second 

flicker stimuli are shown in Figure 6.6C. Although there is no significant difference in the RBF 

rate of increase with the application of the visual stimulus, the RBF recovery rate is ~50% faster 

for the low intensity stimulus.  

 

Figure 6.6 Effect of flicker stimulus intensity. (A) Representative ERG traces for the flicker stimuli with different intensities. (B) 

Total axial RBF change as a function of time, for the two stimulus intensities, averaged over all recordings from all animals. (C) 

Normalized RBF data showing differences in the recovery rate for the 2 stimulus intensities. (D) Comparative statistics for the 

maximum RBF change and the ERG b-wave magnitude data, presented as mean ± SD for the two flicker stimulus intensities. The 

“*” denotes significant difference between the two groups of data. 
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Figure 6.7 shows results from a comparative analysis between the 200-ms single flash and the 1-

second flicker stimuli. Since in our studies we used 10-Hz flicker with 20% duty cycle, each cycle 

of the flicker stimulus corresponds to 20-ms long continuous flash. Therefore, the 1-second flicker 

has the same average photon energy as the 200-ms single flash. Figure 6.7B shows representative 

ERG traces for the 200-ms single flash and 1-second flicker stimuli. The total axial RBF, averaged 

over all recordings from all animals, as a function of time is shown in Figure 6.7B. The 200-ms 

single flash stimuli induced ~2X smaller RBF peak magnitude change compared to the 1-second 

flicker stimulus (4.1 ± 2.4% vs. 8.0 ± 1.7%, P = 0.034). Furthermore, the single flash stimulus had 

~25% smaller latency (1.7 ± 0.2 seconds vs. 2.1 ± 0.1 seconds, P < 0.001). Figure 6.7C presents 

normalized RBF traces for the single flash and flicker stimuli. Although the single flash stimulus 

has ~2X faster rate of the RBF increase, it also shows ~2X lower recovery rate compared to the 

flicker stimulus. Statistical results for the RBF peak magnitude and latency for the two types of 

visual stimuli are presented in Figure 6.7D. These results show that regardless of the fact that the 

overall photon energy delivered to the retina by the 200-ms single flash and 1-second flicker 

stimuli is the same, differences in the RBF peak magnitude and latency for the different stimuli 

types are significant (marked with ‘‘*’’ and ‘‘†’’ in Figure 6.7D, respectively). 
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Figure 6.7 Comparison of the changes in the total axial RBF and the ERG b-wave magnitude resulting from 200 ms single flash 

and 1s, 10Hz, 20% duty cycle flicker stimuli of the same illumination intensity. (A) Representative ERG traces. The pink and 

grey shaded areas mark the duration of the visual stimuli. Original (B) and normalized (C) time recordings of the total axial RBF 

in response to the single flash and flicker stimuli. (D) Peak latency and amplitude statistics for the RBF data, where “*” and “†” 

denote significant differences in the RBF peak amplitude and latency respectively, between data acquired with the single flash 

and flicker stimuli. The data are presented as mean ± SD. 

6.4 Discussion 

Results from our study on the flicker-induced RBF changes agree in general with results from 

similar studies conducted by other research groups with different imaging methods. Specifically, 

Kornfield et al.[247] observed 11% increase in the superficial RBF following 2s flicker stimulation 

by using functional MRI (BOLD), which compares well with the ~10% increase we measured with 

DOCT for flicker stimulus of the same duration. Radhakrishnan et al.[248] reported ~12% blood 

flow increase for a 10s flicker stimulus using en-face Doppler OCT, while Werkmeister et al.[249] 
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detected over 30% increase of blood flow with 60s flicker stimulus using DOCT. Results from our 

study agree with the general trend established by all of these studies that longer duration of the 

flicker stimulus contributes to larger peak magnitude of the RBF and that the time of RBF return 

to baseline is directly proportional to the flicker stimulus duration. One new and significant result 

from our study is that we showed for first time that DOCT is able to measure reproducibly RBF 

changes in response to much shorter flicker stimuli (1s compared to 10s or 60s). Furthermore, we 

have shown for the first time correlation between the visual stimulus-induced RBF and the flicker 

ERG magnitude.  

Results from our study also showed that DOCT is able to measure reproducibly changes in the 

RBF in response to continuous visual stimuli with duration as short as 10ms. However, as 

demonstrated by the results in Figure 6.7, single flash and flicker stimuli of the same lux generate 

different response of the RBF. Almost 2x larger RBF peak magnitude was measured with the 

flicker stimuli, which indicates that retinal neurons respond differently to the frequency content of 

the visual stimulus. Our results correlate well with results from other studies conducted with 

different imaging modalities, that also indicate that flicker stimuli have stronger effect on the 

neurovascular coupling and vasodilation[26], [233].  

The DOCT imaging protocol used in our study was designed to emphasize blood flow 

measurement from retinal blood vessels located at the RNFL. By changing the image acquisition 

protocol, it is possible to measure changes in the capillary flux in the inner retina in response to 

visual stimulation by counting the number of red blood cells passing through the repeated cross-

section area[250], [251].  
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In our study, we utilized ERG to investigate physiological responses of the retina to visual stimuli 

and to correlate those changes to the RBF changes. Functional OCT has been proven able to image 

intrinsic optical changes (intrinsic optical signal - IOS) in the retina in response to visual 

stimuli[177], [252]–[255] . Since the fast IOS changes occur on a millisecond scale, while changes 

in the RBF occur on the scale of seconds, the DOCT protocol we utilized for our current study was 

not suitable for simultaneous recording of both IOS and RBF changes with the OCT system. Future 

development of the OCT technology and image acquisition protocols could make simultaneous 

recording of stimulus-induced IOS and RBF changes in the living retina feasible. 

6.5 Conclusion 

In this chapter, we have developed a combined OCT+ERG system to allow for simultaneous 

measurement of the physiological and blood flow changes in the rat retina induced by visual 

stimuli. We showed that both single flash and flicker short duration stimuli induce measurable 

changes in the RBF and demonstrated that DOCT is capable of measuring reproducibly RBF 

changes from continuous single flash stimuli as short as 10ms.  
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Chapter 7 Neurovascular coupling in the rat retina with acute IOP 

elevation 

Notes and Acknowledgement 

This chapter summarizes results from a study that investigated the neurovascular coupling 

(correlation of visually evoked changes in the retinal blood flow and function) in the healthy rat 

retina for moderate level elevated IOP with the combined OCT+ERG system. This chapter is 

based on a journal manuscript: 

B. Tan, E. Mason, B. MacLellan and K. Bizheva. “The Effect of Acutely Elevated Intraocular 

Pressure on the Functional and Blood Flow Responses of the Rat Retina to Flicker Stimulation,” 

Investig. Ophthalmol. Vis. Sci. (in revision). 
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7.1 Introduction 

Glaucoma is a chronic disease associated with progressive dysfunction of the RGCs[256], [257], 

reduction of the retinal blood flow[258], thinning of the RNFL[259] and deformation of the optical 
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nerve head (ONH)[13]. It is the second leading cause of blindness worldwide, with an estimate of 

64.3 million people between the ages of 40 to 80 years affected in 2013, 76.7 million by 2020, and 

111.8 million by 2040[1]. Currently, there is no cure for glaucoma and any clinically available 

pharmaceutical or surgical approaches to treating the disease can only slow its progression. 

Therefore, early detection and treatment are essential for managing the glaucoma progression 

elevated IOP is one of the most well studied and documented pathogenic risk factors for 

OAG[104], [106], [259], and as such, numerous animal models have been developed to study the 

acute and chronic IOP elevation effect on ONH structure[9], [27], [45], [46], [221], retinal blood 

perfusion[58], [176], [198] and ganglion cell function[35], [53], [73], [130]. 

Currently RNFL thinning and ONH deformation are used as some of the major markers for clinical 

diagnostics and treatment monitoring of glaucoma; however, these morphological retinal changes 

develop over a fairly long time to the extent that they are measurable by ophthalmic imaging 

modalities. More recent studies have shown that glaucoma patients exhibit reduced flicker-induced 

blood flow changes and vasodilation compared to healthy subjects[18]–[20], [22], [23]. 

Specifically, Riva[18] used laser Doppler flowmetry reported that the retinal blood flow (RBF) 

response at the optic disc rim to flicker stimulation is significantly reduced in early OAG and 

ocular hypertension patients. Similarly, Gugleta and colleagues[22], [23] conducted a study using 

a retinal vessel analyzer and reported attenuated flicker-induced vasodilation in early glaucoma 

and ocular hypertension patients. Garhöfer[19] used retinal vessel analyzer to show that 

vasodilation in retinal veins in response to flicker stimulation is greatly diminished in early 

glaucoma patients. Results from those studies suggest that visually-evoked retinal blood vessels 

vasodilation and changes in the retinal blood flow may serve as sensitive markers that would allow 
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for early diagnostics of glaucoma.  

So far, various imaging modalities have been used to investigate the neurovascular coupling in the 

retina, including the blue field entoptic method[232], laser Doppler velocimetry[260], fluorescence 

microspheres[235] and functional MRI(BOLD)[247]. Over the past few years, Doppler OCT and 

OCTA have gained significant clinical importance for clinical diagnostics and treatment 

management of various retinal diseases including glaucoma[261]. Different OCT system designs 

and/or image acquisition protocols have been utilized in methods such as the en-face 

integration[187], the double concentric circle method[262] and the multi-directional beam[89], 

developed for accurate retinal total blood flow measurements in human subjects and animal 

studies.  

Doppler OCT was also used to measure changes in the RBF in response to flicker stimulation in 

both humans and animals[237], [238], [248], [249], [263]. Recently, our research group has 

developed a combined optical coherence tomography and electroretinography (OCT+ERG) 

system that allows for examination of the neurovascular coupling in the rat retina[178]. A study 

conducted with this system in healthy rats under normal IOP, showed that flicker-induced changes 

in the RBF are time-correlated with amplitude and latency changes of the ERG traces.  

Here we present results from a study that used the OCT+ERG system to examine the effect of 

acutely elevated IOP on the functional and blood flow responses of the rat retina to flicker 

stimulation.  

7.2 Methods 

7.2.1 Animal and anesthesia 

All experiments described here were approved by the University of Waterloo Animal Research 
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Ethics Committee and adhered to the ARVO statement for use of animals in ophthalmic and vision 

research. Male Brown Norway rats (n = 11, Harlan Laboratories Inc., Indianapolis, IN), weighing~ 

300 g, were dark adapted for at least 12 hours in a 12/12 light cycle room prior to the experiment. 

All the other animal preparation details have been discussed in the Section 6.2.1. It is to be noted 

that the motion artifact is minimized by the selection of anesthesia (ketamine/xylazine) and the 

stereotactic instruments.   

7.2.2 IOP elevation protocol  

An adjustable vascular loop (Sentinal Loops; Sherwood-Davis and Geck, St. Louis, MO, USA), 

placed anterior to the equator of the eye, was used to elevate the IOP in one eye to ~ 45 mmHg for 

a duration of 30 minutes, following a procedure developed by Joos et al.[30] The IOP was 

measured with a corneal rebound tonometer (Icare® Tonolab, Tuike, Finland) before placement 

of the vascular loop, about 10 minutes after placement of the loop, immediately before the 

OCT+ERG imaging procedure, and about 10 min after removal of the loop.  

7.2.3 Doppler OCT+ERG System 

A research grade, ultrahigh resolution spectral domain OCT system, combined with a commercial 

ERG system (Diagnosys LLC, Lowell, MA, USA) was used for this study. The system setup has 

been described before in Section 6.2.2. Briefly, the OCT system operates in the 1060 nm spectral 

region and provides ~3 µm axial and ~5 µm lateral resolution in the rat retina, at 92 kHz image 

acquisition rate. For this study, the camera data acquisition rate was reduced to 47 kHz in order to 

improve the SNR of the Doppler OCT signal and ensure maximum measurable flow velocity of 

8.6 mm/s, sufficient for quantitative blood flow measurements in the rat retina. The OCT imaging 
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probe was designed to deliver a collimated imaging beam of 1.5 mm diameter and optical power 

of 1.7 mW to the rat cornea, and was integrated with a custom visual stimulator connected to the 

commercial ERG system. The visual stimulator was designed to focus the stimulus light at the 

pupil plane, thus providing a wide angle, uniform Maxwellian illumination of the retina. The 

intensity and duration of the visual stimuli were controlled from the ERG console and the OCT 

and ERG data acquisition were synchronized.  

7.2.4 Data Acquisition 

Doppler OCT and ERG data were acquired immediately after the IOP measurements for the 3 time 

points of the study: before IOP elevation (pre-loop), during IOP elevation (loop-on) and after loop 

removal (post-loop). A Doppler OCT scanning protocol based on 2 concentric circular scans 

centered at the ONH, similar to the protocol proposed by Shahidi[91], was used in our study to 

determine the Doppler angle necessary for the calculation of the TRBF. Figure 7.1A shows an en-

face maximum intensity projection morphological image of the rat ONH and vicinity, with colored 

dashed lines marking the Doppler OCT concentric circular scan pattern (Ø1=0.65 mm, Ø2=0.85 

mm). The size of each circular OCT scan was 4000 x 512 (A-scans x pixels) and 5 repetitive scans 

were acquired consecutively from the same location in the retina. Data with this protocol was 

acquired prior to the simultaneous Doppler OCT and ERG recordings for each loop phase to 

determine the Doppler angle between each retinal blood vessel and the OCT imaging beam. A 

continuously repeated single circle Doppler OCT scan pattern (Ø = 0.75 mm) was used for the 

simultaneous Doppler OCT and ERG recordings in order to achieve high temporal resolution of 

85 ms, sufficient to track the blood flow pulsatile oscillations and the stimulus induced TRBF 

changes. Each synchronous Doppler OCT and ERG recording lasted 6 s seconds (1 s long pre-
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stimulus, 2 s long flicker stimulus and 3 s long post-stimulus period). White light flicker stimulus 

(10 Hz, 2 s duration, 0.80 log scotopic cd·s/m2) with 20% duty cycle and 100% modulation depth 

was used. Five OCT+ERG recordings were acquired for every loop phase, with a 3 minute rest 

interval between consecutive recordings. For the ERG recordings, the positive loop electrode (Ø 

= 4 mm) was placed onto the cornea, leaving clear aperture for the OCT imaging beam. Artificial 

tears (Refresh Tears; Alcon, Mississauga, ON, Canada) were applied to the imaged eye to ensure 

optimal impedance between the ERG loop electrode and the cornea. The negative electrode needle 

was placed subcutaneously behind the ear, and the ground electrode needle was placed in the skin 

between the ears. The ERG system has a 1.5 kHz sampling frequency and a built-in band-pass 

filter (0.3-300 Hz).  

7.3 Data Analysis 

7.3.1 OCT Doppler data 

Retinal blood vessels in the vicinity of the ONH were manually selected from the single circle 

Doppler OCT scans and the axial blood flow was calculated by integrating the blood velocity over 

the selected blood vessel area. Doppler OCT images were calculated by arterial and venal blood 

flow was calculated separately due to the different polarity of the respective phase changes and 

only the magnitudes were used for evaluation of the TRBF. In order to compute the TRBF, 

knowledge of the Doppler angle between the OCT imaging beam and the orientation of each retinal 

blood vessel was required. In our study, individual blood vessel was segmented manually, and the 

Doppler angle ϴ was determined from the shift in location of the retinal blood vessels between the 

two concentric circular Doppler OCT scans： 
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ϴ = arccos (
∆𝑧

√∆𝑥2 + ∆𝑦2 + ∆𝑧2
)  

Here, Δy and Δz are the lateral and axial displacements of the blood vessel between the 2 circular 

scans respectively, and Δx is the distance between the 2 circular scans (200 µm). Figure 7.1A 

shows on en-face maximum intensity projection image of the rat retina with colored dashed lines 

marking the Doppler OCT concentric circular scans centered at the ONH. Figure 7.1B shows an 

overlay of the 2 OCT circular tomograms, color coded in violet and green. Figure 7.1C-D show a 

magnified view of the location in Figure 7.1B marked with the yellow dashed line and demonstrate 

the shift in location of the major retinal blood vessels between the 2 concentric circular scans, used 

for the calculation of the Doppler angle. TRBF was calculated by integrating over the total blood 

flow data for all retinal arteries and veins. A moving window (Savitzky-Golay, window size: 15) 

smoothing algorithm was used to filter out oscillations in the temporal TRBF recordings arising 

from pulsatile blood flow. The blood vessel size for all retinal vessels was also determined 

manually by two researchers by measuring the shadow underneath each vessel in the Doppler OCT 

images[91]. The 5 repeated concentric circular OCT scans acquired from the same locations in the 

retina were aligned and averaged in order to reduce speckle noise and thus improve the precision 

of the BVS analysis.  
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Figure 7.1 Total blood flow analysis. (A) En-face image of the ONH with violet and green dashed lines marking the double circle 

Doppler OCT scanning pattern. (B) Overlay of 2 representative concentric circular OCT scans. (C) and (D) present magnified 

views of the area in (B) marked with the yellow dashed line, from the large and small diameter circular scans respectively. 

7.3.2 Retinal function 

ERG traces were averaged over the five recordings for each loop phase. In accordance with the 

standard for processing ERG recordings[246], the first negative and positive peaks in the flicker 

ERG trace correspond to the a-wave and b-wave of a single flash response of the retina 

respectively. Since the magnitude of the second pair of positive and negative peaks can also be 

affected by the single flash response of the retina, in our analysis, the peak-to-trough difference 

for the last 8 peaks of the 10 Hz flicker ERG trace was averaged and defined as the flicker ERG 

amplitude. A Fourier transform was applied to the ERG recordings to extract the FHC (10 Hz) and 

the SHC (20 Hz), and explore their dependence on the elevated IOP. 

7.3.3 Statistics 

One-way ANOVA was used to detect any significant differences in all measured parameters such 

as the IOP, the TRBF, the BVS, the flicker induced changes in the TRBF and the ERG components. 

Bonferroni-corrected multiple comparison post-hoc tests were applied to determine any 

significance between the pre-, during, and post-loop conditions. Differences were considered 
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significant when p<0.05. All data in the text are presented as Mean ± SD, while data in all figures 

are presented as Mean ± SE. 

7.4 Results 

7.4.1 IOP  

The pre-loop IOP was 9.6 ± 1.1 mmHg and when elevated, it stabilized at 43.1 ± 6.8 mmHg after 

10 minutes of loop wear (p<0.01). After 10 minutes of post-loop recovery, the IOP decreased and 

stabilized at 7.1 ± 1.1 mmHg (p<0.01). There was no significant difference between the pre-loop 

and post-loop IOP values (p=0.54).  

 

Figure 7.2 Morphological and vascular changes of the ONH induced by the elevated IOP (A-C) Volumetric morphological OCT 

images of the ONH acquired before, during and after IOP elevation. (D-E) Elevated IOP related changes to the retinal blood 

vessels diameter evaluated from the width of the blood vessel shadows in the circular OCT images. 
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7.4.2 TRBF and blood vessel size 

Acute elevation of the IOP caused temporary shape changes of the ONH (Fig. 7.2A-C), as well as 

temporary constriction of the retinal blood vessels (Fig. 7.2D-F), observed in the volumetric and 

cross-sectional OCT images respectively. The red arrows in Figure 7.2 D-F show the change in 

blood vessels diameter with IOP elevation. Figure 7.3 shows statistical results for the TRBF and 

the BVS measured during the pre-loop, loop-on and post-loop phases in complete darkness (no 

visual stimulation). The TRBF decreased significantly from 5.6 ± 1.9 µL/min to 3.8 ± 1.2 µL/min 

during loop-wear (p=0.02) and recovered to 5.5 ± 1.2 µL/min after 10 minutes from loop removal 

(p=0.02 relative to loop-on). No significant difference between the pre-loop and the post-loop data 

was observed (p=1.00). On average (over all retinal arteries and veins and all animals), the elevated 

IOP had a significant effect on the retinal vessel size. The average retinal blood vessel diameter 

was 44.1 ± 4.5 µm at normal IOP (pre-loop), reduced significantly to 35.1 ± 2.6 µm (20.0 ± 4.7%, 

p<0.01) during the IOP elevation (loop-on), and recovered to 42.4 ± 3.3 µm within 10 min after 

loop removal (p < 0.01). There was no significant difference in the average blood vessels diameter 

between the pre-loop and post-loop measurements (p=0.27).  

Elevation of the IOP also caused suppression of the visually evoked changes in the TRBF (Fig.7.4). 

At baseline (pre-loop), the TRBF showed 6.0 ± 3.3% increase in response to flicker stimulation. 

Elevation of the IOP to ~45 mmHg reduced significantly the magnitude of the visually evoked 

TRBF change to 0.1 ± 0.3% (p < 0.01). After loop removal, the flicker induced TRBF response 

recovered to 5.9 ± 1.7% (p < 0.01). No significant difference was detected in the visually evoked 

TRBF responses between baseline and recovery (p=1.00).  
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Figure 7.3 TRBF and retinal blood vessel diameter measured as functions of the IOP. *, † mark the significant differences of the 

“Loop on” data point compared to baseline and recovery data. 

 

Figure 7.4 Statistics for the flicker-induced TRBF change in response to acute IOP elevation. Data is presented as box 

plot of 25 to 75 percentile with whisker marks outliers. Yellow squares mark the mean values, while “*” marks 

significant differences compared to the baseline and the recovery data. 
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7.4.3 Retinal function changes  

Figure 7.5A shows a typical ERG trace acquired in our study, with its single-flash and flicker 

components marked with the red and green line boxes. Acute elevation of the IOP caused 

temporary increase in the a-wave and b-wave amplitudes and latencies of the ERG single flash 

component for the duration of the loop wear, and recovery of the ERG signal to normal after 10 

min of the vascular loop removal (Fig. 7.5B). The magnitude of the ERG flicker component 

decreased during loop wear and returned to normal after loop removal (Fig. 7.5C). Synchronously, 

the flicker induced TRBF changes were suppressed during loop wear and recovered to normal 

within 10 min of loop removal (Fig. 7.5D).  
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Figure 7.5(A) Representative ERG trace acquired with 2s flicker stimulus at normal IOP. Dashed line marks the stimulus onset. 

Red and green line boxes mark the single flash and flicker components of the ERG trace respectively. (B) Single flash component 

of the ERG trace evaluated before, during and the after the IOP elevation. (C) Flicker component of the ERG trace evaluated 

before, during and the after the IOP elevation. (D) Flicker induced TRBF changes evaluated before, during and the after the IOP 

elevation. Heartbeat induced oscillations in the TRBF are shown in grey, while the filtered TRBF is shown in black. 

 

Increase of the single flash a-wave and b-wave magnitudes was observed during the IOP elevation 

(131.0 ± 21.3 µV and 166.5 ± 44.7 µV respectively), compared to the pre-loop value (a-wave 98.5 

± 22.9 µV, p = 0.02, b-wave 63.8 ± 29.1 µV, p<0.01) and at post loop value (a-wave 110.8 ± 21.2 

µV, p = 0.06, b-wave 103.0 ± 17.5 µV, p<0.01) (Fig. 7.6A and 7.6B respectively). The FHC of 

the flicker ERG was not affected significantly by the loop wear (p = 0.18, Fig. 7.6C). However, 

the SHC decreased significantly from 26.7 ± 4.8 mV (pre-loop) to 12.4 ± 4.4 mV during loop wear 
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(p<0.01), corresponding to a 55% reduction in amplitude, and recovered to 18.4 ± 2.8 mV after 

loop removal (p<0.01). The post-loop SHC value was significantly lower than the pre-loop 

measurement (p <0.01). 

7.5 Discussion 

The reduction of the flicker-induced TRBF change during acute IOP elevation observed in our 

study agreed well with findings from clinical studies conducted on high ocular tension 

glaucomatous patients[18]–[20], [22], [23]. Specifically, by using 15Hz green light flicker 

stimulation, Riva[18] found that the magnitude of the blood flow response to flicker stimulation 

at the neuroretinal rim of the optic disk reduced significantly in ocular hypertension and early 

glaucoma patients, Similarly, Gugleta[20], [22], [23] observed reduced flicker-induced 

vasodilation of retinal blood vessels in OAG patients (and ocular hypertension patients, for 

different ages and development stage of the glaucoma. Specifically, flicker-induced vasodilation 

in retinal veins was 0.8 ± 2.5% in early glaucoma patients, compared to 2.1 ± 2.1% in healthy 

subjects. In a different study, Garhöfer[264] used the ocular suction-cup method to elevate the IOP 

up to 43 mmHg for 60 seconds. ONH blood flow was measured by laser Doppler flowmetry and 

retinal vessel diameter was measured by a retinal vessel analyzer, and as a result, the response of 

retinal vessel diameter and ONH blood flow to the luminance flicker didn’t change significantly, 

which contradicts the results from our study. One possible explanation is that 60s of IOP elevation 

to 43 mmHg may not be sufficient to induce measurable changes in the human TRBF. 
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Figure 7.6 Metrics of the single flash component (a- and b-wave amplitudes) and flicker (FHC and SHC amplitude) components 

of the ERG traces as functions of the IOP. Data are presented as mean ± S.E. and any significant difference between the data in 

each column are marked with “*”. 

 

The effect of elevated IOP on the retinal blood perfusion and physiological response to visual 

stimulation is complex. Results from multiple studies suggest that the observed decrease in the 

TRBF and the vasoconstriction with elevated IOP could be associated with insufficient metabolic 

supply to the retina, caused by activated astrocyte[6], endothelial dysfunction[265] and excess of 
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nitric oxide (NO)[260], [266], though the exact physiological mechanism of these changes is 

unknown. The effect of elevated IOP on the functional response of the retina to visual stimulation 

has been studied extensively and more groups report decrease of the ERG’s a-wave and b-wave 

amplitudes with elevated IOP[31], [53]. Our research group reported recently an initial pronounced 

increase of the ERG’s a- and b-wave amplitudes in rats, during IOP elevation to a moderate level 

of 35 mmHg by use of a vascular loop[183]. Although such increase maybe counter intuitive, it 

was observed consistently both in the current study as well as in other studies conducted on rats of 

different strains[175]. Further increase of the IOP with a vascular loop to ischemic levels > 60 

mmHg showed progressive decrease in the ERG’s a-wave and b-wave amplitudes. Such 

supranormal scotopic a-wave and b-wave amplitudes with normal implicit times have been 

reported for specific conditions, including loss of retinal dopaminergic amacrine cells[139], [267], 

blockage of retinal dopamine receptors[141], [142], gestational low level lead exposure in 

rats[143] and humans[144], and loss of a mitochondrial ATP transporter in Ant1-/- mice[145]. 

Furthermore, Vielma et al.[151] showed that low level intravitreal injections of NO into rat eyes 

is associated with increases in the amplitudes of ERG a- and b-waves, OPs and pSTRs. Several 

groups have reported that chronic elevation of IOP to less than 35 mm Hg in the rat eye is 

associated with NO production in the retina[165], [166] and the optic nerve[166], [168].  

The FHC and the SHC of flicker ERG could provide significant insight to the physiological 

mechanisms of reduced neurovascular coupling. It has been reported that in humans and monkeys, 

the FHC and SHC of the flicker ERG are affected mostly by the outer retina and inner retina, 

respectively[268]–[272]. Furthermore, strong correlation between flicker-induced retinal blood 

flow change and SHC was reported in both monkeys[273] and humans[241] though in those cases 
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the blood flow measurements and ERG recordings were acquired separately instead of 

synchronously. In this study, we observed synchronously a significant decrease in both the 

magnitude of the SHC of the flicker ERG and the flicker-induced TRBF change and during acute 

IOP elevation to a non-ischemic level of 45mmHg.Furthermore, the FHC of the flicker ERG 

remained unchanged during acute IOP elevation. As FHC is mostly affected by the outer retina, it 

is likely that the metabolic supply to the outer retina was not affected significantly by the IOP 

elevation. Most likely this is due to the fact that oxygen and nutrition to the outer retina are 

provided by the choroidal flow, which has been shown to resist changes in response to acute IOP 

elevation[58].  

7.6 Conclusion 

In this chapter, results from our study showed that acute IOP elevation to non-ischemic level of 45 

mmHg causes significant decrease of both the flicker-induced TRBF change and the magnitude of 

the SHC of the ERG recordings. However, the ERG’s a-wave and b-wave amplitudes showed 

several fold increase. Future studies in which the IOP is raised progressively from normal to 

ischemic levels and the respective changes in the retinal morphology, TRBF, BVS and ERG 

metrics are recorded simultaneously with the OCT+ERG system, may provide valuable 

information regarding the early stages of development of open-angle glaucoma. Such studies may 

prove more definitively that flicker-induced changes in the TRBF and the ERG metrics may be 

more sensitive markers to the early stages of glaucoma compared to markers based purely on 

morphological analysis such thickness changes in the NFL, GCL, IPL, or shape changes of the 

ONH. 
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Chapter 8 Method for accurate measurement of pulsatile retinal blood 

flow with Doppler optical coherence tomography  

Notes and Acknowledgement 

This chapter introduces a new scanning protocol and an automatic retinal blood vessel 

segmentation method to measure the pulsatile retinal blood flow. The robustness of this method 

was evaluated by repeated measurement in one rat, and statistics of pulsatile retinal blood flow 

metrics (mean blood flow, pulsatility index, and resistance index) were provided from 5 rats. 

This chapter is based on a journal manuscript: 

Bingyao Tan, Zohreh Hosseinaee and K. Bizheva. “Dense concentric circle scanning protocol for 

measuring pulsatile retinal blood flow in rats with Doppler optical coherence tomography,” 

Journal of Biomedical Optics (accepted).  
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Kostadinka Bizheva contributed to the interpretation of all results.  

Bingyao Tan wrote the first draft of the manuscript. 

All authors contributed to the final version of the manuscript. 
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8.1 Introduction 

Pulsatile retinal blood flow (BF) is associated with a number of ocular vascular related diseases, 

such as DR[274], central retinal venous occlusion[275], AMD[276] and glaucoma[258]. Recent 

studies indicated that metrics that characterize the pulsatility of retinal BF are sensitive to early 

pathophysiological changes in the retina, therefore accurate assessment of retinal BF pulsatility 

can aid the early diagnosis of potentially blinding diseases. Previously, different optical imaging 

modalities, such as scanning laser ophthalmology[277], laser Doppler velocimetry[92], and retinal 

vessel analyzer[278] have been used for assessment of the pulsatility of retinal BF. In comparison, 

DOCT offers higher sensitivity and provides simultaneously both structural and blood flow / blood 

perfusion information about the imaged object, which offers an opportunity to examine the 

relationship between morphological and BF changes in the retina induced by retinal diseases[261]. 

Since DOCT measures only axial BF along the imaging beam direction, precise knowledge of the 

angle between the incident beam and the blood vessel is necessary in order to assess absolute 

retinal blood flow. Dual beam DOCT[88], [279] utilizes two imaging beams incident on the same 

location in the imaged blood vessel in order to determine more precisely the absolute blood flow. 

However, this method requires more complex and expensive design of the OCT system, while 

precise alignment of the two imaging beams at the same location in the retina can be difficult and 

time consuming. An alternative approach to measuring absolute retinal BF with DOCT is to utilize 

a dual circle scanning pattern[92] and use the location displacement of blood vessels between the 

two circular OCT scans to calculate the Doppler angle. One limitation of this approach is that it is 

based on the assumption that the retinal blood vessel runs along a straight line between the two 

circular OCT scans, which is frequently not the case. A virtual concentric scan[90] method and an 
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OCT angiography based approach[280] have also been proposed for absolute blood flow 

assessment. Both of these methods utilize a raster-scanned volumetric OCT image stack of the 

retina and repeated circular OCT scans that are acquired separately, and later co-registered with 

the volumetric images in order to determine the Doppler angle of blood vessels. These approaches 

are very sensitive to eye motion artefacts and precise registration of retinal blood vessels between 

the circular scans and the volumetric image stacks can be problematic. En-face Doppler OCT[82], 

[83] offers a Doppler angle independent approach to calculation of the absolute retinal blood flow 

by integrating the axial blood flow from an en-face image. However, this approach requires 

ultrafast image acquisition or excellent synchronization of the OCT images with the cardiac cycle. 

Here we present a new scanning protocol that utilizes a dense concentric circular scan pattern over 

a doughnut-shaped area of the retina centered at the ONH, and an automatic retinal blood vessel 

segmentation algorithm, for more precise quantification of the absolute and pulsatile retinal BF. 

This new approach was tested in the rat retina and results were compared with the dual circle scan 

approach for absolute retinal blood flow measurement. 

8.2 Methods 

A research-grade, spectral domain OCT system, designed and built by our group for various 

imaging studies in the animal retina[177], [178], [243] was modified for use in this study. Briefly, 

a broad bandwidth SLD (λc = 1060 nm, Δλ = 110 nm, Superlum Ltd, Ireland) was used to achieve 

3.5 µm axial resolution in retinal tissue. The DOCT retinal imaging probe, comprised of 3 

broadband NIR achromat doublet lenses (f1 = 10 mm, f2 = 60 mm, and f3 = 30 mm; Edmund 

Optics, Barrington, NJ, USA) and a pair of galvanometric scanners (Cambridge Technologies, 

Bedford, MA, USA), was designed to deliver a collimated imaging beam of 1.5 mm diameter and 
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1.7 mW optical power to the rat cornea, thus achieving ~5 µm lateral resolution in retinal tissue. 

A high resolution spectrometer (P&P Optica, Waterloo, Canada) and a NIR line scan camera 

(1024-LDH2 92 kHz, Sensors Unlimited, USA) were used at the detection end of the DOCT 

system. 

Eleven-week old male Brown Norway rats (n = 10), weighting ~300 g were used in this study to 

test the new DOCT scanning protocol and automatic retinal blood vessel segmentation algorithm. 

All experiments described here were approved by the University of Waterloo Animal Research 

Ethics Committee and adhered to the ARVO Statement for Use of Animals in Ophthalmic and 

Vision Research. The rats were anesthetized with ketamine/xylazine (0.2 ml per 100 g body 

weight) delivered intraperitoneally, and a subcutaneous injection of 5 ml sterile saline was 

administered immediately after to keep the animal well hydrated during the imaging procedure. 

The rat’s head was stabilized stereotactically and 1 drop of 0.5% tropicamide (pupillary dilator; 

Alcon) was applied to each eye. One drop of 0.5% proparacaine hydrochloride (topical anesthetic; 

Alcaine, Alcon) was applied to the imaged eye, and artificial tears were administered every 5 

minutes to keep the cornea well hydrated and optically transparent.  

A flow chart of proposed new approach to accurate evaluation of absolute and pulsatile BF is 

presented in Figure 8.1. A doughnut-shaped area of the rat retina, centered at the ONH was imaged 

using a dense concentric circular scan pattern (Fig. 8.1A). Two hundred concentric circular scans 

with diameters ranging from 0.8 mm to 1 mm were used to cover the imaged retinal area. Each 

concentric scan was comprised of 3000 A-scans, which offered overlap between adjacent A-scans 

of 78% -84%, dependent on the diameter of the circular scan. The camera acquisition rate was set 

to 47 kHz resulting in frame rate of 15.7 fps and total acquisition time of 12.7 seconds. To calculate 
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the absolute BF for each retinal blood vessel, the information from each complex OCT image was 

divided into two parts: the amplitude was used to segment the retinal blood vessels (Fig. 8.1B-D), 

while the phase was used to calculate the axial blood flow (Fig. 8.1E). A three-step method was 

used to segment the retinal blood vessels. First, the retinal surface was segmented automatically 

in each circular DOCT scan (Fig. 8.1B). Second, a shadow diagram was generated for each circular 

DOCT scan by averaging the intensity of the OCT image between the two cyan lines and the retinal 

pigmented epithelium. Then, an en-face shadow image was composed by combining all 200 axial 

OCT shadow diagrams. The dark areas in the en-face shadow image (Fig. 8.1C) correspond to the 

retinal blood vessels. Third, an algorithm based on modified graph theory and a dynamic 

programming[281] was developed and used to segment automatically the retinal blood vessels 

from the en-face shadow image. The two boundaries for each blood vessel were segmented 

pairwisely and different blood vessels were segmented in sequence. Note that for branching blood 

vessels, only one branch was segmented by the automatic algorithm, while the second branch 

 

Figure 8.1 Flow chart for the absolute retinal BF assessment. (A) Diagram of concentric scans with variable diameter, centered at 

the ONH. (B-D) Automatic blood vessel segmentation protocol: (B) Retinal surface segmentation for each concentric scan (red 
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line). The area between the two cyan dashed lines is averaged axially to generate a shadow image (C) in which blood vessel are 

segmented and marked with red lines. The yellow arrow marks a branched blood vessel that is not segmented by the automatic 

algorithm. (D) A retinal surface elevation map where all segmented blood vessels are marked. (E) A representative DOCT cross-

sectional image labelled with segmented blood vessels. (F) Diagram for precise Doppler angle calculation of the spatially 

dependent magnitude and direction of the retinal BF. (G) Formula for calculating the absolute BF from the ith circular scan. 

 

was ignored (yellow arrow in Fig. 8.1C). Once the vessels’ segmentation was complete, a retinal 

surface elevation map was generated with all the segmented blood vessels labelled on it (Fig. 

8.1D). The axial and lateral displacements of each blood vessel along radial direction were 

determined from the surface elevation map and the Doppler angle was calculated using the 

formula:  

ϴ = arccos (
∆𝑧

√∆𝑥2 + ∆𝑦2 + ∆𝑧2
)  

Here, Δy and Δz are the lateral and axial displacements of the blood vessel between adjacent 

circular scans respectively, and Δx is the distance between adjacent circular scans (0.5 µm). The 

absolute retinal blood flow for the ith concentric circular DOCT scan was calculated by the 

dividing the axial BF by the corresponding Doppler angle (formula in Fig. 8.1G). In this study, 

Doppler angles larger than 85° were excluded from the data analysis, as the imprecision of 

calculating the absolute retinal BF is strongly dependent on 1/cos(ϴ)[92].  

8.3 Results and Discussion 

Representative time traces of the retinal BF measured from 3 arteries and 3 veins in one rat are 

shown in Figure 8.2A. These traces were selected to show the minimum, maximum and mean BF 

pulsatility magnitude for all the retinal vessels of that animal. A 1.5 s time window shows 5 

complete cardiac cycles and an average arteriovenous delay of 160 ms that was determined by 
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applying a cross correlation method[282] to the sum of the arterial and venous flow. Quantitative 

metrics of the pulsatile BF, such as the mean BF, the pulsatility index (PI), and the resistance index 

(RI), were used to analyze the pulsatile BF. For each retinal blood vessel, the mean BF was 

calculated by averaging the blood flow within the time window, while the PI and RI were 

calculated using the definition formulas shown in Fig 8.2A. To test the reproducibility of the 

pulsatile blood flow data, the same scanning protocol was repeated (n = 6) in the same animal with 

3-minute time interval between consecutive measurements. Statistical data for the BF, PI and RI 

are shown in Figure 8.2B-D, where arteries are marked in red color and veins in blue color. 

Although the absolute magnitudes for the arterial and venous BF were very similar and ranged 

from ~ 0.7 µL/min to ~0.9 µL/min, the arterial PI and RI values were higher than the ones 

determined for retinal veins.  

The same scanning protocol was applied to 9 additional animals and the statistical results are 

presented in Fig. 8.3A. The average total retinal BF was 6.2 ± 0.8 µL/min in arteries and 5.6 ± 0.8 

µL/min in veins. The difference between the arterial and venous total BF is most likely due to 

failure of the automatic segmentation algorithm to recognize and account retinal veins, as the veins 

in the shadow images were not distinctive enough to be segmented properly. For example, in all 

10 animals, the segmentation algorithm successfully identified and segmented a total of 66 arteries 

and 56 veins. Fig. 8.3B shows a histogram of the absolute BF measured from all segmented blood 

vessels. Arterial flow showed a slightly broader distribution compared to venous flow; however, 

the centroids for arterial venous BF histograms were almost identical. Furthermore, the mean 

absolute BF per vessel was very similar: 0.93 µL/min in arteries vs 0.98 µL/min in veins. Fig. 8.3C 

and 8.3D show histograms for the PI and RI respectively, determined from all segmented blood 
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vessels. The PI for 22% of the retinal arteries was higher that the PI measured in any of the retinal 

veins. Similarly, the RI for 28% of the retinal arteries was higher that the RI measured in any of 

the retinal veins. 

 

Figure 8.2 (A) Representative pulsatile BF recordings acquired from 3 arteries and 3 veins of one rat. The averaged 

arterio-venous delay was measured to be 160 ms. (B-D). The mean retinal BF, PI and RI calculated from twelve 

segmented retinal blood vessels in one rat (red- arteries; blue – veins). Data is presented as Mean ± SE. 

 

To evaluate the performance of the proposed new method for accurate assessment of pulsatile 

blood flow, results from the dense concentric circle protocol were compared with results from the 

dual concentric circle protocol[92] using the same raw data. For the dual circle protocol, the 

innermost and outermost of the 200 concentric scans were used to calculate the Doppler angle, 
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while the 8 central circular scans that covered 1 full cardiac cycle were used to calculate the mean 

axial blood flow. Results showed 3.8° ± 2.1° difference in the Doppler angle assessment between 

the dense concentric circle and the dual concentric circle protocols, which resulted in ~8% 

difference in the assessment of the absolute blood flow. Considering the fact that the dual 

concentric circle scanning protocol does not account for changes in the spatial orientation of blood 

vessels with respect to the incident direction of the OCT imaging beam, it is natural to conclude 

that the dense concentric circle scanning protocol allows for more accurate assessment of the 

Doppler angle and consequently, the absolute retinal blood flow.  

 

Figure 8.3 (A) Statistical results for the total RBF measured from all animals in the study (n=5). (B-D) Histograms show the 

number of retinal vessels as functions of the mean RBF, PI and RI. 
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8.4 Conclusion 

In this chapter, a new dense concentric circle scanning protocol was developed using a camera 

with a relatively slow image acquisition rate (47 kHz) to measure accurately the pulsatile blood 

flow in retinal arteries and veins of the rat retina with spectral domain OCT. This method offers 

simplicity of the OCT system design, scanning protocol and data analysis, as well as better 

accuracy in the measurement of the Doppler angle and the assessment of the pulsatile retinal blood 

flow. Although this method was tested in the animal retina, it can be easily adapted to imaging and 

assessment of retinal blood flow in the human eye by using the full speed of the camera (92 kHz) 

and reducing the number of concentric scans. Because of its simplicity and accuracy, this method 

can find applications in both clinical studies and fundamental animal research of potentially 

blinding retinal diseases.  
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Chapter 9 Conclusion 

This thesis dissertation examined changes in the retinal morphology, blood flow and physiology 

associated with elevated IOP in a rat model of glaucoma. Results from these studies extend our 

knowledge of elevated IOP-induced alterations in the eye and provide insight to better our 

understanding of glaucoma.  

9.1  Summary of contributions  

The main contributions of this PhD dissertation are: 

 Results from our acute/chronic intermittent IOP elevation studies suggest that: 1) acute 

moderate IOP elevation is associated with temporal increase of retinal electrophysiological 

response to visual stimulation; 2) Monotonic decrease of retinal blood flow/perfusion and 

nonlinear response of retinal electrophysiology are observed for IOP elevation from non-

ischemic level to ischemic level; 3) Chronic, intermittent IOP elevations to 35 mmHg for 

1h/day on 6 days/ week over a period of 2 months did not cause permanent retinal 

functional and ONH morphological changes. However, significantly reduced retinal 

function and larger ONH depression depth were observed temporarily in response to acute 

IOP elevation, which indicates that a moderate stress test can serve as a sensitive marker 

for identifying early signs of glaucomatous damage. The novel OCT+ERG system, 

designed for simultaneous imaging of the retinal morphology, function and blood 

flow/perfusion, is a valuable research tool that provides the advantages of shortening the 

total data acquisition time and allowing for direct correlation of retinal function, retinal 

blood flow/perfusion and retinal morphology. Moreover, the OCT+ERG system used for 
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this PhD research can be adapted easily for clinical studies of glaucoma with minimal 

modifications, such as changing the optical design of the imaging/stimulation probe to 

adapt it to the human eye, use of ERG electrodes designed for human subjects and using 

the maximum data acquisition rate of the OCT camera in order to enable imaging of faster 

retinal blood flow that is typical for the human eye. Using the full speed of the camera (92 

kHz) will also suppress the phase wrapping, as well as reduce the motion artifacts 

associated with involuntary eye motion. 

  In this thesis research, the new OCT+ERG system was used to assess the neurovascular 

coupling in the rat retina under normal and moderately elevated IOP, and results from our 

studies showed that acute IOP elevation to 43 mmHg caused the reduction of the magnitude 

of the flicker evoked retinal blood flow change. This OCT+ERG system along with the 

image acquisition protocol and image processing algorithms can be adapted easily for 

clinical studies of glaucoma by redesigning the OCT+ERG imaging probe to adapt it to 

human eye. Furthermore, the same system and imaging protocols can be used for human 

and animal studies of different vascular diseases of the retina, such as DR and AMD.  

 The development of a novel method based on a dense circular scanning protocol can 

achieve more accurate measurement of pulsatile retinal blood flow. This scanning protocol 

can be adapted directly for clinical studies with some modification such as: 1) utilize the 

full speed of the camera (92 kHz) in order to reduce eye motion artifacts and enable 

assessment of faster blood flow; 2) reduce the number of circular concentric scans to 40, 

which should reduce the risk of repeated exposure of retinal tissue to laser radiation, while 

still providing accurate assessment of the pulsatile total retinal blood flow. 
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9.2 Future Research  

The OCT+ERG technology and the animal studies discussed in this PhD thesis leave plenty of 

room for future technological development, as well as pose questions that can before the center 

point of future animal and human studies. For example:  

 The current OCT+ERG technology was developed specifically for simultaneous 

assessment of the retinal structure, function and blood flow/perfusion in the rat retina. This 

technology can easily be adapted for clinical studies on humans or in transgenic mice, to 

be able to investigate other retinal neurodegenerative diseases such as AMD, DR, 

Alzheimer’s, etc. The adaptation of the technology is straightforward, as it requires only a 

redesign of the combined imaging probe to adapt it to the human or mice retina. Some 

revision to the MATLAB codes used for processing and analysis of the retinal data will be 

necessary to adapt them to the human and mice retinal images. 

 The neurovascular coupling experiments described in Ch. 6 and 7 were conducted with a 

limited number of parameters for the visual stimulus. Future experiments can focus on 

different colors, durations, intensities and patterns of the visual stimuli in order to uncover 

functional links between certain types of retinal neurons. Furthermore, the study in Ch. 7 

was conducted for only one level of IOP elevation. Future studies will focus on step-wise 

increase of the IOP and especially in the range of 10 mm – to 30 mmHg, in order to gain a 

better understanding of the origins of the supra-normal ERG a-wave and b-wave 

amplitudes that were observed under elevated IOP with the vascular loop. 
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Appendices 

Acute moderate IOP elevation is associated temporal retinal function enhancement and ONH 

depression, and the conclusion can also be extended to different rat strains and different types of 

anesthesia. As a co-author, I have contributed to the following publications and manuscripts:  

 ERG Data collection with isoflurane anesthesia.  

Choh, V., Gurdita, A., Tan, B., Feng, Y., Bizheva, K., McCulloch, D. L., & Joos. K.M., 

Isoflurane and ketamine: xylazine differentially affect intraocular pressure-associated 

scotopic threshold responses in Sprague-Dawley rats. Documenta Ophthalmologica. 

doi:10.1007/s10633-017-9597-7 (2017) 

 OCT, ERG and STR data collection.  
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Ophthalmologica. DOI : 10.1007/s10633-017-9586-x (2017). 

 


