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Abstract

The Smith normal form is a diagonalization of matrices with many applications in

diophantine analysis, graph theory, system control theory, simplicial homology, and more

recently, in topological analysis of big data. Efficient computation of Smith normal form

is a well-studied area for matrices with integer and polynomial entries. Existing successful

algorithms typically rely on elimination for dense matrices and iterative Krylov space

methods for sparse matrices.

Our interest lies in computing Smith normal form for sparse matrices over local rings,

where traditional iterative methods face challenges due to the lack of unique minimal poly-

nomials. We explore different approaches to tackling this problem for two local rings: the

integers modulo a prime power, and the polynomials modulo a power of an irreducible

polynomial. Over local polynomial rings, we find success in linearization into larger di-

mension matrices over the base field. Effectively we transform the problem of computing

the Smith normal form into a small number of rank problems over the base field. The

latter problem has existing efficient algorithms for sparse and dense matrices.

The problem is harder over local integer rings. We take the approach of hybrid sparse-

dense algorithms. We also tackle a restricted version of the problem where we detect

only the first non-trivial invariant factor. We also give an algorithm to find the first few

invariant factors using iterative rank-1 updates. This method becomes dense when applied

to finding all the invariant factors.

We digress slightly into the related problem of preconditioning. We show that linear-

time preconditioners are suitable for computing Smith normal form, and computing nullspace

samples. For the latter problem we design an algorithm for computing uniform samples

from the nullspace.

On a separate track, we focus on the properties of the Smith normal form decomposition.

We relate the invariant factors to the eigenvalues. Our ultimate goal is to extend the

applications of numerical algorithms for computing eigenvalues to computing the invariant

factors of symbolic matrices.
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Chapter 1

Introduction

In this thesis we will study the problem of computing the Smith normal form over local

rings, and some related problems regarding computing nullspace vectors, rank properties

and eigenvalues properties. We are primarily concerned with the case of sparse matrices,

but we will occasionally consider dense matrices as well. We start this chapter by defining

several concepts central to our discussion. We finish by giving an overview of the chapters

of this thesis.

1.1 Smith Normal Form

Let F be a field, and let A be an n× n matrix over F. We use det(A), rank(A), charpoly(A),

im(A), ker(A) to denote the determinant, rank, characteristic polynomial, image, and right

kernel of A, respectively. We use minpoly(A) to denote the minimal polynomial of A, that

is, the lowest degree non-zero monic polynomial f ∈ F[x] such that f(A) = 0. We use

{λ1, . . . , λn} to denote the eigenvalues of A.

Two notions of matrix transformation are notable: similarity transformation and equiv-

alence transformation. We say that A and B are similar if there exists an invertible matrix

W such that A = W−1BW . On the other hand, we say that A and B are equivalent if there

exists two invertible matrices P , Q such that A = PBQ. When working over a principal

ideal ring R, we require that P , Q be unimodular, i.e., have a determinant which is unit
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in the ring. Some matrix invariants, such as rank (when suitably defined over the ring),

are preserved under both transformations. Other invariants, such as the characteristic

polynomial (and hence) the eigenvalues, are preserved under the similarity transformation

only. This will have important implications later when we discuss the preconditioning

operations.

Consider a matrix A over a field. The eigenvalues of A will typically lie in an ex-

tension field K (that is, the splitting field of the characteristic polynomial of A). It is

well-known that over K, the matrix A can be brought to the Jordan form using a similarity

transformation J = WAW−1. The matrix J is a block-diagonal matrix given by

J =


J1

J2
. . .

J`

 ,

where each Ji is called the Jordan block, which is a ki × ki matrix

Ji =


λi 1

. . . . . .

. . . 1

λi

 .

The number of Jordan blocks associated with an eigenvalue and the dimension of each block

is determined by the geometric and algebraic multiplicities of that eigenvalue. We note that

minpoly(A) is always a factor of charpoly(A). However, as we will discuss later, if all the

Jordan blocks corresponding to the zero eigenvalue have size at most 1, then charpoly(A)

and minpoly(A) differ by at least a power of x, which will be useful in computing properties

of sparse matrices such as rank.

The Jordan form and the eigenvalues describe a canonical representation of matrices

under similarity transformations. On the other hand, the Smith normal form describes a

canonical representation of matrices under equivalence transformations. Suppose that A

has entries from a ring R which we will require to be a principal ideal ring (PIR). By a

2



PIR we mean a ring in which every ideal is principal. There exist two unimodular matrices

U, V over R such that A = USV where

S = diag(s1, . . . , sr, 0, . . . , 0),

and si | si+1 for all 1 ≤ i ≤ r− 1. The notion of rank over this ring is defined by the Smith

normal form. That is, r is the rank of A over R.

Definition 1.1. The matrix S is called the Smith normal form of A, and the diagonal

elements are called the invariant factors of A.

The invariant factors are unique up to multiplication by units, but the transformation

matrices are not necessarily unique. The existence and uniqueness of the Smith normal

form was first proven by [Smith, 1861] for matrices over Z and principal ideal domains.

Kaplansky [Kaplansky, 1949] extended the notion of the Smith normal form to principal

ideal rings.

The Smith normal form has found many applications in diophantine analysis [Chou

and Collins, 1982], integer programming [Hu, 1969], combinatorics [Wallis et al., 1972],

determining the structure of Abelian groups [Newman, 1972], class groups [Hafner and

McCurley, 1989], system theory [Kailath, 1980], and in the study of symplectic spaces

[Chandler et al., 2010].

The invariant factors are typically defined as the diagonal elements of S after the

unimodular diagonalization of A. Alternatively, over a principal ideal domain, the invariant

factors can be defined explicitly as follows. For i ∈ [1, n], let Cni denote the set of all i-tuples

of integers of the form t = (t1, . . . , ti) where 1 ≤ t1 < · · · < ti ≤ n. For σ, τ ∈ Cni , let A
(
σ
τ

)
denote the determinant of the i× i submatrix of A selected by the rows σ1, . . . , σi and the

columns τ1, . . . , τi. This is the minor of A selected by σ and τ . Finally, let ∆i denote ith

determinantal divisor of A, that is,

∆i = gcd

{
A

(
σ

τ

)
: σ, τ ∈ Cni

}
,

the greatest common divisor of all i× i minors of A. Then the invariant factors are given

by s1 = ∆1 and si = ∆i/∆i−1 for i ∈ [2, r].
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Our main concern will be computing the invariant factors of matrices over local rings.

In what follows let R be a principal ideal domain, e be a positive integer, and π be a

generator of a maximal ideal in R. By local ring we mean a principal idea ring which has

a unique maximal ideal. The local rings we study in this thesis are of the form R/(πe).

Over R/(πe) every ideal is generated by a power of π (where the exponent is an integer

between 0 and e− 1). In this setting, S is given by

S = diag(1, . . . , 1︸ ︷︷ ︸
r0

, π, . . . , π︸ ︷︷ ︸
r1

, . . . , πe−1, . . . , πe−1︸ ︷︷ ︸
re−1

, 0, . . . , 0︸ ︷︷ ︸
re

),

where r0 + r1 + · · ·+ re−1 = r, and r + re = n.

It is known, see for example [Gerstein, 1977, Corollary 1], that the Smith normal form

of any matrix A over R factors into the product S =
∏
Sekπk , where each Sekπk is the Smith

normal form of the image of A in the ring R/(πekk ). The product ranges over all irreducible

factors of sr =
∏
πekk . In this context, some authors refer to S as the global Smith normal

form and Seπ is often called the local Smith normal form at π. Similarly, the invariant

factors over R/(πekk ) are called the local invariant factors. This local-global approach is

often used in practice to compute the Smith normal form of integer matrices [Dumas et al.,

2001, Lübeck, 2002], and polynomial matrices [Wilkening and Yu, 2011].

Concrete examples of R/(πe) are Z/peZ where p is a prime, and F[x]/(f e) where f is an

irreducible polynomial. These two rings capture the localization of Smith normal form of

integer and polynomial matrices at a factor of the determinant (or a factor of the largest

invariant factor). We often assume that p, e (or f, e) are given. In general, they can be

found by computing the largest invariant factor, sr, and then computing its factorization

[Eberly et al., 2000, Dumas et al., 2001].

1.2 The Black-Box Model

The complexity analysis of any algorithm should take into account the cost of arithmetic

operations in the underlying ring or field. When working over a finite field or a finite ring,

the cost of the arithmetic operations is usually considered constant. In this case, we report
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the algebraic complexity of the algorithm. However when the field or ring is infinite, then

the size of the expressions can grow with the number of operations performed. In this case

the bit complexity is an appropriate measure. When pertaining to matrix algorithms, the

complexity is reported in terms of the matrix dimension n, the rank r, and the size of the

largest entry in the input matrix (typically denoted by log ‖A‖).

It is often convenient to discuss the complexity without the logarithmic factors. We

use the “soft-O” notation. We say that f ∈ O (̃g) if f ∈ O(g logc(g)) for some positive

constant c.

When designing algorithms for linear algebra we desire that the complexity be optimal

in terms of space and time. A clear distinction has to be made between sparse matrices and

dense matrices. In this context a matrix is sparse when the number of non-zero elements

is much smaller than n2. A matrix is considered dense otherwise.

The notion of optimal algorithms for dense matrices is often linked to the complexity of

matrix multiplication. This is because fundamental algorithms, such as Gaussian elimina-

tion, are known to have runtime in the order of matrix multiplication [Bunch and Hopcroft,

1974]. Over a field, if we can multiply two n× n matrices in O(nω) field operations, then

we can perform Gaussian elimination and linear system solution, determinant, rank and

other useful quantities in O(nω) field operations. The exponent ω has been progressively

improved from 3 (using the naive method) to 2.8074 [Strassen, 1969] and beyond. The

best known value for ω is currently 2.3728639 [Le Gall, 2014].

On the other hand, applying elimination on sparse matrices can be challenging. It

is often the case that the sparse input matrix has a sub-quadratic number of non-zero

elements, which we often denote by µ. The goal for designing efficient algorithms for

sparse matrices is to have algorithms which are sensitive to the input size (i.e., to µ and

log ‖A‖) and require no more than quadratic time and linear space. This is the case for

most matrix problems over finite fields. As we will see in this thesis, we typically incur

additional low degree factors in the size of the local ring.

When dealing with sparse matrices we would like to preserve the sparsity of the input

matrix. If we use elimination, then adding two columns or rows could turn a zero entry into
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a non-zero entry, i.e., we introduce a fill-in. Fill-in can easily increase the time and space

requirements of the algorithm. It is known that the order of choosing pivots will impact the

amount of fill-in introduced by Gaussian elimination. However, finding optimal pivoting is

NP-complete [Yannakakis, 1981]. Several methods have been developed to reorder the input

matrix such that the fill-in is minimized. Heuristic methods, such as the folklore Markowitz

method, can be effective in practice (see [Dumas and Villard, 2002] for experiments with

several reordering algorithms). Notably, nested dissection and graph-based methods have

been successful in bounding the fill-in to O(n log n) non-zero entries [George, 1973], [Lipton

et al., 1979], and have been applied with success to general fields [Alon and Yuster, 2010].

However, these methods are applicable to certain classes of matrices. In particular, they

require certain classes of the underlying graphs such as planar graphs or bounded genus

graphs. It is currently not known how to transform arbitrary input matrices to satisfy the

properties required by these algorithms.

A successful approach to computing with sparse matrices is to treat the matrix as

a black-box. In this model, direct manipulations of the matrix entries are not allowed.

Instead, we are only allowed to compute matrix-vector products, which is often called

application of the black-box.

Definition 1.2. Let A be an n× n matrix over a ring R. A black-box for A with cost µ is

a function Rn → Rn which requires µ operations in R to compute Av ∈ Rn for any vector

v ∈ Rn.

When this is not ambiguous, we shall use the same letter (e.g., A) to denote the

matrix A, and the black-box for A. The black-box approach is not particularly limiting.

Given two black-boxes A and B, we can add, multiply, and compose black-boxes since

(A ± B)v = Av ± Bv, and ABv = A(Bv). We can also use repeated applications to

compute the ith power of a black-box, i.e., Aiv in i steps. We can transpose a black-box

either by explicit construction, or by using Tellegen’s theorem [Tellegen, 1952, Penfield Jr.

et al., 1970, Bostan et al., 2003] to get a transpose black-box at the same cost. We can

augment two black-boxes, pad a black-box with zeros, or construct a black-box for the

leading submatrix by means of constant number of applications, and padding/trimming
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the input and output vectors. Finally, we can evaluate any polynomial f of degree d (i.e.,

v 7→ f(A)v) using Horner’s rule at the cost of O(dµ + dn) operations and space O(n)

elements.

This model is also useful when dealing with structured matrices such as Toeplitz matri-

ces or circulant matrices, where matrix-vector multiplication can be computed efficiently

using fast Fourier transform or similar techniques which costs less than n2 operations.

The complexity of black-box algorithms is thus expressed in terms of the number of

matrix-vector products used, and any additional arithmetic operations. That is, it is

expressed in µ, n, and, when applicable, log ‖A‖. Space requirements are desired to be

linear, i.e., kept to the storage of a few vectors.

There has been great success in applying black-box methods over finite and arbitrary

fields, starting with Wiedemann’s algorithm [Wiedemann, 1986], where the cost of many

linear algebra problems has been reduced to computing a linear number of matrix-vector

products. Wiedemann’s algorithm has been further analyzed and enhanced by [Kaltofen

and Saunders, 1991] and many others. It has been generalized to block projections by [Cop-

persmith, 1994] and [Kaltofen, 1995]. Alternative algorithms based on Lanczos’ method

and other Krylov subspace methods were developed by [Lambert, 1996], [Eberly and

Kaltofen, 1997], [Eberly, 2004], and [Hovinen and Eberly, 2005] in scalar and block settings.

It was shown that Lanczos’ algorithm has the same cost as Wiedemann’s algorithm. An

ultimate goal is to add Smith normal form over local rings to the list of problems efficiently

solvable by black-box methods.

The key idea of Wiedemann’s algorithms is reducing matrix problems to computing the

minimal polynomial of the matrix. For a matrix A of size n× n over a field F, and two

vectors u, v of size n, the sequence

{uTv, uTAv, . . . , uTA2n−1v},

is linearly-recurrent and has a minimal generating polynomial f ∈ F[x]. In general we have

f(x) | minpoly(A). If u, v are chosen uniformly at random from Fn then with probability

at least 1 − n/|F|, we have f(x) = minpoly(A). The cost of computing minpoly(A) is
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2nµ to compute the iterates uTAiv and an additional O(n2) to compute f(x) using the

Berlekamp-Massey algorithm or similar Padé approximation methods. The storage is O(n)

elements in F.

Once we compute minpoly(A) = xd + fd−1x
d−1 + . . . + f0, we can solve many matrix

problems. For example, the solution to the linear system Ax = b is readily available as

A−1b = (−1/f0)(A
d−1b + fd−1A

d−1b + . . . + f2Ab + f1b). To compute quantities such as

determinant and rank, the common approach is to find a pre- and post-multiplier matrices

P,Q ∈ Fn×n and construct B = PAQ such that the minimal polynomial of B encodes

the desired quantity. For example, the rank of A would equal the degree of minpoly(B).

This technique is called preconditioning. To avoid introducing an additional overhead, the

matrices P,Q are often diagonal or structured matrices, and hence admit a fast black-box

construction. To make this method general for any input matrix, P and Q are typically ran-

dom and chosen from prespecified distribution. For a comprehensive list of preconditioning

for various matrix problems see [Chen et al., 2002, §2]. We will discuss preconditioning in

Chapter 3.

Computations over Z and Q and F[x] can suffer from expression swell. To control the

size of the intermediate coefficients, the minimal polynomial can be computed modulo a

collection of primes followed by use of the Chinese Remainder Theorem. The cost increases

by the number of primes required to reconstruct the minimal polynomial. Naively, the

number of primes is O(n) using Hadamard’s determinantal bound [von zur Gathen and

Gerhard, 2003, Geddes et al., 1992]. Sharper bounds can be used; for example, [Dumas

et al., 2000, §3] use Oval of Cassini bound [Brauer, 1946] to replace n with the degree of the

minimal polynomial. The Chinese Remainder approach also has the practical advantage

of parallelism. Alternatively, we can use Hensel lifting [Dixon, 1982] which also requires

O(n) iterations modulo a randomly chosen prime.

The degree of the minimal polynomial can be smaller than n. Hence the computation

of the minimal generating polynomial of the sequence {uTAiv} can benefit from the early

termination technique of [Lobo, 1995, Kaltofen et al., 2000, Eberly, 2003]. The early termi-

nation heuristic stops the iterative computation when the minimal polynomial remains the
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same after few iterations. The complexity of Wiedemann’s algorithm becomes O (̃rµ+r2).

We will often assume that an appropriate choice of black-box algorithms is made, noting

that there is considerable difference in their effectiveness in practice and over various ground

fields.

Wiedemann-based methods have been successful in reducing the cost of many linear

algebra problems for sparse matrices using the black-box model over fields. However,

linearly-recurrent sequences over local rings do not have a unique minimal generator and

therefore these algorithms fail to work over local rings. We propose algorithms that try to

avoid direct minimal polynomial computations over the local rings.

1.3 Probabilistic Algorithms

The aforementioned algorithms often require making random choices of vectors or matrices.

The success of these algorithms (i.e., the event that a desired property holds) is probabilistic

and often relies on the following lemma.

Fact 1.1 (Schwartz-Zippel lemma [Zippel, 1979, Schwartz, 1980, Demillo and Lipton,

1978]). Let F be a field (or an integral domain) and S be a finite subset of F. Let

f ∈ F[x1, . . . , xn] be a non-zero polynomial of total degree d. If v1, . . . , vn are chosen

independently and uniformly at random from S, then Pr[f(v1, . . . , vn) 6= 0] ≥ 1− d/|S|.

There are two types of probabilistic algorithms. Monte Carlo algorithms always termi-

nate and return correct results with controllably high probability. If the output is correct

with probability at least 1/2, then the success probability can be amplified to 1 − ε for

any small ε ∈ [0, 1] as follows. Repeat the algorithm O(log 1
ε
) times and apply a majority

voting scheme on the outputs, then the success probability is amplified to at least 1− ε by

the Chernoff bound [Motwani and Raghavan, 1995].

If we can verify the correctness of the output, then the algorithm is randomized of the

Las Vegas type – always correct, probably terminates. In this case we have to repeat the

algorithm until the output is verified to be correct. The reported complexity is the expected
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runtime. For example, if we are computing a nullspace vector v using a randomized Las

Vegas algorithm, then we can repeat the algorithm with different random choices until

Av = 0.

1.4 Thesis Outline

This thesis is motivated by the problem of computing Smith normal forms of sparse matri-

ces over local rings. In the course of studying this problem, we also encounter and study

a few related and interesting problems. We will focus on the following problems:

1. In Chapter 2 we study the problem of computing the Smith Normal Form for sparse

matrices over Z/peZ and F[x]/(f e). We will give two algorithms towards this end.

We will also give an algorithm for finding the first non-trivial invariant factor for a

black-box matrix. For F[x]/(f e) the algorithms depend on a number of tools, such as

sparse matrix rank computation over finite fields, for which the best-known efficient

algorithms are probabilistic.

2. In Chapter 3 we will discuss the problem of preconditioning. We will extend the

application of well-known linear time preconditioners to the problems of computing

nullspace vectors and computing a Smith normal form.

3. In Chapter 4 we will discuss a new approach to computing the Smith normal form. A

simple elimination process based on rank-1 updates will be discussed. Interestingly,

this will give us an improved nullspace sampling algorithm.

4. In Chapter 5 we take a different approach to understanding the invariant factors

over local rings. We consider their relationship with other matrix invariants. A new

characterization of the invariant factors in terms of the eigenvalues will be presented.

We use p-adic valuations as a measure of size. Density estimates will be given for

cases when the p-adic valuation of the eigenvalues coincide with the p-adic valuation

of the invariant factors.

10



5. In Chapter 6 we will focus on the Smith normal form decomposition A = USV .

We will consider two computational notions that capture the local representation of

matrices, and the carry digits that occur in the computations: the base-p expansion

of matrix entries and the action of the remainder operator on matrices.

11



Chapter 2

Sparse Smith Normal Form

In this chapter we present two algorithms for computing the Smith normal form of sparse

matrices over local rings. The two rings under study are localization of the polynomial

ring in one variable and localization of the integers. In designing the algorithms we will

take into account the sparsity of the input matrix. The results of this chapter appeared

in [Elsheikh et al., 2012].

2.1 Introduction

We are primarily concerned with computing the Smith normal form of sparse matrices over

local principal ideal rings of the form R/(πe) where R is a principal ideal domain, e is a

positive integer, and π is a generator of a maximal ideal in R. The Smith normal form of

any matrix over R/(πe) has powers of π on its diagonal. In particular, we use the following

notation to count the multiplicities of the invariant factors:

S = diag(1, . . . , 1︸ ︷︷ ︸
r0

, π, . . . , π︸ ︷︷ ︸
r1

, . . . , πe−1, . . . , πe−1︸ ︷︷ ︸
re−1

, 0, . . . , 0︸ ︷︷ ︸
re

),

where r0 + r1 + · · ·+ re−1 = r, and r + re = n.

Existing approaches to computing the Smith normal form differ between sparse and

dense matrices. Table 2.1 summarizes the time complexities of various existing algorithms,

12



Table 2.1: Time complexity of computing the Smith normal form.

Algorithm Complexity Ring Randomness Sparsity

[Storjohann, 2000] nω PIR Deterministic Dense

[Storjohann, 2000] nω+1 Z Deterministic Dense

[Eberly et al., 2000] n2+ω/2 Z Monte Carlo Dense

[Dumas et al., 2001] n3 Z/peZ Deterministic Dense

[Storjohann and Labahn, 1997] n3 deg(A)(deg(A) + n2) Z[x] Las Vegas Dense

[Storjohann, 2003] nω deg(A) F[x] Las Vegas Dense

[Zhou et al., 2015] nωavg(deg(A)) F[x] Las Vegas Dense

[Kaltofen and Villard, 2005] n2.69726263 Z Monte Carlo Dense

[Giesbrecht, 2001] n2µ+ n3 Z Monte Carlo Sparse

[Dumas et al., 2001] nµ deg(minpoly) Z Monte Carlo Sparse

[Eberly et al., 2007] n1.579µ+ n2.579 Z Monte Carlo Sparse

while omitting logarithmic factors in n and the size of the maximal entry, log ‖A‖. The

presented complexity is counted in terms of bit operations for Z, field operations for F[x],

and ring operations for PIRs and Z/peZ. The cost of matrix-vector multiplication is

denoted by µ. Complexity statements were simplified by assuming square matrices of order

n and replacing the rank factors with n. See the cited references for refined complexity

statements.

Notably, for dense matrices, elimination offers optimal or near-optimal complexity in

terms of matrix multiplication time. For sparse matrices (where the number of non-zero

elements µ � n2), elimination generally introduces fill-in and hence prohibitive storage

requirements.

Existing non-elimination based algorithms are essentially cubic. However, blocking

techniques are used to achieve sub-cubic complexity. Effectively these algorithms extract

the invariant factors from the minimal (or characteristic) polynomial of the matrix [Gies-

brecht, 2001], [Eberly et al., 2007] or its largest coefficient [Dumas et al., 2001]. While the

minimal polynomial itself can be computed in quadratic time over a field, the extra factors
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in the complexity correspond to recovering the full precision of the invariant factors which

can be as large as n bits.

The problem of computing the Smith normal form of sparse matrices over local rings

presents its own challenges. One could simply carry out the computations over the global

ring R, then reduce the results modulo πe. However computations over a ring R (e.g., over

F[x] or Z) suffer from coefficient growth which is not clearly necessary in the local ring

where the precision is bounded by e. For example, over Z/32Z the invariant factors are

bounded by 32, and thus one might hope to perform all computations modulo 32, and not

with integers larger than 32.

We attempt to solve this problem by designing algorithms which do not suffer from

fill-in or expression swell. In doing so, we pursue black-box algorithms. However we will

occasionally fall back to dense algorithms.

2.2 Previous Work

In this section we review some of the relevant previous work, and highlight some of the

key ideas in their algorithms.

2.2.1 Finding the Last Invariant Factor

In some applications it suffices to compute the last invariant factor only. For dense poly-

nomial matrices, the deterministic algorithm by [Zhou et al., 2015] finds the last invariant

factor over F[x] for any field F in O (̃nωs) where s is a bound on the average column degree.

We will present the approach of [Eberly et al., 2000]. While their results are focused on

dense matrices, the core idea of finding the last invariant factor using rational solution is

useful for sparse matrices as we shall see.

The algorithm employs an earlier idea by [Pan, 1988, Abbott et al., 1999] to find the

largest invariant factor of a matrix by solving a random linear system. To compute the

rest of the invariant factors, a random perturbation scheme is used to compute the kth
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invariant factor for any k ∈ [1, n]. Combined with binary search, this method can compute

the Smith normal form of any integer matrix in O (̃n3.5) bit operations [Eberly et al., 2000,

Theorem 4.2]. In fact, the complexity is sensitive to the size of the determinant.

More concretely, we are given a non-singular integer matrix A of size n× n. To compute

sn, the largest invariant factor of A, we select a random integer vector b, and solve the

system Ax = b over Q. Then sn can be inferred from the LCM of the denominators of the

entries of x. The process is repeated to get a provably good success probability. The cost

is dominated by the time to solve the linear system over Q, which is O (̃n3) bit operations

if one uses p-adic lifting.

To compute the (n − k)th invariant factor of A, or sn−k, we construct two random

integer matrices U and V of rank k, and apply the perturbation B = A+UV . It is shown

that the n-th invariant factor of B is related to the k-th invariant factor of A. In particular,

the GCD of sn(A) and sn(A + UV ) is sn−k(A). Again, sn(A + UV ) can be computed as

above by solving a random linear system over the rationals.

A naive application of this method requires n − 1 random perturbations to compute

sn−1, sn−2, . . . , s1 which would result in quartic complexity. However, the authors show that

the number of distinct invariant factors is bounded by (log detA)0.5, which is on the order

of n0.5 (omitting the factor in ‖A‖ for brevity). Binary search can be used to construct

n0.5 random perturbations of A and get all the invariant factors. The overall complexity

is reduced to O (̃n3.5). In order to apply this binary search method to sparse matrices, the

dense perturbation matrix U and V should be replaced with suitable sparse matrices.

2.2.2 The Valence Method

The comprehensive work of [Dumas et al., 2000, Dumas et al., 2001, Dumas et al., 2003]

present one of the best and most practical approaches to computing the Smith normal

form of sparse integer matrices. Let A be an integer matrix of size n× n and rank r. Let

d be the degree of the minimal polynomial of A. Let µ be cost of applying A to a vector.

Let e be the largest exponent in the factorization of the largest invariant factor. The key

steps are the following.
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1. Compute the valence (the trailing coefficient of the characteristic polynomial) over

Z using Chinese remaindering. Typically this requires O(n) primes due to the often

pessimistic Hadamard determinantal bound. Instead, the ovals of Cassini provide a

sharper bound, and hence only O(d) primes are required. In order to maintain a

low degree minimal polynomial, we can use non-preconditioned matrix AAT or ATA.

This step requires O (̃d2µ) bit operations.

2. For each prime dividing the valence, compute the local Smith normal form using

elimination. The algorithm requires O(rn2) operations. This algorithm is practical

when r is much smaller than n.

3. If only the last invariant factor at prime p is required, then a clever algorithm is

presented which costs O(nµe2) bit operations. The key idea is to precondition A into

B = peI+qA where q is an arbitrary prime. The matrix B is equivalent to A modulo

pe. However B is a non-singular diagonal matrix modulo q which implies a very fast

q-adic lifting. This allows for removing a factor of n from the lifting complexity.

To maintain the factor n saving, one should not lift the entire n components of the

solution vector. Instead, a preconditioning matrix is used such that the first entry in

the solution vector reveals the largest invariant factor. These ideas are combined to

give a O (̃nµe2) bit complexity to compute the last invariant factor at p.

We note that this cannot be efficiently extended to compute all the invariant factors.

Suppose we use a binary search method similar to [Eberly, 2000]. This will introduce dense

preconditioners and µ will become n2. So the overall complexity would be at best (replace

µ with n2):
√
n× ne2n2 = n3.5e2.

The overall cost of computing the Smith normal form depends on the underlying ap-

proach. If local elimination is used, then the bit complexity is O (̃drn2 + dµ). If we

only compute the last invariant factor for each relevant prime, then the bit complexity is

O (̃dnµe).

The valence method is very practical when the degree of the minimal polynomial d is

much smaller than the rank, as was demonstrated by the authors in the case of simplicial
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homology matrices.

2.2.3 Using the Characteristic Polynomial

The valence method used only the trailing coefficient of the characteristic polynomial. The

work of [Giesbrecht, 1995], [Giesbrecht, 1996], [Giesbrecht, 2001] utilizes all the coefficients

of the characteristic polynomial. This method works on both dense and sparse matrices,

but we are more concerned with sparse matrices here. The key idea in this algorithm is

reducing the computation of the determinantal divisors (and hence the invariant factors)

to computing the coefficients of the characteristic polynomial as follows.

• For a given prime p, if the power of p dividing the leading k × k minor equals the

power of p dividing its kth determinantal divisor, then the (n − k)th coefficients of

the characteristic polynomial is a multiple of the kth determinantal divisor.

• The algorithm tries to precondition the input matrix such that its characteristic

polynomial and its minimal polynomial differ only by a power of x. Furthermore, all

the leading minors of the preconditioned matrix should satisfy the condition above.

• Using a Toeplitz-based construction, random preconditioning can be achieved with-

out introducing fill-in, and without introducing significant overhead in the matrix-

vector application.

• Some extraneous primes will appear in the coefficients of the characteristic polynomial

of the preconditioned matrix. By repeating the preconditioning and the characteristic

polynomial computation, we can take the GCD of the respective coefficients. This

will probabilistically remove the extraneous primes. Special attention is paid to the

success probability of this step.

The algorithm uses O(n2 log ‖A‖) black-box calls modulo a prime p, and an additional

O(n3 log2 ‖A‖) bit operations. Assume the black-box costs µ ∈ O(n) operations. Then the

bit complexity is cubic, or O (̃n3+ε log ‖A‖+ n3 log2 ‖A‖).

17



2.3 Linearization of Polynomial Matrices

We now present our first algorithm. Let F be a field, f ∈ F[x] be an irreducible polynomial

of degree d, and e > 1 be an integer. The ring L = F[x]/(f e) is a local ring and all its

ideals are of the form f iL for 0 ≤ i < e. Let A ∈ Ln×n be a matrix over L, whose Smith

normal form is given by

S = diag(1, . . . , 1︸ ︷︷ ︸
r0

, f, . . . , f︸ ︷︷ ︸
r1

, . . . , f e−1, . . . , f e−1︸ ︷︷ ︸
re−1

, 0, . . . , 0). (2.1)

Our goal is to compute the multiplicities, {r0, r1, . . . , re−1}, efficiently when A is sparse

or given by a black-box. We assume that f and e are known a priori. In practice, we

are given a matrix over F[x]. We can compute its largest invariant factor using existing

methods, we can then factor it to get each irreducible power in the factorization.

The approach we take is to embed the ring Ln×n in the ring Fnde×nde and reduce the

computation of the Smith normal form to finding ranks of matrices in the base field F,

where known fast algorithms can be used.

This approach is known as linearization and has been used in the context of computing

Hermite normal form [Kaltofen et al., 1987]. We first describe the classical embedding of

L into Fde×de. We then show that the multiplicities ri’s for matrices over L are revealed by

their images over F.

First, define the map ϕe : L→ Fde×de, which maps polynomials into de by de matrices,

as follows. Suppose f e = a0 + a1x+ · · ·+ ade−1x
de−1 + xde, whose companion matrix is

Cfe =


0 0 · · · −a0
1

. . . −a1
...

. . . . . .
...

0 · · · 1 −ade−1

 .

Define ϕe(x) = Cfe , and ϕe(x
i) = ϕe(x)i. By linearity, extend ϕe to all elements of

g = g0 + g1x+ · · ·+ gde−1x
de−1 ∈ L such that ϕe(g) ∈ Fde×de is given by:

ϕe(g) = g(Cfe) = g0I + g1Cfe + g2C
2
fe + · · ·+ gde−1C

de−1
fe .
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We now show that ϕe is an isomorphism between the polynomials in L and the subset

of matrices given by F[Cfe ].

Lemma 2.1. The map ϕe is a ring isomorphism between L and F[Cfe ].

Proof. We have ϕe(1) = I. Also, ϕe is a ring homomorphism because for any two polyno-

mials g, h ∈ L we have

ϕe(g + h) = ϕe

(∑
i

(gi + hi)x
i

)
=
∑
i

(gi + hi)C
i
fe

=
∑
i

giC
i
fe +

∑
i

hiC
i
fe = ϕe(h) + ϕe(g),

and

ϕe(g · h) = ϕe

(∑
i

gihde−i−1x
i

)
=
∑
i

gihde−i−1C
i
fe

=

(∑
i

giC
i
fe

)
·

(∑
j

hjC
j
fe

)
= ϕe(h) · ϕe(g).

For all g ∈ L there exists a corresponding element in F[Cfe ] given by φ(g). Conversely, any

matrix G ∈ F[Cfe ] can be written as a linear combination
∑

i giC
i
fe where i < de because

Cfe is a companion matrix of a polynomial of degree de. So ϕ−1e (G) can be given by a

polynomial in L whose coefficients are gi’s.

To show that the inverse is unique we let g1, g2 ∈ L be such that h = g1 − g2 6= 0

and ϕe(g1) = ϕe(g2). Then using the ring homomorphism properties we get ϕe(g1) −

ϕe(g2) = 0, or ϕe(g1 − g2) = ϕe(h). We get ϕe (
∑
hix

i) =
∑
hiC

i
fe = 0. But this

implies that the minimal polynomial of Cfe divides h. This is a contradiction because

deg h ≤ max{deg g1, deg g2} < de, which can not be divisible by a polynomial whose

degree is de because deg minpolyCfe = de. Therefore ϕe is a bijection between the sets L

and F[Cfe ].

The embedding ϕe has useful rank properties.

Lemma 2.2. rank(ϕe(f
i)) = d(e− i) for all 0 ≤ i ≤ e.
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Proof. If i = 0, then rank(ϕe(f
0)) = rank(Ide×de) = de. If we associate the elements of

L with vectors in Fde, then for all i > 0 the matrix f i(Cfe) acts on Fde as multiplication

by f i mod f e. Thus its nullspace is generated by the images of polynomials in f e−iL.

Any element h ∈ f e−iL can be defined by choosing g ∈ L and forming the product f e−ig

(mod f e). Now write g = Qf i + R using Euclidean division, where degree of R is less

than di. We get h = Qf i · f e−i + Rf e−i (mod f e) = Rf e−1. So h is completely specified

by the di coefficients of R, and f e−iL as a vector space has dimension di. Therefore

rank(f i(Cfe)) = de− di.

We extend the map ϕe to n× n matrices over L using element-wise application. For

any A ∈ Ln×n, ϕe(A) is an nde×nde matrix over F, where every entry ai,j of A is replaced

by the de× de block ϕe(ai,j). Applying ϕe to (2.1), we get

ϕe(S) = diag(ϕe(1), . . . , ϕe(1)︸ ︷︷ ︸
r0

, ϕe(f), . . . , ϕe(f)︸ ︷︷ ︸
r1

, . . . ,

ϕe(f
e−1), . . . , ϕe(f

e−1)︸ ︷︷ ︸
re−1

, 0, . . . , 0) ∈ Fnde×nde. (2.2)

Since ϕe(S) is a block diagonal matrix, we get the following additive rank:

rank(ϕe(S)) =
e−1∑
i=0

ri rank(ϕe(f
i)) =

e−1∑
i=0

rid(e− i), (2.3)

where the latter equality uses Lemma 2.2.

Lemma 2.3. If U ∈ Ln×n is invertible, then ϕe(U) ∈ Fnde×nde is invertible.

Proof. If U is invertible, then there exists a W ∈ Ln×n such that UW = I. Now apply ϕe

to both sides and use the linearity of ϕe to get ϕe(UW ) = ϕe(U)ϕe(W ) = ϕe(I) = Inde.

So ϕe(U) is invertible and its inverse is given by ϕe(W ).

We do not intend to map the Smith normal form A = USV over L to the Smith normal

form ϕe(A) = ϕe(U)ϕe(S)ϕe(V ) over F. This is because over F there is no useful notion

of the Smith normal form. Any matrix of rank r over F, will have a trivial Smith normal

form of r ones. Instead, we map the multiplicities in the invariant factors of A over L to

the rank of ϕe(A) over F.
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Theorem 2.1. Let A ∈ Ln×n have the Smith normal form

diag(1, . . . , 1︸ ︷︷ ︸
r0

, f, . . . , f︸ ︷︷ ︸
r1

, . . . , f e−1, . . . , f e−1︸ ︷︷ ︸
re−1

, 0, . . . , 0),

then rank(ϕe(A)) = der0 + d(e− 1)r1 + · · ·+ dre−1.

Proof. There exist unimodular matrices U, V ∈ Ln×n such that UAV = S. By the iso-

morphism of ϕe, we have ϕe(U)ϕe(A)ϕe(V ) = ϕe(S). By Lemma 2.3, ϕe(U), ϕe(V ) are

invertible and thus rank(ϕe(A)) = rank(ϕe(S)) = der0 + d(e − 1)r1 + · · · + dre−1 us-

ing (2.3).

As a consequence of Theorem 2.1 we have the following corollary.

Corollary 2.1. Let ρ`−1 denote rank(ϕe(A mod f `)), where 1 ≤ ` ≤ e. Then
d 0 · · · 0

2d d · · · 0
...

. . . . . .
...

ed · · · 2d d




r0

r1
...

re−1

 =


ρ0

ρ1
...

ρe−1

 . (2.4)

Proof. For all 1 ≤ ` ≤ e, we have rank(ϕ`(A mod f `)) = d`r0 + d(` − 1)r1 + · · · + dr`−1.

The statement follows immediately from substituting ` with 1, 2, . . . , e− 1.

The system (2.4) can be solved in O(e) operations over Z since


1

2 1
...

. . . . . .

e · · · 2 1



−1

=



1

−2
. . .

1
. . . . . .

. . . . . . . . .

1 −2 1


.

Next we consider how to efficiently compute {ρ0, ρ1, . . . , ρe−1} for a given black-box

matrix.
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2.3.1 A Black-Box for the Embedding

Given a black-box for A ∈ Ln×n we can construct a black-box for ϕ`(A mod f `), for any

` ≤ e, at not much higher cost. We assume that the black-box for A ∈ Ln×n costs µ

operations in F. If each column and row of A has at least one non-zero entry, i.e., A has

at least n non-zero entries, then µ ≥ nde because each entry of L is a polynomial with de

coefficients.

We show how to efficiently perform black-box computations under ϕe transformations.

Let M(d) denote the cost of multiplying two polynomials of degree at most d.

Lemma 2.4. Suppose we are given a black-box for A ∈ Ln×n, where L = F[x]/(f e) as

above. Let ` ∈ {1, . . . , e} and v̂ ∈ Fd`n with unique pre-image v ∈ F[x]/(f `). Then we can

compute ŵ = ϕ`(A mod f `)v̂ ∈ Fd`n using O(µ+ nM(de)) operations in F.

Proof. Assume that v̂ ∈ Fd`n is labelled as:

v̂ = (v̂1,0, . . . , v̂1,d`−1, v̂2,0, . . . , v̂2,d`−1, . . . , v̂n,0, . . . , v̂n,d`−1).

Construct the vector v = (v1, . . . , vn) ∈ Ln, where vi =
∑

0≤j<d` v̂i,jx
j ∈ F[x]. Now,

compute w = Av mod f ` ∈ Ln using µ operations for the black-box evaluation plus

O(nM(de)) operations in F for the n modular reduction. Let w = (w1, . . . , wn) where

wi =
∑

0≤j<d` ŵi,jx
j ∈ F[x]. Then ŵ is given by

ŵ = (ŵ1,0, . . . , ŵ1,d`−1, . . . , ŵn,0, . . . , ŵn,d`−1).

2.3.2 The Algorithm

The algorithm for computing the Smith normal form of a matrix A ∈ Ln×n given by

a black-box is now straightforward. Using Theorem 2.1 and Lemma 2.4 we reduce the

computation of ρi’s in (2.4) to computing ranks of matrices over the ground field F, which

can be accomplished using existing efficient black-box algorithms over fields, for example

based on Wiedemann’s algorithm.
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Algorithm 2.1. Given a black-box for A ∈ Ln×n, return r0, . . . , re−1 such that ri is

the multiplicity of f i in the Smith normal Form of A, and the multiplicity of zero is

n−
∑

i ri.

1. For all ` ∈ {1, . . . , e}, invoke a black-box rank algorithm on the black-box for

ϕ`(A mod f `) : Fd`n → Fd`n. Let ρ`−1 = rank(ϕ`(A mod f `)).

2. Solve (2.4) for r0, . . . , re−1.

3. Return r0, . . . , re−1.

Theorem 2.2. Algorithm 2.1 is correct, and requires O (̃µde2n) operations in F. The space

requirement of the algorithm is O(den) elements in F.

Proof. The correctness follows from the results and discussions in this section. We analyze

the time and space complexity of step (1), which dominates the cost. It requires O(de2n)

black-box evaluations, and storage for O(den) elements in F.

If A has a linear number of entries then µ ∈ O (̃den) using fast polynomial arithmetic.

The complexity in this case is O (̃d2e3n2). We expect any algorithm in this setup to

cost at least O (̃den2) operations in F where the term O (̃de) accounts for the polynomial

arithmetic with de coefficients over F. Our algorithm is a factor of de2 away from this

complexity.

As a future work, one could hope to reduce this complexity by factor of e. For example,

we can reuse the same iterate vectors in Algorithm 2.1 for the all values of e. However, in

this case the success probability of the rank computation will depend on e. On the other

hand, the factor de is a strong artifact of the linearization method. We do not currently

know how to remove this factor.
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2.4 Smith Normal Form over Z/peZ

In this section we will focus on the problem of computing the Smith normal form for

matrices over the local ring Z/peZ. In some of the applications, the input matrices have

few non-trivial factors, i.e., most of the invariant factors are 1’s or 0’s. For example, in the

homology computations in [Babson et al., 1999, Björner and Welker, 1999] large boundary

matrices (e.g. 135135 by 270270 matrix) will have only 220 threes, and the rest of the

invariant factors are ones and zeroes. The algorithm we present in this section addresses

that case.

For a prime p and an exponent e ∈ Z>1, let ϕ be the natural projection Z/peZ→ Z/pZ,

which extends to vectors and matrices by element-wise application. Note that x ∈ Z/peZ

is a unit if and only if ϕ(x) 6= 0. Likewise, A ∈ (Z/peZ)n×n is unimodular if and only if

ϕ(A) is unimodular.

2.4.1 Nullspace Method

Let us introduce the approach by way of a sketched example. Suppose A is a matrix over

Z/p5Z of size 100×100. Let ∼ denote the unimodular equivalence of two matrices. Assume

A ∼ diag(1, 1, . . . , 1, p, p, p, p3, p4, 0, 0, . . . , 0),

with 45 ones and 50 zeroes. First, a reduction in dimension allows us to reduce A to an

`×` matrix ρ(A) having the same nonzero invariant factors, where ` is the rank, or slightly

larger. We illustrate with ` = 52:

ρ(A) ∼ S = diag(1, 1, . . . , 1, p, p, p, p3, p4, 0, 0).

Over Z/pZ, the nullspace basis N ′ of ϕ(ρ(A)) (N ′ has 7 columns) is unimodularly

equivalent to the nullspace of S. Let E ′ be the last 7 columns of the 52 × 52 identity

matrix. Let E and N be arbitrary embeddings of E ′ and N ′ in (Z/p5Z)52×7 such that

ϕ(E) = E ′, ϕ(N) = N ′. Then ρ(A)N and SE are multiples of p and

ρ(A)N ∼ SE = diag(p, p, p, p3, p4, 0, 0).
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In summary, the algorithm is to apply a reduction in dimension to dispose of zeroes,

compute nullspace basis N to dispose of ones, and determine the nontrivial invariants by

computing the Smith normal form of AN using dense methods. AN is an n × k matrix,

where k is the number of nontrivial invariants or a slightly larger bound.

Reduction in dimension is a frequent tool and has been used for the Smith normal form

computation, for example, in [Dumas et al., 2001]. However, their computation proceeds

without disposing of the unit invariant factors. Thus the time complexities below, otherwise

similar to theirs, differ in that we replace a rank factor ` by the number of nontrivial

invariants, k.

2.4.2 Probabilistic Dimension Reduction

Let A ∈ (Z/peZ)n×n, for which we have a fast black-box. Let A have the Smith normal

form diag(s1, . . . , sr, 0, . . . , 0) ∈ (Z/peZ)n×n. Our goal in this section is to construct ρ(A).

Given A and ` ∈ {1, . . . , n}, we construct a black-box of similar cost for B ∈ (Z/peZ)`×`

which has the Smith normal form diag(s1, . . . , s`), i.e., with the first ` invariant factors of

A.

Recall that Cnk denote the the set of k-tuples of distinct elements (in increasing order)

of {1, . . . , n}. For σ, τ ∈ Cnk , B
(
σ
τ

)
is the (σ, τ) minor of B. We use script letters, e.g. D,T,

to denote matrices with indeterminate entries.

We use techniques similar to that derived in [Giesbrecht, 2001] with scaled Toeplitz ma-

trix preconditioners. For a set of indeterminates Λ = {vi, wi, yi}, let D1 = diag(v1, . . . , vn),

D2 = diag(w1, . . . , wn), and T be a generic Toeplitz matrix given by

T =


yn yn−1 · · · y1
... yn

. . .
...

yn−2
. . . yn−1

y2n−1 y2n−2 · · · yn

 . (2.5)

Lemma 2.5. Let B = D1TD2 be as in (2.5). Let k ∈ {1, . . . , n} and σ = (σ1, . . . , σk),

τ = (τ1, . . . , τk) ∈ Cnk . Then

25



(i) T
(
σ
τ

)
∈ Z[Λ] has content 1;

(ii) B
(
σ
τ

)
= vσ1 · · · vσkwτ1 · · ·wτkT

(
σ
τ

)
.

Proof. Part (i) is from [Giesbrecht, 2001, Lemma 1.3]. For part (ii), we use the Cauchy-

Binet formula to get

B

(
σ

τ

)
= D1

(
σ

σ

)
T

(
σ

τ

)
D2

(
τ

τ

)
= vσ1 · · · vσkwτ1 · · ·wτkT

(
σ

τ

)
.

Note that B
(
σ
τ

)
uniquely identifies which minor of B was selected. By applying two

preconditioner matrices B1, B2 to A, we can get a matrix whose leading minors are related

to the determinantal divisors of A.

Lemma 2.6. Let A ∈ Zn×n, and B1, B2 be n×n matrices of distinct indeterminates from

a set Λ, of the form (2.5), and let A = B1AB2. Then for all 1 ≤ k ≤ n, the content of

ψk = A
(
1...k
1...k

)
∈ Z[Λ] equals ∆k, the kth determinantal divisor of A.

Proof. By the Cauchy-Binet formula we have

A

(
1 . . . k

1 . . . k

)
=
∑
σ,τ∈Cnk

B1

(
1 . . . k

σ

)
A

(
σ

τ

)
B2

(
τ

1 . . . k

)
.

Thus A
(
1...k
1...k

)
is a sum of polynomials of content 1, with distinct indeterminates, one for

each k × k minor of A, times the value of that minor. Hence it must have content equal

to the GCD of all k × k minors of A, which is equal to the kth determinantal divisor of

A.

Working with symbolic matrices is expensive. Instead, we use randomization to get a

preconditioned matrix with high probability.

Theorem 2.3. Let A ∈ Zn×n, p ≥ 6n2ξ be a prime, and ξ ≥ 2. Let B1, B2 ∈ Zn×n be

formed by a random assignment of variables in B1,B2 in (2.5) respectively, where choices

are made uniformly from L = {0, . . . , 6n2ξ − 1}, and Â = B1AB2. Then with probability

at least 1− 1/ξ, for all 1 ≤ k ≤ n, the order of p in ∆k equals the order of p in Â
(
1...k
1...k

)
.
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Proof. Let ψk be as in Lemma 2.6, which has content equal to the kth determinantal divisor

∆k of A. The total degree of a k × k minor of a Toeplitz matrix of indeterminates is at

most k. Then degψk ≤ 6k ≤ 6n. Now substitute random values for the variables in Λ as

described, and apply the Schwartz-Zippel Lemma. We get ψk/∆k is a polynomial in the

entries of the matrices B1, B2 and

Pr [(ψk/∆k) 6≡ 0 mod p] ≥ 1− 6n

6n2ξ
.

This is the probability that the order of p in ∆k equals the order of p in the leading

k × k minor of Â. The probability that this happens jointly for all 1 ≤ k ≤ n is at least

(1−1/(nξ))n. The lemma statement holds because (1−1/(nξ))n ≥ 1−1/ξ using Bernoulli’s

inequality [Carothers, 2000].

The following result states that the dimension reduction to size `× ` preserves the first

` invariant factors.

Corollary 2.2. Let p ≥ 6n2ξ be prime, ξ > 1, and e ≥ 1. Suppose A ∈ (Z/peZ)n×n has

the Smith normal form diag(s1, . . . , sn) ∈ (Z/peZ)n×n. Let B1, B2 ∈ (Z/peZ)n×n be formed

by a random assignments of variables in B1,B2 in (2.5) respectively, where choices are

made uniformly from L = {0, . . . , 6n2ξ−1} mod pe. Let Â = B1AB2 ∈ (Z/peZ)n×n. For all

1 ≤ k ≤ n let Âk be the leading k×k submatrix of Â. Then with probability at least 1−1/ξ,

for all k ∈ {1, . . . , n}, the Smith normal form of Âk is diag(s1, . . . , sk) ∈ (Z/peZ)k×k.

Proof. The Smith normal form of A equals the Smith normal form of any Ã ∈ Zn×n with

Ã ≡ A mod pe, reduced modulo pe. Thus, Theorem 2.3 implies that the order of p in the

kth determinantal divisor of A equals the order of p in the leading k × k minor of Ã, for

all k, with probability at least 1 − 1/ξ. This implies that Âk = Ãk mod pe will have the

Smith normal form (s1, . . . , sk) for all 1 ≤ k ≤ n where Ãk is the leading k × k minor of

Ã, since ∆k = s1 · · · sk for 1 ≤ k ≤ n.

Computationally, if we know that m is an upper bound on that rank of A, then we

can work with truncated random scaled Toeplitz matrices B1 ∈ (Z/peZ)m×n and B2 ∈

(Z/peZ)n×m. Then Corollary 2.2 implies that Â = B1AB2 ∈ (Z/peZ)m×m has the same
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non-zero invariant factors as A. This upper bound can be efficiently obtained by computing

the rank of A modulo a small set of randomly chosen primes.

2.4.3 Working with Small Primes

Corollary 2.2 requires that p ≥ 6n2ξ. For smaller primes the algorithm may well work, but

this appears much more difficult to prove. The following method can be used to remedy

this.

We construct the Galois ring extension GR(pe, d) = Z[x]/(pe, f), where d = dlogp(6n
2ξ)e

and f ∈ Z[x] is a polynomial of degree at least d, and the image of f is irreducible over

Z/pZ. The ring GR(pe, d) is a principal ideal ring and all its non-trivial ideals are gener-

ated by powers of p [McDonald, 1974, §XVI]. Smith normal form is defined for matrices

over GR(pe, d) [McDonald, 1974, exercise XVI.1, XVI.2]. Analogues of Theorem 2.3 and

Corollary 2.2 over GR(pe, d) can be proven similarly. When choosing random elements

from GR(pe, d) we are choosing random polynomials of degree less than d. Since GR(pe, d)

contains the finite field GF(pd), the Schwartz-Zippel Lemma can be applied.

Corollary 2.3. Let p be prime, e ≥ 1, ξ ≥ 1 and d = dlogp(6n
2ξ)e. Let GR(pe, d) =

Z[x]/(pe, f) for f ∈ Z[x] of degree d which is irreducible modulo p. Suppose A ∈ (Z/peZ)n×n

has the Smith normal form diag(s1, . . . , sn) ∈ (Z/peZ)n×n. Let B1, B2 ∈ GR(p, d)n×n be

formed by random assignments of the indeterminates in B1,B2 in (2.5) respectively, where

the random choices are made uniformly from L = {
∑

0≤i<d αix
i : αi ∈ [0, p)} mod pe. Let

Â = B1AB2 ∈ GR(pe, d)n×n, and for 1 ≤ k ≤ n let Âk be the leading k× k submatrix of Â.

Then with probability at least 1− 1/ξ, for all k ∈ {1, . . . , n}, the Smith normal form of Âk

is diag(s1, . . . , sk) ∈ (Z/peZ)k×k.

2.4.4 The Algorithm

After reducing the dimension to a value at or near the number of nonzero invariant factors,

the following algorithm is applied. We will discuss the value of ` below.
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Algorithm 2.2. Given a black-box for B ∈ (Z/peZ)n×n, and a bound ` for the number

of nonzero invariant factors, compute the invariant factors of B.

1. Construct A as the `× ` dimension reduction of B.

2. Let r0 = rank(ϕ(A)) over Z/pZ. Let k = `− r0.

3. Compute N ′ ∈ (Z/peZ)`×k, a lifting to Z/peZ of a right nullspace basis of ϕ(A)

over Z/pZ.

4. Let N = AN ′ ∈ (Z/peZ)`×k. This involves k matrix vector products with A.

5. Compute the Smith normal form of N over Z/peZ by dense methods:

diag(p, . . . , p︸ ︷︷ ︸
r1

, p2, . . . , p2︸ ︷︷ ︸
r2

, . . . , pe−1, . . . , pe−1︸ ︷︷ ︸
re−1

, 0, . . . , 0︸ ︷︷ ︸
re

).

6. Return r0, . . . , re−1.

We will analyze the algorithm holding e and p constant. Considering them as parame-

ters would introduce a factor of O (̃e log(p)) in the complexity. Let the cost of matrix-vector

product by B be µ. Since we are holding e and p constant, this is the same cost for appli-

cation to vectors in (Z/pZ)n and in (Z/peZ)n.

Theorem 2.4. Algorithm 2.2 is a correct Monte Carlo algorithm. The time complexity is

O (̃`k(kω−2 + µ)) operations in Z/peZ, where k is the number of non-trivial (neither 0 nor

1) invariant factors, and ` is the reduced dimension. The memory requirement is O(k`).

Proof. Step 1: Toeplitz matrices may be applied to vectors via polynomial multiplication,

so the cost of the black-box for A is O(M(n) + µ). But M(n) is O (̃n) and µ ≥ n. Thus

the black-box cost of A is O (̃µ).

Step 2: The rank over Z/pZ can be computed by a black-box method in O (̃(`µ) log(ξ))

to achieve probability of error less than 1/ξ [Wiedemann, 1986]. Memory requirement is

O(1) vectors in (Z/pZ)`.
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Step 3: Let k = ` − r0 denote the nullity of A modulo p. By black-box methods, k

random samples of the nullspace will yield a nullspace basis N ′. Oversampling can be done

and column echelon form computation is used to reduce to a basis of k columns if need be.

The cost is O (̃k(`µ)) operations in Z/pZ, and O(k`) space [Chen et al., 2002].

Step 4: The cost of applying A to N ′ is O (̃kµ).

Step 5: Any nullspace basis for S over Z/pZ is of the form EW ′, where E is the

last ` − r0 columns of the identity matrix, and W ′ is a k × k unimodular matrix. Then

0 = AN ′ = USV N = USEW ′ over Z/pZ, for some unimodular W ′. This lifts to a

factorization AN = USEW over Z/peZ with U,W being unimodular. Thus AN has

Smith normal form SE. The Smith normal form of AN can be computed by elimination

using O (̃`2kω−2) operations in Z/peZ [Storjohann, 2000].

Since ω ≤ 3, k ≤ n, and µ ≥ n, we can assume that µ > kω−2. The complexity is

then dominated by O (̃`kµ). This algorithm is useful when there are only few non-trivial

invariant factors, i.e., when `� n.

The value of ` can be inferred by running the algorithm multiple times with ` =

2, 4, 8, . . . , and stopping when the resulting Smith normal form remains unchanged. There

will be at most dlog re ≤ dlog ne steps. The cost of the algorithm will increase by a log n

factor, which does not change the statement of the result.

2.5 Detecting Non-Trivial Smith Normal Form

In this section we present an algorithm to detect whether a black-box matrix has a non-

trivial Smith normal form. Let A be a matrix over Z/peZ whose Smith normal form is

diag(s1, . . . , sn).

Definition 2.1. The first non-trivial invariant factor of A is the non-zero si with the

smallest index i ∈ [1, n] such that p | si.

The p-adic lifting technique of [Dixon, 1982] is widely used to compute solutions of

linear systems. It works by adding a p-adic digit to the solution after every iteration. We
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show that lifting can be used to detect the first non-trivial invariant factor when used to

solve Ax = 0 modulo pe.

Algorithm 2.3. Given an n× n matrix A over Z/peZ, return a vector v ∈ (Z/peZ)n

in the nullspace of A or “FAIL at iteration i”.

1. Let Ap = A mod p.

2. Let r = 0 ∈ (Z/peZ)n.

3. For i = 0 to e− 1 do:

(a) If r 6= 0: solve Apvi = r over Z/pZ.

(b) If r = 0: set vi to a random non-zero vector in the nullspace of Ap over

Z/pZ.

(c) If A(v0 + pv1 + . . .+ pivi) 6= 0 mod pi+1 then return “FAIL at iteration i”.

(d) Let r := (r − Avi)/p.

4. Return v0 + pv1 + . . .+ pe−1ve−1.

Sampling the nullspace of Ap over Z/pZ can be done using black-box methods at the

same cost of solving a linear system over Z/pZ, for example, using Algorithm random-

LinSolve0 of [Chen et al., 2002].

We show that if A has a non-trivial invariant factor then Algorithm 2.3 will fail to find

any nullspace vector. In particular, if the first non-trivial invariant factor is pk then step 3

will return FAIL at iteration k. We first start with a simple case of A being in the Smith

normal form.

Lemma 2.7. Let A be an n× n matrix over Z/peZ given by

A =


I`×`

pkIm×m

pk+τIt×t

 ,
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where τ > 0 and t ≥ 0. If we invoke Algorithm 2.3 on A, then it will fail at iteration i = k

with probability at least 1− (1/p)m.

Proof. We have

A =


I`×`

0m×m

0t×t

 mod pk, and A =


I`×`

pkIm×m

0t×t

 mod pk+1.

Let w be the resulting vector after iteration i = k− 1 such that Aw = 0 mod pk. Then we

must have

w = (0, . . . , 0, a1, . . . , am, ∗, . . . , ∗),

where a1, . . . , am can be any values from [0, pk) and the entries denoted by ∗ are arbitrary

values which we do not need to specify for the sake of this argument. Now let v be the

resulting vector from lifting w after iteration i = k such that Av = 0 mod pk+1. Since v

only modifies w by adding a pk digit, we have

v = (0, . . . , 0, a1 + pkb1, . . . , am + pkbm, ∗, . . . , ∗).

From Av = 0 mod pk+1 we have pk(aj + pkbj) = 0 mod pk+1 for all j ∈ [1,m]. So we

must have aj = 0 mod p for all j ∈ [1,m]. Now suppose that in computing w, we have

aj 6= 0 mod p for any j ∈ [1,m], then there exists no v such that Av = 0 mod pk+1. In

this case, step 3(c) will report failure at iteration k. What is the probability that any

aj 6= 0 mod p?

The values of aj mod p digits are computed at iteration i = 0 for which the residue

vector r is zero. Step 3(b) will perform random sampling from the nullspace of A over Z/pZ.

If the nullspace sampling is uniform, then with probability at least 1− (1/p)m, one of the

entries aj will have aj 6= 0 mod p. Step 3(c) will then fail with the stated probability.

The probability is the same when A is not in the Smith normal form.

Lemma 2.8. Let A be an n× n matrix over Z/peZ which has the Smith normal form

S =


I`×`

pkIm×m

pk+τIt×t,

 ,
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where τ > 0 and t ≥ 0. If we invoke Algorithm 2.3 on A, then it will fail at iteration i = k

with probability at least 1− (1/p)m.

Proof. Let A = USV where U, V are unimodular. In step i = 0 of the algorithm, we select

a vector x (mod p) uniformly at random from ker(A). This is equivalent to selecting a

random vector v uniformly at random from ker(S) where v = V x. We can apply the same

argument of Lemma 2.7 that a “bad” selection of v mod p (i.e., a selection that will cause

the algorithm to report failure at Step k) will occur with probability at least 1 − 1/pm,

which is the same probability for the random selection of x because V is a bijection between

the two kernels as given by ker(S) = V ker(A).

Algorithm 2.4. Given a black-box for A ∈ (Z/peZ)n×n, return the first non-trivial

invariant factor, or TRIVIAL if the Smith normal form of A is trivial.

1. Run Algorithm 2.3 on A as input.

2. If the algorithm returned FAIL at iteration k, then return pk.

3. If the algorithm successfully terminated after e iterations, then return TRIVIAL.

Theorem 2.5. Algorithm 2.4 is a correct Monte Carlo algorithm with success probability

at least 1−1/prk , where rk is the multiplicity of the invariant factor pk. It requires O (̃enµ)

operations in Z/peZ and a space of O(n) elements in Z/peZ, where µ is the cost of the

black-box for A over Z/peZ.

Proof. Correctness follows from the lemmas above. The cost is dominated by step 3 of

Algorithm 2.3. There are at most e iterations of this step. Each iteration costs O (̃nµ)

operations and O(n) space using Wiedemann-based methods over Z/pZ.

The success probability is at least 1/2 for all p ≥ 2 and rk ≥ 1. The smallest value

occurs when p = 2 (recall that rk is unknown). In this case we can repeat the algorithm

and apply majority voting to get a controllably high success probability.

33



Chapter 3

Preconditioning

The success of iterative algorithms for sparse linear algebra is usually tied to precondi-

tioner matrices. These matrices are typically structured matrices with random entries

from a specified distribution. Special attention is paid to the additional cost introduced by

multiplying preconditioner matrices with vectors. In this chapter, we extend the applica-

tion of faster known preconditioners to the problems of nullspace sampling, and computing

Smith normal form.

3.1 Introduction

Wiedemann-based methods often apply structured pre- and post-multiplier matrices to

the input matrix, so that the minimal polynomial of the resulting “preconditioned” matrix

encodes useful information about the original matrix such as rank, determinant, etc. The

preconditioner matrices, however, increase the overall cost of the algorithm. It is desirable

to have preconditioners which are sparse and can be applied to vectors in a linear number

of operations. Several preconditioners have been proposed with cost varying from linear

to quasilinear. Preconditioners are often structured or diagonal matrices with random

entries, and their success is probabilistic and relative to the field size. Over small fields,

few preconditioners work directly without the need to construct field extensions, which

adds a logarithmic factor to the complexity. Block Wiedemann’s algorithm can work well
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over small fields without the use of preconditioning given that the blocking size is greater

than the number of blocks in the Frobenius normal form of the input matrix [Villard, 1997].

Preconditioning can ensure having a small number of Frobenius blocks [Eberly, 2004]. A

comprehensive review of preconditioning is presented in [Chen et al., 2002].

In this chapter we address the application of faster (though already known) precondi-

tioners to the problem of sampling from the nullspace over large and small fields, and the

problem of computing Smith normal form of integer matrices. The fastest preconditioners

for nullspace and Smith normal form are based on random Toeplitz matrices [Kaltofen and

Saunders, 1991], [Giesbrecht, 1995] which increase the cost of matrix-vector products by

a factor of O(n log(n) log log(n)), or O(n) polynomial multiplications. We show how to

replace Toeplitz matrices with scaled-transpose preconditioners of [Eberly and Kaltofen,

1997] in more circumstances, and hence reduce the overhead to linear time.

In §3.2, we present a new Monte Carlo algorithm for sampling uniformly from the

nullspace of a black-box matrix, even if the field size is small. The algorithm can be ap-

plied with two different random preconditioners: the “transpose box” with diagonal scaling,

and the so-called Wiedemann-sparse matrices introduced by [Wiedemann, 1986] and fur-

ther studied by [Chen et al., 2002]. Our nullspace sampling algorithm with Wiedemann’s

preconditioner is similar to the algorithm of [Eberly, 2004], and offers the same asymptotic

cost. However, we rely on a simple computation of the minimal polynomial rather than

computing a Frobenius decomposition.

In §3.3 we show that the scaled-transpose preconditioner A 7→ D1A
TD2A can replace

Toeplitz preconditioners in existing Smith normal form algorithms [Giesbrecht, 1995, Gies-

brecht, 1996, Giesbrecht, 2001]. This approach offers an alternative in practice since

Toeplitz preconditioners typically involve (FFT-based) polynomial multiplications, while

scaled-transpose preconditioners require scalar multiplications only.
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3.2 Nullspace Sampling

Let A be an n× n singular matrix of rank r over a field F. Let P,Q ∈ Fn×n be precondi-

tioners such that with high probability the preconditioned matrix Ã = PAQ has a minimal

polynomial xg(x) where g(0) 6= 0. The following lemma shows that sampling uniformly

at random from the nullspace of A can be reduced to computing Qg(Ã)w for a randomly

chosen w ∈ Fn.

Lemma 3.1. Let A ∈ Fn×n have rank = r < n. Let P,Q ∈ Fn×n be such that Q is

invertible, ker(A) = Q ker(PAQ), minpoly(PAQ) = xg(x), and g(0) 6= 0. Then ker(A) =

Q im(g(PAQ)).

Proof. Let Ã = PAQ. Then Ãg(Ã) = 0 and g(Ã) 6= 0 by minimality. So im(g(Ã)) ⊆

ker(Ã). For the inclusion ⊇, let v ∈ ker(Ã) Then Ãiv = 0 for all i ≥ 1. This implies that

g(Ã)(v/g(0)) = v, i.e., v ∈ im(g(Ã)). Thus ker(Ã) = im(g(Ã)). The claim follows since

ker(A) = Q ker(Ã).

We will state the algorithm, and discuss two random preconditioners which satisfy the

conditions of Lemma 3.1. The cost is discussed after we make concrete choices for the

preconditioners.

Algorithm 3.1. [Nullspace Sampling] Given a matrix A ∈ Fn×n over a field F, and an

error bound 0 < ε < 1, the output is a random vector v ∈ Fn sampled uniformly from

ker(A) with probability of correctness at least 1− ε.

1. Choose a preconditioner P,Q ∈ Fn×n such that Lemma 3.1 holds with probability

at least 1− ε. Let Ã = PAQ.

2. Compute f(x) = minpoly(Ã). Let g(x) = f(x)/x.

3. Choose a vector w uniformly at random from Fn.

4. Return Qg(Ã)w.
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Example 3.1. Let A =

0 1

0 0

 whose minimal polynomial is x2. If we choose P = AT

and Q = I2×2, then

Ã = PAQ = ATA =

0 0

0 1

 ,
and minpoly(Ã) = x(x− 1) = xg(x). Let w =

w1

w2

, and compute

v = Qg(Ã)w = (Ã− I)w =

−1 0

0 0

w =

−w1

0

 .
Indeed Av = 0 for any choice of w1.

3.2.1 Transpose Preconditioners

To get our first concrete instance of Algorithm 3.1, we use a transpose-based preconditioner.

It has a linear cost for matrix-vector product but its success probability requires a “large”

field size. When the field is small we will work over a field extension K, and discuss how

to uniformly project the nullspace vectors from K to F.

In what follows, let S be a finite subset of F \ {0}. Let φ1, . . ., φn, ψ1, . . . , ψn be a

set of independent indeterminates. Let D1 = diag(φ1, . . . , φn), D2 = diag(ψ1, . . . , ψn),

and A = D1A
TD2A. Let d1, . . . , d2n be random assignments of φ1, . . ., φn, ψ1, . . . , ψn,

respectively, where dj’s are chosen independently and uniformly at random from S. Let

D1 = diag(d1, . . . , dn), D2 = diag(dn+1, . . . , d2n) and Ã = D1A
TD2A. In other words, Ã,

D1, D2 are random evaluations of A, D1, and D2, respectively.

Lemma 3.2. With probability at least 1− 2n/|S| we have ker(Ã) = ker(A).

Proof. Clearly rank(Ã) ≤ rank(A). To prove rank(Ã) = rank(A), it suffices to show the

existence of an r × r non-zero minor of Ã. From rank(A) = r we know that the largest

non-zero minor of A is of size r × r, and that at least one such minor exists. Call this
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minor A
(
τ ′

σ

)
where τ ′, σ ∈ Cnr . Then

A

(
σ

σ

)
=
∑
τ∈Cnr

D1

(
σ

σ

)
AT
(
σ

τ

)
D2

(
τ

τ

)
A

(
τ

σ

)
(3.1)

=
∑
τ∈Cnr

A

(
τ

σ

)2

φσ1 · · ·φσrψτ1 · · ·ψτr , (3.2)

which is a multivariate polynomial in F[φ1, . . . , φn, ψ1, . . . , ψn] of total degree at most 2r ≤

2n. This polynomial is non-zero because A
(
τ ′

σ

)
6= 0, and the monomials φσ1 · · ·φσrψτ1 · · ·ψτr

are distinct for different σ, τ pairs, so no cancellations will happen among the summands.

If we evaluate A
(
σ
σ

)
at {d1, . . . , d2n}, we get that Ã

(
σ
σ

)
is non-zero with probability at least

1− 2n/|S| using the Schwartz-Zippel lemma. So Ã has a non-zero r× r minor, and hence

has rank r, with the stated probability.

The inclusion ker(A) ⊆ ker(Ã) is straightforward. By rank arguments above and the

rank-nullity theorem, we get nullity(A) = nullity(Ã) with the stated probability. But

ker(A) is a subspace of ker(Ã) and dim(ker(A)) = dim(ker(Ã)) so we must have that

ker(A) = ker(Ã).

Lemma 3.3 (Theorem 4.5 of [Chen et al., 2002]). With probability at least 1 − n/|S|,

minpoly(Ã) = xg(x) and g(0) 6= 0.

Thus the preconditioner A 7→ D1A
TD2A satisfies the conditions of Lemma 3.1. We can

apply it to Algorithm 3.1.

Theorem 3.1. Let A be an n× n singular matrix over F. Let µ be the number of field

operations required to multiply A by a vector. Then a sample from the nullspace of A can

be computed using Algorithm 3.1. The output of the algorithm is correct with probability

at least 1− ε. The cost is O(rµ+ r2) operations in F, and storage for O(n) elements in F.

Proof. First we construct the preconditioner. Choose a finite set S ⊆ F \ {0} of size

|S| > 3n/ε. Choose d1, . . . , d2n independently and uniformly at random from S. Let D1 =

diag(d1, . . . , dn), D2 = diag(dn+1, . . . , d2n). Apply Algorithm 3.1 and choose P = D1A
TD2,

and Q = I in Step 1 of the algorithm.
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Correctness follows from Lemmas 3.1, 3.2, and 3.3 which hold with joint probability at

least (1− n/|S|)(1− 2n/|S|) ≥ 1− 3n/|S| = 1− ε.

The cost of the matrix-vector multiplications v 7→ D1v, v 7→ D2v is n operations in

F. The cost of applying Ã = D1A
TD2A to a vector is 2µ + 4n. So the cost of computing

minpoly(Ã) is 4rµ + O(r2) using Wiedemann’s algorithm, under the assumption that rµ

dominates rn. The cost of computing g(Ã)w is 2rµ + O(rn) using Horner’s rule [von zur

Gathen and Gerhard, 2003, Geddes et al., 1992].

The storage of D1, D2 is 2n elements. Wiedemann’s algorithm, and Horner’s evaluation

of g(Ã)w, require O(n) space.

Working Over Small Fields

When |F| < 3n/ε, the success probability of Algorithm 3.1 diminishes. We call this case a

“small field”. We can remedy this by working over an algebraic extension field K/F with

at least 3n/ε elements. All proofs in this section extend to a larger field. As before, let

M(d) denote the number of field operations required to multiply two polynomials of degree

at most d. To build K, set [K : F] = e such that char(F) - e and |F|e > 3n/ε. Thus

e ∈ O(log(n/ε)) holding |F| fixed. The algorithm of [Shoup, 1994] can be used to find

an irreducible polynomial in F[x] of degree e using O((e log e+ log |F|)M(e)) operations in

F. This cost is dominated by other steps of Algorithm 3.1. Working over K, the cost of

nullspace sampling increases by a factor of M(e), and the storage increases by a factor of

e. Since A has entries in F, the cost of applying A or AT to a vector in Kn increases by a

factor of e rather than M(e). We have proven the following result.

Lemma 3.4. Working over an extension K/F as described above, Algorithm 3.1 is correct.

The computed vector is in the nullspace of A with probability at least 1− ε. The algorithm

requires O(rµ log(n/ε) + r2M(log(n/ε))) operations in F, and storage of O(n log(n/ε)) el-

ements in F.

The computed nullspace vector in Lemma 3.4 might have components from K \ F. We

show how to project nullspace vectors from Kn to Fn while preserving the uniform sampling.
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Recall Tr : K → F is the field trace defined by Tr(α) =
∑e−1

i=0 α
qi where e = [K : F]

and q = |F|. Tr(·) is a surjective F-linear map [Lidl and Niederreiter, 1986]. If α ∈ F then

Tr(α) = eα. If char(F) - e, then Tr(α) 6= 0 whenever α 6= 0.

The map Tr(·) can be extended to vectors and matrices by component-wise application.

By the normal basis theorem, there exists an element θ ∈ K such that {θ, θq, . . . , θqe−1} is a

normal basis for K as an F-vector space. By the linear independence of the basis, we have

Tr(θq
j
) 6= 0 for all 0 ≤ j ≤ e− 1.

Let A ∈ Fn×n, v ∈ Kn such that Av = 0. Then Tr(Av) = Tr(A) Tr(v) by linearity. Also

Tr(A) = eA and Tr(0) = 0. So ATr(v) = 0. Thus we can project a given nullspace vector

v ∈ Kn to a nullspace vector Tr(v) ∈ Fn. For a uniformly sampled nullspace vector v ∈ Kn,

we have to show that Tr(v) is a uniform sample of the nullspace of A over F.

Lemma 3.5. Let K be an algebraic extension of F of degree e. If α is chosen uniformly at

random from K, then for all σ ∈ F we have Pr[Tr(α) = σ] = 1/|F|.

Proof. Let θ ∈ K be a normal basis generator of K. Then α =
∑e−1

i=0 αiθ
qi where αi’s

are chosen independently and uniformly at random from F. By linearity of Tr, we have

Tr(α) =
∑e−1

i=0 αi Tr(θq
i
) = Tr(θ)

∑e−1
i=0 αi. Now for any σ ∈ F, we have Pr[Tr(α) = σ] =

Pr[Tr(θ)
∑e−1

0=1 αi = σ]. Split the sum into disjoint events:

∑
τ∈F

Pr[Tr(θ)
e−1∑
i=1

αi = τ ] Pr[Tr(θ)α0 = σ − τ ].

But Pr[Tr(θ)α0 = σ − τ ] = 1/|F| because α0 is chosen uniformly and independently at

random. The sum becomes

|F|−1
∑
τ∈F

Pr[Tr(θ)
e−1∑
i=1

αi = τ ] = 1/|F|,

which is the uniform distribution on F.

Lemma 3.6. Let A ∈ Fn×n have rank r and nullity ν > 0. Let K be an algebraic extension

of F of degree e. Define the two subspaces VF = {u ∈ Fn : Au = 0} and VK = {v ∈ Kn :

Av = 0}; i.e., the kernel of A over F and K respectively. If v ∈ Kn is chosen uniformly at

random from VK, then Pr[Tr(v) = u] = 1/|VF| for all u ∈ VF.

40



Proof. We have dimVF = dimVK = ν, but |VF| < |VK|. Trace is surjective, so it suffices to

prove that Tr maps any uniformly sampled ν-dimensional vector v ∈ VK into any vector

u ∈ VF with probability 1/|VF| = 1/|F|ν . Let θ ∈ K be a normal basis generator of K over

F. Let {b1, . . . , bν} be any basis for VF. Thus it is also a basis for VK. Fix the following two

bases: {Tr(θ)b1, . . . ,Tr(θ)bν} for VF, and {θb1, . . . , θbν} for VK. In this setting, Tr : VK → VF

maps each basis element θbi of VK to its corresponding unique basis elements Tr(θ)bi of VF.

Let v = (v1, . . . , vν) ∈ VK where vi’s are chosen uniformly and independently at random

from K. For any u = (u1, . . . , uν) ∈ VF, we have Pr[Tr(v) = u] =
∏ν

i=1 Pr[Tr(vi) = ui].

By Lemma 3.5 we have, Pr[Tr(vi) = vi] = 1/|F|. So Pr[Tr(v) = u] = 1/|F|ν which is the

probability for the uniform distribution on VF.

How much does the trace computation cost? Given α ∈ K, Tr(α) is the coefficient

of xe−1 of the minimal polynomial of α in F[x]. It can be computed in O(e2 + M(e)
√
e)

operations in F [Shoup, 1999]. The cost of computing Tr(v) for the n components of v ∈ Kn

is dominated by other steps of Algorithm 3.1.

3.2.2 Avoiding Extension Fields

The second preconditioner we use in Algorithm 3.1 is a sparse binary matrix which was

first introduced by [Wiedemann, 1986], and further studied by [Chen et al., 2002, Eberly,

2004]. It has a quasilinear cost for matrix-vector products. But its advantage is that the

success probability is high even over small fields. Thus we can avoid constructing field

extensions and save a log(n) factor in the cost. However, this factor is compensated by

log2(n) factor in applying the preconditioner to vectors. This tradeoff can be exploited in

practice, by choosing between this preconditioner and the diagonal scaling.

Let F be a finite field of size q. We construct two n× n matrices L,R with 0-1 entries

sampled independently from the following distribution:

Pr[Li,j = 1] = min

(
1− 1

q
,
log(n)

j

)
,

where Li,j is the entry i, j of L. The matrix R is constructed similarly. This construction

gives us a sparse matrix with good preconditioning properties.
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Lemma 3.7 ([Wiedemann, 1986] and §7 of [Chen et al., 2002]). The matrices R and L are

invertible with probability at least 1/4. The expected number of non-zero entries in R,L is

O(n log2 n). If A ∈ Fn×n, then with probability at least 1− 1/n, the minimal polynomial of

LAR is xg(x) and g(0) 6= 0 .

Figure 3.1: The non-zero entries in a 500 × 500 matrix constructed using Wiedemann’s

distribution.

The preconditioning A 7→ LAR satisfies Lemma 3.1. Note that the success probability

does not depend on the field size and therefore it is suitable for small fields such as GF(2).

The cost for v 7→ Lv or v 7→ Rv is O(n log2 n) operations in F. The space requirement for

L,R is O(n log2 n).

Corollary 3.1. Let A be an n× n matrix over F. Let µ be the number of field operations

required to multiply A by a vector. Let R,L be constructed as in Lemma 3.7. Call Algo-

rithm 3.1 with P = L, Q = R in Step 1. Then the output is a correct nullspace sample

with probability at least 1− 1/n. The cost is O(rµ+ rn log2 n) operations in F. The space

complexity is O(n log2 n) elements in F.

Proof. Correctness follows from Lemma 3.7. The cost is dominated by the minpoly com-

putation which is 2rµ+ 2rO(n log2 n) +O(r2). Storage is dominated by L and R.
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Solving Singular Linear Systems

It is worth noting that we can also (trivially) address the problem of uniform sampling from

the solution space of singular linear systems. We are given a singular system Ax = b over a

field F. Assume that there are no rows of the augmented matrix [A | −b] which are identi-

cally zero. Invoke Algorithm 3.1, to get a random nullspace vector x′ = (x1, . . . , xn, xn+1) ∈

Fn+1. If xn+1 = 0, then we repeat the resampling until xn+1 6= 0. It is expected that we need

a constant number of repetitions. To see why, fix a choice of P,Q and let B = Qg(P [A |

−b]Q). Now let w be a vector of symbolic entries and let x′ = Bw = (x1, . . . , xn, xn+1).

Then xn+1 is a linear polynomial in entries of w. This polynomial can not be identically

zero because we removed all rows of [A | −b] that are entirely zero. Evaluate the entries

of w using uniform random choices and apply the Schwartz-Zippel lemma. We get that

Pr[xn+1 6= 0] ≥ 1 − 1/|F| ≥ 1/2. This is a Bernoulli random variable and the expected

number of retries until we get xn+1 6= 0 is constant.

Finally, set x = (x1/xn+1, . . . , xn/xn+1) which is a uniform random solution of Ax = b.

3.3 Smith Normal Form

The goal of this section is not to present a new algorithm. Instead, we extend the ap-

plications of the transpose preconditioner into computing sparse Smith normal form. We

replace Toeplitz preconditioners in existing sparse algorithms [Giesbrecht, 1995, Giesbrecht,

1996, Giesbrecht, 2001, Eberly et al., 2007] with more efficient diagonal preconditioners.

The main idea behind the cited algorithms is that the ith determinantal divisor (the

GCD of all i×i minors) divides the (n−i)th coefficient of the characteristic polynomial. Un-

der suitable preconditioning this division is “maximal”, allowing the determinantal divisors,

and hence the invariant factors to be extracted from the coefficients of the characteristic

polynomial. A preconditioning is considered successful if the characteristic polynomial of

the resulting matrix has the form xkf(x) where f(x) is square free and k > 0. Therefore

the coefficients of the characteristic polynomial can be recovered from the minimal poly-

nomial, which is now easier to compute using methods such as Wiedemann’s because it
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is square free. Toeplitz matrices were used to achieve this preconditioning in [Giesbrecht,

1996]. Here we show that scaled transpose matrices are suitable for the same task.

3.3.1 Preconditioning and Determinantal Divisors

Let A ∈ Zn×n, rank(A) = r < n. Let S be a finite subset of Z \ {0}. Let φ1, . . ., φn,

ψ1, . . . , ψn be a set of independent indeterminates. Let D1 = diag(φ1, . . . , φn), D2 =

diag(ψ1, . . . , ψn), and A = D1A
TD2A. Let d1, . . . , d2n be random assignments of φ1, . . .,

φn, ψ1, . . . , ψn, respectively, where dj’s are chosen independently and uniformly at random

from S. Let D1 = diag(d1, . . . , dn), D2 = diag(dn+1, . . . , d2n) and Ã = D1A
TD2A. In other

words, Ã, D1, and D2 are random evaluations of A, D1, and D2, respectively.

The next lemma shows that the coefficients of the characteristic polynomial and the

minimal polynomial of Ã agree up to a shift of at most xn−r.

Lemma 3.8. We have:

1. The characteristic polynomial of A is a product of a power of x and a square-free

polynomial.

2. With probability at least 1− 4n2/|S|, charpoly(Ã) is a product of a power of xk and

a square-free polynomial.

3. With probability at least 1 − 4n2/|S|, charpoly(Ã) = xn−rg where g is a polynomial

such that g(0) 6= 0.

Proof. For Part 1, we adopt the argument from Theorem 4.1 of [Chen et al., 2002]. Let f =

charpoly(D1A
TD2A) = xn+f1x

n−1 + . . .+fn−1x+fn. It is known that fi = (−1)i
∑

A
(
σ
σ

)
for all σ ∈ Cni . Substitute (3.2) to get:

fi = (−1)i
∑
σ,τ∈Cni

A

(
τ

σ

)2

φσ1 · · ·φσiψτ1 · · ·ψτi , (3.3)

where φσ1 · · ·φσiψτ1 · · ·ψτi are distinct for different σ, τ pairs. So fi is a non-zero homoge-

neous polynomial in Z[φ1, . . . , φn, ψ1, . . . , ψn] with degree 1 in each of φj’s, ψj’s, and total
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degree 2i < 2n. Now every factorization of f has a linear degree in φj’s and ψj’s. So the

only possible repeated factors of f must be free of φj’s and ψj’s, i.e., factors of the form

xk. So f is square-free up to a power of x.

For Part 2, consider, f , the characteristic polynomial of A. From the previous part we

know that h = f/xk is a square-free polynomial and therefore its discriminant, disch, is non-

zero. Let h = xn−k +f1x
n−k−1 + . . .+fn−k−1x+fn−k, where fn−k 6= 0. Then disch is a non-

zero polynomial in Z[φ1, . . . , φn, ψ1, . . . , ψn] whose total degree is (2(n−k)−1)(2n) < 4n2.

If we evaluate A and h at {d1, . . . , d2n}, and apply Schwartz-Zippel lemma to disch, we

get disch(d1, . . . , d2n) is a non-zero integer with probability at least 1 − 4n2/|S|. Thus

charpoly(Ã)/xk is a square-free polynomial with the same probability.

Part 3 follows from the previous parts, Lemma 3.3, and by observing in (3.3) that fi

must be zero for all i > r.

The following lemma shows that the coefficients of charpoly(Ã) contain the prime power

divisors of the ∆i’s. This can be considered as a replacement for the diagonal Toeplitz

preconditioners of [Giesbrecht, 2001, Section 1]. For a non-zero integer a, we use ordp(a)

to denote the exact power of p dividing a. We will not use ordp(0) in this chapter.

Lemma 3.9. Let

f = charpoly(A) = fn + fn−1x+ . . .+ f1x
n−1 + xn,

where fi ∈ Z[φ1, . . . , φn, ψ1, . . . , ψn]. For all 1 ≤ i ≤ r we have ordp(fi) = 2 ordp(∆i).

Proof. If ordp(∆i) = e then for some σ, τ ∈ Cni we have ordp(A
(
τ
σ

)
) = e and for all other

minors the order is at least e. From (3.3), the coefficients of fi are squares of (i× i) minors

of A. Then ordp(fi) = 2e.

It follows that ordp(fi(d1, . . . , d2n)) ≥ 2 ordp(∆i) where dj’s are the random evaluations

of φj’s and ψj’s. We now discuss the conditions under which equality is achieved.

Lemma 3.10. Let A ∈ Zn×n be as above, with rank r and non-zero determinantal divisors

∆1, . . . ,∆r ∈ Z, and let f = charpoly(A) = fn + fn−1x + · · · + f1x
n−1 + xn, where fi ∈
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Z[φ1, . . . , φn, ψ1, . . . , ψn] for all i ∈ [1, n]. Let λ ∈ Z>0 and S = {1, . . . , λ}. Let d1, . . . , d2n

be assignments of φ1, . . ., φn, ψ1, . . . , ψn, respectively, which are chosen independently and

uniformly at random from S. Let p > λ be a given prime. Then the probability that for all

i ∈ [1, r], we have ordp(fi(d1, . . . , d2n)) = 2 ordp(∆i), is at least 1− 2nr/λ.

Proof. From ordp(fi) = 2 ordp(∆i) we conclude that (fi/∆
2
i ) ∈ Z[φ1, . . . , φn, ψ1, . . . , ψn] is

non-zero modulo p. Moreover, it has degree 2i ≤ 2n by (3.3).

In choosing elements uniformly from S, we are choosing distinct elements from S mod p

because p > λ. Then for any i ∈ [1, r], the probability that (fi/∆
2
i )(d1, . . . , d2n) = 0 is at

most 2n/λ by the Schwartz-Zippel Lemma. The lemma statement follows by taking the

joint probability for all i ∈ [1, r].

Lemma 3.11. Let A ∈ Zn×n have rank r, and suppose we choose d1, . . . , d2n from S as

in Lemma 3.10. Then the number of distinct primes dividing fr(d1, . . . , d2n) is less than

n(1 + 2 log2 n+ 2 log2 λ+ log2 ‖A‖).

Proof. The coefficient fr(d1, . . . , d2n) is the sum of the symmetric r×r minors of D1A
TD2A

which has size ‖D1A
TD2A‖ ≤ nλ2‖A‖2. By Hadamard’s bound, the r × r minors have

absolute value at most rr(nλ2‖A‖)r, and there are at most
(
n
r

)
< 2n of them. The number

of distinct prime factors is at most log2 of the product of these quantities, and the lemma

immediately follows.

The following algorithm computes p-adic approximations to the determinantal divisors

for large primes. Our focus is to introduce the linear-time preconditioning and hence we

will not repeat the analysis of [Giesbrecht, 2001].

Algorithm 3.2. [Smith Normal Form - Large Primes] Given a matrix A ∈ Zn×n of

rank r, compute δ1, . . . , δr ∈ Z such that for all i ∈ [1, r] we have ordp δi = 2 ordp ∆i

for all large primes p with probability at least 8/9.

1. Choose λ such that
1

λ
2n3(1 + 2 log n+ 2 log λ+ log ‖A‖) < 1/3.
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2. Let S = {1, 2 . . . , λ}.

3. For k from 1 to 2:

(a) Choose d1, . . . , d2n independently and uniformly at random from S.

(b) Let D1 = diag(d1, . . . , dn), D2 = diag(dn+1, . . . , d2n), and Ã = D1A
TD2A.

(c) Compute f (k)(x) = minpoly(Ã).

(d) Let g(k)(x) = f (k)(x)/x = g
(k)
r + g

(k)
r−1x+ . . .+ xr.

4. For all 1 ≤ i ≤ r, set δi = gcd(g
(1)
i , g

(2)
i ).

5. Return δ1, . . . , δr.

Repeating the computations twice and computing coefficient-wise GCD of the resulting

polynomials amplifies the probability to 1− (1− 2/3)2 ≥ 8/9.

The choice of λ in the algorithm above satisfies Lemmas 3.10 and 3.11 for all relevant

primes at once. So with the stated probability we can correctly compute ordp(∆i) for all

primes p > λ, where λ ∈ O (̃n3). This defines a notion of large primes : p > λ, and small

primes otherwise.

For a small prime p, we can construct a ring extension similar to the construction we

used in §2.4.3. Let e be an integer such that pe > λ. Let Γp ∈ Z[x] be a polynomial of

degree e whose image over Z/pZ is irreducible. The ring Rp = Z[x]/(Γp) contains a copy of

GF(pe) with at least λ elements. We can apply the Schwartz-Zippel lemma over Rp modulo

p. Similar to Lemma 3.10, we can show that p - fi/∆2
i with high probability if the random

choices for D1, D2 are taken as polynomials from a subset of Rp. Thus the preconditioning

A 7→ D1A
TD2A works for smaller primes.

In general, there are several small primes p1, . . . , pk which divide ∆r. In [Giesbrecht,

2001, §2], all k primes are considered at once. The resulting ring extension is called a

rough extension ring R = Rp1 ⊕ · · · ⊕ Rpk = Z[x]/(Γ), where Γ = Γp1 · · ·Γpk ∈ Z[x]. The

preconditioning A 7→ D1A
TD2A works for this setup as well using the arguments above.
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3.4 Conclusion

We extended the applications of linear-time preconditioners to random and uniform nullspace

sampling, and computing Smith normal form of sparse and black-box matrices. For the

case of small fields (for nullspace sampling) and small primes (for Smith normal form),

we incurred a logarithmic penalty for working over extensions. In the nullspace case, we

adopted Wiedemann’s sparse preconditioners as an alternative to constructing field exten-

sions, at (approximately) the same logarithmic overhead.

It remains an open question to find linear-time preconditioners, or apply known ones,

to Wiedemann’s algorithm over small fields (for the nullspace sampling) and with respect

to small primes (for Smith normal form), without constructing extensions.
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Chapter 4

Rank Reduction

This chapter presents a new technique for computing Smith normal form using rank-1

updates. The underlying technique is a rank reduction first formulated by Wedderburn in

1934. We will introduce rank reduction and then present two variants of our algorithm:

iterative and block-iterative. Finally, we will present an application in computing nullspace

vectors.

4.1 Introduction

Here we consider the problem of computing the Smith normal form of matrices with entries

from a local ring. Throughout our presentation we will focus on Z/peZ but the results are

applicable to other local rings such as F[x]/(fk).

As discussed in earlier chapters, existing approaches to computing Smith normal form

rely on elimination [Storjohann, 2000], the characteristic polynomial [Dumas et al., 2001],

[Giesbrecht, 2001], and random perturbations combined with solving random linear systems

[Villard, 2000, Eberly et al., 2000]. Notably, the work of [Eberly et al., 2000] relies on

modifying (or perturbing) the last k invariant factors. The approach we present here is in

the realm of perturbing the invariant factors. Our perturbation schemes modify the first k

invariant factors of a matrix using rank-1 and rank-k updates. For rank updates, we rely

on the so-called Wedderburn rank reduction formula. Let A be an n × n matrix over a
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field F. Let x, y ∈ Fn be two vectors such that w = yTAx ∈ F is non-zero. Then the rank-1

update given by

B := A− w−1AxyTA, (4.1)

will result in rank(B) = rank(A)− 1. Wedderburn [Wedderburn, 1934, p. 69] first discov-

ered this property for real and complex-valued matrices. The converse of the formula is also

true [Householder, 1964]. Independently, Egerváry discovered this property and its con-

verse, and used it in an iterative process to compute LU decompositions [Galántai, 2010].

Cline and Funderlic [Cline and Funderlic, 1979] have generalized these results from rank-1

updates to block updates as follows. Suppose X, Y ∈ Mn×k(F) and W = Y TAX ∈ Mk(F)

such that W is invertible, and let

B := A− AXW−1Y TA. (4.2)

Then rank(B) = rank(A) − k. One can then take the resulting matrix and re-apply a

second iteration of rank reduction and so forth until the resulting matrix is zero.

The iterative nature of the rank-1 update lends itself to applications in numerical linear

algebra where iterative methods are widely used. A comprehensive study of Wedderburn

rank reduction formula can be found in [Chu et al., 1995]. They extend the applications

of rank reduction to a general-purpose bi-conjugation process, and show that many matrix

factorizations such as SVD, QR, Cholesky decomposition, Gram-Schmidt and Lanczos

can be formulated in terms of this bi-conjugation process. The authors also show that

Wedderburn rank reduction is related to the ABS method [Abaffy et al., 1984].

The work of Raboky and Amiri [Raboky and Amiri, 2013a, Raboky and Amiri, 2013b]

is the only direct utilization of Wedderburn rank reduction that we know of in exact linear

algebra. They develop a bi-conjugation process based on the Wedderburn rank formula

and the ABS method to compute Smith normal form of integer matrices. Their algorithm

is deterministic, and has a quadratic space complexity and hence it is only suitable for

dense matrices.

The authors provide experimental results to show that their algorithm performs well

in terms of space and time. We attempt at analyzing its time complexity. There are at
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most n iterations in their algorithm. The key step in every iteration is finding integer

vectors t, w ∈ Zn such that tTAiw = gcd(Ai) where Ai is A’s perturbation at step i. Since

Ai is completely known at step i, finding t, w reduces to solving a quadratic diophantine

equation. The authors present an algorithm for solving this problem which is dominated

by the time to compute an integer row basis for Ai. We note that this is bounded by the

time to compute Hermite normal form. Thus the overall bit complexity is bounded by

O (̃nω+2). The algorithm has the advantage of explicitly constructing the transformation

matrices.

Throughout this chapter we use the following notation. Let pe be a prime power.

All equalities in this chapter are over the ring Z/peZ and hence should be understood as

equivalences modulo pe. For a matrix M ∈ Mn(Z/peZ), let snfM be the Smith normal

form of M . Two matrices A,B are unimodularly equivalent if snfA = snfB which we write

as A ∼ B. Let ker(M) ⊆ (Z/peZ)n denote the right kernel of M over Z/peZ, that is, the

Z/peZ module of all vectors v such that Mv = 0. With abuse of notation, we also use

ker(M) to denote an n× b matrix whose b columns form a basis of the kernel. For a matrix

M , and a set of vectors x1, . . . , xn (where n ≥ 1), we use the notation M ∪ {x1, . . . , xn} to

denote span(M,x1, . . . , xn). Finally, [M x] denotes the n× (n+ 1) matrix resulting from

augmenting the column vector x to the matrix M . If p is a prime, M is a matrix, and v is

a vector, then we use the notation p | M , and p | v to mean M ≡ 0 (mod p), and v ≡ 0

(mod p), respectively.

We offer simple algorithms with polynomial time complexity. The algorithms are ran-

domized and their success probabilities are controllably close to 1. Our algorithms only

compute the invariant factors and cannot produce the unimodular transformation matrices.

It is worth noting that this is sufficient for many applications in system theory [McMil-

lan, 1952, Kailath, 1980], and in algebraic topology [Dumas et al., 2003], where the main

interest is in the invariant factors, rather than the transformation matrices.
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4.2 Invariant Factors and Rank-1 Updates

Let A ∈ Mn(Z/peZ) and let x, y be two non-zero vectors with entries from Z/peZ with the

condition that yTAx is a unit in Z/peZ. We will discuss the existence of such vectors in a

later section. Let

B = A− w−1AxyTA. (4.3)

The following lemma shows the relationship between the kernels of A and B.

Lemma 4.1. The sets ker(A) and ker(B) satisfy ker(B) = ker(A) ∪ {x}.

Proof. The proof follows [Wedderburn, 1934, §5.06]. The inclusion ker(A) ∪ {x} ⊆ ker(B)

is straightforward. For the other direction, let v be any vector such that Bv = 0, and let

α = w−1yTAv. We have

Bv = Av − w−1AxyTAv = Av − αAx = A(v − αx) = 0.

Then v − αx ∈ ker(A). But α ∈ Z/peZ, so v ∈ ker(A) ∪ {x} over Z/peZ, and ker(B) ⊆

ker(A) ∪ {x}.

Example 4.1. Take A to be the 2×2 identity matrix over Z/4Z. If we choose x = [3 2]T

and y = [1 1]T , then w = yTAx = [1 1][3 2]T = 1, and

B = A− w−1AxyTA =

1 0

0 1

−
3 3

2 2

 =

−2 −3

−2 −1

 =

2 1

2 3

 .
Indeed, x is now in the (right) kernel of B:

Bx =

2 1

2 3

3

2

 = 0.

Note that snfA = diag(1, 1) and snfB = diag(1, 4) = diag(1, 0) over Z/4Z.

In the rest of this section we will study the effects of the rank-1 reduction on the

invariant factors.
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Lemma 4.2. Let M ∈ Mn(Z/peZ), x ∈ (Z/peZ)n, and M = PDQ be the Smith decom-

position of M where P,Q ∈ GLn(Z/peZ). Then ker(M) ∼ ker(D), and snf
[
M x

]
=

snf [D P−1x].

Proof. If M = PDQ then ker(D) = Q ker(M) and so ker(D) ∼ ker(M) because Q is

unimodular. For the second part, we have

snf [M x] = snfP−1[M x]

Q−1
1

 = snf
[
D P−1x

]
,

because Smith normal form is invariant under left and right multiplication by unimodular

matrices.

The following lemma shows that under a certain choice of basis for ker(A), rank-1

reduction is equivalent to adding a unit vector ei to the kernel basis.

Lemma 4.3. Let the Smith normal form of A = USV ∈ Mn(Z/peZ) be

S = diag(1, pe2 , . . . , pen),

where 0 ≤ ei ≤ e. Let x ∈ (Z/peZ)n be such that x 6∈ ker(A) and p - Ax. Then

[ker(A) x] ∼ diag(1, pe−en , . . . , pe−e2).

Proof. For the given S, we have ker(A) is generated by

V −1 diag(0, pe−e2 , . . . , pe−en).

Let z = V x for some vector z. Then p - Ax implies that the first entry of z must be a unit

for otherwise Ax = USz = (pi, ∗, . . . , ∗) for some i > 0 which is impossible since p - Ax.

Now,

snf[ker(A) x] = snfV [ker(A) x]

=


0 unit

pe−e2 ∗
. . . ∗

pe−en ∗

 .
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We do not need to specify the entries denoted by ∗. If we swap the first and last columns

we get a lower triangular matrix. We can apply column and row operations to reduce the

entries below the unit element to zero. After rearranging the entries in the canonical Smith

normal form divisibility chain, we have [ker(A) x] ∼ diag(1, pe−en , . . . , pe−e2).

As an example of Lemma 4.3, consider the following matrix over Z/4Z:

A =

1 0

0 2

 , ker(A) =

0 0

0 2

 .
If we choose x = [1, 1]T and y = [1, 1]T , then the rank-1 reduction is

B =

2 2

2 2

 , ker(B) =

1 0

1 2

 ∼
1 0

0 2

 .
We see that adding x to the kernel of A has the effect of adding the vector e1 to the Smith

normal form of ker(B).

In the above example the rank reduction modified the invariant factors of A from

diag(1, 2) to snfB = diag(2, 0). The following result shows that rank reduction modifies

the structure of the Smith normal form by decrementing the number of 1’s and incrementing

the number of 0’s, while leaving all the other invariant factors intact.

Theorem 4.1. Let the Smith normal form of A ∈ Mn(Z/peZ) be diag(1, pe2 , . . . , pen).

Let x, y be two vectors in (Z/peZ)n such that w = yTAx is a unit in Z/peZ, and let

B = A− w−1AxyTA. Then snfB = diag(pe2 , . . . , pen , 0).

Proof. If p - yTAx then Ax 6= 0 and p - Ax. Applying Lemma 4.2, Lemma 4.1, and

Lemma 4.3 in order we get

ker(snfB) ∼ ker(B) = [ker(A) x] ∼ diag(1, pe−en , . . . , pe−e2).

But snfB is a diagonal matrix, so it is trivial to infer from its kernel that

snfB ∼ diag(0, pen , . . . , pe2).

Now reorder the invariant factors of B to get the desired Smith normal form.
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The iterative scheme for computing the invariant factors based on rank-1 reductions

is now straightforward. Start with the input matrix A, and set s1 to the GCD of all its

elements. Replace A by A/s1 such that Theorem 4.1 is applicable, and then apply the rank

reduction to the resulting matrix. Then s2/s1 is the GCD of all elements of the resulting

(rank-1 reduced) matrix. By iteratively applying this scheme, all the invariant factors of

A will be discovered after at most r ≤ n iterations.

It is worth noting that this iterative process decomposes A as follows. As step i let Ai

denote the current reduction of A. Let xi, yi denote the current choice of the reduction

vectors x, y. Finally, let ui = Aixi, v
T
i = yTi Ai, and wi = yTi Aixi. Then

A = USW−1V =


u1 u2 · · · ur




s1
w1

s2
w2

. . .

sr
wr




vT1

vT2
...

vTr

 .
Note that U, V need not be unimodular.

We will now discuss a randomized approach for choosing x, y using a Bernoulli process

without compromising the overall complexity of the algorithm. We will also present the

deterministic approach in a subsequent discussion. The deterministic approach is obviously

preferable. However, the randomized approach might be of use when one cannot efficiently

inspect all the entries of A, e.g., when A is given by one or more black-boxes, or by a

lengthy straight line program.

The next lemma shows that there are sufficiently many vectors x, y such that p - yTAx.

Lemma 4.4. Let x, y be n vectors whose entries are chosen uniformly at random from

Z/peZ. If s1 = 1, then Pr[p - yTAx] ≥ 1− 2/p.

Proof. First treat the entries of x, y as algebraically independent symbols. Then

yTAx =
n∑
i=1

n∑
j=1

aijxiyj ∈ (Z/peZ)[x1, . . . , xn, y1, . . . , yn]. (4.4)

But s1 = 1 implies that at least one aij is a unit, and so yTAx is a non-zero polynomial

and has total degree exactly 2. In fact, s1 = 1 implies that the image of yTAx in Z/pZ is

also a non-zero polynomial of total degree equal to 2.
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Now we choose the entries of x, y at random. When choosing values for xj’s, yi’s

uniformly (and independently) at random from [0, pe), we are also choosing the values of

xj (mod p) and yi (mod p) over Z/pZ uniformly at random from [0, p), since each element

in [0, pe) can be written as a power series in p with coefficients from [0, p). If we apply

the Schwartz-Zippel lemma on the image of yTAx over Z/pZ, we get Pr[p | yTAx] ≤

deg(yTAx)/|Z/pZ| = 2/p.

Therefore a randomly chosen pair of vectors will satisfy the conditions of Theorem 4.1

with probability at least 1/2 for all primes p ≥ 5. To get a probability of at least 1/2 when

p = 2 or 3, we sample x, y from a constant degree ring extension of Z/peZ, while retaining

a good probability that w is a unit in the ring extension.

Let GR(pe, d) be the Galois ring extension of Z/peZ whose degree is d. Over GR(pe, d),

w = yTAx is a unit if p - w. To keep the presentation uniform for both p = 2 and

p = 3, we choose the polynomial α2 − α − 1 which is irreducible over both Z/2Z and

Z/3Z. Other irreducible polynomials can be independently chosen for either of the two

rings. Then we use the extension GR(pe, 2) = Z[α]/(pe, α2 − α− 1) which has p2 elements.

Arithmetic operations over GR(pe, 2) require a constant number of operations over Z/peZ

using polynomial arithmetic in (Z/peZ)[x] with degrees at most 2. Hence working over this

extension only introduces a constant overhead in the complexity of the algorithm. Finally,

GR(pe, 2) contains an image of GF(p2) given by Z[α]/(p, α2−α− 1) which will be useful in

applying the Schwartz-Zippel lemma.

Lemma 4.5. Let x, y be n vectors whose entries are chosen uniformly at random from

GR(pe, 2). If s1 = 1, then Pr[2 - yTAx] ≥ 1/2.

Proof. As in Lemma 4.4, s1 = 1 implies that yTAx is a non-zero polynomial of degree 2

over GF(p2). Let c1α+ c0 be an entry of x or y, which is chosen uniformly at random from

GR(pe, 2). Then c0, c1 are chosen uniformly at random from Z/peZ and c1α + c0 (mod p)

is chosen uniformly at random from GF(p2). The rest of the proof is similar to Lemma 4.4,

and we get

Pr[yTAx 6≡ 0 (mod p, α2 − α− 1)] ≥ 1− 2

|GF(p2)|
≥ 1/2,

56



using the Schwartz-Zippel lemma over GF(p2).

We can now present an iterative algorithm for computing the Smith normal form over

Z/peZ using rank-1 updates and random choices for x, y.

Algorithm 4.1. Given a matrix A = (aij) ∈ Mn(Z/peZ), this algorithm returns A’s

invariants factors: s1, . . . , sn ∈ Z/peZ.

1. Initialize s0 = 1 and s1 = 0, . . . , sn = 0.

2. For ` = 1 to n:

(a) Compute gcd(A) = gcd {aij : i, j ∈ [1, n]}.

(b) Set s` = s`−1 · gcd(A).

(c) If s` = 0 then break.

(d) Update A using A := A/ gcd(A).

(e) Find x, y:

i. Construct vectors x, y with entries sampled uniformly at random from

[0, pe).

ii. Compute w = yTAx.

iii. Repeat steps 2(e)i, 2(e)ii until p - w.

(f) Update A using A := A− w−1AxyTA (mod pe).

3. Return s1, . . . , sn.

When p = 2 or 3, all arithmetic operations will be done over GR(pe, 2). In particular,

the random entries in step 2(e)i can be constructed as aα+ b where a, b ∈ [0, pe) are chosen

uniformly at random.

Theorem 4.2. For all primes p ≥ 2, Algorithm 4.1 is a correct randomized Las Vegas

algorithm. The expected cost of the algorithm is O(n3) operations over Z/peZ. The space

complexity is O(n2) elements in Z/peZ.
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Proof. First recall that scaling a matrix by a power of p also scales each invariant factor

by the same power of p. The first run of step 2b correctly computes s1. Step 2d always

scale A such that Theorem 4.1 is applicable. Suppose that the invariant factors of A are

[s1, . . . , sn]. After the first run of step 2d, the algorithm transforms the invariant factors into

[1, s2/s1, . . . , sn/s1]. After step 2f, the invariant factors become [s2/s1, s3/s1, . . . , sn/s1, 0].

The subsequent iteration then computes gcd(A) = s2/s1. Hence s2 = s1 gcd(A). Scaling

the matrix again by s2/s1 transforms the invariant factors into [1, s3/s2, . . . , sn/s2, 0] and

so on. Thus at iteration `, the gcd computed by step 2a is equal to s`/s`−1. This loop

stops when the `th invariant factor is 0 and hence all subsequent invariant factors are zero,

i.e., when ` is the rank of A. The algorithm is correct.

Each individual step is dominated by O(n2) operations, including 2f where the matrix

multiplication can be factored into the outer product (Ax)(yTA).

Steps 2(e)i, 2(e)ii are essentially sampling a Bernoulli random variable where the success

outcome is yTAx 6≡ 0 (mod p), which has probability at least 1/2 by Lemma 4.4 (and

Lemma 4.5). The expected number of trials until the success of a Bernoulli random variable

is given by the inverse of the success probability, which is a constant. At each iteration we

can verify the success of the random choice by testing that yTAx is a unit. The algorithm

is randomized Las Vegas.

The expected cost of the overall algorithm is O(n3). Assuming step 2f is performed out

of place on A, the space complexity of the algorithm is O(n2) elements which are required

to store x, y and the reduction of A at every iteration.

When p = 2 or 3 we work over GR(pe, 2). In this case, the complexity will only increase

by a constant factor while maintaining good probability bounds (greater than 0.5). So the

arguments of this proof hold for all primes.

Finally, the deterministic choice for x, y is rather simple. At every iteration, the first

invariant factor of the current matrix A is 1 because we have already divided A by its gcd.

Then there must be at least one entry aij such that p - aij. If we let x = ej and y = ei then

w = yTAx = eTi Aej = aij, and we must have p - w for this choice. We get the following

result.
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Theorem 4.3. In Algorithm 4.1, replace step 2e with: Set x = ej and y = ei where

i, j ∈ [1, n] are any pair of indices such as p - aij. The resulting algorithm is deterministic,

and costs O(n3) operations over Z/peZ. The space complexity is O(n2) elements in Z/peZ.

This algorithm is similar to local elimination approach of [Dumas et al., 2001, algorithm

LRE] which has cubic time complexity as well.

4.3 Block Reduction

The algorithm in the preceding section has cubic time complexity. To achieve subcubic

complexity, we utilize fast matrix multiplication, and block rank reductions.

Let A be an n× n matrix over Z/peZ and its Smith normal form be

diag(1, . . . , 1︸ ︷︷ ︸
r0

, p, . . . , p︸ ︷︷ ︸
r1

, . . . , pe−1, . . . , pe−1︸ ︷︷ ︸
re−1

, 0, . . . , 0).

Let b ≤ r0, and X, Y ∈ Mn×b(Z/peZ) such that W = Y TAX ∈ GLb(Z/peZ). Let the

columns of X be X1, X2, . . . , Xb. In what follows it is shown that the rank of

B := A− AXW−1Y TA,

is exactly rank(A)− b. The rank-b reduction decrements the number of ones in the Smith

normal form by b while, at the same time, increments the number of zeroes by b.

First we establish that rank reduction adds the columns of X to the kernel of the new

matrix.

Lemma 4.6. We have ker(B) = ker(A) ∪ {X1, . . . , Xb}.

Proof. If Av = 0 then Bv = 0. For all i ∈ [1, b], we have

BXi = BXei = AXei − AXW−1Y TAXei = AXei − AXei = 0.

So ker(A) ∪ {X1, . . . , Xb} ⊆ ker(B).
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For the other direction of set inclusion, let Bv = 0 and u = XW−1Y TAv. Then

Av − AXW−1Y TAv = A(v −XW−1Y TAv) = A(v −Xu) = 0

or v −Xu ∈ ker(A). So v ∈ ker(A) ∪ {X1, . . . , Xb}, or more generally, ker(B) ⊆ ker(A) ∪

{X1, . . . , Xb}.

Example 4.2. Let A ∈ M4×4(Z/8Z) be

A =


1

1

2

4

 .

If we choose X, Y as

X =


1 0

0 1

0 0

0 0

 , Y
T =

1 0 0 0

0 1 0 0

 .

Then W is the 2× 2 identity matrix, and

B = A− AXW−1Y TA = A− A


1

1

0

0

A =


0

0

2

4

 .

Note rank(B) = 2, and both columns of X are nullspace vectors of B.

If ker(B) = [ker(A) X], what is the Smith normal form of B?

Theorem 4.4. If the Smith normal form of A is diag(1, . . . , 1︸ ︷︷ ︸
b

, peb+1 , . . . , pen) where 0 ≤

ei ≤ e for all i ∈ [eb+1, en]. Then the Smith normal form of B is diag(peb+1 , . . . , pen , 0, . . . , 0︸ ︷︷ ︸
b

).

Proof. We will examine the Smith normal form of ker(B). Let the Smith normal form of

A be given by A = USV . We have ker(A) = V −1 ker(S). Let Z = V X for some n × b
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matrix Z. For any column Xi of X we have p - AXi otherwise the ith column of W will

be zero modulo p which is impossible since W is invertible modulo p. This implies p - SZi,

and this can only happen if the ith entry of Zi is a unit because the upper b× b submatrix

of S is the identity matrix. So the entries on the diagonal of Z are units.

We get ker(B) = [ker(A) X] = V −1[ker(S) Z] which is unimodularly equivalent to

0
unit ∗

. . .

* unit

pe−eb+1

. . .

pe−en

*


.

If we apply column operations on the b × b rightmost top quadrant, we can reduce it to

a lower triangular matrix. However we need to show that Z will reduce to a lower unit

triangular matrix. Let C encode the desired column operations. Assume by way of contra-

diction that the top b×b submatrix of Z has rank less than b. Then for some i, the column

(ZC)i is either 0 or divisible by p. Therefore p | (SZC)i and p | U(SV −1V C)i = (AXC)i

which is impossible because AX has a full column rank, and a unimodular transformation

C will not alter the rank. Therefore the assumption is wrong. The top b× b submatrix of

Z has rank b

If we use the units on the diagonal to eliminate the lower part of the triangular matrix,

we get 

0
unit 0

. . .

* unit

pe−eb+1

. . .

pe−en

*


∼


0 Ib×b

pe−eb+1

. . .

pe−en

0

 .

So ker(B) ∼ diag(Ib×b, p
e−eb+1 , . . . , pe−en). Finally, ker(snfB) ∼ ker(B) so we can deduce

that snfB = diag(peb+1 , . . . , pen , 0, . . . , 0).
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In what follows we examine the construction of X, Y .

Lemma 4.7. If the entries of X, Y are chosen uniformly at random from [0, pk) then the

probability that p | det(W ) is at most 2b/p.

Proof. First consider the case where the 2nb entries of X, Y are algebraically independent

variables. Then by the Cauchy-Binet formula, det(W ) is a polynomial of degree 2b in the

entries of X, Y . This polynomial is not identically zero modulo p since there is at least one

b × b minor of A which is not zero modulo p by the requirement that b ≤ r0. Now apply

the Schwartz-Zippel lemma over Z/pZ to get Pr [detW−1 ≡ 0 (mod p)] ≤ 2b/p.

A single step of the randomized block rank reduction involves setting b ≤ r0, and select-

ing the entries of X, Y uniformly at random from [0, pe), computing W−1 = (Y TAX)−1,

and then applying A := A− AXW−1Y TAX.

Lemma 4.8. A single step of the randomized block rank reduction succeeds with probability

at least 1− 2b/p and costs O(enω) operations in Z/peZ.

Proof. A single step succeeds if detW 6≡ 0 (mod p), if the columns of X are linearly

independent, and if the Smith normal form of X is diag(1, . . . , 1). We will show that these

conditions are redundant, so we do not need to consider the probability of these events

independently.

The probability that W is invertible is at least 1 − 2b/p by Lemma 4.7. Using the

Cauchy-Binet formula we have

detW =
∑
σ,τ

Y T

(
1..b

σ

)
A

(
σ

τ

)
X

(
τ

1..b

)
.

If p - W then there exists at least one pair σ, τ such that the b× b minor X
(
τ
1..b

)
is a unit

modulo p. This implies that the bth invariant factor of X is 1, and snfX = diag(1, . . . , 1).

The latter Smith normal form implies that that the columns of X are linearly independent.

Finally, if any column Xi of X is such that AXi = 0, then the ith column of W will be

zero, but this is impossible since W is invertible. Columns of X are not in the nullspace
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of A. The rank reduction will reduce the rank by b and will succeed in converting b 1’s to

0’s in the Smith normal form of A.

The cost is dominated by the matrix multiplications, and the inversion of W which is

O(enω) operations in Z/peZ using e steps of lifting.

To obtain a good success probability of at least 0.5, we require that 2b/p ≤ 1/2, i.e.,

p ≥ 4n. When the prime is small we can work over a Galois Ring extension GR(pe, d) with

sufficient elements to maintain a good success probability.

Lemma 4.9. A rank-b reduction step can be performed using O(enω log2 n) operations in

Z/peZ, and will succeed with probability at least 1/2.

Proof. Choose a Galois Ring extension of degree d ≥ 3 + log n. Then the image of

GR(pe, d) mod p will have pd ≥ 4n elements. We can use [Shoup, 1994] to find a poly-

nomial f of degree d which is irreducible over Z/pZ.

Now choose the entries of X, Y from GR(pe, d) and perform all arithmetic over this ring.

As before, we apply the Schwartz-Zippel lemma modulo p to get

Pr[detW ≡ 0 (mod p, f)] ≤ 2b

|GF(pd)|
≤ 2n

4n
=

1

2
.

The arithmetic cost will increase by a factor equal to cost of performing polynomial

arithmetic with degree at most d. That is, log2 n if we use naive polynomial arithmetic.

Algorithm 4.2. Given a matrix A = (aij) ∈ Mn(Z/peZ), this algorithm returns the

invariant factors of A.

1. Let s0 = 1, si = 0, and ri = 0 for all i ∈ [1, e].

2. For ` = 1 to e:

(a) Let gcd(A) = gcd {aij : i, j ∈ [1, n]}.

(b) Let s` = s`−1 · gcd(A).

(c) Let A = A/ gcd(A).
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(d) Let r` = rank(A) over Z/pZ.

(e) Construct two n×r` matrices X, Y with uniform random entries from [0, pe),

and compute W = Y TAX. Repeat until W is non-singular over Z/pZ.

(f) Let A = A− AXW−1Y TA.

(g) If A = 0 then break.

3. Return s1, . . . , s1︸ ︷︷ ︸
r1

, . . . , s`, . . . , s`︸ ︷︷ ︸
r`

, 0, . . . , 0︸ ︷︷ ︸
n−(r1+...+r`)

.

Theorem 4.5. Algorithm 4.2 is a correct Las Vegas algorithm. The expected cost is

O(e2nω) operations in Z/peZ, and storage of O(n2) elements from Z/peZ.

Proof. Correctness follows from the previous discussion. We can certify the success of

step 2e by way of checking the invertibility of W . The success probability is at least 1/2,

and the expected number of trials is constant. So the algorithms is Las Vegas.

There are at most e iteration. The cost of each iteration is dominated by the cost of

matrix multiplications and by inversion of W . Both can be done in O(enω) operations in

Z/peZ.

It is an interesting future work to derandomize this algorithm. In step 2d, we could

compute the LDU decomposition of A over Z/pZ and then use L,U with arbitrary lifting

into Z/peZ to construct X, Y . The complexity of the algorithm remains the same as above.

By contrast, [Storjohann, 2000, Proposition 7.16] gives a deterministic algorithm for

computing Smith normal form over arbitrary principal ideal rings which requiresO(nω log r)

ring operations (where r is the rank).

4.4 Nullspace Sampling

The block rank reduction formula gives rise to an interesting nullspace sampling algorithm

over finite fields. Let A be an n × n matrix over a field F, and rankA = r. Let X, Y be
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n × r matrices such that W = Y TAX ∈ GLr(F). Then A − AXW−1Y TA = 0 because it

has rank 0. If we let K = I − XW−1Y TA then AK = 0. We can show that K gives a

nullspace basis for A.

Lemma 4.10. imK = kerA.

Proof. If v ∈ imK then there exists a vector u such that v = Ku. We have Av = AKu = 0.

So imK ⊆ kerA. Conversely, if Av = 0 then Kv = (I−XW−1Y TA)v = v−XW−1Y TAv =

v. So kerA ⊆ imK.

We can then sample the nullspace of A by sampling the column space of K. We will

use the same trace technique from Lemma 3.6 to ensure that the samples are over Fn.

Algorithm 4.3. Given a matrix A ∈ Mn(F), return a vector v ∈ Fn which is a uniform

random sample from the nullspace of A.

1. Compute r = rank(A).

2. If |F| ≥ 4n, then let K = F. If |F| < 4n, then find an irreducible polynomial

f ∈ F[x] of degree at least dlog|F| 4ne. Let K = F[x]/(f). Let Tr : K → F be the

field trace.

3. Construct two n × r matrices X, Y with uniform random entries from K, and

compute W = Y TAX. Repeat until W is non-singular.

4. Construct a vector w ∈ Fn with entries chosen uniformly at random from F.

5. Let v = (I −XW−1Y TA)w.

6. If v has components from K \ F then let v = Tr(v).

7. Return v.

Lemma 4.11. Algorithm 4.3 is a correct Las Vegas algorithm. The expected cost is O (̃nω)

operations in F. The space complexity is O (̃n2) elements from F.
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Proof. Arithmetic over the extension field introduces logarithmic factors in the complexity.

The cost for computing K = I −XW−1Y TA is O (̃nω) operations in F, and O (̃n2) oper-

ations for computing the sample v. It follows from our results on randomized block rank

reduction that this algorithm has a success probability of at least 1/2. We can verify that

rank reduction succeeded whenever W is invertible, and we can verify that v is a nullspace

vector by computing Av. So the algorithm is Las Vegas. The expected number of steps is

constant because the success probability is at least 1/2. The storage cost is dominated by

K which has quadratic elements from K.

When A is sparse, using dense matrices X, Y and computing W−1 will introduce fill-in

and therefore is not favourable. It remains open to find a sparse (or structured) choice for

X, Y which gives a provably good success probability. We will outline a possible choice for

X and Y , namely, using Krylov matrices.

Let A be a black-box matrix and let the cost of v 7→ Av be µ operations in F. Let

x, y ∈ Fn have entries chosen uniformly at random from F. Construct X, Y as n× r Krylov

matrices:

X =
[
x Ax · · · Ar−1x

]
, Y T =


yT

yTA
...

yTAr−1

 , W = Y TAX. (4.5)

Then W ∈ Mr(F) is a Hankel matrix:

W =


yTAx yTA2x · · · yTArx

yTA2x
. . . yTAr+1x

...
. . .

...

yTArx yTAr+1x · · · yTA2r−1x

 . (4.6)

This construction is similar to the preconditioner matrices of [Eberly et al., 2007] in a

scalar setting. The black-box for K = I −XW−1Y TA can be constructed by lazily storing

x, y and W−1. If we precondition W properly then we can construct a black-box for its

inverse in quasilinear time [Gohberg and Fel’dman, 1974, Labahn et al., 1990, Labahn and

Shalom, 1992].
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The cost of computing a random nullspace vector in this setup is 2µ operations to

multiply a vector by A, and 2rµ to multiply by X, Y T , and O (̃r) to multiply a vector by

W−1. Thus the asymptotic cost of computing each nullspace sample is O (̃nµ) operations

in F, and the space complexity is O (̃n) elements from F.
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Chapter 5

The Eigenvalues and the Invariant

Factors

In this chapter we study the relationship between the invariant factors of a matrix and its

eigenvalues when viewed p-adically. Our motivation is both to understand the fundamen-

tal connection, and to design efficient algorithms to compute the Smith normal form of

sparse integer matrices. Understanding the p-adic structure of the spectrum is a step to-

wards reducing the computation of the Smith normal form to computing the characteristic

polynomial or the ranks modulo prime powers, which would be arguably efficient.

Concretely, conditions are established under which the p-adic valuations of the invariant

factors of an integer matrix are equal to the p-adic valuations of the eigenvalues. It is then

shown that this correspondence is the typical case for “most” matrices. Density counts are

given for when this property holds, as well as transformations to this typical case. The

results of this chapter appeared in [Elsheikh and Giesbrecht, 2015].

5.1 Introduction

Let A be an n× n integer matrix whose rank is r, its invariant factors are s1, . . . , sr and its

determinantal divisors are ∆1, . . . ,∆r. A priori the invariant factors of a matrix and the
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eigenvalues of a matrix would seem to be rather different invariants. The former is related

to the Z-lattice structure of A and the latter to the geometry of the linear map. We show

that, in fact, they are “usually” in one to one correspondence with respect to their p-adic

valuations at a prime p. We demonstrate a simple sufficient condition under which this

holds for any integer matrix, and provide bounds on the density of matrices for which it

holds.

Throughout we will work with the p-adic numbers. There are a few equivalent ways to

define the p-adic numbers. See [Koblitz, 1984] or [Gouvêa, 1997] for a full treatment on

this subject. Hereby we give an explicit construction using p-adic expansions. Let p be

a prime number. Any p-adic integer a can be uniquely written as a =
∑

i≥N aip
i where

N ≥ 0 and ai ∈ [0, p) [Gouvêa, 1997, Corollary 3.3.11]. The set Zp denotes the p-adic

integers. A notable property of Zp is that it is a principal ideal ring and hence every

matrix over this ring admits a Smith normal form. Any p-adic rational a can be uniquely

written as a =
∑

i≥N aip
i where ai ∈ [0, p) and N is a possibly negative integer [Gouvêa,

1997, Corollary 3.3.12]. The set of p-adic rationals is denoted by Qp. It is easy to show

that Z ⊂ Zp and Q ⊂ Qp.

Let vp(a) ∈ N ∪ {∞} be the p-adic order or p-adic valuation. For any a ∈ Zp, vp is

the number of times p divides a exactly, where vp(0) is taken to be ∞. The valuation is

extended to Qp by letting vp(a/b) = vp(a)− vp(b) for a, b ∈ Zp.

Many authors in computer algebra use Zp to denote the finite field with p elements.

We remind the reader that we do not use this notation here since it is ambiguous. We

reserve the symbol Zp for the p-adic integers and use Z/pZ to denote the finite field with

p elements.

The eigenvalues of an integer matrix A are the roots of it characteristic polynomial

which has a natural image in Zp[x] since Zp contains Z. Thus, the eigenvalues of A can

naturally be viewed as p-adic algebraic integers in a finite-degree algebraic extension field

Kp over Qp [Gouvêa, 1997, Proposition 5.4.5 (v)]. We make use of this fact because we

do not view the eigenvalues as complex numbers, but rather as algebraic integers which

allows us to relate their p-adic valuation to the powers of p dividing the invariant factors.
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Example 5.1. Consider the matrix

A =


3 −1 3

9 −10 0

3 0 3

 =

U︷ ︸︸ ︷
1 −1 0

1 0 1

0 −1 0


S︷ ︸︸ ︷

1

3

32


V︷ ︸︸ ︷

0 −1 0

−1 0 −1

1 −1 0

,
for unimodular U, V and the Smith normal form S of A. Now consider the eigenvalues of

A, which are roots of the characteristic polynomial

f = det(xI − A) = x3 + 4x2 − 51x− 27 ∈ Z[x].

We find it has three distinct roots in the 3-adics Z3:

λ1 = −1− 33 − 34 − 35 − 36 − 38 + 39 +O(310),

λ2 = −3− 32 − 33 − 34 + 36 − 38 − 39 +O(310),

λ3 = 32 − 33 − 35 + 36 − 38 + 39 +O(310).

In this example we see that v3(λ1) = 0, v3(λ2) = 1 and v3(λ3) = 2. We see that the

diagonal entries of the Smith normal form have precisely the same p-adic valuations as the

eigenvalues of A.

In order to show the correspondence between the eigenvalues and the invariant factors,

we need to extend the definition of the valuation vp to the eigenvalues (more generally, to the

elements of Kp). If an element a ∈ Kp has a minimal polynomial xda+ada−1x
da−1+. . .+a0 ∈

Qp[x], then the valuation is uniquely given by vp(a) = (1/da)vp(a0). See [Koblitz, 1984,

§3, pp. 66]. The image of the extended vp is Q, and its restriction to Qp agrees with the

earlier definition of vp on Qp. The valuation of a non-zero eigenvalue vp(λi) is independent

of the choice of Kp, since it only depends on the minimal polynomial of λi over Qp. In

particular, the set of minimal polynomials of the non-zero eigenvalues is precisely the set

of irreducible factors of the characteristic polynomial of the matrix over Qp regardless of

the field extension. We have shown the following.

Lemma 5.1. Given an integer matrix and a prime p, vp(λ1), . . . , vp(λn) are invariants,

and independent of the p-adic extension chosen to contain the eigenvalues.
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In light of the above, we will treat integer matrices and their eigenvalues as being

naturally embedded in Zp, Qp or Kp as appropriate, under the p-adic valuation vp.

It should be noted that the correspondence between the valuations of the eigenvalues

and the invariant factors does not hold for all matrices.

Example 5.2. Let

A =


37 192 180 369

55 268 198 531

163 758 442 1539

198 908 486 1858

 ,
which has the following Smith normal form:

A =


1 1 1 1

1 0 1 0

1 0 0 0

0 1 0 0




1

2

2

4




163 758 442 1539

99 454 243 929

−54 −245 −122 −504

−54 −246 −126 −505

 .

The characteristic polynomial of A is

f = x4 − 2605x3 + 39504x2 + 40952x+ 16 ∈ Z[x],

which factors over Q2 into

x+
(
1 + 22 + 23 +O(25)

)
∈ Z2[x],

and the irreducible factor

x3 +
(
23 +O(25)

)
x2 +

(
23 + 24 +O(25)

)
x+

(
24 +O(25)

)
∈ Z2[x].

Using a computer algebra system (or Newton slopes as in Fact 5.1 below) we find that the

2-adic valuations of the eigenvalues are [0, 4/3, 4/3, 4/3]. But the 2-adic valuations of the

invariant factors of A are [0, 1, 1, 2]. The eigenvalues and the invariant factors are not in

1-1 correspondence w.r.t. their p-adic valuation.

In the remainder of this chapter we explore the conditions under which this correspon-

dence between the p-adic valuation of the invariant factors and the eigenvalues occurs, and

show that it is, in fact, the “typical” case, i.e., it holds for “most” matrices.
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5.1.1 The p-adic Correspondence

We first define two important matrix properties for our purposes.

Definition 5.1. Let A ∈ Zn×n be of rank r and p be any prime. Assume

(i) The matrix A has the Smith normal form S = diag(s1, . . . , sr, 0, . . . , 0) over Z, so

that ∆i = s1 · · · si is the ith determinantal divisor of A, for all 1 ≤ i ≤ r;

(ii) The matrix A has non-zero eigenvalues (with multiplicity) λ1, . . . , λr in a finite-degree

extension Kp over Qp, and assume that vp(λ1) ≤ · · · ≤ vp(λr);

(iii) The matrix A has characteristic polynomial f = xn + f1x
n−1 + . . . + frx

n−r ∈ Z[x]

(note the reversed indexing).

We say A is p-characterized if and only if vp(fi) = vp(∆i) for all i ∈ [1, r]. We say A is

p-correspondent if and only if vp(si) = vp(λi) for all i ∈ [1, r].

Note that if A is p-correspondent, then the valuations of the eigenvalues are non-

negative integers (since vp(si) ≥ 0). Our main goal is to study the notion of p-correspondence;

that is the relationship between the spectrum and the invariant factors. The notion of p-

characterization is an auxiliary definition used throughout our proofs. In fact, we will dis-

cuss the caveats of our results regarding “small” primes, which are in large part an artifact

of our proofs (which uses the Schwartz-Zippel lemma) and the notion of p-characterization.

We shall see that if A is p-characterized then A is p-correspondent. Of course, not

all matrices are p-correspondent at any particular prime p, but it is generally possible to

transform a matrix to a p-correspondent one.

In §5.3 we establish that “most” matrices are p-correspondent. We will consider the

density in each equivalence class defined by a given Smith normal form.

5.1.2 Previous Work

The work of [Newman and Thompson, 1991] studies matrices with algebraic integer entries.

They study, among other things, links between the eigenvalues and the invariant factors.
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In their setup, matrices have entries from a ring R which is not necessarily a PID. In this

case many of the properties about the Smith normal form are not necessarily applicable.

They overcome this by embedding the matrix in a ring extension such that the required

properties hold. Let A be an n×n matrix over R. Let the eigenvalues of A be λ1, . . . , λn (in

some extension) and the invariant factors of A be s1, . . . , sn. Then Theorem 6 of §8 states

that for all k ∈ [1, n]: s1 · · · sk | λi1 · · ·λik where I = {i1, . . . , ik} is any subset of [1, n].

In other words, the kth determinantal divisor, ∆k, divides the products of any subset of

size k of the eigenvalues. However, this does not show any correspondence between the

individual eigenvalues and the invariant factors.

Rushanan [Rushanan, 1995] studies the relationship between the spectrum and the

Smith normal form of non-singular integer matrices with integer eigenvalues. However

his results are valid for any PID. We note the following theorem since it is the most

relevant to our result. Given an integer matrix A define G(A) to be the factor Z-module

G(A) = Zn/RowSpace(A). The finite part of this module is given by the direct sum

Z/s1Z⊕ · · · ⊕Z/srZ. Theorem 4 in [Rushanan, 1995] states that if λ ∈ Z is an eigenvalue

of A with multiplicity m, then (Z/λZ)m is isomorphic to a subgroup of G(A). This indeed

addresses the association between an eigenvalue of multiplicity m and an invariant factor

of the same multiplicity. However this result gives a divisibility relationship and it does

not give conditions for when the equality of valuation is exact.

Finally, [Lorenzini, 2008] studies the Smith normal form of Laplacian matrices of graphs.

For a graph G let L denote its Laplacian matrix. The group Zn/im(L) can be computed

using the Smith normal form of L since Zn/im(L) is isomorphic to Zr ⊕ Z/s1Z ⊕ · · · ⊕

Z/sn−1Z. Let φ(G) = Z/s1Z⊕ · · · ⊕ Z/sn−1Z be the torsion part of the group Zn/im(L).

An interesting connection between the Smith normal form of L and the properties of G is

that |φ(G)| is a graph invariant, namely, the number of spanning trees of G. Clearly this

invariant is also given by s1 · · · sn−1 = ∆n−1 of the matrix L. The cutoff at n − 1 is due

to the fact that Laplacian matrices have rank n− 1. The most relevant result of his work

is the following. If λ is an eigenvalue of L with multiplicity m and ν = vp(λ) for some

prime p, then φ(G) contains a subgroup isomorphic to (Z/pνZ)m. Thus this result gives a

73



correspondence between an eigenvalue λ of a given multiplicity and products of subsets of

si forming a subgroup of order pνm.

5.2 Establishing p-Correspondence

In this section we will prove that all p-characterized matrices are p-correspondent. First

recall that the coefficients of the characteristic polynomial f = xn +
∑

1≤i≤n fix
n−i ∈ Z[x]

of a matrix A ∈ Zn×n are related to the minors of A in the following manner.

Recall that A
(
σ
τ

)
is the minor of A selected by the sets of indices σ and τ . It is

well-known that for all i ∈ [1, n],

fi = (−1)i
∑
σ∈Cni

A

(
σ

σ

)
. (5.1)

Since ∆i divides all i× i minors, we have ∆i | fi, i.e., vp(fi) ≥ vp(∆i). Moreover, if A has

rank r we have fr+1 = fr+2 = · · · = fn = 0.

We will use the so-called Newton polygon of the characteristic polynomial of A. Let f

be the polynomial xn +
∑

1≤i≤n fix
n−i.

Definition 5.2. The Newton polygon of f , denoted by NP(f), is the lower convex hull of

the following points in R2: {(0, 0), (1, vp(f1)), . . ., (n, vp(fn))}.

The polygon is represented by a list of points (x1, y1), . . . , (xk, yk) ∈ R2 with x1 <

x2 < . . . < xk. For each segment of NP(f) connecting two adjacent points (xi−1, yi−1)

and (xi, yi), the slope of the segment is mi = (yi − yi−1)/(xi − xi−1) and the length of

the segment is the length of its projection onto the x-axis, taken as `i = xi − xi−1. An

important use of Newton polygon is the following.

Fact 5.1 ([Koblitz, 1984], §IV.3, Lemma 4). Let f = xn + f1xn−1 + . . . + fn ∈ Zp[x] and

fn 6= 0. Let the roots of f (counting multiplicity) be λ1, . . . , λn in an extension Kp over Qp.

If the Newton polygon of f has slopes m1, . . . ,mk and lengths `1, . . . , `k as above, then for

each 1 ≤ j ≤ k, f has exactly `j roots λ ∈ Kp whose valuation is vp(λ) = mj.
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We now have all the tools to prove the following.

Theorem 5.1. Let A ∈ Zn×n and p be a prime. If A is p-characterized then A is p-

correspondent.

Proof. Assume that A is p-characterized with rank r and characteristic polynomial f =∑
0≤i≤r fix

n−i ∈ Z[x], and A has the Smith normal form S = diag(s1, . . . , sr, 0, . . . , 0) ∈

Zn×n. Also, assume that the p-adic valuations of the invariant factors s1, . . . , sr have

multiplicities r0, . . . , re−1 as follows:

(vp(s1), . . . , vp(sr)) = (0, . . . , 0︸ ︷︷ ︸
r0

, 1, . . . , 1︸ ︷︷ ︸
r1

, . . . , e− 1, . . . , e− 1︸ ︷︷ ︸
re−1

),

where e = vp(sr) + 1. Since A is p-characterized, by definition we have

vp(fi) = vp(∆i) =
∑
1≤j≤i

vp(sj),

for all 1 ≤ i ≤ r. For notational convenience, define mi as

mi = vp(∆r0+r1+···+ri) = r1 + 2r2 + · · ·+ i · ri .

Grouping the non-zero coefficients of f by their p-adic valuation we get

(vp(f1), . . . , vp(fr))

=
(

0, . . . , 0︸ ︷︷ ︸
r0

, 1, 2, 3, . . . , r1︸ ︷︷ ︸
r1

, m1 + 2,m1 + 4, . . . ,m1 + 2r2︸ ︷︷ ︸
r2

,

. . . , me−2 + (e− 1), me−2 + 2(e− 1), . . . , me−2 + re−1︸ ︷︷ ︸
re−1

(e− 1)
)
.

NP(f) is easily seen to consist of e segments, where segment i has slope i, and length ri, for

0 ≤ i < e (a segment i may have length 0 if ri = 0). Thus, by Fact 5.1, f has ri roots λ with

vp(λ) = i. This accounts for all the non-zero roots of f , since r0+r1+ · · ·+re−1 = rank(A).

Since these roots are the non-zero eigenvalues of A, we immediately see that A is p-

correspondent.

It should be noted that the converse of Theorem 5.1 is not necessarily true. The matrix

in the following example is p-correspondent but not p-characterized.
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Example 5.3. The invariant factors of

A =


−20 −2 81 −388

18 −6 −84 375

7 34 3 41

13004 −11695 −64944 289315

 ,

are [1, 3, 3, 9], and the 3-adic eigenvalues are:

2 +O(3), 2 · 3 +O(33), 3 +O(32), 32 +O(33).

However, the 3-adic valuations of the determinantal divisors are [0, 1, 2, 4] and the charac-

teristic polynomial over Z3[x] is:

x4 + (1 +O(3))x3 + (2 · 32 +O(36))x2 + (2 · 32 +O(33))x+ (34 +O(3)).

This is due to the fact that the Newton polygon of A is the convex hull of the segments

defined by the coefficients of characteristic polynomial.

f0 f1 f2 f3 f4
0

1

2

3

4

• •

• •

•

f0 f1 f2 f3 f4
0

1

2

3

4

• •

• •

•

While the coefficients of the characteristic polynomial (points in left figure) do not cor-

respond to the 3-adic valuations of the determinantal divisors, their lower convex cover

(segments in right figure) corresponds to the 3-adic valuations of the invariant factors with

slopes: 0, 1 (twice), and 2.

We now prove two simple lemmas establishing p-correspondence under unimodular

equivalence transformations and under similarity transformations.
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Lemma 5.2. Let A ∈ Zn×n and p be any prime. There exists an equivalence transformation

P,Q ∈ GLn(Z) such that PAQ is p-correspondent.

Proof. Simply choose P,Q ∈ GLn(Z) such that PAQ is in the Smith normal form S =

diag(s1, . . . , sr, 0, . . . , 0). Then the eigenvalues of PAQ are s1, . . . , sr.

Lemma 5.3. Let A ∈ Zn×n be non-singular, p be any prime. There exists a similar-

ity transformation U with entries in an extension Kp over Qp such that U−1AU is p-

correspondent.

Proof. Choose Kp to be a splitting field of the minimal polynomial of A. It is well-known

that any matrix over the splitting field of its characteristic polynomial (Kp in our case)

is similar to a matrix J ∈ Kn×np in Jordan form [Meyer, 2000]. That is, there exists an

invertible W ∈ Kn×np such that W−1AW = diag(J1, . . . , J`) where

Ji =


µi 1

. . . . . .

. . . 1

µi

 ,

for some (not necessarily unique) eigenvalue µi ∈ Kp of A, and Ji has dimensions ki × ki.

However, we can choose an alternative Jordan block Ĵi, similar to Ji, by applying the

similarity transformation diag(1, 1/µi, . . . , 1/µ
ki−1
i ) to Ji to get

Ĵi =


µi µi

. . . . . .

. . . µi

µi

 .

The Smith normal form of Ĵi can be obtained as follows. Subtract the first column from

the second column. Then subtract the second column from the third, and so forth. The

resulting matrix is diag(µi, . . . , µi) which is in the Smith normal form when viewed as a

matrix over the ring of algebraic integers Op.

Combining together the different Jordan blocks to form an alternative Jordan form Ĵ

for A, we see that Ĵ is p-correspondent, and similar to A, as required.
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If A is singular, Lemma 5.3 may not hold. Consider for example

A =

0 1

0 0

 ,
whose only eigenvalue is zero, with multiplicity two. However, this matrix has rank one,

and so one of the invariant factors must always be non-zero. This is also the case for any

matrix similar to A.

5.3 Density of p-Characterized Matrices

In this section we show that most matrices which are unimodularly equivalent to a matrix

A ∈ Zn×n, are p-characterized (and hence p-correspondent) when p is large compared to

n. The main tool is the following lemma.

Lemma 5.4. Let A ∈ Zn×n have rank r. Let U ,V be n× n matrices whose 2n2 entries are

algebraically independent indeterminates uij and vij respectively. Let gk be the coefficient

of xn−k in the characteristic polynomial of B = UAV. Then for all k ∈ [1, r], gk is a

polynomial of total degree 2k and the content of gk is ∆k, the kth determinantal divisor of

A.

Proof. Assume throughout that k ≤ r. Using the Cauchy-Binet formula,

gk = (−1)k
∑
σ∈Cnk

B

(
σ

σ

)
= (−1)k

∑
σ,τ,ω∈Cnk

U
(
σ

τ

)
A

(
τ

ω

)
V
(
ω

σ

)

= (−1)k
∑
τ,ω∈Cnk

A

(
τ

ω

)
Υτ,ω, where Υτ,ω =

∑
σ∈Cnk

U
(
σ

τ

)
V
(
ω

σ

)
.

(5.2)

We first show that Υτ,ω has content 1. By Leibniz’s determinant expansion on the

minor of U selected by the first k rows, and the columns given by the indices in τ ∈ Cnk ,

we have

U
(

(1, 2, ..., k)

τ

)
=
∑
µ∈Sk

sgn(µ)
∏

1≤i≤k

uµi,τi

= u1,τ1u2,τ2 · · ·uk,τk +
∑
µ∈Sk
µ6=id

∏
1≤i≤k

sgn(µ)uµi,τi ,
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where Sk is the symmetric group of permutations of k symbols, (µ1, . . . , µk) is a permutation

of {1, . . . , k} and id = (1, . . . , k) is the identity permutation. Similarly,

V
(

ω

(1, . . . , k)

)
= vω1,1vω2,2 · · · vωk,k +

∑
µ∈Sk
µ6=id

∏
1≤i≤k

sgn(µ) vωi,µi .

We observe that U
(
(1,2,...,k)

τ

)
contains the distinguished monomial u1,τ1 · · ·uk,τk which is not

found in any of the remaining terms of the expansion of U
(
(1,...,k
τ

)
and hence has coefficient

1 (since each permutation µ is distinct), and is not found in the expansion of U
(
σ′

τ ′

)
for any

other σ′, τ ′ ∈ Cnk (since the variables in the term allow us to identify the subsets σ′ and

τ ′). Similarly, V
(

ω
(1,...,k)

)
contains the distinguished monomial vω1,1 · · · vωk,k with coefficient

1 which is not found in V
(
ω′

σ′

)
for any other ω′, σ′ ∈ Cnk .

Thus, for every choice of τ, ω, the polynomial Υτ,ω has a monic distinguished term

u1,τ1 · · ·uk,τkvω1,1 · · · vωk,k not appearing in Υτ ′,ω′ for any other τ ′, ω′ ∈ Cnk . Thus Υτ,ω is

non-zero, has degree 2k, and has content 1.

It follows immediately that gk has degree 2k and content which is the GCD of all A
(
τ
ω

)
,

which is precisely ∆k.

A related result is found in [Giesbrecht, 2001, Theorem 1.4]. A similar technique is

used in [Kaltofen and Saunders, 1991, Theorem 2], where a minor with symbolic entries

is explicitly selected and shown to be lexicographically unique and hence the resulting

polynomial, e.g. gk, is shown to be non-zero.

The following lemma is used to count the number of matrices with a given property.

While this result resembles the Schwartz-Zippel lemma [Zippel, 1979, Schwartz, 1980],

similar statements can be traced to earlier literature, for example in [Kasami et al., 1968].

Lemma 5.5. Let p be a prime, ` ≥ 1 be an integer, and g ∈ Z[x1, . . . , xn] be a non-zero

polynomial of total degree k. Then the number of points α = (α1, . . . , αn) ∈ [0, `p)n for

which g(α) ≡ 0 (mod p) is at most `nkpn−1.

Proof. As a shorthand, we call α ∈ Zn a p-root if f(α) ≡ 0 (mod p). For ` = 1 the

statement of the lemma becomes exactly Corollary 1 of [Schwartz, 1980]: the number of

p-roots in [0, p)n is at most kpn−1.

79



Now assume ` > 1. Every p-root b ∈ [0, `p)n can be written with component-wise

Euclidean division as (b1, . . . , bn) = (α1 +r1p, . . . , αn+rnp) = α+(r1p, . . . , rnp) where ri ∈

[0, `− 1) and α = (α1, . . . , αn) ∈ [0, p)n. Then α must be a p-root because b ≡ α (mod p).

Conversely if α = (α1, . . . , αn) ∈ [0, p)n is a p-root, then (α1 + r1p, . . . , αn + rnp) ∈ [0, `p)n

is a p-root for all the `n possible values of (r1, . . . , rn) ∈ [0, `)n. Thus there are at most

`n · kpn−1 p-roots in [0, `p)n.

Lemma 5.6. Let A ∈ Zn×n, ε > 0, p a prime greater than (n2 + 3n)/ε, and N a non-zero

integer divisible by p. The number of pairs of matrices (U, V ) with entries from [0, N) such

that U and V are both non-singular modulo p, and that UAV is p-characterized, and hence

p-correspondent, is at least (1− ε)N2n2
.

Proof. We show this count by associating each pair of matrices (U, V ) with a point in

[0, N)2n
2

and then bounding the number of roots of a particular set of polynomials when

evaluated in [0, N)2n
2
.

First consider the product UAV where U ,V have symbolic independent indeterminates

uij and vij for all i, j ∈ [1, n]. Let the characteristic polynomial of UAV be

g = xn + g1x
n−1 + . . .+ gkx

n−k + . . .+ gn,

Then each

gk =
gk

∆k(A)
∈ Z[u11, u12, . . . , vnn],

is a polynomial in the entries of U ,V with degree 2k and content 1 by Lemma 5.4.

Each pair of matrices U, V in the lemma statement defines a point in [0, N)2n
2
; the

entries of U, V define the values for the 2n2 variables uij and vij. The coefficients of the

characteristic polynomial of each matrix UAV is obtained by evaluating the polynomials

gk at the point in [0, N)2n
2

defined by (U, V ). Then using Lemma 5.5, we have gk ≡ 0

(mod p) in at most (N/p)2n
2 · 2kp2n2−1 = N2n2 · 2k/p points.

The determinant of U (resp. V) is a polynomial of degree n in all of the 2n2 variables

uij (resp. vij), and hence detU ≡ 0 (mod p) in at most (N/p)2n
2
np2n

2−1 = N2n2
n/p points

in [0, N)2n
2

by Lemma 5.5.
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Thus the number of points in [0, N)2n
2

for which detU ≡ 0 (mod p) or detV ≡ 0

(mod p), or that gk ≡ 0 (mod p) for some k ∈ [1, r] is at most

2nN2n2

p
+
∑

1≤k≤r

2kN2n2

p
=

2nN2n2

p
+
r(r + 1)N2n2

p
≤ (n2 + 3n)

p
N2n2

< εN2n2

.

If all gk 6≡ 0 (mod p) for k ∈ [1, r], then vp(gk) = 0 and vp(gk) = vp(∆k) for k ∈ [1, r],

so UAV is p-characterized, and hence p-correspondent. The number of pairs (U, V ) for

which this holds is then at least N2n2 − εN2n2
= (1− ε)N2n2

.

Example 5.4. Intuitively, Lemma 5.6 shows that most choices of the pairs (U, V ) will

result in UAV being p-correspondent. Consider the matrix:

A =


−48 −83 91 −497

−407 −666 637 −3948

83 125 −91 728

−291 −599 903 −3717

 .

A is not p-correspondent since its invariant factors are [1, 7, 7, 49] and its 7-adic eigenvalues

are (using the Sage computer algebra system [Stein et al., 2014]):

6 · 7 + 72 +O(73),

3 · 7 + 3 · 72 +O(73),

1 · 7 + 4 · 72 +O(73),

2 · 7 + 3 · 72 +O(73).

Now consider a particular choice of U, V ∈ Z4×4:

U =


6 1 0 20

1 1 1 0

1 1 1 2

1 3 0 1

 , V =


1 1 1 17

0 0 3 2

0 5 1 3

1 0 9 56

 ,

and let

Ã = UAV =


−87785 89700 −758134 −4630434

−4089 2813 −35060 −213813

−12105 11261 −104336 −636989

−17618 12965 −151217 −922413

 .
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Using Sage we can verify that detU 6≡ 0 (mod 7), detV 6≡ 0 (mod 7), that the invariant

factors of Ã are [1, 7, 7, 210 · 72 · 17] and that the 7-adic valuations of the eigenvalues of Ã

are [0, 1, 1, 2]. As expected from Lemma 5.6, Ã is p-correspondent.

5.3.1 Density at Large Primes

To establish the density of p-correspondent matrices, we consider the set Sm
S (defined

below) of all matrices with a given Smith normal form S and integer entries from [0, pm),

and show that most matrices in this set are p-characterized.

In our proofs we will embed integer matrices in the local ring Z/pmZ and study their

local Smith normal form. If Â ∈ Zn×n is such that Â ≡ A (mod pm), and Â has integer

Smith normal form diag(s1, . . . , sr̂, 0, . . . , 0) ∈ Zn×n and A has the Smith normal form

diag(pe1 , . . . , per , 0, . . . , 0) ∈ (Z/pmZ)n×n then r ≤ r̂ and ei = vp(si) for 1 ≤ i ≤ r.

The following lemma relates the construction UAV in Lemma 5.6 to integer matrices

with prescribed p-adic valuations on their invariant factors.

For any integer a and any prime power pm, we use a rem pm to denote the unique non-

negative integer r < pm such that a = qpm + r for some integer q. We extend the “rem pm”

operator to vectors and matrices using element-wise application. It is important to note

that “rem pm” operator is not the same as the “mod pm” equivalence relation; for example,

(a+ b) rem pm 6= (a rem pm) + (b rem pm) in general.

Definition 5.3. Fix a prime p, positive integers m,n, and integers 0 ≤ e1 ≤ e2 ≤ · · · ≤ en.

Let S = diag(pe1 , . . . , pen) ∈ Zn×n. Define Sm
S ⊆ Zn×n as the set of integer matrices with

entries from [0, pm) whose Smith normal form diag(s1, . . . , sn) satisfies vp(si) = ei for all

i ∈ [1, n].

Lemma 5.7. Fix an integer n, a prime p, and integers 0 ≤ e1 ≤ · · · ≤ en, and let

m > e1 + . . .+en. Let S = diag(pe1 , . . . , pen) and Sm
S ⊆ Zn×n as in Definition 5.3. Fix any

A ∈ Sm
S . Let L,R ∈ Zn×n be any integer matrices satisfying A = (LSR) rem pm. Then

vp(detL) = vp(detR) = 0, and hence L,R are both invertible modulo pm.
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Proof. If A = (LSR) rem pm then there exists an integer matrix Q such that A + pmQ =

LSR. Taking the determinants of both sides, we have

det(A+ pmQ) = det(L) det(S) det(R).

Both sides are (products of) determinants, and hence polynomials in the matrix entries.

Projecting modulo pm we get

det(A) ≡ det(L) det(S) det(R) (mod pm),

or equivalently

det(A) + pmq = det(L) det(S) det(R),

for some q ∈ Z.

Since A ∈ Sm
S we know that vp(det(A)) = vp(det(S)), and moreover, 0 ≤ vp(det(A)) <

m by the conditions of the lemma. Thus vp(det(A) + pmq) = vp(det(A)) < m, since

the valuation, the number of times p divides det(A) + pmq, is unaffected by the second

summand. Taking the valuation of both sides, we then have

vp(det(A) + pmq) = vp(det(A)) = vp(det(L)) + vp(det(S)) + vp(det(R)).

Since 0 ≤ vp(detA) = vp(detS) < m, it must be the case that vp(det(L)) = vp(det(R)) =

0.

Lemma 5.8. Fix an integer n, a prime p, and integers 0 ≤ e1 ≤ · · · ≤ en, and let

m > e1 + · · · + en. Let S = diag(pe1 , . . . , pen) and Sm
S ⊆ Zn×n as in Definition 5.3. Fix

any A ∈ Sm
S . Define

PA = {(L,R) : L,R have entries from [0, pm) and A = (LSR) rem pm } .

Then |PA| = |GLn(Z/pmZ)2|/|Sm
S |, independent of the choice of A.

Proof. We have chosen [0, pm) to represent Z/pmZ, so any integer matrix from [0, pm)n×n

has a unique image over Z/pmZ and vice versa. To keep track of the rings we are working
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over, we use the subscript pm to denote matrices over the ring Z/pmZ. We first show that

there is a bijection between PA and

P ′A = {(Lpm , Rpm) ∈ GLn(Z/pmZ)2 : Apm ≡ LpmSpmRpm (mod pm)}.

If (L,R) ∈ PA, and its image over Z/pmZ is (Lpm , Rpm), then (Lpm , Rpm) ∈ GLn(Z/pmZ)2

by Lemma 5.7. Also, A = (LSR) rem pm implies that A + pmQ = LSR for some integer

matrix Q and so Apm ≡ LpmSpmRpm (mod pm). Thus (Lpm , Rpm) ∈ P ′A.

Conversely, let (Lpm , Rpm) ∈ P ′A and their preimages be L,R ∈ [0, pm)n×n. The equiv-

alence Apm ≡ LpmSpmRpm (mod pm) implies

A+ pmQ1 = (L+ pmQ2)(S + pmQ3)(R + pmQ4),

for some integer matrices Q1, Q2, Q3, Q4. This can be simplified to

A+ pmQ5 = LSR,

for some integer matrix Q5. In other words,

A = (LSR) rem pm,

and so (L,R) ∈ PA. Thus there is a bijection between PA and P ′A.

We now observe that the multiplicative group GLn(Z/pmZ)2 acts on (Z/pmZ)n×n via

left and right multiplication: (Lpm , Rpm) ∈ GLn(Z/pmZ)2 acts on Apm ∈ (Z/pmZ)n×n to

produce LpmApmRpm ∈ (Z/pmZ)n×n. Then orbit(Apm) = orbit(Spm) under this group

action since there exists at least one such Lpm , Rpm with LpmApmRpm ≡ Spm (mod pm).

Furthermore, the orbit of Spm corresponds to Sm
S : every matrix in Sm

S has a natural

image over Z/pmZ which can be written as LpmSpmRpm (mod pm) for suitable choice of

Lpm , Rpm ∈ GLn(Z/pmZ), and conversely every matrix LpmSpmRpm (mod pm) corresponds

to a preimage integer matrix in Sm
S . Therefore we know | orbit(Spm)| = |Sm

S |.

Let stab(Spm) be the stabilizer of Spm defined as:

{
(Lpm , Rpm) : Lpm , Rpm ∈ (Z/pmZ)n×n, Spm ≡ LpmSpmRpm (mod pm)

}
,
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and let Apm ≡ UpmSpmVpm (mod pm) be the Smith decomposition of Apm , then every pair

(Lpm , Rpm) ∈ P ′A can be mapped to a pair (U−1pmLpm , RpmV
−1
pm ) ∈ stab(Spm). Similarly,

every pair (Lpm , Rpm) ∈ stab(Spm) can be mapped to a pair (UpmLpm , RpmVpm) ∈ P ′A. Thus

|P ′A| = | stab(Spm)|.

By the orbit-stabilizer theorem [Artin, 1991, Proposition 7.2], we have

| orbit(Spm)| · | stab(Spm)| = |GLn(Z/pmZ)2|.

The lemma statement follows because | orbit(Spm)| = |Sm
S |, and | stab(Spm)| = |P ′A| =

|PA|.

Lemma 5.9. Let φ ∈ Z[x1, . . . , x`] be a non-zero polynomial and a1, . . . , a` ∈ Z. Let p be

a prime and m ≥ 1 be an integer. Let k = vp(φ(a1, . . . , a`)) and k = vp(φ(a1 rem pm, . . . ,

a` rem pm)). Then

(i) If k < m then k = k.

(ii) If k ≥ m then k ≥ m.

(iii) If k =∞ then k ≥ m.

Proof. Let φ(a1, . . . , a`) = pkα for some α ∈ Z and p - α. For all i ∈ [1, `], apply the

Euclidean division to ai and pm to get ai = ri + pmqi where pm - qi and ri = ai rem pm.

Then

φ(r1 + pmq1, . . . , r` + pmq`) ≡ φ(r1, . . . , r`) (mod pm).

(i) If k < m then

φ(r1 + pmq1, . . . , r` + pmq`) ≡ φ(r1, . . . , r`) ≡ pkα (mod pm),

and φ(r1, . . . , r`) = pkα + pmu for some u ∈ Z. Now vp(p
kα + pmu) = k since pmu has

valuation at least m > k. So k = k.

(ii) If k ≥ m then φ(r1 + pmq1, . . . , r` + pmq`) ≡ φ(r1, . . . , r`) ≡ 0 (mod pm), and φ(r1, . . . ,

r`) = pm+ju1 for some u1 ∈ Z, p - u1 and some j ≥ 0. Then k = m+ j ≥ m.

(iii) If k =∞ then φ(r1 +pmq1, . . . , r`+pmq`) = 0, and φ(r1, . . . , r`) ≡ φ(r1 +pmq1, . . . , r`+

pmq`) ≡ 0 (mod pm), which is similar to part (ii).
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Lemma 5.10. Let φ1, . . . , φr ∈ Z[x1, . . . , x`] be polynomials such that

vp

(
gcd
{
φ1(a1, . . . , a`), . . . , φr(a1, . . . , a`)

})
= k < m.

Then

vp

(
gcd
{
φ1(a1 rem pm, . . . , a` rem pm),

. . . , φr(a1 rem pm, . . . , a` rem pm)
})

= k.

Proof. There exists an i ∈ [1, r] such that vp(φi(a1, . . . , a`)) = k whereas for all other

j ∈ [1, r] \ {i}, we have vp(φj(a1, . . . , a`)) ≥ k (and possibly ∞). Then, by Lemma 5.9,

vp(φi(a1 rem pm, . . . , a` rem pm)) = k while for all j, vp(φj(a1 rem pm, . . . , a` rem pm)) is ei-

ther k or higher than m (but not lower than k). Thus the valuation of the desired GCD is

also k.

We now show that if A is non-singular, then the powers of p in the Smith normal form

of A and A rem pm coincide when m > vp(detA).

Lemma 5.11. Let A ∈ Zn×n be a non-singular matrix, m > vp(detA) and A = A rem pm.

Suppose the invariant factors of A and A are s1, . . . , sn and s1, . . . , sn, respectively. Then

vp(si) = vp(si) for 1 ≤ i ≤ n.

Proof. Let ∆i and ∆i be the ith determinantal divisors of A and A respectively. We show

equivalently that vp(∆i) = vp(∆i) for 1 ≤ i ≤ n. Each ∆i (resp. ∆i) is the GCD of all i× i

minors of A (resp. A), where each such minor is a polynomial in the n2 entries of A (resp.

A). Then by Lemma 5.10 we have vp(∆i) = vp(∆i) for all i ∈ [1, n].

Lemma 5.12. Let A ∈ Zn×n, detA 6= 0 and m > vp(detA). Let fMi denote the xn−i

coefficient of the characteristic polynomial of a matrix M . For all i ∈ [1, n], if vp(f
A
i ) =

k < m then vp(f
A rem pm

i ) = k.

Proof. Each fAi is the sum of all i× i symmetric minors of A, which is a polynomial in the

entries of A. The claim then follows by Lemma 5.9.

We now apply the above lemmas to get the following.

86



Lemma 5.13. Let A be a p-characterized non-singular matrix and let m > vp(detA).

Then A = A rem pm is also p-characterized.

Proof. Let ∆i and ∆i be the ith determinantal divisors of A and A respectively, for 1 ≤ i ≤

n. If A is a p-characterized, then vp(f
A
i ) = vp(∆i) for each i ∈ [1, n]. By Lemma 5.11 and

Lemma 5.12, we have vp(∆i) = vp(∆i) and vp(f
A
i ) = vp(f

A
i ). So A is p-characterized.

Example 5.5. For a prime p consider the matrix A with its Smith normal form decom-

position:

A =

p3 + 1 p

2p4 p2

 =

 1 0

−p4 1

1

−p2 + p5

 1 p

−p2 −1− p3

 .
The characteristic polynomial of A is

f = x2 − (1 + p2 + p3)x+ p2 − p5.

Note that A is p-characterized. Now let m = 3 and consider A rem pm and its Smith normal

form:

A rem p3 =

1 p

0 p2

 =

1 0

0 1

1

p2

1 −p

0 1

 ,
which has the characteristic polynomial

x2 − (1 + p2)x+ p2.

Thus A rem p3 is p-characterized as well.

The following bound is a relatively well-known fact, but we prove it for completeness.

Lemma 5.14. |Mn(Z/pmZ)|/|GLn(Z/pmZ)| < 4.

Proof. Any matrix A ∈ Mn(Z/pmZ) can be written as A = A0 + pA1 + . . . + pm−1Am−1

with Ai’s having entries from [0, p). Then A ∈ GLn(Z/pmZ) if and only if A0 ∈ GLn(Z/pZ).

There are (pn
2
)m−1 ways to construct the components A1, . . . , Am−1 for each given A0 ∈
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GLn(Z/pZ). So |GLn(Z/pmZ)| = p(m−1)n
2 ·|GLn(Z/pZ)|. Next, recall the well-known density

bound for non-singular matrices over finite fields:

|GLn(Z/pZ)|
pn2 =

(
1− 1

p

)(
1− 1

p2

)
· · ·
(

1− 1

pn

)
> 1/4.

Thus

|Mn(Z/pmZ)|
|GLn(Z/pmZ)|

=
pmn

2

p(m−1)n2|GLn(Z/pZ)|
=

pn
2

|GLn(Z/pZ)|
< 4.

We can now establish our main density result.

Theorem 5.2. Let n be a positive integer, ε > 0, and p be any prime greater than 16(n2 +

3n)/ε. Fix a set of integers 0 ≤ e1 ≤ e2 ≤ · · · ≤ en and let m ≥ e1 + . . . + en + 1

and S = diag(pe1 , . . . , pen) ∈ Zn×n. Then the number of matrices in Sm
S which are p-

characterized and hence p-correspondent is at least (1− ε) · |Sm
S |.

Proof. Let

P = {(L,R) : L,R ∈ [0, pm)n×n}.

For any A ∈ Sm
S , let PA ⊆ P be as in Lemma 5.8:

PA = {(L,R) : L,R have entries from [0, pm) and A = (LSR) rem pm }.

If at least one pair (L,R) ∈ PA is such that LSR is p-characterized, thenA is p-characterized

by Lemma 5.13 (recall A = (LSR) rem pm and m ≥ e1+ . . .+en+1 implies m > vp(detA)).

On the other hand, if every pair (L,R) ∈ PA is such that LSR is not p-characterized then

A can be either p-characterized or not (because the converse of Lemma 5.13 is not neces-

sarily true; some non p-characterized matrices can become p-characterized after applying

rem pm). To derive an upper bound on the number of non p-characterized matrices in Sm
S ,

we allow the worst outcome: A = (LSR) rem pm is not p-characterized when LSR is not

p-characterized for all pairs (L,R) ∈ PA.

The number of sets, PA, having every pair (L,R) with a non p-characterized prod-

uct LSR, can be obtained as the ratio between the total number of pairs giving non
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p-characterized products (which is at most (ε/16)|P | by Lemma 5.6) divided by the size

of each PA (which is |GLn(Z/pmZ)2|/|Sm
S | by Lemma 5.8). So the maximum number of

matrices in Sm
S which are not p-characterized is

(ε/16)|P |
|PA|

=
(ε/16)|Mn(Z/pmZ)|2

|GLn(Z/pmZ)2|/|Sm
S |

< ε|Sm
S |,

where the inequality follows using Lemma 5.14.

Hence there are at least (1−ε)|Sm
S | matrices in Sm

S which are p-characterized, and each

one of those matrices is also p-correspondent by Theorem 5.1.

This result also implies that an integer matrix with entries sampled from uniformly at

random from [0, pm) will be p-correspondent with probability at least 1− ε.

5.4 Density at Small Primes

The density estimate of Theorem 5.2 is limited to large primes. We now report on experi-

ments with small primes. For a given size n and a prime power pm, we enumerate the set

of all n × n matrices with entries from [0, pm) and vp(determinant) < m. We then count

the fraction of matrices which are p-correspondent.

Table 5.1 shows the density of p-characterized and p-correspondent non-singular matri-

ces for small values of p,m, n. The fourth and fifth columns report the fraction (in percent-

age) of p-characterized and p-correspondent matrices among all n×n non-singular matrices

with entries [0, pm) and who determinant has p-adic valuation smaller than m. Recall from

Example 5.3 that matrices can be p-correspondent but not necessarily p-characterized, thus

the reported p-characterized density is lower than p-correspondent density.

The sixth column in the table reports the minimum percentage of p-characterized ma-

trices among all the Smith normal forms. Given pm and n, we consider the set of all n× n

matrices with entries [0, pm) and vp(determinant) < m. We partition these matrices by

their Smith normal forms localized at p, where we only care about the powers of p in the

invariant factors and treat the other prime powers as units. For example, when pm = 22
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Table 5.1: Density (in percentage) of p-characterized and p-correspondent matrices.

p m n p-characterized p-correspondent min p-char.

1 2 56.25 81.25 33.33

2 2 53.52 80.08 33.33

3 2 53.34 80.00 33.33

2 4 2 53.33 80.00 33.33

1 3 29.10 71.29 18.75

2 3 26.51 70.14 16.67

1 4 15.61 66.67 6.667

3 1 2 67.90 90.12 62.50

2 2 67.50 90.00 50.00

3 2 67.50 90.00 50.00

1 3 45.58 86.73 42.77

5 1 2 80.16 96.16 79.17

2 2 80.13 96.15 78.96

7 1 2 85.76 98.00 85.42

and n = 2, we get the following (non-singular) Smith normal forms localized at 2:1 0

0 1

 ,
1 0

0 2

 .
We then count the fraction of p-characterized matrices in each partition and report the

minimum percentage among all partitions.

Finally, the table shows that the density drops as n increases and as p decreases, which

is consistent with the proofs for large primes. An open question is to prove similar density

estimates for small primes, i.e., when p is small compared to n.
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Chapter 6

Ranks of Remainder Matrices

This chapter presents two related results on ranks of integer matrices after applying

element-wise division with remainder. This is a study towards understanding the interac-

tion between the local invariant factors at a prime p and the p-adic expansion of matrices.

For a prime p and a matrix A ∈ Zn×n, write A as A = p(A quo p) + (A rem p) where the

remainder and quotient operations are applied element-wise. Write the p-adic expansion

of A as A = A[0] +pA[1] +p2A[2] + · · · where each A[i] ∈ Zn×n has entries between [0, p−1].

Upper bounds are proven for the integer ranks of A rem p, and A quo p. Also, upper bounds

are proven for the finite field rank of A[i] for all i ≥ 0 when p = 2, and a conjecture is

presented for odd primes.

6.1 Introduction

Let p be a prime, and let A be an integer matrix whose Smith normal form is given by

A = USV . Assume that S = diag(1, . . . , 1, p, . . . , p, 0, . . . , 0); i.e., the only non-trivial

invariant factor of A is p. If we write A, U , S, and V using their p-adic expansion, we get

(A0 + pA1) = (U0 + pU1)(S0 + pS1)(V0 + pV1), where A0 = U0S0V0 mod p and

A1 = U1S0V0 + U0S0V1 + U0S1V0, (6.1)
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where rank(S0) = r0, and rank(S1) = r1, which are the multiplicities of 1’s and p’s in the

Smith normal form, respectively. Furthermore, with appropriate preconditioning, rank(A0)

is proportional to r0, and rank(A1) is proportional to 2r0 + r1. Hence, this formulation

leads to a belief that we can isolate A0, A1, compute their ranks over Z/pZ, and discover

multiplicities of the invariant factors. However, by closer inspection, equation (6.1) is in

fact:

A1 = U1S0V0 + U0S0V1 + U0S1V0 +

carry︷ ︸︸ ︷
U0S0V0 quo p .

The extra term, (U0S0V0 quo p), is introduced by the fact that arithmetic operations over

Z exhibit carries. These carries contribute to the overall ranks of matrix expressions. This

leads to interesting questions about ranks of matrices under the remainder and quotient

operators and the ranks of components of matrices when written p-adically.

6.2 Quotient and Remainder Matrices

For any integer n and any prime p, let n rem p and n quo p denote the remainder and

quotient in the division n = qp + r. To ensure a unique representation, we choose the

non-negative remainder r ∈ [0, p). The operators rem p and quo p are naturally extended

to vectors and matrices using element-wise application.

When convenient, we embed integer matrices in Z/pZ using the natural element-wise

projection a 7→ a mod p. We use two notations for ranks. The integer rank is denoted

by rank(·), while the rank over the finite field Z/pZ is denoted by rankp(·). Alternatively,

if r = rank(A) and the Smith normal form of A is S = diag(s1, . . . , sr, 0, . . . , 0), then

rankp(A) = r0 is the maximal index i such that p - si. Finally, we use the notation A∗,j for

the jth column of A ∈ Zn×n and ai,j for the entry (i, j) of A.

The following is the main result of this section. Let A be an n × n matrix over Z,

r = rank(A), r0 = rankp(A), and assume n > pr0 . Then

(i) rank(A rem p) ≤ (pr0 − 1)(p+ 1)/(2(p− 1));

(ii) rank(A quo p) ≤ r + (pr0 − 1)(p+ 1)/(2(p− 1)).
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We will first study the remainder problem for rank-1 matrices. Then we will generalize

to arbitrary rank matrices.

6.2.1 Remainder of Rank-1 Matrices

Let p be any odd prime, n ≥ p. Let u ∈ Zn be any non-zero vector where the entries of

u rem p include {1, 2, . . . , p− 1}.

Lemma 6.1. The set of vectors {u rem p, (2u) rem p, . . . , ((p − 1)u) rem p} is linearly de-

pendent and has rank (p+ 1)/2.

First we prove this result for n = p− 1. A generalization follows. Let u = (1, 2, . . . , p−

1) ∈ Z(p−1) and M ∈ Z(p−1)×(p−1) be the rank-1 matrix M = uuT and let R = M rem p.

Lemma 6.2. rank(R) = (p+ 1)/2.

Proof. Lemma 6.3 shows that (p + 1)/2 is an upper bound on the rank and Lemma 6.5

shows that (p+ 1)/2 is a lower bound.

Lemma 6.3. rank(R) ≤ (p+ 1)/2.

Proof. Let 1 ≤ j ≤ (p − 1)/2 and 1 ≤ i ≤ p − 1. Write ij = qp + r where 0 ≤ r < p.

Also i, j < p implies p - i and p - j, so r 6= 0. Then i(p − j) = ip − ij = ip − qr − r =

p(i− q− 1) + (p− r) where 0 < (p− r) < p. So ij rem p+ i(p− j) rem p = r+ (p− r) = p.

But Ri,j = ij rem p, so for all 1 ≤ i ≤ (p − 1)/2 we have R∗,i = (p, p, . . . , p)T − R∗,p−i.

Thus there are (p− 1)/2 linearly dependent columns, and no more than (p+ 1)/2 linearly

independent columns.

To prove that (p+ 1)/2 is also a lower bound on the rank, it suffices (using Lemma 6.3)

to consider the matrix B of size (p− 1)× p+1
2

which is formed by the first (p−1)/2 columns

of R and the column B∗,(p+1)/2 = R∗,(p+1)/2 + R∗,(p−1)/2 = (p, . . . , p)T . The matrix B has
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the following structure:

B =



1 2 · · · p−1
2

p

2 4 · · · p− 1 p

3 6 rem p · · · 3p−1
2

rem p p
...

...
. . .

...

(p− 1) rem p 2(p− 1) rem p · · · (p−1)2
2

rem p p


.

Lemma 6.4. Either the right kernel of B is empty, or the first (p − 1)/2 columns of B

are linearly dependent.

Proof. We will prove the statement by contradiction. Assume the contrary, that is, the

right kernel of B is not empty and the first (p − 1)/2 columns are linearly independent.

Then there exists (p+ 1)/2 integers c1, . . . , c(p+1)/2 such that

c1B∗,1 + c2B∗,2 + . . .+ c(p+1)/2B∗,(p+1)/2 = 0. (6.2)

Apply this linear combination simultaneously to the first two rows of B to get

c1 + 2c2 + . . .+ c(p−1)/2 (p− 1)/2 + c(p+1)/2 p = 0, (6.3)

2c1 + 4c2 + . . .+ c(p−1)/2 (p− 1) + c(p+1)/2 p = 0. (6.4)

If we multiply 2× (6.3)− (6.4) we get c(p+1)/2 = 0. Substituting in (6.2), we get:

c1B∗,1 + c2B∗,2 + . . .+ c(p−1)/2B∗,(p−1)/2 = 0. (6.5)

But this contradicts the assumption that the first (p− 1)/2 columns are linearly indepen-

dent. The assumption is wrong, and the lemma statement holds.

Lemma 6.5. (p+ 1)/2 ≤ rank(R).

Proof. Using Lemma 6.4, proving a lower bound on the rank of R can be reduced to showing

that the first (p−1)/2 columns of B are linearly independent. We use induction. Consider

the sequence of matrices B(k) formed by the first k columns of B, where 2 ≤ k ≤ (p−1)/2.

Base case: B(2), has rank 2 which is straightforward to verify.
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Inductive case: we assume B(k−1) has rank k − 1. We have

B(k) =


1 2 · · · k

2 4 · · · 2k

3 6 rem p · · · (3k) rem p
. . .

 . (6.6)

We perform the following elementary operations:

1. Row(p− 1) = (Row(p− 1) + Row(1)) / p. Then we have Row(p− 1) = [1, . . . , 1].

2. The first (k−1) columns have rank k−1 by the inductive hypothesis. But the leading

(k − 1)× (k − 1) submatrix is symmetric, so its row rank is also k − 1. Now reduce

the first k − 1 rows to echelon form. The resulting matrix is

1 ∗ · · · · · · k

1 · · · · · · 2k
. . .

...

1

1 1 · · · 1 1


. (6.7)

3. If use the diagonal entries to eliminate the first k − 1 entries of the last row, we get:

1 ∗ · · · · · · k

1 · · · · · · 2k
. . .

...

1

0 · · · 0 1


. (6.8)

The resulting matrix has column rank k which concludes the induction proof.

We are now ready to generalize Lemma 6.2 and prove Lemma 6.1.

Proof of Lemma 6.1. For the column vector u ∈ Zn×1, consider the matrix R̂ ∈ Zn×n =

uuT rem p, which is analogous to the matrix R of Lemma 6.2. The image of u rem p has
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entries from the interval [0, p − 1]. If n > p then, by the pigeonhole principle, the vector

u rem p will contain duplicate (and zero) entries, which correspond to duplicate and zero

rows in R̂. So up to row/column permutations, R̂ contains R as a submatrix, and the extra

rows/columns are duplicate and/or zero. Hence rank(R̂) = rank(R).

6.2.2 A Note on Latin Squares

It is worth noting that Lemma 6.2 also implies a result on the ranks of Latin squares of

certain orders and certain isotopy classes.

Recall that a Latin square of order n is an n×n matrix (or array) of n unique symbols

arranged such that each symbol appears only once in each row and each column. Here are

two examples of Latin squares on the symbols 1, 2, 3, 4:
1 2 3 4

2 4 1 3

3 1 4 2

4 3 2 1

 ,


4 1 2 3

3 2 4 1

2 3 1 4

1 4 3 2

 .

If one starts with a Latin square L and applies row and column permutations, then we

obtain a Latin square L′. The two squares L,L′ are said to be in the same isotopy class.

As before, let p be an odd prime, and let R be the (p − 1) × (p − 1) integer matrix

whose (i, j)th entry is ij rem p. We show that R is a Latin square as follows. The matrix

R is the Cayley multiplication table of the finite field Z/pZ excluding the entries for the

element 0. We have ij rem p 6= ij′ rem p whenever j 6= j′, where i, j, j′ ∈ [1, p−1]. So every

row and column of R has the residues {1, . . . , p− 1} appearing only once, and R is a Latin

square of order p− 1.

Although R has rank 1 over Z/pZ, Lemma 6.2 shows that R has a non-trivial rank over

Z. Also, all Latin squares generated by permuting the rows and columns of R will also

have the same rank.

Corollary 6.1. Let p and R be as above. Any Latin square in the isotopy class of R, taken

as a (p− 1)× (p− 1) integer matrix, has rank (p+ 1)/2.
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For example, the squares listed above are in the same isotopy class where the prime is

5. They both have rank (5 + 1)/2 = 3. However, not all Latin squares on {1, . . . , p − 1}

have rank (p+ 1)/2. For example, The following Latin square has rank 4:
2 3 4 1

1 4 3 2

3 1 2 4

4 2 1 3

 .

It is an interesting question to classify the isotopy classes of Latin squares on {1, . . . , p−

1}, and study the rank properties of each class.

Other permutation-invariant properties, such as the Smith normal form, might be of

interest. Empirically, one finds that R has the following invariant factors:

1, p, . . . , p︸ ︷︷ ︸
p−1
2

, 0, . . . , 0︸ ︷︷ ︸
p−3
2

.

The multiplicities of 1’s and 0’s trivially follow from the rank results presented here. Recall

that if we add the ith column of R to the (p− i)th column, we get the column [p, p, . . . , p].

Therefore the following vectors are the in the right nullspace of R:

[1,−1, 0, . . . , 0,−1, 1]

[1, 0,−1, . . . ,−1, 0, 1]

[0, 1,−1, . . . ,−1, 1, 0]

· · ·

We can form

(p−1
2

2

)
such vectors up to sign changes. However, only (p− 3)/2 vectors are

linearly independent by Lemma 6.2.

If we take any of the above vectors, and remove the negative signs and multiply it

by pi−1R, we do not get the zero vector. Instead, we get the vector [2pi, 2pi, . . . , 2pi]

which is 0 modulo pi. Similarly, if we multiply the vector [1, 0, . . . , 0, 1] by pi−1R we get

[pi, pi, . . . , pi] ≡ 0 (mod pi). In total, we get (p−3)/2 + 1 = (p−1)/2 linearly independent

nullspace vectors modulo pi for all i ≥ 1. We can deduce that the kernel of R over Z/piZ,
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when put in Smith normal form, will have a diagonal block pi−1I of size (p−1)/2×(p−1)/2.

Thus the Smith normal form of R will have a diagonal block pI of the same size, and we

get the aforementioned multiplicities of R’s invariant factors.

However this (informal) argument does not exclude other primes from appearing in

the integer Smith normal form of R. It would be interesting to establish that the only

non-trivial invariant factors of R are powers of p.

6.2.3 Rank Theorem

Let A be an n× n matrix over Z, r = rank(A), r0 = rankp(A), and assume n > pr0 . Then

Lemma 6.6. rank(A rem p) ≤ (pr0 − 1)(p+ 1)/(2(p− 1)).

Proof. Let A = USV be the Smith normal form of A, and S = Sr+pSq where Sq = S quo p

and Sr = S rem p. Then

A rem p = USV rem p = (USrV + pUSqV ) rem p = USrV rem p. (6.9)

If r0 = rankp(A) then Sr = diag(σ1, . . . , σr0 , 0, . . . , 0) where σi ∈ [1, p−1] for all 1 ≤ i ≤ r0.

The jth column of A rem p is

A∗,j rem p =

(
r0∑
`=1

σ`v`,jU∗,`

)
rem p =

(
r0∑
`=1

c`,jU∗,`

)
rem p, (6.10)

where c`,j ∈ [0, p−1]. If we only consider the non-zero coefficients c`,j, then the right-hand

side of (6.10) is an i-term sum (c`1,jU∗,`1 + . . . + c`i,jU∗,`i) rem p, where 1 ≤ i ≤ r0 and

1 ≤ `1 < `2 < . . . < `i ≤ r0. The coefficients c`k,j are elements in [1, p− 1] which are units

modulo p. In particular, we can factor c`1,j from the sum, and re-write (6.10) as:

A∗,j rem p = (c`1,j(U∗,`1 + α`2,jU`2,j + . . .+ α`i,jU∗,`i)) rem p, (6.11)

where α`k,j ∈ [1, p− 1] for all k.

Fix some i, j and some non-zero assignment of α`2,j, . . . , α`i,j in (6.11) and let û =

U∗,`1 + α`2,jU`2,j . . .+ α`i,jU∗,`i . Then (6.11) becomes A∗,j rem p = (c`1,jû) rem p. There are

p− 1 possible values for c`1,j and hence the possible values of A∗,j rem p are:

{û rem p, (2û) rem p, . . . , ((p− 1)û) rem p}. (6.12)
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We are interested in getting an upper bound on the rank of this set of vectors. First

note that (xy) rem p = (x rem p)(y rem p) rem p. So (iû) rem p = (i(û rem p)) rem p for

i ∈ [1, p − 1]. Hence the maximal rank one can achieve from (6.12) occurs when (up to

permutation) û rem p = (0, 1, 2, . . . , p− 1, . . .). The rest of the entries are duplicates from

the same range [0, p − 1] by the pigeonhole principle. Now apply Lemma 6.1 to conclude

that the vectors in (6.12) have rank at most (p+ 1)/2.

Thus for each i, j and non-zero assignment of α`2,j, . . . , α`i,j, there are at most (p+1)/2

linearly independent columns of A rem p. We now count the maximal possible number of

distinct A∗,j’s. There are
(
r0
i

)
possible ways to select i different columns from the first r0

columns of U . For each choice, there are i − 1 coefficients: α`2,j, . . . , α`i,j, and (p − 1)i−1

possible ways to assign their non-zero values from [1, p − 1]. Each choice gives a set of

vectors as in (6.12) whose rank is at most (p + 1)/2. Summing over all i ∈ [1, r0], the

maximal possible rank from the span of columns in (6.10) is

r0∑
i=1

(
r0
i

)
(p− 1)i−1

p+ 1

2
. (6.13)

We have

r0∑
i=1

(
r0
i

)
(p− 1)i−1 =

r0∑
i=0

(
r0
i

)
(p− 1)i−1 − 1

p− 1

=
1

p− 1

r0∑
i=0

(
r0
i

)
(p− 1)i − 1

p− 1

=
pr0 − 1

p− 1

So
r0∑
i=1

(
r0
i

)
(p− 1)i−1

p+ 1

2
=
pr0 − 1

p− 1

p+ 1

2
. (6.14)

We are now ready to prove the main rank theorem.

Theorem 6.1. Let A be an n×n matrix over Z, r = rank(A), r0 = rankp(A), and assume

n > pr0. Then

(i) rank(A rem p) ≤ (pr0 − 1)(p+ 1)/(2(p− 1));

99



(ii) rank(A quo p) ≤ r + (pr0 − 1)(p+ 1)/(2(p− 1)).

Proof. Lemma 6.6 proves part (i). For part (ii), we have A = (A rem p) + p(A quo p),

or p(A quo p) = A − (A rem p). For matrices X = Y + Z, rank is sub-additive and

rank(X) ≤ rank(Y ) + rank(Z). Scaling a matrix by p or −1 does not change its rank.

So rank(A quo p) ≤ rank(A) + rank(A rem p) = r + rank(A rem p).

6.3 p-Adic Matrices

Ranks in this section are over Z/pZ. For any prime p and any matrix M ∈ Zn×n with

entries |mi,j| < β, the p-adic expansion of M is M = M [0] +pM [1] + . . .+psM [s], where the

entries of each matrix M [i] are between [0, p − 1], and s ≤ dlogp βe. We call M [i] the ith

p-adic matrix digit of M . We extend the superscript [i] notation to vectors and integers

in the obvious way. It should be noted that we do not use the p-adic metric. We use the

term p-adic in the sense of p-adic expansion.

We will present results concerning the ranks of 2-adic matrix digits. For odd primes,

we only present a conjecture. It is an open question to study the combinatorial structure

of the column space of the p-adic matrix digits for odd primes.

6.3.1 Binary Code Matrices

Fix p = 2. The goal of this section is to show that for all i ≥ 1, rankp(M
[i]) =

(
r
2i

)
where

M = AAT for some specially constructed A, which we call binary code matrix. We will

generalize the construction of M in a subsequent section. For now, A is constructed as

follows. Start with the 2r× r matrix whose i, j entry is the jth bit in the binary expansion

of i. Then apply row permutations to A such that the first
(
r
0

)
rows have have exactly 0

non-zero entries, followed by
(
r
1

)
rows which have exactly 1 non-zero entries, followed by(

r
2

)
rows which have exactly 2 non-zero entries and so on. See Figure 6.1 for an example

where r = 4.
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0 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1 1 1 1



,



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1

0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1

0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1

0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1

0 1 1 0 0 2 1 1 1 1 0 2 2 1 1 2

0 1 0 1 0 1 2 1 1 0 1 2 1 2 1 2

0 0 1 1 0 1 1 2 0 1 1 2 1 1 2 2

0 1 0 0 1 1 1 0 2 1 1 1 2 2 1 2

0 0 1 0 1 1 0 1 1 2 1 1 2 1 2 2

0 0 0 1 1 0 1 1 1 1 2 1 1 2 2 2

0 1 1 1 0 2 2 2 1 1 1 3 2 2 2 3

0 1 1 0 1 2 1 1 2 2 1 2 3 2 2 3

0 1 0 1 1 1 2 1 2 1 2 2 2 3 2 3

0 0 1 1 1 1 1 2 1 2 2 2 2 2 3 3

0 1 1 1 1 2 2 2 2 2 2 3 3 3 3 4



.

Figure 6.1: An example of A (left) and M = AAT (right), where r = 4. The rows of A

are partitioned by the number of non-zero entries in each row. The corresponding blocks

in the symmetric matrix M are shown with borders. The column partitions of M are m0,

m1, m2, m3, m4. Finally, rankp(M
[0]) = rankp(m

[0]
1 ) = 4, rankp(M

[1]) = rankp(m
[1]
2 ) = 6,

rankp(M
[2]) = rankp(m

[2]
4 ) = 1.

The `th column of M is given by:

M∗,` = a1,`A∗,1 + . . .+ ar,`A∗,r =
∑
j∈J`

A∗,j, (6.15)

where J` ⊆ {1, 2, . . . , r} and the second equality holds because ai,` ∈ {0, 1}. We call J` the

summing index set of M∗,`. Let mk denote the 2r×
(
r
k

)
submatrix of M , which includes all

columns of the form: M∗,` =
∑

j∈J` A∗,j where J` ⊆ {1, 2, . . . , r} and |J`| = k. Then the
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columns of M can be partitioned into:

M =
[
m0 m1 m2 . . . m2i m2i+1 . . . mr

]
. (6.16)

The next lemma shows that

M [i] =
[
0 0 . . . 0 m

[i]

2i
m

[i]

2i+1
. . . m

[i]
r

]
. (6.17)

Lemma 6.7. If k < 2i, then m
[i]
k = 0 for all i ≥ 1.

Proof. Columns of mk are given by
∑

j∈J A∗,j where |J | = k. The entries of A are either 0

or 1. So the largest entry in mk is 1 + . . .+ 1 = k. The result follows by appealing to the

binary expansion of k.

We expect rankp(m
[i]

2i
) ≤

(
r
2i

)
since m

[i]

2i
is a matrix of dimension 2r ×

(
r
2i

)
. The next

lemma shows that the rank is, in fact, equal to this upper bound.

Lemma 6.8. rankp(m
[i]

2i
) =

(
r
2i

)
for all i ≥ 1.

Proof. Let c1, . . . , c( r2i)
be the column indices of m2i in M . Let S(m2i) be the

(
r
2i

)
×
(
r
2i

)
submatrix of m2i formed by the rows c1, . . . , c( r2i)

, and S(A) be the
(
r
2i

)
× r submatrix of A

formed by the rows c1, . . . , c( r2i)
. Rows of S(A) have exactly 2i non-zero entries because of

the construction of A. If we treat A and M as block matrices then S(m2i) = S(A)S(A)T

is the 2ith diagonal block of M (See Figure 6.1).

The entries in row ρ of S(m2i) are given by linear combinations of the entries in row

ρ of S(A). The summing index sets Jj, where |Jj| = 2i, are exactly the locations of the

non-zero entries of rows of S(A), which are all different by construction. Hence there is

only one entry in row ρ of S(m2i) whose summing set matches the locations of the non-zero

entries in row ρ of S(A). The value of this entry is 1 + 1 + . . .+ 1 = 2i. The other entries

have values less than 2i. The binary expansion of 2i gives us that S(m
[i]

2i
) is an identity

(sub)matrix∗ of m
[i]

2i
whose size is

(
r
2i

)
×
(
r
2i

)
. Therefore, m

[i]

2i
has rank

(
r
2i

)
.

∗This is true in the example of Figure 6.1 without any reordering, because we constructed the row

blocks of A such that the binary expansion of i comes after the binary expansion of j whenever i > j.

Without such ordering, the identity block assertion holds up to row and column permutations.
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Next we will prove that rankp(M
[i]) = rankp(m

[i]

2i
) by showing that all the columns of

m
[i]

2i+1
,m

[i]

2i+2
, . . . ,m

[i]
r are linearly dependent on those of m

[i]

2i
. First, we need the following

auxiliary statements.

Fact 6.1 (Kummer’s Theorem). The exact power of p dividing
(
a+b
a

)
is equal to the number

of carries when performing the addition of (a+ b) written in base p.

A corollary of Kummer’s theorem is that
(
a+b
a

)
is odd (resp. even) if adding (a + b)

written in binary expansion generates no (resp. some) carries.

Lemma 6.9. (2i + k) quo 2i ≡
(
2i+k
2i

)
(mod 2).

Proof. We will show that (2i + k) quo 2i and
(
2i+k
2i

)
have the same parity and hence equiv-

alent modulo 2. Write k = Q2i +R for a quotient Q ≥ 0 and a remainder 0 ≤ R < 2i.

If Q is even, then the ith bit of k (i.e., the coefficient of 2i in the binary expansion

of k) is zero and hence no carries are generated when adding k and 2i in base 2. So by

Kummer’s Theorem,
(
2i+k
2i

)
is odd. If Q is odd, then the ith bit of k is 1 and the number

of carries generated when adding 2i + k in base 2 is at least 1. So by Kummer’s theorem(
2i+k
2i

)
is even. Putting the two cases together implies that

(
2i+k
2i

)
≡ Q+ 1 (mod 2).

From k = Q2i + R we get (2i + k) quo 2i = (2i + Q2i + R) quo 2i = Q + 1. Therefore(
2i+k
2i

)
≡ (2i + k) quo 2i (mod 2).

Now we are ready to show that the ranks only depend on m
[i]

2i
.

Lemma 6.10. Consider any column m in m2i+z, where z ≥ 1. Then m[i] is a linear

combination of columns of m
[i]

2i
.

Proof. Let J be the summing index set of m, where |J | = 2i + z. Let I be the set of all

subsets of J of size 2i, so |I| =
(
2i+z
2i

)
. For every I ∈ I, there is a unique corresponding

column cI in m2i whose summing set is I. We will show that m[i] can be obtained by

adding up cI ’s. In other words,

m[i] ≡
∑
I∈I

c
[i]
I (mod 2). (6.18)
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Let AJ denote the submatrix of A formed by the columns indexed by J . For any row

ρ of AJ , let 2i + kρ be the number of 1’s in that row, where −2i ≤ kρ ≤ z. First, if

kρ < 0, then the corresponding sum of 1’s at this row is less than 2i. By Lemma 6.7, we

have the corresponding entries in both m
[i]

2i
and m

[i]

2i+z
are zeros and (6.18) trivially holds.

On the other hand, if 0 ≤ kρ ≤ z, then the ρth entry of the right-hand side of (6.18) is

1 + 1 + . . .+ 1 ≡
(
2i+kρ
2i

)
(mod 2) since |I| =

(
2i+kρ
2i

)
. (Recall that the number of non-zero

entries in row ρ is 2i+kρ rather than 2i+z.) The ρth entry of the left-hand side of (6.18) is

(2i+kρ) quo 2i. The (2i+kρ) term corresponds to adding (2i+kρ) non-zero entries, and the

quo 2i operation corresponds to the ith bit of the binary expansion of m. By Lemma 6.9,

we have (2i + kρ) quo 2i ≡
(
2i+kρ
2i

)
(mod 2), and (6.18) holds.

6.3.2 Non-Symmetric Matrices

So far we have shown that rankp(M
[i]) = rankp(m

[i]

2i
) =

(
r
2i

)
, where M = AAT for some

specially constructed A. We now put the results together into a more general form. Let

A ∈ Z2r×r be the binary code matrix as before.

Lemma 6.11. Assume U, S ∈ Zn×n, such that U is symmetric and has entries from

{0, 1}, detU 6≡ 0 (mod 2), S = diag(1, . . . , 1, 0, . . . , 0), rankp(S) = r, and n ≥ 2r. If

M = USU ∈ Zn×n, then rankp(M
[i]) ≤

(
r
2i

)
for all i ≥ 1.

Proof. Since S = SS, we have M = USSU = LLT where L = US. Apply row operations

to L to annihilate the duplicate the rows. Since L has only 0, 1 entries, it must be that the

number of unique non-zero rows at most 2r. Reorder the rows of L such that row i in L is

either identical to row i in A or zero (i.e., missing from L). Ensure that L has exactly 2r

rows by appending zero rows at the end, or removing zero rows. Let L̄ denote the resulting

matrix. Note that rank of L̄ is equal to rank of L, and that L̄ has the same structure as

A, where some rows might be replaced by zero.

Let M̄ = L̄L̄T =
[
m̄0 m̄1 · · · m̄r

]
. Now M̄ and AAT have the same dimensions and

structure. Every entry of M̄ is either identical to the corresponding entry in AAT or zero.

Essentially, M̄ is a copy of AAT with the difference that some rows (and columns) might
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have been entirely replaced by zero. This implies that M̄ [i] can be obtained by copying

(AAT )[i] and potentially replacing some rows and columns by zero. So rankp(M̄
[i]) ≤

rankp
(
(AAT )[i]

)
=
(
r
2i

)
. The lemma statement holds since we obtained M̄ from M using

column and row operations, and augmenting and omitting zero rows and columns at the

end of the matrix.

We can now generalize the result to non-symmetric matrices.

Theorem 6.2. Assume U, S, V ∈ Zn×n, such that U, V have entries from {0, 1}, detU ,

detV are non-zero modulo 2, S = diag(1, . . . , 1, 0, . . . , 0), rankp(S) = r, and n ≥ 2r. If

M = USV ∈ Zn×n, then rankp(M
[i]) ≤

(
r
2i

)
for all i ≥ 1.

Proof. Since S = SS, we have M = USSV = LR where L = US and R = SV . Apply

row operations to L to annihilate the duplicate the rows from L. Since L have 0-1 entries,

there are at most 2r unique rows in L. Adjust the number of rows of L to 2r by appending

zero rows, or omitting the extra zero rows. Finally, reorder the rows of L such that L is

a copy of A where zero or more rows being replaced by zero. Let L̄ denote the resulting

matrix. Apply similar operations on the columns of R, and let R̄ denote the resulting

matrix. Then M̄ = L̄R̄ is essentially a copy of AAT where some rows are replaced by zero,

and some columns are replaced by the zero vector.

Similarly, M̄ [i] can be obtained by copying (AAT )[i] and potentially replacing some rows

and columns by zeros. So rankp(M̄
[i]) ≤ rankp

(
(AAT )[i]

)
=
(
r
2i

)
. The result holds since we

obtained M̄ from M using column and row operations, and augmenting and omitting zero

rows and columns at the end of the matrix.

6.3.3 Odd Primes

For p = 2, the non-zero patterns of the binary code matrix A coincide with the summing

indices in (6.15). This is not true for odd primes, where the linear combinations can have

coefficients other than 0 and 1. It is an open question to devise a construction for odd

primes (similar to the binary code matrices) which exposes the combinatorial structure of
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the column space of M = AAT . We present the following conjecture towards understanding

the p-adic ranks for odd primes.

Conjecture 6.1. Assume p = 2k + 1 is an odd prime, U, S, V ∈ Zn×n such that U, V

have entries from [0, p − 1], detU detV 6≡ 0 (mod p), S is a 0, 1 diagonal matrix and

rankp(S) = r. Let M = USV = M [0] + M [1]p + · · · where M [i] ∈ (Z/pZ)n×n. It is

conjectured that

rankp(M
[1]) ≤

k∑
i=0

(
r + 2i

2i+ 1

)
+

(
r + 2k − 1

2k

)
− 2r (6.19)

Furthermore, in the generic case where the entries of U, V are uniformly chosen uniformly

at random from [0, p−1], and n is arbitrarily large, the ranks are equal to the stated bound.

This conjecture first appeared in [Elsheikh et al., 2012]. It shows that a product of

matrices with “small” entries and “small” rank can still have very large rank, but not full,

p-adic expansion. In other words, the “carries” from the product USV will impact many

digits in the expanded product.
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Chapter 7

Conclusion and Future Work

In this thesis we have studied the problem of computing the Smith normal form of sparse

matrices over local rings and related problems. We have also extended the application of the

Wedderburn rank reduction process to computing the Smith normal form, and nullspace

sampling. On the other hand, we studied some of the related notions of matrix invariants

and matrix properties. In particular, we gave a characterization of the invariants factors in

terms of the spectrum. Finally we have started an interesting study of ranks of remainder

and quotient matrices and ranks of base-p slices of matrices.

We believe that an important open problem is designing a quadratic-time algorithm to

substitute for Wiedemann’s method when working over local rings. Such an algorithm will

lead to significant improvements in computation over local rings and over the non-localized

rings as well. In this short conclusion, we will summarize the major problems we presented

in this thesis.

Problem 1. Given a sparse polynomial matrix A ∈ F[x]n×n, and an irreducible polynomial

f ∈ F[x] of degree d, find the local Smith normal form of A at f .

In Chapter 2 we examined this problem for sparse matrices over F[x]/(f e). We gave

an algorithm to compute the invariant factors, which tries to minimize the fill-in and the

expression swell in the intermediate computations. The approach we took is linearization.

We transform the n× n polynomial matrix into a den × den matrix over the field F. We
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established the relationships between the multiplicities of the invariant factors and the rank

of the corresponding matrix over the ground field. The linearization takes advantage of

existing fast algorithms for computing ranks of sparse matrices over finite fields. If A has

a linear number of entries, then the cost of evaluating the black-box for A is µ ∈ O (̃den)

operations in F. In this case, Algorithm 2.1 has complexity O (̃n2d2e3) operations in F.

We expect an efficient algorithm in this setup to have complexity relative to O (̃n2de).

An interesting open question is to reduce the complexity of our algorithm by a factor of

de or de2. In particular, Algorithm 2.1 computes Krylov subspace iterates for e different

embeddings. One can hope to compute these iterates only once modulo f e, and then

reuse these iterates modulo powers of f . Such improvement would achieve a reduction in

complexity by factor of at least e.

Problem 2. Given a sparse integer matrix A ∈ Zn×n, and a prime p, find the local Smith

normal form of A at p.

We examined this problem in Chapters 2, 3, and 4. The integer case is arguably harder

than the polynomial case since carries can interfere with base-p expansion of the problem.

In Chapter 2 we proposed a hybrid sparse-dense algorithm which uses sparse nullspace

sampling followed by dense elimination to compute the local invariant factors. The cost

of Algorithm 2.2 is dominated by O (̃knµ) operations in Z/peZ, where k is the number

of non-trivial invariant factors, µ is the cost of evaluating the black-box of A modulo p.

The algorithm is useful for the case when there are only few non-trivial invariant factors,

i.e., when `� n. In some applications, the goal is to detect the first non-trivial invariant

factor. Algorithm 2.4 solves this problem by lifting nullspace vectors. The cost is O (̃enµ)

operations in Z/peZ.

In Chapter 4 we discussed a new approach to computing the Smith normal form. We

applied an iterative elimination process using rank-1 and rank-k updates over Z/peZ. We

showed that rank updates given by the Wedderburn rank reduction formula can modify

the invariant factors in a controllable manner; it decreases the number of 1s and increases

the 0s in the Smith normal form. We presented two algorithms. The iterative vector-based

algorithm has complexity O(n3) operations over Z/peZ, and requires storage of O(n2)
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elements from Z/peZ. Clearly, this algorithm is not suitable for sparse matrices. On the

other hand, the block version of this algorithm leverages sub-cubic matrix multiplication,

and has an expected cost of O(e2nω) operations in Z/peZ. At the core of Algorithm 4.2

is a selection of two matrices X, Y such that Y TAX is invertible. It is an interesting

open problem to use structured matrices for X, Y such that (Y TAX)−1 can be computed

faster than nω and the resulting matrix has a linear or quasi-linear time black-box. Such

a construction could potentially reduce the overall complexity below nω, and extend the

applications of the algorithm to sparse matrices.

Problem 3. Given a sparse integer matrix A ∈ Fn×n of rank r, compute a random sample

from the nullspace of A.

Nullspace sampling arose as a related problem in some of our algorithms. In Chapter 3

we explored preconditioning matrices for sparse Smith normal form computation. In par-

ticular, we showed how to extend the application of well-known linear-time preconditioners

to sparse Smith normal form. Additionally, we showed how to use the diagonal transpose

preconditioner A 7→ D1A
TD2A, and the Wiedemann sparse preconditioner to compute a

random sample from the nullspace of A. The cost of Algorithm 3.1 is O(rµ + r2) opera-

tions in F. The algorithm is randomized Monte Carlo and its success probability requires

the |F| ∈ O(n). For smaller primes, we can use field extensions with additional factor of

M(log(n/ε)) in the cost. We can avoid constructing extension fields by using Wiedemann

preconditioners and the cost becomes O(rµ+ rn log2 n) operations in F.

An open problem is to find linear-time preconditioners over small fields. This would

eliminate the need for field extensions, and drive the complexity closer to O(n2).

On the other hand, in Chapter 4, we discovered an additional application of the rank-

k reduction procedure to the problem of nullspace sampling. Algorithm 4.3 computes a

random sample from the nullspace of A with expected cost of O (̃nω) operations in F. As

a future work, we outlined the potential speedup of this algorithm using Krylov matrices,

in which the cost would be O (̃nµ) operations in F, which can be sensitive to the sparsity

of the input matrix.
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Problem 4. Let A be an n× n integer matrix, and let λ1, . . . , λn be its eigenvalues, and

s1, . . . , sn be its invariant factors. What is the relationship between the eigenvalues and the

invariant factors?

In Chapter 5, we discussed this relationship at a given prime p. We presented a new

characterization using the p-adic valuations as a measure of size. For our setup, we view

the eigenvalues as p-adic algebraic integers in a finite-degree extension over Qp. We show

that for most matrices there is a 1-1 correspondence between the p-adic valuations of the

eigenvalues and the powers of p dividing the invariant factors. In particular, our results

imply that this correspondence holds with high probability for random integer matrices

whose entries are sampled uniformly from a large enough range. This result holds if p is

large compared to n. This is mostly an artifact of our proofs which rely heavily on the

Schwartz-Zippel lemma. Our numerical experiments suggest that the results are also true

for smaller primes. It remains open to prove similar density estimates for small primes.

Problem 5. Let A be an n× n integer matrix of rank r. Let p be a prime, and write

A = p(A quo p) + (A rem p) as the remainder and quotient expansions of A. Furthermore,

let A = A0 + pA1 + p2A2 + · · · be the element-wise p-adic expansion of A. What is the

relationship between the rank of A and the ranks of the expansion matrices?

This problem is somewhat of an independent interest. We first encountered this problem

while attempting a p-adic approach to expanding the Smith normal form A = USV into

A0 + pA1 + · · · = (U0 + pU1 + · · · )(S0 + pS1 + · · · )(V0 + pV1 + · · · ).

In Chapter 6 we were able to show that rank(A rem p) can be arbitrarily large even if

A has a small number of non-zero invariant factors. In particular, the upper bound is

(pr0 − 1)(p + 1)/(2(p − 1)) where r0 is the number of invariant factors not divisible by p.

Similarly, the rank of Ai when p = 2 can be as large as
(
r
2i

)
. Our numerical experiments

suggest that random matrices will attain this bound. Finally, we presented a conjecture

for the p-adic ranks when p > 2.
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