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ABSTRACT 

Tensile and strain-controlled fatigue tests were performed to investigate the influence of forging 

on the performance of cast AZ80 magnesium alloy. The obtained microstructural analysis showed that the 

as-cast AZ80 magnesium alloy has dendritic α-Mg phase with eutectic Mg17Al12 morphology and a 

random texture. In contrast, the forged samples showed refined grains and a strong basal texture. During 

tensile testing, a maximum yield and ultimate tensile strength of 182 MPa and 312 MPa were obtained for 

the forged samples, representing increases of 121% and 33%, respectively, from the as-cast condition. At 

the same time, a significant improvement (73%) in ductility was obtained in forged samples. It was also 

observed that the forged samples achieved comparatively longer fatigue life under strain-controlled cyclic 

loading. Analysis of the fracture surfaces showed that a cleavage-type morphology was typical for the as-

cast samples, while the occurrence of dimples and other evidence of plastic deformation were identified in 

the fracture surfaces of the forged specimens, indicating a more ductile response. Forging caused grain 

refinement and texture modification, both of which enhance alloy performance by improving strength and 

ductility, and leading to longer fatigue life. Strain and energy-based models were investigated for their 

suitability to predict the life of the forged material. Both the Smith-Watson Topper and the Jahed-Varvani 

energy-based models gave reliable life prediction.  

Keywords: AZ80, Forging, Texture, Fatigue Characterization, Fracture, Fatigue Modeling. 

1. Introduction 

There has been a growing strong impetus to increase fuel efficiency and decrease emissions in the 

automotive industry over the past several decades. Implementation of lightweight materials in structural 

applications are at the forefront of this effort, as this strategy can improve vehicle efficiency, longevity, 

and performance. The multi material lightweight vehicle (MMLV) is an emerging philosophy, and 

includes extensive use of lightweight materials for structural components. Importantly, this philosophy 

dictates that their location in the vehicle be determined directly by the location of their optimal 

performance. Magnesium (Mg) and its alloys have significant promise in this area, with widespread 

applicability in fatigue-critical components, such as suspension control arms, since they are the lightest 

commercially available structural metal and their cyclic properties are similar to those of the heavier, 

more conventional materials used in industry [1]. However, the inferior cast properties and poor 

formability of Mg alloys at room temperature, resulting from strong crystallographic texture, and 

consequential anisotropic mechanical properties commonly formed during processing, limits the 

application of Mg alloys for manufacturing of complex parts such as a control arm. Forging is a near net-

shape manufacturing technique that offers significant benefits as a material processing technique to 

produce a heavily refined wrought microstructure, lower internal defect density, and recrystallized grain 

structure, resulting in superior strength, improved ductility, and longer fatigue life [2]. The focus of the 



  

present study is to examine the effect of forging, as an alternative for manufacturing complex Mg parts, 

on the monotonic and fatigue behavior of Mg.  

The AZ80 alloy is a Mg alloy with good forgeability, a high aluminium content, and superior 

strength. The majority of published literature on AZ80 mechanical properties has focused on the static 

and fatigue properties of extrusion [3]–[14] cast [15]–[17][8] and plate [18] AZ80 Mg. Several 

researchers have investigated the fatigue behaviour of as-cast and wrought (extrusion, rolled plate/sheet) 

AZ80 Mg in stress-controlled [3]–[5], [8]–[12], [19]–[22], strain-controlled [12][13][18][23], and fatigue 

crack growth rate [5], [9], [24], [25] testing.. Zhou et al. [16] investigated the hot workability 

characteristics of as-cast AZ80 Mg and found that at temperatures below 300°C and strain rates of 10
−2

 

s
−1

, flow localization bands limit the materials ductility, making it difficult to deform. They also studied 

the dynamic recrystallization (DRX) behaviour and found that it occurred over a temperature range of 

425°C–500°C. Quan et al. [17] investigated the hot deformation characteristics of cast-homogenized 

AZ80 at 350°C and found a decrease in average grain size with an increase in strain rate. The observed 

average grain size of the cast material was 240 μm. Following deformation, (total height reduction of 

60%) at 350°C, the grain size was refined to 120, 110, 94, and 50 μm under stain rates of 0.01, 0.1, 1, 10 

s
−1

, respectively. Nový et al. [8] investigated both the static and very high-cycle fatigue (VHCF) 

properties using ultrasonic push-pull stress-controlled testing. In as-cast AZ80, they observed a yield and 

ultimate strength of 107 and 130 MPa, respectively. They found ductility to be very limited with a failure 

elongation of only 2%, and prominent intermetallic content with sizes ranging from 5–20 μm. They also 

observed that only surface-induced cracks occurred in AZ80 under cyclic loading, with no observed 

endurance limit. They also discussed the finding that primary fatigue crack initiation sites are governed by 

microscopic defects such as pores, inclusions, or intermetallics in the low-cycle fatigue (LCF) to high-

cycle fatigue (HCF). In contrast, they observed that in the VHCF, fatigue crack initiation is mostly 

controlled by the properties of the matrix, while the role of microscopic defects is minimal. Shiozawa et 

al. [12] performed LCF strain-controlled tension-compression fatigue tests on Mg extrusion AZ31, AZ61, 

AZ80;AZ80 had superior fatigue properties relative to the other alloys [26]. They also observed that in 

strain-controlled fatigue testing, a tensile mean stress was developed, caused by the tension/compression 

yield asymmetry typical of textured Mg alloys and the resulting twinning-detwinning cyclic deformation 

mechanism. They utilized a total strain energy density-based model, first developed for rolled AZ31 by 

Park et al. [27] as a modification to the well-known Morrow model, to reliably predict the fatigue life of 

extruded AZ80 Mg alloy. More recently, Wang et al. [23] utilized this modified Morrow model to 

successfully predict the LCF life of extruded AZ80 using a total strain energy density-based approach.   

Many researchers have focused on the high temperature deformation behaviour of forged AZ80 [4] 

[6][7][15]–[17][20][22][28]–[37]. However, studies that discuss the effect of thermomechanical history 

resulting from the forging process on the tensile/compressive and fatigue properties of AZ80 after forging 

are limited. Kobold et al. [28] performed both axial and radial open die forging of extruded AZ80-T5 at 

rates of 5–20 mm s
−1

, and observed no significant differences in the anisotropy of the material flow 

regardless of the forging direction. Furthermore, they concluded that the optimal isothermal forging 

temperature was 350°C, and that the optimum condition tends toward lower temperatures and higher 

strain rates. Kurz et al. [6] observed in die-forged AZ80-F that increasing the forging temperature 

decreases the mechanical strength, but enhances ductility as a result of an increase in grain size and more 

homogeneous microstructure. They also concluded that at higher deformation rates (300–400 mm s
−1

), 

lower forging temperatures (240°C) are desirable. Rivers et al. [22] investigated the stress-controlled 

fatigue of samples machined from a forged AZ80 automotive wheel and observed an fatigue strength of 

approximately 98 MPa. The effect of the forging process on the strength, ductility, and strain-controlled 

fatigue behaviour of AZ80 has yet to be investigated in detail. 



  

In this study, the effect of forging parameters on the tensile/compressive and forging on fatigue 

behavior of AZ80 was examined in detail and compared with the as-cast condition. A texture and 

microstructural link between the mechanical behavior of as-cast and forged AZ80 was established. The 

effect of material orientation on the tensile and compressive behavior of AZ80 is also discussed. Results 

from a complete fully reversed fatigue test results spanning from LCF to HCF are presented. Coffin-

Manson and energy-based fatigue properties of as-cast and forged AZ80 were obtained, and the suitability 

of energy-based fatigue parameter in predicting the life of AZ80 was examined.   

2. Material and Experiments 

The material used in this investigation was commercially-available AZ80 Mg alloy (8.0 ±0.2% Al 

content, with other elements composition as per ASTM B91-12 standard). The material was received 

from Magnesium Elektron North America Inc. in the form of an as-cast billet with a diameter of 300 mm 

and a length of 500 mm in the as-fabricated condition. The forging of the material was conducted at 

CanmetMATERIALS (Hamilton, Canada) using billets (⌀ 63.5 mm, 65-mm long), which were machined 

from the 300-mm diameter AZ80 casting at a position of 70% of the radius. All forging trails were carried 

out on a 500-ton hydraulic press with an upper and lower platen (die), which were both flat. Two forging 

temperatures (350 and 450°C) were examined. The billet and tooling were heated separately to the same 

temperature. The orientation of the billet to the press was such that the radial direction was along the 

direction of the press stroke (i.e. direction of forging was coincident to the radial direction of the billet). 

Forging was carried out at two different displacement rates (39 and 390 mm/min), which fall within the 

slower regime of die forgings presented by Kevorkijan et al. [37]; however the approximate average strain 

rates presented in this study lie between those presented by Kevorkijan et al. [37] and Kurz [6]. For the 

quasi-static study, three forging conditions investigated in this study will subsequently be referred to as 

S1 (350°C and 39 mm min
−1

), S2 (450°C and 39 mm min
−1

), and S3 (450°C and 390 mm min
−1

). The cast 

and machined billets were forged to a height of 13 mm, then air cooled. Graphite lubricant was used to 

coat the surface of every billet prior to forging. Although the die temperature remained almost constant 

throughout the test, heat loss to the surrounding air during forging was expected for the billet, particularly 

for the slower forging rate condition. Figure 1(a) and (b) show the orientation for which the 

metallographic, tensile, and fatigue-tested specimens were extracted from both the cast and forged billets. 

LD, RD, TD, and FD represent longitudinal, radial, transverse, and forging directions, respectively. All 

specimens were extracted from a point located at 75% of the radius of the as-cast billet. All specimens 

extracted from the forged billets had axes oriented in the longitudinal direction.   

 

 

 
 
 

 
Figure 1 - Schematic image showing tensile/fatigue and compression sample extraction from (a) the as-cast billet, (b) the sample 
forged at 39 mm min−1 and 350°C 

(a) (b) 
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The metallographic samples were prepared following the metallographic techniques outlined in 

ASTM E3-11 with acetic-picral etchant similar to that used by Roostaei et al. [38]. The microstructure 
was observed using a light optical microscope (LOM) and a scanning electron microscope (SEM), 

coupled with energy-dispersive X-ray spectroscopy (EDS). The average grain intercept method is used to 

quantify the grain size. The texture measurements were performed on polished samples using a Bruker 

D8-Discover equipped with a VÅNTEC-500 area detector, with a radius of 135 mm and using Cu-Kα 
radiation at 40kV and 40 mA. During the measurement, the incident beam and the detector were placed at 

a fixed 2θ angle of 40°. The collimator size was 1.0 mm. The sample was mounted on the motorized 

stage, which was oscillated at an amplitude of 1.5 and 2.5 mm, and a speed of 3.5 mm s
−1

 and 5.5 mm s
−1

 
for the X and Y axis, respectively. The samples were tilted between 0 and 75°, with a step of 15° 

considered as the Ψ-scan, while the sample rotation, known as Φ-scan, was between 0 and 360°, with a 

step size of 5°. The sample was scanned for 20 s at each orientation. The Debye–Scherrer diffraction rings 
were collected using the area detector in a 2-D diffraction image.  Then, the incomplete pole figures for 

the {0002}, {10  0}, {10  1}, and {1  02} planes were extracted from the diffraction rings. The complete 

pole figures were then calculated using the DIFFRAC.Suite: Texture software. 

Tensile test samples with geometries according to Roostaei et al. [38] were extracted from the as-

cast billet and flatbread shape forged samples as shown in Figure 1 (a),(b). The thickness of the samples 

extracted from the as-cast billet was 4 mm, and from the forged billet was 6 mm. The quasi-static tensile 

tests were performed according to ASTM standard E8/E8M-15a using an 8874 Instron Servo-Hydraulic 

test machine operating in displacement control mode. Compressive test samples of cuboid geometry with 

side lengths of 7.6 mm were extracted as shown in 

 

 

 

Figure 1(a) and (b). The quasi-static compressive tests were performed using a MTS 810 Servo-Hydraulic 

test machine operating in displacement control mode. For both compressive and tensile monotonic tests, 

the displacement rate of the crosshead was 1 mm min
−1

. Strain measurement was accomplished using a 

GOM ARAMIS 3D 5MP DIC system. The average strain rate within the gauge section of measurement 

for both tests were 1.4E−3 sec
−1

.  

The fatigue tests were performed as per ASTM E606 in an ambient environment using a MTS 810 

Servo-Hydraulic test machine operating in strain control mode at a frequency range of 0.25–2 Hz. Strain 

was measured and controlled using a MTS 632.26 extensometer with a 6-mm gauge and travel of ± 1.2-

mm, until stabilization of the cyclic hysteresis loop was achieved; for HCF tests with elastic response, the 

test was switched to force control mode, and the frequency was increased to 30 Hz. The tests were 

conducted at a zero mean strain (i.e., RL = −1, fully reversed strain cycle) and strain amplitudes of 

between 0.1% and 1.4%. Failure criteria for the test was considered to be a 50% drop in peak load during 

strain control mode or final rupture of the specimen gauge section in force-control mode. The fracture 

surfaces after tensile and fatigue tests were examined using SEM techniques (JEOL JSM-6610LV SEM 

equipped with AZ-TEC EDS). 

3. Results and Discussion 

3.1 Microstructure and Texture 

As depicted in Figure 2(a) and (c), the as-cast sample was found to consist of primarily α-phase, in 

which aluminium-rich β-phase (Mg17Al12) is precipitated along the grain boundaries. This agrees with the 

microstructure of as-cast AZ80 observed by Nový et al. [8], the grain morphology of which was similar to 

that observed here, while the average grain size (80–140 µm) was slightly more refined than that observed 



  

in this study. The forged conditions S1, S2, and S3 (Figure 2(b), (d), (e)–(h)) all exhibit a recrystallized 

microstructure with fairly homogeneous grain morphology, albeit “pancake”-like in nature. For all forged 

conditions, the precipitate morphology observed at higher magnifications have a discontinuous 

intergranular structure, which is similar to that observed by Lai et al. [39] in extruded AZ80 that was aged 

at 300°C for 1 hr, which is comparable to the thermal history experienced in the forged samples presented 

in this study. The average grain size for the forged conditions ranged from 14.1–34.4 µm, with condition 

S1 (Figure 2(b)) having the most refined microstructure. As the forging temperature and rate increase, the 

observed average grain size also increases (Figure 3).   

Figure 2 illustrates the as-cast and forged conditions S1 ((b), (d)), S2 ((e), (g)), and S3 ((f), (h). The 

as-cast condition (Figure 2 (c)) exhibits randomized basal (0002) and prismatic         texture. All 

forged conditions (Figure 2 (d), (g) and (h)) exhibit strong basal texture. Based on the basal pole figures, 

it is clear that the c-axis orientation of the forged material is coincident with the forging direction; similar 

reorientation of the c-axis due to forging has been reported by several researchers [40]–[42]. Previous 

work by Gryguc et al. [43] on axially and radially forged AZ31B extruded billets show an analogous c-

axis reorientation in extruded AZ31 following forging. The effect of forging on the initial random texture 

is a local reorientation of newly recrystallized grains, causing their crystal axis to align with the forging 

axis as the deformation progresses. This causes the basal texture strengthening to be planar in nature for 

all forged conditions. Wang et al. [44] found that in both extruded and sheet AZ31 Mg, following 

significant plastic strain, most c-axis orientations, which are favourable for twinning, will re-orient 

themselves to the direction of forging; this directly supports the findings presented here. The texture 

intensity in the forged material is inversely correlated to temperature, with very weak sensitivity to 

forging rate. The changes in grain size and basal pole figure intensity as a function of forging condition 

are depicted in Figure 3. The highest basal intensity and lowest grain size were achieved at the lower 

temperature (350°C) and forging rate (39 mm min
−1

). An increase in temperature had the effect of 

decreasing texture intensity and increasing average grain size. This observation agrees with earlier 

findings of several other researchers [35][33][45]. 

Many researchers have investigated the effects of processing parameters on the mechanical 

properties of AZ80 using simple compressive upset testing using Gleeble thermomechanical testing 

equipment. Quan et al. [17] investigated the effect that strain rate had on cast AZ80 at 350°C. They found 

that with a total height reduction of 60% (lower than the 80% height reduction considered in this study), 

grain refinement is more pronounced at higher strain rates as a result of more vigorous DRX behaviour. 

Liu et al. [46] presented similar findings for cast AZ91 Mg at various temperatures (250–450°C); they 

revealed that the effect of increasing strain rate was an increase in grain refinement, while an increase in 

temperature caused grain growth and improved microstructure homogeneity. Lou et al. [26] presented 

analogous results when investigating the effects of strain rate on extruded AZ80 at temperatures ranging 

from 250–450°C, both of which support the finding of this study that lower temperature forging 

conditions results in more refined microstructure (Figure 2). However, other researchers have observed 

that an increase in strain rate resulted in more vigorous grain refinement on their temperature-controlled 

Gleeble specimens, which were water quenched following testing [17][26][46]. These results differ from 

those presented here (Table 1, Figure 2) as condition S3 (390 mm min
−1

) has an average grain size that is 

~13 µm larger than condition S2 (39 mm min
−1

). This can be attributed to the fact that during forging, 

only the die temperature and initial billet temperature were controlled, unlike the conditions of the 

Gleeble tests, in which the billet temperature is controlled throughout deformation. Since the heat of 

deformation is greater for the higher rate forging, the temperature rise due to deformation in condition S3 

would be larger than that in S2, potentially causing the observed grain growth. Additionally, following 

deformation, the forgings were left to air-cool, unlike the water quenching following the Gleeble tests. 



  

Finally, this difference can be attributed to the difference between the style of forging during a Gleeble 

test (axial upset of small cylindrical sample) and this study (radially upset bulk forging). The lower 

temperature forging condition S1 is considered to produce the best microstructure of all three samples, 

based on the more refined and recrystallized morphology it possesses. At the higher temperature (450°C) 

forgings (S2 and S3), microstructure homogeneity further improved, and was coupled with grain growth 

and apparent refinement in β-phase morphology.   



  
  

 

  

 

Figure 2 - Typical LOM microstructure and XRD pole figures for As-Cast ((a) and (c)),  forged condition S1 ((b) and (d),  forged 
condition S2 ((e) and (g)), and forged condition S3 ((f) and (h)) 

(a) (b) 

(c) (d) 

(f) (e) 

(g) (h) 

β-phase 

β-phase 

β-phase 
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Figure 3 - Relationship between basal pole figure max intensity and average grain size for as-cast and forged conditions (S1, S2, 
and S3) 

3.2 Monotonic and Cyclic 

Table 1 summarizes the test results of the investigated samples. Figure 4(a) and Figure 5(a) show the 

engineering stress-strain response in tension (Figure 4(a)) and compression (Figure 5(a)) for the as-cast 

and forged (S1, S2, and S3) materials in the longitudinal direction.  

Table 1- The relationship between microstructural, monotonic, and cyclic properties of as-cast and forged AZ80-F Mg alloy. 
Tensile properties are presented first, followed by compressive properties in parenthesis.  

ID 

Forging 

rates 

(mm/min) 

Forging 

Temperature 

(°C) 

Grain 

size  

(µm) 

σYS  (MPa)
 

εFail 

(%) 

σULT
 

(MPa) Monotonic Cyclic 

Cast As-Cast - 178.9±67 82.2 (93.8) 147.0 (153.5) 8.5 (15.3) 234.1 (318.2) 

S1 39 350 14.1±0.7 173.8 (124.5) 

258.3 (145.4) 

14.1 (8.5) 311.9 (373.0) 

S2 39 
450 

21.8±2.4 176.9 (111.2) 15.8 (9.6) 310.6 (366.7) 

S3 390 34.4±2.7 181.7 (69.2) 14.2 (8.3) 306.1(325.9) 
 

It can be seen that the yield, ultimate strength, and, in some cases, the fracture strain substantially increase 

following forging. In general, substantial increases in tensile yield stress and fracture strain were observed 

in the material after forging. This was coupled with a moderate increase in compressive yield strength, 

tensile ultimate strength, and compressive ultimate strength after forging. However, the fracture strain in 

compression decreased to some degree in all of the forging conditions. The increase in mechanical 

properties of as-forged compared to as-cast condition is attributed to the grain refinement and texture 

intensification that arises from the reorientation of the randomized c-axis orientation in the as-cast 

material in the direction of deformation once forged. All forging conditions have very similar monotonic 

yield/ultimate strengths and hardening behaviours under tension. At the higher temperature (450°C) 

forgings (S2 and S3) a reduction in compressive yield and ultimate strength was observed, but the tensile 

strength remained similar to all other forged conditions. This trend partially agrees with findings 

presented by Kurz et al. [6] for AZ80 die forgings, who also reported a decrease in tensile strength at 

higher temperatures.  
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Figure 4(b) and Figure 5(b) show a comparison of the cyclic vs. monotonic stress-strain curves 

for both the as-cast and forged material in tension (Figure 4(b)) and compression (Figure 5(b)). The cyclic 

tension and compression stress-strain curves were constructed from the peak and valley stresses for the 

stabilized cycle during fatigue testing for each respective strain amplitude. Stabilized cycle is the cycle at 

50% of the number of cycles to failure. In general, data from the forged conditions S1, S2, and S3 follow 

the same cyclic tensile stress-strain curve. For this reason the fatigue results of the three conditions will be 

presented collectively.  

The compressive stress-strain curves shown in Figure 5(a) illustrate evidence of mixed hardening 

in the as-cast condition and purely sigmoidal hardening behaviour for all forged conditions. As expected 

from the random texture shown in Figure 2(c), the as-cast material exhibited nearly symmetric yield 

strength in tension and compression, with slip and diffused twinning being dominant in both directions. In 

contrast, the forged material exhibits a very asymmetric yielding response, with the degree of asymmetry 

increasing as both temperature and forging rate increase (Figure 6a). Based upon the hardening responses 

seen in forged conditions S1, S2, and S3, and the strong basal texture shown in Figure 2(d), (g), and (h) 

the deformation mechanism in tension is dominated by basal slip (as the direction of loading is parallel to 

the basal plane), and the deformation in compression is dominated by twinning (extension twinning 

activated via extension along the c-axis). This sigmoidal behaviour, characterized by three distinct 

hardening stages, has been discussed by other researchers  [49][43].  

Under cyclic loading, the as-cast and all 3 forged conditions show cyclic hardening, where the 

increase in peak and valley stresses is relative to those of the monotonic results. As seen in Figure 4 and 

Figure 5, the as-cast material exhibits very similar cyclic hardening in tension and compression, with the 

peak stresses observed in the stabilized cyclic response being 73 MPa higher than those observed in the 

monotonic response at and beyond strain amplitudes of 0.9%. The forged material however, shows more 

pronounced cyclic hardening in tension, with the highest degree of hardening occurring at a strain 

amplitude of 1.1%, corresponding to an increase of 80 MPa in peak (tensile) stress and 58 MPa in valley 

(compressive) stress relative to the monotonic response. Figure 6(b) illustrates the change in yield 

strengths following cyclic hardening for both the as-cast and forged material. There is an increase of 62 

MPa in the yield strength of the cast material in tension and compression, and asymmetric increases of 81 

MPa in tension, and 34 MPa in compression for the forged material. The asymmetric hardening responses 

of conditions S1, S2, and S3 is attributed to the differences in the deformation mechanism in tension and 

compression reversals, induced by the texture intensification via forging.  

 



  
 

Figure 4 – Tensile (a) monotonic and (b) cyclic stress-strain curves for as-cast (black) and forged Mg (red) 

  

Figure 5 – Compressive (a) monotonic and (b) stabilized cyclic stress-strain curves for as-cast (black) and forged Mg (red) 

  

Figure 6 - Summary of (a) monotonic yield strengths and (b) change in yield strengths following cyclic testing for both the as-
cast (black) and forged (red) material in tension and compression. 
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Figure 7 illustrates the hysteresis loops for the first cycle, and stabilized cycles for both the as-

cast and forged conditions at a strain amplitude of 0.5%. It can be seen that the peak stresses at the “apex” 

of both the upward and downward (i.e. reverse loading) reversal are very similar in the cast material 

(Figure 7 a) for the first and stabilized cycles. The cyclic hardening is also evident from the significant 

increase in peak stresses from the first cycle to the stabilized cycle; this increase is similar in both tension 

and compression. The area within the stabilized hysteresis loop represents the dissipated plastic strain 

energy density, and is calculated to be 0.5 MJ m
−3

 in the case of the cast material at a strain amplitude of 

0.5%. In contrast to this, the forged material (Figure 7(b)) exhibits an initial response (first cycle) that is 

asymmetric, with different curve shapes for the upward and downward reversals, indicative of the 

occurrence of different deformation mechanisms. The peak stress in compression evolves only marginally 

as the number of cycles increase, whereas the peak stress in tension increases considerably from the first 

to the stabilized cycle. This indicates vigorous hardening in tension, and only negligible hardening in 

compression. In the stabilized cycle the peak stresses in tension are about 77 MPa greater than those in 

compression, further reinforcing the asymmetric cyclic response of the forged material. As compared with 

the cast material, the cyclic plastic energy density of the forged material is 0.31 MJ m
−3 

(38% lower), 

indicative of a more elastic response at a strain amplitude of 0.5%. 

Figure 8 illustrates the hysteresis loops for the first and stabilized cycles for the as-cast and forged 

materials for a high strain amplitude (1.0%). Similar to the observations at a 0.5% strain amplitude, at 

1.0% the as-cast material exhibits cyclic hardening with the peak stresses increasing both symmetrically 

and considerably up to the stabilized cycle, with only a marginal disparity in the peak stress in tension and 

compression observed in the stabilized cycle. In the forged material, the asymmetric response is even 

more pronounced at a strain amplitude of 1.0%, with the peak stabilized tensile stress being 114 MPa 

greater than that observed in the downward reversal. Cyclic hardening is now observed in both tension 

and compression in the forged material as the peak stresses both evolve over a cumulative number of 

cycles; however, the hardening is much stronger in tension than in compression. Both materials exhibit 

significant plasticity at the higher strain amplitude of 1.0%, as the cyclic plastic energy density of the 

stabilized as-cast and forged responses are 2.0 MJ m
−3 

and 1.55 MJ m
−3

,
 
respectively. Furthermore, the 

trends in the level of asymmetry observed in the monotonic response also occurred in the cyclic response 

of the forged material, but not in the cast material.  

The asymmetric cyclic response in textured HCP Mg alloys at higher strain amplitudes have been 

attributed to detwinning and slip-dominated deformation in tension, and twinning-dominated deformation 

in compression when loading is in the direction perpendicular to the c-axis [27] [50]–[52]. The downward 

reversal of such materials is characterized by a lower yield strength (as illustrated in forged conditions in 

Figure 6(a)) followed by a hardening plateau, which is observed in all forged conditions in this study. The 

extension twinning deformation process observed in compression is facilitated by a reorientation of the 

crystal lattice by 86.3° towards the direction of loading [43], subsequently putting a large proportion of 

unit cells in an orientation that is favourable to detwinning upon reverse loading, as the loading axis is 

now almost aligned with many of these newly re-oriented unit cells, again activating extension twinning 

in the successive upward (i.e. forward loading) reversal [53][54][43]. However, this twinning-detwinning 

process is only slightly reversible in nature and detwinning is typically exhausted prior to the end of the 

reversed tensile loading. This is accompanied by a sharp increase in hardening rate, and consequently a 

higher tensile peak stress (relative to compressive peak stress) [27]. The shape of the upward reversal 

response in all forged conditions (especially in the stabilized cycles) shows strong evidence of this 

aforementioned behaviour, further supporting the concept of texture-induced asymmetry.  



  

  

Figure 7 - Axial cyclic behaviour of AZ80 at a strain amplitude of 0.5% in (a) as-cast and (b) forged samples  

 

Figure 8 - Axial cyclic behaviour of AZ80 at a strain amplitude of 1.0% (a) as-cast and (b) forged samples 

Figure 9 shows the plastic strain response vs. number of cycles throughout the fatigue tests for the 

as-cast and forged materials at strain amplitudes of 0.5% and 1.0%. As expected, higher strain amplitudes 

correspond to larger plastic strain components. Furthermore, there is a decrease in maximum plastic strain 

with number of cycles for both materials and at all strain amplitudes, supporting the cyclic hardening 

observation discussed earlier. It can be seen that the plastic strain observed in compression is similar 

between the as-cast and forged materials; the only difference being a higher number of cycles to failure in 

the forged material. This is due to the similarity in the cyclic yield and flow curve as depicted by Fig. 5b.  

However, in tension, there is a stark contrast between the plastic strain of the as-cast and forged materials 

(Figure 9). At a 0.5% strain amplitude, the forged material exhibits 39% less plastic strain than the as-cast 

material. At a 1.0% strain amplitude, this difference decreases to 25%, but is still considerable, 

confirming a higher elastic response and higher cyclic yield strength in the forged material. This 

difference in the plastic strain observed in tension can be directly attributed to the exhaustion of 
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detwinning in the upward reversal and the associated sudden increase in hardening rate and peak stress, as 

previously discussed [55]. 

Figure 10 shows the evolution of mean stress vs number of cycles for various strain amplitudes. 

For all strain amplitudes of the as-cast material, a negligible amount of mean stress develops. In contrast, 

in the forged material, a significant amount of mean stress (ranging from 15–55 MPa) develops, with 

higher mean stresses being typical of larger strain-amplitude fatigue tests. These findings are similar to 

those discussed earlier (e.g., [27] for AZ31B rolled sheet). The forged material responses are 

characterized by a fairly consistent increase in mean stress, which reaches a maxima prior to failure. The 

peak values of mean stress for the forged material are 30, 44, 48, and 57 MPa at strain amplitudes of 

0.3%, 0.5%, 0.7%, and 1.0% respectively. The increase in mean stress occurs at a proportion of the total 

life of the material; this increase ranges from 20–90% depending on the strain amplitude. At low-strain 

amplitudes (0.3%) the peak mean stress occurs at a cycle count equivalent to 20% of the number of cycles 

required to cause failure. At higher strain amplitudes (1.0%, Figure 10) a higher proportion of cycles 

(close to 75%) of the total life is required to reach maximum mean stress 

Figure 11 shows the stabilized cyclic response for the (a) as-cast and (b) forged materials at a 

variety of strain amplitudes. There is apparent symmetry in the as-cast material cyclic response, and 

hardening behaviour analogous to that observed in the monotonic response (evidence of predominantly 

slip in tension and weakly mixed-mode hardening (slip and diffuse twinning) in compression). In 

contrast, the forged material (Figure 11(b)) shows asymmetry with a sigmoidal downward reversal shape 

and a pronounced shift in hardening behaviour in the upward reversal. This upward reversal response is 

not observed in monotonic tension as the strain history plays a role in the deformation mechanism, i.e. the 

first cycle, which starts in tension, shows a response identical to that of the monotonic test. However, the 

stabilized response has a high propensity to detwin in the upward reversal due to the reorientation of the 

c-axis resulting from the extension twinning experienced in the previous downward reversal. This 

phenomenon occurred regardless of forged material condition or strain amplitude, though evidence of it 

was more pronounced at higher strain amplitudes. The observation that the texture intensification due to 

forging results in an asymmetric response in both a monotonic and cyclic manner is supported by 

previous work on other textures, and on material processing methods of various wrought Mg alloys [18], 

[23], [27], [38], [42], [50], [54], [56], [57]. 



  

 

Figure 9 – Plastic strain response during strain-controlled cyclic testing showing variations in peak tensile and compressive 
plastic strain vs. number of cycles for both as-cast (black) and forged material (red), at 1.0% and 0.5% strain amplitudes 

 

Figure 10 - Stress response during strain-controlled cyclic testing showing variations in mean stress vs. number of cycles at 
various strain amplitudes (results for 0.3% are only shown up to 10,000 cycles) 
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Figure 11 - Stabilized cyclic axial behaviour of (a) as-cast and (b) forged AZ80 Mg alloy 

3.3 Fatigue Life 

Figure 12 shows the strain-life (ε-N) curve obtained from strain-controlled fatigue testing of the as-

cast and forged samples. The data points represent all of the test results, which were conducted on the as-

cast and forged material. The dashed lines represent the Coffin-Manson curves for both material types. 

The forged material has a longer life across all strain amplitudes compared to the cast material. The 

improvement in life as a result of forging ranges from a factor of approximately 2 times greater in the 

LCF regime at a 1.4% strain amplitude, to 5 times greater in the HCF regime at a 0.3% strain amplitude. 

The tests that did not fail after 10
7
 cycles are considered to be “run out” and are denoted with an arrow in 

the figure.  

Also shown are the stabilized responses for the as-cast and forged materials at strain amplitudes of 

0.3%, 0.7%, and 1.4% plotted on the same axis of engineering stress and strain to facilitate a direct 

comparison between them. The downward reversal response is similar (in terms of peak stress) between 

the as-cast and forged materials; however the tensile peak stress in each hysteresis loop is much greater in 

the forged material. It is well known that a tensile mean stress, as exhibited by the forged materials in this 

study, has a detrimental effect on fatigue life [12]. This implies that the forged material would exhibit a 

shorter life because of the presence of positive mean stress. However, the plastic energy density or cyclic 

energy (area inside the hysteresis loop) is also considerably lower in the forged material for all strain 

amplitudes, indicative of a lesser extent of incurred damage per cycle and a corresponding increase in 

fatigue life.   
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Figure 12 – ε-N curves for as-cast (black) and forged (red) AZ80 Mg alloy obtained at strain amplitudes between 0.1 and 1.4% 

3.4 Fracture Mechanisms 

Scanning Electron Microscope images showing the macroscopic features of the fracture surface of 

the fatigue specimens are shown in Figure 13(a) and (c). All samples exhibited fatigue crack initiation 

(FCI) at the specimen surface. The as-cast material (Figure 13(a)) exhibits a fracture surface with a 

faceted morphology, substantial cleavage-like terraces, and widespread macroscopic striations of varying 

orientations. These distinct features show evidence of mixed deformation dominated by slip over a large 

portion of the area. The random facet orientation is indicative of varying crystal orientations associated 

with the randomized texture of the as-cast material. Terrace edges appear to correspond with grain 

boundaries, as they demark thresholds of varying macro-striation orientations. The propagation zone is 

also comparatively rough relative to the forged sample (Figure 13c). In contrast, the forged sample 

exhibited a distinct FCI with radially branching beach marks and a large propagation zone, which is much 

flatter and more stable than the as-cast condition. The final fracture zone is located opposite to the FCI 

location, indicating stable crack propagation in a direction approximately perpendicular to the initial 

fatigue crack propagation direction, as is typical with R= −1 strain-controlled fatigue testing. Guo et al. 

[15] investigated the fracture behaviour of cast-homogenized AZ80 Mg alloy that was processed via 

multi-directional forging. They observed that cracks initiated at the brittle Mg17Al12 particles, and then 

propagated and coalesced along grain boundaries [15]. Crack initiation tends to occur at the brittle second 

phase particles in AZ80 Mg alloy [18][10][5]. The presence of dimpled final fracture surface morphology 

is the main characteristic differentiating the forged from the as-cast conditions. The depth of the dimples 

is an indicator of ductility, with deeper dimples occurring as a result of more plasticity. Xiong et al. [18] 

observed that dimple-like features were evident in the final fracture region of rolled AZ80 fatigue 

specimens, tested in a direction perpendicular to the c-axis(the LD orientation of fatigue samples in the 

forgings presented here is also orthogonal to the c-axis). This agrees well with the more ductile tensile 
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monotonic response of the material following forging. The final fracture zone surface morphology is 

shown in Figure 13 (b) and (d). The as-cast material (b) shows some evidence of ductility, as well as 

dendrite tear-out morphology with a faceted structure. The forged sample (d) showed more evidence of 

ductility, including a surface morphology with pronounced dimpling, and a terrace-like structure 

supporting the observation of more plastic fracture behaviour. 

 

 

Figure 13 - Fracture surfaces of the as-cast ((a) and (b)) and forged conditions ((c) and (d)) for samples tested at a strain 
amplitude of +/- 0.3%. As-cast sample fractured at 15, 644 cycles and forged sample at 66, 171 cycles. FCI denotes the fatigue 
crack initiation location and arrows denote the approximate propagation direction. Images (b) and (d) show a detailed view of 
the surface morphology in the final fracture (FF) zone.  

3.5 Fatigue Life Modelling  

To quantitatively compare the damage incurred during cyclic loading in wrought Mg, numerous 

fatigue damage parameters, including stress, strain and energy-based parameters, have been proposed 

[42][56]. As exhibited in Figure 4, some forms of AZ80 may display perfectly plastic cyclic behaviour, 

post cyclic yield, or even cyclic softening, since within an arbitrary range of applied strain amplitudes, the 

stress may remain constant or may decrease. While successful attempts have been made to model fatigue 

life of Mg alloys using stress-based damage model (e.g., [58]for hot-rolled AZ31B) , in general stress-

based fatigue models are not ideal as they cannot accurately capture fatigue damage inflicted under these 

ranges of deformation conditions. The objective of the following is to investigate the suitability and 

accuracy of existing strain and energy based models at predicting the fatigue life of AZ80 as-cast and 

forged material. The strain-based critical plane SWT model and energy based Jahed-Varvani models are 

examined here.  
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3.5.1 Smith-Watson-Topper: SWT Model 

The SWT parameter [59] was initially formulated to account for the mean stress effect during fatigue 

loading. Modified versions of this model have been extended for use in multiaxial life predictions of Mg 

alloys using a critical plane method with good success [60]. The SWT parameter is related to fatigue life 

in terms of four different material constants: 

      

   
 

  
  

 
 

 
     

     
  

 
      

    

The term     represents the principal strain range,        represents the maximum stress on the plane of 

principal strain, and E, the modulus of elasticity (in the case of Mg E=44 GPa). The Coffin-Manson 

constants on the right hand side of the equation were extracted from strain-controlled test results, as 

shown in Figure 14(a) and (b), and are summarized in Table 2. The symbols shown represent the 

experimental data extracted from the stabilized hysteresis loops for both the as-cast and forged material, 

and the dashed lines represent a fit to the elastic and plastic parts of strain. The elastic part of the strain 

range was calculated from         , and the plastic strain range was obtained from           . 

Figure 14(c) shows the calculated SWT parameter for both the as-cast and forged material fatigue data as 

a function of cycles to failure. Both the as-cast and forged materials can be expressed using power-law 

fits, albeit with unique constants for each material. This implies that the SWT damage parameter for the 

forged material is higher than that of the cast material. This is expected as the maximum normal stress is 

higher in the tensile peak of the stabilized response in the forged material than in the cast material at an 

equivalent strain amplitude. Using the parameters given in Table 2, the fatigue life was predicted for both 

the as-cast and forged materials, and is plotted versus the experimental life in Figure 14(d). The solid 

diagonal line denotes a correlation match between the predicted and experimental life, and the dashed 

lines represent bounds that envelop deviation from this match by a factor of 2. The vast majority of life 

estimations fall within these bounds of a factor of 2, with almost equal numbers of data being under and 

over predicted. For both the as-cast and forged materials, the LCF regime seems to be conservative in its 

prediction, and trends towards slightly non-conservative in the HCF regime. One of the reasons for 

conservative predictions in the LCF regime is that the stabilized responses are used as model inputs, and 

for materials that cyclically harden, the stabilized cycles are more damaging than the initial ones (as the 

peak stresses are higher). Since the “transient” phase of hardening is a non-negligible portion of the life 

for the LCF regime, a proportion of the cycles experienced by the experimental samples undergo slightly 

less damage than predicted, as their peak stresses are lower. This is, however, a minor discrepancy and 

the assumption that the stabilized response is used is widely accepted in the literature. The coefficient of 

determination is R
2
 = 0.94 for the as-cast prediction, and R

2
 = 0.98 for the forged material prediction.  

Table 2 - Coffin-Manson parameters for SWT model for cast and forged AZ80 Mg 

ID 
σf
’ 

(MPa)
 b εf

’ c 

As-Cast 479.6 -0.141 0.2714 -0.577 

Forged 598.4 -0.131 0.3395 -0.576 



  

 

Figure 14 - Strain-life data used for extracting Coffin-Manson constants in (a) as-cast and (b) forged AZ80 Mg; (c) SWT damage 
parameter evolution with number of cycles to failure for both as-cast and forged AZ80 Mg; and (d) the correlation between SWT-
predicted fatigue life and experimental life for both as-cast and forged AZ80 Mg 

3.5.2 Jahed-Varvani – JV Energy-based Model  

Energy-based fatigue damage models have been used by many researchers for modeling the fatigue 

life of Mg alloys, e.g., Park et al. [27][61] in rolled AZ31, Xiong et al. [18] for rolled AZ80, Jahed et al. 

[62] for many different Mg alloys and conditions, and Albinmousa et al. [63] for AZ31 under multiaxial 

loading to predict the fatigue life of wrought Mg alloys. In this study, the JV model [64] is utilized. The 

significance of this life model is in the evaluation of the fatigue material constants from energy-life curve. 

In this model, the total energy density is implemented as a damage parameter and is constituted by its 

elastic and plastic components. The plastic component is defined as the area enveloped by the stabilized 

hysteresis loop and the elastic component is defined as the following equation[65]: 
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where      is the peak tensile stress. Adding the positive elastic strain energy density, the mean stress 

effect is also taken into account in this model [65] and subsequently the energy damage parameter    is 

related to fatigue life via an analogues equation of similar form to the Coffin-Manson equation. [64][66], 

where    is the strain energy density: 

      
      

    
      

  

Coefficient   
 
 correspond to the fatigue toughness and   

 
 is the fatigue strength coefficient. Exponents 

C and B are the fatigue toughness and fatigue strength exponents, respectively. The constants in the above 

equation are extracted from the strain energy density life curves presented in Figure 15 for the as-cast and 

forged materials, and those parameters are summarized below in Table 3. The same fatigue data extracted 

from the set of tests performed in this study used in the strain-based prediction results in Figure 14 are 

used in calculation of these energy-based model parameters. The symbols in Figure 15(a) and (b) 

represent this aforementioned fatigue data, and the dashed lines represent the fits to elastic and plastic 

portions of the energy density. Figure 15(c) shows the calculated energy damage parameter for both the 

as-cast and forged material fatigue data as a function of cycles to failure. Both the as-cast and forged 

materials can be expressed using very similar curves, as the data points almost consolidate onto one single 

curve. This can be attributed to the competing effect forging has on the magnitude of elastic and plastic 

components of the damage parameter. For a given strain amplitude, the forged material has a higher 

tensile peak stress causing the elastic energy to be higher, and less enveloped within the stabilized 

hysteresis loop area, resulting in less plastic energy. As a result, the total energy remains almost 

unchanged for a given life in both  as-cast and forged materials.  

Using the parameters in Table 3, the fatigue life was predicted for both the as-cast and forged 

materials, and is plotted versus the experimental life in Figure 15(d). Almost all the life estimations fall 

within these bounds of a factor of 2, with almost equal numbers of data being under and over predicted. 

The coefficient of determination is R
2
 = 0.95 for the as-cast prediction, and R

2
 = 0.99 for the forged 

material prediction.    

Table 3 - Energy-based parameters for the Jahed-Varvani model for cast and forged AZ80 Mg 

ID 
Ee’

 

(MJ/m
3
)

 
Ef’

 

(MJ/m
3
) 

B
 

C 

Cast 3.5861 68.39 -0.309 -0.555 

Forged 7.9094 758.6 -0.304 -0.836 



  

 

Figure 15 – Strain energy-life data used for extracting energy-based constants in (a) as-cast and (b) forged AZ80 Mg; (c) Jahed-

Varvani damage parameter evolution with number of cycles to failure for both as-cast and forged AZ80 Mg; and (d) the 
correlation between the Jahed-Varvani predicted fatigue life and experimental life for both as-cast and forged AZ80 Mg 

4. Conclusions 

 

     Uniaxial quasi-static and fully-reversed fatigue experiments were conducted at various strain 

amplitudes, ranging from 0.1–1.4% of both as-cast and forged AZ80 Mg alloy. The effects of various 

forging parameters (temperature and deformation rate) on the quasi-static properties were investigated on 

a comparative basis. Based on the results the following conclusions can be drawn:   
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1. Microstructural analysis showed that AZ80 Mg alloy in the as-cast condition possessed a 

microstructure consisting of primarily α-phase and aluminium-rich β-phase, while the forged material 

showed a recrystallized microstructure, with smaller, equiaxed grains. The as-cast material showed a 

random texture, leading to nearly symmetric properties invariant of material direction. The 

thermomechanical history imparted to the material via forging resulted in a texture intensification and a 

rotation of the crystallographic cells to align with the loading direction during forging. 

2. Texture intensification due to forging results in tension-compression asymmetry in both the monotonic 

and cyclic responses. The forged material exhibited substantial increases in strength and ductility, 

especially in tension, with the benefit of compressive properties being somewhat masked by the twinning 

deformation mode, which requires lower stress to be activated and becomes prevalent following texture 

intensification. The monotonic tensile tests showed that AZ80 in the forged condition had considerably 

higher ultimate strength and ductility relative to the as-cast alloy. After forging of as-cast AZ80, increases 

in ultimate tensile strength from 234 MPa to 312 MPa in tension, and from 318 MPa to 373 MPa in 

compression were observed. The fracture strain increased from 8.5% to 15.8% in tension, and decreased 

from 15.3% to 9.6% in compression after forging. 

3. The cyclic responses of AZ80 differed significantly between the as-cast and forged material. The 

shapes of the stabilized hysteresis loops of all the forged conditions varied from that of the as-cast 

material, with differences being especially marked in the tensile regime, with pronounced tensile tips and 

higher peak stresses, in the forged material. The unique characteristics of the cyclic response are governed 

by key differences in the mechanisms that control deformation. At strain amplitudes at which appreciable 

plasticity occurs, the as-cast material exhibits predominantly slip deformation in the upward reversal, and 

marginally mixed-mode in the downward reversal. In contrast, the forged material exhibits twinning in 

the downward reversal and detwinning, followed by slip, in the upward reversal, regardless of the forging 

condition. This unique characteristic of the cyclic deformation mechanism in the forged material is the 

primary source of the observed asymmetric response.  

5. Once forged, the AZ80 Mg alloy exhibits superior fatigue properties relative to the as-cast material 

under strain-controlled testing over the entire strain range investigated in this study. The improvement in 

fatigue life as a result of forging ranges from 2 times greater in the LCF regime, to 5 times greater in the 

HCF regime. This improvement was observed in the forged material despite the development of 

significant tensile mean stress.  

6. The fracture surfaces of as-cast samples were characterized by a terrace-like faceted morphology, 

whereas the forged conditions exhibited a more dimple-like fracture surface, indicative of greater 

plasticity. 

7. The JV energy-based model and SWT critical plane model give reliable fatigue life predictions for as-

cast and forged AZ80. 
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