
Intelligent Vehicle Development through

Scalable Data Collection Processes and

Simulation

by

Paul McInnis

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Master of Applied Science

in

Mechanical and Mechatronics Engineering

Waterloo, Ontario, Canada, 2017

© Paul McInnis 2017



Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the
thesis, including any required �nal revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

With current automotive trends in both vehicle electri�cation and intelligent features
such as Advanced Driver-Assistance Systems (ADAS), there is a signi�cant need for
a modern vehicle development process which makes use of big data. In the following
report, a scalable, phone-based, driving data collection system is developed and ap-
plied to powertrain design through a motivating example. Initial project e�orts are
directed towards the development of both a data collection platform and a system
which is capable of interpreting and storing the collected drive data. The developed
UWAFT Innovation Platform (UIP) and Monocular Vision Pipeline (MVP) are a func-
tional system which attempt to precipitate crowdsourcing of data collection through
a low system cost and open software approach. In an application of this platform data
is collected by a test driver for a month in the form of a pilot project, with results
evaluated in terms of geographical coverage and with the development of a statis-
tical event pro�le detailing events of simulation value. The data collected contains
over 6 million data points, and over 7.45hrs of driving. In evaluating MVP perfor-
mance, the You Only Look Once (YOLO) multi-object detector and Markov Decision
Process (MDP) multi-object tracker are implemented, with results demonstrating ro-
bustness to occlusions and the capability to detect far-away pedestrians and vehicles.
With this data collection system functional, and the data from the pilot project exper-
iment, a powertrain simulation environment for University of Waterloo Alternative
Fuels Team (UWAFT) is developed. Given the Advanced Vehicle Technology Com-
petition (AVTC) process, it is crucial to continue to explore and design novel power-
train con�gurations in an environment which is conducive to �exible con�guration
and with acceptable ease-of-use. Of the environments available, Simscape is selected
and a novel Metal-Air Extended Range Electric Vehicle (MA-EREV) powertrain model
is developed as a validation of the simulation tool. Upon validating simulated VTS
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against existing work, results are consistent excluding a 15% reduction in estimated
range and a 41% decrease in 50-70 mph acceleration time. To provide an example
of the data-driven approach, a winter-driving scenario where the pilot project driver
demonstrated slipping is imported as a drive cycle in the MA-EREV model and simu-
lated in an experiment. In analyzing results traction performance of the MA-EREV is
evaluated. The MA-EREV weighs 677kg more than the pilot project vehicle, and has
increased starting torque due to electri�cation. In analyzing the results of this scenario
replication, the longitudinal slip on the tires reached a maximum of 41% slip (94% of
available traction) during stopping and 84% slip (55% of available traction) during
acceleration from stop, with more slipping overall during acceleration than stopping.
This result indicates that the MA-EREV may need additional traction considerations
for safe performance in winter conditions.
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chapter1
Introduction

In the following thesis, a data-driven design approach to developing vehicles with
intelligent features for AVTCs and industry is explored. Topics within this thesis were
initiated for the EcoCAR 3 AVTC, which provides students at 16 universities in North
America with hands-on automotive development experience, closely mirroring the
processes in the industry. Recently, as vehicles adopt an increasing number of ADAS
and other intelligent capabilities, the EcoCAR AVTC has included events involving
these technologies - with a focus on computer vision systems.

In a response to this shift in competition focus, the UWAFT has developed cross-
disciplinary partnerships, with a focus on autonomous vehicle research involving the
‘Autonomoose’, Canada’s �rst autonomous vehicle approved for driving on public
roads. Through this partnership, and the ADAS development of EcoCAR 3, a signi�-
cant demand for developmental data was identi�ed. With ADAS and autonomous ve-
hicle development, a signi�cant quantity of training and simulation is required, along
with vast quantities of data to support the training and testing of systems for which
reliability is vital. In addressing this need for data, UWAFT has developed an innova-
tion platform based upon an android app, server backend and On-board Diagnostics
(OBD) interface system. This system has the capability to record high-quality video,
with Global Positioning System (GPS), accelerometer and OBD data simultaneously at
a cost of below 500 Canadian dollars. This system is proven capable in a pilot project
experiment where millions of datapoints are recorded, capturing unusual events and
objects which are valuable in the generation of testing scenarios. Additionally, to make
use of the data captured by the phone system, a MVP is implemented to identify and
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1 Introduction

track objects in the video feed. With the combination of both the innovation platform
and the MVP, it becomes possible to analyze and replicate the recorded data for test-
ing or continuous improvement purposes. Given the a�ordability of the data capture
platform it is possible to crowdsource data collection on much larger scales, fostering
diversity and robustness in intelligent vehicle systems. By providing the data as an
open resource, additional bene�ts to the industry are realized through the conduction
of open innovation which has been e�ective in the past.

In a second, parallel, activity a powertrain simulation experiment is conducted in
an environment selected for its ease of use and �exibility. Given that metal-air type
batteries have a theoretical energy density multiple times better than conventional
lithium-ion type batteries, it is feasible that in future AVTCs UWAFT will want to
consider this technology. One promising application of metal air technology is in a
powertrain con�guration called the MA-EREV, which uses a range-extending battery
in place of an Internal Combustion Engine (ICE). As this powertrain’s Vehicle Techni-
cal Speci�cations (VTS) are fully developed in existing work, an experiment validating
a model in the selected Simscape environment for the simulation of VTS is conducted
and results are compared as a validation of model accuracy.

In an experiment which demonstrates the data-driven design approach, data cap-
tured during the pilot project driving experiment is applied to the powertrain devel-
opment process in the form of a simulation experiment. In this experiment, the time
and velocity of the driver’s vehicle during a loss of traction event on a snow-covered
road is fed into a simulation using the MA-EREV powertrain model to identify poten-
tial issues with traction performance. It is expected that behaviour will di�er given
the signi�cant di�erence between the curb weight of the driven ICE vehicle and the
MA-EREV, which has signi�cantly increased starting torque.

The experiments and tools are described in two major sections: platform develop-
ment and applications. First, in the platform development section, the implementation
of the scalable data capture platform and the MA-EREV powertrain simulation are de-
scribed. Second, in the Applications section, a vehicle and environment simulation is
conducted and the pilot project and vision pipeline results are presented alongside the
powertrain validation.
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chapter2
Literature Review

2.1 Motivation for Electrification in Road Vehicles

In Ontario, in 2016, 71% of the electrical energy produced is sourced from nuclear,
hydro, wind and solar sources which minimize carbon emissions, providing a signi�-
cant environmental bene�t to vehicles which consume electrical energy in comparison
to conventional ICE vehicles [1]. The concept of quantifying environmental impact
through analysis of the entire power generation, supply, and consumption process
is called Wheel-to-Well (WTW) emissions; and with this perspective it is clear that
electri�ed powertrains, backed by clean power generation, provide a signi�cant re-
duction in global carbon emissions. Due to the possible WTW bene�ts many nations
are taking steps to minimize the emissions of transportation vehicles now and in the
future through support of powertrain electri�cation in combination with clean power
generation.

2.2 Hybrid-Electric Vehicle Adoption

There are multiple ways in which a powertrain can be electri�ed. Though all options
provide a method of reducing the environmental impact of transportation, some are
more attractive to consumers than others.

In the purest sense, an approach to electri�ed powertrains is to use a single, elec-
trical, power-source in the form of a Battery Electric Vehicle (BEV). These vehicles do
not have a secondary power source, requiring charging by the operator. A signi�cant
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2 Literature Review

barrier to the adoption of BEVs without a secondary range-extending power source
is that potential owners may experience ‘range anxiety’, or a fear of expending the
available electrical energy before reaching their destination [2, 3]. This fear is com-
pounded by the low availability of electrical charging infrastructure in public spaces
and workplaces.

Range anxiety is alleviated in Hybrid-Electric Vehicles (HEVs) such as Plug-in Hy-
brid Electric Vehicles (PHEVs), which operate similar to a BEV with an additional,
range-extending, power source. HEVs with smaller battery packs and an ICE typi-
cally burn more fuel with the intention of mixing power consumption more evenly
between sources, and with the expectation that drivers will regularly fuel them as
with conventional ICE vehicles. An approach which minimizes emissions and which
is appealing to consumers is to design PHEVs which operate on the primary, electric
power source over the average commuting distance of 40.55km [4]. This approach
provides a signi�cant reduction in emissions generation, as a majority of the driving is
electrically-powered. By relying more heavily upon electrical power, and investing in
clean-energy sources, the world can reduce the environmental impact of transporta-
tion signi�cantly.

2.3 Drive Cycles and Emissions Ratings

Drive cycles are a speed-demand traces which are developed for the purpose of charac-
terizing the e�ciency and environmental impact of vehicles. Through testing proce-
dures developed by the Environmental Protection Agency (EPA), these dynamometer-
based tests develop emissions and e�ciency ratings in terms of weighted highway
and city performance [5]. The drive cycles used in this rating are the Highway Fuel
Economy Test (HWFET) and the Urban Dynamometer Driving Schedule (UDDS) re-
spectively, shown in Figure 2.1 below.

2.4 University of Waterloo Alternative Fuels Team

The UWAFT has competed in 6 AVTC since 1996. Currently the team is competing in
the EcoCAR 3 AVTC and has approximately 60 active members on campus. The team
is currently operated from the University of Waterloo Student Design Center, where
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(a) HWFET drive cycle (b) UDDS drive cycle

Figure 2.1: The highway (a) and city (b) drive cycles

there is a vehicle garage, lift and o�ce space for students to work. Currently the
student team has faculty advisors from a variety of backgrounds, including electrical
engineering, mechanical engineering and chemical engineering. Due to the University
of Waterloo Co-op program, volunteers are typically present in 4 month periods, with
a rotation of a large portion of the active members occurring at the end of each period.

2.4.1 EcoCAR 3 Advanced Vehicle Technology Competition

The EcoCAR program is an AVTC which has the aim of engaging students and re-
searchers at 16 universities across North America in the conversion of a provided
production vehicle to a hybrid vehicle test platform. The EcoCAR 3 AVTC program is
structured across four years, with a yearly competition focus on: powertrain design,
vehicle integration, dynamic performance and long-term performance respectively. In
EcoCAR 3, a 2016 Chevrolet Camaro is the vehicle for conversion to a hybrid vehicle
test platform.

2.4.2 UWAFT Camaro

The Camaro which UWAFT has converted, seen in Figure 2.2, is out�tted with dual
89kW GKN AF130-4 motors, a Weber MPE 850cc turbo-charged engine, and a 16.2kWh

Lithium-ion A123 ESS. The UWAFT camaro is a PHEV.
The developed vehicle con�guration places the motors at both pre- and post trans-

mission, with a clutch between the pre-transmission motor and Weber engine allow-
ing for control of engine engagement. Channeling the developed torque into the rear
wheels is an electronic Limited Slip Di�erential (eLSD) which increases the dynamic
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Figure 2.2: UWAFT and the EcoCAR 3 2016 Camaro test platform

handling capabilities of the vehicle. By actuating the clutch, the vehicle can be oper-
ated in either Charge-Sustaining (CS) or Charge-Depleting (CD) mode depending on
the demands of the driver and the ESS State of Charge (SOC). The primary bene�t of
the chosen architecture is that it is �exible enough to provide both performance and
e�ciency without adding signi�cant mechanical integration complexity to the stock
vehicle platform. With this architecture, the UWAFT Camaro should be able to main-
tain or exceed the original VTS in terms of performance and e�ciency. A diagram
which describes the interconnection and high-level technical speci�cations of each
component is shown in Figure 2.3.

2.4.3 Camaro Powertrain Operating Modes

Demonstrating the �exibility of HEV powertrains, there are three principal operating
modes for the UWAFT Camaro, which are detailed in Figure 2.4.

In electric CD mode the motors consume electrical power from the battery to pro-
pel the vehicle using one or both electric motors. When the vehicle has depleted
the ESS to approximately 20%, CS operation is entered, allowing the vehicle to be
driven by the Post-Transmission (P3) motor while the battery is charged by the Pre-
Transmission (P2) GKN AF130 motor and Weber engine ‘generation set’. In perfor-
mance mode, it is possible to use the torque developed by all the components together
to drive the vehicle, maximizing acceleration.
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Component 
Description

Performance Specifications

Engine: 
Weber MPE 
850cc Turbo

Peak Power 92 kW

Transmission: 
GM 8L45 AT

Number of Gears 8

Type Long. Auto

Final Drive:
GM 3.73 Final 

Drive, eLSD
Final Drive Ratio 3.73 : 1

Motors:
GKN AF 130-4

Peak Power at 292V 90 kW 

Cont. Power at 292V 64 kW

Battery:
A123

6x15s3p

Capacity 16.2 kWh

Nominal Voltage 292 V

Peak Current 400 A

Charger:
Brusa NLG513

Peak Power 3.3 kW

Clutch

Mechanical

Electrical

Right-Angle 
Differential Fuel System

Legend:

Weber 
MPE 850 

TC

A123 
16.2 
kWh

GKN 
AF130-4

GM 
8L45 

AT

Brusa
NLG513

E85 
Tank

GKN 
AF130-4

3.73 : 1

Figure 2.3: The UWAFT Camaro powertrain con�guration

2.4.4 Powertrain Development and Simulation Process

One of the most signi�cant aspects of the EcoCAR 3 AVTC timeline is the use of
powertrain simulation techniques to tune and develop vehicle performance in stages.
The process of developing requirements, implementing software and validating the
performance is best represented as a ‘V’ diagram, seen in Figure 2.5.

Speci�c testing stages which are used to validate the powertrain functionality are:
Model in Loop (MIL), Software in Loop (SIL), Hardware in Loop (HIL), and Controller
in Loop (CIL) testing. Each of these stages involve testing of increasing portions of
controls software until the vehicle is functional in all powertrain modes. Note that
powertrain components are validated in software until the HIL stage, at which point
the physical powertrain components are interfaced with their corresponding controls
software. An example of using this design process to develop an motor controller in
the vehicle and the physical equipment setup used is seen in Figure 2.6 below. Note
that the HIL controller is used to simulate the motor-inverter component connected
to the the microAutoBox II Hybrid Supervisory Controller (HSC) in this example.

To develop the controllers and software models, there are two options sponsored
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Figure 2.4: UWAFT Camaro powertrain operating modes

by the EcoCAR AVTC series: Autonomie and Simscape. Both of these options are
based upon Matlab’s Simulink product.

Simulink

Simulink builds upon Mathwork’s Matlab software, and it provides a graphical pro-
gramming environment of foundational ‘blocks’ and drawn interconnections. Many
libraries are included with the provided EcoCAR 3 license which enable the simulation
of many diverse signals and functions.

Autonomie

Autonomie is a simulation environment which is developed by Argonne National Lab-
oratories (ANL) for the purpose of vehicle powertrain simulation and development.
It builds signi�cantly upon the simulink environment, adding a number of common
conventional and hybrid powertrain component models such as DC/DC converters,
di�erentials and motor/inverters which can be connected and con�gured with use of
a graphical interface.

The work�ow when using Autonomie is to select from the pre-developed models
for components and to batch-run simulations over selected drive-cycles. An additional
characteristic of Autonomie powertrain models is that because component-model con-
nections are automatically generated, the resulting graphical representation can be
challenging to view or modify.
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Figure 2.5: The development approach encompassing veri�cation, design and testing

Simscape

Simscape is a toolbox for Simulink that adds capability for the simulation of e�ort
and �ow busses akin to those used in conventional bond-graph modelling [6]. In
the simulink environment with Simscape, there exist busses which intuitively con-
nect physical displacement, rotational, hydraulic, and electrical domains to compo-
nent ports directly. Note that many powertrain components are easily integrated from
Simscape libraries with minimal parameterization and con�guration required; though
this can pose issues when �ne-tuning the performance or behaviour of an included
component model given the inability to change the underlying model. An example
of this is in how a tire model transforms from the rotational (green) domain to the
translational (dark green) domain, seen in Figure 2.7.

2.5 Ba�ery Modelling

One of the most important components to develop and size appropriately in a hybrid
vehicle is the electric battery. Through modelling of a vehicle powertrain with di�er-
ent battery con�gurations, it is possible to explore the impact of battery parameters
and con�guration in terms of mileage and performance outcomes. Of relevance to the
powertrain models discussed in this paper are the Lithium-Ion battery technology,
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System
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Creates 
Requirement

Controls Requirements Model Requirements

SoftECU

Digital I/O or CAN signal

Figure 2.6: In this application example, controls requirements are mapped to model
requirements down to a physical signal level

Metal-air battery technology, and Equivalent Circuit Modelling (ECM).

Lithium-ion Ba�ery

Lithium-ion type batteries are desirable for vehicles in comparison to other battery
technologies due to having an increased energy density, power density and lifes-
pan, [7, 8]. Through EcoCAR competition sponsor A123 Inc, the UWAFT Camaro
is supplied LiFePO4 type batteries seen in Figure 2.8 which have high power density
and are more resistant to thermal runaway when compared to traditional Lithium-ion
batteries [9, 10].

When a lithium-ion battery discharges, ions traverse from the anode to the cath-
ode through an electrolyte layer and are discharged from the battery [10]. Cells are
composed of layers and can be packaged in multiple ways depending on the applica-
tion. In the A123 batteries, prismatic type cells are utilized with bus-bars connecting
multiple cells in series to produce 60 volts per rectangular battery module.
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Figure 2.7: The simscape tire model transforms rotational domain energy to transla-
tional domain energy

Metal-Air Ba�ery

Metal-air batteries are designed such that the cathode electrode is porous and exposed
to air from the environment. Of particular interest to the transportation �eld is the
Zinc-Air battery, which has a theoretical energy capacity of 1084W/kg [11]. A Zinc-
air cell is detailed in Figure 2.9 [11].

Currently zinc air type batteries are used in medical applications, and the technol-
ogy was discovered in 1878 [11]. Due to the unique construction of metal air batteries,
it is possible to replace the consumed metal anode and e�ectively recharge the battery
without a lengthy recharging process as in conventional lithium ion batteries [11].
Current metal air batteries su�er from issues with cathode material and crystalline
growth, also requiring highly puri�ed metals to function appropriately, but current
research is attempting to resolve these issues [11].

Equivalent Circuit Model

A simple ECM for use in modelling battery performance has been developed by the
US Department of Energy and is known as the ‘rint’ model due to its approach of
modelling internal cell resistance during both charging and discharging [13]. With
the rint model, the open circuit voltage droop of the battery can be determined as a
function of current �ow from or to the battery. Through a characterization processes
[13], the rint model can be scaled and implemented to emulate the behaviour of most
battery technologies without requiring low-level chemical process modeling within
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Figure 2.8: 6, LiFePO4, A123 battery modules in the con�guration used for the UWAFT
Camaro test platform

vehicle simulations.

2.6 Object Detection and Tracking for Driver Assistance

ADAS rely upon accurate data representing obstacles, other vehicles, and the road
ahead to take actions which protect the driver. One cost e�ective way of developing
ADAS is to utilize forward-facing monocular video to interpret the environment in
the direction of travel.

A foundational step of ADAS environment interpretation is the identi�cation of
objects within the video frames. When this per-frame information is processed to
identify the motion of persistently-visible objects, tracking occurs. Currently, the
most e�ective object identi�ers use neural networks which have been trained through
exposure to objects [14].
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Figure 2.9: Construction of a zinc-air battery cell with associated electrochemical pro-
cess [12]

Note that three-dimensional position data can be successfully extracted from monoc-
ular image frames using ground-plane identi�cation techniques [15].

Neural Networks

Neural networks are a class of algorithm which are inspired from modelling the think-
ing process of biological nervous systems [16]. A property of neural networks in
computer vision is the that, once trained through exposure to a set of labelled image
‘ground truth’, they are able to identify previously un-seen objects under di�erent
poses and lighting conditions [17].

A good case study is in the development of neural networks as an approach to
performing facial recognition. In identifying the features of the face, the neural net-
work is �rst provided many images labeled to be eyes, mouths, noses and complete
faces for the creation of a ground truth [18]. By training the neural network with this
labelled ground truth, the algorithm is able to learn to identify facial structure and fa-
cial features of human faces, identifying faces beyond those used to train the network.
In the automotive industry, vision algorithms are expected to identify many complex
features such as pedestrians or other vehicles, many times a second, and under many
di�erent environmental conditions [17].
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You Only Look Once Object Detector

The YOLO algorithm uses multiple novel techniques to execute state-of-the-art ob-
ject detection accuracy at frame rates which are more than acceptable for automotive
applications [19]. YOLO is a general-purpose object detector, able to recognize 9000
di�erent object categories in real-time conditions [19].

There are multiple innovations which YOLO has developed to improve perfor-
mance compared to larger, slower neural network object identi�ers. By treating the
object detection problem as a regression problem, the YOLO algorithm is able to pre-
dict object identi�cation through analyzing portions of images and developing a prob-
ability map for object bounding box locations [20]. This process is illustrated in Figure
2.10.

Figure 2.10: YOLO treats the multi-object detection problem as a regression-type prob-
lem by subdividing image frames [20]

Improving object classi�cation is the development of a hierarchical tree of visual
concepts which makes object classi�cation faster and more robust when identifying
new objects within trained object categories. An example of this structure used for
object classi�cation, called the WordTree, is seen in Figure 2.11.

Neural network algorithms like YOLO provide the foundational tools in the de-
velopment of not only ADAS but also autonomous vehicles, given the real-time func-
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Figure 2.11: The WordTree is foundational to object classi�cation in the YOLO algo-
rithm [19]

tionality, accuracy, and precision of this approach.

Markov Decision Process, Multi-Object Tracker

While object detection is itself foundational to building capabilities to respond to en-
vironments and other vehicles, the process of identifying the motion of objects in
the surroundings is also crucial, but represents its own challenges. Though there are
many tracking algorithms and approaches, this thesis is primarily concerned with the
approach of Multi-Object Tracking (MOT) with use of a MDP and optical �ow.

Currently many MOT techniques involve tracking by detection; using the per-
frame bounding boxes in combination with the object trajectory to label persistent ob-
jects via non-causal batch processing [21]. One way of performing tracking causally,
or while ‘online’, is to develop a MDP to identify the state and activity of tracked ob-
jects. After an initial ground truth training of the MDP, the algorithm is capable of
identifying and handling object appearance or disappearance via state transitions in
the MDP. The framework for the MDP, MOT algorithm is shown in Figure 2.12.

While in an active state, the MDP tracking algorithm uses computed optical �ow
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Figure 2.12: The MDP state transition tracks the persence of objects within the scene
[21]

traces, the movement of pixel colour between image frames, and the object bounding
boxes to identify objects between frames or as they pass behind occluding objects. A
visual representation of this type of tracking process is shown in Figure 2.13.

step 3step 2step 1
YOLO at frame i

      calc avg tracking vector
      from optical flow tracks

O1
O1predicted u

predicted u

current u predicts O1 
trajectory

frame i
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overlap, object labels must match

O1
O1

_O4

step 5

draw a smooth path to the centroid of the 
overlap  and update O1’s position. Use the 
previous u for additional  filtering

step 6

advance to frame i=i+5
set previous u = current u
set predicted u = 0

goto step 1

O1
prev u

current u
predicted u

Figure 2.13: An example of a tracking procedure with optical �ow techniques

Currently optical �ow techniques can be signi�cantly enhanced with application
of convolutional neural networks, which attempt to learn the paths of objects within
the frame to simplify the matching process, and to overcome the weaknesses of optical
�ow tracking [22].

By using object detection and tracking methods, it is possible to extract valuable
information from video frames with not only the locations of objects within the driv-
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ing environment, but also their trajectories and past behaviours. With this founda-
tional information, ADAS for autonomous driving become more apparent.

Monocular Distance Estimation

In monocular vision, a single viewpoint is used to develop depth estimations, primar-
ily with use of camera parameters and object detection position relative to an estima-
tion of the horizon. Whereas in stereo vision, with two coplanar cameras a known
distance apart, the distances can be additionally estimated given the viewpoint dif-
ferences. Monocular vision presents more signi�cant challenges in accurate distance
estimation as target range increases, and small measurement errors create large range
�uctuations [23]. Given the current automotive industry push towards integrating
inexpensive monocular vision systems, and the ease of obtaining monocular vision
data, it is prudent to make use of this type of camera system for distance estimation
as well as object detection [23].

With knowledge of camera optical parameters, mounting position relative to the
ground plane, and an object bounding box, it is possible to estimate object distances
in 3-D space with a satisfactory degree of accuracy [24, 25]. A graphical illustration
of a geometry-based distance estimation process is seen in Figure 2.14.

Figure 2.14: The monocular camera pinhole distance estimation uses geometry to pro-
duce estimations [26]

With utilization of monocular distance estimation techniques in combination with
object detection and tracking, it becomes possible to process video frames observed
by real-world drivers into data representations, valuable in end-to-end testing of au-
tonomous or ADAS algorithms.
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2.7 Autonomous Vehicle Industry and Crowdsourcing

Currently the development of intelligent vehicle features such as ADAS is hindered by
the availability of naturalistic driving data, especially data which contains test cases
for continuous improvement. In a world where autonomous vehicles are operating,
exposure of the employed neural networks to edge cases can signi�cantly increase
the performance of the vehicle in terms of safety and reliability. Automated driving
requires signi�cant quantities of data [27].

Need for Data in Training Neural Networks

Currently, many researchers are approaching the issue of automating the driving pro-
cess, but there are signi�cant barriers to progress in terms of data availability. Com-
pounding the data availability issue, much of the current research is unavailable to the
public due to the cost of obtaining driving data and the strong competition amongst
industry leaders in autonomous vehicle development. The current approach of many
researchers is to use expensive instrumented cars but these are often not available
for data collection and are few in number. This is a signi�cant motivation to develop
an openly accessible resource, enabling external innovation by a diverse range of re-
searchers using the data from a centralized resource.

A speci�c example of the need for data in the industry is the use of neural networks
in both perception and path planning of autonomous vehicles. These neural networks
require large quantities of data with a broad coverage of driving behaviours in order
perform e�ectively. Even more data still is needed for the training of these neural
networks to approach the issue of infrequent edge-case scenarios which pose safety
risks as in a recent Tesla autopilot accident [28].

Crowdsourcing

A strong real-world example of the crowd-sourcing approach details the collection
of geospatial data in England with use of cellphones by untrained volunteers as a
part of the OpenStreetMap project [29]. In this research, it was found that despite
formal training or quality assurance procedures for participants, the quality of re-
sulting geospatial data provided 80% coverage at a geometric accuracy of about 6
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meters for major roads in the London area compared to Ordnance Survey Meridian
2 [29]. In investigating the quality metrics of the crowd-sourced data, researchers
found that because of the approach, repetitions of the data collected occur much more
frequently, and this statistically minimized errors in the results [29]. Using the crowd-
sourcing method, nearly 30% of England was mapped in just four years, with a focus
upon metropolitan areas [29]. The OpenStreetMap project produced volumes of sta-
tistically acceptable data using its cellphone-based crowdsourcing approach, and has
proven the viability of cellphone data collection systems.

There is also much to be gained by applying the crowdsourcing approach to vi-
sion algorithm development for automotive applications as Automated driving re-
quires signi�cant amounts of driving data to design, test, and validate intelligent fea-
tures [18]. In research dealing with the identi�cation of road signs, the authors iden-
ti�ed a major barrier to identi�cation being the impossibility to predict an object’s
appearance given so many degrees of freedom [30]. Crowd-sourced driver footage in-
herently collects footage of the same objects across a variety of lighting, weather, and
driver conditions from many drivers in di�erent vehicles. Through this approach, it is
possible to approach possible algorithm robustness issues inherent in collecting data
from a small number of sources with inadequate environmental coverage of objects.

External Innovation

As described in the innovation proposal, UWAFT aims to deliver not only a solution
for data capture, but also to provide the anonymized drive data to external researchers
for the purpose of progressing the art of autonomous vehicles. It has been proven by
the success of companies like Procter and Gamble in the past, that this outsourcing of
innovation to external stakeholders invites signi�cant creativity and problem solving
bene�ts [31]. In the case of Procter and Gamble, their innovation success rate more
than doubled while the cost of innovation decreased through the open innovation
approach [32].

Further support of an open innovation approach is found in the closed approach
of �nancial big data preventing the understanding of links among �nancial markets
by �rms [33].
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Platform Development
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chapter3
Data Collection with Vision Pipeline

3.1 Overview

As a part of the EcoCAR3 AVTC, competitors are to develop and present research top-
ics for consideration in the innovation stream of the competition. Upon approaching
Dr. Czarnecki of the University of Waterloo Generative Software Department, who
has been involved in past UWAFT innovation topics, a need is identi�ed for a data
collection platform which provides the information needed to perform continuous
improvement of autonomous driving algorithms. The innovation is comprised of two
major components: a data collection platform which can be scaled to obtain signi�-
cant quantities of driving data, and a machine vision backend which can process the
obtained information to obtain directly useful information in the areas of end-to-end
testing of autonomous vehicles. The duration of the project from time of proposal to
the competition is one year.

Currently the development of intelligent vehicle features such as ADAS are hin-
dered by the availability of naturalistic driving data, especially data which attempts to
enable continuous improvement or to model baseline performance. In a world where
autonomous vehicles are operating, exposure of the employed neural networks to edge
cases can signi�cantly increase the performance of the vehicle in terms of safety and
reliability.

By providing an open, crowdsourceable platform for the development of data which
captures meaningful driving information, UWAFT can approach the data-availability
issue in a way that is not only immediately useful to researchers at the University of
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Waterloo, but which is also useful for enhancing the UWAFT Camaro’s testing capa-
bilities through simulations driven by real-world data.

The developed UIP is an phone application which runs on a conventional Android
smartphone to record driving video as a dashcam would with additional OBD, GPS
and accelerometer data.

In evaluating the capability of the UIP, experimental designs which demonstrate
the value of the data collected are used. Given the nature of the platform, it is neces-
sary to expand the current pilot project as discussed in this section (one person one
month) to realize the full potential of this innovation. Experiments conducted with
the pilot project center upon the following metrics:

• Coverage of data collected with the system (google map)

• Statistical Event Pro�le

• Quantity of data collected with the system

After the platform is developed, it is been used in two major experiments:

1. Pilot project data collection with one driver for one month using the UIP

2. Video collection of intersections to evaluate the monocular vision pipeline

3.2 Technical Goals for Innovation Project

Over the course of the EcoCAR 3, year 3, innovation project, UWAFT identi�ed mul-
tiple technical goals. These goals are described and de�ned in the list bellow in terms
of their value to EcoCAR 3 AVTC and UWAFT directly:

1. App Development After deciding to pursue an Android smartphone-based
platform, UWAFT began to develop an app which would capture driving data
(video and GPS at minimum) from an android phone mounted to the windshield
below the rear-view mirror. Each vehicle costs $450 CAD to fully instrument
(cost breakdown in Appendix 5), and the collected data is immediately useful
for UWAFT ADAS evaluation and in documenting UWAFT Camaro testing.
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2. Website Backend To fully crowdsource information with the UIP, it is nec-
essary to develop a centralized resource for participants to contribute to. Upon
public operation, this will take the form of a website which provides researchers
access to the anonymized video and drive data of the participants, as well as a
place for participants to review their own drive data. Note that there are two
distinct goals for this system:

• The functionality of a simpli�ed backend internal to University of Water-
loo for pilot projects supporting algorithm development and testing

• Functionality of the backend as a public research e�ort to precipitate crowd-
sourcing supporting industry research e�orts

3. Machine Learning Algorithm To demonstrate the UIP platform as a viable
data collection method in the industry, the UWAFT innovation team plans to
develop and test autonomous vehicle neural networks using information cap-
tured with the UIP. Immediately, this represents the development of a pipeline
supporting algorithm development.

4. 60 Hours of Video Footage This technical goal is selected early in the project
as a means of de�ning a meaningful amount of collected information with the
UIP to demonstrate metrics of success e�ectively.

5. OBDLogging FunctionalityThis goal is developed because the android phone
portion of the UIP must be enhanced with OBD logging capabilities to maximize
research opportunities. With OBD data captured, it is possible to capture the
driver’s physical inputs and to take full advantage of the UIP data in developing
and testing systems which aim to model driver actions or responses. This data
will also provide direct bene�t to UWAFT given the possibility to develop test
cases which include human behaviour and vehicle environment factors.

6. Ground Truth System Integration In order to evaluate the performance of
ADAS and other vision based systems, it is crucial to integrate a ground-truth
annotation system which is UIP compatible.

7. Vision Pipeline This goal has evolved from a need for automated driving sce-
nario testing in the industry. By extracting additional information from the UIP
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data in terms of the agents present around the vehicle, it is possible to approach
this need and immediately apply the UIP in autonomous research such as path-
planning.

3.3 Impact

Impact Metrics

Impact metrics which use the outlined information are challenging to develop due
to the diverse nature of bene�ts to researchers, however UWAFT has identi�ed two
major metrics which can be used to gauge the immediate and crowd-sourced impacts
of the UIP data:

The Statistical Event Profile

This pro�le measures the quantity of events captured which generate a non-baseline
human behaviour. This can take the form of response to slipping in icy weather, or the
response of a human driver to an ambiguous four-way stop and is best presented in the
form of a histogram of events. This metric is developed through manual annotation
of captured video.

Data Coverage

The coverage metric represents paths where driving is captured with the UIP. By keep-
ing track of what geographic regions have been logged by the UIP, coverage in terms
of road surfaces and road infrastructure can be determined. In the context of the pilot
project, this metric is crucial to understanding the expected impact of each contributor
to the open database web-resource.

Note that by extrapolating the capability of the one person, one month pilot project
to those of the crowd-sourced one, these impacts are also more meaningfully conveyed
and understood. In particular, with adoption of the UIP in crowd-sourced quantities,
it becomes possible to identify edge case scenarios more easily. Speci�c, quanti�able
impacts are summarized in the following sub-section
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3.3.1 Immediate Benefits to UWAFT

Safety-System Performance Benchmarking

A key way in which the UIP has proven useful is in benchmarking ADAS performance
with annotated UIP video. A motivating example of this is in road-line detection in the
University of Waterloo area. Many existing road line identi�cation algorithms expect
road lines to be present and not degraded in terms of the quality of the line [34].
This is not the case in the Waterloo region, currently experiencing a large volume
of construction and harsh winter snaps —in many places the road lines are either
minimally present or not present at all. By using the footage collected by the UIP,
UWAFT has evaluated the performance of road line identi�ers, and is able to tune and
select an algorithm which operates well with footage of road lines in the region as well
as road lines in geographic regions. Given the capability of the UIP to crowd-source
data from many geographic regions simultaneously, it becomes possible to develop
testing conditions for a diverse range of environments and to inspect the capability of
current ADAS features to function in these regions across weather conditions.

Scenario Replication

An additional impact is directly upon the UWAFT Camaro, enabling the recording
of vehicle testing and augmenting the existing data collection systems on the vehicle
with environmental information. By capturing input from the video camera in par-
ticular, output from the monocular vision pipeline proves useful in the recreation of
failing vehicle tests or in tracing back the conditions of intermittent failures.

3.4 Data Collection Platform

3.4.1 The UWAFT Innovation Platform

Currently the approach of using a modern, a�ordable ($289 CAD), android smart-
phone and a corresponding dashcam/data collection app is proving successful. The
UIP is what will be used to engage drivers to participate in the project. Note that
the UIP costs less than comparable dashcam products with GPS functionality and a
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full cost breakdown of the UIP parts list and corresponding costs can be found in Ap-
pendix B. UWAFT anticipates due to the prevalence of android smartphones it will
enable participants to use their own old smartphones in a way that may be novel to
them while participating in generating valuable research data (could-enabled dash-
cam functionality). The UIP android app and vehicle mounting position are shown in
Figure 3.1.

Figure 3.1: The UIP installed and operational in the pilot project test vehicle.

3.4.2 Agent Identification, Tracking and Positioning

The way that the information from the UIP is interpreted to develop testing and design
information is with the MVP. Currently the approach with this pipeline is to perform
object identi�cation, tracking and 3D position estimation such that all agents in video
frames are described by data output. The following describes how these state of the
art tools are integrated to accomplish this data generation in the MVP. The object
detection algorithm identi�es bounding boxes of objects in video frames, �ltered to
include only pedestrians, vehicles and signs. In investigating the available algorithms
YOLO is selected due to its exceptional use of computing resources and state of the art
detection performance [20]. YOLO can be run on the UIP directly, adding additional
value to the data collection app in the future. YOLO is a neural network based tool.
Tracking is a complex task involving the matching of objects between frames, and
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further attempting to recognize occlusions and presence of objects. Currently a state-
based, neural-network and optical �ow tool based on the MDP is integrated into the
pipeline to do this, though a second tool called ‘Followme’ is also integrated [21] [35].
Finally, to provide the position of objects, a robust monocular distance estimation
is developed, as described in a paper which focuses on Forward Collision Warning
systems [36].

3.5 Pilot Project Experiment

3.5.1 Procedure

The procedure used to capture and interpret UIP data is as follows:

1. Android phone loaded with latest version of UIP data collection app.

2. Android phone mounted to windshield below rear-view mirror facing forwards,
parallel to the road surface. Phone is plugged into a high-current phone charger
in vehicle 12V accessory port.

3. UWAFT data collection app is launched, and driving data capture begins. Note
that OBD integration was not complete at the time of the pilot project data
capture, but does not require additional procedure to initialize.

4. Experimenter drives to desired destination

• If the experimenter identi�es a situation or object which is important to
current ADAS development, he/she taps the “+” in the center of the phone
screen and the timestamp is recorded.

5. Upon arriving at the destination, capture is stopped by pressing the “stop record”
button in the app and at this point the phone’s microSD card has all drive data
recorded to it.

6. If arriving at the UWAFT bay, the participant plugs the phone into a speci�c
Linux workstation, which uses Android debug USB access to transfer the recorded
drive data onto the UWAFT �le server into a limited-access folder sorted by
date-stamp.
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7. The footage is reviewed for situations of interest, stored in an excel spreadsheet
for generation of the event pro�le metric:

• Situations where traction is a�ected

• Situations where obstacles suddenly appear or disappear in the path of the
vehicle

3.5.2 Variables

Using the UIP, the following variables are captured directly while driving the vehicle
during the experiment and are recorded on the UWAFT �le server, encoded by the
timestamp of the drive date:

1. Phone Timestamp —MM:SS:MS, this enables synchronization between the.csv
�le and the frames of .mp4 video recorded.

2. GPS Position —HH:MM:SS latitude and longitude, saved into .csv format

3. Screen Tap —Boolean �ag indicating the driver witnessed an event of interest
and tapped the screen, saved into .csv format

4. Event of Interest —Timestamped information in an excel spreadsheet manually
generated to capture any signi�cant events which occurred beyond the screen
taps to develop the Desired Statistical Event Pro�le metric.

5. Forward-Facing Video —720p, 30fps, monocular video captured by phone mounted
under rear view mirror, saved in .mp4 format.

6. Environmental Conditions —human annotated data capturing both the type of
road surface (asphalt/concrete/dirt) and the weather condition (wet/snow/clear)
of the drive observed in the video by a volunteer. This information is saved into
a spreadsheet along with relevant timestamps.

7. Accelerometer Readings —[ax, ay, az], saved into the .csv �le. The .csv �le
developed is saved such that each row of data is written at a rate of 15Hz, con-
taining all measurements at the time of formatting the row.
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3.5.3 Assumptions and Influences

One major in�uence a�ecting the extension of these results to a larger user-base is
that the driver in the experiment is a UWAFT member and thus was motivated to
use the UIP as a contribution to the team. Given this limitation, coverage results
are in�uenced as the experimenter is internally motivated to capture driving data.
Currently it is assumed that the GPS �x provided by the phone de�nes the location
of the vehicle correctly. Given that the region of the data collection is of importance
to the context of the data, extra steps should be taken in the app to validate GPS �x
information before distribution of the data to researchers. Finally, it is also assumed
that all tap events registered were for the intended use of identifying stop signs to
train an ADAS tool, and that no tap events were made in error.

3.6 Monocular Vision Pipeline Experiment

3.6.1 Procedure

To develop the vision pipeline for feature extraction from drive data, a simple exper-
iment is performed to collect statically-shot video from roads around the University
of Waterloo Ring Road.

1. Initial prospection to select seven viewpoints around the campus Ring Road
which maximize the trackable objects within the �eld of view of the camera
(and which have the busiest tra�c). This is done by recording GPS coordinates
of selected viewpoints and taking pictures of those views for replication.

2. From the initial seven viewpoints, the two busiest ones are selected for �lming

• A camera on a tripod is brought to the same location the viewpoint was
identi�ed and video is �lmed at 720p, 30fps, for 20 minutes with no move-
ment of the camera during the recording.

• GPS location is recorded on the UIP to validate the position, and the exact
location of the tripod is visually identi�ed in the video at the end of �lming.

• The camera is transported to the next location and �lming is repeated
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3. Upon completion of static video data collection, the �nal step is to process both
videos to obtain object-tracking and distance estimation data using the MVP.

3.6.2 Variables

The following variables are obtained in this experiment:

1. GPS position —HH:MM:SS latitude and, saved into .csv format

2. Video —720p, 30fps monocular video in .mp4 format.

3. Object Detection Output —per-frame data de�ned by: bounding box corners,
object label string and a con�dence % saved as detections.txt

4. Tracked Output —per-frame tracker-�ltered object detections de�ned by: unique
object id string, bounding box corners, occlusion status int, and presence status
Boolean saved as labels.txt. Data is Karlsruhe Institute of Technology and
Toyota Technological Institute (KITTI) formatted for compatibility with exist-
ing analysis tools .

5. Distance Estimation Output —per-frame estimation of each object’s 3D x,y,z
[m] position using monocular distance estimation methods. Data is in KITTI
format [37].

3.6.3 Assumptions and Influences

One limitation which impacts the UIP is the desirability of a wider Field of View (FOV)
than that available on the phone hardware so that data of large intersections is not
lost. Approaching this issue, UWAFT will investigate performance gains from an at-
tachable wide-angle lens in future experiments. An additional assumption, which is
supported in application, is that the moving viewpoint case is an expansion of the
static viewpoint case, and that technologies can be expanded to function in motion
environments given additional frame of reference processing. An in�uence upon the
selection of viewpoints is that any views which were commonly occluded by vehicles
were not selected. This approach maximized the available data capture to demonstrate
the pipeline, but actual UIP positioning will not be as ideal.
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3 Data Collection with Vision Pipeline

3.7 Review of Project Timeline

The current project timeline, is seen in Appendix 2.
It aims to, in parallel, develop the UIP and the MVP such that a larger pilot project

can be conducted as soon as possible by delivering a functional backend and app.
Initially tasks are to do with research and needs identi�cation (tasks 1, 5), but tasks
quickly progress to developing the platform and then the pipeline (69). After these
tasks are accounted for, by the end of March it was planned to deliver metrics for over-
age (10) and a ground truth framework (11). Tasks from the time of writing into the
future are where major scheduled di�erences exist, to do with developing a pipeline
and backend and launching internally instead of developing ground truth systems and
launching publicly. Speci�c task variations are discussed in the following list in terms
of task ID in the current timeline: (seen in Appendix 2).

Task ID 8: Pilot Project Data Capture (one person one month)

• This task was originally more ambitious of an experiment, with multiple partici-
pants and a 126 day duration, but it was shortened to month-long program after
it was discovered that the quantity of data collected in that time was su�cient
to develop the vision pipeline.

• By developing the pipeline, and adding OBD features to the app at the same
time in February, development phone resources were taken up and by reducing
the pilot project duration one of the development phones was freed up for the
innovation team to work with.

Task ID 9: Monocular Vision Pipeline for Pilot Project

• This task is added to re�ect the identi�ed need for a vision pipeline which
demonstrates the value of the UIP. The decision to pivot from a ground-truth
system to a MVP system was made and work commenced on this in the be-
ginning of February. This decision also led to the removal of the 60 Hours of
Footage task given the satisfaction of need with one month of footage.

Task ID 10: Development of Coverage Metric

• This task occurred later than planned due to resources allocated to the MVP. It
did not take nearly as long as anticipated.
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Task ID 11: Ground Truth Framework Integration

• This represents work done by the ADAS team to integrate Matlab’s Training Im-
age Labeler toolkit, which facilitates annotation for ground truth development.
The task is shifted due to this team’s own timeline needs and took longer than
anticipated.

Task ID 13: Additional Data Capture

• This represents the plan to scale up the innovation data capture e�orts for a
second pilot project composed of more drivers and using the MVP to extract
useful information for immediate testing needs. It replaces the time allocated
for launching a publicly available website, which is deemed beyond the scope
of this year and which represents privacy issues.

Task ID 14: Back End Development (website)

• Although not a public resource, it is still important to develop a website which
can be used internally to the University of Waterloo to organize and serve re-
search data. This is scheduled to occur in the �nal month of this competition
year.

Task ID 15: Monocular Vision Pipeline (MVP) and App Re�nement

• Between May and August, the �nal-integration improvements are to be made to
bring the app and pipeline up to functional standards for scenario reconstruction
in autonomous research. During this task the data collected will begin being
processed to apply the extracted information.

• Speci�c improvements to the app are mostly bug �xes, while the MVP requires
enhancements to function using non-static data and to track and distance esti-
mate more precisely.
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chapter4
Powertrain Modeling

4.1 Overview

In the early stages of EcoCAR AVTCs, the focus of competition responsibilities lie in
de�ning and developing vehicle performance speci�cations such that a powertrain
can be fully designed in preparation for implementation in following years. Given the
aforementioned simulation tools available to UWAFT, there is signi�cant �exibility in
the selection of components integrated and modelled within the powertrain, as well
as in the powertrain con�guration itself. This �exibility allows for the simulation of
novel powertrains which may provide a competitive advantage given the performance
targets set in the upcoming AVTC phases.

The following chapter develops simulation objectives such that AVTC powertrains
can be evaluated e�ectively and that the model is of adequate breadth. With the model
objectives identi�ed, the most appropriate modelling tool for AVTC design at UWAFT
is then selected for model implementation. To provide a measure of simulation accu-
racy through comparison to existing work, the powertrain simulated is of the range-
extended, dual-ESS design developed by Caixia Wang [12].

4.2 Model Objectives

The developed model should provide students the information they need to make ef-
fective decisions for powertrain design and control strategy optimization in the Eco-
CAR AVTC. The most e�ective way to develop an understanding of vehicle perfor-
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4 Powertrain Modeling

mance is to identify the VTS through simulation. The following components of the
VTS are desired:

Vehicle range over a 55% city, 45% highway weighted drive cycle, as mandated
in EPA testing and labeling of vehicles [38].

• 0-60 mph acceleration time [s]

• 50-70 mph acceleration time [s]

• 60-0 mph deceleration time [s]

Note that by applying additional calculations to the data collected for VTS, it is
possible to estimate the GreenHouse Gas Emissions via processes outlined by ANL
[39].

4.3 Modelling Tool Selection

To ensure that the powertrain development process undertaken is e�ective for UWAFT
in the EcoCAR AVTC, the most e�ective modelling tool must �rst be selected.

4.3.1 Criteria

In selecting an appropriate tool for the powertrain model, multiple objectives for the
simulation environment are identi�ed to aid in simulation tool selection, summarized
in Table 4.1. Note that in terms of the quantity of components available for integration,
both tools o�er a signi�cant number of models which satisfy design needs.

4.3.2 Weighting

According to the powertrain development environment that UWAFT members expect,
weights are assigned to each criterion and justi�ed in terms of relative value to the
team in Table 4.2.
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Table 4.1: UWAFT modelling environment criterion with scoring

Criterion: Criterion Description: Score:
Model
Flexibility

With �exibility in the powertrain
con�guration, components may
be swapped or changed with-
out signi�cant amounts of re-
integration work

Qualitative score in terms of
con�guration �exibility given
through consultation with users
of both tools:[1=slight �exibil-
ity, 2=some �exibility, 3=great
�exibility]

Learning
Resources

The environment should be well
documented in terms of support-
ing resources such that students
can help themselves and perform
self-learning. Resources should be
in the form of included documen-
tation and online resources that
describe how to use the tool and
the models included.

Qualitative score given through
consultation with users of both
tools: [1=low resource availabil-
ity, 2=medium resource availabil-
ity, 3=high resource availability]

Operating
System
Support

The simulation environment
should be compatible with Mac,
Windows, and Linux Operating
Systems to minimize compatibil-
ity issues with UWAFT students
who are assisting in the power-
train development process

Quantitative score given accord-
ing to the number of OSs sup-
ported by the tool [OSs supported,
1→3]

Time for
Experi-
ment

The time required to execute
the simulation and collect results
should be minimized to maxi-
mize time for interpretation of
results. Both tools are based
upon Simulink solvers so execu-
tion time di�erences are negligi-
ble.

Qualitative score given through
consultation with users of both
tools in comparison to run-
ning a simulation in Simulink
only: [1=slower than simulink,
2=simulink baseline, 3=faster
than simulink]
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Table 4.2: UWAFT modelling selection weighting with justi�cation

Criterion: Weight: Justi�cation:
Model Flexibility 3 Flexibility in the simulation tool is crucial to the

powertrain design process, and is foundational to
optimization in early stages.

Learning Re-
sources

3 Without su�cient o�ine and online resources for
students, it is a signi�cant challenge to teach use of
the simulation tool and to overcome obstacles such
as technical issues.

Ease of Use 2 The ease of use of the tool is important, but with
su�cient support, tool complexity can be miti-
gated.

Operating Sys-
tem Support

1 Ideally the simulation environment is maximally
compatible, but computing resources can be allo-
cated to mitigate compatibility issues.

Time for Experi-
ment

1 A low simulation and result collection time will im-
prove e�ciency of research overall.

Table 4.3: Raw scores for both modelling environment options

Model
Flexibility
[1-3]

Learning
Resources
[1-3]

Ease of Use
[1-3]

OS Sup-
port [1-3]

Time for Ex-
periment [1-
3]

Autonomie 1 1 1 1 1
Simscape 3 3 2 3 2
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4.3.3 Score

In Table 4.3 below the raw scores for each model environment are listed, with per-
score discussion in Table 4.4. Upon applying the decision weights, the resulting weighted
decision matrix which appropriately re�ects the modelling needs of UWAFT for Eco-
CAR AVTCs can be made seen in Table 4.5.

From the �nal decision matrix, Simscape is the clear choice, scoring almost 3 times
as many points as Autonomie in the selection process.

4.3.4 Decision

In keeping with the needs of UWAFT for EcoCAR AVTC development, Simscape is
selected for the development of this powertrain model. Primary reasons are the model
�exibility in terms of con�guration and the vast availability of learning resources in
Simscape vs. Autonomies much harder to use environment which does not have the
same level of support available.

4.4 Powertrain Description

The MA-EREV is driven by a single AC induction motor. As in existing work, the mod-
elling of transmission gear changing is not essential due to the wide power band of the
YASA motor, which is not signi�cantly limited at maximum wheel speed. The pow-
ertrain con�guration is described in Figure 4.1 below. A dual ESS con�guration is a
viable alternative to internal combustion engines for range-extended, hybrid vehicles
due to the high energy density of Zinc-Air batteries, sustaining charge in the smaller
lithium ion battery while driving distances beyond the standard 40.55km commute
distance [4].

The powertrain per-component technical speci�cations are described in Table 4.6
below.
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Table 4.4: Model environment scoring justi�cation

Criterion: Score Justi�cation:
Model Flexi-
bility

In developing a custom powertrain with Autonomie, signi�cant e�ort is
required to identify and resolve issues within the automatically generated
code, requiring signi�cant deep knowledge of Autonomie. In Simscape,
components can be connected using common physical I/O ports and re-
con�gured without requiring intricate knowledge of component models.

Learning
Resources

Autonomie, being an industry tool, provides some resources in the form
of large documents that often lack speci�c information regarding compo-
nent behaviour. It is very challenging to get technical assistance for a spe-
ci�c version of Autonomie online, requiring consultation of researchers
familiar with the tool. Simscape is well documented online and given
that the environment is a Simulink library, it is trivial to get technical
assistance through search engines.

Ease of Use Despite being built upon Simulink, Autonomie’s work�ow and user in-
terface are signi�cantly di�erent and pose many usability issues in the
work�ow. Given that Simscape is a library within Simulink, it is almost as
easy to use as placing conventional Simulink blocks. Simscape is signi�-
cantly easier to use and will provide the best tool for students to conduct
self-learning.

Operating
System
Support

Autonomie only supports Windows Xp and Vista operating systems,
causing compatibility issues on UWAFT computers. Simscape is sup-
ported in the Simulink environment, which means it can be used in all
modern Windows OSs, Macintosh OSs and Ubuntu.

Time for Ex-
periment

Autonomie’s complex work�ow and lack of clarity when sorting through
results add time to the experiment, making result gathering cumbersome.
In Simscape, results are easily captured using familiar Simulink blocks
such as scopes.
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Table 4.5: Adjusted model environment scores and net scoring for both options

Model
Flexibil-
ity

Learning
Re-
sources

Ease of
Use

OS Sup-
port

Time for
Experi-
ment

Net
Score

Autonomie 3 3 2 2 1 10
Simscape 9 9 4 3 2 27

Table 4.6: MA-EREV per-component technical speci�cations

Component: Speci�cation: Rating:

Electric Motor
Type AC induction motor
Peak Power 260 kW
Continuous Power 60 kW

Lithium-ion Battery

Type A123 7x15s4p
Capacity 23 kWh
Nominal Voltage 340 V
Maximum Discharge 400 A

Zinc-air Battery

Type Research 4x72s13p
Capacity 67 kWh
Nominal Voltage 340 V
Maximum Discharge 400 A

Tires
Tire Diameter 25 inches
Tire Width 7.68 inches
Aspect Ratio 65

transmission Gear Ratios 1.86, 1.00
Final Drive Gear Ratio 3.73
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Zn-Air 
Battery

Power 
Converter

Lithium Ion 
Battery

Electric 
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and Brakes

12V DC/DC 12V 
Accessory

Figure 4.1: MA-EREV powertrain con�guration

4.5 Model Description

By using Simscape components, the development and simulation process is familiar to
student already familiar with using Simulink, with some additional details regarding
the handling of physical signals.

4.5.1 Model Overview

The model Simscape developed is seen in the Simulink interface of Figure 4.2 below.
Note that the green busses represent rotational-domain physical connections, in this
case propeller shafts and drive shafts - this is a feature which Simscape has added to
Simulink.

This model has multiple components including user-con�gurable features which
are described in the following sections according to the overview of Figure 4.3 below.

At a high-level, the model functions by mapping driving commands to per-component
demands, and then propagating outputs to the SimScape powertrain model where the
vehicle dynamics are modelled such as tires, gearing, and braking. Performance is
measured by inspecting the Simscape powertrain model in Simulink scope blocks.

4.5.2 Drive Cycle and Driver

When modelling a vehicle powertrain, the aspect of modelling a human driver con-
trolling the vehicle must also be considered. With the addition of driver inputs, the
vehicle should be able to drive a commanded ‘trace’, satisfying speed demands such
as those speci�ed in an EPA drive cycle. In the developed model, the issue of driver
controls is easily approached with use of the included longitudinal driver block and
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Figure 4.2: The MA-EREV powertrain model as seen in the simulink user interface

an additional Simulink Driving Cycle block, available through the simulink website.
The blocks and their interconnections are detailed in Figure 4.4 below.

The drive cycle source block can be easily con�gured to provide reference veloc-
ities of many EPA tests for fuel economy measurement in vehicles. Visible in the
block’s mask of Figure 4.5 is the currently-selected HWFET drive cycle, through cus-
tomized drive cycles can also be also be selected. The interface to select other drive
cycles is seen in Figure 4.5 below, note that in range determination simulations, the

Performance Measurement
Charge 

Sustaining 
Controls

Drivecycle and Driver
Powertrain 

Controllers, ESS 
Model, Motor Model

Simscape Powertrain Model

Regenerative 
Braking 
Controls

Road Surface 
Control

Figure 4.3: The MA-EREV model components with annotated function
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Figure 4.4: Longitudinal driver block with drive cycle source

drive cycles can be repeated cyclically.

Figure 4.5: Drive cycle source block parameters

The longitudinal driver model is supplied the desired vehicle velocity as well as
the current vehicle velocity feedback, and is able to interpret the error as acceleration
and deceleration (braking) demands. The model for the driver is designed using many
tunable constants such that the response can be characterized to suit driver modelling
needs. The currently selected constants are tuned to provide desirable braking and ac-
celeration performance for the developed powertrain, matching traces without issue.
Note that given the model objectives do not include the modelling of sophisticated
vehicle suspension dynamics, and that the developed model is longitudinal, with a
driver driving in a straight, �at path.
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In these blocks the approachability of the Simulink-Simscape interface is apparent
given the ease of �ne-tuning driver characteristics to suit the attached powertrain.

4.5.3 Powertrain Controllers and Models

To transform the acceleration and deceleration demands into power demands for com-
ponents, models and controllers are required. Figure 4.6 below shows the models
within the powertrain block.

Figure 4.6: MA-EREV powertrain models and controllers

Of the controllers and plants within this block, the Dual-ESS System block contains
simulink logic from the existing Autonomie model, with an interface created for this
model.
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4.5.4 Brake Model

The braking model uses check logic to check that deceleration demands from the
driver do not occur at the same time as acceleration demands, and then applies a con-
stant scaling to map valid deceleration demands into a force value at the physical port
of the four drum brakes in the Simscape model. The map between driver commands
and the simscape drum brake model is seen in Figure 4.7

Figure 4.7: The MA-EREV brake model adapts driver commands into brake forces

The brake model is a double-shoe type brake, with con�gurable drum radius and
shoe properties. There are four brakes in the model, seen in Figure 4.8 below.

Figure 4.8: The Simscape vehicle chassis, tires and associated drum brakes

Note that when enabled, regenerative torque is sent to the motor controller during
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Table 4.7: Matlab-provided Pacejka tire model coe�cients [40] to simulate the traction
of di�erent road surfaces

Surface B C D E
Dry Tarmac 10 1.9 1 0.97
Wet Tarmac 12 2.3 0.82 1
Snow 5 2 0.3 1
Ice 4 2 0.1 1

braking operations as a constant, negative, torque which takes the place of motoring
commands during forwards motion.

4.5.5 Tire Model

As previously shown in the overview �gure 4.2, there are controls which enable the
con�guration of road conditions in the model. This is possible due to the Pacejka
model-based tire blocks provided by simscape which have the capability to be supplied
coe�cients in the model [40]. This is seen in the controller’s use of a direct inspection
type lookup table which provides the below coe�cients of Table 4.7 depending on the
state of the dial in the model.

A limitation of the tire model is that rotational power develops a translational
force, but this does not occur in the reverse direction. Due to this limitation, the ro-
tational conserving ports of the front tires and rear tires must be connected when
simulating braking operations such that all tires are able to contribute to the genera-
tion of braking forces.

Rolling resistance is con�gured to a simple constant coe�cient of 0.015, though
a more sophisticated pressure and velocity-dependant model is easily enabled. The
tires in the simulation are 26.8 inches (0.682m) in rolling diameter, and there is capa-
bility to model compliance and inertia, though these features are not enabled in this
experiment.

An additional desirable feature of the tire models which is useful when tuning ac-
celeration/deceleration control and evaluating tire performance is the ability to record
tire slip coe�cients from the S port of the block. Slip coe�cients are the ratio of tire
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motion to surface motion, where −1 indicates tire locking during stopping and 1 in-
dicates tire slipping without acceleration of the vehicle chassis.

4.5.6 Motor Model

In Simscape, multiple options are available for implementation of rotational power-
generating components. Most applicable to this use-case are models which use lookup
tables such that accurate torque-curve performance can be parameterized. Additional
logic is required to turn the driver acceleration command into a torque command for
the motor however. The developed approach is shown in Figure 4.9 below.

Figure 4.9: Lookup-table based motor control and plant within the powertrain model
block

By using a 1-D lookup table to identify the maximum-available torque for the mo-
tor at a given speed, and multiplying the result with the driver’s acceleration demand,
which is between 0 and 1, a torque command is commanded to the mapped motor
model block. The mapped motor block includes the calculation of motor power con-
sumption and losses using manufacturer data obtained from the existing model. The
motor has a stall torque of 826 Nm and a rotational speed limit of 8000 rpm as based
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on the existing model [12].
Additional logic ensures that during braking commands, the regenerative torque is

propagated to the mapped motor block, which is able to calculate the resulting power
generated from this operation.

To transform the simulink torque command signal into a rotational-domain torque
signal, in the Simscape bus, an ideal torque source block is used - seen in Figure 4.10
below.

Figure 4.10: Simscape’s ideal torque source is used to transform the torque signal from
the motor model to the physical rotation-domain bus

4.5.7 Dual Energy Storage System

There exist multiple models for use in lithium-ion type batteries, but currently there
are no metal-air battery speci�c models included with Simscape. Due to this, and to
minimize di�erences in battery model performance between the existing model and
the current Simscape one, the existing energy storage model is not re-implemented
using Simscape components and is instead connected to supply motor demands within
the powertrain block. Both the Zinc-air and Lithium Ion battery models are developed
by Meagan Wang, and are well documented in published work as the MA-EREV [12].

At a high-level, the battery system is comprised of a primary, Lithium Ion battery
pack and a secondary, range-extending, Zinc-Air battery of a larger capacity. The
Zinc air battery exhibits more capacity fade with charge/discharge cycles than the
lithium ion battery and as-such is not intended to be used in a majority of commuter
driving occuring within the range of the lithium ion battery capacity. Both batteries
are modelled using a rint equivalent circuit model [12]. The interconnection of battery
systems within the Dual ESS block is shown in Figure 4.11 below. Note that both power
convertors are 95%.
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Figure 4.11: The MA-EREV dual-ESScon�guration

Table 4.8: MA-EREV charge sustaining logic

Lithium
Ion Battery
SOC:

Zinc Air
Battery
SOC:

Action:

SOC > 50% n/a Discharge from Lithium Ion Battery only
50% < SOC
< 70%

SOC > 15% Charge sustain at speci�ed power from Zinc Air→
Lithium Ion battery such that range is extended

n/a SOC <= 15% Disable Zinc Air battery, minimum SOC reached
SOC <= 10% n/a Disable Lithium Ion battery, minimum SOC reached

This model is functional within the dual ESS block, but additional logic is required
to control the range-extending function where power from the metal-air battery sus-
tains charge in the lithium ion battery. This logic is shown in Figure 4.12below.

A truth-table which describes this control logic in terms of CS operation and bat-
tery limits is seen in Table 4.8 below. This control strategy uses minimal discharge
limits once the zinc air battery is discharged, which degrades lithium ion battery life
but provides a maximal range for VTS.
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Figure 4.12: The charge-sustaining control logic to provide the desired behaviour

4.5.8 Vehicle Chassis Model

It is simple to implement and con�gure longitudinal vehicle dynamics models in Sim-
scape given the included Vehicle Body block with ports for tires and environmental
characteristics. Currently, with the longitudinal model approach, there is no road in-
cline or head wind added to the drive cycle, this ensures that EPA drive cycle results
are representative and comparable to existing work in Autonomie. The vehicle body
block and the provided Simscape description/parameterization are seen in Figure 4.13
below. Note that the developed mass speci�cation is set to match the value of the
existing model’s MA-EREV.

4.5.9 Transmission Model

Within Simulink, multiple options for sophisticated automatic transmission are avail-
able which well-represent the available options in modern powertrains. However, to
ensure comparisons to existing model results are accurate, a variable gear ratio is im-
plemented,as only a single gear ratio is required due to the wide powerband of the AC
motor. The selected component has con�gurable compliance and losses, with a gear
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Figure 4.13: vehicle chassis model with parameters for the MA-EREV

ratio set via physical port = 1 as speci�ed in the existing model. An example of one
such available pre-con�gured 8-speed transmission available for direct connection to
the rotational bus is seen in Figure 4.14 below alongside the available transmission
model blocks.

Figure 4.14: provided Simscape transmission models and the internal simscape model
of the 8-speed transmission

4.5.10 Powertrain Model

Connecting the component models together, there are inertias placed to more accu-
rately represent shaft dynamics on the pre-transmission shaft, propeller shaft and half-
shafts. There is a sensor array places pre-transmission which provides measurement
of shaft speeds used in the motor controller as well as torques for use in debugging.
Post-transmission there is a gear ratio of 3.73 and a di�erential to split the torque
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between the two rear driven tires. The front tires share a rotational bus but are not
driven. The powertrain components and interconnections are shown in Figure 4.15
below.

Figure 4.15: The physical powertrain modelled in simscape with multiple domains of
physical bus

An additional element which has been added to improve the model’s mathematical
stability in the pre-transmission sensor feedback is an algebraic loop �lter show in
Figure 4.16 below. Note that the rotational and torque sensing blocks are provided in
the Simscape library.

4.6 Vehicle Technical Specification Experiment

To validate the developed model by way of estimating VTS, an experiment is con-
ducted which gauges vehicle performance and e�ciency under a number of cus-
tomized drive cycle tests. The procedure for the experiment in terms of evaluating
each technical speci�cation is described in the following subsections.

4.6.1 Vehicle Range Estimation

One of the aspects of purchasing a new vehicle is the investigation of energy consump-
tion, usually this is available to the consumer by way of an EPA sticker on the vehicle.
The rating for the vehicle is developed from a weighted average of dynamometer drive
cycles which aim to simulate a variety of driving conditions. This EPA labelling uses a
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Figure 4.16: the pre-transmission torque and rotational velocity sensors with �lter for
improved model stability

weighted average of 55% city and 45% highway driving, using the UDDS and HWFET
drive cycles respectively. By running the vehicle powertrain model on a drive cycle
which contains 2 UDDS drive cycles (2738 seconds) and 3 HWFET drive cycles (2295),
this weighted average is respected in terms of the driver’s proportion of driving time,
and the vehicle’s range can be determined through simulation.

The customized drive cycle composed of 2 UDDS cycles and 3 HWFET cycles is
run in a continuous loop, until the lithium ion battery is run down to 10% SOC which
stops model execution automatically. By tracking the distance of the vehicle, the com-
plete range can be observed upon the time of stopping. The experiment is run with
the vehicle operating upon dry tarmac, and without the front-to-rear connection for
performance braking. The customized drive cycle is shown in Figure 4.17 below.

In the interest of capturing the range-extending capabilities of regenerative brak-
ing, a further range simulation is executed using 50 Nm of constant regenerative
torque during braking operations con�gured with the model’s user controls.
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Figure 4.17: The developed 2-stage drivecycle with 55% city and 45% highway driving
for range testing

4.6.2 Acceleration - 0 to 60 Miles per Hour

Acceleration is easily calculated with use of a customized drive cycle which commands
60 mph, or 26.8ms, as a square wave type signal. The result of such a signi�cant error
between the stopped chassis and commanded speed is that the driver block commands
a wide-open-throttle event and the acceleration of the vehicle is maximized. Instead
of developing a drive cycle within the drive cycle block, this is most easily accom-
plished using a constant commanded reference speed, shown in Figure 4.18 below.
Acceleration testing is performed on dry tarmac.

4.6.3 Acceleration - 50 to 70 Miles per Hour

This test is intended to gauge the capability of the vehicle to pass other vehicles on a
highway, as the higher rotational velocities impose greater strain on the powertrain
during acceleration than in the 0-60 test. This test is also most easily achieved using
simple source blocks instead of the the drive cycle block, though a customized drive
cycle could be implemented. This test is performed using a Simulink step block, which
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4 Powertrain Modeling

Figure 4.18: With a constant input speed demand, a 0-60 acceleration test can be easily
performed

is initially 50 miles per hour (22.35ms), and which steps up to 70 mph (31.29ms) after
8 seconds. The block commands the driver directly as in the 0-60 connection of Figure
4.18.

4.6.4 Deceleration - 60 to 0 Miles per Hour

It is unsafe to design a powertrain which is capable of signi�cant acceleration with-
out also ensuring that the vehicle is able to stop adequately, in the EcoCAR AVTC,
adequate stopping distance is a requirement of vehicle participation. By analyzing
the distance the vehicle requires to come to a complete stop from 60 mph, this value
can be compared to the existing model which satis�ed performance requirements by
stopping in 121 feet.

Given the capability of the tire models to describe slip, it is also possible to provide
additional insight in the tire dynamics of the stopping operation. For example, if the
tires are locked during braking, creating a slip coe�cient of -1 during the 60-0 simu-
lation, the longitudinal simulation will fail to capture the need for traction control to
prevent spinning of the vehicle and other unsafe e�ects created by locked tires during
stopping [41]. By monitoring the slip coe�cients during this test, the simulation will
also evaluate if the vehicle’s 60-0 test is representative of it’s maximal safe braking
capability. The 60-0 test is performed on dry tarmac.
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chapter5
Vehicle and Environment Simulation

5.1 Overview

A signi�cant bene�t of collecting data with the UIP is the capability of scenario re-
creation for testing purposes. In this chapter, an experiment is conducted which
demonstrates this application of the data collection platform for powertrain devel-
opment. By using real-world data to provide validation of the powertrain through
simulations which include environmental information, the concept of Rich Environ-
ment Simulation is realized.

5.2 Experiment Objectives

Typically powertrain development uses a limited number of drive cycles which are
EPA mandated approaches to fuel economy calculation, as well as a number of sim-
ple drive cycles which command constant speeds for acceleration and deceleration
performance.

By using real-world data, the pool of testable drive cycles is increased signi�cantly,
and augmented through real-world scenarios occurring under a variety of road con-
ditions given that data is collected year-round. The objective of this experiment is
to demonstrate that the data collected through the UIP is applicable to powertrain
development in addition to the ADAS and autonomous vehicle development value
identi�ed in prior chapters.
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5 Vehicle and Environment Simulation

5.3 Scenario Replication Experiment

One of the the major di�erences between electric vehicles and internal combustion en-
gine vehicles is the addition of weight due to electrical energy storage systems such as
lithium-ion batteries. In the case of the MA-EREV, the weight increase upon the stock
2015 Chevrolet Camaro is 396kg [12].Through simulation of the vehicle on exclusively
dry tarmac with existing EPA drive cycles such as HWFET or UDDS, the performance
impact of non-ideal weather conditions in combination with this increased weight is
not investigated.

The following experiment uses real-world data collected by a driver equipped
with the UIP who experienced slipping while stopping on a road surface which had a
buildup of hard-packed snow, visible in a screenshot from the capture footage in Fig-
ure 5.1. The vehicle driven is a 2015 Chevrolet Cruze with a curb weight of 1414kg,
equipped with rubber tires of a blocked and sniped design.

Figure 5.1: Footage captured by pilot project test driver during a slipping event on a
snowy road surface, showing elongated tire tracks at the stop sign location

To investigate the impact of the winter conditions with the increased weight of
the MA-EREV powertrain, the following procedure is applied:

1. By use of the encoded driving conditions database developed in the UIP pilot
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5 Vehicle and Environment Simulation

project data collection experiment, the scenario containing winter conditions
and slipping is identi�ed.

2. A drive cycle capturing intersection of Figure 5.1 is isolated from the .csv data
�le which includes time and vehicle velocity in m/s The drive-cycle is aug-
mented with a 30-second ramp-up such that the vehicle reaches the appropriate
steady-state speed matching the beginning of the recorded data.

3. The drive cycle is loaded into the powertrain drive cycle block of the Simscape
MA-EREV model as detailed in 4.5.2 The road-conditions in the model are set to
‘Snow’ using the dial control in the Simscape MA-EREV model

4. The scenario is re-created through simulation with the MA-EREV and results
containing vehicle path and tire slip are collected
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Experimental Results

6.1 Pilot Project Data Capture Experiment

(a) Pilot project coverage (b) Tap locations

Figure 6.1: Heat maps indicating Data coverage via GPS (a) and locations used to train
ADAS (b)

The following information is collected over the course of the month-long experi-
ment:

1. 6, 152, 873 data points are collected between November 22nd and December
19th, with 7.45 hours of driving recorded.

2. A heat map of the driven paths in the Region of Waterloo is shown in 6.1a. Note
that trips to outside of the region are omitted for scale. A majority of driving
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Figure 6.2: Statistical Event Pro�le for the pilot project data

occurs between the university and UWAFT team member’s homes. For more
views of the Ontario-wide coverage, see Appendix IV.

3. The screen was tapped 197 times, and this data was used to train a stop-sign
detector by the ADAS team, and to identify situations of interest, some of which
are included in the statistical event pro�le. Figure 6.2 shows the tap locations,
which correspond to major intersections near the university where there are the
most jaywalkers.

4. The video is reviewed by a team member for situations involving the driver re-
sponding to: jaywalkers, traction loss, extreme weather events (obscuring vis-
ibility with heavy rain or snow), ambiguous merging with other vehicles (ex:
zipper merge). In the collected data, seen in 6.2, it is seen that a vast majority of
the events involve jaywalking. One interesting situation of a lane obstruction
is shown in 6.3.

5. 40.45 gigabytes of video has been captured across 28 trips and all the captured
data is stored on the secure UWAFT �leserver.

6. Due to the time of the experiment (November December), a major portion of
the footage captures winter conditions, with 8 instances of rain, 1 instance of
blizzard conditions and 1 instance of freezing rain. 40% of the driving occurred
at after sundown.
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Figure 6.3: Some interesting events captured of a speci�c jaywalker, of being cut o�
(top right), and of a hwy. lane obstruction (bottom left)

7. Accelerometer data is not plotted, but has been collected alongside all trips in
the corresponding .csv �le. It is noted that acceleration, deceleration and turning
all create distinct readings.

6.2 Monocular Vision Pipeline Experiment

In the experiment, 40 minutes of video is shot at two locations, and this initial version
of the monocular vision pipeline is demonstrated. Results are discussed in terms of
variables monitored:

1. Video locations are detailed in Figure 6.4.

2. 40 minutes, 720p 30fps .mp4 video �les are recorded on the UWAFT �le server.
Two 2 minute videos are cut from the initial 40 minutes which contained the
most feature-rich occurrences to reduce time consumed while developing the
pipeline with the long videos.

3. Several keyframes demonstrating the object detector’s current capabilities are
shown in Figure 6.5a and Figure 6.5b.
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Figure 6.4: Monocular video capture locations, circled in red

(a) Multi-object detection (b) Pedestrian recognition

Figure 6.5: (a) Multi-object detection in front of B.C. Matthews Hall and (b) Recogniz-
ing distant pedestrians, in-front of Engineering 5

4. As with object detection, tracking output is challenging to convey, but the ca-
pability to maintain identi�ed objects while withstanding occlusions is demon-
strated in Figure 6.6. Note that the four views of the scene in this �gure are
cropped and zoomed from the original camera view, visible in Figure 6.5a.

5. Distance estimates are currently not visualized, but are generated and stored.
The current system is not a part of the pipeline but the accuracy of the esti-
mation can be determined using measured distances to objects within captured
video.
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Figure 6.6: Tracker follows vehicle 4 (blue), pedestrian 30 (pink) and 31’s (yellow)
detected paths despite occlusions in this complex scene captured during the static
video capture

6.3 Powertrain Simulation Experiment

As previously identi�ed, the goal of this set of simulations is to develop VTS for a MA-
EREV. Data is collected via two scope blocks which together log vehicle speed, battery
power output, battery SOCs, tire slip, braking force and braking distance. Results are
summarized with inclusion of relevant data and then compared to the existing model
VTS and discussed.

6.3.1 Range Estimation

By simulation of the 55% UDDS and 45% HWFET drive cycle repeated until the
Lithium-ion and Zinc-air batteries are depleted, a range of 370km is obtained with
trace data visible in Figure 6.10. Power discharge peaks at 50kW, and power genera-
tion is 35kW - both of which are within acceptable component limits.

Visible in the result of Figure 6.10 is the charge sustaining function of the zinc-
air battery, supplying 35, 000W of power to the Lithium-ion battery, maintaining its
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SOC between 50% and 70% until both batteries are depleted. In the follow-up exper-
iment to gauge the e�ect of regenerative braking, the range is extended to 398km, an
increase of 7%.

6.3.2 0-60 Acceleration

In the simulation which commands an instantaneous speed of 60 mph (95.6 kph), a
time of 6.1 seconds is obtained. Note that the output power does not exceed 225kW

during this operation, which is within allowable limits. Acceleration performance for
this experiment is seen in Figure 6.7
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Figure 6.7: MA-EREV 0-60 acceleration performance with supplied power

6.3.3 50-70 Acceleration

Relevant to vehicle highway performance is the 50 → 70 mph acceleration, which
puts more strain on powertrain components. The drive trace commands 50 mph in-
stantaneously, and steps the command to 70 mph at 8 seconds of simulation time.
Visible in Figure 6.8 the resulting simulation trace of Figure 6.8, the elapsed 50-70 ac-
celeration time is 2.14 seconds. Power consumption peaks at 245kW, which is within
acceptable limits.
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Figure 6.8: MA-EREV 50 to 70 mph acceleration performance with supplied power

6.3.4 60-0 Braking

In this braking experiment, the distance over which the vehicle is capable of coming
to a complete stop is investigated. The drive trace brings the vehicle to a speed of
60 mph (95 kph) and then commands an instantaneous velocity of 0 at 50 seconds of
simulation time. Visible in Figure 6.9, the tire slip coe�cients indicate that tires do
not lock during the operation, and that the stopping distance is 121 feet. As in the
EcoCAR 3 competition event, regenerative braking is disabled for this test of vehicle
safety.

6.3.5 Summary and Comparison of Results to Existing Model

To provide a validation of the model techniques used, the existing model results for
the MA-EREV developed by [12], are compared to the results for the Simscape model
collected in the simulation experiments.

6.3.6 Scenario Replication Experiment

Resulting data of Figure 6.11 shows that the simulated MA-EREV was able to match
the recorded trace with some traction di�culty. Longitudinal tire slip reached a max-
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Figure 6.9: MA-EREV braking performance on dry tarmac

imum of 84%, indicating that the MA-EREV has signi�cant di�culty matching the
acceleration performance of the Chevrolet Cruze, though the braking performance is
better with a maximum slip of 48% and less slipping overall. Note that the recorded
data begins at 30 seconds, with the prior trace providing a ramp-up in speed.
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Figure 6.10: Recorded range estimation data demonstrating the charge-sustaining and
regenerative braking functions

Table 6.1: Results comparison for purposes of validation of the Simscape model

Vehicle Technical Speci�ca-
tion::

Simscape Model: Existing Model:

Total Vehicle Range [km] 398 462

0-60 mph acceleration [s] 6.1 5.9

50-70 mph acceleration [s] 2.1 3.6

60-0 mph braking [feet] 121 121

Curb Mass [kg] 2075
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Figure 6.11: In simulation of the recorded slipping trace, the MA-EREV shows more
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chapter7
Conclusions

7.1 Pilot Project Data Capture Experiment

In terms of the coverage metrics, it is found that the coverage generated from even
a single participant contains signi�cant, statistically desirable, repetition in driving
routes - especially in city centers along commute routes. By capturing situations of
interest through screen-taps, the process of identifying and reviewing footage is sig-
ni�cantly improved and interesting data is more easily extracted for research pur-
poses.

In analyzing the statistical event pro�le, it can be seen that it is also possible to
extract meaningful quantities of edge case scenarios from the data for the training and
development of ADAS and autonomous vehicles, or in the development of powertrain
technology.

7.2 Monocular Vision Pipeline Experiment

In reviewing the functionality of the multi-object detector, acceptable performance is
demonstrated through detection of far-away (˜100m) vehicles, signs and pedestrians.

In reviewing tracking with the MDP, the tracker is demonstrated to have accept-
able performance given the ability to maintain the identify of identi�ed vehicles and
pedestrians across frames of video and occlusions.
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7.3 Powertrain Simulation Experiment

In this experiment the results are ideally the same, providing a validation of the devel-
oped Simscape model against the existing model. Any signi�cant di�erences indicate
an unintended change in model behaviour or simulated vehicle performance.

The range of the Simscape model is 13.8% lower (64km shorter) than in the ex-
isting model results, indicating a range-signi�cant di�erence exists in the Simscape
model. Given that the battery model used is imported from the existing model, and
that the motor model used is parametrized as in the existing model, this di�erence is
due to a di�erent component of the simulation.

In terms of 0-60mi/h acceleration performance, the developed model is consistent
with the existing model with a di�erence of two tenths of a second. This di�erence
is insigni�cant in terms of powertrain design in the scope of EcoCAR 3 and indicates
that the developed model is consistent in terms of this VTS.

In terms of 50-70mi/h performance, the Simscape model performed better, scor-
ing 1.5s faster than the existing model, which is signi�cant in the scope of EcoCAR 3
powertrain design and may impact design choices made by UWAFT. In the EcoCAR
3 year three competition, 6 teams completed the 50-70 acceleration event with times
below 7.3s (target VTS), in these scores there is a standard deviation of 1.65 points out
of the 20 available points for the event. This indicates extremely close times across
participants and the signi�cance of a seconds in the scope of the competition.

In terms of braking performance in the 60-0mi/h deceleration simulation, both
simulation environments scored consistently, bringing the 2075kg vehicle to a com-
plete stop over 121 feet of braking distance.

7.4 Vehicle and Environment Simulation

In a replication of a scenario where slipping was observed in a driver equipped with
the UIP, the MA-EREV exhibited less longitudinal slipping during stopping than dur-
ing acceleration on a snow-covered road surface.

During stopping, the MA-EREV exhibited a peak longitudinal slip of 41%, which
is non-ideal for traction generation given that traction decreases with increasing slip
in the Pacejka tire traction model parametrized for snow [42]. In an analytical lon-
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gitudinal slip tire model for snow, seen in Figure 7.1, peak traction occurs at 30%

longitudinal slip, while a slip of 41% provides 94% of available traction [43].

Figure 7.1: Snow traction vs slip as detailed in an analytical study [43]

During acceleration, the vehicle exhibited a more extreme peak longitudinal slip
of 84%, producing 55% of the available traction according to the same study [43].

Given that the vehicle accelerated from 17km/h to 42km/h over 21s in the
recorded drive trace, this signi�cant amount of slip indicates that the MA-EREV may
have di�culty safely performing in winter conditions without additional traction con-
trol. The MA-EREV weighs 677kg more than the pilot project test vehicle.
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Discussions and Future Work

8.1 Discussions

8.1.1 Data Collection with Vision Pipeline

Although the current dataset is relatively small, it is clear to the UWAFT and the Au-
tonomoose team that this approach is valid in developing valuable automated contin-
uous improvement processes to the research industry. The presently achieved goals
provide a stepping stone towards implementing a more complex, publicly accessible
research resource which has the potential to enable diverse, external innovation in
the ADAS and autonomous research �eld.

The developed approach of utilizing an a�ordable and scalable platform with a
sophisticated vision pipeline with the promising capability to develop baseline met-
rics will be of particular impact to the industry, providing an alternative to the pro-
hibitively expensive instrumented car approach. Given the coverage of a single driver,
it can be expected that city centers and highways will be particularly well exposed to
UIP. As in the OpenStreetMap scenario, the highest repetitions of data can be ex-
pected to yield the most accurate information [3], in this project’s case that informa-
tion comes from the MVP and OBD-logged driver inputs.

The current UWAFT innovation project represents successful collaboration be-
tween EcoCAR team members and autonomous research stakeholders at the Univer-
sity of Waterloo, providing an internal path to direct application of the platform before
public crowdsourcing occurs in the near-future. The initial pilot project with one per-
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son collecting data for one month is successful at demonstrating the e�ectiveness of
the UIP and MVP while also pushing the innovation team to develop improved tools.

However, what must be done to precipitate crowdsourcing? One approach, inte-
grated into the earliest concepts of the UIP, is to add value to the platform for everyday
drivers in the form of a cloud-connected dashcam service. As most cars currently on
the road are not instrumented with video recording devices, many consumers cur-
rently turn to dash cams for insurance, safety, or entertainment bene�ts. UWAFT’s
own innovation platform and pipeline backend can ful�ll this consumer demand while
o�ering additional features to consumers in the phone app such as simple ADAS or
statistics. Additionally, dashcams with GPS logging features often cost the same or
more than the capable android currently in use for the UIP (Appendix 5). By provid-
ing drivers with additional bene�ts to make the UIP more attractive, it is hoped that
crowdsourcing can be precipitated more easily and that the driving data resource can
be fully developed in terms of value to the industry.

With a publically-backed project engaged in external innovation, it is possible that
the intelligent vehicles of the future will arrive more quickly and with features beyond
the scope of current research e�orts. This is the vision that the UWAFT innovation
team hopes to realize.

Team and Technical Goals Achieved

The UWAFT innovation team was able to meet a vast majority of the established tech-
nical goals, pivoting away from some goals in favour of developing a more meaningful
monocular vision pipeline experiment. Additional e�ort was also spent developing the
app logging features and tuning app performance.

1. App Development The android app is currently enhanced with OBD logging
features and all required logging capabilities are implemented.

2. Website BackendBy reducing the scope of the backend to one which facilitates
use internal to the University of Waterloo, the system is e�ectively functional
on an appreciable scale with the present UWAFT �le server implementation.
The current system o�ers participants access to their contributions, and a USB
transfer script to o�oad footage, but this system cannot be public-facing with-
out additional security and anonymization e�orts. Thus, currently:
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• The functionality of the backend internal to University of Waterloo, is
within scope for this year of competition

• Functionality of the backend as a public research e�ort to precipitate crowd-
sourcing, is no longer within scope for this year of competition. The cur-
rent backend is integrated into the MVP such that scripts are run on the
collected data in its original format.

3. Machine Learning Algorithm This capability was extended beyond the origi-
nal validation concept. In realizing the value of scenario reconstruction for test-
ing of ADAS and autonomous algorithms, the UWAFT innovation team opted
to develop a monocular vision pipeline, extracting enough information to recre-
ate driver scenarios using the UIP data to de�ne baseline driving behaviour. By
developing the pipeline to support these goals, there is immediate bene�t along-
side the UIP output validation.

4. 60 Hours of Video Footage This technical goal not met for reasons of app
development. In particular the OBD logging functionality pushed back data
collection e�orts as multiple attempts were made to utilize wireless loggers un-
successfully, while delaying data collection. Currently, 7.45h of footage have
been recorded.

5. OBD Logging Functionality OBD data is currently logged using a reliable
USB on-the-go protocol and an Arduino with a specialized shield. It is possible
to improve this as a wireless system, but it is not possible to integrate many
existing cheap Bluetooth or Wi-Fi type adapters due to hardware limitations
of those adaptors. The system is currently capable of capturing the driver’s
physical inputs for: steering wheel angle, brake pedal position and accelerator
pedal position.

6. Ground Truth System Integration Currently, the video annotation tool inte-
grated is Matlab’s Training Image Labeler.

Achieved versus Projected Success

Although the quantity of data collected is smaller than planned, the project already
has research interest and is becoming a capable research platform as further technical
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goals are completed. More work on the Monocular Vision Pipeline will be required
before it can be used to develop functional test scenarios to precipitate the expected
impacts.

8.1.2 Powertrain Simulation Experiment

Although many of the results in the experiment align with those previously collected,
there is identi�ed a signi�cant di�erence in both the range and 50-70 acceleration
time.

With respect to the range di�erence, one aspect of the Simscape model which pro-
vided improved usability, but which may have increased power loss, is the tire model.
In the ‘Magic Formula’ tire model block there is a con�guration option for modelling
rolling resistance, but the constant coe�cient used is not easily compared to the ex-
isting model con�guration due to di�erences in the existing tire model architecture
which used four independent coe�cients to calculate rolling resistance. To further
examine the possible impact of a di�erent rolling resistance model, the provided pres-
sure and velocity-dependant rolling resistance model is enabled and settings are left
at defaults for the Simscape block. The result of simulating range with this model is a
signi�cant decrease in expected range (˜50km shorter), with a signi�cantly increased
power drain due to tire losses. Thus, it is surmised that the 15% range di�erence may
be due to di�erences in the tire models. Note that the rolling resistance value selected
for the range experiment is the default value for the Simscape block.

In terms of signi�cantly improved 50-70 acceleration time, the ‘Magic Formula’
tire block is again a possible source of the di�erence. In this case, due to the direction-
ality of the block requiring rotational input to determine traction outputs, the vehicle
essentially behaves as an all-wheel-drive vehicle when simulating acceleration, and
this may result in improved acceleration timings. This is increased tractability means
that it is easier to overcome the increased resistance forces from wind and tires during
the 50-70mi/h acceleration period; forces which are reduced overall within the range
of the 0-60mi/h test.

Given that the tire model issues can be resolved, Simscape provides a promising
powertrain development environment for EcoCAR students who will have an eas-
ier time understanding model components than with automatically-generated Au-
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tonomie logic. In this environment design decisions can be made with the con�dence
that, in the scope of the EcoCAR AVTC VTS, the resulting simulations are as accurate
as existing Autonomie models.

8.2 Future Work

8.2.1 Innovation Platform and Vision Pipeline

Currently, the experiment requires the participants to upload drive data on a weekly
basis using a physical connection to the phone, thus requiring the phone to be removed
from the vehicle and re-mounted. This poses a usability issue and a wireless method
of �le transfer is desired for the �nal UIP app.

A signi�cant current usability limitation is that the driver is required to manually
start and stop data capture in the android app. This is something that UWAFT aims to
change in the �nal integration of the UIP using the OBD interface and accelerometer
data to determine e�ective record start/stop information.

Privacy limitations mean that the data must be anonymized before the UIP back-
end can be developed to supply researchers external to University of Waterloo with
research information.

Current approaches in development involve blurring faces or down-sampling video
to obscure identifying features, an example of this approach, which does not signi�-
cantly impact the research value of the data is seen in Figure 8.1. Additional privacy
�ltering is also required to ensure homes and work locations are not easily identi�ed
and matched between captured trips.

A �nal di�erence between this experiment and the �nal integrated UIP is that the
developed OBD interface is not present at the time of this pilot project experiment,
meaning that baseline human actions cannot be determined automatically from raw
OBD data at this time. Once captured, the baseline data would be valuable for not only
autonomous research topics, but also could be used to tune driver behaviour in the
simscape driver block to investigate the impact of drivers on the vehicle performance
and to generate driver-impacted VTS.

In the �nal integration of the monocular vision pipeline, functionality should be
improved in multiple aspects to maximize the value of the pipeline in identifying and
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Figure 8.1: With content-aware blurring, identity can be protected [44]

developing test scenarios for autonomous vehicle algorithms or ADAS. Firstly, the
system’s current distance estimation system should be developed more fully. It is
very desirable to have accurate distance estimation as it will signi�cantly improve
the ease at which driver-experienced situations are replicated in simulation. A cur-
rent approach in development is to implement a more sophisticated estimation which
estimates the ground plane from image frames [15].

Additionally, the vision pipeline tracking system, though functional, exhibits spo-
radic re-detection and missed-detection issues for which the object detector is largely
responsible. To make the resulting tracks smoother, it is recommended that a looka-
head �lter be implemented into the pipeline between YOLO and the MDP to reduce
the issue of re-detecting and changing the identi�cation number of objects.

Finally, the capability to execute object detection on the phone directly is some-
thing which would signi�cantly minimize data transfer requirements from partici-
pants at the expense of vision research data. It is additionally possible to extract and
send only the identi�ed objects within bounding boxes and to downsample further
for a reduced data transfer requirement that still has vision research value.

In conclusion, through developing an open database of naturalistic driving data
using crowd-sourcing, the database can be used generate testable cases for continu-
ous improvement and for general algorithm tuning and development, with the added
bene�ts of conducting open innovation. In addition to these broader goals, more im-
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mediate outcomes in the areas of scenario re-creation for ADAS, autonomous algo-
rithm testing and powertrain design through simulation are realized at pilot project
scales.

8.2.2 Powertrain Simulation

There are multiple aspects of the model which should be improved in future use for
VTS simulation.

Most importantly, the front tires should be modelled such that they are capable of
inducing tire rotation from translational forces. Though this may be out of the scope of
a simscape model component, it is possible to develop a model in simulink components
which achieves this with consideration of Pajecka coe�cients. Simscape additionally
include tire-modelling sub-components which provide Pajecka-type modelling and
rotational resistance for the purpose of constructing tire models.

An additional aspect of the model which should be improved is the brake model
selection, as the implemented type of brake is not desirable in terms of dynamic anal-
ysis of an actual vehicle which typically use disc-type brakes. Currently this is also
a limitation of Simscape which does not o�er a disc brake model with physical port
I/O. As with the ESS model it is recommended that the existing disc brake model from
Autonomie be implemented with a simscape interface.

A �nal recommendation for future use of the model is that the existing dual-ESS
model should be augmented to regulate power supply in keeping with peak and nom-
inal discharge time limits. In the current results, these limits are never reached, but
with the investigation of powertrains such as the UWAFT Camaro, where there are
more motors and a smaller battery, these limits can impact results.
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A Innovation Project Timeline
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Figure 2: Gantt chart timeline of the innovation project
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Heatmap Detail
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B Heatmap Detail

Figure 3: Closeup data coverage of Southern Ontario
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B Heatmap Detail

Figure 4: Overview of data coverage showing trips to US
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appendix C
Innovation Platform Cost

Figure 5: The cost of the UIP is below 500$
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Tracking Algorithm
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D Tracking Algorithm
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Figure 6: Developed tracking approach using optical �ow
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Glossary

Advanced Driver-Assistance Systems are systems to help the driver in the driv-
ing process. When designed with a safe human-machine interface, they should
increase car safety and more generally road safety. iii

Battery Electric Vehicle is a type of electric vehicle (EV) that uses chemical energy
stored in rechargeable battery packs. 3

electronic Limited Slip Di�erential is a type of di�erential that allows its two out-
put shafts to rotate at di�erent speeds but limits the maximum di�erence be-
tween the two shafts. 5

Global Positioning System is a global navigation satellite system that provides ge-
olocation and time information to a GPS receiver anywhere on or near the Earth
where there is an unobstructed line of sight to four or more GPS satellites. 1

Hybrid-Electric Vehicle is a type of hybrid vehicle and electric vehicle that com-
bines a conventional internal combustion engine (ICE) system with an electric
propulsion system (hybrid vehicle drivetrain). 4

Internal Combustion Engine is a heat engine where the combustion of a fuel oc-
curs with an oxidizer (usually air) in a combustion chamber that is an integral
part of the working �uid �ow circuit. 2

Markov Decision Process provides a mathematical framework for modeling deci-
sion making in situations where outcomes are partly random and partly under
the control of a decision maker. iii
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Glossary

On-board Diagnostics is an automotive term referring to a vehicle’s self-diagnostic
and reporting capability. 1

Plug-in Hybrid Electric Vehicle is a hybrid electric vehicle that uses rechargeable
batteries, or another energy storage device, that can be recharged by plugging
it in to an external source of electric power. 4

Vehicle Technical Speci�cations these technical speci�cations provide a measure-
ment of vehicle performance. Typical speci�cations are acceleration tests such
as the 0-60 mph time and curb weight. 2
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