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c© Cătălin-Alexandru Avram 2017





Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Patrick Martin
Professor, School of Computing,
Queen’s University

Supervisor: Ken Salem
Professor, Cheriton School of Computer Science,
University of Waterloo

Internal Members: Bernard Wong
Associate Professor, Cheriton School of Computer Science,
University of Waterloo

Tamer Özsu
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Abstract

Request latency resulting from the geographic separation between clients and remote ap-
plication servers is a challenge for cloud-hosted web and mobile applications. Numerous
studies have shown the importance of low latency to the end user experience. Small re-
sponse time increases on the order of a few hundred milliseconds directly translate to
reduced user satisfaction and loss of revenue that persist even after a low latency environ-
ment is restored. One way to address this challenge in geo-distributed settings is to push
all or part of the application, along with the data it requires, to the edge of the cloud -
closer to application clients. This thesis explores the idea of taking advantage of clients’
proximity to the edge of the network in order to reduce request latencies.

SpearDB is a prototype replicated distributed database system which operates in a
star network topology, with a core site and a large number of edge sites that are close to
clients. Clients access the nearest edge, which holds replicas of locally relevant portions of
the database. SpearDB’s edge sites coordinate through the core to provide a global trans-
actional consistency guarantee (parallel snapshot isolation or PSI), while handling as much
work locally as possible. SpearDB provides full general purpose transactional semantics
with ACID guarantees. Experiments show that SpearDB is effective at reducing workload
latencies for applications whose access patterns are geographically localizable. Many appli-
cations fit this criteria: bulletin boards (e.g., Craigslist, Kijiji), local commerce or services
(e.g., Groupon, Uber), booking and ticketing (e.g., OpenTable, StubHub), location based
services (mapping, directions, augmented reality), local news outlets and client-centric ser-
vices (e-mail, rss feeds, gaming). SpearDB introduces protocols for executing application
transactions in a geo-distributed setting under strong consistency guarantees. These pro-
tocols automatically hide the complexity as well as much of the latency introduced by
geo-distribution from applications.

The effectiveness of SpearDB depends on the placement of primary and secondary
replicas at core and edge sites. The secondary replica placement problem is shown to be
NP-hard. Several algorithms for automatic data partitioning and replication are presented
to provide approximate solutions. These algorithms work in a geo-distributed core-edge
setting under partial replication. Their goal is to bring data closer to clients in order to
lower request latencies. Experimental comparisons of the resulting placements’ latency
impact show good results. Surprisingly however, the placements produced by the simplest
of the proposed algorithms are comparable in quality to those produced by more complex
approaches.
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Chapter 1

Introduction

An overwhelming number of new applications and services are being deployed directly to
the cloud. The elasticity, automatic provisioning and scaling, and low entry cost of the
cloud, as well as the instant access to a global audience, make this platform a favorite for
start-up companies and the applications they develop. But this global scale comes with its
own interesting set of problems.

1.1 Latency

Request latency is one such critical issue for modern cloud-hosted web, mobile and software-
as-a-service applications. Numerous studies [7, 61, 44, 85, 24] have shown the importance of
low latency to the end user experience: For example, Bing found that a 2 second slowdown
in response time reduced queries per user by 1.8% and revenue per user by 4.3% [85].
Google Search found that a 400 millisecond delay resulted in a 0.59% reduction in searches
per user. Even after the delay was removed, these users still had 0.21% fewer searches [85].
To address this problem, applications are heavily engineered to adhere to latency budgets.
However, the distance between end users and application servers, what Leighton refers to
as the “middle mile” [50], represents a fundamental challenge to low latency.

One response to this problem is to move the server side of the application closer to
end users. Cloud infrastructure providers offer services in different geographic regions.
The application can run in multiple regions, with the application’s database partitioned
or replicated and distributed across the regions. However, in addition to the complexity
and overhead introduced by partitioning and replication, the level of granularity that these
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Region and number 

of availability zones 

Future region 

Figure 1.1: Map of Amazon Web Services Datacenter Locations as of June 2017
(16 current locations, 4 future locations)

regions typically provide doesn’t fully address the middle mile problem as there may still be
significant latency between end users and the nearest application service. Figure 1.1 shows
the location of every datacenter Amazon Web Services makes available to clients that wish
to host their web applications. Amazon Web Services is one of the largest cloud service
providers, yet even in their densest zones (the US) there are many locations for which the
closest datacenter is thousands of kilometers away. The cost, scale and power requirements
of full datacenters makes it unlikely that these core regions cloud service providers make
available will significantly increase in number in the future.

For static content, the latency problem has been addressed by content delivery networks
(CDNs). CDN points-of-presence (POPs) can easily number in the hundreds as seen in
Figure 1.2, and their density guarantees that most users are very close to at least one of
them. These CDN points-of-presence are often referred to as the edge of the cloud because
of the location they occupy in the Internet’s network topology. The role of CDNs is to
cache frequently used static application data closer to users. Such cached data is expected
to rarely change and when it does it is updated by a central publisher and pushed out to
a large audience of subscribers (i.e. applications) that are scattered over large geographic

2



Figure 1.2: Points-of-Presence for CDNetworks Provider as of June 2017
(200 PoPs in 100 Cities)

areas. Movie streaming applications as well as static web content (e.g. images, style-sheets,
fonts, JavaScript libraries) are typical use cases for CDNs.

Mobile edge computing [9] carries this trend even further. Mobile edge computing refers
to pushing computing services from central cloud datacenters to the edge of the network -
either to provide very low latency, or to provide the application with access to information
that is available only at the edge, such as information about the state of the wireless
connection to the client devices.

Modern general purpose applications, however, make heavy use of dynamic and user
generated content through commenting and rating systems, sharing and social features as
well as targeted, interest or location based advertising or news update delivery. All of these
features that users have come to expect can’t be fulfilled by the simple caching paradigm
of CDNs.

A better solution may be to push the entire application all the way to the edge of
the network. The server side of an application can be replicated at hundreds, or perhaps
thousands, of locations, with each location responsible for serving nearby end users in a
small geographic region, such as a metropolitan area. This has the advantage that users
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can be as close to the application as they are to CDN points-of-presence. Such a solution
is well suited for latency critical applications.

1.2 Edge Applications

The key challenge in pushing applications to the edge of the network is the database.
Pushing the application to the edge without pushing the database will not solve the latency
problem, since the application will need to communicate with the core for database access.

The problem addressed in this thesis is how to provide database management for widely
distributed edge applications. My thesis is that, by exploiting data replication and carefully
designed synchronization protocols, it is possible to provide transactional database services
to edge applications without re-introducing the latency that has been eliminated by moving
the application to the edge.

The focus is on latency sensitive applications that provide geographically localized ser-
vices. This means that, for a given geographic area, there are parts of the application’s
database that are used primarily by end users in that area. For example, consider a service
such as Uber, which operates globally, but which has a substantial local component. That
is, Uber passengers and drivers typically use the system in the city or region in which
they live, and thus a substantial fraction of the application’s activity involves interactions
among users within a single region. Many other applications also fit this criteria: bulletin
boards (e.g., Craigslist, Kijiji), local commerce or services (e.g., Groupon, Uber), booking
and ticketing (e.g., OpenTable, StubHub), location based services (mapping, directions,
augmented reality), local news outlets and client-centric services (e-mail, rss feeds, gam-
ing).

1.3 Thesis Organization and Research Contributions

Chapter 2 describes related work. Chapter 3 presents an overview of SpearDB - a dis-
tributed, replicated database system that is designed to support edge applications. SpearDB
is based on an asymmetric core/edge architecture. Chapter 4 describes SpearDB’s proto-
cols for read/write transaction execution. These protocols are designed to enforce strong
consistency guarantees while minimizing application latencies. Specifically, they are based
on the protocols used by Walter [88] and provide the same Parallel Snapshot Isolation
(PSI) consistency guarantees over a geo-replicated database. These protocols have been

4



revised to take advantage of the asymmetric core/edge architecture, and introduce ad-
ditional features, such as stored procedures with transaction shipping. Further protocol
extensions allow for live data migration, which may be used to further improve latency for
workloads that change over time.

The SpearDB protocols have been implemented in a prototype which is architected
as a middleware layer that sits above a local database system at each edge site as well
as the core. It is responsible for all inter-site communication, and exposes an extensible
record store interface to application programs. Chapter 5 presents an empirical evaluation
of the SpearDB prototype. The various commit strategies used by SpearDB are shown
to be well-suited to the geographically localized workloads for which SpearDB is targeted.
SpearDB’s PSI protocol is further compared to a baseline modeled after the original PSI
protocol implemented in Walter [88].

The performance of SpearDB depends on the placement of primary and secondary
copies of data at the core and edge sites. Suitable placements are application-specific
and depend on the workload. In Chapter 6 and Chapter 7 the problems of primary copy
placement and secondary copy placement are studied. Several algorithms are developed to
provide approximate solutions. The effectiveness of the placement strategies produced by
the algorithms is evaluated using different workloads.
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Chapter 2

Related Work

This chapter describes other research efforts that have similar or complementary goals to
those of this thesis. Works that approach the problem of latency are described in Sec-
tion 2.1. Section 2.2 discusses research on content delivery network and caching. Related
database research is discussed in Section 2.3, while Section 2.4 covers related work on the
subject of data partitioning.

2.1 Latency

Recent studies [44, 61, 35, 10] have found that even a small increase in web page load times
can substantially increase the likelihood that a customer would switch to a competing
service or store causing loss of revenue. Several programming and testing principles have
been proposed [43, 34] to help in building better web applications that try to use the least
amount of network latency necessary. There is a significant amount of research published
on the topic of network latency and its effects [11, 13, 82, 101, 54, 91, 15]. This body of
work showcases the importance of trying to reduce network latency for the end product (a
web application or service) so that it performs to its users’ expectations. Since retrieving
database results is often an integral step in answering client requests in these applications
and services, it follows that this process needs to be as efficient as possible.

A variety of tools and techniques are available for latency and performance analysis.
Server side performance analysers and stress testing tools like the commercial solutions
offered by Neustar [65] and HP’s Performance Center [37], as well as open-source projects
like Benchlab [13], allow application-specific synthetic workloads to be tested under a
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variety of realistic load conditions. Several network link emulators are available [67] to test
different network conditions and topologies. For measuring client-side page load times,
Rajamony and Elnozahy [82] present a technique that embeds measurement JavaScript
directly in a downloaded web page.

Butkiewicz et al. [11] present a detailed analysis of the complexity of modern web pages
showcasing how web page features, such as the number of objects retrieved, the types of
content retrieved, and the number of sources from which content is retrieved, are related
to the time required to render the page. The WProf [100] in-browser profiler is used to
identify the number of round trip times as the major limiting factor in loading a web
page. While caching can lessen the problem, alternative network protocols to HTTP (like
SPDY [33]) are found to have a higher impact in reducing the network congestion. Wei and
Xu [101] describe a technique for monitoring network traffic into and out of a web service,
while the WebProphet system [54] is able to predict the load time of a web page under
hypothetical conditions through client-side (“what-if”) latency analysis. The “What-If
Scenario Evaluator” (WISE) [91], on the other hand, takes a machine learning approach
to model the effects of changes in a web service’s deployment configuration on the server
side.

Chen et al. [15] focus on the effect of changes in the inter-tier latencies in a multi-tier
service architecture. They propose a metric called the link gradient to capture the effect
of the latency between two tiers on the overall performance of the system.

2.2 Caching and Content Delivery Networks

As mentioned in Section 1.1, content delivery networks (CDNs) are a class of systems
that use the edge of the cloud to reduce end-user latencies. CDNs, like geo-distributed
caches [25, 62, 27], are used primarily for relatively static data, with changes being pushed
from a central content provider towards end users at the edges.

There are many uses for CDNs. However, in this paradigm, both the application and
the application’s database remain at the core. Feng et al. [56] present CDNs as a group of
caching servers behind a load balancer; and their usage is motivated as a performance and
scalability improving technology that reduces the Slashdot effect - the slowdown or crash of
a small website as a result of a massive spike in traffic caused by a popular website linking to
the small website. An alternative load balancing algorithm for choosing a server in a CDN
is discussed in [99]; CDNs are motivated as ways of improving availability, response time
and overall system throughput while avoiding overloaded servers and congested networks.
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An interesting alternative to CDNs is presented by Yuan et al. [105]. The authors
propose to use the already existing proxy server infrastructure to perform either caching of
dynamic content or computation offloading. However at the time the paper was written,
proxies were more commonly available than CDN nodes - a situation that is no longer
true today. The other contribution of Yuan et al. [105] is a comparison of the benefits
of offloading data and computation versus the caching of dynamic content and building
dynamic web pages locally. The results seem to be in favor of the simpler caching technique,
but at the time of writing, dynamic user-generated content was uncommon and is not
explored in the paper. A dramatic shift in the nature of workloads that web pages see
has taken place a few years after this research has been published and is attributed to the
explosion of social networks.

Passarella [73] provides a very good survey of CDN-related papers, which goes all the
way back to the 1960’s when these networks were first being discussed.

2.2.1 Edge of the Cloud

Dragonfly [45] is a media delivery system similar to CDNs but working on top of peer-
to-peer (P2P) networks. The system uses 3-tiers: the first two tiers are a cloud core
and a network of edges, while the last tier consists of a P2P dynamic overlay of locally
clustered user groups. IBM’s Websphere Edge Server [40] product offloads parts of an
application to different caching servers either within a datacenter or on CDN nodes, but
database access is treated as a complementary problem left to be solved by the application
developers. Several database deployment scenarios are suggested, all of which focus on
caching read-only query results. A more limited approach is proposed by the DynCoDe
system [79] which would only allow edges to construct dynamic content by concatenating
a permutation of static content fragments. Several other projects [105, 5] have considered
an architecture in which all or parts of the application are pushed to the network edge to
reduce request latencies. However, all of these systems only provide a non-transactional
database cache at the edge.

More generic approaches in projects such as the SAVI [66] network or the ActiveCDN [83]
system allow for dynamic runtime provisioning of general purpose computational resources
at edges, upon which custom code may be executed. This is similar to the on-demand
virtual instance provisioning that cloud service providers offer [4, 32, 12], but at a more
granular level. Such cloud edge computational resources are essential for the type of system
proposed in this thesis.
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2.2.2 Economics of the Cloud-Edge

A relatively lesser known fact about content delivery networks is that, aside from latency
savings to the end users, they provide economic benefits to the cloud edge hosting com-
panies that put up the hardware necessary to run them. Avoiding network trips to the
core by provisioning a local cache of data provides monetary savings in the form of lower
bandwidth costs for the edge operator.

Vleeschauwer et al. [98] discuss optimum caching strategies for telecom CDNs. This
work looks at the traffic patterns within CDNs based on different network topologies and
caching algorithms, and motivates the use of CDNs to reduce stress on the networks due
to increasing video content. The economic implications of cooperative caching (an array
of distributed caches cooperating to serve each others’ web requests) are discussed by
Hosanagar et al. [36]. The study includes ways of incentivizing participation as well as the
situation of cache peering spanning organizations. The Globule system [76] is designed to
create ad-hoc CDNs on top of a donation-based peer to peer (P2P) network of resources.
Content providers are able to group together and form their own collaborative CDN by
virtually using roughly the same amount of resources they would to host their one single
service. The paper explains and deals with the high-churn environment and unreliable
participants.

These works are complementary to the goals of this thesis as there are similar economic
implications to a distributed database capable of saving network bandwidth between the
edge and the core.

2.3 Databases

The field of databases is very broad, with computerized databases dating as far back as
the 1960s. However, this section will focus mostly on distributed databases as they are
more closely related to the system proposed in this thesis.

2.3.1 General Purpose Distributed Databases

One important motivation for building distributed databases is to allow them to scale
out in response to growth in data volumes or workloads. Systems built for this purpose
are normally not intended to accommodate the high latencies that come with geographic
distribution, and are deployed in a single location. Examples include Bigtable [14] and
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HBase [93], Deuteronomy [51], research prototypes such as G-store [20], Centiman [23],
Calvin [95], and Rococo [63], and commercial relational database systems [38, 12, 70, 71].

Other distributed database systems are designed to be deployed in geographically dis-
tributed environments. However, many such systems impose restrictions on the types of
transactions that they support. Systems like Dynamo [22], Cassandra [49], Scatter [29],
and PNUTS [17] offer atomic operations on single keys only. COPS [58] focuses primarily
on single-key atomic operations, but does offer an extension that would allow for read-
only atomic access to multiple keys. Eiger [59] additionally provides multi-key write-only
transactions, and guarantees that transactions can run locally, but provides only causal
consistency. Neither COPS nor Eiger permits arbitrary transactions that include both read
and write operations. MDCC [46] allows multi-key transactions, but provides a relatively
weak read-committed consistency guarantee.

On the other end of the spectrum are geo-distributed database systems that are de-
signed to provide strong transactional consistency guarantees, such as snapshot isolation or
serializability [18, 60, 8, 74]. The drawback of these systems is that such strong guarantees
are expensive to provide in a geographically distributed setting. Both snapshot isolation
and serializability require that all sites agree on the commit order of all transactions. Such
agreement requires cross-site synchronization, and results in high latency for update trans-
actions. In contrast, SpearDB provides PSI, a slightly weaker guarantee that allows sites
to disagree on the ordering of non-conflicting transactions. This eliminates the need for
cross-site synchronization in many cases, and thus lowering latency.

Walter [88] is closely related to the work in this thesis, in that it targets geo-distributed
data and provides a parallel snapshot isolation consistency guarantee. Unlike Walter,
SpearDB uses an asymmetric architecture, with a distinguished core site, because it is
targeted at edge computing. Section 5.4 describes an adaptation of Walter’s transaction
protocols to the core/edge setting. This is then used as a performance baseline for SpearDB.

Gemini [52] is a geo-replicated system in which an application must distinguish oper-
ations for which ordering is important from operations for which it is not. Gemini then
can avoid enforcing ordering for operations for which it is not necessary. As a result,
Gemini, like SpearDB and Walter, allows some operations to have different execution or-
ders at different sites. Gemini’s approach, which relies on the application being able to
identify operations that need not be consistently ordered, is complementary to SpearDB’s,
and could potentially be combined with PSI to further reduce the amount of cross-site
synchronization which is required.

Lynx [108] takes a different approach to providing both low latency and serializability.
Transactions consist of a chain of pieces, each running at a different site. Under some
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conditions, Lynx can safely acknowledge a transaction after execution of the first piece,
resulting in low latency. However, this approach requires static analysis of transactions in
advance to determine when early acknowledgment is safe.

There are a few systems that have focused on database management in an edge com-
puting setting, like SpearDB. Lin et. al. [57] describe SEQ DB, which uses a core/edge
architecture similar to SpearDB’s. However, SEQ DB enforces one-copy snapshot isola-
tion, which demands a total ordering of transactions. SEQ DB uses a centralized sequencer
for this purpose, meaning that all transactions require cross-site synchronization. Swift-
Cloud [107] makes use of client-side caches in a manner similar to the way that SpearDB
uses edge sites. However, because SwiftCloud is concerned with disconnected client op-
eration, it allows database states at different clients to diverge as a result of write-write
conflicts.

2.3.2 In-Memory Databases

Many databases, including distributed ones [6, 55, 72] are resorting to in-memory data
storage to reduce latency. This move is motivated by the price of memory decreasing
and the available sizes increasing over time. Using in-memory storage is a complementary
method of latency reduction, however the focus in this thesis is on the latency caused by
network traffic rather than the individual machines running the database.

2.3.3 Other Levels of Abstraction

The Sinfonia system [3] proposes a distributed shared memory system to be used as a ba-
sic block for building other distributed systems while bypassing any complicated message
passing algorithms. The novel concept being proposed is the “minitransaction” primi-
tive which allows efficient and consistent data access, abstracting away the processes that
deal with concurrency and those that handle failures. Aguilera et al. [2] build a scalable
distributed B-tree data structure on top of these minitransactions. Like SpearDB, these
works simplify data storage in a distributed environment, but the focus is on lower levels
of abstraction. However these could potentially be the basis for more complex structures,
generic transactional support and even a full relational database management system.

Gao et al. [28] propose to address the challenge of data consistency and replication in
a geo-distributed setting by taking advantage of a particular application’s query needs in
order to build custom DBMS implementations as part of the application logic. While this
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thesis also addresses this issue, the focus is on generic abstractions and protocols that are
application-agnostic.

Conflict-free replicated data types [86] may alternatively be used in geo-distributed en-
vironments to eliminate the problem of conflicting operations and remote synchronization.
However, operations are limited to what each individual conflict-free data structure allows.
Furthermore, states at different sites may reflect different arbitrary subsets of the global
changes until, eventually, convergence is reached.

2.4 Data Partitioning

Automatic data partitioning is often used as a means to increase workload throughput.
However, many proposed solutions [1, 104, 17, 103, 77, 78] don’t account for multiple
tuples/objects being accessed or modified by atomic transactions, since transactions are
not supported by the underlying system the data is being partitioned for. This type of
data partitioning can be used for load balancing server resources.

Data partitioning that accounts for multi-access atomic transactions is an NP-hard
problem. There are several proposed solutions [19, 97, 64, 30, 90, 89, 96, 53, 75, 81]
that address this but that don’t account for data locality (i.e. proximity of data to its
users). This allows data partitioning to inform placement decisions that reduce cross-
server communication in addition to resource load balancing, but leaves the client-server
communication path unoptimized.

The Spar system [80] could allow for a locality optimized partitioning, but the workload
being optimized for is very specific to social networks and limited to transactions that touch
a node in a graph and one or more of its direct neighbors.

Works like DB-risk [106] or that proposed by Sharov et al. [87] look at server role allo-
cation in geo-distributed databases. These systems are not concerned with the placement
of data as they work in a full-replication environment that supports general purpose trans-
actions which are committed via quorum decision. The issue being solved by these works
is the placement of voting replicas and the primary replica (or quorum coordinator) in
relation to clients in order to minimize response time. SpearDB needs to solve the primary
replica placement problem as well, but given the differences in commit protocols among
these systems, the search space of possible solutions is entirely different.
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Chapter 3

SpearDB Overview

To explore how to provide database support for edge applications, a prototype database
system is proposed. This prototype is called SpearDB, which is an acronym for Self-
Partitioning, Edge-Aware, Replicated DataBase. SpearDB has been designed to achieve
several objectives. First, SpearDB should provide full transactional support for general
purpose transactions. Second, it should provide a global view of the database and strong
consistency in order to simplify application development. Finally, it should provide low
latency in a geo-distributed environment for a specific class of applications: geographically
dispersed applications with geographically localized database access patterns.

SpearDB

Data
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SpearDB

Data
base
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SpearDB
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Edge Edge 

Core 

Client 

Figure 3.1: SpearDB System Architecture
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Figure 3.1 illustrates SpearDB’s architecture, which consists of a central core location
with many edges directly connected to it. These edge and core sites form a star network
topology over a large geographic region. As there are many edge locations, most end-users
are in close proximity to at least one edge. The large geographic coverage of the edges also
means that many of them are geographically distant from the core, and latency between
edges and the core may be relatively high. For a continental U.S. deployment, round trip
latencies between an edge and the core may be as high as a hundred milliseconds.

To provide persistent storage, SpearDB maintains a local database at each edge site
and at the core. It replicates and distributes the application’s data among these local
databases. Ideally, SpearDB distributes the data to workload-appropriate locations such
that the local SpearDB server can service application requests from the local database.
This would eliminate the need to read data from other sites. However, because of updates
and the need to provide a globally consistent view of the database, it may be necessary for
a SpearDB edge server to communicate with other sites in order to satisfy an application
request. Except for an increase in request latency, any such communication is transparent
to the application.

SpearDB is designed to support client-server applications with geographically dispersed
clients. The server side of the application, shown as App Logic in Figure 3.1, is replicated
at each edge site. A client connects to the application server at its closest edge. The
application server accesses the database by interacting with the local SpearDB edge service
running on the same edge.

In SpearDB, each database record has exactly one primary copy at some site, and zero
or more secondary copies at other sites. Primary copies are different from secondaries by
virtue of the fact they are always modified first when the record changes. The SpearDB
core site always maintains a copy of every record, although it may be either the primary
copy or a secondary. In general, each SpearDB edge site will hold only a partial copy
of the database consisting of a mix of primary and secondary copies of different records.
SpearDB’s core instance tracks the locations of the primary and secondary copies of all
database records. In contrast, each edge instance is only aware of the records held at its
location.

3.1 Characteristics of SpearDB

SpearDB has several salient characteristics. First, the primary goal of replication in
SpearDB is to provide low latency database access by placing data at the edge sites, close

16



to end users. Cross-site replication can also potentially be used to improve system avail-
ability and durability in the event of site failures, but that is not the main focus. Instead,
SpearDB relies on the availability and durability provided by the local database system
at each site. These local database systems may themselves replicate and distribute data
(locally) to ensure that the local database is durable and highly available.

Second, because SpearDB is intended to support a large number of edge sites, it uses
an asymmetric architecture. The core site in SpearDB plays a special role. It maintains a
copy of the entire database, and it acts as an intermediary in any communication involving
multiple edge sites. Having a core simplifies the management of sites and placement of
data in SpearDB. Because of the core, SpearDB need not maintain a distributed data
directory. Each edge site is aware of the data that it holds locally, and finds any other data
through the core. The core also serves as a natural home for portions of the application
database that have non-localizable access patterns. Finally, the core can also directly serve
application end users for which there is no nearby edge site.

Third, operations in geographically localized services commonly include database up-
dates, such as those induced by bookings, reservations, movement tracking, and “social”
features such as user feedback and comments. Read-only database access at the edge is
not sufficient to support such features. Thus, SpearDB supports database updates at the
edge.

Finally, although SpearDB uses multi-site database replication to achieve low latency,
replication is transparent to the application. Thus, from an application server’s perspective,
the entire database is readable and writable through the local SpearDB service at its
edge. Applications “see” a single, global, logical database, and SpearDB provides a global
transactional consistency guarantee, namely parallel snapshot isolation (PSI) [88], which is
similar to the more familiar snapshot isolation (SI). PSI is further explained in Section 3.3.

3.2 Database Interface

SpearDB is a key/record store with a single index on the records’ primary keys. It pro-
vides a get/put interface on individual records and SpearDB applications perform get
and put requests in the context of atomic transactions. Each transaction starts with a
begin tx operation, followed by an arbitrary sequence of record operations, and ends
with a commit tx or abort tx. SpearDB also allows transactions to be executed on the
server side as stored procedures, via the call operation. Table 3.2 summarizes SpearDB’s
application interface.
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Table 3.2: SpearDB Application Programming Interface

Operation Description

begin tx Starts a new transaction
get Retrieves a record given a primary key

put
Installs a new record or a new version of an existing record identified by
a primary key

delete Removes a record identified by a primary key
commit tx Attempts to commit a transaction
abort tx Aborts a transaction

call
Executes a transactional stored procedure identified by name and given a
list of parameters

In addition to allowing applications to retrieve and modify entire records, SpearDB’s
get/put interface also supports retrieving and modifying the values of individual record
columns or groups of columns. However, to simplify the presentation, only a more basic
interface is described through which an application must get/put entire records.

3.3 Consistency

SpearDB provides global Parallel Snapshot Isolation (PSI ) [88] to each application trans-
action. Similar to Snapshot Isolation (SI ), PSI ensures that each transaction’s get oper-
ations “see” a transactionally-consistent snapshot of the database, and that there are no
concurrent update conflicts from put or delete operations. However, PSI is weaker than
snapshot isolation in that different sites are permitted to order non-conflicting transactions
differently. Therefore, PSI is better-suited than SI for SpearDB’s intended deployment set-
ting as it allows SpearDB to avoid expensive synchronous cross-site coordination for such
transactions. Transaction processing in SpearDB is discussed in more detail in Chapter 4.

Figure 3.3 presents a list of commonly used database consistency guarantees. They are
all related to PSI and arranged in a spectrum. On one end of this spectrum is serializ-
ability. This consistency level was first defined in the ANSI/ISO SQL standard [26] and is
the strongest level of consistency available. Transactions executed at this consistency level
appear as if they had been executed in a serial order. However because of the synchroniza-
tion overhead required to attain this consistency guarantee, a weaker model is often used
in practice even in monolithic (i.e. non-distributed) databases. In geo-distributed systems
in particular, the large distances between node clusters make serializability infeasible due

18



Serializability

everything 
SI offers

no write 
skew or any 

other 
anomalies

equivalent 
outcome to a 

serial 
execution

Snapshot 
Isolation (SI)

everything 
PSI offers

no long fork 
type of write 

skew

global 
ordering of 
committed 
transactions

Parallel 
Snapshot 

Isolation (PSI)

causal 
consistency

transactions

database 
snapshot 

reads

no
write-write 
conflicts

Causal 
Consistency

read your 
writes

monotonic 
reads

writes follow 
reads

monotonic 
writes

Eventual 
Consistency

no 
consistency 
guarantee 

while system 
is running

eventually 
converge to 
a consistent 

state if 
requests stop

Figure 3.3: Some Common Database Consistency Guarantees and Their Features

to high latency and low throughput.

On the other end of the spectrum, eventual consistency is an umbrella term for different
consistency levels where the database may be in an inconsistent state whenever a workload
is being executed. If requests stop coming in to the database system for a while, the
database will eventually converge to a consistent state, although no guarantees are usually
provided on the time of the convergence. Eventual consistency is generally regarded as a
low level of consistency.

Snapshot Isolation (SI ) [21, 102], from which PSI is derived, is a strong consistency
model where reads appear to happen from a snapshot of the state of the database at the
beginning of the transaction. Write-Write conflicts are explicitly disallowed at commit
time. In practice, SI is implemented using multi-version concurrency control (MVCC )
where multiple versions of a tuple/row are maintained in order to create the illusion of a
snapshot of the database being taken for every transaction. MVCC allows for much higher
concurrency in executing workloads than the serializable level would allow. Because of the

19



relatively strong consistency and high concurrency, SI is a very popular consistency level
in database management systems.

When compared to serializability, snapshot isolation exhibits a concurrency anomaly
called “Write Skew”. This anomaly occurs when two transactions concurrently read over-
lapping sets of tuples/rows and each perform updates to different subsets of the tuples/rows
that both have previously read. Since the writesets are different, both transactions may
successfully commit without having seen each other’s updates. The potential inconsisten-
cies arising from the write-skew anomaly can be avoided in arbitrary transaction groups by
adding additional updates that would force a write-write conflict instead of a write-skew.

Parallel Snapshot Isolation [88] is derived from SI. It is a strong consistency level (al-
though weaker than SI), and it is designed to work specifically in a replicated distributed
environment with primary and secondary copies at different sites. Both PSI and SI provide
transactions with a transaction-consistent database snapshot to read from, and both pro-
hibit concurrent updates to database records. While in SI a transaction is guaranteed to
see all committed transaction as of its start point, PSI only guarantees that a transaction
will see all transactions that have committed at the same site. This mechanism allows
database states at different sites to diverge for longer periods of time (long fork), while SI
databases need to globally synchronize their state after every successful commit and thus
only allow database states to diverge for concurrently running transactions (short fork).
Both long and short fork are different flavors of the write-skew anomaly.

Furthermore, because of its global synchronization point, SI provides a globally agreed
upon ordering of transactions. PSI, on the other hand, only guarantees a global partial
ordering that is similar to the guarantees provided by the weaker causal consistency model.
As shown in Figure 3.3, causal consistency provides four session guarantees, as defined by
Terry et al. [92]:

1. read your writes: preceding writes in a session are seen by following reads;

2. monotonic reads: read operations see an increasingly up-to-date version of the
database - i.e. reads see all writes that have been seen by previous reads within the
session;

3. writes follow reads: writes made during a session are globally (i.e. at every site)
ordered after any writes that have been seen by previous reads in the session;

4. monotonic writes: writes must follow previous writes within the session.
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Causal consistency, however, is defined for individual operations within a session. PSI
further adds the concept of atomic transactions and defines the causal ordering between
them that must be observed globally at all sites.

To summarize, SpearDB provides a PSI consistency guarantee which requires that
transaction execution satisfies the following three properties:

1. causality: Under PSI, different sites are free to order transactions differently, pro-
vided that causality is preserved across all sites. This means that if a transaction
Ta commits at a site before Tb starts at that site and Tb eventually commits, then it
must commit after Ta at every site.

2. transaction-consistent database snapshots: Each transaction T that starts at
site S reads from a transactionally consistent snapshot of the database that includes
the effects of all transactions that commit at site S before T starts, plus any updates
that are made by T itself. T ’s snapshot must not include the effects of any transac-
tions that were not committed at S. Since different sites can commit non-conflicting
transactions in different orders under PSI, a transaction’s snapshot depends on which
site it starts at.

3. no write-write conflicts: Concurrent transactions may not update the same record.
Two transactions Ta and Tb are concurrent if Ta has started before Tb has committed
at Ta’s start site, and vice versa: Tb has started before Ta has committed at Tb’s
start site.

3.4 Edge Localization

A SpearDB transaction is localized if the primary copies of all of the records it updates
are co-located at the same site. Furthermore, a localized transaction is edge-localized
if the primary copies of these records are at the edge site from which the transaction
request originated. SpearDB is designed for applications that mostly issue localized or
edge-localized transactions. Whether or not a transaction can be localized depends on the
properties of the transaction and the placement of replicas at SpearDB sites.

Consider the case of a web service such as Groupon, which allows business owners to
promote their business by offering discounts to large groups of customers. Local businesses
advertise through Groupon’s platform in order to reach customers in their community.
Suppose that Groupon is using SpearDB and primary copies of user records are placed
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at the SpearDB site closest to the users’ homes. Furthermore, suppose records describing
deals offered by local businesses are also placed at the SpearDB sites near those businesses.
For the common case of users participating in a local deal, the resulting transaction can be
edge-localized. Non-localized transactions, such as a user looking for a deal in a remote lo-
cation for an upcoming vacation, are also possible in SpearDB. However, these transactions
would have higher response latencies than localized transactions for local customers. To
simultaneously support localized, edge-localized and non-localized transactions, SpearDB
uses a different commit protocol for each transaction type.

Placement of replicas is important for performance in SpearDB since primary replica
placement impacts commit strategy and secondary replica placement determines whether
get operations can be performed locally. Replica placement optimization for SpearDB
is discussed in Chapter 6 and Chapter 7 along with automated tools to recommend such
placements. Similar tools already exist for other related settings [16, 19, 31, 48].

3.5 Site Databases

SpearDB does not itself store application data. Instead, persistent storage of application
data is provided by site databases, with one such database at each site, including the core
site (see Figure 3.1). SpearDB serves as a middleware between the application and the
site databases, and is responsible for managing replication, coordinating transactions, and
handling all inter-site communication. Each site database operates independently.

SpearDB requires limited functionality from a site database. A site database can be
implemented using various different types of database systems, ranging from relational
database systems to scale-out key-value stores like Cassandra [49] or BerkeleyDB [68]
SpearDB’s main requirement is that the site database can store multiple versions of a
record for each key, and each version carries an associated version number made up of a
〈commit site, sequence number〉 pair. In addition, SpearDB expects to be able to install
a set of record versions atomically in the underlying database. Table 3.4 illustrates the
required interface that a site database must support. The read, write and flush opera-
tions are used during regular transaction processing, while readall and merge are used
to install additional copies of records at edges.

For the regular transaction processing operations, read returns the the record version
visible at a given vector timestamp for a given key. The write operation atomically
appends new record versions to the lists of a set of keys. A set of key/value pairs (records)
is provided as input. A commit site and sequence number are also provided as input. These
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Table 3.4: SpearDB Site Database Interface

Operation Description

read
retrieve the latest record version of a key that has been visible at a given
timestamp

write atomically append new record versions for a given set of keys
flush ensure that all previous writes are durable

readall retrieve all record version of a key from the site database

merge
merge a foreign record version history of a key into another base version
history by removing any versions occurring in both histories from the for-
eign history and prepending the foreign history to the base one

will serve as the version number of all newly appended record versions. Finally, flush is
used to ensure that previously-written record versions are durable in the site database.

In order to install a copy of a record at an edge, the readall operation is used to read
the history (all previous versions) of a full copy of the record. The merge operation is
then used to write this history to a different partial copy of the record (at a different site).
This procedure is further described in Section 4.5.1.

Some additional functionality, such as garbage collection of old versions, has been omit-
ted from Table 3.4 to simplify the interface description. A detailed explanation of the site
database API is provided in Appendix A.

The connection to the underlying database requires a simple driver that maps SpearDB’s
site database interface to the underlying database’s own API. Several such drivers have
been implemented: one for a custom in-memory database system, another for Berkeley
DB Java Edition [69] database instances, and a third one for SQLite [94] databases. The
SQLite driver can be used for any SQL-capable DBMS. Note that the choice of driver and
underlying database may be made independently for each site in the system.
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Chapter 4

Transactions in SpearDB

There are a number of technical challenges faced by SpearDB, such as how to partition,
replicate and distribute the database to the various sites, and how to provide low latency
access to the database while enforcing consistency guarantees. The focus of this chapter is
the transactional aspect of SpearDB. Specifically, the assumption is that the application’s
database has already been replicated and distributed appropriately across the SpearDB
sites. Chapter 6 and Chapter 7 describe the ways this replication and distribution can
occur.

SpearDB applications can group get, put, and delete operations together into ar-
bitrary transactions, using the begin tx, commit tx, and abort tx transactional op-
erations shown in Table 3.2. All database updates within a transaction are isolated until
the transaction commits, and become visible atomically at the commit point. As was
noted in Section 3.3, SpearDB provides a parallel snapshot isolation (PSI) guarantee for
all transactions. Appendix B presents a formal proof of this claim.

Like Walter [88], SpearDB uses version numbers and vector timestamps to enforce the
PSI guarantees. A version number is a pair 〈S, seqno〉, where seqno is a sequence number
generated at site S. In SpearDB, each transaction is assigned a version number by the site
that is responsible for committing it. A vector timestamp is a vector of version numbers
- one per site. SpearDB uses vector timestamps to describe which transactions’ effects
are included in the database at a particular site and point in time. For example, in a
system with four sites, the vector timestamp 〈6, 2, 7, 2〉 describes a database snapshot
that includes six transactions committed by the first site, two committed by the second
site, seven by the third site, and two by the fourth.

Table 4.1 summarizes the metadata maintained by each SpearDB site for tracking
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Table 4.1: SpearDB Per-Site Metadata

Variable Description

seqNo current site sequence number
commitVTS vector timestamp describing current state of the site’s database

database{} virtual representation of the site’s database consisting of a mapping of
record keys to their version histories

lCopies{}
map of record keys that have a local copy at the current site; the values
in the map can take one of three values: PARTIAL, SECONDARY or
PRIMARY - indicating the type of the local copy

pCopy{} mapping of record keys to the site that holds their primary copy; only
used at the core

sCopies{} mapping of record keys to a set of sites that hold their secondary copies;
only used at the core

storeProc{} mapping of globally unique names to methods implementing stored pro-
cedure logic

transactions, record ownership, copies’ locations and enforcing PSI guarantees. In addition,
when a site creates a transaction, it creates a transaction descriptor which holds metadata
associated with that transaction. During commit processing, parts of the transaction
descriptor are passed among the site(s) involved in commit processing. Table 4.2 shows
the fields in each transaction descriptor. The notation tx.f will be used to refer to field f in
the descriptor for the transaction tx.

Table 4.2: SpearDB Transaction Descriptors

Field Description

startSite site at which the transaction was submitted
startVTS vector timestamp describing transaction’s read snapshot at the start site
updates list of updates made by this transaction
status commit/abort status of the transaction
commitSite site responsible for committing the transaction
seqNo transaction’s commit sequence number at the commitSite
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4.1 Transaction Execution

SpearDB applications running at an edge site interact with SpearDB using the API that was
shown in Table 3.2. Figure 4.3 shows how SpearDB handles creation of new transactions, as
well as get, put, and delete operations. Each transaction is initiated at an edge site, which is
referred to as the start site of the transaction. When a transaction starts, its startVTS is initialized
to its start site’s current vector timestamp, commitVTS. This represents the database snapshot
from which the new transaction will read. It includes the effects of all committed transactions
that the start site is aware of at the time the new transaction is started. Update operations
(put, delete) are also handled locally at the start site, since the application of these changes to
the database is deferred until the transaction commits. Finally, get operations are also handled
entirely at the start site provided that that site holds a copy (either primary or secondary) of
the key that is being read. The read operation (Appendix A) uses the transaction’s startVTS
to select the correct version of the record from the start site’s local database. If the record is
not present there, the get operation is sent to the core site, which holds a complete copy of the
database and is thus always able to respond to the request.

4.2 Committing Transactions

As explained in Chapter 3, every record (identified by its key) has exactly one primary replica.
Based on the locations of the primary copies of the keys in a transaction’s writeset (i.e. all the
records the transaction is updating), SpearDB uses one of four different techniques to commit
the transaction as follows:

• local commit: In the (hopefully common) case in which the start site holds the primary
copies of all keys updated by the transaction, SpearDB is able to commit the transaction
locally at the start site, with no need for synchronous inter-site communication. This means
that the start site need not wait for communication with other sites before acknowledging
the transaction commitment to the application.

• core commit: If the primaries of all updated records are located at the core, SpearDB
performs single-site commit coordination there. This commit method is well-suited for
transactions involving parts of the database that are not easily localized at a single edge.
A core commit requires a single synchronous message round trip between the start site and
the core.

• remote commit: Remote commit is a single-site commit that is used if the primaries of
all updated records are located at a single edge site other than the start site. This is useful
for data that are typically updated from a particular edge, but are occasionally updated
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function begin tx()1

tx ← new transaction descriptor2

tx.startSite ← S3

tx.startVTS ← S.commitVTS4

tx.updates ← ∅5

return tx6

7

function get(tx, key)8

if S.lCopies[key] = PRIMARY or S.lCopies[key] = SECONDARY9

# S has a copy of key that isn’t PARTIAL10

val ← read(key, tx.startVTS)11

else12

val ← remote read(key, tx.startVTS) @ CORE13

apply updates from tx.updates to val14

return val15

16

function put(tx, key, value)17

append 〈key, value〉 to tx.updates18

19

function delete(tx, key)20

append 〈key, delete〉 to tx.updates21

Figure 4.3: begin tx, get, put, delete at site S

from other locations. Remote commit requires a single synchronous round trip between the
originating edge and the commit edge, via the core site.

• distributed commit: In the general case in which a transaction updates records with pri-
mary copies at more than one site, SpearDB falls back to a distributed two-phase commit
protocol to commit the transaction. Distributed commits in SpearDB are always coordi-
nated by the core site.

Figure 4.4 gives an overview of commit tx and abort tx operations in SpearDB. If local
commit is not possible, the start site passes the transaction to the core site. The core, which has
complete information about the locations of the primary copies of all records, is then responsi-
ble for determining which of the three remaining commit methods will be used to commit the
transaction.

Figure 4.5 illustrates the system wide view of transaction processing. Blocks representing
key components of the algorithm and decision points are placed inside the rectangle representing
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function commit tx(tx)1

if ∀ key ∈ tx.updates: key ∈ E.lCopies # all keys have local copies2

tx ← singleSiteCommit(tx) # commit locally, install updates3

if tx.status = COMMITTED4

remote async installTrans(tx) @ CORE # notify other sites, via core5

else6

tx ← remote coreCommit(tx) @ CORE # get a commit decision from the core7

if tx.status = COMMITTED8

installTrans(tx) # install transaction locally9

return tx.status10

11

function abort tx(tx)12

tx.status ← ABORTED13

tx.updates ← ∅ # forget deferred updates14

Figure 4.4: commit tx and abort tx at Originating Edge Site E

the site where these are executed. All arrow lines indicate the passage of time (but not to
scale) and arrow lines that cross between the rectangle site boundaries indicate cross-site network
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Figure 4.5: SpearDB Commit Decision
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messages. The 2PC protocol (i.e. distributed commit) is responsible for further cross-site network
messages, but its details are not shown in the figure. The dotted Propagate arrow lines represent
asynchronous propagation. Finally, the transaction commit process begins and ends at the vertical
dotted line representing the App Commit ’s timeline.

There are four possible paths through the diagram Figure 4.5 - one for each of the 4 transaction
commit techniques. Only one of these paths is followed for each individual transaction commit
decision based on the answers to the rhombus shaped decision blocks in the diagram.

For a local commit, the edge site uses the singleSiteCommit procedure (Figure 4.6) to
commit the transaction. This procedure enforces the PSI’s prohibition against conflicting writes
by checking for conflicts with concurrent transactions (lines 2-3) and aborting the committing
transaction if a conflict is detected (line 15). Furthermore, ownership of the primary copy of all
keys in the writeset needs to be checked again inside the critical section (line 4), in case a change
of ownership of any primary copies has occurred concurrently. These type of ownership changes
are discussed in Section 4.5. The procedure also enforces PSI’s causality requirement by forcing
a transaction that is attempting to commit too soon to wait until the transactions it causally
depends on have committed (line 7). For local commits, the causality test is not needed and
will never result in a wait. However, the singleSiteCommit procedure is also used for core and
remote commits, for which the causality test is important.

function singleSiteCommit(tx)1

if ∀ key ∈ tx.updates: key not locked at S # check for locks (used by 2PC)2

and key unmodified since tx.startVTS # enforce no concurrent updates3

and S.lCopies[key] = PRIMARY # recheck ownership of primary4

tx.seqNo ← ++S.seqNo # assign commit version5

# enforce causality:6

wait until S.commitVTS ≥ tx.startVTS and S.commitVTS[S] = tx.seqNo - 17

write(tx.updates, S, tx.seqNo) # store new versions of keys to database8

# the write operation is equivalent to appending 〈val, S, tx.seqNo〉9

# to S.database[key], ∀ 〈key, val〉 ∈ tx.updates10

flush11

S.commitVTS[S] ← tx.seqNo12

tx.commitSite ← S13

tx.status ← COMMITTED14

else tx.status ← ABORTED15

return tx16

Figure 4.6: Commit Procedure for Single Site Commits at site S.
The vertical bar indicates a critical section.
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function installTrans(tx)1

# enforce causality and respect commit site’s commit order:2

wait until S.commitVTS ≥ tx.startVTS3

and S.commitVTS[tx.commitSite] = tx.seqNo - 14

# extract the updates for keys that have a local copy at site S:5

localUpdates ← {〈key, val〉 ∈ tx.updates: key ∈ S.lCopies}6

write(localUpdates, tx.commitSite, tx.seqNo) # store to site database7

# the write is equivalent to appending 〈val, tx.commitSite, tx.seqNo〉8

# to S.database[key], ∀ 〈key, val〉 ∈ localUpdates9

S.commitVTS[tx.commitSite] ← tx.seqNo10

if S is the CORE # core propagates updates to edges:11

remote async installTrans(tx) @ all edges except tx.commitSite12

else release any locks held by tx at S13

Figure 4.7: Installation of Committed Transaction at site S

The critical section in Figure 4.6 needs to appear as if it is executed atomically. All vertical
bars that appear in any of the pseudocode figures (Figure 4.6, Figure 4.9, Figure 4.12 and Fig-
ure 4.13) refer to the same critical region. Thus each site can have at most one thread executing
inside this one critical region. Notice that the underlying database write (line 8 in Figure 4.6)
also needs to be inside the critical section so that all updates are installed in commit order. How-
ever the flush to disk on line 11 is left outside the critical region in order to increase throughput,
in case the underlying database is disk-based.

function coreCommit(tx)1

if ∀ key ∈ tx.updates: CORE.pCopy[key] = CORE2

tx ← singleSiteCommit(tx) # core commit3

else if ∃ E: ∀ key ∈ tx.updates: CORE.pCopy[key] = E4

tx ← remote singleSiteCommit(tx) @ E # remote commit5

else6

tx ← twoPhaseCommit(tx) # distributed commit7

if tx.status = COMMITTED8

remote async installTrans(tx) @ all sites9

except tx.startSite and tx.commitSite10

return tx11

Figure 4.8: coreCommit Operation at CORE
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# twoPhaseCommit runs at the core site1

function twoPhaseCommit(tx)2

# find all sites that have primary copies of keys in tx.updates:3

pSites ← {S ∈ CORE.pCopies: (∃ key ∈ tx.updates: CORE.pCopies[key] = S)}4

remote async prepare(tx) @ all pSites5

wait for vote from all pSites6

if all sites vote YES7

tx.seqNo ← ++CORE.seqNo8

wait until CORE.commitVTS ≥ tx.startVTS9

and CORE.commitVTS[CORE] = tx.seqNo - 110

write(tx.updates, CORE, tx.seqNo) # store to CORE’s database11

# the write operation is equivalent to appending 〈val, CORE, tx.seqNo〉12

# to CORE.database[key], ∀ 〈key, val〉 ∈ tx.updates13

flush14

CORE.commitVTS[CORE] ← tx.seqNo15

tx.commitSite ← CORE16

tx.status ← COMMITTED17

else18

tx.status ← ABORTED19

remote async release locks @ all pSites20

release locks held by tx at CORE21

return tx22

23

# implementation of prepare at site S24

function prepare(tx)25

# find all keys from tx.updates for which S has the primary copy:26

localkeys ← {key ∈ tx.updates: S.lCopies[key] = PRIMARY}27

if @ k ∈ localkeys that is locked at S28

and @ k ∈ localkeys modified since tx.startVTS29

and S.lCopies[k] = PRIMARY, ∀ k ∈ localkeys # recheck ownership of primary30

lock all keys in localkeys for tx31

return YES32

else return NO33

Figure 4.9: Two-Phase Commit Coordination.
The vertical bar indicates a critical section.
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Once a transaction has committed locally, its effects are propagated to the other sites in the
system. Propagation is asynchronous, i.e., the edge site does not wait for propagation to com-
plete before acknowledging a successful commit to the application. Edges propagate committed
transactions by sending them to the core, which in turn propagates them to other remote edge
sites. Propagation is handled by the installTrans function, which is shown in Figure 4.7.

When the transaction’s start site is not able to commit the transaction locally, it forwards
commit processing to the core site. The core determines where and how to commit the trans-
action, using the coreCommit function (Figure 4.8). This function determines whether core
commit, remote commit, or distributed commit must be used to commit the transaction. Once
the transaction has committed, it forwards the commit decision and commit version number to
the originating edge, and initiates asynchronous propagation of the transaction to the remaining
edges.

Asynchronous propagation in SpearDB is implemented using an additional optimization not
shown in Figures 4.7 and 4.8. Since the core has an index of all secondary copies in the system
(CORE.sCopies), only the part of a transaction’s writeset that has a secondary copy at an edge
needs to be sent to that edge. Other entries in tx.updates may be removed prior to sending.
This allows for smaller network messages to be sent in order to limit bandwidth usage. The rest
of the transaction’s metadata, which includes the sequence number tx.seqNo and commit site
tx.commitSite, still need to be sent to all sites in order to ensure the proper update of all sites’
commitVTS vectors.

If distributed committal of the transaction is required, the core site will coordinate the commit,
as shown in Figure 4.9. Each participating site confirms that it can commit its part of the
transaction without a write-write conflict, and then locks the affected records until the core site
can confirm that all sites are able to commit. Such locks cause concurrent conflicting transactions
at the locking site to abort.

SpearDB’s distributed commit implementation includes additional optimizations that are not
shown in Figure 4.9: Since a single NO vote causes a transaction to abort, if the start site owns
primary copies of any records updated by a transaction, it can invoke its prepare phase before
requesting coreCommit at the core. If the start site’s vote would be NO, the transaction can
be aborted early and no network messages need to be sent. Furthermore, if the core also owns
primary copies of updated records, it will execute it’s prepare phase vote ahead of the other sites
for the same reason. This particular optimization also halves the number of inter-site round trips
for the 2PC case where the writeset is split between the originating edge and the core since the
core needn’t go back to the edge asking for a lock.
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4.3 Transaction Shipping

In SpearDB, a transaction can get any record, whether there is a local copy at the transaction’s
site or not. However, to handle get requests for non-local records requires a synchronous message
round-trip to the core site. If a transaction accesses multiple non-local records, multiple round-
trips are required.

To address this problem, SpearDB provides a transactional stored procedure mechanism.
Clients invoke SpearDB stored procedures via the call operation (Table 3.2). A SpearDB stored
procedure is a general, parameterized method which may include SpearDB record operations.
Stored procedure methods need to be created and replicated at all sites before they can be used.
SpearDB executes each stored procedure invocation as a single transaction. The transaction’s
database snapshot includes all transactions committed at the site at which call is invoked as of
the time of the invocation.

SpearDB is responsible for automatically starting a new transaction for each call invocation
and it does so by calling begin tx at the local edge where call has been invoked. This ensures
that regardless of the actual site where the stored procedure method is executed, the transaction
will appear to have executed at the local edge and would have seen the database snapshot available
to the local edge at the time of the call invocation.

By default, SpearDB executes stored procedures by shipping the call request to the core site,
running the stored procedure at the core site, and shipping the results back to the originating edge.
Because the core has a full copy of the database, the only two reasonable sites for executing the
stored procedure code are the core and the originating edge. The latter is better if every tuple in

function call(name, params, readset)1

tx ← begin tx()2

if readset is not provided3

or (∃ r ∈ readset: S.lCopies[r] 6= PRIMARY and S.lCopies[r] 6= SECONDARY)4

return remote coreCall(tx, name, params) @ CORE5

else6

proc ← S.storeProc[name]7

return proc(tx, params)8

9

function coreCall(tx, name, params)10

wait until CORE.commitVTS ≥ tx.startVTS # ensure updates have propagated11

proc ← CORE.storeProc[name]12

return proc(tx, params)13

Figure 4.10: call at site S and callCore at CORE
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the readset has a local copy (primary or secondary) and the transaction is able to commit locally
as well. The core is better if at least one record read by the stored procedure is not present at
the originating edge. Thus the more non-local reads in the transaction, the more appealing core
execution becomes.

Notice that except for the case of a fully local writeset, the commit part of the transaction
will always generate exactly one additional network hop in the case of local execution versus
core execution; but the latter requires one network hop to begin core execution in the first place.
Furthermore, executing the stored procedure at any other site in the system will require overall
at least as many network hops as core or local execution.

Although core execution is SpearDB’s default strategy for call requests, applications can
influence the strategy by providing optional readset hints as part of the call invocation. If
provided, a readset hint identifies the keys of records that may be read by a stored procedure
invocation. If a readset hint is provided and SpearDB determines that all records identified in the
hint are stored locally at the originating edge, then SpearDB will execute the stored procedure
at the edge. The handling of call operations is summarized in Figure 4.10.

Notice that an empty readset is a valid hint. It indicates an update-only transaction. This is
different from not providing a readset hint at all - which would indicate the programmer doesn’t
know or can’t determine the readset at compile time. An empty readset hint triggers a local
stored procedure execution, while lack of a hint results in the default core execution.

4.4 Discussion on the Effects of Failures

This thesis does not directly address the problem of failures. Furthermore, as a middleware,
a system like SpearDB is dependent on the failure handling and recovery mechanisms of the
underlying database, which may not implement any such contingencies. Instead, this section
discusses the effects of entire site or network link failures.

The first scenario considered is the failure of an edge. While an edge is down, transactions
sent to other edges in the system may continue to execute uninterrupted. Furthermore, they
may also commit as long as their writesets don’t contain tuples mastered at the failed edge. If a
transaction tries to modify a tuple with the primary at the failed edge, the transaction would be
made to abort at commit time. The core would notice the edge isn’t reachable either when trying
to acquire a lock for two phase commit or when trying to pass the transaction on to be single
site committed at the failed edge. In the case of two phase commit, should an edge fail after
informing the core of successfully acquiring all requested locks, the transaction may continue to
commit at the core without problems.

Once a failed edge recovers, there are a few things to consider. If the failure was short-lived, a
robust messaging implementation would deliver any outstanding messages. This would bring the
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edge back up to date and the system would resume normal operation. For longer-lived failures,
and for the case of edge databases that can’t be recovered (e.g. in-memory only storage option
or a disk failure), the core may be forced to take remedial action. In order to keep the system
online, any primary copies the failed edge held would be re-mastered at the core. Since the
core holds a full copy of the database, this simply implies upgrading the appropriate secondary
copies to primaries. The unfortunate consequence of this upgrade, however, is the possibility that
transactions that have local committed at the failed edge and that have not yet propagated to the
core would be forfeit. Finally, once the edge is back in operation, it would simply restart from an
empty database and no locks held. Then it would rebuild its collection of primary and secondary
copies over time, using data movement operations which will be described in Section 4.5.1. The
amount of time for a failure to be considered long-lived is a system parameter.

Another scenario to consider is the failure of a network link between an edge and the core.
In this case, the disconnected edge may continue working and would be able to commit local
transactions and answer local reads. Non local reads or commits would cause transactions to
abort. To the rest of the system it would appear as if the edge has failed and everything would
transpire in the same manner as described in the failed edge scenario. A short-lived network
partitioning event would again be resolved by a robust messaging implementation. A heartbeat
mechanism would monitor the network link to the core and detect longer-lived link interruptions
and force the edge to take itself offline until core communication is restored. Once the core link
is back up, the edge would find out from the core if remedial action has taken away ownership of
its primary copies. If it has, the edge would need to restart from an empty database as described
before in order to preserve PSI guarantees in the rest of the system (at the cost of possibly loosing
some locally committed transactions). If it hasn’t, both the edge and the core may be brought
back up to date by re-sending any unacknowledged messages.

Finally, a core failure is equivalent to a network link failure between the core and every edge
in the system. As described, a heartbeat mechanism would force all edges offline until the core is
back up and running. Since the core wasn’t functional, no remedial action would have forced any
primary copies to be re-mastered. Thus edges would be able to re-send unacknowledged messages
and the system would continue to function. SpearDB isn’t designed to survive a permanent core
failure or unrecoverable core database since there is no guarantee that the all tuples have more
than one copy.

4.5 Data Movement

The effectiveness of SpearDB’s transaction processing is reliant on the location of the primary and
secondary copies of all keys. As such, it is important that these locations are able to change when
required. This section describes protocols that can modify the placement of individual primary
and secondary copies within the network of sites. The protocols described in this section are
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designed to work in parallel with SpearDB’s regular transaction processing without interrupting
it. The main goal of their design is to minimize disruption of the transaction processing. In order
to achieve this goal, data migration operations are limited to the following set:

• Secondary replica creation: A new secondary replica of a key is created at an edge that
doesn’t have any replicas of the key.

• Secondary replica removal: A secondary replica of a key at an edge is removed from the
system. This operation can not be invoked at the core since the core must always maintain
a full copy of the database.

• Core to edge ownership transfer: The primary replica of a key is transferred from
the core (which must own the primary replica at the start of this operation) to an edge
that already has a secondary replica of the same key. At the end of this operation, the
core’s replica will be downgraded to a secondary copy while the edge’s will become the new
primary.

• Edge to core ownership transfer: The reverse of the core to edge ownership transfer,
this operation downgrades a primary copy of a key that exists at an edge to a secondary,
while at the same time upgrading the core’s secondary copy to the new primary.

All of these operations target a single key at a time. Each is simple enough to be implemented
in a way that causes minimal disruption to the parallel task of transaction processing. At the
same time, this set of four operations is comprehensive enough that any placement change of a key
can be achieved by stringing together one or more of the operations in the set into a movement
chain. For example if a primary key needs to move from edge α to edge β that doesn’t have a
secondary copy installed the following operations will occur: First, secondary replica creation at
edge β and edge to core ownership transfer from edge α can occur in any order. Finally, after
both previous operations complete, a core to edge ownership transfer to edge β completes the
movement chain. Optionally, the secondary replica that is left at edge α as a result of the transfer
may be removed if desired. For more complex movement operations such as transitioning from
one database placement to another, where multiple keys need to change locations, each key’s
movement chain may be executed independently and in parallel.

In Section 4.5.1, each of these operations are discussed in more detail. Section 4.5.2 discusses
the use of these operations in a dynamic setting where the transactional workload of SpearDB
changes over time, changing the optimal location of keys for transaction processing with it.

4.5.1 Data Movement Operations

The four data movement operations in SpearDB are designed to be invoked only under certain
conditions as explained before (e.g. a secondary copy of a key can only be created if there isn’t
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function installSecondary(key)1

assert key 6∈ E.lCopies # there can’t already be a copy at E2

remote CORE.sCopies[key].add(E) @ CORE # have the CORE update its index3

E.lCopies[key] ← PARTIAL # reads don’t see it, new versions are installed4

history ← remote readall(key) @ CORE5

merge(key, history)6

E.lCopies[key] ← SECONDARY # now reads see it as well7

8

function removeSecondary(key)9

assert E.lCopies[key] = SECONDARY # E must have a secondary copy10

E.lCopies[key] ← ∅ # remove key from local copies list11

remote CORE.sCopies[key].remove(E) @ CORE # have the CORE update its index12

wait until all currently running transactions at edge E finish13

E.database[key] ← ∅ # remove key from edge’s database14

Figure 4.11: Secondary Replica Creation and Removal at Edge E

already a copy of it at the same edge). These restrictions are presented as assert statements in the
pseudocode shown within this section. It is thus expected that an actor invoking these operations
must first ensure these conditions are met. The core’s key location indexes (CORE.pCopy and
CORE.sCopies) are intended to be used for providing these assurances.

Furthermore, the operations are implemented to safely execute in parallel with the transaction
processing operations presented in Sections 4.1, 4.2 and 4.3. However they are not intended to
safely execute in parallel with each other if they operate on the same key. This restriction allows
the data movement operations to be implemented with fewer locks, thus limiting the amount of
disruption to transaction processing operations. The drawback of this restriction is the simple
requirement that operations on each key must be serial. Operations on different keys, however,
don’t have this requirement.

Figure 4.11 presents the pseudocode for the secondary replica creation and removal operations.
When adding a new secondary replica, the issue is to do so atomically while other transactions
at different sites in the system may still be performing updates to the same key concurrently.
To overcome this issue, the core’s secondary copy index is first updated (line 3) and then the
secondary replica is installed at edge E in a PARTIAL state without any versions in its history
(line 4). While in a PARTIAL state, read operations (line 9 in Figure 4.3) don’t see this replica.
However, transactions installed at edge E as part of the propagation protocol are aware of the
replica and update it as seen on line 6 of Figure 4.7. Furthermore, since the core’s secondary
copy index now shows edge E as having a secondary copy, the propagation protocol will include
all updates of the key. This means that any concurrent updates of the key at other sites will
be installed in the version history of edge E after this point. All versions of this key prior to
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this point are available at the core in the key’s version history from where they are read by the
readall operation on line 5 of Figure 4.11. Then the merge operation on line 6 of Figure 4.11
prepends the history read from the core to edge E to any updates installed by the propagation
protocol as described in Appendix A. Finally, the key can be made a full secondary replica on
line 7, making it visible to read operations as well.

Removing a secondary copy is much simpler and only involves updating the edge and core
indexes for tuple locations. Any read operation in progress that has passed the check of these
indexes will still have access to the record history for the key which is not immediately deleted.
Once all currently running transactions conclude, the record history is expunged from the edge
database.

The pseudocode for the core to edge ownership transfer operation is presented in Figure 4.12.
This operation needs to be started at the core with the giveOwnershipToEdge function and
requires the edge that is to receive the primary copy to cooperate in the transfer of ownership.
The first step of this operation is to relinquish the primary copy (line 6). This needs to be
done while in the critical section and locked (line 5) so as to not interfere with any committing
transactions. After the critical section in Figure 4.12 completes, any committing transactions
would fail their ownership checks (line 4 in Figure 4.6 and line 30 in Figure 4.9) causing them
to abort. At the end of the giveOwnershipToEdge function, the core’s indexes already point
towards the edge for the location of the primary copy of the key, although the edge still has
a secondary copy. Any transactions trying to commit at the edge will also fail the ownership
checks and abort. The core then calls the takeOwnershipFromCore function at the edge that is
to upgrade its copy of the key to a primary in order to finish the process; providing it with the
latest sequence number of the latest transaction to have been committed at the core. Since the
primary copy of the key was at the core, this sequence number is guaranteed to include the latest
update to the key being transferred regardless of which transaction commit protocol has been
used to commit the latest transaction modifying this key. The edge can then wait until its own
vector timestamp catches up to this sequence number in order to ensure the secondary copy of
the key is updated to the latest version, before finally, the secondary copy of the key at the edge
can take on the mantle of the primary.

The reverse process: handing ownership of a primary key at the edge to the core is very similar
and the pseudocode is presented in Figure 4.13. Again the process is designed to be started at
the core which will involve the relevant edge in the process at the point it is required. Similarly to
the core-to-edge transfer, the primary copy downgrade needs to happen while locked and inside
the critical section. While the upgrade of the secondary copy to a primary again needs to wait
for the destination site’s (this time the core) vector timestamp to catch up to the source edge’s
sequence number. Again this sequence number is guaranteed to include the latest update to the
key being transferred regardless of which transaction commit protocol has been used to commit
the latest transaction modifying this key. A single site commit would have updated the sequence
number at the edge, while the core would already be aware of any completed two-phase commit.
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function giveOwnershipToEdge(key, edge) # runs at the CORE1

assert CORE.lCopies[key] = PRIMARY # CORE must have the primary2

assert CORE.pCopy[key] = CORE # CORE must have the primary3

assert edge ∈ CORE.sCopies[key] # edge must have a secondary4

blocking lock key # if already held, wait for release before acquiring5

CORE.lCopies[key] ← SECONDARY # downgrade CORE primary copy to secondary6

CORE.pCopy[key] ← edge7

CORE.sCopies[key].remove(edge)8

release lock on key9

# at this point no site owns the primary copy (the CORE thinks edge does)10

remote call takeOwnershipFromCore(key, CORE.commitVTS[CORE]) @ edge11

12

function takeOwnershipFromCore(key, seqno) # runs at edge E13

assert E.lCopies[key] = SECONDARY # E must have a secondary copy14

wait until E.commitVTS[CORE] ≥ seqno15

E.lCopies[key] ← PRIMARY16

Figure 4.12: Core to Edge E Ownership Transfer. The vertical bar indicates a critical section.

function takeOwnershipFromEdge(key) # runs at the CORE1

assert CORE.lCopies[key] = SECONDARY # CORE must not have the primary2

assert CORE.pCopy[key] 6= CORE # CORE must not have the primary3

edge ← CORE.pCopy[key]4

CORE.pCopy[key] ← NONE # no one owns the primary copy5

seqno ← remote call giveOwnershipToCore(key) @ edge6

wait until CORE.commitVTS[edge] ≥ seqno7

CORE.lCopies[key] ← PRIMARY # CORE has the primary now8

CORE.pCopy[key] ← CORE # CORE has the primary now9

CORE.sCopies[key].add(edge) # and the copy at edge has been downgraded10

11

function giveOwnershipToCore(key) # runs at edge E12

assert E.lCopies[key] = PRIMARY # E must have the primary13

blocking lock key # if already held, wait for release before acquiring14

E.lCopies[key] ← SECONDARY # downgrade to a secondary copy15

release lock on key16

return E.commitVTS[E]17

Figure 4.13: Edge E to Core Ownership Transfer. The vertical bar indicates a critical section.
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4.5.2 Dynamic Data Movement Discussion

Chapter 6 and Chapter 7 discuss ways of finding optimal placements for all keys in a database
given, among other things, a workload as input. However there are many applications where the
workload isn’t known apriori or where workloads change periodically based on the seasons, time
of day, or other factors. For these types of scenarios a dynamic re-partitioning solution would
improve transaction processing time.

A simple dynamic data partitioning approach would be to collect salient workload properties
as the workload is being executed. Periodically, a data partitioning algorithm can be run using
recently collected workload information. Then, data can be live migrated to transform the existing
partition into the new one recommended by the algorithm.

SpearDB’s core-edge architecture and transaction protocol ensure all transactions pass through
the core at some point. This facilitates the data collection requirement to ascertain the properties
of the current workload. The core additionally has knowledge of the locations of all tuple copies
in order to be able to perform the proper routing of requests during transaction commit and
propagation phases. Add to this the larger provisioning of computing resources at the core and
it easily becomes the preferred location to perform the gathering of workload statistics and the
periodic running of primary copy placement algorithm. The goal of this is to have an approximate
view of what the workload looks like at the moment and hopefully for the near future. Exact
precision isn’t the goal, since such a reactive system would only provide an approximation of the
future behavior of the workload.

The data movement operations discussed in Section 4.5.1 can then be used to perform the
migration from the actual placement towards the desired placement. This may be done gradually
and/or at times of low usage in order to minimize contention. It may also be done in the order
of most to least accessed keys in order to increase gains early, as the migration to the desired
placement doesn’t need to fully complete before re-running the static partitioning algorithms
on a fresh window of workload information. The desired placement will simply change and the
migration towards it will become an ongoing process.
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Chapter 5

SpearDB Prototype Evaluation

A SpearDB prototype has been built according to specifications described in Chapter 3 and
Chapter 4. This chapter presents an evaluation of the prototype using several micro-benchmarks
and a more realistic application workload.

SpearDB’s various transaction commit strategies are compared in Section 5.2 in order to
show their tolerance to network latency. The goal is to show the potential latency improvement
of workloads if most transactions could be committed by latency tolerant strategies. A centralized
database baseline is introduced in Section 5.3 as well as a locality workload metric. SpearDB’s
performance is then compared against this simpler baseline system for workloads of different
localities in order to illustrate the kinds of workloads where SpearDB is particularly useful. A
second baseline system is introduced in Section 5.4 based on the distributed Walter [88] database
system. This baseline is again compared to SpearDB for different workloads in order to showcase
the benefits of the modified PSI protocols and the addition of a central core site. Finally, in
Section 5.5, SpearDB and the two baseline systems are evaluated using a more realistic application
workload based on a key-value version of the RUBiS benchmark [84].

5.1 Experimental Setup

Experiments were performed on a cluster of servers, each with dual Intel Xeon E5-2620v2 6-core
CPUs, 64 GB of DDR3 memory and an Intel S3700 200GB SATA3 SSD for persistent storage,
running Ubuntu Server Linux, release 14.04.1 LTS. Connectivity is via 10Gbps Ethernet.

This cluster is used to simulate a core/edge setting by introducing a controllable amount of
latency between servers using tc, a Linux network traffic control utility. Equal delays have been
added on the ingress and egress paths to simulate the effect of geographical distance. When
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latency numbers are reported in the results and discussions, they are expressed as total round
trip latency.

The SpearDB prototype is implemented in Java. The prototype uses Apache Thrift version
0.9.3 to provide the client API as well as for inter-server communications. This allows for the
automatic generation of client libraries for different programming languages. Test clients were
also implemented in Java. The underlying site databases for all of the experiments presented in
this section use Berkeley DB Java Edition version 5.0.73.

SpearDB was configured to run with Thrift’s TThreadPoolServer flavor. Clients connect to
SpearDB through Thift RPC through an underlying TCP socket and using the CompactProtocol
for marshaling.

Each experiment consists of an initial warm-up phase, during which performance is not mea-
sured, followed by the measurement phase. For experiments in which multiple clients connect
to SpearDB concurrently, a final wind-down phase occurs after the measurement phase. During
the wind-down phase, clients continue to perform operations at the same rate as they did during
the measurement phase. This ensures that all clients experience a constant level of contention
from other clients during their entire measurement phase. The experiment completes once all
clients have entered the wind-down phase. All experiments were repeated 20 times and reported
performance metrics are means over the 20 runs. Where space allows, 99% confidence intervals
for these means are also included.

5.2 Micro-Benchmark: Commit Strategies

SpearDB implements four transaction commit strategies, and chooses one for each transaction
depending on the locations of the primary copies of the records that the transaction updates.
This experiment illustrates the performance of these four strategies, as a function of the latency
between the edge sites and the core.

Figure 5.1 illustrates the core/edge scenario simulated for this experiment. Four SpearDB
servers were used: one for the core and one for each of the three edge sites. Using tc, an L
millisecond round trip latency has been added between two of the edges and the core, and 3L
milliseconds between the core and the far edge. A single closed-loop SpearDB client ran on a
fifth server, submitting one transaction at a time to the local edge, with no think time between
requests. Each transaction consists of two put requests followed by commit tx.

Primary copies of different records are located at each of the four SpearDB sites. By choosing
which two records a transaction updates, the commit strategy that SpearDB will use for the
transaction can be controlled. This is summarized in Table 5.2. For each commit strategy, the
mean client-observed transaction response time is measured.
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Figure 5.1: Commit Strategies Experiment Setup

Table 5.2: Commit Strategies Experiment: Data Placement

Record Placement Resulting Commit Strategy Series Name
both records at the local edge local commit local
both records at the core core commit core
both records at the remote edge remote commit remote
a record at the local edge and an-
other at the core

2PC between the local edge and
the core

2pc l-c

a record at the core and another at
the remote edge

2PC between the core and a re-
mote edge

2pc c-r

a record at the core and another at
the far edge

2PC between the core and an edge
that is far away

2pc r-f

Figure 5.3 shows the results of this experiment, and summarizes the important performance
properties of SpearDB’s commit protocol. When the transaction is geographically localized at
the client’s edge (the local series in Figure 5.3), it commits locally, and transaction response times
are low and insensitive to network latencies. If the transaction’s updates are limited to the local
edge and the core (the core and 2pc l-c series in Figure 5.3) SpearDB will commit the transaction
using a single synchronous message round-trip between the local edge and the core, resulting in L
milliseconds of added latency. In the worst case, when the transaction updates records mastered
at one or more remote edges, the added latency due to the commit protocol is equal to that of a
single round trip from the local edge to the furthest remote edge, via the core site.
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5.3 Micro-Benchmark: Locality

SpearDB is designed for workloads in which clients frequently access data located in their geo-
graphical region. To determine how a workload’s data access pattern affects SpearDB’s perfor-
mance, a simple locality metric is introduced: It measures the ratio of transactions in a workload
that are able to commit locally. SpearDB is then tested with workloads that have different local-
ity values. In these experiments, the placement of records is fixed and the data access patterns
of clients are varied in order to evaluate the entire spectrum of locality values.

The setup for these experiments consists of a core and 3 edges as shown on the left side
of Figure 5.4. There is one client per edge and Lms of artificial round trip latency is injected
between each edge and the core. The right side of Figure 5.4 describes an alternative setup that
is referred to as the centralized baseline. The same 3 edges are connected to the core without
any added latency. Instead, the same Lms of artificial latency is injected between the clients
and the edges they connect to. This setup should exhibit the same performance as a centralized
application and database that is accessed by remote clients, while enabling the use of the same
data access and storage procedures as well as the same number of machines and resources for a
fair comparison.

The clients are all run concurrently, but each client independently determines its own trans-
actional workload and only issues one transaction at a time. Each transaction consists of the
following sequence of operations: begin tx, put, put, commit tx. Transactions are imple-
mented as stored procedures, invoked by a call from the client, so that each transaction requires
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a single round trip between the client and SpearDB. The empty readset of these transactions is
provided as a readset hint as described in Section 4.3. As a result, SpearDB will execute the
stored procedure at the the edge and perform all 4 API calls there.

The test database for this experiment includes 200 records, with 50 records mastered at each
of the four sites. With probability P , a transaction will put two randomly selected records at the
local edge. With probability (1− P )/2, a transaction will put two randomly selected records at
the core. Otherwise, the transaction will put two records selected randomly from among all 200
records in the system such that at most one record is at the local edge and at most one record is
at the core. Thus, the expected locality of this workload will be P .

Figure 5.5 illustrates the average transaction response times for SpearDB and the centralized
baseline, with L = 10 ms and locality (P ) varying from from 0 to 1. Under SpearDB, the
mean transaction response time depends on the locality, with stronger locality resulting in lower
response times, as expected. The centralized baseline’s performance is not sensitive to locality.
Compared to the centralized baseline, SpearDB has a latency advantage for locality levels above
0.3. For workloads with low locality values, it can be guaranteed that SpearDB performs at least
as well as a centralized solution by using a low-locality-optimized placement strategy that places
most/all data items at the core.

Additional experiments have been performed for different latency values with L ranging from
10 ms to 100 ms. These experiments have all resulted in very similar results, with the main
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difference being a linear scaling of the absolute latency values. Thus, as expected, when locality
is high, SpearDB’s advantage over the centralized baseline increases with L.

In addition to transaction response times, abort rates have also been measured. These are
shown in Figure 5.6. Since the experimental setting includes only a single client per site, local
transactions will never write-write conflict with one another, as there will be at most one local
transaction at each site at any time. Thus, abort rates for both SpearDB and the centralized
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Figure 5.6: Transaction Abort Rate as a Function of Locality
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baseline are zero when P = 1. However, non-local transactions can conflict with other transac-
tions. Hence, the abort rate for both systems increases as locality (P ) decreases. The transaction
aborts observed in these experiments are due to local transactions conflicting with locks set by
non-local, distributed transactions during commit processing (Figure 4.9). At edge sites, such
locks are held for at least the time required for one message round trip between the edge and the
core. So, abort rates for SpearDB are higher than those for the centralized baseline, since the
edges are far from the core.

These elevated abort rates are a drawback of providing a strong consistency guarantee in a
geographically distributed setting. Although PSI is able to avoid transaction synchronization
(and hence aborts) in many cases, coordination is still necessary when transactions conflict or are
causally related. Nonetheless, the increase in abort rates is small, despite the fact that transaction
conflicts are likely because of the very small test database. Furthermore, the abort rate penalty
is lowest for the high-locality workloads that SpearDB targets. Finally, since SpearDB yields
significant latency savings compared to the centralized solution when locality is high, it is faster
to simply retry an aborted local transaction at the edge than to perform all transactions at the
core, as happens in the baseline.

5.4 Micro-Benchmark: Walter

In Section 5.3 SpearDB was compared to a centralized baseline. In this section, a similar bench-
mark is presented that compares SpearDB to a geo-distributed baseline based on Walter [88].
Walter was designed to be deployed across geographically distributed sites, like SpearDB. How-
ever, in the original Walter design, all sites are peers - there is no designated core site, like
SpearDB’s. Walter attempts to execute transactions locally, at the site at which the transaction
arrives. If it is unable to do so because the required data is not mastered locally, the originating
site coordinates a cross-site distributed protocol to commit the transaction.

To create a baseline for SpearDB, Walter has been adapted for the asymmetric core/edge
setting. This baseline will be referred to as core-aware Walter. Core-aware Walter provides the
same global consistency (PSI) as both SpearDB and the original Walter. Like Walter, core-aware
Walter executes transactions at the originating edge when possible. When an edge site is unable
to process a transaction locally, that edge coordinates Walter’s two-phase commit protocol with
other sites involved in the transaction. However, all communication between the originating edge
and other sites is routed through the core. The originating edge sends outgoing messages to
the core, which then distributes them to other sites as necessary. Similarly, return messages
are collected at the core before being returned to the originating edge. In contrast, distributed
commits in SpearDB are coordinated by the core site, rather than the originating edge.

This experiment uses the server configuration shown in the left side of Figure 5.4, with three
edge servers, one core server, and a single client sending requests to each edge. L = 10 ms of
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artificial message round trip latency has been injected between the edges and the core.

The same database from the locality micro-benchmark (Section 5.3) is reused. Workload
transactions each perform two put operations. Clients generate four types of transactions -
corresponding to the four types of commit processing performed by SpearDB, by controlling
which records are updated by the transaction. Several different workloads have been tested; each
representing a different mix of transaction types. For each workload, transaction response times
and abort rates have been measured. For these simple update-only transactions, SpearDB and
core-aware Walter had very similar transaction response times as seen in Figure 5.7. This is to be
expected given that all workloads used in this experiment exhibit the same number of cross-site
network messages in both SpearDB and the baseline. Hence, the focus of this experiment is on
abort rates, which are shown in Figure 5.8. Abort rates differ, because SpearDB’s more complex
commit protocols allow it to acquire fewer locks and hold on to them for shorter periods of time.

Each pair of bars in Figures 5.7 and 5.8 corresponds to a different workload. For the All
GeoLocal workload, 100% of transactions are able to commit locally, at the originating edge.
Since both SpearDB and Walter can commit locally without any network communication and
since there’s a single client per edge, there is no contention and there are no aborted transactions.

The Mostly GeoLocal workload, consists of 85% local transactions, 5% of transactions that
update a pair of records at a remote edge, and 10% of transactions that update one record at the
originating edge and one at the core. This represents a workload with strong geographic locality,
but with a few transactions originating at an unexpected edge (i.e. a user accessing an account
while traveling), and a small number of un-localizable objects, placed at the core. Both SpearDB
and core-aware Walter experience aborts under this workload, but SpearDB’s rate is about half
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of the baseline’s. There are two reasons for this: First, SpearDB uses a remote single site commit
for the remote-edge transactions, while the baseline uses a distributed commit coordinated by
the local edge. This requires setting locks at the remote edge, which can cause local transactions
at the remote edge to abort. For the core/edge transactions, both SpearDB and the baseline use
a distributed commit, but the baseline holds its locks for longer than SpearDB, increasing the
risk of aborts. In both systems, such transactions start their commit procedure by acquiring a
lock on the record at the local edge. If this succeeds, the core is contacted and it acquires a lock
on the core record. However, in SpearDB the core will coordinate the transaction, committing it
and releasing its core lock immediately, while Walter needs to keep the core lock until the local
edge (acting as the coordinator) commits the transaction.

The Mostly Local and GeoLocal workload includes 60% local edge transactions, 5% remote
edge transactions, 30% transactions that update two records at the core, and 5% core/edge trans-
actions. Abort rates are higher for both systems here, because there are fewer local transactions.
However, SpearDB’s rate is much lower than the baseline’s because it is able to perform single-site
commits for all but the core/edge transactions.

Finally, the All Local workload considers a mix of 40% local, 30% core, and 30% remote edge
transactions. For this workload, all commits in SpearDB are single site, whereas the baseline
requires distributed commit for more than half of the transactions. SpearDB still experiences
some transaction aborts because of write-write conflicts between transactions that originate at
different edges, but its rate is much lower than the baseline’s rate as there are no aborts due to
locking.
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5.5 Evaluation Using RUBiS

This section presents an evaluation of SpearDB using a more realistic workload based on the
RUBiS benchmark [84]. SpearDB is compared to both the centralized baseline presented in
section 5.3 and to core-aware Walter, which was described in section 5.4.

5.5.1 RUBiS

RUBiS is a simulated auction application that includes a database describing users, items, and
bids. The web application implements operations that allow users to browse, search, view, buy,
place bids and comments on items, register new items and users, and view user accounts. RUBiS
includes a session model that generates a workload consisting of sequences of these operations.

Small changes to RUBiS were required in order to adapt it for use as a SpearDB benchmark:
First, since RUBiS had been written for relational databases, the database schema needed to be
adapted. In addition, all database interactions were re-implemented to use SpearDB’s transac-
tional key-value interface. Table 5.9 summarizes the new SpearDB schema created for RUBiS.
Different record types are distinguished by prepending a unique string denoting the record type
to each record’s key.

Second, the notion of locality has been introduced to the application. RUBiS had already
modeled “regions”, and each user is associated with a particular region. Locality has been
introduced by associating each RUBiS region with a SpearDB edge site. RUBiS operations are
submitted at the submitting user’s region’s edge site, and items registered by a user are associated
with the user’s region. An additional locality parameter has also been introduced to the RUBiS
session model. Whenever a region needs to be selected during a user’s session, the user’s own
region is selected with probability locality, otherwise some other region is selected at random. For
example, when users search for items within a region, they will search within their own regions
with probability locality; otherwise they search in a remote region.

Table 5.9: SpearDB Schema for RUBiS

Record Type Key Primary Copy Secondary Copy
category list single record core all edges
region list single record core all edges
user nickname user’s region’s edge core
item (incl. bids) item id item’s seller’s region’s edge core
item list region+category region’s edge core
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5.5.2 Experiment Design

A total of 11 SpearDB servers, representing 10 edge sites and 1 core site, have been used in these
experiments. The goal has been to model a geo-distributed system at a continental scale based
on the geography of the United States. Major population centers spanning the country have been
chosen to represent the servers. Kansas City, KS - a relatively central city in the list has been
chosen to be the core site. As in previous experiments, tc has been used to introduce synthetic
round trip latency between edge servers and the core, as shown in Table 5.10. These latencies have
been obtained from WonderNetwork’s1 global ping statistics. All three systems (SpearDB and the
two baselines) have been tested using the round trip latencies shown in the “Latency” column
of Table 5.10. Additionally, the core-aware Walter baseline has been tested using the scaled
down latencies shown in the “Scaled Latency” column. These have been obtained by scaling the
first set of latencies by a factor of approximately 0.66. The scaling factor has been computed
by dividing the average edge-to-edge latency by the average edge-to-core-to-edge latency for all
possible combinations of 2 (different) edges. The scaled latency experiments are intended to
approximate how Walter would perform if it were allowed direct edge-to-edge communication,
rather than forcing all such communication through the core.

Table 5.10: RUBiS Experiment Network Round Trip Latencies

City Latency Scaled Latency
Atlanta, GA 30 ms 20 ms
Austin, TX 18 ms 12 ms
Chicago, IL 15 ms 10 ms
Detroit, MI 22 ms 14 ms
Kansas City, KS 0 (CORE) 0 (CORE)
New York, NY 31 ms 20 ms
Orlando, FL 40 ms 27 ms
San Francisco, CA 42 ms 28 ms
Seattle, WA 53 ms 35 ms
St. Louis, MO 8 ms 5 ms
Washington, DC 33 ms 22 ms

A RUBiS database consisting of 25,000 users and 50,000 items has been used, with data
placed as described in Table 5.9. Ten RUBiS clients ran concurrently at each edge (100 clients in
total). Each client generated requests according to the RUBiS bidding workload (which includes
both read-only and update transactions), with 1 second think time between requests. Each
RUBiS operation has been implemented as a SpearDB stored procedure. For the two baselines,

1https://wondernetwork.com/
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the procedure executes at the site at which the request arrives. For SpearDB, the readset hint
mechanism is used to control whether the procedure executes at the arrival edge or at the core.
To ensure each system (SpearDB and the two baselines) was tested with the same workloads, the
random seeds used by the clients for workload generation have been fixed.

In each experiment, the response time for each RUBiS request has been measured. These
measurements do not include the time required for HTML page generation - which is database-
agnostic. This configuration is such that both SpearDB and the two baseline systems are lightly
loaded, so that latencies due to contention for server resources are negligible. Aborted transaction
counts have also been recorded. However, abort rates were insignificant for both SpearDB and
the two baselines because data contention is very low for this workload: the hottest (i.e. most
accessed) tuple in the workload is only accessed by 0.8% of transactions.

5.5.3 Results

Figure 5.11 shows the mean request response time for each system for each of the 17 types of
RUBiS operations that use the database. For these experiments, the RUBiS workload locality
parameter was set to 80%. The percentage below each operation indicates its frequency of oc-
currence in the workload. In the figure, the operations have been grouped into four categories,
according to the database access characteristics of the operations. The last graph in Figure 5.11
shows the frequency-weighted overall average request response time for the entire workload.

Both SpearDB and core-aware Walter are able to handle operations in the “Read Globally
Replicated Index” category entirely at the submitting edge, thus avoiding the edge-to-core latency
that affects the centralized baseline. These are simple operations that essentially consist of a single
get request. Response times for both SpearDB and core-aware Walter are less than 0.5 ms.

Operations in the “Read Single User And/Or Item Information” category are also read-only,
and involve obtaining information about one user or one item (or both) from the database. If
the required user or item is local, then both SpearDB and core-aware Walter can handle the
request at the submitting edge. This happens close to 80% of the time, because of the workload
locality parameter setting. For non-local requests, SpearDB’s read-hinting mechanism will cause
it to execute the stored procedure at the core, where (by design) the required user or item data
will be found. This results in a single edge-to-core round trip for non-local requests. Core-aware
Walter handles non-local reads by directing them to the master copy of the required user or item
record, which will be at a remote edge. Hence, core-aware Walter experiences higher latencies
for non-local requests. This penalty is higher for “Put Comment” because it involves two get
requests, each of which results in an edge-to-edge round trip.

Operations in the “Update Transactions” category perform both get and put operations.
The “Register User” and “Register Item” pages are responsible for creating new users and items
respectively. This involves creating a new record and inserting it in the database. For both
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Figure 5.11: RUBiS Database Response Time by Page and Page Type @ 80% Locality
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SpearDB and Walter, this results in a non-local commit requiring a message exchange between
the edge and core. Thus, both of these systems, as well as the centralized baseline, have mean
response times that depend on edge-to-core message latency, which ranges from 8 ms to 53 ms in
this experiment, depending on the edge (see Table 5.10).

The “Store Comment” and “Store Bid” pages add a new comment or bid, respectively. This is
done by reading, modifying and writing back records for a user and (in the case of a bid) an item.
If these records are local, both SpearDB and Walter will perform the entire transaction at the
edge. If they are remote, SpearDB’s readset hints will move execution of the entire transaction to
the core and, at commit time, a remote commit will occur at the edge of the user/seller receiving
the comment/bid. This amounts to one round trip to the core and another between the core and
a remote edge. Core-aware Walter, on the other hand, will execute the transaction at the local
edge, will need to go out to a remote edge for the read(s), and will perform a two phase commit
with the same remote edge(s). This results in either 2 or 3 times more network round trips than
SpearDB.

The “Store Buy Now” operation allows a user to buy an item. It is similar to the previous
two in that it reads, modifies and writes back records for an item and a user. Additionally, if the
entire stock quantity of the item is depleted as a result of this purchase, the item needs to be
removed from the item list index. SpearDB uses a readset hint to determine whether to perform
the operation’s stored procedure at the local edge (if the user and item are local) or ship it to the
core. In contrast, core-aware Walter always executes the operation at the local edge, and requires
multiple round trips to a remote edge to read user and item information when they are not local.

The final group in Figure 5.11 is made up of pages that require reading multiple items. For
core-aware Walter, each non-local get results in a message round-trip to the site that holds
the primary copy of the requested record, resulting in high latencies. For SpearDB, the clients
cannot provide read hints for these operations since their readsets are not known in advance.
SpearDB’s execution strategy in this case is to ship the stored procedure to the core, where all
reads are from the core’s database. Thus, both SpearDB and the centralized baseline execute
these operations with a single edge-to-core round trip. This execution strategy is enabled by
SpearDB’s asymmetric design, which insists on a core site with a complete copy of the database.

All of the results in Figure 5.11 were obtained with workload locality set at 80%. The
RUBiS experiment has also been performed with other locality settings, ranging from 50% to
95%. Figure 5.12 shows the frequency-weighted mean operation response time for each system,
as a function of locality. As expected, the performance of both SpearDB and core-aware Walter
improves with increasing locality. For this workload, locality must be very high before core-
aware Walter outperforms the centralized baseline. SpearDB performs better than the centralized
baseline for all of the locality values tested. The most important factors in SpearDB’s performance
relative to core-aware Walter are (a) its ability to handle non-local reads at the core, rather than
at remote edges, and (b) its ability to ship call operations for execution at the core.

56



8

16

32

64

128

256

50% 65% 80% 95%

R
es

p
o
n
se

 T
im

e 
(m

s)

Locality

CoreAware

Walter

@ 65.63%

Latency

Centralized

SpearDB

Figure 5.12: RUBiS Database Average Response Time by Locality

57





Chapter 6

Data Partitioning - Primary Copy
Placement

Transactions in SpearDB can be viewed as having two critical phases: execution and commit ;
followed by a non-critical propagation phase. During the execution phase, both primary and
secondary copies of tuples are used to answer get requests. In the commit phase, only the
primary copies are involved in the protocol. The propagation phase happens in a lazy manner
after (and if) the transaction has been committed in the system and does not contribute to client-
perceived latency. For this reason, the focus of data partitioning will be solely for the benefit of
the execution and commit phases.

Both the commit and execution protocols in SpearDB are designed to minimize the number
of cross-site messages, which are the main source of latency in SpearDB’s transaction processing.
These protocols work with any valid placement of primary and secondary copies (i.e. assignment
of primary/secondary copies to particular edges or the core). However different placements affect
transaction execution times. The goal of this chapter is to present algorithmic approaches to data
placement that try to minimize the overall execution time of a given transactional workload.

The commit phase of transactions is only concerned with the location of primary copies, while
secondary copies play no role. The execution phase, on the other hand, treats all copies (primary
and secondary) the same - in other words, for the execution phase primary copies also play the role
of secondary copies. This introduces a dependency between the placement of secondary copies
and primary copies. For this reason, and also for the sake of simplifying this complex problem,
data partitioning is split into two separate partitioning problems in this thesis: primary and
secondary copy placement. Both are approached as static off-line optimization problems, where
the entire workload is known apriori. The remainder of this chapter is dedicated to solutions for
primary copy placement. Secondary copy placement is discussed in Chapter 7.
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6.1 Primary Copy Placement

The problem of static primary copy placement in SpearDB can be expressed as follows: given
a workload trace and a network topology, determine a placement of primary copies for which
the latency of network messages generated by the commit phases of all transactions (the cost)
is minimized. The goal is to choose a location (either the core or one specific edge site) for the
primary copy of each tuple in the database.

More formally, let D represent the database (which is a set of tuples) and E represent the
set of edge sites. Along with D and E, a workload trace W and network topology N make up
the input to the primary copy placement problem. The workload trace W consists of a set of
transactions. Each transaction tx ∈ W is described by a triple 〈s, w,ws〉, where the start edge
site s ∈ E indicates the edge at which the transaction request arrives, the weight w represents the
number of times the transaction occurs in the workload, and the writeset ws ⊆ D indicates which
tuples from the database the transaction updates. A dot notation is used to refer to the elements
of a given transaction, e.g. tx.ws refers to the writeset of a transaction tx. The network topology
N defines the network latencies between the core and each edge site in E. These latencies are
expressed in terms of round trip time. The notation l(e) is used to represent the network latency
between the core and edge e ∈ E. Table 6.1 summarizes all the components of the input to the
primary copy placement problem.

The output of primary copy placement is a mapping p that maps each tuple in the database
to either an edge or the core (p : D → E ∪ {core}), indicating where each tuple’s primary copy
should be located.

Finally the goal of the primary copy placement algorithm is to choose the output function p
that minimizes the objective function cost(W,N, p) defined in equation (6.1).

Table 6.1: Primary Copy Placement Input Components

Component Description

D the database - a set of tuples
E the set of edge sites

N
the network, where l(e) denotes the round trip network latency from
edge e to the core

W a workload consisting of transactions

∀tx ∈ W a transaction tx = 〈s, w, ws〉 :


tx.s ∈ E start site
tx.w weight
tx.ws ⊆ D writeset
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cost(W,N, p) =
∑
tx∈W

[
tx.w · cost(tx,N, p)

]
(6.1)

The objective function as defined in equation (6.1) is generic and consists of the sum of
all individual transaction costs multiplied by the transaction weights. The individual transaction
cost, however, is system specific. It models the total latency of all network messages generated by
the commit phase of transaction tx given the network topology N and the data placement defined
by the primary copy placement output function p. For the SpearDB database, the transaction
cost function is defined in equation (6.2).

cost(tx,N, p) =


0 if tx.ws = ∅ or ∀t ∈ tx.ws, p(t) = tx.s

l(tx.s) if

{
∀t ∈ tx.ws, p(t) ∈ {tx.s, core}
and ∃tc ∈ tx.ws : p(tc) = core

l(tx.s) + max e∈E−{tx.s}:
(∃t∈tx.ws:p(t)=e)

l(e) if ∃t ∈ tx.ws : p(t) 6∈ {tx.s, core}

(6.2)

The complexity of the SpearDB transaction cost function as defined in equation (6.2) stems
from the multiple ways of committing transactions in SpearDB. For local commit or an empty
writeset, the cost is 0 since there are no network messages generated. If all tuples in the writeset
are either local or at the core and at least one tuple in the writeset is at the core then the cost
is the latency between the local edge and the core since the transaction can be committed with
a single network message to the core. This case includes both SpearDB’s core commit strategy
and a two-phase commit between the local edge and the core only. Finally, if at least one tuple
in the writeset is at a remote site (i.e. not local and not at the core), then the cost function
reflects the latency between the local edge and the core plus the largest latency between any
remote sites with primary copies in the writeset and the core. This case includes both SpearDB’s
remote commit strategy (for which there will only be one remote site with primary copies in the
writeset) and the general two-phase commit case. The largest latency is used since in SpearDB’s
two-phase commit all remote edges are messaged concurrently.

Table 6.2: Example Primary Copy Placement Input and Corresponding Output

Workload (W )
Start Site Weight Writeset

Edge1 40 TupleA
Edge2 40 TupleB
Edge3 60 TupleA, TupleB

Network (N)
Edge Latency
Edge1 10 ms
Edge2 10 ms
Edge3 10 ms

Placement (p)
Tuple Site
TupleA Edge1
TupleB Edge2
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Table 6.2 presents an example primary copy placement problem and its solution. The input
network consists of 3 edges, each a 10 ms round trip time from the CORE. The input workload
consists of 3 transactions. The first occurs 40 times in the workload, starts at Edge1 and updates
TupleA. The second occurs 40 times, starts at Edge2 and touches TupleB. The third occurs 60
times, starts at Edge3 and touches both TupleA and TupleB.

The algorithm’s task is to assign each of the two tuples to any of the 4 possible sites (the core
or one of the 3 edges). This needs to be done in such a way that minimizes the sum of all network
message latencies generated by the commit phase of the 3 transactions. The full search space
for this example is 16 possible placements. The optimal placement (obtained by exhaustively
searching this small search space) is presented in Table 6.2 and consists of placing TupleA at
Edge1 and TupleB at Edge2.

For this optimal placement (p), the 80 occurrences (total) of the first two transactions can all
commit locally without generating any network messages:

cost(tx1, N, p) = 0
cost(tx2, N, p) = 0

The 60 occurrences of the last transaction (starting at Edge3) all commit via 2PC: Each of
these occurrences require a round trip from Edge3 to the Core (10 ms) and two concurrent round
trips from the Core to Edge1 and Edge2 respectively (10 ms each). The total latency of each 2PC
commit here is then:

cost(tx3, N, p) = 10 ms + max(10 ms, 10 ms) = 20 ms

Thus, the total cost of the optimal placement is:

cost(W,N, p) = 40 · cost(tx1, N, p) + 40 · cost(tx2, N, p) + 60 · cost(tx3, N, p)
cost(W,N, p) = 40 · 0 + 40 · 0 + 60 · 20 ms = 1200 ms

Several algorithms that can produce approximate solutions are discussed in Section 6.2, Sec-
tion 6.3, Section 6.4 and Section 6.5. An experimental evaluation of the algorithms proposed is
presented in Section 6.6 followed by some comments and observations for primary copy placement
in Section 6.7.

6.2 A Simple Affinity Approach to

Primary Copy Placement

Because transaction writesets in a workload can partially overlap, choosing to improve the commit
phase of one transaction could cause slower commit phases for others. This section presents a
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simple baseline algorithm that ignores transactional tuple groupings and only looks at the access
site(s) and frequency of each tuple individually. Ignoring transactional groupings substantially
simplifies the problem of primary copy placement.

In this simple affinity approach, the primary copy for a tuple is placed at the edge which
accesses it most frequently for writes if the edge write ratio is greater than a given THRESHOLD

parameter. The edge write ratio for a tuple t and edge e is defined in equation (6.4) and can have
values between 0 and 1 (inclusive). The edge write ratio represents the ratio of writes at an edge
to total writes at all edges for a given tuple. Where “writes” is defined in equation (6.3) as the
number of individual write requests for a tuple t that originate at a site s.

writes(t, s) =
∑

tx∈W :t∈tx.ws and tx.s=s

tx.w (6.3)

edgeWriteRatio(t, e) =

{
0 if writes(t, s) = 0,∀s ∈ E

writes(t,e)∑
s∈E writes(t,s) otherwise

(6.4)

Algorithm Affinity for solving primary copy placement problem

Input:
database D, workload W, the set of all edges E

and an edge write ratio THRESHOLD

Output: primary copy placement p

for each tuple t in database D # initialize tCounts and output o1

p[t] ← CORE # default output is core placement2

tCounts[t][CORE] ← 03

for each edge e in edge set E4

tCounts[t][e] ← 05

for each transaction tx in workload W # count site accesses for all tuples6

for each tuple t in writeset tx.ws7

tCounts[t][tx.s]+= tx.w8

9

for each tuple t in database D # main placement loop10

max ← maximum value of tCounts[t][s] ∀ s ∈ E ∪ {CORE}11

maxSite ← site s for which tCounts[t][s] = max12

total ← sum of tCounts[t][s] ∀ s ∈ E ∪ {CORE}13

if total > 0 and max / total > THRESHOLD then p[t] ← maxSite14

return p15

Figure 6.3: Simple Affinity Primary Placement Algorithm
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Figure 6.3 describes the simple affinity placement algorithm in pseudocode. The given
THRESHOLD parameter acts as the minimum edge write ratio that needs to be reached in or-
der to place a primary copy at an edge. If this THRESHOLD isn’t reached, the primary copy is
placed at the core as the tuple is accessed enough times at other edges to make a more central
placement worthwhile (i.e. the writes originating at the write-dominant edge for the tuple don’t
outweigh all other writes originating elsewhere).

In a simplified network topology, where all edges are equidistant from the core, choosing a
value for THRESHOLD can be done based on the transaction cost function defined in equation (6.2).
Assuming each edge is N ms from the core, local commit would be free, core commit would cost
N ms, and the other commit strategies would cost 2N ms. Thus, moving a tuple from the core to
edge e would save a cost of N ms for all writes originating at edge e but would cost an additional
N ms for all other writes. So in an equidistant edge network topology a value of THRESHOLD = 0.5
is ideal. For different network topologies, making THRESHOLD a parameter provides additional
flexibility to either favor more or less aggressive edging of tuples.

This is very similar to the way non-transactional systems such as PNUTS [17] handle data
placement. The advantage to this method is its simplicity and scalability: a single pass over
the workload is required and one vector counter for every tuple (the vector counts tuple accesses
from each site). The drawback is that a lot of relevant input information, such as transactional
groupings and network latencies between the edges and the core, is ignored. This can lead to
poor placement decisions in some workloads.

For the example input described in Table 6.2, simple affinity would conclude that both TupleA
and TupleB are accessed 60 times from Edge3 and only 40 times from another edge (Edge1
for TupleA and Edge2 for TupleB). So for any value of THRESHOLD < 0.6 the algorithm would
place both tuples at Edge3. This placement is not optimal and has a cost of 2 · 40 · 20 ms =
1600 ms compared to the optimal cost of 1200 ms. For values of THRESHOLD ≥ 0.6, simple affinity
would place both tuples at the core. This is another sub-optimal placement which has a cost of
(40 + 40 + 60) · 10 ms = 1400 ms.

6.3 A Greedy Approach to Primary Copy Placement

This section describes a greedy algorithm for solving primary copy placement. It relies on a
simple refinement procedure that starts from an existing placement and either “edges” or “cores”
a single transaction. The edging of a transaction consists of (re)locating its entire writeset (each
tuple in the writeset) to the transaction start site. Similarly, “coring” relocates each tuple in a
transaction’s writeset to the core. The intuition behind this refinement procedure is that it brings
one transaction towards one of its two lowest cost methods of committing. Edging is particularly
effective on tuples that are mostly accessed from one site and coring is very effective on hot groups
of tuples that are often accessed together but from multiple edges by multiple transactions.
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Algorithm Greedy for solving primary copy placement problem

Input:
database D, workload W, network N, the set of all edges E,
and an initial placement pInit

Output: primary copy placement p

pMin ← pInit # start from the initial placement given1

repeat # refinement loop2

p ← pMin3

for each transaction tx in workload W # inner loop4

e ← p modified so that ∀ t ∈ tx.ws, e[t] ← tx.s # edged tx placement5

if cost(W, N, e) < cost(W, N, pMin) then pMin ← e6

c ← p modified so that ∀ t ∈ tx.ws, c[t] ← CORE # cored tx placement7

if cost(W, N, c) < cost(W, N, pMin) then pMin ← c8

until pMin = p # didn’t find any better placement at this stage9

return p10

Figure 6.4: Greedy Primary Placement Algorithm

Thus the greedy algorithm, which is described in Figure 6.4, starts off with an existing data
placement that is given as an additional parameter. This may be randomly generated, or ev-
erything could be placed at the core, or it could be the actual current placement of data in a
running DBMS, or even the placement result generated by a different algorithm such as simple
affinity presented in Section 6.2. The greedy algorithm consists of several iterations, each of which
considers every possible refinement (i.e. the edging as well as coring of every transaction in the
workload) and chooses the one (or one of the ones) which results in the placement with the lowest
cost. At the end of the iteration, the chosen placement replaces the initial placement given and
another iteration begins. This is repeated until no more refinement is possible (i.e. every possible
refinement results in a placement with a cost that’s higher or the same as the placement before
refinement).

One nice property of this greedy algorithm is that every iteration produces a new valid
placement with an improved (i.e. lower) cost. This allows the algorithm to be stopped early if
runtime is a limiting factor and the solution computed up to the stopping point is guaranteed to
be better than the starting placement. It is also the case that a solution obtained by different
means may be improved upon by running this greedy algorithm with said solution (placement) as
input. And should the greedy algorithm be unable to improve upon a given placement, a single
iteration is required to reach this conclusion.

The worst case complexity of each iteration step, as presented in the pseudocode in Figure 6.4,
is O(n2), where n is the size of the workload. This assumes the cost function, which is the same
cost function defined in equation (6.1), requires another pass through the entire workload to
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Figure 6.5: Example of Greedy Primary Copy Placement Stuck in Local Minimum

compute the cost of each individual transaction. An optimized version of the same algorithm
has been implemented for experiments and is presented in Appendix C. In the optimized version,
there are some initialization steps required and the worst case complexity is still O(n2). However,
in practice, the algorithm runs faster by reducing the time required to compute cost(W,N, p) after
the first iteration.

As a greedy algorithm, there is no guarantee of an optimal result. In the example presented
before in Table 6.2, this greedy algorithm gets stuck in the local minimum of a placement that
has both TupleA and TupleB at the core. This core placement isn’t optimal as it has a cost
of (60 + 40 + 40) · 10 ms = 1400 ms compared to the optimal cost of 1200 ms. And in order
to progress towards the optimal placement, both the transaction starting at Edge1 and the
transaction starting at Edge2 need to be edged. However the greedy algorithm can only edge one
transaction per step. Unfortunately, edging either one of these transactions without edging the
other produces a placement of higher cost. Thus, these search paths are never followed to the
next step that, as shown in Figure 6.5, would have produced the global optimum.

6.4 Primary Copy Placement as

Hypergraph Partitioning

Primary copy placement is inherently a partitioning problem: tuples need to be assigned to
partitions (i.e. sites) with the goal of minimizing a cost that is determined by their partition as-
signments. As such, existing partitioning techniques may be used to solve the primary placement
problem. One particular partitioning problem that primary copy placement can be expressed as
is hypergraph partitioning. The key insight here is that hyperedge weights can be used to model
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transaction commit costs in such a way that running a min-cut partitioning algorithm on the
hypergraph corresponds to finding the minimum cost placement.

A hypergraph is simply a generalization of a graph in which edges can join any number of
vertices as opposed to just two. Formally a hypergraph is a pair consisting of two sets: a set
of vertices and a set of hyperedges; where each hyperedge is a non-empty subset of the set of
vertices. Similar to weighted graphs, a weighted hypergraph is a hypergraph where all hyperedges
have a numeric weight associated with them. In this document, the term edge is used to refer
to a computational site at the edge of the cloud. In order to avoid confusion, the same term is
never used as shorthand for “hyperedge” within this document.

The problem of min-cut hypergraph partitioning is a known NP-hard problem [47, 41] which
consists of dividing the vertices of a hypergraph into disjoint partitions by removing some of
the hyperedges. For the version of min-cut hypergraph partitioning used in this document,
the number of partitions is given as input and some of the vertices are pre-assigned to specific
partitions in which they are required to stay. The goal is to perform the partitioning that
requires the cheapest total hyperedge cut (i.e. the sum of the weights of the hyperedges removed
is minimized).

Thus, in order to solve primary copy placement via hypergraph partitioning the following 3-
step procedure is required: First, the primary copy placement problem needs to be expressed as a
hypergraph. This procedure and the reasoning behind the hyperedge weights used in building the
hypergraph are explained in Section 6.4.1. Second, a min-cut hypergraph partitioning algorithm
needs to be run on the hypergraph obtained in the first step. Finally, the third step involves
converting the results of hypergraph partitioning into a solution to the primary copy placement
problem. The last two steps are described in detail in Section 6.4.2.

6.4.1 Building the Hypergraph

This section describes the process of converting a primary copy placement problem into a hy-
pergraph. First, every site in the system (all edges in E and the core) and every tuple in the
database D are represented as vertices. Then, for every transaction in the workload (tx ∈ W ),
several hyperedges as constructed as follows: An inner hyperedge connects all the vertices rep-
resenting tuples in the transaction’s writeset (∀t ∈ tx.ws). Then, for every site in the system,
an additional hyperedge is constructed connecting the site’s vertex with all vertices representing
tuples in the transaction’s writeset. The hyperedge that contains the core vertex will be referred
to as the core hyperedge, the one containing the local site’s vertex (i.e. vertex corresponding to
tx.s) will be referred to as the local hyperedge, and all remaining hyperedges will be referred to
as remote hyperedges. Figure 6.6 illustrates the construction of such a hypergraph for a single
transaction with two tuples in its writeset. One remote hyperedge is drawn in Figure 6.6 for
illustrative purposes. It has an index i intended to represent that there may be more than one
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Primary Copy Placement

such hyperedge required, one for each remote edge. Note that for transactions with a single tuple
in the writeset, an inner hyperedge doesn’t exist because hyperedges need to connect at least two
vertices. For the same reason read-only transactions can be skipped completely when building
this hypergraph.

The presence of a hyperedge in this hypergraph indicates that all tuple nodes inside it should
be placed at the same site; and this site should be that corresponding to the edge or core vertex
inside the hyperedge if such a node is present. Thus the hyperedges in Figure 6.6 describe possible
co-location of the tuples in the transaction’s writeset. By pre-assigning every site vertex in the
hypergraph to a distinct partition, running min-cut hypergraph partitioning forces the algorithm
to choose where a transaction writeset is located. Any outcome can have at most one of the
hyperedges that include site vertices per transaction writeset. This follows from the fact that all
site vertices have been pre-assigned to different partitions.

Since the local, core and remote hyperedges all contain a site vertex, at most one of them
may survive the cut. Furthermore, because the inner hyperedge’s set of tuples is a subset of all
other hyperedges’ sets of tuples for the same transaction, if any other hyperedge is present, it also
means that the inner hyperedge must be present as well; and conversely if the inner hyperedge
is cut, all other hyperedges pertaining to the same transaction are also cut. Thus, 4 possible
outcomes are distinguished for different combinations of hyperedges being present or cut for one
transaction. These are described in the first column of Table 6.7.

Each of the 4 outcomes result in a different placement (second column of Table 6.7), and
hence a different transaction execution cost (third column of Table 6.7). Thus, the key idea is to
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Table 6.7: Outcome of All Possible Hyperedge Combinations for a Single Transaction

Hyperedge Placement Cost
Present Outcome (p) cost(tx,N, p)

Local + Inner p(t) = tx.s,∀t ∈ tx.ws 0
Core + Inner p(t) = core,∀t ∈ tx.ws l(tx.s)
Remotei + Inner p(t) = Remotei,∀t ∈ tx.ws l(tx.s) + l(Remotei)

(none)
(no placement outcome)

≈ l(tx.s) +
∑|E|−1

i=1 l(Remotei)

|E|−1
can only conclude that:

∃t1, t2 ∈ tx.ws : p(t1) 6= p(t2)

set the sum of all missing (cut) hyperedges in each of the 4 cases to the transaction execution
cost that stems from the tuple placement resulting from all the present edges in the case. For
each transaction, this results in a system of |E|+2 equations in |E|+2 variables. These variables
are the hyperedge weights, which can thus be obtained by solving this system of equations.

For the first 3 combinations of present hyperedges described in Table 6.7, the placement
outcome p is straightforward and the transaction execution cost is easily determined from equa-
tion (6.2). In the last case, when all hyperedges belonging to the transaction have been cut, there
is no clear placement outcome, which makes the transaction execution cost indeterminate. An
approximation needs to be used instead.

If all hyperedges have been cut, the implication is that not all tuples in the transaction’s
writeset are located at the same site. The actual location where these tuples end up being is
unknown at this stage in the algorithm. Other transactions that have overlapping writesets will
determine their location after the min-cut partitioning algorithm is run. This can either mean
cost(tx,N, p) = l(tx.s) if part of the writeset ends up being at the local edge and the rest at the
core; or cost(tx,N, p) = l(tx.s) + max l(Remotei),∀i ∈ 1, |E| − 1,∃t ∈ tx.ws : p(t) = Remotei
otherwise (i.e. if at least one tuple in the writeset ends up being at a remote edge). In this case,
an approximate cost is used, which is obtained by ignoring the less expensive former cost function
outcome and using only the more expensive latter cost. Furthermore since the set of remote edges
where all tuples in the writeset end up being placed (Remotei) is also unknown, the maximum
network latency of these edges is approximated to be the average remote edge latency for the

entire network:
[∑|E|−1

i=1 l(Remotei)
]
/
(
|E| − 1

)
. Because these costs are approximations of the

true cost of executing the transaction, the placement determined by the hypergraph partitioning
may not be optimal.

Having obtained a cost for all 4 outcomes (last column of Table 6.7), the system of equations
that needs to be solved to determine the hyperedge weights can now be defined. Let L, C and
I represent the hyperedge weights of the local, core and inner hyperedges respectively and let
Ri, i ∈ 1, |E| − 1 represent the hyperedge weights of all |E| − 1 remote edges. Equation (6.5) is
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then the resulting system.


C +

∑|E|−1
i=1 Ri = 0

L+
∑|E|−1

i=1 Ri = l(tx.s)

L+ C −Rj +
∑|E|−1

i=1 Ri = l(tx.s) + l(Remotej),∀j ∈ 1, |E| − 1

L+ C + I +
∑|E|−1

i=1 Ri = l(tx.s) +
∑|E|−1

i=1 l(Remotei)
|E|−1

(6.5)

Solving the system in equation (6.5) provides the hyperedge costs described in equation (6.6).



L = l(tx.s) +
∑|E|−1

i=1 l(Remotei)
|E|

C =
∑|E|−1

i=1 l(Remotei)
|E|

Rj =
∑|E|−1

i=1 l(Remotei)
|E| − l(Remotej),∀j ∈ 1, |E| − 1

I =
∑|E|−1

i=1 l(Remotei)
|E|·(|E|−1)

(6.6)

In the cost function for the entire workload (defined in equation (6.1)), the transaction costs
are multiplied by the transaction weight (tx.w). This fact has been so far omitted in order to
simplify the explanation of hyperedge weights. Thus, the hyperedge weight values obtained for
L, C, Rx and I need to be multiplied by the transaction weight (tx.w) in order to obtain their
correct values. This needs to be done for every transaction in the workload. At this point the
hypergraph is fully constructed from the input of primary copy placement.

As an example, the hypergraph constructed from the input workload described in Table 6.2
is shown in Figure 6.8. Vertices in this figure are represented as circles if they correspond to
tuples and cloud shapes if they correspond to sites. Their corresponding entity is clearly labeled.
Hyperedges in Figure 6.8 are represented either as closed curves surrounding the vertices they
contain; or, in the case of two-vertex hyperedges, a simple line connecting the two vertices is
used for representational clarity. Hyperedge costs are displayed in a rectangle on the hyperedge
perimeter. Finally, based on the transaction used to generate a hyperedge, one of three line styles
and colors are used as described in the legend underneath the hypergraph.

6.4.2 Hypergraph Partitioning and Retrieving the Placement

Once the workload is defined as a hypergraph and weights are assigned to edges, a min-cut
hypergraph partitioning algorithm can be run. All the hypergraph vertices that represent sites
need to be pre-assigned to distinct partitions. This ensures sites are never co-located in the same
partition. Furthermore, the number of output partitions needs to be set as the number of sites
(|E|+ 1). This ensures that every partition contains exactly one site vertex and that every tuple
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Figure 6.8: Hypergraph for the Example Workload and Network Defined in Table 6.2

vertex, which the algorithm must place in on of the |E| + 1 partitions, ends up co-located with
one such site vertex.

An off-the-shelf solver such as hMETIS [42, 41] can then perform the actual partitioning. The
final result of partitioning is the list of partitions, each of which will have exactly one site vertex
and 0 or more tuple nodes. The site node in every partition can then determine the location of
all the tuple nodes in the same partition, if there are any.

Internally, min-cut hypergraph partitioning is meant to achieve this result by removing (cut-
ting) the minimum total weight of hyperedges required to achieve a valid partitioning. For
example, in the hypergraph presented in Figure 6.8: the optimal way to achieve a valid parti-
tioning is to cut every single hyperedge except the two that weigh 2000

3 ms as shown on the left
side of Figure 6.9. The resulting (minimum possible) total cost of the cut in this example is then
1200 ms. Since a hyperedge connecting Tuple A to Edge 1 is left uncut this means Tuple A will
appear in the same partition as Edge 1 thus determining its position. For similar reasons Tuple
B will be placed at Edge 2. And as explained in Table 6.2, this particular placement is indeed
the optimal one for this example.

Unfortunately, as other authors have discovered as well [19], hypergraph partitioning tools
aren’t widely studied and don’t seem to be very mature: Even for the 6 nodes and 13 hyperedges
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Figure 6.9: Remaining Hyperedges After Min-Cut for Hypergraph Defined in Figure 6.8

in Figure 6.8, hMETIS is unable to find the optimal min-cut with any combination of the available
algorithm tuning parameters. The result provided places both Tuple A and Tuple B in the same
partition as the core. Such a placement implies all hyperedges that contain an edge vertex are cut.
The only hyperedges left are the internal hyperedge and the 3 core hyperedges, as shown on the
right side of Figure 6.9. The total cost of such a cut is 1400 ms which is larger than the minimal
cut. These poor results can also be seen in the other experiments presented in Section 6.6. Several
different hypergraph formulations have been tried, however all produced similarly poor results in
practice.

6.5 A Linear Programming Solution to

Primary Copy Placement

Another way to simplify the primary copy placement problem is to only consider a binary commit
strategy: transactions are either able to commit locally or they are not. This approach bundles
core, remote and 2PC commit strategies as a single choice (non-local commit). The cost of
executing a transaction tx under this model is 0 for local commit just as before. For non-local
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commits, at least one message needs to be exchanged, resulting in a higher cost than local. The
minimum value of this cost is used: the latency of this one message to the core. Thus, the
transaction cost function originally defined in equation (6.2) can be simplified to the form in
equation (6.7).

cost(tx,N, p) =

{
0 if tx.ws = ∅ or ∀t ∈ tx.ws, o(t) = tx.s
l(tx.s) otherwise

(6.7)

The goal of primary copy placement under the simplified cost function in equation (6.7)
essentially becomes the edging of as many transactions as possible while still observing network
topology restrictions. This can be expressed in terms of a 0-1 integer linear program that tries to
maximize the latency savings of a placement in relation to a base placement where no transaction
is edged.

maximize
∑
tx∈W

[tx.w · l(tx.s) · xtx]

subject to xtx1 + xtx2 ≤ 1,∀tx1, tx2 ∈ W such that

tx1.ws ∩ tx2.ws 6= ∅ and tx1.s 6= tx2.s

and xtx ∈ {0, 1},∀tx ∈ W

Figure 6.10: Simplified Cost Primary Copy Placement Problem

Figure (6.10) shows the formulation of such a linear program. The decision variables for this
optimization problem are xtx where xtx = 1 ⇐⇒ tx is edged and xtx = 0 otherwise. The only
placement constraint this linear program imposes is that at most one of any two transactions
with overlapping writesets and different start sites may be edged. If this were not observed, then
all tuples common to both writesets would need to be placed at both transactions’ start sites at
the same time - which is impossible in a single-primary copy system.

The linear program first needs to be solved. This can be done by one of the many off-the-shelf
LP solvers. Once solved, converting the list of xtx values into a primary copy placement can be
achieved by the following simple procedure: For each edged transaction, place all of the tuples in
its writeset at its start site:

p(t) = tx.s, ∀tx : xtx = 1 and ∀t ∈ tx.ws

All other tuples that remain after this operation are placed at the core.
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The example presented in Table 6.2 can be expressed as the following linear program:

maximize 400x1 + 400x2 + 600x3

subject to x1 + x3 ≤ 1

and x2 + x3 ≤ 1

and x1, x2, x3 ∈ {0, 1}

There are only 8 possible combinations of values for x1, x2 and x3. The optimal solution is
{x1 = 1, x2 = 1, x3 = 0} which maximizes the value of the objective function to a value of 800
and satisfies the two constraints. The interpretation of this solution is that transactions 1 and 2
need to be edged. More specifically, TupleA would be placed at transaction 1’s starts site (Edge1)
and TupleB at transaction 2’s start site (Edge2). This is the same optimal placement presented
in Table 6.2.

6.6 Experimental Evaluation of

Primary Copy Placement

All of the algorithms described in Sections 6.2, 6.3, 6.4 and 6.5 are evaluated in this section
using several workloads. The goal is to determine the quality of the produced solutions and the
scalability of the algorithms on larger workloads. The quality of the solution is simply determined
by its cost as defined in equation (6.1) and is inversely proportional to it.

The algorithms have been implemented in JavaScript (ECMAScript 6th edition) for the
Node.js runtime. All experiments have been performed on a server with dual Intel Xeon E5-
2620v2 6-core CPUs, 64 GB of DDR3 memory and an Intel S3700 200GB SATA3 SSD for per-
sistent storage, running Ubuntu Server Linux, release 14.04.1 LTS. The Hypergraph partitioning
part of the algorithm described in Section 6.4 has been performed using the hMETIS solver,
version 1.5.3 [42]. The linear program described in Section 6.5 has been solved by using the IBM
ILOG CPLEX Interactive Optimizer version 12.7.0.0 [39].

The testing methodology involves starting from a workload and network topology. There are
three such inputs considered which will be described throughout this section. The affinity, greedy,
hypergraph and linear programming algorithms are all run on these inputs to produce a valid
placement. For the greedy algorithm, two different initial placements were considered. The first
is all-core, which places all tuples at the core site. This will be referred to as “Greedy-Core” in
the experiments. The second is the highest quality (i.e. lowest cost) solution produced by the
other three algorithms. It will be referred to as “Greedy-???” in the experiments, where ??? will
be replaced by the name of the algorithm that produced the input initial placement. Random
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starting placements have also been tried (best out of 10) with the greedy algorithm, but the
resulting solutions were the lowest quality among the greedy algorithm solutions, so they haven’t
been included in the graphs. An all-core placement is also considered as a baseline.

6.6.1 Locality

For the first experiment, the same locality workload and network described in Section 5.3 are
used. The goal is to evaluate solution qualities and algorithm runtimes for workloads spanning
the entire locality spectrum and to identify any correlation between the locality parameter and
these values. In this setup, there are 3 edges in total and all of them have a core round trip
latency of 10 ms. Each of the edges, as well as the core, have a bag of 50 tuples associated with
them for a total of 200 tuples in the database. 5000 transactions are generated for each of the
3 edges given a workload locality parameter P in the following manner: With probability P , a
transaction’s writeset will consist of 2 tuples picked uniformly at random from the bag associated
with the transaction’s start site. With probability (1−P )/2, a transaction’s writeset will consist
of 2 tuples picked uniformly at random from the bag associated with the core. Otherwise, the
transaction’s writeset will contain 2 tuples selected uniformly at random from among all 200
available in the database such that at most one is from the bag associated with the transaction’s
start site and at most one is from the bag record is at the local edge and at most one record is
at the core.

As explained in Section 5.3, a higher locality means that more local commits should be
possible. The locality parameter P is an approximation of the workload’s locality if all the tuples
were to be assigned to the site associated with the bag they belong to - the natural placement.
However, the primary copy placement algorithms have no knowledge of these bags of tuples,
nor the natural placement. All they receive as input are the workload and the network topology.
They then attempt to find the best placement with just this given input. As such, the expectation
is that the optimal solution is as least as good as the natural one and that the quality of the
optimal solution should be directly proportional to the locality parameter P . However, unlike
the toy example in Table 6.2, a search of the entire solution space is infeasible and there is no
other known method at this point to actually determine the optimal solution for most of these
workloads. As such, the experiments in this section only compare among the proposed solutions.

Figure 6.11 shows the solution quality results of this first experiment. As expected, most
algorithms’ solution quality scaled with the locality parameter P . All algorithms found the zero
cost solution for the workload with P = 1, but the hypergraph and greedy algorithm with a
core starting placement provided relatively poor solutions for P < 0.9. The linear programming
(LP) and affinity approaches performed worse than the baseline core placement for some low
locality workloads, however the simple affinity method seems to have performed the best in most
cases. As such, its output has been used as the starting placement for the greedy algorithm as
well. However, the greedy algorithm wasn’t able to improve on the solutions affinity had found.
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Figure 6.11: Primary Copy Solution Quality Comparison for the Locality Workload

An interesting observation is that none of the proposed algorithms have been able to provide a
solution that’s better than both the natural and core placements.

The runtimes of all algorithms used in this first experiment are shown in Figure 6.12. Notice
the linear programming (LP) algorithm series runs off the top of the chart and isn’t shown in the
figure for values of P smaller than 0.9. The runtimes for this algorithm are much longer than the
others, taking as much as 22 minutes to finish a run for P = 0.1.
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Figure 6.12: Primary Copy Algorithm Runtime Comparison for the Locality Workload
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Figure 6.13: Locality Workload Size as a Function of P

The affinity approach is the fastest in all runs due to its simplicity. The hypergraph approach
takes roughly the same amount of time for workloads with P ≤ 0.7. Both the hypergraph
and linear programming approaches spend the vast majority of their solving time within their
respective off-the-shelf solvers. The input construction and solution interpretation for both these
solvers takes up a negligible amount of time.

Figure 6.12 also seems to suggest that there is a correlation between the locality parameter
P and the runtime of the greedy, linear programming and hypergraph (for P > 0.7) algorithms.
However, this is not a direct correlation. Because 15 thousand transactions are being generated
using combinations of 200 tuples and 3 start sites, many of these transactions end up being
duplicates. All such duplicates are merged together in a single transaction of a higher weight
(i.e. the merged transaction weight is equal to the number of transactions merged). Due to
the transaction construction mechanism, there is a correlation between P and the final size of
the workload which is shown in Figure 6.13. It is then the size of the workload that correlates
with the algorithm runtimes in the cases of LP and Greedy-Affinity, the latter of which only
performs one iteration as it is unable to improve upon Affinity’s solution as already mentioned.
The Greedy-Core algorithm also slows down when the workload increases, but has some slower
runs at high values of P because in those cases it is able to refine the original core placement
over several iterations.

6.6.2 Hot/Cold Tuples

The second experiment considers a workload consisting of a mix of popular (hot) tuples and less
frequently accessed (cold) tuples. The goal of this experiment is to be able to vary the tuple
contention of the workload and measure the effects on the solution quality of the primary copy
placement algorithms. Informally, the tuple contention of a workload is the amount of overlap
that occurs between the writesets of transactions in the workload that have different starting
sites. The expectation here is that less contention makes a partitioning easier resulting in better
quality solutions.
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The workload for this scenario is constructed in the following manner: The database contains
1000 tuples. Each of the 10 edges in the network gets assigned a different zipfian distribution of
these tuples. More specifically, the same parameter S is used for all edge zipfian distributions
in order to randomly pick index values from 1 to 1000; but each edge has a different randomly
assigned ordering (permutation) of the set of tuples these indexes refer to. 500 transactions are
generated for each of the 10 edges by picking a number of tuples from the edges’ distribution to
make up the writeset. The number of tuples in the writeset of a transaction is chosen uniformly
at random to be 1, 2 or 3.

Because of the properties of zipfian distributions, a larger value of S means transactions at
each edge are likely concentrated on a smaller set of tuples that are being accessed more frequently
(hot tuples). The smaller the set of tuples commonly touched by transactions at an edge, the
less likely it is that these transactions’ writesets overlap with other edges’ transactions’ writesets.
This results in a lower level of tuple contention for the overall workload.

Figure 6.14 shows the solution quality results of this experiment. The hypergraph approach
doesn’t provide good quality solutions relative to the other approaches. Furthermore its solution
quality doesn’t improve for higher values of S as expected. This is likely due to the poor per-
formance of hMETIS [42] as mentioned in Section 6.4.2. The linear programming approach does
improve at higher values of S, but does so slower than affinity and greedy. Affinity and greedy
are the best performers in this experiment, with greedy starting from a core placement being
marginally better. The output of the affinity algorithm has also been used as a starting place-
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Figure 6.15: Primary Copy Algorithm Runtime Quality Comparison for the Hot/Cold
Tuples Workload

ment for the greedy algorithm. This is represented by the Greedy-Affinity series in Figure 6.14).
The improvement that Greedy-Affinity achieves over Affinity in this experiment is an average
cost reduction of only 0.5%, which isn’t perceivable in Figure 6.14.

The second experiment’s runtime results are shown in Figure 6.15. The Affinity algorithm’s
runtimes are shown in the graph as numbers as they are too small to register visually. The arrow
on the Greedy-Core series for S = 1.5 indicates the runtime value, which is also presented as a
number in the graph, extends outside the axis bounds. In the case of S = 2.5, Affinity’s runtime
is shorter than the 1 ms precision of the timer used to measure these.

Most algorithms, with the exception of Greedy-Core scale with the workload size, similar to
the experiment in Section 6.6.1. Figure 6.16 shows that as the number of hot tuples increases
(with S), the effective database size used for transactions decreases, leading to more duplicates
and fewer distinct transactions in the workload. In these relatively smaller workloads, when
compared to the experiment in Section 6.6.1, the relationship between the Hypergraph and LP
algorithms is seen more clearly. LP runtimes grow exponentially with the workload size, while
Hypergraph runtimes grow linearly with the workload size up to a point beyond which they stop
growing. Figure 6.17 shows the number of iterations it took to reach a solution that may no
longer be improved by the greedy algorithm. The Greedy-Core series runtimes are correlated
with this number to a higher degree than they are to workload sizes.
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Figure 6.17: Greedy-Core Iterations as a Function of S for the Hot/Cold Tuples Workload

6.6.3 RUBiS, Once Again

The third experiment considers a more realistic benchmark. There are no particular expectations
with this experiment as the goal is simply to observe the quality of the primary copy placement
solutions for a more realistic workload and network setting. For this purpose, the RUBiS bench-
mark [84] is once again used. More specifically, the problem input used in this experiment is
obtained from the SpearDB workload derived from RUBiS, which was presented in Section 5.5.

The topology from the “Latency” column of Table 5.10 is used for the network part of the
input. The edge latencies in Table 5.10 represent a geo-distributed system of major population
centers at a continental scale based on the geography of the United States.

The workload part of the input is constructed from the workload trace of an actual run of
the RUBiS experiment in Section 5.5 with 80% locality - this is one of the 20 runs (selected at
random) used in the results presented in Figure 5.11. The workload traces (lists of SpearDB
transactions) of the RUBiS experiment from all edges have then been taken and put together
in a single list ordered by the wall-clock time (i.e. real world time as opposed to CPU time) of
the start of transactions. All information from these workload traces other than transactions’
start sites and writesets were then removed. This included removing any transactions without
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Figure 6.18: Primary Copy Solution Quality Comparison for Subsets
of the Rubis Workload

updates as they are not relevant to primary copy placement. The first thousand, 10 thousand and
100 thousand transactions that remained in the list were then used to make up three individual
workload inputs. In each of the three cases the database was simply the union of all transaction
writesets in the workload input used.

Figure 6.18 shows the experiment’s solution quality results for all three cases. The core
placement baseline is shown in the figure, but isn’t represented to scale due to its higher cost.
Arrows are used to indicate when values fall outside the bounds of the axis and a numeric
representation is used instead. The original manual placement schema described in Table 5.9 has
been used as an additional baseline primary copy placement solution (the Manual series in the
figure). The affinity based solution is again the top contender and the average cost reduction
achieved for Greedy-Affinity over Affinity is 1.8%. More importantly, Affinity, as well as both
greedy based approaches provide better solutions in terms of quality than the manual baseline.
This enforces the need to develop algorithmic data placement solutions over relying on domain
experts for complex workloads.

An interesting observation is that both baselines scale almost perfectly linearly with the size
of the workload. The optimal partitioning likely follows a similar trend. However, the algorithmic
solutions’ relative quality to these baselines becomes increasingly poorer as the workload grows
larger. The likely reason is that the missed optimization opportunities of these approximate
algorithms get compounded.
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Figure 6.19: Primary Copy Algorithm Runtime Scaling for the Rubis Workload

The algorithm runtimes for this experiment are presented in Figure 6.19. Note that both axis
in the figure use a logarithmic scale. The greedy algorithms scale poorly for large workloads, but
the others seem to scale close to linear in this case.

In this experiment, the size of the workload is intentionally varied, not just as a result of
merging transactions. The RUBiS workload has very few duplicate transactions - between 0.1%
and 1.6% among the three workloads sizes observed. Furthermore, contention (writeset overlap) is
much lower than in the previous experiments and workload sizes grow up to an order of magnitude
larger. The Hypergraph and LP solvers exhibit different runtime characteristics for this type of
workload. Hypergraph runtimes continue scaling with the workload size in this case, while the
LP solver is able to solve much larger workloads much faster - probably due to the decreased
contention. Most of the runtime these two algorithms spend to find the solution is again taken
up by the dedicated solvers. All other input and output parsing for Hypergraph and LP take up
a negligible amount of time.

6.6.4 Greedy Iterations

This section takes a closer look at the iterations of the greedy algorithm. Appendix C describes
the optimized greedy primary copy placement algorithm used in the prototype implementation.
The first iteration step of this algorithm includes some data structure initializations that help
reduce computation time of the cost function in subsequent iteration steps of the algorithm. As a
result, the first iteration is expected to be longer than subsequent ones. The aim of this section is
to observe the practical runtime and solution quality improvement of individual iteration steps.
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Figure 6.20: Example Greedy Solution Quality and Solving Times
as a Function of Algorithm Iterations

Figure 6.20 shows a representative result obtained from running the greedy algorithm with
a core starting placement on the locality workload with P = 0.9. This is the same workload
presented before in Figure 6.11 and was chosen because of the high number steps (iterations) it
took to reach a relatively good quality solution.

The number of steps/iterations is plotted on the x-axis of Figure 6.20 while the cost of the
placement reached so far is on the left hand y-axis and the total cumulative time to reach the
current placement is on the right hand y-axis. As expected the solution quality improves with
every iteration (cost goes down). The improvement is close to linear with time. The three
consecutive curvatures that make up the shape of the solution quality are due to the fact that
this run of the algorithm consists of three consecutive groups of 49 transactions with the same
start site (but a different start site per group) being edged. On the other y-axis, the time to
finish the first step of the greedy algorithm is clearly larger than subsequent steps which all take
roughly the same amount of time as each other. The close-to-linear improvement of the solution
quality and linearly increasing total time to solution after the first step have been observed in
virtually all other runs of the greedy algorithm.

6.7 Primary Copy Placement Conclusions

Solving the primary copy placement problem consists of identifying an optimal disjoint partition-
ing of the tuples of a database based on geographic access patterns of tuples by transactions in
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order to minimize transaction processing time. Several algorithmic solutions have been proposed
and the quality of their results empirically tested. An important outcome of these tests is that
some of the algorithmic partitioners have provided higher quality solutions than a manual expert
placement of tuples for the RUBiS workload, as presented in Figure 6.18.

The surprising conclusion is that a very simple heuristic (affinity - presented in Section 6.2)
that disregards much of the relevant input information of the problem outperforms more complex
approaches in practical testing in runtime, but also in solution quality - which is unexpected.
Although the affinity technique has shown its limitations on a small example (Table 6.2) when
compared to the other techniques, in virtually all larger scale experiments from Section 6.6 it has
outperformed them. Part of this result may however be attributed to the poor performance of
the 3rd party solvers available for hypergraph partitioning.

The only other contender that should be considered in practice, according to the experiments
performed in Section 6.6, is the greedy algorithm presented in Section 6.3. The greedy algorithm
may be run with a core starting placement to mitigate the few cases observed where affinity is
unable to produce solutions of better quality than an all-core placement. Greedy can also attempt
to improve on the affinity solution by using it as a starting placement. A small improvement has
been observed in a few experimental cases in Section 6.6 and a single iteration is required for
cases where the solution may not be further improved. Furthermore this property of the greedy
algorithm to potentially improve upon solutions may be used with the results of any other primary
copy placement solvers that may be developed in the future.
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Chapter 7

Secondary Copy Placement

The execution phase of transaction processing in a database like SpearDB is influenced by the
location of all copies of tuples - both primary and secondary. For the former, Chapter 6 has
described the problem of optimal placement of primary copies with the goal of minimizing network
latency during the commit phase of transactions. This chapter looks into the problem of static
secondary copy placement, which aims to add secondary copies of tuples at each edge site. The
goal is to minimize the latency of the execution phases of transactions executed at that edge.
The constraints are not adding more than a specified amount of network traffic between the edge
and the core, while also imposing an edge-specific maximum total size of all copies.

To present secondary copy placement, the same notation is used that was introduced in
Table 6.1. However, for secondary copy placement, further information about the database tuples
that are read by each transaction is required. Thus, each transaction tx in the workload has a
readset (tx.rs ⊆ D) in addition to its writeset (tx.ws). Additionally, all tuples t in the database
have a size: size(t). All components of the input to the secondary copy placement problem are
summarized in Table 7.1. The output of secondary copy placement is a set of tuples Se for which
secondary copies will be installed at edge e.

In order to understand the goal of secondary copy placement (the objective function), it is
important to observe the consequences of adding a secondary copy for a tuple t ∈ D at an edge
e. Placing a secondary copy of t at e has the following effects:

• Whenever t is read at edge e it will be served locally, saving an entire round trip to the
core - which is equivalent to l(e) amount of latency and size(t) - the tuple size - amount of
bandwidth;

• When t is written to by transactions (anywhere in the system), there are no additional
messages involved in executing or committing the transaction; However, during the prop-
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Table 7.1: Secondary Copy Placement Input Components

Component Description

D the database - a set of tuples
E the set of edge sites
e ∈ E an edge - for which the problem is defined
l(e) the round trip network latency from edge e to the core
maxBe the maximum bandwidth threshold for edge e

maxTe
the maximum allowed total size of tuple copies
(primary + secondary) at edge e

W a workload consisting of transactions

∀tx ∈ W a transaction tx = 〈s, w, rs, ws〉 :


tx.s ∈ E start site
tx.w weight
tx.rs ⊆ D readset
tx.ws ⊆ D writeset

size(t), t ∈ D the size (in bytes) of tuple t
p : D → E ∪ {core} a primary copy placement

agation phase of the transaction additional network traffic between the core and the edge
is required to propagate the update of t to the secondary copy at the edge.

These consequences can be expressed formally as follows. Let Le(t) and Be(t) denote the
latency savings and added network traffic respectively of placing a secondary copy of tuple t at
edge e. Then the latency savings are simply the number of local reads of the tuple multiplied
by the round trip time from edge e to the core. This is expressed in equation (7.1). The added
bandwidth is expressed in equation (7.2) as the tuple size multiplied by difference between the
numbers of global writes of the tuple (which add network traffic in the propagation phase) and
its local reads (which save traffic in the execution phase).

Le(t) =

( ∑
tx∈W :tx.s=e and t∈tx.rs

tx.w

)
· l(e) (7.1)

Be(t) =

[( ∑
tx∈W :t∈tx.ws

tx.w

)
−
( ∑

tx∈W :tx.s=e and t∈tx.rs
tx.w

)]
· size(t) (7.2)

Thus, the secondary copy placement problem at edge e can be expressed as a 0-1 integer
linear program. The decision variables xt ∈ {0, 1} (one for each tuple t ∈ D that doesn’t have
a primary copy at e) indicate whether tuple t has a copy at edge e (xt = 1) or not (xt = 0).
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maximize
∑

t∈D:p(t) 6=e

Le(t) · xt

subject to
∑

t∈D:p(t) 6=e

Be(t) · xt ≤ maxBe

and
∑

t∈D:p(t) 6=e

size(t) · xt +
∑

t∈D:p(t)=e

size(t) ≤ maxTe

and xt ∈ {0, 1}

Figure 7.2: Secondary Copy Placement Problem at Edge e

The goal is to choose values for all decision variables xt such that the sum of all latency savings
for all tuples t that have been chosen (xt = 1) is maximized, while the added bandwidth for the
same tuples doesn’t exceed maxBe and the total tuple size at edge e doesn’t exceed maxTe. The
program, which is shown in Figure 7.2, can be solved by an off-the-shelf linear program solver.

Bear in mind that since primary copies also act as secondary copies during the execution
phase of transactions, there is never a need to place a secondary copy of a tuple at a site that
already has a primary copy of that tuple. As such these tuples can be excluded from consideration
altogether (i.e. there are no decision variables xt for tuples with primary copies at edge e). Thus,
secondary copy placement is dependent on the result of primary copy placement, which is the
reason a primary copy placement p is also required as input. Furthermore, if there are any
additional limitations imposed on the set of viable tuples (e.g. imposed manual placement of a
small subset of tuples; legal restrictions on the geographical location of sensitive data; etc.), the
problem may be generalized to accommodate these limitations by fixing the value of a subset of
decision variables xt to either 0 (meaning that a secondary copy may not be placed at this edge)
or 1 (meaning that a secondary copy must be placed at this edge).

The problem of secondary copy placement can be solved independently for each edge site.
However the entire global workload W is required as input so the problem is not completely
independent from what occurs in the rest of the system. In order to come up with the complete
global list of secondary copies, a total of |E| different instances of the problem need to be solved -
one for every edge. Notice that secondary copy placement is not required at the core in a system
like SpearDB, which holds a full copy of the database there.
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Table 7.3: Example Secondary Copy Placement Setting

Workload
Start Site Weight Readset Writeset

Edge1 55 TupleA TupleB
Edge1 45 TupleB TupleA
Edge1 25 TupleC -
Edge2 55 TupleA TupleA
Edge2 20 TupleA, TupleB TupleC

Thresholds:
maxBEdge1 = maxBEdge2 = 40 bytes
maxTEdge1 = maxTEdge2 = 1 GB

Network Topology
Edge Latency
Edge1 10 ms
Edge2 10 ms

Primary Copies
Tuple Site
TupleA Edge2
TupleB CORE
TupleC CORE

7.1 Secondary Copy Placement Example

This section presents a small example of secondary copy placement. Consider the setting pre-
sented in Table 7.3 which includes a workload, network topology, primary copy placement and
threshold bandwidth values for all edges. From it, two instances of secondary copy placement
can be extracted. For Edge1, its associated latency is l(Edge1) = 10 ms and the maximum band-
width threshold for the edge is maxBEdge1 = 40 bytes, while the maximum total tuple size is
maxTEdge1 = 1 GB. The entire workload and primary copy placement from Table 7.3 are used
as input as well. They will be referred to as W and p respectively. There are no primary copies
at this edge. The final input component to this first instance of the problem is the database
D = {TupleA, TupleB, TupleC}.

The second instance of the problem is defined for Edge2 and is similar to the first. Its input
consists of the following: l(Edge2) = 10 ms, maxBEdge2 = 40 bytes, maxTEdge2 = 1 GB, D, W
and p. The relevant portion of the primary copy placement p for this instance of the problem is
p(TupleA) = Edge2.

The values for all latency savings as defined in equation (7.1) and added network traffic as

Table 7.4: Added Traffic and Latency Savings for Example Input in Table 7.3

Tuple Edge1 Edge2
t LEdge1(t) BEdge1(t) LEdge2(t) BEdge2(t)

TupleA 55 · 10 = 550 ms (45 + 55)− 55 = 45 (((
(((((55 + 20) · 10 ((((

((((
((

(45+55)−(55+20)
TupleB 45 · 10 = 450 ms 55− 45 = 10 20 · 10 = 200 ms 55− 20 = 35
TupleC 25 · 10 = 250 ms 20− 25 = −5 0 · 10 = 0 ms 20− 0 = 20
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defined in equation (7.2) are summarized in Table 7.4. For simplicity, the size of all tuples in the
database was assumed to be 1 byte - small enough to allow the entire database to fit within the
maximum 1 GB threshold of the edges. The values for LEdge2(TupleA) and BEdge2(TupleA) are
crossed out in Table 7.4 because TupleA should be excluded from consideration as a secondary
copy candidate for Edge2 due to the fact that it has a primary copy there: p(TupleA) = Edge2.

For Edge1 a maximum of 800 ms of latency can be saved by installing secondary copies of
TupleA and TupleC there. As Table 7.4 shows, the additional network traffic incurred for these
two secondary copies would be 45− 5 = 40 = maxBEdge1 bytes. Notice that TupleC in particular
is responsible for 250 ms of latency savings while at the same time reducing network traffic. This
is to be expected in cases where a tuple is read locally more often than it is globally written to.

For Edge2, TupleA needs to be taken out of consideration because it already has a primary
copy at this edge. What is left is an option between TupleB and TupleC since both of them cannot
be replicated at this edge without incurring a bandwidth penalty greater then maxBEdge2. TupleB
is the better choice since it provides a greater latency benefit of 200 ms. Again notice that TupleC
is a special case here: since it is never read at Edge2, there would be no latency savings from
installing a secondary copy.

7.2 Problem Complexity

To understand the source of complexity in the secondary copy placement problem, consider the
following simple greedy solution. First, choose the tuple t with the minimum Be(t)

Le(t)
value such

that the total additional network bandwidth for all chosen tuples is smaller than the threshold
maxBe. For simplicity, also assume that the maximum tuple size threshold maxTe is large enough
as to never be exceeded. Then repeat the process until a choice isn’t possible anymore without
violating the bandwidth constraint. This strategy works for negative values of Be(t) as well. For

the corner case of Le(t) = 0⇒ Be(t) ≥ 0, the value of Be(t)
Le(t)

= +∞ as there is no point in adding
a secondary copy that just increases bandwidth without any benefit to latency.

At first glance it might seem like this algorithm should provide an optimal solution. Using
it to solve the input defined in Table 7.3 would order the tuples based on their BE(t)

LE(t) values.

Table 7.5: Latency Savings per Added Bandwidth Unit for Example Input in Table 7.3

t
BEdge1(t)

LEdge1(t)

BEdge2(t)

LEdge2(t)

TupleA ≈ 0.082 ms (((
(((≈ 0.033 ms

TupleB ≈ 0.022 ms 0.175 ms
TupleC −0.02 ms ∞
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For Edge1, this order would be TupleC, followed by TupleB and then by TupleA as can be seen
in Table 7.5. However, after TupleC and TupleB are chosen, there would be no more room
in the bandwidth budget for TupleA. Thus, this greedy algorithm would reach the conclusion
that S′Edge1 = {TupleC,TupleB}. This is a different solution than the optimal found before
(S′Edge1 6= SEdge1). While both solutions include TupleC, the solution SEdge1 includes TupleA,
while S′Edge1 includes TupleB. Since LEdge1(TupleA) > LEdge1(TupleB) as seen in Table 7.4, the
greedy algorithm solution S′Edge1 is worse.

The problem of secondary copy placement is in fact a variation on a well known NP-complete
problem called the 0-1 knapsack problem. Theorem 7.3 states that any instance of 0-1 knapsack
can be reduced to secondary copy placement in polynomial time. The corollary of this reduction
is that secondary copy placement is NP hard.

Theorem 7.3 Any instance of the 0-1 knapsack problem can be reduced to secondary copy place-
ment in polynomial time.

Proof: The 0-1 knapsack problem can be formulated as follows: Given a set of n items numbered
from 1 to n, each with a positive weight wi and a positive value vi along with a maximum weight
capacity C,

maximize
n∑

i=1

vi · xi

subject to
n∑

i=1

wi · xi ≤ C

and xi ∈ {0, 1}

As seen in Table 7.1, a secondary copy placement problem requires as input: a database
D, a set of edges E, an edge for which the problem is defined e and its latency to the core
l(e), a workload W , a primary copy placement p, and maximum bandwidth and total tuple size
thresholds: maxBe and maxTe, respectively. Assume an arbitrary instance of the 0-1 knapsack
problem is provided. From it, a secondary copy placement problem is formulated as follows:

• D = {t1, t2, ..., tn}, size(ti) = 1 byte, for all tuples (n tuples of size 1 byte in the database);

• E = {e1, e2} (there are 2 edges in the system);

• l(e1) = 1 ms (edge e1 for which the problem is defined is 1 ms away from the core);

• maxBe = C

• maxTe = n bytes
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• W = {tx1, tx2, ..., txn, tx′1, tx′2, ..., tx′n}, where:

◦ txi.s = e1 and tx′i.s = e2,∀i ∈ 1, n

◦ txi.rs = {ti} and tx′i.rs = ∅, ∀i ∈ 1, n

◦ txi.ws = tx′i.ws = {ti},∀i ∈ 1, n

◦ txi.w = vi and tx′i.w = wi,∀i ∈ 1, n

• p(t) = core, ∀t ∈ D (all primary copies are at the core - i.e. not at edge e1);

The complexity of this conversion is O(n) - where n is the size (i.e. number of items) of the
0-1 knapsack problem instance. Thus the conversion can occur in polynomial time.

The problem of secondary copy placement is defined in Figure 7.2. The latency savings
formula from equation (7.1) can be substituted into the objective function; and the added band-
width formula from equation (7.2) can be substituted into the constraints of the secondary copy
placement problem. Then, renaming the decision variables to yt to avoid confusion provides the
following equivalent formulation:

maximize
∑
t∈D

( ∑
∀tx∈W :tx.s=e and t∈tx.rs

tx.w

)
· l(e) · yt

subject to
∑
t∈D

[( ∑
∀tx∈W :t∈tx.ws

tx.w

)
−
( ∑
∀tx∈W :tx.s=e and t∈tx.rs

tx.w

)]
· size(t) · yt ≤ maxBe

and
∑
t∈D

size(t) · yt + 0 ≤ maxTe

and yt ∈ {0, 1}, ∀t ∈ D

Then, substituting the values obtained from the 0-1 knapsack problem into this linear program
the following formulation is obtained:

maximize

n∑
i=1

(
txi.w · yti

)

subject to
n∑

i=1

[(
tx′i.w +���txi.w −���txi.w

)
· yti

]
≤ C

and n ≤ n
and yti ∈ {0, 1}, ∀i ∈ 1, n

Since txi.w = vi from the way it has been defined, the objective function of this instance of
secondary copy placement is the same as the arbitrary instance of 0-1 knapsack from which it
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has been defined. Similarly, since tx′i.w = wi and n ≤ n is always true, this instance of secondary
copy placement also has the same constraints as the arbitrary instance of 0-1 knapsack. Thus an
optimal solution to this secondary copy placement instance (Se = {ti : yti = 1}) can be easily
converted to an optimal solution to the 0-1 knapsack problem by the following (polynomial time)
function:

xi =

{
0 if ti 6∈ Se
1 if ti ∈ Se

,∀i ∈ 1, n

Q.E.D.
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Chapter 8

Conclusions

This thesis provides a solution to the problem of latency caused by the distance between end
users and the data required by the applications they use. The solution takes the form of a
database management system for distributed applications at the edge of the cloud. A prototype
implementation of this database management system has been built and is called SpearDB.
SpearDB is a geographically distributed, replicated database service that takes advantage of
users’ proximity to the edge of the cloud in order to optimize request response times. SpearDB
makes it possible for applications, as well as the data that they rely on, to be pushed to the edge
of the cloud, where clients can communicate with the application quickly. SpearDB provides such
edge-dispersed applications with location-transparent access to a shared, persistent database.

SpearDB supports transactions and provides strong consistency guarantees for them in the
form of parallel snapshot isolation (PSI). It is designed to be used by applications with geograph-
ically localized access patterns. That is, applications for which clients in different geographic
regions make heavy use of different parts of the database.

The prototype implementation has been evaluated using several micro-benchmarks in a server
cluster in which synthetic network latency can be injected in order to simulate the effect of a
controllable amount of geographic distance between servers. A key-value version of the RUBiS
auction service application has been developed for additional evaluation of SpearDB. For this
application, it is shown that running RUBiS on SpearDB cuts RUBiS request response times
in half, relative to a centralized baseline that did not exploit the edge. This improvement was
not uniform across the application. Some RUBiS operations are more localizable than others.
SpearDB speeds such operations up dramatically. Other operations are not as easy to localize at
an edge. For such cases, performance with SpearDB is about the same as in the centralized case.

The performance of SpearDB relies on the workload and data placement of tuples at edges.
So, in order to increase performance, automatic partitioning algorithms have been proposed for
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placing primary and secondary copies. Primary copy placement is approached first - indepen-
dently from secondary copy placement. Several algorithms are proposed to solve primary copy
placement, including a greedy heuristic that can improve upon an existing data placement ob-
tained by any other means.

In addition to several micro-benchmarks, the RUBiS auction service workload is used again to
provide an input for the proposed partitioning algorithms. The quality of the solutions provided
as output by these algorithms have been ranked and compared between one another as well as
relative to a centralized baseline. Overall, a simple placement heuristic that ignores transactional
tuple groupings has proven to be the best approach in the empirical testing, outperforming more
complex algorithms in both speed and, more importantly, solution quality. Furthermore, for the
RUBiS workload, several of the proposed algorithmic approaches have provided better quality
solutions than a domain expert manual data placement.

The problem of secondary copy placement, which is approached last, is dependent on the
primary copy placement partitioning. This problem is proven to be NP-hard as well as a gener-
alization of the NP-Complete 0-1 knapsack problem.

Overall, the two tiered core-edge approach and commit protocols proposed have shown them-
selves to be very adept at improving client perceived latency in a geo-distributed setting. SpearDB
performs very well on the edge-localizable workloads for which it has been built. Furthermore,
because of the introduction of the core in the system, even non-localizable workloads can be ex-
ecuted under latency conditions that aren’t any worse than a monolithic database system given
the right data partitioning. The transactional mechanism, which has been designed for general
purpose use, has proven robust and easy to use when programming the test applications; and
Parallel Snapshot Isolation guarantees provide strong consistency which makes reasoning about
transactions and interactions between database operations very straight forward.

SpearDB has been designed to scale out by adding more edges to the system. This thesis
doesn’t address the problem of scaling out the individual sites aside from allowing a wide variety
of database systems - which include distributed solutions - to be used for data storage.
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Appendix A: Site Database API

This appendix describes in more detail the functionality that an underlying SpearDB site database
needs to provide. A site database needs to provide (through the use of a driver) several simple API
operations: read, write and flush, as well as readall and merge, as described in Table 3.4.

GC Timestamp = { Core: 315, E1: 317, E2: 310, E3: 305, E4: 300 } 
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Site: E1 

---------- 

DATA 
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---------- 

DATA 

Seq#: 316 

Site: E1 

---------- 

DATA 

Seq#: 310 

Site: E3 

---------- 

DATA 

Seq#: 300 

Site: E4 

---------- 

DATA 

Seq#: 317 

Site: E1 

---------- 

DATA 

Seq#: 318 

Site: E1 

---------- 

DATA 

Next 

Entry 

Goes 

Here 

       Garbage Collectable                    Possibly Visible Entries              hidden 

Figure A.1: SiteDB Entry List Example for some Key

The underlying database needs to be able to store a version list for every key. Figure A.1
provides an example of such a list which may contain 1 or more entries. Each version includes a
commit timestamp, which consists of the commit site and a sequence number (for the commit site),
in addition to the actual data (i.e. the “value” associated with the key). Thus, database systems
that can naturally store multi-version data and can iterate over the versions (e.g. BerkeleyDB,
HBase) are a good fit, but any storage engine capable of storing an ordered list is sufficient in
this regard.

The driver needs to implement several API operations. The operations required for additional
copy installation at an edge are described in Section A.ii. For regular transaction processing, the
following API operations are required:

read(key, vts): This function needs to retrieve the last version in the ordered version list of a
given key that has a commit timestamp smaller than or equal the given input vector timestamp
parameter, vts. A commit timestamp, 〈site, seqno〉, is comparable to a vector timestamp vts,
by comparing the commit timestamp’s sequence number to the vector timestamp’s component
corresponding to the commit timestamp’s site: i.e. seqno compared to vts[site]. If an entry with
a commit timestamp smaller than or equal to vts does not exist in the version list, or if there
isn’t a version list at all for the given key, NULL is returned - signifying that this site database
doesn’t have knowledge of this key.

write(set of 〈key, value〉 pairs, site, seqno): For each 〈key, value〉 pair in the input, this function
needs to install a new version entry at the end of the ordered version list of key. The version
entry to be installed consists of the value, along with the commit timestamp 〈site, seqno〉 that is

109



constructed from the last two input parameters. All these changes need to be made atomically,
but there need not be any durability guarantees on the changes in case of failure at this point.

flush(): This function’s purpose it to ensure that any changes that have been made by all
previous write calls become durable in the face of a system failure. If a failure occurs while
this function is running there needs to be a guarantee that upon recovery, changes made by each
individual write call are either fully restored or not at all in order to preserve system-wide
atomicity.

The system provides some additional guarantees regarding the way the read and write
operations may be called. These guarantees are intended to simplify driver development. First,
it is guaranteed that there are no concurrent calls to write. Subsequent calls to write append
new versions to the ends of ordered version lists using system provided commit timestamps.
These commit timestamps are guaranteed to be built in such a way that all resulting ordered
version lists will have a splitting point (between elements) with the following property: For any
vector timestamp vts that may be used in read operations, all commit timestamps in entries
preceding the splitting point are smaller than or equal to vts and all following entries have commit
timestamps greater than vts.

For example, using these guarantees, a driver implementation of the read function could
first retrieves the version list associated with the key. Then, while traversing the list backwards
(i.e. from right to left in the list depiction given in Figure A.1), the first entry with a commit
timestamp smaller than or equal to vts can be returned without finishing the list traversal. For
example, if vts = { Core: 315, E1: 316, E2: 310, E3: 310, E4: 300 } for the entry list in
Figure A.1, the entry with sequence number 300 and site E4 will be retrieved after traversing the
last 3 elements.

The write function can take advantage of the “no concurrency” guarantee in order to im-
plement its atomicity requirements at the driver level, atop an underlying database system that
doesn’t support atomic multi-write operations. A simple example of this would be to use a
database-backed write-counter in the driver. All version list entries appended by the write
would be tagged with the value of this counter plus one. Then read operations would be pro-
grammed to ignore any entries tagged with a value smaller than the current counter. The counter
itself would only be incremented at the end of the write operation, thus making all modifications
atomically visible to reads.

The flush operation has been separated from write in order to allow for batch disc flushes
(an expensive long running operation) in order to increase concurrency. Some database systems
like BerkeleyDB [68] explicitly allow disc flush operations to be invoked separately from database
changes that are cached in memory. However, if write operations for the site database already
guarantee a satisfactory level of durability, then flush may be implemented as a no-op. Further-
more, SpearDB’s global durability guarantees are essentially the same as those provided by this
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function coupled with the underlying database. For example, a volatile in-memory implementa-
tion with a no-op flush function provides no durability guarantees (but is a valid implementation
fully usable by SpearDB).

A.i Garbage Collection

The driver for the underlying database also needs to take care of garbage collection. In order
to do this, SpearDB provides the driver with access to a garbage collectible timestamp (GC
Timestamp in Figure A.1) for the current site as well as two flags: garbage collect on read and
garbage collect on write. Based on the value of these two flags, garbage collection should happen
when reading, writing, or both. Specifically, garbage collection would only happen for the entry
list(s) currently being operated on by read or write operations.

The GC Timestamp value is computed based on the current site’s timestamp and the current
running transactions’ timestamps. Its value indicates the lowest sequence number (for each site)
that a currently running or future transaction (at the local site) can have. For the edges, only the
locally running transactions’ timestamps need to be considered since read operations will never
come in from other sites. For the core, all global running transactions’ timestamps are relevant so
the edges’ GC Timestamps are periodically sent to the core to update the core GC Timestamp.
Out of all entries with a commit timestamp lower than the GC Timestamp, only the last one (in
traversal order) needs to be kept. All others may be garbage collected (i.e. removed from the
entry list) as there aren’t any running transactions left in the system with database snapshots
older than the values kept.

A.ii New Copy Operations

This section describes the two API operations required for the process of installing a new sec-
ondary copy which is described in Section 4.5.1.

readall(key): This function returns the entire version list associated with the key given as
input. This will then be passed on as the history parameter to a merge operation running on a
different database.

merge(key, history): This function merges the local database’s version list associated with the
given key with a foreign version history provided as the second parameter. Both the history
parameter and the local version list for key are lists of triples of the form 〈value, site, seqno〉.
The merge operation require that duplicate entries that appear in both lists be removed from the
history list first. Finally, the merge ordering is also strict: the remainder of the history list (after
duplicate removal) is prepended to the local version list for key.
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The system guarantees that no two merge operations on the same key will be requested
concurrently on the same database. However, calls to the write function that include modifi-
cations to the same key are allowed to occur concurrently and the driver must ensure that both
operations execute in parallel. This requirement could easily be relaxed by introducing additional
locking in SpearDB before calls to write and merge operations. However, write appends data
on one end of the list, while merge prepends it on the other. Furthermore, the changes these
operations are required to make may be interleaved (i.e. they needn’t happen in a strict serial
order). For this reason it is more efficient to make these operations thread safe at the driver level.

Additionally, merge may also interact with the garbage collection mechanism described in
Section A.i. This may happen if several writes that modify the key happen before the merge
operation is called. If one or more of the writes trigger garbage collection, old entries at the
beginning of the base list will be removed. This will cause a gap in the version history to appear
once merge prepends the history list to the base. In this case, however, the gap doesn’t present
a problem, since the entries prepended are even older than the garbage collected ones. Thus
they will never be seen by any running transaction and they will simply be removed on the next
garbage collection cycle.
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Appendix B: SpearDB PSI Guarantee

This appendix shows that the SpearDB pseudocode presented in Chapter 4 observes the three PSI
properties introduced in Section 3.3. Theorem B.1 in Section B.i claims that write-write conflicts
are disallowed in SpearDB. Theorem B.3 in Section B.ii states that the SpearDB pseudocode
observes the causality property of PSI. Finally, Section B.iii describes SpearDB’s compliance
with the transaction-consistent database snapshot property.

The proofs in this appendix only account for regular transactional processing. Data move-
ment operations are omitted for the proofs’ simplicity. The interaction between data movement
operations and regular transactional processing operations is described in Section 4.5.1, along
with the reasons why the former don’t affect the correctness of the latter.

B.i No Write-Write Conflicts

Theorem B.1 states that concurrent transactions cannot have write-write conflicts. More specifi-
cally it makes the equivalent claim that two committed transactions that have updated a common
key cannot be concurrent. Figure B.1 is used throughout the proof of this theorem. It contains an
equivalent pseudocode version of the relevant parts of the transaction commit protocol extracted
from Figures 4.6 and 4.9. Only the checks relevant to this proof and pertaining to a single tuple
key have been left in this version of the pseudocode as well as only the branches that lead to
successful transaction committal.

Theorem B.1 (No Write-Write Conflicts) Let tx1 and tx2 be any pair of committed trans-
actions whose writesets contain a common key. Then tx1.startVTS[tx2.commitSite] ≥ tx2.seqNo
or tx2.startVTS[tx1.commitSite] ≥ tx1.seqNo.

Proof by contradiction:
Suppose that tx1 and tx2 both update tuple key, and tx1.startVTS[tx2.commitSite] < tx2.seqNo
and tx2.startVTS[tx1.commitSite] < tx1.seqNo.

There are 3 cases to consider based on the first commit of the transactions (i.e. not including
propagation to other sites):

Case 1: both tx1 and tx2 are committed using singleSiteCommit

In this case, each transaction must be committing at the site that has the primary copies of
all the tuples in their writeset. Since key belongs to both transactions’ writesets it follows that
both transactions are committed at the same site S (which contains the primary copy of the tuple
key) ⇒ tx1.commitSite = tx2.commitSite = CORE.pCopy[key] = S.
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function singleSiteCommit(tx)1

if key not locked at S # check for locks (used by 2PC)2

and key unmodified since tx.startVTS # enforce no concurrent updates3

tx.seqNo ← ++S.seqNo # assign commit version4

write(〈〈key, ?〉〉, S, tx.seqNo) # store new versions of keys to database5

6

function twoPhaseCommit(tx)7

remote async prepare(tx) @ CORE.pCopy[key]8

wait for vote from CORE.pCopy[key]9

if vote is YES10

tx.seqNo ← ++CORE.seqNo11

write(〈〈key, ?〉〉, CORE, tx.seqNo) # store to CORE’s database12

...13

# eventually return to twoPhaseCommit’s calling function: coreCommit14

# and execute the following:15

remote async installTrans(tx) @ CORE.pCopy[key]16

17

function installTrans(tx)18

write(〈〈key, ?〉〉, tx.commitSite, tx.seqNo) # store to site database19

release lock on key held by tx at S20

21

function prepare(tx)22

if key not locked at S # check for locks (used by 2PC)23

and key unmodified since tx.startVTS # enforce no concurrent updates24

lock key for tx25

return YES26

Figure B.1: Equivalent pseudocode portions of all transaction commit branches at a site
S or the CORE for a single key transaction - code fragments are extracted from

Figures 4.6, 4.7, 4.8 and 4.9.
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Without loss of generality, assume that tx1 goes through singleSiteCommit’s critical section
first. Inside this critical section, a new sequence number is generated at site S on line 4 of
Figure B.1. Then, a new version of key is installed in the database on line 5 which essentially
modifies key. Since both transactions eventually commit, they both must successfully complete
the “no concurrent update” check on line 3. However the only way for tx2 to pass this test when
it enters the critical section after tx1 is if tx2.startVTS includes tx1’s modification of key with
sequence number tx1.seqNo, i.e. tx2.startVTS[S] ≥ tx1.seqNo, a contradiction.

Case 2: one transaction is committed using singleSiteCommit and the other twoPhaseCommit

Without loss of generality, assume that tx1 is committed using singleSiteCommit and tx2

is committed using twoPhaseCommit. Since key belongs to both transactions’ writesets it follows
that tx1 is committed at the site S that contains the primary copy of the tuple key. While tx2 is
committed at the core, but the prepare stage of two phase commit must obtain a lock from the
same site S ⇒ tx1.commitSite = CORE.pCopy[key] = S.

Thus, both transactions have to go through a critical section at site S. As seen in Figure B.1,
tx1’s critical section is in the singleSiteCommit function, while tx2’s is in the prepare func-
tion. Based on the order in which these transactions enter their respective critical sections, two
additional sub-cases are distinguished:

Case 2a: tx1 executes its critical section at site S before tx2

This case is the same situation as the one described in Case 1: tx1 modifies key in its critical
section first, and then tx2, in order to eventually commit must pass the “no concurrent updates”
check on line 24 which requires that tx2.startVTS includes tx1’s modification of key with sequence
number tx1.seqNo, i.e. tx2.startVTS[S] ≥ tx1.seqNo, a contradiction.

Case 2b: tx2 executes its critical section at site S before tx1

In this case, after tx2 executes the critical section inside the prepare function, key is locked
at site S as a result of the operation on line 25. If tx1 where to enter its critical section at this
point, it would fail its lock check on line 2 and abort. However, since tx1 has to continue on
to successfully commit, the only time it may pass the lock check is after key is unlocked. This
happens on line 20 only after remote propagation of tx2 and after line 19 which installs a new
version of key in S’ database. Thus, tx1 can only (successfully) enter its critical section after
tx2’s modification of key with sequence number tx2.seqNo. This case is then similar to Case 1,
since, in order to eventually commit, tx1 must also pass the “no concurrent updates” check on
line 3 which requires that tx1.startVTS includes tx2’s modification of key with sequence number
tx2.seqNo, i.e. tx1.startVTS[tx2.commitSite] ≥ tx2.seqNo, a contradiction.

Case 3: both tx1 and tx2 are committed using twoPhaseCommit

Since key belongs to both transactions’ writesets it follows that both transactions need to
obtain a lock from the site S that contains the primary copy of the tuple key for the prepare stage
of two phase commit ⇒ CORE.pCopy[key] = S.
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Without loss of generality, assume that tx1 goes through prepare’s critical section at site S
first. This is now similar to the situation described in Case 2b. After tx1 executes the critical
section inside the prepare function, key is locked at site S as a result of the operation on line 25.
If tx2 where to enter its critical section at this point, it would fail its lock check on line 23 and
prepare would not vote YES. However, since tx2 needs to obtain a YES vote in order to continue
on to successfully commit, the only time it may pass the lock check is after key is unlocked. This
happens on line 20 only after remote propagation of tx1 and after line 19 which installs a new
version of key in S’ database. Thus, tx2 can only (successfully) enter its critical section after
tx1’s modification of key with sequence number tx1.seqNo. This case is then similar to Case 1,
since, in order to eventually commit, tx2 must also pass the “no concurrent updates” check on
line 24 which requires that tx2.startVTS includes tx1’s modification of key with sequence number
tx1.seqNo, i.e. tx2.startVTS[tx1.commitSite] ≥ tx1.seqNo, a contradiction.

Q.E.D.

B.ii Causality

Lemma B.2 states that for any two distinct committed transactions (txi and txj) that both update
a common tuple (key), txi and its updates are installed in site S’ database before txj if and only
if txi sees txj .

Lemma B.2 (Ordered History) ∀ key, S, txi, txj: txi 6= txj and
(∃ 〈key, vali〉 ∈ txi.updates: S.database[key][i] = 〈vali, txi.commitSite, txi.seqNo〉) and
(∃ 〈key, valj〉 ∈ txj.updates: S.database[key][j] = 〈valj, txj.commitSite, txj.seqNo〉)
⇒ i < j ⇐⇒ txj.startVTS[txi.commitSite] ≥ txi.seqNo

In this notation, S.database[key] is an ordered list of versions for the tuple represented by
key. A second index is thus used to refer to the position within this ordering.

Proof of i < j ⇐ txj.startVTS[txi.commitSite] ≥ txi.seqNo:

Suppose ∃ key, S, txi, txj : txi 6= txj and
(∃ 〈key, vali〉 ∈ txi.updates: S.database[key][i] = 〈vali, txi.commitSite, txi.seqNo〉) and
(∃ 〈key, valj〉 ∈ txj .updates: S.database[key][j] = 〈valj , txj .commitSite, txj .seqNo〉) and
txj .startVTS[txi.commitSite] ≥ txi.seqNo and i ≥ j

Regardless of the method by which txx came to be committed at site S (singleSiteCommit,
installTrans or twoPhaseCommit as seen in Figure B.2), the following equivalent commands
(commit sequence) would have been executed in order:
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wait until S.commitVTS ≥ txx.startVTS1

S.database[key].append(〈valx, txx.commitSite, txx.seqNo〉)2

...3

S.commitVTS[txx.commitSite] ← txx.seqNo4

Whichever transaction (txi or txj) executes line 2 first is going to be installed first in site
S’ database. Assume, without loss of generality, that txj will attempt to execute its commit
sequence before txi. If txj were to advance past the wait condition on line 1 the following must
be true:
S.commitVTS ≥ txj .startVTS ⇒ S.commitVTS[txi.startSite] ≥ txj .startVTS[txi.startSite]

Furthermore, from the original supposition that txj sees txi, the following must also be true:
txj .startVTS[txi.startSite] ≥ txi.seqNo ⇒ S.commitVTS[txi.startSite] ≥ txi.seqNo

Which, if true, implies that txi would have finished executing its commit sequence at the end
of which (line 4) S.commitVTS[txi.startSite] is incremented to txi.seqNo. Which also means that
txi would have completed its database write on line 2. Thus, before txj may advance past the
wait condition on line 1, txi must execute its database write on line 2. This implies i < j which
contradicts the original supposition.

Q.E.D.

Proof of i < j ⇒ txj.startVTS[txi.commitSite] ≥ txi.seqNo:

Suppose ∃ key, S, txi, txj : txi 6= txj and
(∃ 〈key, vali〉 ∈ txi.updates: S.database[key][i] = 〈vali, txi.commitSite, txi.seqNo〉) and
(∃ 〈key, valj〉 ∈ txj .updates: S.database[key][j] = 〈valj , txj .commitSite, txj .seqNo〉) and
txj .startVTS[txi.commitSite] < txi.seqNo and i < j

The following shorthand notation of a transaction’s writeset will be used:
tx.writeset = {key: 〈key, ?, ?〉 ∈ tx.updates}

Since key ∈ txi.writeset and key ∈ txj .writeset ⇒ txi.writeset ∩ txj .writeset = ∅⇒
from Theorem B.1
===========⇒ txi.startVTS[txj .startSite] ≥ txj .seqno or txj .startVTS[txi.startSite] ≥ txi.seqno

The latter would contradict the assumption, so further assume that only the former is true:

txi.startVTS[txj .startSite] ≥ txj .seqno
from the converse proof
==============⇒ j < i, a contradiction.

Q.E.D.

Theorem B.3 claims that if a transaction is committed at a site, all the transactions it saw
(i.e. is causally dependent on) are also committed at that site. Coupled with Lemma B.2, the
PSI causality guarantee is also true: i.e. any transaction is committed at all sites after the
transactions it causally depends on.
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Theorem B.3 (Causality) ∀ S, tx1, tx2: S.commitVTS[tx2.commitSite] ≥ tx2.seqNo and
tx2.startVTS[tx1.commitSite] ≥ tx1.seqNo ⇒ S.commitVTS[tx1.commitSite] ≥ tx1.seqNo

Proof by contradiction: Suppose ∃ S, tx1, tx2: S.commitVTS[tx2.commitSite] ≥ tx2.seqNo and
tx2.startVTS[tx1.commitSite] ≥ tx1.seqNo and S.commitVTS[tx1.commitSite] < tx1.seqNo

Regardless of the method by which a transaction tx has come to be committed at site S
(singleSiteCommit, installTrans or twoPhaseCommit as seen in Figure B.2), the following
equivalent commands (commit sequence) would have been executed in order:

wait until S.commitVTS ≥ tx.startVTS1

...2

S.commitVTS[tx.commitSite] ← tx.seqNo3

Line 3 from the commit sequence (regardless of the committing function) is the only means by
which S.commitVTS is updated in SpearDB’s pseudocode. Because of this, if tx2 is committed at
site S it follows that tx2 has passed its causality check on line 1. This means that any transaction
that tx2 has seen (which includes tx1) is also committed at S:

S.commitVTS[tx2.commitSite] ≥ tx2.seqNo
line 3 → line 1
==========⇒ S.commitVTS ≥ tx2.startVTS ⇒

⇒ S.commitVTS[tx1.commitSite] ≥ tx2.startVTS[tx1.commitSite] ≥ tx1.seqNo,
which is a contradiction.

Q.E.D.

B.iii Transaction-Consistent Database Snapshots

Lemma B.4 states that all the updates made by a transaction that’s committed at a site S,
pertaining to any locally replicated tuple at S are installed in site S’s database.

Lemma B.4 (No History Gaps) ∀ key, val, tx, S: S.commitVTS[tx.startSite] ≥ tx.seqNo and
key ∈ S.lCopies and 〈key, val〉 ∈ tx.updates ⇒ 〈val, tx.commitSite, tx.seqNo〉 ∈ S.database[key]

Proof: Suppose ∃ key, val, tx, S: S.commitVTS[tx.startSite] ≥ tx.seqNo and key ∈ S.lCopies and
〈key, val〉 ∈ tx.updates and 〈val, tx.commitSite, tx.seqNo〉 6∈ S.database[key]

Every possible branch of the SpearDB code that results in a site’s vector timestamp being
updated is presented in Figure B.2. All vector timestamp updates happen by incrementing a
single component of the vector by 1. This is achieved by first wait-ing for the vector component
to reach a certain value (lines 4, 14 or 25 from Figure B.2) before incrementing it (lines 9, 19 or 30

118



function singleSiteCommit(tx)1

...2

wait until S.commitVTS ≥ tx.startVTS3

and S.commitVTS[S] = tx.seqNo - 14

write(tx.updates, S, tx.seqNo) # store new versions of keys to database5

# the write operation is equivalent to appending 〈val, S, tx.seqNo〉6

# to S.database[key], ∀ 〈key, val〉 ∈ tx.updates7

...8

S.commitVTS[S] ← tx.seqNo9

...10

11

function installTrans(tx)12

wait until S.commitVTS ≥ tx.startVTS13

and S.commitVTS[tx.commitSite] = tx.seqNo - 114

localUpdates ← {〈key, val〉 ∈ tx.updates: key ∈ S.lCopies}15

write(localUpdates, tx.commitSite, tx.seqNo) # store to site database16

# the write is equivalent to appending 〈val, tx.commitSite, tx.seqNo〉17

# to S.database[key], ∀ 〈key, val〉 ∈ localUpdates18

19

...20

21

function twoPhaseCommit(tx)22

...23

wait until CORE.commitVTS ≥ tx.startVTS24

and CORE.commitVTS[CORE] = tx.seqNo - 125

write(tx.updates, CORE, tx.seqNo) # store to CORE’s database26

# the write operation is equivalent to appending 〈val, CORE, tx.seqNo〉27

# to CORE.database[key], ∀ 〈key, val〉 ∈ tx.updates28

...29

CORE.commitVTS[CORE] ← tx.seqNo30

...31

Figure B.2: Pseudocode portions of all branches that can lead to a site S or the CORE’s
commitVTS to be updated - code fragments are extracted from Figures 4.6, 4.7 and 4.9.

119



from Figure B.2). As such, if S.commitVTS[tx.startSite] ≥ tx.seqNo, it must mean that one of
lines 9, 19 or 30 from Figure B.2 has been executed - depending on the method by which the
transaction tx came to be committed at site S. Which further implies that the preceding write
operation (at lines 5, 16 or 26 from Figure B.2) has also occurred.

In the cases of tx being committed at site S by singleSiteCommit or twoPhaseCommit (for
the latter, S = CORE), the write operation having executed, implies that all of tx’s updates have
been installed in site S’s database. Furthermore, in both these cases, the commit site of tx is S.
These two implications together contradict the original supposition as shown in (B.5).

〈val,S, tx.seqNo〉 ∈ S.database[key],∀〈key, val〉 ∈ tx.updates

tx.commitSite = S

This contradicts the supposition that 〈val, tx.commitSite, tx.seqNo〉 6∈ S.database[key].

(B.5)

For the last case of tx being committed at site S by propagation (i.e. installTrans), the
write operation having executed, implies that all of tx’s local updates have been installed in site
S’s database. Local updates in this case means all updates to keys that have a secondary copy at
site S as explicitly defined on line 15 of Figure B.2. This again contradicts the original supposition
as shown in (B.6).

〈val, tx.commitSite, tx.seqNo〉 ∈ S.database[key],∀〈key, val〉 ∈ localUpdates
localUpdates← {〈key, val〉 ∈ tx.updates : key ∈ S.lCopies}
This contradicts the supposition that 〈val, tx.commitSite, tx.seqNo〉 6∈ S.database[key].

(B.6)

Q.E.D.

Theorem B.7 (Transaction-Consistent Database Snapshots) Given a site S where a tu-
ple key is locally replicated, a read request directed at site S’ database with a vector timestamp
VTS that’s older than or equal to site S’ vector timestamp S.commitVTS must return the latest
value val of key that has been installed at S with a version number visible to VTS.

Proof: Any transaction tx that is visible at vector timestamp VTS is by extension also committed
at site S since S.commitVTS ≥ VTS. Furthermore, since key is locally replicated, Lemma B.4
guarantees that all of tx’s updates (pertaining to key) are installed in S’s database. Theorem B.3
then guarantees that all of these transactions are committed in causal ordering at site S and
Lemma B.2 further guarantees that these transaction’s updates are installed in the same order
in S.database.
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However, S.database[key] might still contain entries of the form: 〈val, site, seqNo〉, where
S.commitVTS[site] ≥ seqNo > VTS[site]; that are visible to S.commitVTS, but not visible to
VTS. The purpose of the read method described in Appendix A is specifically to use a commit-
ordered list and filter out the latest entry visible at timestamp VTS.

Q.E.D.

function get(tx, key)1

if S.lCopies[key] = PRIMARY or S.lCopies[key] = SECONDARY2

# S has a copy of key that isn’t PARTIAL3

val ← read(key, tx.startVTS)4

else5

val ← remote read(key, tx.startVTS) @ CORE6

apply updates from tx.updates to val7

return val8

Figure B.3: get at site S - reproduced from Figure 4.3

The get operation that is shown again in Figure B.3 always calls read at either the trans-
action’s start site or the core. If the transaction’s start site is used, the check on line 2 ensures
the key is locally replicated. Furthermore, tx.startVTS has been assigned as at the start of the
transaction to be S.commitVTS, where S is tx’s start site. As such, the read request timestamp
is older than the site’s timestamp: i.e. S.commitVTS ≥ tx.startVTS. Thus all input requirements
of Theorem B.7 are met for this call of read.

If the core is used for reading, all tuples (including key) are locally replicated as a the core
maintains a full database replica. Furthermore, there can’t exist any updates to key that are
installed at the transaction’s start site S, but not at the core at the time core reading is invoked.
If that were the case, because of SpearDB’s network topology, the transaction having installed
such an update would have had to commit using singleSiteCommit at site S. That can only
happen if key’s primary copy is at site S and thus is locally replicated and wouldn’t call the core
for reading. So, all input requirements of Theorem B.7 are met for this case as well.

Finally, snapshot reads are extended to include any updates that have been made to the
running transaction (i.e. before it is committed). This is explicitly implemented on line 7 of
Figure B.3 and functions independent of the site databases.
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Appendix C: Optimized Greedy Primary Placement

This appendix describes an optimized version of the greedy primary copy placement algorithm
introduced in Section 6.3. The original version of the algorithm, described in Figure 6.4, did not
include any optimizations in order to remain clearer and easier to understand. The worst case
complexity of one iteration step of the original algorithm is O(n2), where n is the size of the
workload.

Figure C.1 describes the optimized version of the algorithm. Several data structures are used
to store commonly computed values in the algorithm. First, a reverse lookup (line 2) is built that
allows the retrieval of the set of all transactions that have a given tuple in their writeset. This
lookup is then used to build another lookup (line 4) that allows O(1) average time retrieval of all
transactions whose writesets overlap with a given transaction (including itself). The transaction
costs of all transactions under the current placement are also stored in a map (line 6). The cost
function here is that defined in equation (6.2). Initializing these data structures only requires
two passes over the workload (lines 7 and 11).

The main optimization of the algorithm in Figure C.1 consists of using a min-heap data
structure (line 14) to memoize the cost of different placements. Whenever a refinement is tried,
consisting of either the coring or edging of one transaction, the resulting placement, its cost
delta, and the original transaction whose coring/edging has produced the new placement can
be stored in the heap, sorted on the cost delta value. The cost delta value refers to the cost
difference between the placement after the refinement and the one before it. This may be cheaper
to calculate than an entire placement’s cost value as it only requires the cost of the transactions
affected by the placement modifications. The getCostDelta function on line 34 is responsible
for computing this cost delta given the placement after the refinement and the transaction that
produced it. The cost delta is then the sum of the deltas for all affected transactions which is
computed on line 35 with the aid of the transaction cost map data structure which contains all
the costs of transactions before the refinement.

The worst case complexity of the getCostDelta function is O(n), where n is the size of the
workload. This worst case occurs when a transaction being cored or edged has a writeset that
overlaps with every other transaction in the workload.

The algorithm treats the first iteration step separately (line 16). This first step consists
of trying all possible refinements for the entire workload. The addRefinements function on
line 28 is responsible for building the edged and cored placements of one transaction and adding
them to the heap along with their cost deltas and the transaction used to build them. The
addRefinements function, which has a worst case complexity of O(n), is called twice for every
transaction. Furthermore, two heap insertions, with an O(log n) complexity are required for every
transaction as well. Thus, the worst case complexity of the first step of the algorithm is O(n2).

At the end of the first step, the top of the heap will represent the best refined placement found.
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Algorithm Greedy for solving primary copy placement problem
Input: workload W, network N and an initial placement p

Output: primary copy placement p (after being refined)

# Build a lookup of transactions that have a tuple in their writeset1

txsAffectedByTuple ← new Map〈tuple, Set〈transaction〉〉2

# And a lookup of transactions with overlapping writesets3

txsAffectedByTx ← new Map〈transaction, Set〈transaction〉〉4

# And memoize individual transaction costs in current placement5

costOf ← new Map〈transaction, cost〉6

for each transaction tx in workload W7

costOf[tx] ← cost(tx, N, p)8

for each tuple t in writeset tx.ws9

txsAffectedByTuple[t].add(tx)10

for each transaction tx in workload W11

txsAffectedByTx[tx] ← ∪ txsAffectedByTuple[t], ∀ t : tx.ws12

# Cost-delta sorted heap of placements and transactions that produced them13

refinements ← new MinHeap〈Tuple〈cost_delta, placement, transaction〉〉14

15

for each transaction tx in workload W # treat first iteration separately16

addRefinements(p, tx)17

while refinements.peek()[cost_delta] < 0 # there is a better placement18

newP ← refinements.peek()[placement] # best placement19

for each transaction tx in txsAffectedByTx[refinements.peek()[transaction]]20

refinements.delete(〈?, ?, tx〉) # remove all affected items21

costOf[tx] ← cost(tx, N, newP) # recalculate affected tx costs22

for each transaction tx in txsAffectedByTx[refinements.peek()[transaction]]23

addRefinements(newP, tx)24

p ← newP25

return p26

27

function addRefinements(p, tx) # p is a placement and tx is a transaction28

e ← p modified so that ∀ t ∈ tx.ws, e[t] ← tx.s # edged tx placement29

refinements.insert(〈getCostDelta(e, tx), e, tx〉)30

c ← p modified so that ∀ t ∈ tx.ws, c[t] ← CORE # cored tx placement31

refinements.insert(〈getCostDelta(c, tx), c, tx〉)32

33

function getCostDelta(newP, txA)34

return
∑

(cost(tx, N, newP) - costOf[tx]), ∀ tx ∈ txsAffectedByTx[txA]35

Figure C.1: Optimized Greedy Primary Placement Algorithm
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If its cost delta is negative it means that the placement improves upon the initial placement given.
Otherwise, the while loop on line 18 is never entered and the initial placement is returned as the
result.

The following iterations of the algorithm can then occur while new placements with negative
cost deltas keep being found. However, since the heap already contains all refined placements
after the first iteration and they are already sorted, it is possible to only update the heap items
that were affected by the previous placement change. In each iteration following the first, the
top of the heap contains the best placement along with the set of transactions affected. All the
placements resulting from these affected transactions need to first be removed from the heap
(line 21) and then recalculated and re-added (line 24). Furthermore, the transactions costs of
these transactions would have changed and need to be updated in the transactions cost map
(line 22).

The heap removal operation on line 21 has a worst case complexity of O(log n). In the worst
case, every transaction in the workload is affected by the placement change. This would result in
the same worst case complexity O(n2) as the first iteration.

The worst case complexity of the optimized algorithm doesn’t improve on the original al-
gorithm’s worst case complexity. However, the optimization techniques described are expected
to lower the runtime of this algorithm in practice when compared to the unoptimized version,
especially for workloads with few overlapping writesets. The drawback of these optimizations is
the additional space (memory) required to store all these data structures. The largest of these
data structures is the heap which materializes two additional placements for every transaction
in the workload. However most of these placements are very similar to one another. They only
differ from a base placement in the location of the tuples in one transaction writeset. Thus, more
compressed data structures may be used to save space if required.
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