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Abstract

The distribution planning problem with consolidation center(s) addresses the coordina-

tion of distribution activities between a set of suppliers and a set of customers, through the

use of intermediate facilities in order to achieve savings in transportation cost. We study

the problem from the perspective of a third-party logistics provider (3PL) that is coordi-

nating shipments between suppliers and customers. Given customer demand of products

from different suppliers, the goal is to consolidate the shipments in fewer high volume

loads, from suppliers to the consolidation center(s) and from the consolidation center(s)

to customer. We assume that suppliers have a finite set of transportation options, each

with a given capacity and time of arrival at the consolidation center(s). Similarly, cus-

tomers have a set of transportation options, each with a given capacity and dispatch time

from the consolidation center(s). The 3PL wants to determine the optimal transportation

options, or shipment schedule, and the allocation of shipments to transportation options

from suppliers to consolidation center(s), and from consolidation center(s) to customers,

that minimize the total transportation cost and holding cost at the consolidation center.

The literature studies many variations of this problem, which assume deterministic

demand. This thesis extends the problem for stochastic demand and formulates it as a two-

stage stochastic programming model. We model the case where the choice of transportation

options is a contractual decision, and a 3PL needs to decide on which options to reserve for

a given planning period subject to stochastic customer demand. Therefore, the choices of

transportation options are the stage one variables in the two-stage stochastic program. The

second stage variables, which are decisions that are made after the uncertainty conditions

become known, represent the allocation of orders to reserved transportation options as well

as shipping orders through a spot-market carrier, at a greater transportation cost. Because

of the high computational demand of the model, the integer L-shaped method is applied
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to decompose the problem. To increase the efficiency of the algorithm, we experiment with

three valid cuts with the goal of generating stronger cuts than the L-cut. We also apply

three algorithm enhancement techniques to speed up the convergence of the algorithm.

Numerical results show that the performance of our proposed methodology and valid cuts

is comparable to that of CPLEX. We suggest promising areas for future work to further

improve the computational efficiency of our decomposition algorithm.
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Chapter 1

Introduction

The distribution planning problem with consolidation center(s) addresses the coordination

of distribution activities between a set of suppliers and a set of customers, through the use of

intermediate facilities or consolidation centers, that consolidate customer demand, in order

to achieve savings in transportation cost. We study the problem from the perspective of a

third-party logistics provider (3PL) that is coordinating shipments between suppliers and

customers. Given customer demand of products from different suppliers, the goal is to

consolidate the shipments in fewer high volume loads, from suppliers to the consolidation

center(s) and from the consolidation center(s) to customer. We assume that there is a

single consolidation center in the network. Additionally, suppliers have a finite set of

transportation options, each with a given arrival time at the consolidation center and

capacity. Similarly, customers have a set of transportation options, each with a given

capacity and dispatch time from the consolidation center. The 3PL wants to determine

the optimal transportation options, or shipment schedule, and the allocation of shipments

to transportation options from suppliers to the consolidation center, and from consolidation
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center to customers, that minimize the total transportation cost and holding cost at the

consolidation center.

The literature studies many variations of this problem, which assume deterministic

demand. Since the solution of the problem with deterministic demand might change dras-

tically if demand changes, and in many real life problems, there could be fluctuations in

demand, this thesis extends the problem for stochastic demand. We formulate the model

as a two-stage stochastic programming model, where the uncertain customer demand is

modeled as a finite number of possible realizations, or scenarios, each with a given prob-

ability of occurrence. We model the case where the choice of transportation options is a

contractual decision and a 3PL needs to decide on which options to reserve for a given

planning period subject to stochastic customer demand. Therefore, the choice of trans-

portation options are the stage one variables in the two-stage stochastic program. The

second stage variables, which are decisions that are made after the uncertainty conditions

become known, represent the allocation of orders to reserved transportation options as well

as shipping orders through a spot-market carrier, at a higher transportation cost.

In order to generate the scenario tree of our problem, we apply some scenario generation

methods, then test the model to ensure in-sample and out-sample stability. Our problem

is proven to have in-sample and out-sample when the number of scenarios equals 50. This

high number of scenarios results in a large scale optimization model, with high computa-

tional demand. We apply the integer L-shaped method to decompose the problem. To

increase the efficiency of the algorithm, we experiment with three valid cuts with the goal

of generating stronger cuts than the L-cut. We also apply three algorithm enhancement

techniques to speed up the convergence of the algorithm. We test and compare the perfor-

mance of our proposed algorithm with valid cuts with that of CPLEX and the L-shaped

cut. We analyze the effects of the proposed valid cuts and propose some promising future
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research direction.

The thesis is organized as follows. Chapter 2 reviews the literature of network distribu-

tion planning with consolidation. In Chapter 3, we describe and formulate the deterministic

case of the problem under study, as well as summarize the results of some numerical ex-

periments for the deterministic case. We formulate the problem as a two-stage stochastic

program in Chapter 4. In Chapter 5, we apply the L-shaped method to the stochastic

model, explain the algorithm enhancement techniques that we employ in our implemen-

tation, and propose three valid cuts. Numerical testing results are given in Chapter 6.

Finally, the thesis is concluded in Chapter 7.
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Chapter 2

Literature Review

The literature of network distribution planning is rich, with many different types of opti-

mization models that aim to minimize the transportation costs of a distribution network.

That is because transportation costs account for a high percentage of the cost of final

products; Musa et al. (2010) argues that distribution related costs account for 30% of the

price of an item. In this chapter, we first make some remarks on the different types of

intermediate facilities and their distinguishing features in Section (2.1). We then review

the literature of similar deterministic distribution problems in Section (2.2), and stochastic

problems in Section (2.3). We also give a background on scenario generation in stochastic

programs in Section (2.4).
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2.1 Types of Intermediate Facilities or Consolidation

Centers

The literature of distribution planning with consolidation considers many different types

of intermediate facilities. Those intermediate facilities are similar in that they all perform

some consolidation/deconsolidation activities. The main difference arises from the other

functions that these intermediate facilities carry out or their limitations. Guastaroba et al.

(2016) review the literature on freight transportation planning with intermediate facilities

and explain the difference between the types of intermediate facilities. For instance, in

hub-and-spoke networks, hubs act like intermediate facilities that perform consolidation,

deconsolidation, and sorting activities in order to achieve economies of scale in transporta-

tion. However, the main distinguishing factor of the hub location problem is that locating

hubs is usually one of the decisions of the network. This makes the decision level of the

problem strategic rather than tactical, unlike most similar problems with different types

of intermediate facilities.

Cross-docks (CDs), on the other hand, are intermediate facilities that store no inven-

tory. They, therefore, require a significant amount of coordination and information sharing

between inbound and outbound shipments in order to minimize the time that the ship-

ments spend at the cross-dock. This type of intermediate facilities is most appropriate for

the transportation of perishable products such as fresh or frozen foods and pharmaceu-

tical drugs. Similar to CDs, in-transit merge centers carry no inventory. However, they

differ from DCs in that shipments to the same destination are not consolidated until all

components belonging to that destination arrive at the in-transit merge center.

Finally, distribution centers (DCs) allow for the storing of inventory for the period of

time between inbound and outbound shipments. They are usually more appropriate when
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large consolidated shipments are sent from suppliers to DCs, and then DCs later send

smaller loads to customers. In this case, economies of scale are achieved mainly when

consolidating inbound shipments.

2.2 Distribution Coordination Problem

Song et al. (2008) studied the problem of coordinating distribution between a set of sup-

pliers and a set of customers with a consolidation center operated by a third party logistics

provider (3PL) in a global distribution network. Each customer makes an order that is

composed of several parts from different suppliers. A supplier is assumed to provide only

one unique product. Each supplier sends the product orders of all customers as one con-

solidated shipment to the consolidation center with one release time. At the consolidation

center, the order of each customer from different suppliers is consolidated into a single

shipment and delivered to the customer. The consolidation of shipments can be as early as

possible or as late as possible depending on the customer requirements and the cost struc-

ture. The 3PL needs to decide (a) the pickup time from each supplier, (b) the delivery time

for each customer, and (c) the transportation options for each shipment. The problem is

modeled as a non-linear optimization model, then a linearization of the model is proposed.

An exact algorithm to solve a special case of the problem, the All-Pair-Ordering problem,

where all customers order from all suppliers, is introduced in the paper. A Lagrangean-

Relaxation based heuristic is then proposed to solve the general problem. The heuristic is

shown to be within a reasonable gap from the optimal solution.

Croxton et al. (2003) studied the problem of distrubtion coordination with merge-

in-transit centers. The distribution network studied, which is a proprietary distribution

network, consists of multiple customers, a number of suppliers and several merge-in-transit
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centers. Each customer makes an order which consists of parts from several suppliers.

Suppliers send shipments to one of the merge-in-transit centers, which acts as a cross dock,

i.e. does not store any products. At the merge-in-transit center, customer orders that arrive

from different suppliers are assembled into one product and are shipped to the customer via

one of the four different transportation modes considered. The model aims to minimize

the total transportation and inventory costs and determine the transportation mode of

each shipment, while considering a non-linear cost structure that permits economies of

scale. The model also decides on the merge-in-transit center that is used for each customer

order. The formulation proposed by Croxton et al. (2003) can be considered an integer

multicommodity generalized network flow problem. It differs from the literature in that

it considers complex cost structures in a capacitated network optimization problem, while

most papers that consider complex cost structures deal with uncapacitated problems. Also,

the model addresses operational decisions rather than startegic or tactical decisions.

Berman and Wang (2006) study the problem of selecting a distribution strategy for

delivering a number of products from a set of suppliers to a set of plants with the objective

of minimizing the total transportation, pipeline inventory and plant inventory costs. The

problem is modeled as a nonlinear integer program, where the nonlinearity comes from

the objective function that is neither convex nor concave. The model involves only a few

details and makes some simplifying assumptions to make the problem manageable. For

instance, the model assumes that demand is constant for each product at each plant from

each supplier, shipments between suppliers and plants are either direct or go through cross-

docks, and that only one truck type with a given capacity level is used. Small instances

of the proposed model are solved first using commercial non-linear solvers (CONOPT,

DICOPT, and MINOS). These solvers, however, only give local optimal solutions with no

information on solution quality. The paper then proposes two heuristics, a greedy heuristic

7



and a Lagrangian Relaxation (LR) heuristic, as well as a branch-and-bound (BB) algorithm

to solve the problem.

Table 2.1 compares and contrasts the features of the problems under study in the three

papers reviewed above. Furthermore, Guastaroba et al. (2016) review the operations re-

search literature on freight transportation planning with intermediate facilities (such as

consolidation or distribution centers or cross-docks). They argue that the literature of dis-

tribution planning with intermediate facilities has received much attention mainly because

transportation costs account for a high percentage of the cost of a product. Therefore,

intermediate facilities that consolidate products from the same origin or to the same des-

tination help in achieving economies of scale in the network through better utilization of

the capacity of the transportation modes used in the network. Three different classes of

problems are surveyed in detail, namely, intermediate facilities in vehicle routing problems,

intermediate facilities in transshipment problems, and intermediate facilities in service net-

work design problems. The class of problems that is most relevant to our problem is the

intermediate facilities in transshipment problems. The papers by Croxton et al. (2003),

Berman and Wang (2006) and Song et al. (2008) all fall under the same class of problems.

2.3 Two-stage Stochastic Programming for Distribu-

tion Coordination

We study the problem of distribution coordination in a two-stage stochastic programming

setting, to take into account demand stochasticity, where customer demand is assumed to

be uncertain with a finite number of possible realizations, or scenarios. Two-stage stochas-

tic mixed integer programming, which is a way of handling uncertainty, has been applied

8
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to many problems, including distribution network problems. The problem categorizes the

decisions into two stages, where the first stage handles strategic decisions, that are made

before the uncertainty conditions become known, and the second stage, which is modeled

by a finite number of scenarios each with an associated probability of occurrence, tackles

tactical or operational decisions after the uncertainty is eliminated.

Kılıç and Tuzkaya (2015) use two-stage stochastic mixed integer programming to model

a physical distribution network design problem, where the first stage deals with strategic

decisions, namely location selection of distribution centers, and the second-stage addresses

transportation and inventory decisions, as well as unmet demand. In contrast to our work,

the paper considers a one-echelon problem, namely the flow between distribution centers

and wholesalers, with no consideration of flow between suppliers and distribution centers.

2.4 Scenario Generation for Stochastic Programming

In stochastic programming, some of the model parameters are uncertain, and therefore, are

described by distributions rather than single values. Most stochastic programs, with the

exception of some trivial cases, cannot be solved using continuous distributions; instead,

the continuous distributions need to be approximated to discrete ones with a preset number

of outcomes. The resulting discretization is referred to as a scenario tree (Kaut, 2012).

Kaut and Wallace (2003a) evaluate different scenario-generation methods and propose

minimal requirements that a certain scenario-generation method must satisfy in order to

be used for solving a stochastic programming model. The authors argue that there is

no single method that is suitable for all models, and that the choice of the scenario-

generation method has to be linked to the specific model under study. In addition, the

10



scenario-generation methods are compared based on their practical performance in real-life

problems rather than their theoretical properties.

When measuring the quality of the resulting scenario tree, Kaut and Wallace (2003a)

recommend judging a scenario tree not by how well it approximates the continuous proba-

bility distribution, but rather by the quality of the decisions it gives. This can be achieved

by measuring the stability of the scenario tree, i.e. essentially the same optimal solution is

obtained from several scenario trees that are constructed using the same input parameters

in the scenario-generation method used, while keeping the rest of the parameters in the

problem fixed. In addition, the scenario-generation method should not introduce any bias,

i.e. the optimal solution of the stochastic programming model with the scenario tree should

be approximately equal to the optimal solution of the model with the “true” distribution.

Kaut and Wallace (2003a) also provides an overview of some commonly used scenario-

generation methods. These include methods like conditional sampling, sampling from

specified marginals and correlations, moment matching, path-based methods, and optimal

discretization. With the exception of conditional sampling, the other four methods have

the advantage of being a better fit in generating scenario trees for multivariate random

variables.

Kaut (2012, chapter 4) also discuss scenario generation in stochastic programming

models. The author argues that having a discretization method that is a very good estimate

of the continuous distribution is likely to make the problem intractable, as it would result in

a high number of scenarios. In order to tackle this issue, it is important to try to understand

the specific needs of the model in hand, i.e. if a certain property of the distribution does

not contribute to the solution of the problem, then it is unnecessary to take this property

into consideration when the scenario tree is generated. It is, however, not straightforward

to know which properties are important for a certain model and which are not. For that
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reason, after a particular scenario generation procedure has been adopted, it it necessary to

test it for stability, as discussed earlier. Note that the solution of the problem may change,

which is natural for stochastic programs. However, the objective function value should

be similar to a great extent to achieve in-sample stability. Additionally, when testing the

stability of the results of the model, changing the number of scenarios in a scenario tree

should not significantly affect the objective function value.

Lium et al. (2009) discuss how they generate the scenario trees of their problem of inter-

est; Stochastic Service Network Design. They follow the procedure proposed by Høyland

et al. (2003) that was initially developed by Høyland and Wallace (2001). For their model,

in-sample stability is achieved using 50 scenarios. In order to test for out-sample stability,

the authors sample trees with 20,000 scenarios from the same distribution and assume that

those trees represent the “true” distribution.

Høyland and Wallace (2001) propose a methodology for generating scenario trees that

is dependent upon the properties of the distribution that we want to take into account,

the number of periods of the stochastic process, and the number of conditional outcomes

in each stage. Additionally, the authors state that if the random variables are discrete

and have few joint outcomes, then scenario tree generation is straightforward and can be

completed manually.

Having summarized the literature of similar deterministic and stochastic problems in

distribution coordination, as well as the scenario generation methods for stochastic pro-

gramming, we turn in Chapter 3 to the formulation and solution of the deterministic case

of our problem, before stochasticity in demand is introduced. This will provide intuition

and greater understanding of the problem before we propose the two-stage stochastic pro-

gramming model in Chapter 4.
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Chapter 3

Deterministic Distribution Planning

with Consolidation

3.1 Problem Description and Assumptions

We consider the problem of a third party logistics provider (3PL) that is coordinating dis-

tribution between a set of suppliers and a set of customers. Each customer makes an order

for a product or a number of products from several suppliers. Each supplier consolidates

the orders of customers into one or more consolidated shipments, then the 3PL delivers the

consolidated shipments through one or more transportation options to the consolidation

center. Each transportation option has a given arrival time at the consolidation center,

a vehicle capacity, and can carries the demand or portions of the demand of one or more

customers.

At the consolidation center, the orders of each customer from different suppliers are

consolidated into as few shipments as possible, and are delivered to the customer using one
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or more transportation options with a given volumetric capacity and dispatch time from

the consolidation center. The 3PL needs to decide (a) the transportation option(s) for

each supplier and the corresponding arrival time of each chosen option, (b) the allocation

of customer orders to transportation options, (c) the transportation option(s) for each

customer and the corresponding dispatch time, and (d) the allocation to transportation

options of customer orders of distinct products from different suppliers. The objective of

the 3PL is to minimize total transportation costs plus holding costs at the consolidation

center.

Problem Assumptions:

1. For each inbound shipment arrival time and for each customer with an order on that

shipment, there is at least one outbound shipment that will deliver the order to the

customer by the required due date.

2. Holding costs at the consolidation center do not depend on consolidation time. There-

fore, consolidating a shipment as soon as all its parts from different suppliers arrive

or just before delivering it to the customer would result in the same holding cost at

the consolidation center.

3. Demand of different customers for different products from the same supplier can be

consolidated into one or more shipments. The demand of a customer for a particular

product from a given supplier, however, has to be shipped in one load through a single

transportation option with a particular release time, and is therefore not divisible for

different transportation options.

4. The time to consolidate customer orders at the consolidation center is negligible.
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3.2 Problem Formulation

In more detail, the 3PL provides services to n customers; each customer can place an

order with a given demand from a subset of m suppliers. Each supplier provides a set

of unique products, i.e. each product is available from one and only one supplier. A

customer can order different products from the same supplier. Shipments from suppliers

can be sent on various transportation options with distinct release times. However, all

orders for a certain product from a given supplier to a customer have to be shipped on

the same transportation option. The 3PL needs to decide (a) the transportation option(s)

and pickup time(s) for each supplier, (b) the allocation to shipments, of customer orders

of products from suppliers, (c) the transportation option(s) and delivery time(s) for each

customer, and (d) the allocation of products to shipments from the consolidation center to

customers.

Figure 3.1 shows a diagram of the network under study, as well as the decision variables

of the corresponding model.

We define the model parameters as follows.

Model parameters:

• I = set of all suppliers = {1, ....,m};

• J = set of all customers = {1, ...., n};

• I(j) = set of suppliers i ∈ I providing products for customer j;

• J(i) = set of customers j ∈ J requiring products from supplier i;

• Qi = the number of possible arrival time slots for supplier i, i ∈ I;
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Figure 3.1: Consolidation network under study

• Lj = the number of possible departure time slots for customer j, j ∈ J ;

• TiQ = set of all possible shipment arrival times at the center from supplier i;

• TjL = set of all possible shipment departure times from the center to customer j;

• tiq = the arrival time of supplier i’s shipment at time q;

• tjl = the departure time of customer j’s shipment at time l;

• fi(tiq) = transportation cost associated with receiving one vehicle at arrival time

tiq, tiq ∈ TiQ;

• gj(tjl) = transportation cost associated with sending one vehicle at departure time

tjl, tjl ∈ TjL;
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• K(ij) = the set of products k that supplier i provides for customer j;

• hk =cost of holding one unit of product k;

• vk = the volume of product k;

• dijk = the demand of customer j for product k provided by supplier i;

• Ciq = the capacity of one vehicle of the transportation option associated with the

arrival time tiq;

• Cjl = the capacity of one vehicle of the transportation option associated with the

arrival time tjl;

Decision variables:

xiq =

1, if transportation option q for supplier i is chosen, i ∈ I, q ∈ Q

0, otherwise

yjl =

1, if transportation option l for customer j is chosen, j ∈ J, l ∈ L

0, otherwise

uijkq =


1, if customer j’s of product k from supplier i is shipped by transportation

option q, j ∈ J, i ∈ I, k ∈ K(ij), q ∈ Q.

0, otherwise.

wijkl =


1, if customer j’s order of product k from supplier i is shipped by transportation

option l, j ∈ J, i ∈ I(j), k ∈ K(ij), l ∈ L.

0, otherwise.
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Formulation:

We formulate the deterministic case of our problem as follows:

min F (x, y, u, w) =
∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl)

+
∑
j∈J

∑
i∈I(j)

∑
k∈K(ij)

dijkvkhk(
∑
l∈L

tjlwijkl −
∑
q∈Q

tiquijkq) (3.1a)

s.t.
∑
q∈Q

uijkq = 1, i ∈ I, j ∈ J(i), k ∈ K(ij) (3.1b)

∑
l∈L

wijkl = 1, j ∈ J, i ∈ I(j), k ∈ K(ij) (3.1c)

∑
q∈Q

tiquijkq ≤
∑
l∈L

tjlwijkl, j ∈ J, i ∈ I(j), k ∈ K(ij) (3.1d)

∑
j∈J(i)

∑
k∈K(ij)

dijkvkuijkq ≤ Ciqxiq, i ∈ I, q ∈ Q (3.1e)

∑
i∈I(j)

∑
k∈K(ij)

dijkvkwijkl ≤ Cjlyjl, j ∈ J, l ∈ L (3.1f)

xiq, yjl ∈ {0, 1}, i ∈ I, j ∈ J, q ∈ Q, l ∈ L

uijkq ∈ {0, 1} i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q

wijkl ∈ {0, 1} j ∈ J, i ∈ I(j), l ∈ L, k ∈ K(ij) (3.1g)

The objective function (3.1a) minimizes the total transportation cost of trips to all cus-

tomers and suppliers plus inventory holding cost at the consolidation center. Constraint

(3.1b) ensures that the model chooses exactly one transportation option to carry the de-

mand of each customer for each product. Constraint (3.1c) guarantees that the model

selects exactly one transportation option to ship every customer order for each product
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ordered. Constraint (3.1d) ensures that the shipment for each customer for each prod-

uct cannot leave the consolidation center until it has arrived at the center. Constraint

(3.1e) enforces that for each supplier, the total volume of customer orders that are shipped

through a transportation option does not exceed the capacity of that option. Similarly, con-

straint (3.1f) requires that for each customer, the total volume of orders shipped through a

transportation option does not exceed the capacity of that transportation option. Finally,

constraint (3.1g) forces all variables to be assigned only binary values.

3.3 Data Generation

3.3.1 Cost Function

The transportation cost functions fi and gj in objective function (3.1a) is a linear func-

tion of the capacity of the respective option for each supplier and each customer. These

functions can be represented as follows:

fi(xiq) = ciCiqxiq

gj(yjl) = c′jCjlyjl

(3.2)

Where ci and c′j are the variable cost per unit of capacity of shipping from supplier i to

the consolidation center and from the consolidation center to customer j, respectively. We

set the value of ci and c′j to be equal to 10 in our randomly generated instances.

3.3.2 Other Parameters

For our test instances, we generate the data randomly, partly as outlined in Song et al.

(2008), but with additional parameters. We create a network of m suppliers and n cus-
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tomers. For each supplier i, we generate a random number of transportation options K̄i

between (20, 30), then the set Xi that consists of K̄i arrival times generated in the range

(100, 500). Similarly, each customer j has a random number of transportation options K̄j

between (20, 30) and a set Yj, which consists of K̄j dispatch times from the consolidation

center ranging between (100, 500). Each supplier i offers ki number of unique products,

where ki is uniformly distributed between 1 and 5. The number of supplier-customer pairs

in the network is specified for each instance. The capacity of each transportation option for

each supplier/customer Ciq and Cjl is between (500, 1000). The demand of each product

dijk is assumed to be uniform between (1, 10) and the volume of each unit of product vk

is uniform between (10,30). Finally, the holding cost hk is set as hk = αi ∗ βk ∗ h, where

αi is the scale factor of supplier i that is supplying product k, and βk is the scale factor

of product k, both of which are randomly generated between (0.5, 1.5), and h is randomly

generated in the range (1, 2).

3.4 Numerical experiments

Model (3.1) was tested on randomly generated instances of different sizes. Each instance

was run for an hour, two hours, then ten hours. The results are displayed in Table (3.1),

where the gap refers to the relative gap from the output of CPLEX that is defined as

the gap between the best integer objective function value (incumbent) and the objective

of the best node remaining in the branch-and-bound tree. S-C pairs refer to the number

of supplier-customer pairs, and demand pairs refer to product demand pairs, i.e. total

number of products ordered by all customers from all suppliers.

It can be seen from Table 3.1 that for most instances, no significant improvement in

the solution quality in terms of optimality gap is achieved when letting the model run for
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longer periods of time. For example, instance 1 has a gap of 7.62% after 1 hour, and when

letting the model run for 9 more hours, the gap only improves to 6.16%.

Next, we consider the stochastic case of our model in following chapter.
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Instance

No.

No. of

Supp.

No. of

Cust.

S-C

Pairs

Demand

Pairs

Gap

(1hr)

Gap

(2hr)

Gap

(10hr)

1 10 10 50 103 7.62% 6.89% 6.16%

2 10 10 50 99 8.42% 7.73% 6.88%

3 10 10 50 120 6.81% 5.83% 5.21%

Avg 107 7.62% 6.82% 6.08%

4 10 20 100 188 8.48% 7.38% 5.59%

5 10 20 100 231 9.86% 8.96% 7.04%

6 10 20 100 158 6.11% 5.91% 5.34%

Avg 192 8.15% 7.42% 5.99%

7 20 20 100 184 10.13% 8.84% 7.97%

8 20 20 100 195 13.38% 11.33% 7.04%

9 20 20 100 219 13.95% 10.86% 8.14%

Avg 199 12.49% 10.34% 7.72%

10 20 20 300 564 11.09% 9.73% 8.71%

11 20 20 300 560 13.82% 10.68% 9.69%

12 20 20 300 542 11.7% 10.97% 10.21%

Avg 555 12.2% 10.46% 9.54%

13 20 50 300 509 15.17% 14.87% 12.01%

14 20 50 300 585 14.87% 12.51% 11.53%

15 20 50 300 559 12.71% 12.71% 10.64%

Avg 551 14.25% 13.36% 11.39%

16 20 50 500 1088 12.86% 12.77% 9.33%

17 20 50 500 1085 19.33% 19.09% 16.28%

18 20 50 500 1058 14.13% 14.03% 10.93%

Avg 1077 15.44% 15.30% 12.18%

19 50 50 500 1038 15.34% 15.34% 11.65%

20 50 50 500 1014 15.65% 15.62% 14.42%

21 50 50 500 1041 14.89% 14.85% 12.97%

Avg 1031 15.29% 15.27% 13.01%

Table 3.1: Deterministic Model Numerical Testing
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Chapter 4

Stochastic Distribution Planning

with Consolidation

4.1 Problem Description

In this section, we propose an extension to the deterministic demand case in which the

customer demand is stochastic. Given a certain distribution of demand, the model needs

to decide on transportation options at both echelons of the distribution network at the

beginning of the planning horizon. The chosen transportation options and their associated

capacities are fixed for the whole planning horizon. If the demand of a certain customer

for a given scenario cannot be fulfilled with the transportation capacities allocated to that

customer or the suppliers serving it, then a penalty cost is charged. This cost represents

the cost of transporting the unmet demand by a common carrier from the spot market, at

a set of discrete possible transportation times. On the other hand, if the total demand of

a customer from different suppliers is lower than the allocated capacity of that customer,
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that demand can of course be fulfilled by the allocated vehicle and no penalty cost would

be charged. However, in that case the utilization of the transportation vehicles will be

lower.

Two-stage stochastic programming is employed to model this case. The distribution of

customer demand is discretized into a finite set of possible realizations, or scenarios, each

with a given probability of occurrence. The first stage is to decide on the transportation

options and their corresponding capacities, for each supplier and each customer so as to

minimize total transportation cost. This is considered a strategic contractual decision,

since these transportation options are then fixed for the whole planning horizon. The

second stage, on the other hand, decides on operational or tactical decisions that we make

after the uncertainty conditions become known. For our application, second stage variables

represent for each scenario, the allocation variables that allocate products to available first

stage transportation options, and the recourse variables or the variables for allocating extra

capacity purchased at the spot market. The two stages are optimized simultaneously in

order to minimize the total expected cost for all possible scenarios (Shapiro et al., 2014).

One practical application of this case, amongst others, is that of online shopping or

e-retailing. An online retailer can sell a set of products from different suppliers, with no

warehouse to keep inventory of those products. A customer, or a customer zone, can place

an order for different products from distinct suppliers. Assuming the retailer is outsourcing

its logistical needs to a 3PL, the 3PL would arrange the delivery of consolidated customer

orders from suppliers to a consolidation center by carriers with which it has set a long

term commitment or contract for a pre-specified capacity and period of time. Similarly,

the 3PL consolidates customer orders from different suppliers and ships them from the

consolidation center to the customer in fewer loads, again through a contracted common

carrier. And since demand is uncertain, the 3PL needs to decide which transportation
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options to reserve for a given period of time in order to minimize expected inventory

holding cost at the consolidation center and the expected penalty cost of purchasing extra

capacity from the spot market.

4.2 Problem Formulation

We propose two formulations of this case that have different types of recourse variables. In

the first formulation, in section (4.2.1), the recourse variables are assumed to be continuous,

while in the second, in section (4.2.2) they are assumed to be binary.

Figure 4.1 shows a diagram of the network, as well as the decision variables of the

proposed stochastic programming models.

4.2.1 Formulation 1

First, define the following additional parameters:

• S is the set of possible scenarios within the planning horizon {1, . . . , s}.

• ps is the probability of the realization of a scenario s ∈ S.

• π is the penalty cost per unit of transportation through a spot market carrier.

• dsijk is the demand of customer j for product k that is provided by supplier i under

scenario s.
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Figure 4.1: Consolidation Network in a Stochastic Programming Setting

In addition, define the following additional decision variables:

usijkq =


1, if order of customer j from supplier i for product k in scenario s is shipped by

transportation option q, i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q, s ∈ S.

0, otherwise.

ws
ijkl =


1, if customer j’s order of product k from supplier i in scenario s is shipped through

transportation option l, j ∈ J, i ∈ I(j), k ∈ K(ij), l ∈ L, s ∈ S.

0, otherwise.
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µs
iq = the excess capacity needed to satisfy demand of products shipped from supplier i to the

consolidation center at the arrival time of transportation option q for a given scenario s ∈ S.

λsjl = the excess capacity needed to satisfy demand of products shipped from the consolidation

center to customer j, at the departure time of transportation option l for a given scenario s ∈ S.

The problem can then be formulated as follows:

[4.1] min
∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl) +
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

∑
s∈S

ps[dsijkvkhk(
∑
l∈L

tjlw
s
ijkl

−
∑
q∈Q

tiqu
s
ijkq)] +

∑
i∈I

∑
s∈S

∑
q∈Q

psπ(µs
iq) +

∑
j∈J

∑
s∈S

∑
l∈L

psπ(λsjl) (4.1a)

s.t.
∑
q∈Q

usijkq = 1, i ∈ I, j ∈ J(i), k ∈ K(ij), s ∈ S (4.1b)

∑
l∈L

ws
ijkl = 1, j ∈ J, i ∈ I(j), k ∈ K(ij), s ∈ S (4.1c)

∑
q∈Q

tiqu
s
ijkq ≤

∑
l∈L

tjlw
s
ijkl, j ∈ J, i ∈ I(j), k ∈ K(ij) (4.1d)

∑
j∈J(i)

∑
k∈K(ij)

dsijkvku
s
ijkq ≤ Ciqxiq + µs

iq, i ∈ I, q ∈ Q, s ∈ S (4.1e)

∑
i∈I(j)

∑
k∈K(ij)

dsijkvkw
s
ijkl ≤ Cjlyjl + λsjl, j ∈ J, l ∈ L, s ∈ S (4.1f)

xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L

usijkq ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J(i), k ∈ K(ij), s ∈ S

ws
ijkl ∈ {0, 1}, j ∈ J, l ∈ L, k ∈ K(ij), s ∈ S

µs
iq ≥ 0, i ∈ I, q ∈ Q, s ∈ S

λsjl ≥ 0 j ∈ J, l ∈ L, s ∈ S (4.1g)
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xiq and yjl represent transportation options for suppliers and customers, respectively, that

run daily, which the 3PL has reserved with a common carrier for the whole planning

horizon. dsijk represents a finite set of possible realizations of demand for the given planning

horizon. If the total demand of customer orders from a single supplier exceeds the capacity

of the reserved transportation options allocated to that supplier, then the 3PL sends the

remaining orders µs
iq through a spot market carrier at a charge of π per volumetric unit

shipped at the same time as transportation option q. Similarly, if the total demand of

customer orders from all suppliers exceeds the capacity of the reserved transportation

options allocated to that customer, the 3PL sends the remaining orders λsjl through a spot

market carrier at a charge of π per volumetric unit shipped at the the same time as as the

chosen transportation option l.

4.2.2 Formulation 2

An alternative way of formulating the stochastic case is to consider a different type of

recourse variables than those proposed in Model (4.1). The new proposed recourse variables

do not allow for splitting of demand between stage one transportation options xiq and yjl

and recourse variables µiq and λjl. Alternatively, if for a given scenario, extra capacity

from the spot market is needed, the whole demand of a given customer for a specific

product is shipped through that extra capacity. This is a more realistic assumption, since

you cannot divide a single package or product over two vehicles. Also, this assumption

allows for savings in holding cost at the consolidation center to be achieved, since if some

products are shipped through extra capacity, the model will choose the time of shipment

that minimizes the holding cost at the consolidation center.
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First, define the following new decision variables:

µs
ijkq =


1, if customer j’s order of product k from supplier i in scenario s is shipped by

a spot market carrier, with arrival time q, i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q, s ∈ S.

0, otherwise.

λsijkl =


1, if customer j’s demand of product k from supplier i in scenario s is shipped by

a spot market carrier, with dispatch time l, j ∈ J, i ∈ I(j), k ∈ K(ij), l ∈ L, s ∈ S.

0, otherwise.

Then the two-stage stochastic programming model can be formulated as in Model 4.2.

Shipments are sent through a spot market carrier (µs
ijkq, λ

s
ijkl), in Model 4.2, if (1)

the total demand of a given supplier or customer exceeds the capacity of the reserved

transportation option(s) of that supplier or customer, or (2) the savings in holding cost

at the consolidation center when a shipment is sent at a different time exceed the cost of

purchasing extra capacity at the spot market.

For the rest of the thesis, we will carry on with the solution methodology and numerical

testing for Model 4.2. Some numerical testing for Model 4.1 is shown in Appendix A. In

the following chapter, we outline our proposed solution methodology.
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[4.2] min
∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl)

+
∑
s∈S

∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

ps[dsijkvkhk(
∑
l∈L

tjl(w
s
ijkl + λsijkl)−

∑
q∈Q

tiq(u
s
ijkq + µs

ijkq))]

+
∑
s∈S

∑
i∈I

∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

psπdsijkvk(µsijkq) +
∑
s∈S

∑
j∈J

∑
l∈L

∑
i∈I(j)

∑
k∈K(ij)

psπdsijkvk(λsijkl)

(4.2a)

s.t.
∑
q∈Q

(usijkq + µs
ijkq) = 1, i ∈ I, j ∈ J(i), k ∈ K(ij), s ∈ S (4.2b)∑

l∈L

(ws
ijkl + λsijkl) = 1, j ∈ J, i ∈ I(j), k ∈ K(ij), s ∈ S (4.2c)

∑
q∈Q

tiq(u
s
ijkq + µsijkq) ≤

∑
l∈L

tjl(w
s
ijkl + λsijkl), j ∈ J, i ∈ I(j), k ∈ K(ij) (4.2d)∑

j∈J(i)

∑
k∈K(ij)

dsijkvku
s
ijkq ≤ Ciqxiq, i ∈ I, q ∈ Q, s ∈ S (4.2e)

∑
i∈I(j)

∑
k∈K(ij)

dsijkvkw
s
ijkl ≤ Cjlyjl, j ∈ J, l ∈ L, s ∈ S (4.2f)

xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L

usijkq, µ
s
ijkq ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J(i), k ∈ K(ij), s ∈ S

ws
ijkl, λ

s
ijkl ∈ {0, 1}, j ∈ J, i ∈ I(j), l ∈ L, k ∈ K(ij), s ∈ S (4.2g)
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Chapter 5

Solution Methodology

5.1 Benders Decomposition and The L-shaped Method

The special structure of the two-stage stochastic programming model (4.2) makes it a good

fit for applying Benders decomposition (BD) (Benders, 1962), which is also referred to as

the “L-shaped method” in the context of stochastic programming (Van Slyke and Wets,

1969). Classical BD or the linear L-shaped method assume that the subproblem(s) of

the decomposition are linear program(s). Since all the decision variables in Model 4.2 are

binary, the integer L-shaped method applies (Laporte and Louveaux, 1993). For the rest

of the thesis, we will refer to the linear L-shaped method as Benders decomposition (BD).

When applying the integer L-shaped method on Model 4.2, the problem decomposes

into a relaxed Master Problem (MP) with first stage variables xiq and yjl, and a set of

|S| disaggregated subproblems (SP s), one for each scenario s ∈ S, with the second stage

variables usijkq, w
s
ijkl, µ

s
ijkq, and λsijkl. The algorithm iteratively solve MP and SPs until it

converges to an optimal solution. BD results in the same MP and SPs, except that the
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SPs are relaxed to be linear programs instead of binary integer programs.

The resulting decomposition for BD and the integer L-shaped method is outlined in

the following sections.

5.1.1 Benders Decomposition

To decompose Model 4.2, we can reformulate it as shown in Model 5.1, where zsLP is the

objective function value of the relaxed subproblem of scenario s ∈ S.

min
x,y

∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl) +


min

∑
s∈S

pszsLP

s.t. [4.2b]− [4.2d]

s.t. xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L

(5.1)

For a fixed value of xiq and yjl variables, which we denote as x̄iq and ȳjl, respectively,

an inner relaxed subproblem (SPLP
s ), ∀s ∈ S, can be expressed as:.

[5.2] zsLP = min
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

dsijkvkhk[
∑
l∈L

tjl(w
s
ijkl + λsijkl)−

∑
q∈Q

tiq(u
s
ijkq + µs

ijkq)]

+
∑
i∈I

∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

πdsijkvk(µs
ijkq) +

∑
j∈J

∑
l∈L

∑
i∈I(j)

∑
k∈K(ij)

πdsijkvk(λsijkl)

(5.2a)
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s.t. [4.2b] - [4.2d]∑
j∈J(i)

∑
k∈K(ij)

dsijkvku
s
ijkq ≤ Ciqx̄iq, i ∈ I, q ∈ Q (5.2b)

∑
i∈I(j)

∑
k∈K(ij)

dsijkvkw
s
ijkl ≤ Cjlȳjl, j ∈ J, l ∈ L (5.2c)

usijkq, w
s
ijkl, µ

s
ijkq, λ

s
ijkl ≤ 1, i ∈ I, j ∈ J, k ∈ K(ij), q ∈ Q, l ∈ L (5.2d)

usijkq, w
s
ijkl, µ

s
ijkq, λ

s
ijkl ≥ 0, i ∈ I, j ∈ J, k ∈ K(ij), q ∈ Q, l ∈ L (5.2e)

Since SPLP
s is a linear program, it can be replaced by its dual, shown in Model 5.3, where

αs
ijk, β

s
ijk, and γsijk are the dual variables of constraints (4.2b) - (4.2d), εsiq and φs

jl are

the dual variables of constraints (5.2b) and (5.2c), and u
′s
ijkq, w

′s
ijkl, µ

′s
ijkq, λ

′s
ijkl are the dual

variables of constraint (5.2d).

[5.3] zsdual = max
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

(αs
ijk + βs

ijk) +
∑
i∈I

∑
q∈Q

(Ciqx̄iq)εsiq +
∑
j∈J

∑
l∈L

(Cjlȳjl)φ
s
jl

+
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

∑
q∈Q

∑
l∈L

(u
′s
ijkq + w

′s
ijkl + µ

′s
ijkq + λ

′s
ijkl) (5.3a)

s.t. αs
ijk + tiqγ

s
ijk + dsijkvkε

s
iq + u

′s
ijkq ≤ −dsijkvkhktiq, ∀i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q (5.3b)

αs
ijk + tiqγ

s
ijk + µ

′s
ijkq ≤ −dsijkvkhktiq + πdsijkvk, ∀i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q (5.3c)

βs
ijk − tjlγsijk + dsijkvkφ

s
jl + w

′s
ijkq ≤ dsijkvkhktjl, ∀j ∈ J, i ∈ I(j), k ∈ K(ij), l ∈ L (5.3d)

βs
ijk − tjlγsijk + λ

′s
ijkl ≤ dsijkvkhktjl + πdsijkvk, ∀j ∈ J, i ∈ I(j), k ∈ K(ij), l ∈ L (5.3e)

γsijk, ε
s
iq, φ

s
jl, u

′s
ijkq, w

′s
ijkl, µ

′s
ijkq, λ

′s
ijkl ≤ 0, ∀i ∈ I, j ∈ J(i), k ∈ K(ij), q ∈ Q, l ∈ L (5.3f)
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As a result, we can rewrite Model 5.1 as:

min
x,y

∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl) +


max

∑
s∈S

pszsdual

s.t. [5.3b]− [5.3f ]

s.t. xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L

(5.4)

Define θs = max [5.3a] Then we can rewrite Model 5.4 as:

[5.5] min zMP =
∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl) +
∑
s∈S

psθs (5.5a)

s.t. θs ≥
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

(αsh̄
ijk + βsh̄

ijk) +
∑
i∈I

∑
q∈Q

(Ciqε
sh̄
iq )xiq +

∑
j∈J

∑
l∈L

(Cjlφ
sh̄
jl )yjl,

∀s ∈ S, h̄ ∈ H̄ (5.5b)

xiq, yjl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J, l ∈ L (5.5c)

We refer to Model 5.5 as the relaxed Master Problem (MP), where h̄ is the iteration of the

algorithm, and set H̄ is the set of all MP solutions x̄iq and ȳjl for which we have generated

cut 5.5b.

At a given iteration h̄, and for a given MP solution x̄iq and ȳjl, we solve subproblem

(5.3), ∀s ∈ S, to generate cut 5.5b to add to MP. Note that SPLP
s is always feasible for

any MP solution, therefore, at any iteration h̄, only optimality cuts 5.5b are generated,

and there is no need for generating feasibility cuts.

The objective function value of MP (zMP ) gives a lower bound (LB) on the opti-

mal objective function value of the original problem, Model 4.2, while the upper bound

(UB) is computed as UB =
∑
s∈S

pszsdual +
∑
i∈I

∑
q∈Q

fi(x̄iq) +
∑
j∈J

∑
l∈L

gj(ȳjl). The algorithm

iterates between solving the MP and SPs creating |S| cuts at every iteration h̄ until

(UB − LB)/LB < ε̄, where ε̄ is an acceptable level of error.
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5.1.2 Integer L-shaped Method

According to the Laporte/Louveaux L-shaped method (Laporte and Louveaux, 1993), or

simply the integer L-shaped method, when the first stage variables are binary, and the

subproblem(s) are integer or mixed integer programs, L-shaped cuts 5.7 are sufficient for the

algorithm to converge to an integer optimal solution. When applying the integer L-shaped

method to Model 4.2, the problem decomposes into MP (5.5) a set of |S| disaggregated

subproblems (SP s), that are similar to SPLP
s , except that the binary requirement of the

decision variables is reintroduced as shown in Model 5.6. Note that we keep cuts 5.5b in

the MP of the integer L-shaped method since they are valid cuts and can strengthen the

MP formulation.

[5.6] zs = min [5.2a]

s.t. [4.2b] - [4.2d], [5.2b], and [5.2c]

usijkq, w
s
ijkl, µ

s
ijkq, λ

s
ijkl ∈ {0, 1}, i ∈ I, j ∈ J, k ∈ K(ij), q ∈ Q, l ∈ L

(5.6)

First, define the following notation. Let Q̄ be the set of transportation options for all

suppliers that have a value of 1 in the MP solution, i.e. x̄iq = 1 ∀ q ∈ Q̄. Similarly, L̄

is the set of transportation options for all customers with a value of 1 in the MP solution,

i.e. ȳjl = 1 ∀ l ∈ L̄. Also, let Ls be a lower bound on the objective function value zs of

each subproblem s ∈ S. Ls is computed as zs given that all first stage variables take the

value of 1, i.e. Q̄ = Q and L̄ = L.

The resulting integer L-shaped cut can be expressed as follows:

θs ≥ (Ls − zs)
(( ∑

q∈Q\Q̄

x̄iq +
∑
l∈L\L̄

ȳjl

)
−
(∑

q∈Q̄

x̄iq +
∑
l∈L̄

ȳjl

))
+ zs, ∀s ∈ S (5.7)

For our problem, the integer L-cut (5.7) can be adjusted to take into account the fact
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that the objective function value of a given subproblem zs does not decrease with the

removal of a first stage transportation option q ∈ Q̄, i.e. removing some transportation

options from the solution of the MP, x̄iq, ȳjl, would never result in a lower objective

funciton value zs. Therefore, constraint (5.7) can be rewritten as follows:

θs ≥ (Ls − zs)
( ∑

q∈Q\Q̄

x̄iq +
∑
l∈L\L̄

ȳjl

)
+ zs, ∀s ∈ S (5.8)

Similar to Benders decomposition in Section 5.1.1, the L-shaped method iteratively

solves the MP and SPs until the algorithm converges to an optimal solution. Algorithm

(1) summarizes the steps of the integer L-shaped method.

Algorithm 1 Integer L-shaped Method

1: LB = − inf, UB = inf
2: Compute lower bound Ls for each subproblem s ∈ S
3: while (UB − LB)/LB > ε̄ do
4: Solve MP (5.5)
5: Get solution x̄iq and ȳjl

6: LB = zMP

7: for s ∈ S do
8: Solve dual SPLP

s (5.3)
9: Create Benders cut (5.5b).

10: Solve SP s (5.6)
11: Get zs and create integer L-cut (5.8)

12: Add all generated cuts to MP
13: UBnew =

∑
s∈S

pszs +
∑
i∈I

∑
q∈Q

fi(x̄iq) +
∑
j∈J

∑
l∈L

gj(ȳjl)

14: UB = min(UB,UBnew)

15: end while
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5.2 Enhancement Techniques for Benders Decompo-

sition and the L-shaped Method

One common problem that is likely to arise with the implementation of Benders decom-

position is the slow convergence of the algorithm for a reasonable size problem. This

problem can get worse for the integer L-shaped method, where the subproblem(s) are in-

teger programs (IP) or mixed integer programs (MIP) since an IP or MIP is solved for

each subproblem at each iteration of the algorithm. In our application, we employ some

algorithm enhancement techniques to speed up the convergence of the L-shaped method.

We implement partial decomposition (5.2.1), alternating cut strategy (5.2.2) and the use

of a single branch-and-bound search tree through a callback routine (5.2.3).

5.2.1 Partial Decomposition

Crainic et al. (2014) propose the idea of partial decomposition for two-stage stochastic

integer programs, which refers to keeping a subset of scenarios, S̄ ⊂ S, in the master

problem, then solving for the remaining scenarios, s ∈ S\S̄, as subproblems. From those

subproblems, we obtain the necessary cuts and proceed with the usual Benders decompo-

sition or integer L-shaped method. Partial decomposition has been shown to improve the

efficiency of the algorithm greatly and reduce the number of optimality and feasibility cuts

needed to reach convergence (Crainic et al., 2014).

An important question that arises with partial decomposition is which scenarios to keep

in the master problem. Crainic et al. (2014) suggest different methods for deciding on the

subset of scenarios (S̄) to maintain in the MP. For our implementation, we choose S̄ either

randomly, or using k-means clustering.
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With the use of partial decomposition, Model 4.2 decomposes differently than the de-

composition proposed in Section (5.1). While the formulation of the subproblems (5.2 and

5.6) stays the same, the MP becomes equivalent to the full formulation of the original

problem but only for a subset of scenarios S̄ ⊂ S. This results in the following formulation

of the relaxed master problem (MP).

[5.9] : z′MP = min
∑
s∈S\S̄

psθs +
∑
i∈I

∑
q∈Q

fi(xiq) +
∑
j∈J

∑
l∈L

gj(yjl)

+
∑
s∈S̄

∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

ps[dsijkvkhk(
∑
l∈L

tjl(w
s
ijkl + λsijkl)−

∑
q∈Q

tiq(u
s
ijkq + µsijkq))]

+
∑
s∈S̄

∑
i∈I

∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

psπdsijkvk(µsijkq)+
∑
s∈S̄

∑
j∈J

∑
l∈L

∑
i∈I(j)

∑
k∈K(ij)

psπdsijkvk(λsijkl)

(5.9a)

s.t. θs ≥ (Ls − zs)
( ∑
q∈Q\Q̄

x̄iq +
∑

l∈L\L̄

ȳjl

)
+ zs, ∀s ∈ S\S̄ (5.9b)

θs ≥
∑
i∈I

∑
j∈J(i)

∑
k∈K(ij)

(αsh̄
ijk + βsh̄

ijk) +
∑
i∈I

∑
q∈Q

(Ciqε
sh̄
iq )xiq +

∑
j∈J

∑
l∈L

(Cjlφ
sh̄
jl )yjl, ∀s ∈ S\S̄ (5.9c)

∑
q∈Q

(usijkq + µs
ijkq) = 1, i ∈ I, j ∈ J(i), k ∈ K(ij), s ∈ S̄ (5.9d)∑

l∈L

(ws
ijkl + λsijkl) = 1, j ∈ J, i ∈ I(j), k ∈ K(ij), s ∈ S̄ (5.9e)

∑
q∈Q

tiq(u
s
ijkq + µsijkq) ≤

∑
l∈L

tjl(w
s
ijkl + λsijkl), j ∈ J, i ∈ I(j), k ∈ K(ij)s ∈ S̄ (5.9f)∑

j∈J(i)

∑
k∈K(ij)

dsijkvku
s
ijkq ≤ Ciqxiq, i ∈ I, q ∈ Q, s ∈ S̄ (5.9g)

∑
i∈I(j)

∑
k∈K(ij)

dsijkvkw
s
ijkl ≤ Cjlyjl, j ∈ J, l ∈ L, s ∈ S̄ (5.9h)

xiq, yjl, u
s
ijkq, µ

s
ijkq, w

s
ijkl, λ

s
ijkl ∈ {0, 1}, i ∈ I, q ∈ Q, j ∈ J(i), k ∈ K(ij), s ∈ S̄ (5.9i)
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5.2.2 Alternating Cut Strategy for Integer L-shaped Method

Angulo et al. (2016) suggest the alternating cut strategy for the integer L-shaped method.

Instead of solving both the LP and IP subproblems at each iteration, the authors suggest

alternating between them. For a given MP solution x̄iq and ȳjl, and for a subproblem

s ∈ S, we start by solving the LP subproblem (5.2) we only solve the IP subproblem (5.6)

if the Benders cut (5.5b) has already been generated at a previous iteration, or if θs > zsLP .

The steps of the algorithm are summarized in Algorithm (2), where V̄ s is the set of MP

solutions x̄iq and ȳjl at which the IP subproblem s ∈ S was solved, and V̄ s
LP is the set

of MP solutions x̄iq and ȳjl at which the LP subproblem s ∈ S was solved. This ensures

that we do not assess the same solution twice in order to save on computational time.

Algorithm 2 Alternating Cuts Strategy (Angulo et al., 2016)

1: Solve relaxed Master Problem [MP] (5.9)
2: Get x̄iq and ȳjl

3: for s ∈ S do
4: if x̄iq, ȳjl ∈ V̄ s then
5: return
6: end if
7: if x̄iq, ȳjl /∈ V̄LP then
8: Compute zsLP (5.2)
9: V̄LP ← V̄LP ∪ {x̄iq,ȳjl}

10: Add BD cut (5.5b)
11: if θs < zsLP then
12: return
13: end if
14: end if
15: Compute zs (5.6)
16: V̄ s ← V̄ s ∪ {x̄iq,ȳjl}
17: if θs < zs then
18: Add Integer L-cut (5.8)
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5.2.3 Single Tree Search for the MP with a Callback Routine

In the classic implementation of BD, the relaxed master problem (MP) is solved from

scratch at every iteration. This means that a new branch-and-bound tree is composed at

every iteration with no regards to solutions of earlier iterations. This, in turn, results in a

lot of computational demand and inefficiency in the algorithm, especially that some of the

generated cuts may not change the feasible region of the MP.

Nonetheless, advanced commercial solvers, like CPLEX, allow for the use of a single

branch-and-bound search tree for mixed integer programs with the lazy constraint callback

routine, where generated cuts are added lazily, i.e. only if they change the feasible region of

the MP. The callback routine also guarantees that a given node in the branch-and-bound

tree is only explored once throughout the whole algorithm. This could result in significant

improvements in the efficiency of the algorithm.

We implement all of the three enhancement techniques in our numerical testing in

Chapter 6. In addition to that, in the following section, we experiment with a number

of valid cuts for Model 4.2, with the goal of generating stronger cuts than the L-shaped

cut, that would ultimately improve the time it takes for our algorithm to converge to an

optimal solution.

5.3 Additional Valid Cuts

5.3.1 Valid Cut 1

The integer L-shaped cuts by Laporte/Louveaux, introduced in Section 5.1.2, are general

cuts that can be applied to any stochastic program when the first stage variables are all
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binary. The cuts, however, may be weak as they set the value of θs to its lower bound (Ls)

or a lower value, if there is a change in MP solution x̄iq, ȳjl.

We propose a set of valid optimality cuts to better approximate the change in sub-

problem objective values θs when the MP solution x̄iq, ȳjl changes. In contrast to the

L-shaped cut that bounds θs by its lower bound (Ls), the proposed cut estimates the

maximum impact of opening transportation options with the same dispatch time as the

occupied extra capacity, i.e. extra capacity bought when demand cannot be satisfied with

the given available transportation options. We compute δs, the maximum improvement in

subproblem objective function value if such options become available.

Let x̂iq = x̄iq, and ŷjl = ȳjl. Also define Q′ ⊆ Q\Q̄ and L′ ⊆ L\L̄ as the sets of

transportation options such that µs
ijkq = 1 and λsijkl = 1, respectively, for any product k

and any demand pair (i, j). Then, for all q ∈ Q′, we set xiq = 1, xiq ∈ x̂iq, and for all

l ∈ L′, we set yjl = 1, yjl ∈ ŷjl. Also let SP s(x̂iq, ŷjl) denote subproblem SP s given the

MP solution x̂iq, ŷjl. We solve SP s(x̂iq, ŷjl) to get objective function value zsnew. Then

we calculates δs = zsnew − zs. Valid cut 1 is expressed as:

θs ≥ δs(
∑
q∈Q′

xiq +
∑
l∈L′

yjl) + (Ls − zs)(
∑

q∈Q\{Q̄∪Q′}

xiq +
∑

l∈L\{L̄∪L′}

yjl) + zs, ∀s ∈ S

(5.10)

Algorithm 3 summarizes the steps of generating valid cut 1.

Justification:

The values of δs are computed exactly as the improvement in objective function value

when additional transportation options become available, i.e. Q̄ ← (Q̄ ∪ Q′) and L̄ ←

(L̄ ∪ L′). Therefore, in contrast to the L-shaped cut, if one or more of the transportation
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Algorithm 3 Valid Cut 1

x̂iq = x̄iq, ŷjl = ȳjl

for i ∈ I, q ∈ Q\Q̄ do
if xiq = 0 &

∑
j∈J(i)

∑
k∈K(ij)

µs
ijkq > 0 then

Set xiq = 1, for xiq ∈ x̂iq

for j ∈ J, l ∈ L\L̄ do
if yjl = 0 &

∑
i∈I(j)

∑
k∈K(ij)

λsijkl > 0 then

Set yjl = 1, for yjl ∈ ŷjl

zsnew = SP s(x̂iq, ŷjl)
δs = zsnew − zs
if δs < Ls − zs then

δs = Ls − zs
Generate valid cut 1 (5.10)

options Q′ and L′ take a value of 1 in the MP solution in a subsequent iteration, valid cut

1 sets the value of θs to δs or a lower value, rather than setting it to its lower bound Ls or

a lower value. Note that δs ≥ Ls− zs, and therefore valid cut 1 is at least as strong as the

L-cut.

5.3.2 Valid Cut 2

In this section, we propose another valid cut with the goal of estimating the decrease in

the objective function value of the subproblem with the addition of one transportation

option at a time. The transportation option could correspond to a particular supplier or

customer. In other words, instead of a single δs that estimates the change in θs, as in valid

cut 1 (5.3.1), we calculate δsiq, ∀q ∈ Q\Q̄ and δsjl, ∀l ∈ L\L̄ for each supplier and customer

and each transportation option that is unavailable at that given iteration. Our goal is to

measure how much the objective function value of the subproblem zs improves if we are
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to add a transportation option that is originally unavailable, i.e. q ∈ Q\Q̄ or l ∈ L\L̄,

given the solution of the MP, x̄iq, ȳjl. As a result, the cut tightly underestimate the value

function θs. Valid cut 2 can be expressed as follows:

θs ≥
∑

q∈Q\Q̄

δsiqxiq +
∑
l∈L\L̄

δsjlyjl + zs, ∀s ∈ S (5.11)

In order to calculate δsiq and δsjl, it is important to note that the objective function value

of a subproblem zs at a specific iteration is dependent upon the particular set of available

transportation options Q̄ and L̄. Therefore, when computing δsiq for a particular trans-

portation option q and supplier i, we compute it independent of the customer side J(i), i.e.

we assume that all transportation options for all customers J(i) are available. Similarly,

we compute δsjl for a particular transportation option l and customer j independent of the

supplier side I(j). Let x̂iq = x̄iq, and ŷjl = ȳjl. To calculate δsiq for a given q ∈ Q\Q̄, we

set xiq = 1, xiq ∈ x̂iq. We also set yjl = 1, yjl ∈ ŷjl, ∀j ∈ J(i), ∀l ∈ L. Then we solve

SP s(x̂iq, ŷjl) to get zsnew and we compute δsiq = zsnew − zs. δsjl is computed in a similar

manner.

It is worth noting that resolving SP s for every q ∈ Q̄ and l ∈ L̄ would be inefficient

and computationally demanding. Therefore, instead of computing the exact values of δsiq

and δsjl, we compute lower bounds on those values that are obtained by relaxing the ca-

pacity restrictions of the subproblem. For a given supplier i and a given transportation

option q ∈ Q\Q̄, we solve for the best allocation of all products k ∈ K(ij) ordered by all

customers j ∈ J(i) to available transportation options from the supplier side (Q̄ ∪ {q})

or extra capacity options (Q\(Q̄ ∪ {q})), as well as all transportation options from the

customer side (L). So, for every j ∈ J(i) and every k ∈ K(ij), we choose q and l that

minimize the following expression: min
q,l

[(tjl − tiq) + π(1 − x̂iq)], such that tjl ≥ tiq. This
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is shown in Figure 5.1. Then the resulting cost of the chosen allocation would be:

z̄ijk = min
q,l

[dsijkvkhk(tjl − tiq) + πdsijkvk(1− x̂iq)]

s.t. tjl ≥ tiq

(5.12)

Figure 5.1: Optimal Allocation for Uncapacitated Case - Valid Cut 2

Denote ūsijkq, w̄
s
ijkl, µ̄

s
ijkq, and λ̄sijkl as the solution of SP s at a given iteration. δsiq is then

computed as:

δsiq =
∑
j∈J(i)

∑
k∈K(ij)

z̄ijk − [
∑
j∈J(i)

∑
k∈K(ij)

dsijkvkhk(
∑
l∈L

tjl(w̄
s
ijkl + λ̄sijkl)−

∑
q∈Q

tiq(ū
s
ijkq + µ̄s

ijkq))

+
∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

∑
l∈L

πdsijkvk(µ̄s
ijkq + λ̄sijkl)]

(5.13)

Since the computed δsiq value is a lower bound on the value actually obtained if the SP s is

solved to optimality, we check if δsiq < Ls−zs. If so, we set δsiq = Ls−zs, since the objective

function value of a given subproblem with the addition of a transportation option cannot

be lower than the lower bound of the subproblem Ls. It should be noted that relaxing

the capacities of transportation options when calculating the values of δsiq ensures that

the resulting cut does not eliminate the optimal solution, without having to solve for the
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exact values of δsiq. This is because we are overestimating the maximum improvement of

the objective function value of a given subproblem, and consequently, underestimating the

value function θs. A setback of this approach, however, is that the generated cuts may be

weak.

In the following section, we experiment with a different set of valid cuts.

5.3.3 Valid Cut 3

Valid Cut 3A

To address the issues that contribute to the weakness of valid cut 2, valid cut 3 is proposed,

where we create a separate cut for each transportation option q ∈ Q\Q̄ and l ∈ L\L̄,

and assume that the rest of the MP solution x̄iq, ȳjl stays the same. Therefore, if in

a subsequent iteration, the MP solution x̄iq, ȳjl adds only one additional transportation

option q ∈ Q\Q̄ or l ∈ L\L̄, we know that the objective function value of the subproblem

zs would decrease by a maximum of δsiq and as a result, the cut would set θs to the value

of zs + δsiq. Otherwise, if additional changes take place, θs would take a value less than or

equal to the subproblem lower bound Ls.

Denote zs(Q̄, L̄) as the objective function value of subproblem s, given that a subset of

transportation options Q̄ and L̄ have a value of 1 in the MP solution x̄iq and ȳjl. Then for

any subset Q̄ ⊆ Q and for any q1 ⊆ Q\Q̄, or for any subset L̄ ⊆ L and for any l1 ⊆ L\L̄,

we have:

zs(Q̄ ∪ {q1}, L̄) ≥ zs(Q̄, L̄) + δsiq, ∀q1 ∈ Q\Q̄, ∀s ∈ S

zs(Q̄, L̄ ∪ {l1}) ≥ zs(Q̄, L̄) + δsjl, ∀l1 ∈ L\L̄, ∀s ∈ S
(5.14)

and therefore, inequalities of the form:

45



θs ≥ δsiqxiq1 + (Ls − zs)[
∑

q∈Q\{Q̄∪{q1}}

xiq +
∑
l∈L\L̄

yjl] + zs, ∀q1 ∈ Q\Q̄,∀s ∈ S

θs ≥ δsjlyjl1 + (Ls − zs)[
∑

q∈Q\Q̄

xiq +
∑

l∈L\{L̄∪{l1}}

yjl] + zs, ∀l1 ∈ L\L̄,∀s ∈ S
(5.15)

are valid in the relaxed MP. We refer to inequalities 5.15 as valid cut 3A.

Similar to valid cut 2, the values of δsiq and δsjl can be obtained by either resolving SP s

to obtain the exact values, or obtaining lower bounds by relaxing capacity restrictions.

Since we create a separate cut for each unavailable transportation option q ∈ Q\Q̄ and

l ∈ L\L̄, we do not need to compute the values of δsiq and δsjl independent of the other

side of the network, as done with valid cut 2. That is because valid cut 3A would set

θs to the value of zs + δsiq only if a single transportation option is added to a given MP

solution x̄iq, ȳjl. Otherwise, similar to the L-cut, the cut would set the value of θs to the

subproblem lower bound Ls or a lower value.

To compute the values of δsiq while relaxing capacity, for a particular supplier i and a

transportation option q1 ∈ Q\Q̄, let x̂iq = x̄iq, and set xiq = 1, xiq ∈ x̂iq. Then for each

customer j ∈ J(i) that orders from supplier i and each product k ∈ K(ij) ordered by cus-

tomer j, we solve for the best allocation from the supplier side to available transportation

options (Q̄ ∪ {q1}) or extra capacity options (Q\(Q̄ ∪ {q1})), as well as available trans-

portation options for the customer side (L̄) or extra capacity options (L\L̄). So, for every

j ∈ J(i) and every k ∈ K(ij), we choose q and l that minimize the following expression:

min
q,l

[(tjl − tiq) + π
(
(1− x̂iq) + (1− ȳjl)

)
], such that tjl ≥ tiq. This is shown in Figure 5.2.

Then the resulting cost of the chosen allocation would be:
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z̄ijk = min
q,l

[dsijkvkhk(tjl − tiq) + πdsijkvk
(
(1− x̂iq) + (1− ȳjl)

)
]

s.t. tjl ≥ tiq

(5.16)

Figure 5.2: Optimal Allocation for Uncapacitated Case - Valid Cut 3A

δsiq is then computed as:

δsiq =
∑
j∈J(i)

∑
k∈K(ij)

z̄ijk − [
∑
j∈J(i)

∑
k∈K(ij)

dsijkvkhk(
∑
l∈L

tjl(w̄
s
ijkl + λ̄sijkl)−

∑
q∈Q

tiq(ū
s
ijkq + µ̄s

ijkq))

+
∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

∑
l∈L

πdsijkvk(µ̄s
ijkq + λ̄sijkl)]

(5.17)

An alternative way of computing the values of δsiq is to solve a relaxed MIP formulation

of SP s. For a given supplier i, denote it as SP s
i , for every q ∈ Q\Q̄. δsiq is then calculated

by solving SP s
i and computing the difference in the objective function values, zsi ({q1} ∪

Q̄, L̄)−zsi (Q̄, L̄), where zsi (Q̄, L̄) is computed as the objective function value (5.18a) given

the solution ūsijkq, w̄
s
ijkl, µ̄

s
ijkq, and λ̄sijkl to SP s(Q̄, L̄).
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zsi ({q1} ∪ Q̄, L̄) = min
∑

j∈J(i)

∑
k∈K(ij)

dsijkvkhk[(
∑
l∈L

tjl(w
s
ijkl + λsijkl)− (

∑
q∈Q

tiq(u
s
ijkq + µsijkq)]

+
∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

πdsijkvk(µsijkq) +
∑

j∈J(i)

∑
l∈L

∑
k∈K(ij)

πdsijkvk(λsijkl)

(5.18a)

s.t.
∑
q∈Q

(usijkq + µs
ijkq) = 1, j ∈ J(i), k ∈ K(ij) (5.18b)

∑
l∈L

(ws
ijkl + λsijkl) = 1, j ∈ J(i), k ∈ K(ij) (5.18c)

∑
q∈Q

tiq(u
s
ijkq + µs

ijkq) ≤
∑
l∈L

tjl(w
s
ijkl + λsijkl), j ∈ J(i), k ∈ K(ij) (5.18d)

∑
j∈J(i)

∑
k∈K(ij)

dsijkviku
s
ijkq ≤ Siqx̂iq, q ∈ Q (5.18e)

∑
k∈K(ij)

dsijkvikw
s
ijkl ≤ Sjlȳjl, j ∈ J(i), l ∈ L (5.18f)

usijkq, w
s
ijkl, µ

s
ijkq, λ

s
ijkl ∈ {0, 1}, j ∈ J(i), k ∈ K(ij), q ∈ Q, l ∈ L (5.18g)

Similarly, δsjl1 can be computed by solving the relaxation in Formulation 5.19, where

ŷjl is equivalent to ȳjl except that we set the value of yjl = 1 for l1 ∈ L\L̄.

zsj (Q̄, {l1} ∪ L̄) = min
∑
i∈I(j)

∑
k∈K(ij)

dsijkvkhk[(
∑
l∈L

tjl(w
s
ijkl + λsijkl)− (

∑
q∈Q

tiq(u
s
ijkq + µsijkq)]

+
∑
i∈I(j)

∑
q∈Q

∑
k∈K(ij)

πdsijkvk(µsijkq) +
∑
l∈L

∑
i∈I(j)

∑
k∈K(ij)

πdsijkvk(λsijkl)

(5.19a)
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s.t.
∑
q∈Q

(usijkq + µs
ijkq) = 1, i ∈ I(j), k ∈ K(ij) (5.19b)

∑
l∈L

(ws
ijkl + λsijkl) = 1, i ∈ I(j), k ∈ K(ij) (5.19c)

∑
q∈Q

tiq(u
s
ijkq + µs

ijkq) ≤
∑
l∈L

tjl(w
s
ijkl + λsijkl), i ∈ I(j), k ∈ K(ij) (5.19d)

∑
k∈K(ij)

dsijkviku
s
ijkq ≤ Siqx̄iq, i ∈ I(j), q ∈ Q (5.19e)

∑
i∈I(j)

∑
k∈K(ij)

dsijkvikw
s
ijkl ≤ Sjlŷjl, l ∈ L (5.19f)

usijkq, w
s
ijkl, µ

s
ijkq, λ

s
ijkl ∈ {0, 1}, i ∈ I(j), k ∈ K(ij), q ∈ Q, l ∈ L (5.19g)

In the following section, we propose an additional valid cut that is an extension of valid

cut 3A.

Valid Cut 3B

Similar to valid cut 3A, we now define q2 ⊂ Q\Q̄ and l2 ⊂ L̄ as sets of two transportation

options that are not available in a given MP solution, and are to be added at the same time

to a given set of available options Q̄ and L̄. We then calculate the maximum improvement

in the objective function value of a subproblem SP s when q2 and l2 are added to the MP

solution as δsiq2 and δsjl2 for a given supplier i and a given customer j, respectively.

Note that, instead of enumerating all possible combinations of two options in Q̄ for a

specific supplier i, we focus on the single transportation option q ∈ Q\Q̄ with the highest

possible impact, i.e. the min δsiq, and estimate the total impact if it is to be added with

another option q ∈ Q\Q̄ with a δsiq < 0. Since we want the cut to hold if both options

are chosen at the same time and to be voided if only one is chosen, we add 3δsiq2 to the
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right hand side of the cut, expressed in Equations 5.20. Note that δsiq2 , similar to δsiq, is

a negative number. Note that δsiq2 is always less than or equal to δsiq for each of the two

options. In other words, the combined benefit of having the two options q2 available is

greater than or equal to the benefit of having only one of them available. When just one

of the transportation options becomes available, Inequalities 5.20 become redundant with

the presence of valid cut 3A (5.15), and therefore cut 3B is valid.

θs ≥ −δsiq2
∑
q∈q2

xiq + (Ls − zs)[
∑

q∈Q\{q2∪Q̄}

xiq +
∑
l∈L\L̄

yjl] + zs + 3δsiq2 , ∀q2 ⊂ Q\Q̄, ∀s ∈ S

θs ≥ −δsjl2
∑
l∈l2

yjl + (Ls − zs)[
∑

q∈Q\Q̄

xiq +
∑

l∈L\{l2∪L̄}

yjl] + zs + 3δsjl2 , ∀l2 ⊂ L\L̄,∀s ∈ S

(5.20)

Similar to valid cut 3A, to compute the values of δsiq2 while relaxing capacity, for a

particular supplier i and a set of two transportation options q2 ⊂ Q\Q̄, let x̂s
iq = x̄s

iq and

set xiq = 1, xiq ∈ x̂s
iq for each q ∈ q2. Then for each customer j ∈ J(i) that orders from

supplier i, and each product k ∈ K(ij) that customer j orders, we solve for the best allo-

cation from the supplier side to available transportation options (Q̄∪ q2) or extra capacity

options (Q\(Q̄∪ q2)), as well as available transportation options for the customer side (L̄)

or extra capacity options (L\L̄). So, for every j ∈ J(i) and every k ∈ K(ij), we choose q

and l that minimize the following expression: min
q,l

[(tjl − tiq) + π
(
(1 − x̂iq) + (1 − ȳjl)

)
],

such that tjl ≥ tiq.

Then the resulting cost of the chosen allocation would be:

z̄ijk = min
q,l

[dsijkvkhk(tjl − tiq) + πdsijkvk
(
(1− x̂iq) + (1− ȳjl)

)
]

s.t. tjl ≥ tiq

(5.21)
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δsiq2 is then computed as:

δsiq2 =
∑
j∈J(i)

∑
k∈K(ij)

z̄ijk − [
∑
j∈J(i)

∑
k∈K(ij)

dsijkvkhk(
∑
l∈L

tjl(w̄
s
ijkl + λ̄sijkl)−

∑
q∈Q

tiq(ū
s
ijkq + µ̄s

ijkq))

+
∑
q∈Q

∑
j∈J(i)

∑
k∈K(ij)

∑
l∈L

πdsijkvk(µ̄s
ijkq + λ̄sijkl)]

(5.22)

In the following chapter, we conduct some numerical testing to evaluate the performance

of our proposed solution methodology and of the valid cuts.
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Chapter 6

Numerical Testing

In this chapter, we outline numerical testing results of our proposed solution methodology

in Chapter 5 as well as for CPLEX and the L-shaped method for Model 4.2. First, we

start with discussing how the data is generated in our test instances.

6.1 Data Generation

The data generation method outlined in Section (3.3) is adjusted to take different sets of

values for two main reasons. First of all, after observing the results in Section (3.4), we

noticed that for all suppliers, the total demand from all customers is small enough to fit in

a single transportation option. This is also the case for the total demand of customers from

all suppliers. This results in a special case of the model that may be affecting the results or

making the model easier to solve. Also, since Model 4.2 has a very high number of binary

variables, we reduce parameters K̄i and K̄j to be in the range [10, 15]. Additionally, the

capacity of each transportation option for each supplier/customer Ciq and Cjl is uniformly
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distributed in the range [1000, 5000]. Moreover, each product, ki, is assumed to have a

certain uniform distribution of demand, where the range of that distribution is randomly

generated. The lower bound of the distribution for a specific product ki is between [1, 3],

and the width of the distribution is between [1, 5]. Consequently, for a particular supplier

i, a given customer j and product k, the demand dsijk is uniformly distributed between

the ranges of the particular distribution of product ki. Finally, the volume of each unit of

product vk is uniform in the range [50, 150].

Furthermore, the number of scenarios S represents all possible realizations of demand

with their associated probabilities. Section (6.2) outlines how the we generate scenarios

and what is an acceptable number of scenarios. The probability of the realization of each

scenario is also randomly generated with the sum of all probabilities equal to 1. The

penalty cost π is assumed to be 500 for each unit of demand that exceeds the capacity of

the reserved transportation option.

6.2 Scenario Generation

As discussed in Chapter 2, Kaut and Wallace (2003a) provide a brief comparison of differ-

ent commonly used scenario-generation techniques. Since in Formulation 4.2 the demand

parameter (dsijk) is the only random variable in the model, i.e. the model has a univariate

random variable, Conditional Sampling is considered a good fit for generating the scenario

tree. After the scenario tree is generated, the model is tested for stability to ensure that

it provides quality solutions to the stochastic programming model and that the results of

the model are not the effect of randomness.

To test the stability of the model, for a given instance, we create three sub-instances

by only changing the demand parameter (dsijk) and randomly generating it again following
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the same discrete uniform distribution of the particular product k. Then the model is

solved again for all the sub-instances. The objective function value of all sub-instances are

compared and the gap is calculated. If the gap between the highest and lowest objective

function value is less than or equal to 1%, then we would conclude that in-sample stability

has been reached, and the associated number of scenarios would be considered a good

estimation of the distribution for the specific model in hand.

Since the model itself is hard to solve, when measuring in-sample stability we choose

arbitrary values for first stage variables, and refer to the fixed values as x̄iq and ȳjl, then

the rest of the model decomposes into |S| small size subproblems. The sum of the objective

function values of all |S| subproblems and the cost of the arbitrarily chosen transportation

options x̄iq and ȳjl is the final objective function of the instance or sub-instance. We start

with an S equal to 50 scenarios, then repeat the test by increasing S by an increment of

5, until we reach an acceptable maximum gap (1% or lower). In-sample stability testing

for multiple instances is shown in Table 6.1.

Since having 50 scenarios results in a maximum in-sample gap of 0.41% for the instances

we tested, and we determined that this is an acceptable level of gap, we conclude that our

stochastic model with S = 50 scenarios achieves in-sample stability.

As mentioned in Section 2.4, in addition to in-sample stability, we need to ensure

that the model has out-sample stability, which means the model gives approximately the

same result if the ”true” distribution is used to represent the uncertain parameters in the

stochastic programming model. We assume that generating a scenario tree with 20,000

scenarios would represent the ”true” distribution, as has been done in Lium et al. (2009).

For testing the out-sample stability of the model, we use some of the instances in Table

6.1 with S = 50 and compare their objective function value and that of their sub-instances
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to the objective function value of a sub-instance with a scenario tree that consists of 20,000

scenarios. To calculate the objective function value of the model with S = 20, 000, we follow

the same procedure as in in-sample stability testing, i.e. fixing xiq and yjl variables and

solving |S| subproblems. We report the maximum gap of the tested instances in Table 6.2.

Finally, we conclude from the results that S = 50 achieves both in-sample and out-

sample stability for the stochastic programming model under study.

Instance No. No. of Suppliers No. of Customers Demand Pairs S In- Sample Gap

1 10 10 50 50 0.41%

2 10 10 50 60 0.10%

3 10 10 50 70 5.94e−5%

4 10 10 50 80 0.36%

5 10 10 50 90 2.44e−5%

6 10 10 50 90 0.14%

7 10 20 100 50 0.24%

8 10 20 100 60 0.61%

9 10 20 100 70 0.48%

10 20 20 100 80 7.31e−5%

11 20 20 300 50 6.28e−5%

12 20 50 300 50 0.15%

13 20 50 500 50 6.43e−5%

14 50 50 500 50 0.19%

Table 6.1: In-Sample Stability Testing
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Instance

No.

No. of

Suppliers

No. of

Customers

Demand

Pairs
S

Out-Sample

Gap

1 10 10 50 20,000 1.02e−4%

2 10 20 100 20,000 1.86e−5%

3 20 20 100 20,000 1.42e−4%

Table 6.2: Out-Sample Stability Testing

6.3 Numerical Testing

6.3.1 Valid Cut 1

We test the performance of valid cut 1 over multiple instances of varying sizes and compare

it to the performance of CPLEX and the integer L-shaped method. We conduct some

analysis on the effects of changing the penalty cost (π) and the number of scenarios in the

MP (S̄). Note that the instance number reflects its size. For example, instance number

s5 c5 d20 sc20 1 is of size 5 suppliers, 5 customers, 20 supplier-customer demand pairs,

and 20 scenarios.

Effects of Changing Penalty Cost and Number of Scenarios in MP

Numerical testing has been completed to study the effect of changing the penalty cost

(π) as well as the number of scenarios maintained in the MP (S̄) for valid cut 1, the L-

shaped method and CPLEX. Table (6.3) summarizes the results of the testing for the case

of partial decomposition with 10 scenarios maintained in the MP (S̄ = 10) for both the
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L-shaped cut and valid cut 1. Also, the comparison includes varying the penalty cost of

purchasing extra capacity to be in the between [100,1000].

It can be observed from Table (6.3) that valid cut 1 does not outperform the L-shaped

cut for most cases. That is likely due to the fact that for each subproblem at each iteration,

two IP’s are solved for the valid cut 1 to be computed, while only one is solved for the

integer L-shaped cut. To further analyze this, Table (6.4) also varies the penalty cost and

the number of scenarios maintained in the master problem and shows the percentage of

time that valid cut 1 is used in each case. Recall from Algorithm (3) that the computed

value δs is only used if it is greater than the value Ls−zs. In other words, if the value δs is

less than or equal to the value Ls − zs, the resulting cut would be the L-shaped cut. As a

result, keeping track of the percentage of time that valid cut 1 is used in the algorithm could

clarify why, in many instances, the algorithm performs worse than the L-shaped cut. It can

also be noted from the results in Table (6.4) that as the number of scenarios maintained

in the MP increases, the percentage of valid cut 1 used in the algorithm decreases. That

can be justified by pointing out that as you maintain more scenarios in the MP, the MP

starts off closer to the original problem than it would be with a smaller set of scenarios,

and therefore, it would reach a good solution sooner.

Likewise, as the penalty cost (π) increases, the percentage of time valid cut 1 is used

in the algorithm decreases. This is because naturally as the penalty cost of purchasing

extra capacity increases, the model would prefer to use less extra capacity and open more

transportation options and therefore most of the shipments would be allocated to first

stage transportation options (xiq, yjl) .
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Instance No. Penalty Cost CPLEX Gap Valid Cut 1 Gap L-Cut Gap

s5 c5 d20 sc20 1 100 0.00% 5.20% 3.05%

s5 c5 d20 sc20 1 300 0.00% 5.15% 3.66%

s5 c5 d20 sc20 1 500 0.00% 3.21% 3.16%

s5 c5 d20 sc20 1 1000 0.00% 0.07% 0.00%

s5 c5 d20 sc20 2 100 0.5% 0.00% 2.3%

s5 c5 d20 sc20 2 300 4.36% 0.27% 0.00%

s5 c5 d20 sc20 2 500 0.00% 0.00% 0.00%

s5 c5 d20 sc20 2 1000 0.00% 0.00% 0.00%

s10 c10 d50 sc50 1 100 21.88% 24.49% 13.53%

s10 c10 d50 sc50 1 300 13.17% 22.16% 21.10%

s10 c10 d50 sc50 1 500 16.53% 20.10% 21.12%

s10 c10 d50 sc50 1 1000 15.83% 14.10% 17.06

Table 6.3: Comparing Performance of CPLEX, Valid Cut 1 and L-Shaped Cut. Varying
Penalty Cost (π) with 1 Hour Time Limit

6.3.2 Comparing the Performance of Valid Cuts

We test the performance of valid cuts 1, 2, 3A and 3B over multiple instances and compare

it to the performance of CPLEX and the integer L-shaped method. Table 6.5 does some

initial comparison of performance of valid cuts 1, 2, and 3A with CPLEX and the integer

L-cut. Recall that solving two IP’s for each subproblem at every iteration when computing

the value δs in valid cut 1 slows down the algorithm and negatively affects its overall

performance. Additionally, computing the maximum improvement δsiq, δ
s
jl in valid cut 2

independent of the other side of the network as well as relaxing the capacity restrictions
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result in making the cut relatively weak. This can be noticed in the results of Table 6.5 as

valid cut 3A outperforms valid cuts 1 and 2 for most cases.

Table 6.6, compares the performance of valid cuts 3A and 3A with 3B, to that of

CPLEX and the L-cut with a 2-hour time limit. We notice that the addition of valid cut

3B to valid cut 3A results in better optimality gaps for some instances. However, when

taking the average over multiple instances of the same size, we see that the addition of

valid cut 3B does not always result in a better gap. Furthermore, the results also show

that the performance of the proposed cuts 3A and 3B is somewhat comparable to that

of CPLEX and the Integer L-cut, where in some instances valid cuts 3A and 3B result

in a smaller gap in the given time limit, while for other instances, the CPLEX or L-cut

outperform cuts 3A and 3B.

We can also infer from the results that cuts 3A and 3B show some promising research

direction. Though they do not outperform the L-cut in all cases, this is due to the fact

that at a single iteration for a specific subproblem, the number of optimality cuts of our

proposed algorithm are a lot higher than the L-cut, which results in the algorithm going

through a fewer number of iterations in the 2-hour time limit as compared to the L-cut

algorithm. Additionally, the high number of cuts generated at every iteration results in

making the MP harder to solve, which could make the algorithm more computationally

demanding.
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Instance No.
CPLEX

Gap

Valid Cut

1 - Gap

Valid Cut

2 - Gap

Valid Cut

3A - Gap

L-Cut

Gap

s5 c5 d20 sc5 0% (150 s) 0% (142 s) 0% (58 s) 0% (161 s) 0% (57 s)

s5 c5 d20 sc20 1 0.00% 3.21% 2.81% 2.57% 3.16%

s5 c5 d20 sc20 2 0.00% (3215 s) 0.00% 0.50% 0.40% 1.41%

s5 c5 d20 sc20 3 11.00% 11.55% 9.00% 5.35% 11.12%

Table 6.5: Comparing the Performance of CPLEX, Valid Cuts 1, 2, and 3A, and the
L-Cut with 1-Hour Time Limit

In the next chapter, we conclude the findings of our research and propose some modi-

fications of our problem for future research.
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Instance No. Gap CPLEX
Gap Valid

Cut 3A

Gap Valid Cut

3A & 3B
Gap L-cut

s5 c5 d20 sc20 1 (S̄ = 5) 0.00% 3.09% 1.97% 3.94%

s5 c5 d20 sc20 2 (S̄ = 5) 0.00% 0.01% 0.07% 0.003%

s5 c5 d20 sc20 3 (S̄ = 5) 9.544% 0.44% 4.83% 8.09%

Average 3.18% 1.18% 2.29% 4.011%

s10 c10 d50 sc20 1 (S̄ = 10) 7.59% 12.28% 10.51% 11.86%

s10 c10 d50 sc20 2 (S̄ = 10) 13.77% 14.00% 13.62% 16.19%

s10 c10 d50 sc20 3 (S̄ = 10) 11.22% 7.73% 9.47% 7.72%

s10 c10 d50 sc20 4 (S̄ = 10) 6.80% 12.64% 8.58% 11.86%

s10 c10 d50 sc20 5 (S̄ = 10) 14.07% 14.00% 14.00% 15.89%

s10 c10 d50 sc20 6 (S̄ = 10) 10.05% 8.39% 9.47% 7.72%

s10 c10 d50 sc20 7 (S̄ = 10) 7.08% 8.20% 8.20% 9.41%

s10 c10 d50 sc20 8 (S̄ = 10) 10.77% 8.05% 8.02% 11.00%

Average 10.17% 10.66% 10.23% 11.46%

s10 c10 d50 sc50 1 (S̄ = 20) 11.39% 11.48% 11.34% 14.07%

s10 c10 d50 sc50 2(S̄ = 20) 10.17% 14.91% 14.39% 14.79%

s10 c10 d50 sc50 3 (S̄ = 20) 16.75% 17.40% 16.72% 17.07%

s10 c10 d50 sc50 4 (S̄ = 20) 11.18% 12.87% 14.13% 14.26%

s10 c10 d50 sc50 5 (S̄ = 20) 20.82% 23.83% 24.33% 21.93%

Average 14.06% 16.10% 16.18% 16.42%

Table 6.6: Comparing the Performance of CPLEX, Valid Cuts 3A, 3B and the L-cut with
2-Hour Time Limit
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Chapter 7

Conclusion and Future Work

This thesis studies a distribution planning problem with consolidation in a stochastic pro-

gramming setting. The assumption of stochastic demand extends the deterministic prob-

lems in the literature to account for demand fluctuations. We study the problem from

the point of view of a 3PL, who needs to decide on a set of transportation options for

each supplier and customer in the network to reserve for a given period of time, subject to

stochastic demand. We therefore formulate the problem as a two-stage stochastic program-

ming model, where the choice of transportation options are the stage one variables. The

second stage variables, on the other hand, represent the allocation of orders to available

transportation options as well as purchasing extra capacity by shipping orders through a

spot-market carrier, at a higher transportation cost.

Because of the high computational demand of the problem, we apply the integer L-

shaped method to decompose it. To speed up the convergence of the algorithm, we apply

three algorithm enhancement techniques. Additionally, we experiment with three valid cuts

with the goal of generating stronger cuts than the L-cut, in order to increase the efficiency
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of the algorithm. The valid cuts are based on the idea of estimating the impact of making

a transportation option available on the subproblem objective function value. We perform

a number of numerical tests and compare the performance of our proposed algorithm with

valid cuts, with that of CPLEX and the L-shaped cut. We focus on valid cuts 3A (Eq.

5.15) and 3B (Eq. 5.20) as they are shown to provide tighter gaps as compared to valid cuts

1 and 2 (Eq. 5.10 and 5.11 respectively). Numerical results suggest that the performance

of our proposed algorithm with valid cuts 3A and 3B is comparable to that of CPLEX and

the L-cut. Upon further investigation, we notice that even though valid cuts 3A and 3B

are stronger than the L-cut, because of the high number of cuts the algorithm generates

at every iteration, with a given time limit, our algorithm does not always outperform the

L-shaped algorithm. This is because in a 2-hour time limit, the L-shaped algorithm goes

through more iterations than our proposed algorithm with valid cuts 3A and 3B.

There is a number of possible future research directions. We notice that calculating the

values of δ in our valid cuts, while relaxing capacity requirements, is contributing to the

weakness of the cuts. Therefore, efficient greedy heuristics may be developed to calculate

tighter values of δ that are close to the optimal values. Furthermore, additional numerical

analysis may be conducted, while varying key parameter values, to better understand what

is causing the problem to be hard to solve. Additionally, varying the penalty cost (π) to

make it a function of the particular arrival/dispatch time q or l, and also allowing it to vary

by scenario is an interesting estimate that accounts for natural fluctuations in spot market

prices. Finally, limiting the number of transportation options available for each customer

order based on the dispatch time from the consolidation center, i.e. creating some due date

requirements for customer orders based on when the orders leave the consolidation center,

is a reasonable assumption that would create sparsity in the problem. This, in turn, may

reduce the computational difficulty of our problem.
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Appendix A

Formulation 1 Numerical Testing

A.1 Solving Directly with CPLEX

Model 4.1 was tested on several problem instances of varying sizes. Table A.1 summarizes

the results of running 10 instances of the size 10 customers, 10 suppliers, 50 demand pairs

and 50 scenarios for a maximum of a 2-hour time limit. It compares the performance of

the model when solved as-is with binary u and w variables, and when we relax u and w

variables to be continuous and solve using default CPLEX settings, and computes the gap

between objective function value of the original model with that of the relaxation.

Additionally, Table A.2 shows the result of solving the 10 instances for a time limit of

2 hours, with the original formulation, with the relaxed u and w variables using default

CPLEX settings, and with the relaxed u and w variables using CPELX built-in Benders

Strategy. It can be noted that CPLEX Benders Strategy outperforms the default settings

for our problem for most of the instances.

Next we compare the performance of the original model with that of the relaxation
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using CPLEX Benders Strategy in Table A.3 and calculate the percentage of u and w

variables that have binary values in the solution of the relaxation. We notice that for all

instances, most u and w variables end up having binary values in the solution which results

in a small optimality gap between the relaxation and the original model. However, upon

careful examination of those instances, it appears that for most suppliers and customers in

the network, the total demand of all orders for a given supplier/customer is less than the

capacity of a single transportation option and therefore resulting in the model choosing

most u and w allocation variables close to 1 or 0 even when those variables are relaxed,

and the optimality gap being small between the original model and the relaxation. This

is, therefore, a special case of the model that occurred because the parameters used in

the model were generated using the first proposed data generation method explained in

Section 3.3, and for that reason, we adjusted the data generation method, as outlined in

Section 6.1, for the computational testing of Model 4.2.

Thus, for the case when the total demand of a given supplier/customer exceeds the

capacity of a single transportation option and multiple options are needed, solving the

relaxed model with continuous u and w variables would result in u and w allocation

variables being assigned fractional numbers, which in turn would increase the optimality

gap between the relaxation and the original model.
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Instance No.
Total Demand of

All Products

Gap Binary u,w

(Default Options)

Gap Relaxed u,w

(Benders Strategy)

Gap Relaxed u,w

(Default Options)

1 109 0% (3929 s) 0% (35 s) 0% (112 s)

2 127 1.21% 0.45% 0.76%

3 81 0% (335 s) 0% (1,904 s) 0% (2,041 s)

4 99 0.17% 0% (477 s) 0% (919 s)

5 110 0% (3902 s) 0% (27 s) 0% (43 s)

6 109 0.3% 2.72% 1.9%

7 106 0% (3768 s) 0% (170 s) 0% (775 s)

8 113 0% (3865 s) 0% (5,257 s) 0.78%

9 92 0% (150 s) 0% (20 s) 0% (34 s)

10 103 1.5% 1.29% 1.44%

Table A.2: CPLEX Performance - Original Model vs. Relaxation with Continuous u and
w Using Default CPLEX Settings and Benders Strategy
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