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Abstract

Personal subjective opinions are one of the most important assets in management.
Prediction markets are mechanisms that can be deployed to elicit and aggregate a
group of people’s opinions regarding the outcome of future events at any point in time.
Prediction markets are exchange-traded markets where security values are tied to the
outcome of future events. Prediction markets are systematically designed in a way
that that their market prices capture the crowd’s consensus about the probability of a
future event. Corporations harness internal prediction markets for managerial decision
making and business forecasting. Prediction markets are traditionally designed for
large and diverse populations, two properties that are not often displayed in corporate
settings. Therefore special considerations must be given to prediction markets used in
corporations.

Our first contribution in this thesis is in addressing the issue of diversity, in the
sense of risk preferences, in corporate prediction markets. We study prediction markets
in the presence of risk averse or risk seeking agents that have unknown risk preferences.
We show that such agents’ behavior is not desirable for the purpose of information
aggregation. We then characterize the agents’ behavior with respect to prediction
market parameters and offer a systematic method to market organizers that fine tunes
market parameters so at to best mitigate the impact of a pool agents’ risk-preferences.

Our Second contribution in this thesis is in recommending prediction market
mechanisms in different settings. There are many prediction market mechanisms with
various advantages and weaknesses. The choice of a market mechanism can heavily
affect the market accuracy and in turn, the success of a managerial decision, or a
forecast based on prediction markets’ prices. Using trade data from two real-world
prediction markets, we study the two main types of prediction markets mechanism and
provide the much-needed insight as to what market mechanism to choose in various
situations.
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Chapter 1

Introduction

Managers and practitioners can utilize employees’ opinion and probabilistic estimates

to make better decisions and generate more accurate forecasts, than when employees’

perspectives are not considered. From the chance of meeting a project’s deadline (Or-

tner 1998) to the quality of a new software program (Cowgill and Zitzewitz 2015),

employees’ collected wisdom can improve any managerial decision. The need for

opinion aggregation and the inability of conventional mechanisms has led corporations

to harness internal prediction markets to collect the wisdom of the crowd (Surowiecki

2005, Arrow et al. 2008).

Prediction markets are mechanisms that involve the purchase and sale of securities

with outcome-contingent payoffs. Prediction markets are designed to aggregate traders’

opinions, also called beliefs, while simple inference can be made regarding the crowd’s

consensus by simply monitoring the market prices (Wolfers and Zitzewitz 2004).

The use of prediction markets in decision makings can lead to significant gains/saving
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in corporations (Arrow et al. 2008, Tziralis and Tatsiopoulos 2012), which according

to one estimate (Christiansen 2009) can exceed millions of dollars. Prediction markets

are expected to evolve and grow, centering on better predictions and new applica-

tion areas (Shrier et al. 2016). Practitioners have envisioned prediction markets as

tools that remake collective decision making, and thus reducing the number of poor

decisions (Hanson 2017).

Corporations use prediction markets internally in decision making and forecasting

applications, we refer to these prediction markets as corporate prediction markets (Ar-

row et al. 2008, Cowgill and Zitzewitz 2015). Prediction markets are often designed

for large and diverse groups (Surowiecki 2005, Wolfers and Zitzewitz 2004). The idea

behind large groups is to ensure a liquid market and the diversity ensures that the

market participant would be correcting each others biases. Large populations and di-

versity are not often observed in general corporate settings, thus special considerations

must be given to the design of corporate prediction markets. In this introduction, we

outline two problems regarding the design of corporate prediction markets.

Problem 1 The impact of risk-averse and risk-seeking traders in prediction

markets.

In recent times some media outlets are stating that prediction markets are

failing (Ledbetter 2008, D.R. 2016). Besides the natural argument that prediction

markets provide probability estimates for the event and not a deterministic

estimate, popular media provides arguments such as cognitive biases, lack of

liquidity, low stakes, and slow to react to events as reasons behind prediction

market failure. These may all be viable reasons, but one reason not mentioned
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is risk bias that induces rational individuals to change their trading behavior in

prediction markets due to their risk preferences. Due to the small number of

participants, risk bias may be an issue in corporate prediction markets (Cowgill

and Zitzewitz 2015). We analyze the behavior of risk-averse and risk-seeking

agents in prediction markets. We show that such agentsâĂŹ may not reveal their

exact opinion and their trading bahvior often deviates from the ideal scenario

that a central market organizer expects. We then analytically characterize

agents’ trading behavior as a function of prediction market parameters and offer

solutions to market organizers to be able to tune the market parameters to

restrain agents’ behavior.

Problem 2 Subsidized Versus Unsubsidized Prediction Markets.

Many market organizers employ traditional mechanisms to handle buying and

selling shares. Such mechanisms are often peer-to-peer where agents trade with

each other. One of the main advantages of peer-to-peer market mechanisms is

that they are costless. Such markets can successfully elicit and aggregate agents’

opinion so long as the market consists of a large group of traders (Hanson 2003,

Milgrom and Stokey 1982), however, when the number of trades is low, these

markets face various issues concerning belief aggregation. Subsidized prediction

markets are designed to circumvent the negative issues of peer-to-peer markets

in situations where the trade frequencies might be low (Hanson 2003, Dimitrov

et al. 2015). Subsidized prediction markets provide subsidy in the shape of a

central market maker where agents trade with, as opposed to agents trading

with each other. Subsidized prediction markets, however, are not cost-free and
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require an endowment to operate (Hanson 2003). We use an empirical framework

to compare various prediction market mechanisms, using real-world market price

data. We provide recommendations to market organizers as to what mechanism

to choose in different situations.

1.1 Contributions

The contributions of this dissertation are:

Problem 1 Considering binary outcome space:

We prove that there exists no incentive compatible deterministic Market

Scoring Rule (MSR) prediction market, a form of subsidized prediction

markets we consider in this thesis, for agents with unknown, yet bounded,

risk preferences. We introduce the notion of an agent’s deviation in a

prediction market. We present the necessary and sufficient conditions of

the structural properties of two MSRs such that one MSR yields lower

deviation relative to another MSR for all agents in a population. We

present the relationship between deviation and liquidity for cost-function

market makers, defined in Section 2.3, using two different measures of

liquidity, namely inverse liquidity and market depth (Chen and Pennock

2007, Abernethy et al. 2014). We show that for each MSR in a family

of MSRs, higher (lower) deviation implies higher (lower) liquidity. Using

our derived relationship between deviation and liquidity, we present an

optimization problem that market orginizers may use to determine the
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desired liquidity when running a subsidized prediction market.

Considering any finite space:

We expand the literature of belief elicitation mechanisms to introduce the

concept of dominance, Definition 1, to draw comparisons between two

arbitrary MSRs. We show that the classical intuition behind agents’ belief

and their report (Kadane and Winkler 1988, Murphy and Winkler 1970)

cannot be generalized to any finite outcome space beyond binary spaces.

We introduce the concept of flatness in prediction markets. We expand the

literature of MSRs and risk-aversion by showing a relationship between

flatness and dominance in any finite outcome space. We further present a

relationship between flatness and liquidity for cost-function market makers.

We show that our derived relationship between flatness and liquidity can

be used by market organizers to determine a suitable amount of liquidity

when running a subsidized prediction market.

Problem 2 We provide the much-needed insight for prediction market operators when deter-

mining if they should run a subsidized or unsubsidized prediction market. The

current literature on prediction markets suggests using subsidized prediction

markets when the number of trades is small (Chen and Pennock 2010, Hanson

2003). Our empirical study supports this idea. We show that when the number

of trades is less than 310, then a subsidized market aggregates information faster

than a prediction market that is not subsidized with 95% confidence. Moreover,

we show that when both subsidized prediction markets and unsubsidized pre-

diction markets aggregate traders’ belief simultaneously, subsidized prediction
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markets require a lower number of trades compared to unsubsidized prediction

markets. Our results can help a growing number of managers and practitioners,

that are using prediction markets, choose the suitable mechanism based on their

needs and expected trade volume.

1.2 Outline of the Dissertation

In Chapter 2, we describe the main concepts and terminologies needed in this disser-

tation. In Chapter 2 we introduce prediction markets and give a detailed summary of

the current related works. Furthermore, we define the concept of dominance in MSR

prediction markets which extend the current literature and enables a direct comparison

between two arbitrary MSRs. Chapter 3 details the impact of risk preferences in

binary prediction markets. In Chapter 4 we discuss the limitation of the binary results

derived in Chapter 3 and set a new analytical framework to generalize the study of

risk-aversion in prediction markets to any finite outcome space. Chapter 5 details our

empirical study that enables comparison between prediction market mechanisms from

an information aggregation point of view. In Chapter 6, we conclude by presenting a

summary of out contributions and we leave the reader with a list of our future work.
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Chapter 2

Background and Related Work

Large groups of people are collectively smarter than individual experts when it comes

to decision making, innovating and predicting (Surowiecki 2005). The superiority of

the collective intelligence over individual decision makers is not a new observation.

In the famous essay, The Use of Knowledge in Our Society (Hayek 1945), the Nobel

laureate Fredrik Hayek explains how individual decision makers are unable to efficiently

allocate resources because regardless of their expertise, they would never have all

the information required to make better decisions. Hayek (1945) argues that pricing

methods, (e.g. stock markets), which reflect the collective knowledge of individuals

are a much better approach for performing resource-allocation decisions. Hayek (1945)

refers to mechanisms which signal the value of a resource through numerical indices,

e.g. stock market prices, as “mechanisms for communicating information”. These

information-communication mechanisms are platforms that collect and aggregate

individuals’ information. Other than resource allocation, prediction is another task in
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Figure 2.1: A prediction market running on the outcome of 2017 German Chancellor
election (source: predictit.com).

which large groups of people outperform individuals. But what mechanism can express

individuals’ information in terms of numerical indices? The answer is Prediction

Markets.

Prediction markets are similar to financial markets in that they have assets with

values contingent on the outcome of future events (Wolfers and Zitzewitz 2004).

Figure 2.1 is an example of an online prediction market about the outcome of the

2017 German Chancellor election. The market displayed in Figure 2.1 is selling

multiple securities with their values corresponding to the outcome of the future

event, the outcome of the German Chancellor election. For instance, the security

“MERKEL.CHANCELLOR.GERMANY.2017” is paying $1 for every share, if can-
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didate Angela Merkel wins the 2017 election and nothing otherwise. As the Merkel

security, at the time of taking the snapshot of the market, traded at $0.88, assuming

traders are risk-neutral, we interpret the likelihood of Merkel winning the election as

0.88. Practitioners extend this idea further, by saying that prediction market prices

represent the aggregated opinions of all traders in the market up to that point in time

Wolfers and Zitzewitz (2004), Surowiecki (2005).

Firms also use prediction markets as a management tool to elicit employees’ beliefs

on the outcome of a future event by incentivizing employees to provide probability

estimates. Schlack (2015), Filios (2016) argue that prediction markets are a form of

predictive analytics for scenarios with no historical data available. Prediction markets

have successfully been used in project management (Ortner 1998), new product sales

and development (Plott and Chen 2002) and disease spread forecasting (Polgreen et al.

2007), just to name a few examples. Prediction markets are also used privately within

corporations. Prediction markets appear in corporations like General Electric, Google,

Hewlett-Packard, IBM, Intel, Microsoft, Siemens, and Yahoo! (Arrow et al. 2008).

There is a broad range of literature on prediction markets’ accuracy, information

elicitation and information aggregation. Tziralis and Tatsiopoulos (2012) provide a

literature review on prediction markets’ history and success, as well as challenges that

prediction markets face. Prediction markets’ performance and information aggregation

capabilities are widely studied in application areas such as politics (Mellers et al. 2015,

Atanasov et al. 2016, Chen et al. 2008, 2004), economics (Ostrovsky 2012), finance

(Bossaerts et al. 2002, Palfrey and Wang 2012), health (Polgreen et al. 2007), and

corporations (Cowgill and Zitzewitz 2015, Csaszar and Eggers 2013, Arrow et al. 2008,

Healy et al. 2010, Berg et al. 2009). Prediction markets advances are based on the
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scientific foundation of the efficient market hypothesis (Wolfers and Zitzewitz 2004,

Fama 1970). As Wolfers and Zitzewitz (2004) explain: “In a truly efficient prediction

market, the market price will be the best predictor of the event and no combination of

available polls or other information can be used to improve on the market-generated

forecasts.” Prediction markets are known to provide good, if not better, forecasts

related to other means of prediction (Arrow et al. 2008, Wolfers and Zitzewitz 2004).

There are two general types of prediction markets: subsidized and unsubsidized.

In an unsubsidized prediction market, USPM hereafter, traders exchange contracts

with each other. USPMs require no cost to run. Moreover, market administrators

can also make a profit by charging participant a small percentage of their winnings,

something observed in practice (Luckner et al. 2011). USPMs are shown to produce

accurate forecasts when the number of trades is high. However, when trading volume is

small, USPM’s prices are often highly volatile and non-indicative of market consensus.

Subsidized prediction markets, SPMs hereafter, are alternatives to USPMs that perform

well regardless of the volume of trades. SPMs, however, are not costless and require a

market maker to facilitate trade within the market.

Prediction markets use different mechanisms to handle trades and satisfy buy/sell

orders. The two most common mechanisms to run a prediction market are Continuous

Double Auctions, CDAs hereafter, and Market Scoring Rules, MSRs hereafter, in which

the former is an USPM mechanism and the latter is a SPM mechanism. Due to their

similarities to financial markets, CDAs are arguably the most natural choice to run a

prediction market. CDAs match buyers and sellers for each security. A buyer (seller)

purchases selling (buying) orders where the order price is referred to the bid (ask)
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price. CDAs execute all feasible orders by matching buyers to sellers with bid prices

higher than ask price, with all other orders placed in an order book. The current

price of an asset in a CDA prediction market is determined by the price of the most

recently executed trade. The difference between the highest bid and the lowest ask

price is also referred to as the bid-ask spread (Pennock 2004). CDAs are shown to be

efficient and reliable in settings in which there are a large amount of trades and traders’

population is diverse in their beliefs and risk preferences (Wolfers and Zitzewitz 2004,

Hanson 2003, Luckner et al. 2011). However, when there is a low number of trades,

the CDA market prices are often prone to two main issues. First, as the number of

trades diminishes, CDA market prices do not represent the current consensus and

become highly volatile (Bossaerts et al. 2002). Second, when the bid-ask spread is

high, some traders may not reveal their information because they cannot profit from

it (Milgrom and Stokey 1982). The former issue is being referred to as thin market,

and the latter is classified as a no-trade situation. Both of these problems are very

common in small corporate settings where the number of trades may not be large,

and the loss of an individual’s information may be costly (Cowgill and Zitzewitz 2015,

Horn and Ivens 2015). Hanson (2003) introduces MSRs as an alternative platform

that enables information aggregation and elicitation even in thin markets. MSRs

are derived from proper scoring rules. A proper scoring rule is a mechanism that

provides incentives to promote honest probabilistic forecasts. Proper scoring rules

are capable of eliciting a single agents belief. MSRs can elicit a group of agents’

belief, and aggregate those beliefs into a single estimate that is the MSR prediction

market’s current price. MSRs were later generalized into a broader class of automated

market makers called cost-function market makers (Chen and Pennock 2007, Chen
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and Vaughan 2010). More suitable than CDAs, MSR prediction markets accurately

capture the market information, even in thin markets (Hanson 2003). The key is using

subsidy and creating an automated market maker for traders to trade with, as opposed

to traders trading with each other. MSRs have zero bid-ask spreads; and are not

susceptible to thin markets, or no-trade issues. The current understandings of subsidy

in prediction market is: CDAs are reliable when a large number of trades is expected,

and MSRs are utilized when there are concerns over issues such as thin markets and

no trade situations. Given the fact that CDAs are costless, and potentially profitable,

and MSRs are costly and need an initial endowment to run, we would like to address

the following question. What is the number of trades needed for a MSR to outperform

a CDA? In Chapter 5, we compare MSRs and CDAs in an empirical setting to answer

this question.

Due to their capability of dealing with smaller populations and circumventing

no-trade situation, MSRs are suited for corporate settings where the number of trades

may not be large, and the loss of an individual’s information may be costly (Cowgill

and Zitzewitz 2015, Horn and Ivens 2015). MSRs however, are not perfect. In fact

the result of Hanson (2003) that indicates a MSR can elicit an agent’s belief is based

on the assumption that all agents are risk neutral. The underlying assumptions of

MSRs are similar to proper scoring rules that assume agents are risk neutral and

myopic. Therefore, we analyze the impact of risk preference on agent’s behavior in

MSR prediction markets in Chapter 3, and Chapter 4.

The rest of this chapter details the theoretical concepts of this dissertation. We

start with introducing scoring rules in Section 2.1 and explain how MSRs are derived
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from scoring rules. A summary of the literature on risk in MSRs is presented in

Section 2.2. In Section 2.3, we present the related work on cost-function market makers

along with most recent findings involving MSR prediction markets and liquidity.

2.1 Scoring Rules and Market Scoring Rules

Brier (1950) introduced the quadratic proper scoring rule as a reward mechanism

designed to induce truthful reporting from weather forecasters. Proper scoring rules

were later generalized to include a larger class of functions applied to subjective

probability elicitation (Good 1952, Winkler 1969, Savage 1971, McCarthy 1956).

Formally, a scoring rule is a function S(·) : ∆N−1 × Ω 7→ R, where Ω = {1, 2, · · · , N}

is the discrete outcome space of a future event represented by a random variable ω,

and ∆N−1 is the N − 1-simplex. Consider a prediction market designed to elicit a

set of myopic, expected-utility-maximizing agents’ beliefs on ω ∈ Ω. An incentive

compatible scoring rule is called a proper scoring rule. In other words, a scoring rule

S(·) is proper for a risk neutral agent, when the following is satisfied:

∀q ∈ ∆N−1 : Ep[S(p, ω)] ≥ Ep[S(q, ω)], (2.1)

where p is the individual forecaster’s belief on ω, and

Ep[S(q, ω)] ,
∑
ω∈Ω

qωS(q, ω), (2.2)

is the expected score of reporting a feasible report of q. A scoring rule is called strictly
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proper when it satisfies (2.1) strictly, whenever q 6= p.

For example, the following scoring rule, called the Quadratic scoring rule (Brier

1950), is strictly proper:

S(q, ω) = 2qω −
∑
ω∈Ω

q2
ω.

Another example of a strictly proper scoring rule is Spherical scoring rule (Gneiting

and Raftery 2007, Savage 1971, McCarthy 1956)

S(q, ω) = qω√∑
i∈Ω q2

i

Another popular class of strictly proper scoring rule is logarithmic scoring rule (Savage

1971, McCarthy 1956), defined as follows:

S(q, ω) = ln (qω) .

We can verify that if the score function S(·) is strictly proper, then the function b S(·)

is also strictly proper for any given positive scalar b. In general if S(·) is strictly

proper, then any affine transformation of S(·) is also strictly proper. However, the

shifting factor of an affine transformation has no effect on the properties that we are

interested in this thesis. We say two scoring functions are from the same family, if

one is a positive scalar of the other. Moreover, a strictly proper scoring rule S(q, ω) is

strictly increasing in qi for ω = i, and non-increasing in qi for ω 6= i (Gneiting and

Raftery 2007, Schervish 1989).

MSRs are derived from proper scoring rules and are used to elicit the belief of each

individual in a group and aggregate the group’s beliefs into a single estimate (Hanson
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2003). A MSR takes two sequential reports, q(t) and q(t−1), and the observed outcome

to determine the score of each agent’s report. Similar to Hanson (2003), we define the

MSR functions as follows: an agent who reports q(t), at step t ≥ 1, will receive:

MSR(qt,qt−1, ω) = S(qt, ω)− S(qt−1, ω), (2.3)

where S(·) is a proper scoring rule and q(t−1) is the previously submitted report. The

initial report, q(0), is made by the market maker and is referred to as the market’s

initial estimate. Similar to proper scoring rules, in a MSR, a risk-neutral, myopic, and

expected utility-maximizing individual reports truthfully. That is:

p ∈ arg max
q(t)∈∆N−1

Ep

[
MSR

(
q(t),q(t−1), ω

)]
(2.4)

where p is the agent’s belief on ω. A MSR is strictly proper if it is proper and p in

(2.4) is unique. Since MSRs are derived from scoring rules, if X(·), the underlying

scoring rule of a MSR, X , is strictly proper then we also get:

∀i, j ∈ Ω,∀r(0) ∈ ∆Ω−1 :



∂
∂qi
X
(
q, r(0), j

)
> 0 : j = i

∂
∂qi
X
(
q, r(0), j

)
≤ 0 : j 6= i

. (2.5)

We say two MSRs are from the same family, if their underlying scoring functions

are from the same family. To compare two MSRs from the same family to find

out which one provide higher score (lower score), we can easily compare their scale

factors. However, when two MSRs do not belong to the same family we cannot directly

compare their MSR score functions. We provide a new definition that enables a direct
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comparison between two arbitrary MSRs.

Definition 1. (Dominance) Let X , and Y be two MSRs. We say Y dominates X

when the following holds

∀i, j ∈ Ω,∀r(0) ∈ ∆Ω−1



Y
(
q, r(0), i

)
≤ X

(
q, r(0), i

)
≤ X

(
q, r(0), j

)
≤ Y

(
q, r(0), j

)
, qi ≤ r(0)

i

Y
(
q, r(0), j

)
< X

(
q, r(0), j

)
< X

(
q, r(0), i

)
< Y

(
q, r(0), i

)
, qi > r(0)

i

· (2.6)

Intuitively, dominance enables us to compare two given MSRs, not necessarily from

the same family, to deduce which one provides a higher amount of reward or punishment

for any given market estimate. The notion of dominance is adapted from the definition

of dominance in functional analysis. Following the notion of dominance in functional

analysis (Rudin 1991, Chapter 3), (2.6) implies
∣∣∣∣X (q, r(0), j

)∣∣∣∣ ≤ ∣∣∣∣Y (q, r(0), j
)∣∣∣∣ for all

q, r(0) ∈ ∆N−1 and for all j ∈ Ω. Note that if X and Y are from the same family in

which X = bY , where b > 1, X and Y satisfy (2.6).

2.2 Risk Aversion in Scoring Rules and Market

Scoring Rules

Kadane and Winkler (1988) and Murphy and Winkler (1970) show that when a myopic

agent that is not risk neutral, is asked about her belief on the outcome of an event and

is rewarded using a proper scoring rule, she may not report truthfully. Such an agent

may hedge her expected losses by under or over reporting her belief on ω. As shown

by Kadane and Winkler (1988) and also by Lambert (2011), when agent’s preferences
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are known, the scoring rule can be corrected to retain its incentive compatibility.

Following a similar line of thought, Offerman et al. (2009) propose a new mechanism

that includes a two-stage process. In the first stage, individual agents are prescreened,

and their risk preferences are elicited. In the second stage, each agent is scored with a

tailor made proper scoring rule. In contrast, we do not prescreen agents with unknown

risk preferences, in particular, in Chapter 3, and Chapter 4 we propose an online

mechanism, similar to the work of Dimitrov et al. (2015).

2.3 Market Scoring Rules and Cost Function Mar-

ket Makers

In addition to having agents report probability estimates, agents may also buy and

sell shares of securities with values contingent on a future event. For example if

agents are trading on a binary event, E, they trade one or two securities, one “Yes”

security and one “No” security, similar to the concept of binary derivative or binary

options in financial markets. With the “Yes” security having a value of $1 if E occurs,

and $0 otherwise, the “No” security is similarly defined. The process of buying and

selling is considered to be more intuitive to prediction market participants relative

to reporting probability estimates (Chen and Pennock 2007). Chen and Vaughan

(2010), later extended by Abernethy et al. (2013), show that for every given MSR

market maker, there exists a cost-function prediction market, such that the two

markets are equivalent, same prices, reward, etc., and vice versa. In other words,

every MSR prediction market can be transformed into a buying/selling share market
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via a cost-function and for every cost-function prediction market, there exists a MSR

such that an agent’s transactions can be interpreted in terms of reporting probability

estimates.

The new market maker, called a cost function market maker, operates via a cost

function C : RN 7→ R that determines the cost of transactions. In particular, let

s0 = (s01, s02, · · · , s0N) be the current bundle of outstanding shares of all securities for

all mutually exclusive outcomes on a traded event. When an agent enters the market

and changes the outstanding shares to s = (s1, s2, · · · , sN), the agent is required to

pay C(s)−C(s0). The (instantaneous) price for each security ω, given an outstanding

bundle of shares, is also defined by the following partial derivative:

Prω(s) = ∂

∂sω
C(s), ω ∈ Ω.

As defined by Abernethy et al. (2013), a cost function is valid when it satisfies five

properties. Though all five properties must hold for there to be a cost-function for

a given MSR, in this thesis we only require the following three properties, plus an

additional property, to hold for our results:

(path independent) ∀s, s′, s′′ ∈ RN : s = s′ + s′′ =⇒ C(s) = C(s′) + C(s′′),

(price existence) the function C(·) is continuous and differentiable everywhere on RN ,

(no arbitrage) ∀ω ∈ Ω, s ∈ RN : Prω(s) ≥ 0,∑ω∈Ω Prω(s) = 1.

As defined by Abernethy et al. (2013) a valid cost function is defined as a function

C(·) that satisfies the three above properties as well as the following two properties.
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(information incorporation) ∀s, s′,∈ RN : C (s + 2s′)− C (s + s′) ≥ C (s + s′)− C (s)

(expressiveness) ∀p ∈ ∆|Ω|−1, ε > 0,xp := Ep
[
µ(ω)

] : ∃ε > 0,q ∈ ∆|Ω|−1, ||∇C(q)− xp|| < ε.,

in which µ (ω) is the vector of payoffs for each security for outcome ω. Note that we do

not consider the two properties of information incorporation and expressiveness in this

dissertation. Moreover, understanding the two conditions of information incorporation

and expressiveness requires tools and technicalities which we do not cover in this

dissertation. Please see Abernethy et al. (2013) for a complete discussion on the five

properties required for the validity of a cost-function.

The additional property that we require to hold is for the cost-function, C(s),

to be twice differentiable. Abernethy et al. (2013) show an equivalence relationship

between valid cost functions, and Hanson’s MSRs. In other words, there exist a cost

function market maker for a large class of MSRs and vice versa. In particular for a

MSR X , we can find CX (·), the corresponding cost function, by solving the following

problem:

CX (s) = max
q∈∆N−1

sTq −
∑
ω∈Ω

qiX(q, ω). (2.7)

Accordingly the price function is defined as:

PrXω (s) = ∂

∂sω
CX (s) = arg max

q∈∆N−1
sTq −

∑
ω∈Ω

qiX(q, ω). (2.8)
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For instance, the Logarithmic MSR for a binary outcome event:

LMSR(q, r(0), ω) =


b log(q1)− b log(r(0)

1) , ω = 1

b log(q0)− b log(r(0)
0) , ω = 0

in which b is a positive scalar, has the following logarithmic cost function (Chen and

Vaughan 2010):

CLMSR( s︸︷︷︸
(s1,s0)

) = b log
(

exp
(
s1

b

)
+ exp

(
s0

b

))
. (2.9)

Despite the equivalence relation between MSRs and cost function market makers,

some issues are unique to the latter and may not be directly applied to the former.

For instance, the ability to handle limit orders, an order to buy or sell a bundle of

securities at a given price, is one issue that is directly applied to cost function market

makers (Heidari et al. 2015) but has no well-defined equivalence in MSRs. Another

issue that is unique to cost-function market makers is determining the appropriate

amount of liquidity to provide by the market maker.

2.4 Liquidity Measures in Cost-function Prediction

Markets

Regardless of the type of prediction market used, MSR or cost-function, a market

maker must determine how to facilitate trade within the market, especially if the

market is thin. As such, the market market must provide some liquidity in a market.
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We now discuss liquidity, and various measures proposed in the literature. Liquidity

of a market is defined as the market’s price responsiveness to trade. The idea of

liquidity is that: in a more liquid market, larger trade volume is required to change

the market’s price compared to the trade volume that is required in a less liquid

market. Prediction market literature uses the following three approaches to measure

cost-functions’ market liquidity:

- Inverse liquidity (Frongillo et al. 2012, Brahma et al. 2012, Abernethy et al. 2011,

Wah et al. 2016, Abernethy et al. 2014, Slamka et al. 2013, Othman et al. 2013)

Given a base valid cost-function market maker C(·), as defined in Section 2.1,

one can verify that the cost-function:

Cb(s) , b C

(
1
b
s
)
, (2.10)

is a valid cost-function market maker. The parameter b determines the liquidity

of the market. The higher the parameter b, the lower prices change given a fixed

volume of trade. This definition is adopted to compare different cost-function

market makers from the same family. For instance, when two Logarithmic cost-

functions, see (2.9), with different b parameters, CLMSRb1
and CLMSRb2

in which

b2 > b1, are compared; CLMSRb2
is considered more liquid than CLMSRb1

. Given

a base cost-function market maker, a family of cost-function market makers

can be generated using different values of b, and liquidity of each market maker

can be easily measured by simply comparing the market makers’ b parameters.

By definition, inverse liquidity is unable to compare two cost-function market

makers from different families.

21



- Market depth (Chen and Pennock 2007, Li and Vaughan 2013) Given the cost-

function CX (s), a security’s market depth, also known as instantaneous liquidity,

is defined as follows:

ρXω (s) = 1
∂
∂sω

PrXω (s)
(2.11)

in which PrXω (s) is the security ω’s price function, defined in (2.8). Compar-

ing two cost-function market makers’ liquidity using market depth is not as

straightforward as using inverse liquidity. To compare two cost-function market

makers using market depth, one should examine the rate of change in each

market’s prices when both markets have equal prices. Definition 2 describes this

comparison more precisely.

Definition 2. Let CX and CY define the cost-function market makers of the

two MSRs X and Y, respectively. We say CY has more market depth relative

CX when:

∀ω ∈ Ω,p ∈ ∆N−1 : ρCXω (s) ≤ ρC
Y

ω (s′) (2.12)

in which s, s′ ∈ RN such that PrYω (s) = PrXω (s′) = p.

Definition 2 says: the change in price for all possible prices in one cost-function

market maker, CY , must be less than the change in price for the same prices in

another market, CX , for a given security. We note that we compare the depth of

each market to one another for a fixed price, instead of number of outstanding

shares. We use price because for a fixed number of outstanding shares, there may

be different price estimates in two different markets, meaning that the projected

likelihood of the security is not the same in each market. Figure 2.2 illustrates a

comparison of the market depth between three well-known cost function market
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makers.

Figure 2.2: Market depth comparison across three cost functions corresponding to the
three well-known scoring rules with b = 1.

- Bid-ask spread (Abernethy et al. 2013) In theory, cost-function market makers

generate zero bid-ask spread, as traders can purchase infinitely small bundles.

In practice, however, market makers determine a minimum trading unit, say

r, and thus the market bid-ask spread can be defined as follows. For a given

bundle of shares, s, the bid-ask spread is defined as

(
C(s + r)− C(s)

)
−
(
C(s− r)− C(s)

)
, (2.13)

which is the difference between the current cost of buying the r bundle of shares

and the cost at which r could be sold (Abernethy et al. 2013).

In our study, we only use the first two measures of liquidity, inverse liquidity, and

23



market depth. The third measure, bid-ask spread, does not directly apply to our

study. This is because we assume the agents’ beliefs and agents’ reports are probability

distributions in ∆N−1. The concept of a minimum bundle of shares restricts the agents’

report space, something we do not consider in our study, though something worth

exploring in the future.
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Chapter 3

Deviation and Liquidity in Binary

Outcome Space

Recently, a number of popular media outlets state that prediction markets are fail-

ing (Ledbetter 2008, D.R. 2016). Besides the natural argument that prediction markets

provide probability estimates on the event, and not a deterministic estimate, popular

media provides arguments such as cognitive biases, thin markets, low stakes, and

slow to react to events as reasons behind prediction market failure. These may all

be viable reasons, but one reason not mentioned is risk bias that induces rational

individuals to change their behavior (i.e., reported probability estimates) in prediction

markets due to their risk preferences. Due to the small number of participants, risk

bias may be an issue in MSR prediction markets, in particular, in corporate settings.

The impact of risk bias is studied by Dimitrov et al. (2015), in which the authors

show that the reward given in a subsidized prediction market must decrease expo-
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nentially. However, the results of Dimitrov et al. (2015) are contingent on agents’

having unbounded risk preferences, such as an agent who prefers receiving $0.01 for

certain to a lottery that pays $1,000,000 with probability 0.99 and $0 otherwise. Such

agents are not observed in practice (Cox and Harrison 2008), and there is often a

bound on the maximum risk-averse and risk-seeking preferences of a population. In

this chapter, we study the impact of risk bias on agents’ behavior in MSRs, when a

population’s risk preferences are unknown yet bounded. Sethi and Vaughan (2016)

show that the price of a subsidized prediction market with risk-averse traders who are

budget-limited is a good approximation of the agents’ aggregated belief. The result

of Sethi and Vaughan (2016) suggests that characteristics of a subsidized prediction

market, namely liquidity, can be adjusted such that the market organizer can make

better inferences about agents’ beliefs. Abernethy et al. (2014) analytically draw

the connection between a risk-averse agent, with an exponential utility function, and

exponential belief distribution, and a subsidized prediction market’s prices. In their

work, Abernethy et al. (2014) show how a market’s liquidity can be adjusted to alter

the market’s belief elicitation. Abernethy et al. (2014) use inverse liquidity to measure

a market’s liquidity. By definition, inverse liquidity can only compare the provided

liquidity of different market makers from the same family as defined in Section 2.1.

The work of Sethi and Vaughan (2016) and Abernethy et al. (2014) attempt to bridge

the gap in the interpretation of prediction markets’ prices in terms of agents’ beliefs,

and the characteristics of subsidized prediction markets. In this chapter, we extend

this stream of literature in five ways.

Our five extensions of the current literature are as follows. First, we do not make

any assumption on the agents’ belief distribution, for example the work of Abernethy
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et al. (2014) assumed agents’ beliefs are exponentially distributed. Second, we consider

both risk-averse and risk-seeking individuals in our study, not only risk-averse as

is currently assumed. Third, we do not make any assumption about the type of

risk-aversion or risk-seeking utility of agents other than the fact that: an agent cannot

be risk-averse and risk-seeking at the same time, and the risk-aversion/risk-seeking

preference of agents are bounded. Our setting is an extension of those considered in

the literature that in the most general case, only considers risk-averse agents (Sethi

and Vaughan 2016). Fourth, we use two measures of liquidity, inverse liquidity and

market depth, to show that our results are consistent regardless of how the liquidity

is measured, this allows our analysis to be carried across different prediction markets

from varying market maker families, while current literature only considers inverse

liquidiy (Abernethy et al. 2014). Last, we do not consider bounded-budget agents,

and therefore the behavior of an agent considered in our study is the same behavior

exhibited by the same agent in the presence of learning, as considered by Abernethy

et al. (2014), Sethi and Vaughan (2016).

In this chapter, we first show that there is no deterministic prediction market

mechanism that can truthfully elicit the beliefs of agents with unknown, yet bounded,

risk preferences. This result follows from the works of Lambert (2011), Schlag and

van der Weele (2013) that show the same result for proper scoring rules. Fortunately,

a group of papers shows that if probabilistic payment mechanisms are used instead

of deterministic mechanisms (all market scoring rule and cost function subsidized

prediction markets are deterministic mechanisms), then incentive compatibility may

be restored in scoring rules (Allen 1987, Karni 2009). Unfortunately, in practice,

individuals inherently dislike probabilistic payments (Wakker et al. 1997), and we are
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not aware of any probabilistic prediction market mechanisms in use today. It is results

such as Wakker et al. (1997) that motivate us to only consider deterministic subsidized

prediction market mechanisms in this study. As we cannot eliminate risk-bias using

deterministic mechanisms, our only alternative is to minimize risk bias in subsidized

prediction markets. In order to reduce risk bias in subsidized prediction markets, the

market liquidity must also be reduced. In fact, we find the analytical relationship that

exists between risk-bias and market liquidity for the subsidized prediction markets we

consider.

With the analytical relationship between market liquidity and maximum agent

deviation, we address a practical problem that has plagued subsidized prediction

markets for years: “how much liquidity should be provided in a subsidized market?”

This question has until now been answered with what is described by some prediction

market researchers as the “art” of prediction markets (Pennock 2010). Our results

enable practitioners to move out of the realm of “art” and into the realm of science,

by carefully trading off market liquidity with the maximum agent deviation. With

a bound on a population’s risk preferences (Babcock et al. 1993) and our analytical

results, we solve a series of mathematical programs for the Logarithmic MSR (LMSR),

Quadratic MSR (QMSR), and Spherical MSR (SMSR) subsidized prediction markets,

the type of markets used most frequently in practice, to determine the trade-off made

in setting the market liquidity and the maximum agent deviation. It is this trade-off

that a market organizer, the individual interested in running a market, must make

when designing the market. We note that our results generalize to more than just the

LMSR, QMSR, and SMSR prediction markets, and may be applied to any strictly

proper MSR prediction market.
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Managers, practitioners, and prediction market designers will find this work valu-

able in that we propose a systematic method to set up prediction market mechanisms

that elicit probability estimates closer to agents’ beliefs than those used in practice

today, and gain a new understanding of the relationship between agents’ deviation

and prediction markets’ liquidity. More practically, our results on the LMSR may be

used for practitioners to set their market depth to their liking, knowing the maximum

deviation that they may expect from a population of agents.

3.1 Model Set-up

Consider a binary event E, with two possible outcomes in {0, 1}. Let ω represent the

corresponding random variable where ω ∈ {0, 1}. In this thesis, we only analyze the

behavior of myopic agents one at a time and therefore we can focus on two consecutive

reports at a time. Thus we use the similar, but simpler notation of X (r, r0, ω) instead

of X (r(t), r(t−1), ω), where r is the agents report and r0 is the market’s current estimate,

at the time of making report1. An agent with personal belief of p on ω, is asked to

submit her probability estimates denoted by r. When the outcome of the event is

observed, the prediction market rewards according to a market scoring rule function:

X
(
r, r0, ω

)
= X (r, ω)−X

(
r0, ω

)
, (3.1)

1Note that since the outcome space is binary, and we use coherent probabilities, we may use the
variable r, and r0 to represent the tuples like r = (r, 1− r), and r0 = (r0, 1− r0).
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where the strictly proper score function X(·) has the following property:

X : ∆1 × {0, 1} 7→ R is smooth on ∆1 for any given ω. (3.2)

In addition to being myopic and expected utility maximizers, we further assume agents

may be risk-averse or risk-seeking. As for risk preference, we assume agents have a

concave or convex, utility function. We also refer to maximum risk aversion or risk

seeking as to the utility of the most risk-averse or risk-seeking agent. We also assume

such utility function always exist. We assume that the market organizer has a bound

on the Arrow-Pratt measure of the agents risk preferences, but does not know any

individuals’ risk preferences. An agent with a utility function of the form u ∈ U is

rational, and thus maximizes her expected utility given her belief of p on ω. The

set U ⊂ RR is the set of all utility functions that are monotonically increasing, twice

differentiable, and are either convex, representing risk-seeking agents, or concave,

representing risk-averse agents. Such an agent’s expected utility from reporting any

feasible report of q is as follows:

Ep

[
u
(
X (q, r0, ω)

)]
= p u

(
X (q, 1)−X

(
r0, 1

))
+ (1− p)u

(
X (q, 0)−X

(
r0, 0

))
(3.3)

In any strictly proper MSR, a risk neutral agent will report truthfully (i.e., the

utility maximizing report of a risk-neutral agent is the same as her belief). Given a

strictly proper scoring rule X(·), and its corresponding MSR X , we formally define

the expected utility maximizing report of ruX
(
p, r0

)
as:

ruX
(
p, r0

)
, arg max

q∈[0,1]
Ep

[
u
(
X
(
q, r0, ω

))]
. (3.4)
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We note that as we assume all agents are myopic and rational, all reports made by

agents will be those that satisfy (3.4) and we thus refer to all reports adhering to (3.4)

simply as reports. As we show in Section 3.2, for an arbitrary agent with belief p and

a non-linear utility function, the value of ruX (·) almost always differs from p (i.e., an

agent might under or over report her belief). As a consequence, in MSRs, beliefs are

under and over reported. In this chapter, we compare these under/over reporting in

different MSRs and we find necessary and sufficient conditions for a MSR to yield lower

under/over reporting relative to another MSR. Accordingly, we refine our definition of

deviation to be the element-wise difference between an agent’s report and belief.

3.2 Deviation

In this section we show that in presence of agents with unknown and non-linear

utilities, risk averse or risk seeking, no Hanson’s MSRs with deterministic rewards

can be incentive compatible. This result is similar to the work of Lambert (2011)

and Schlag and van der Weele (2013), in which they prove that no proper scoring

rule with deterministic rewards can be incentive compatible. We also note that for

the impossibility result to hold, the assumption of bounded risk-preferences is not

necessary. Our impossibility result is similar to the result of Lambert (2011). Lambert

(2011) shows that when agents’ risk preferences are not known, no scoring rule can

elicit agents’ beliefs. In Lemma 2, we show that when an agent has unknown utility,

concave or convex, no Hanson’s MSR can elicit her belief, unless her belief is identical

to the market’s current estimate. An implication of this finding is that in a MSR,

the market’s current estimate acts as a reference point. That is, if a risk-averse/risk-
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seeking agent with belief of p on ω, participates in a MSR with a current estimate

of r0; the only information that can be extracted from her report is either p = r0,

p < r0, or p > r0. Being able to extract this information is a new finding and was not

explicitly discussed by Lambert (2011). We note that with an affine transformation of

the scoring rules used by Lambert (2011), one may be able to recreate this feature.

As the main focus of this section we analyze an agent’s optimal report in MSRs,

and we find that two or more MSRs may be compared to each other, to conclude

which one provides a better estimate on agents subjective probability estimates. In

other words, which market induces a lower deviation for the same agent for any given

market estimate and any given belief. In Proposition 1, we provide the necessary and

sufficient conditions for a MSR to yield a lower deviation compared to another MSR.

We next present a definition of deviation which we use throughout this dissertation.

Intuitively, deviation may be captured by simply getting the difference of the agent’s

report and her belief.

Definition 3. (Deviation) For a given market estimate, r0, in a MSR X , the following

is defined as an agent’s deviation function of X for any belief and current market

estimate:

FuX
(
p, r0

)
=
∣∣∣∣ruX (p, r0

)
− p

∣∣∣∣ (3.5)

Before deriving the main result of this section, Proposition 1, we need to show

two preliminary results in Lemma 1, and Lemma 2. Lemma 1 shows two properties

that follow from the definition of strictly proper scoring rules and market scoring

rules. Lemma 1 shows that the optimal report for the expected score of a risk-neutral

agent is her belief. Moreover, for a given outcome, say ω = 1, the score of a report is
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monotonically increasing in q.

Lemma 1. Let S(·) be a strictly proper scoring rule.

i)

∀r ∈ (0, 1) : q ∂
∂q
S (q, 1) + (1− q) ∂

∂q
S (q, 0)

∣∣∣∣∣
q=r

= 0. (3.6)

ii)

∀r ∈ (0, 1) : ∂

∂q
S (q, 1) |q=r > 0 and ∂

∂q
S (q, 0) |q=r < 0. (3.7)

Proof. i) The claim in this case follows from the standard properties of strictly

proper scoring rules. A proof has been presented for completeness. Since S(·, ω)

is a strictly proper scoring rule, for given r ∈ (0, 1) we have:

{r} = arg max
q∈[0,1]

Er
[
S (q, ω)

]
.

As S(·) is also smooth, r is an interior maximizer of Er
[
S(·, ω)

]
and therefore is

a stationary point of Er
[
S(·, ω)

]
. That is:

∇
(
Er
[
S(q, ω)

])
= 0 =⇒ ∂

∂q
Er
[
S(q, ω)

]
= 0.

The definition of Er
[
S(q, ω)

]
(2.2) for q = (q, 1− q) ∈ ∆1 gives:

q
∂

∂q
S (q, 1) + (1− q) ∂

∂q
S (q, 0)

∣∣∣∣∣
q=r

= 0,

that proves the claim in part (i).
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ii) We prove the first part of the claim, ∂
∂q
S (q, 1) |q=r > 0, by contradiction; the

second part can be prooven similarly. To the contrary assume ∂
∂q
S (q, 1) |q=y ≤ 0

for some y ∈ (0, 1). Since S(q, ω) is smooth with respect to q, ∂
∂q
S (q, 1) |q=y ≤ 0,

implies that S (·, 1) has a secant with a negative slope, that is:

∃a, b ∈ (0, 1) : 0 < a < y < b < 1, S(b, 1) ≤ S(a, 1). (3.8)

Since S(·) is a strictly proper scoring rule, we have arg max
q∈[0,1]

Ep
[
S(q, ω)

]∣∣∣∣∣
p=1

=

arg maxq∈[0,1] S(q, 1) = 1, that is:

∀q ∈ [0, 1] : S(q, 1) ≤ S(1, 1) (3.9)

(3.8) and (3.9) imply there exists c ∈ (0, 1) : a < c < b such that:

S(a, 1) = S(c, 1). (3.10)

Using strict properness of S(·) again we get:

aS(a, 1) + (1− a)S(a, 0) > aS(c, 1) + (1− a)S(c, 0) , (3.11)

cS(c, 1) + (1− c)S(c, 0) > cS(a, 1) + (1− c)S(a, 0) . (3.12)

By (3.10) we get:
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(3.11) =⇒ aS(a, 1) + (1− a)S(a, 0) > aS(a, 1) + (1− a)S(c, 0) =⇒ S(a, 0) > S(c, 0),

(3.12) =⇒ cS(a, 1) + (1− c)S(c, 0) > cS(a, 1) + (1− c)S(c, 0) =⇒ S(c, 0) > S(a, 0),

which is a contradiction.

Lemma 2 provides a useful relationship between the agent’s report and her belief

that includes the agent’s marginal utility in each outcome. To prove Lemma 2, we

solve for the first order conditions of (3.4) and use Lemma 1 to obtain the relationship

between an agent’s report, her belief, and the market’s current estimate.

Lemma 2. Let ruX , ruX
(
p, r0

)
, be the expected utility-maximizing report, defined

in (3.4), of an agent in the Hanson MSR X , in which p = (p, 1 − p) is the agent’s

belief on ω and r0 = (r0, 1− r0) is the market’s current estimate.

i)

1− p
p

= 1− ruX
ruX

u′
(
X
(
ruX , r

0, 1
))

u′
(
X (ruX , r0, 0)

) . (3.13)

ii)
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(risk averse agent) if u is concave =⇒


p < ruX < r0 : p < r0

p = ruX = r0 : p = r0

r0 < ruX < p : p > r0

·

(risk seeking agent) if u is covex =⇒


p < ruX < r0 : p > r0

p = ruX = r0 : p = r0

r0 < ruX < p : p < r0

·

(3.14)

Proof. i) Since X, the underlying score function of X is smooth, X
(
·, r0, ω

)
is

also smooth, thus ruX is an interior point and it satisfies the first order condition.

That is:

∇

Ep
[
u
(
X
(
ruX , r

0, ω
))] = 0.

By chain rule we get:

p ∂
∂q
X
(
ruX , r

0, 1
)
u′
(
X
(
ruX , r

0, 1
))

+ (1− p) ∂
∂q
X
(
ruX , r

0, 0
)
u′
(
X
(
ruX , r

0, 0
))

= 0.

By definition of a MSR (3.1) we further have:

p ∂
∂q
X (ruX , 1)u′

(
X
(
ruX , r

0, 1
))

+ (1− p) ∂
∂q
X (ruX , 0)u′

(
X
(
ruX , r

0, 0
))

= 0.

Rearrangement gives:

1− p
p

=
∂
∂q
X (ruX , 1)

∂
∂q
X (ruX , 0)

u′
(
X
(
ruX , r

0, 1
))

u′
(
X (ruX , r0, 0)

) . (3.15)
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By a rearrangement of Lemma 1-i, (3.15) can be reduced to the followings:

1− p
p

= 1− ruX
ruX

u′
(
X
(
ruX , r

0, 1
))

u′
(
X (ruX , r0, 0)

) . (3.16)

This proves the claim in part (i).

ii) By (3.13), to compare ruX to p, we need to determine how u′
(
X(ru

X ,r
0,1)
)

u′
(
X(ru

X ,r
0,0)
) compares

to 1. Without loss of generality, let ruX > r0 and u be a concave function. By

Lemma 1-ii we get:



X
(
ruX , r

0, 1
)

= X (ruX , 1)−X
(
r0, 1

)
> 0

X
(
ruX , r

0, 0
)

= X (ruX , 0)−X
(
r0, 0

)
< 0

· (3.17)

Since u is concave and non-decreasing, the function u′ is decreasing and therefore

(3.17) implies:
u′
(
X
(
ruX , r

0, 1
))

u′
(
X
(
ruX , r

0, 0
)) < 1. (3.18)

Therefore by (3.18) and (3.13) we get:

ruX < p.

Similarly we can show the claim holds in the cases in which ruX = r0, ruX < r0,

or u is convex.
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Proposition 1 below, shows that to compare the deviation in two MSRs, it is

necessary and sufficient to compare the projection of the two MSRs’ functions under

the first derivative of an agent’s utility. The optimal report of an agent, required

for deviation function (3.5), is calculated by solving the first order equation of the

agent’s expected utility maximizing problem (3.4). By Lemma 2, we may directly

relate an agent’s belief to her optimal report. Intuitively, Lemma 2 states that an

agent’s report is a non-linear scale of her belief, where the non-linear scale is a function

of the agent’s utility and the market’s current estimate. Proposition 1 states that for

a given agent, given the definition of deviation, in order to compare two MSRs using

deviation, one only needs to compare the non-linear scale factor, derived in Lemma 2.

The comparison between an agent’s reports, in different MSRs, to her belief, provides

the necessary and sufficient conditions for a MSR to yield a lower deviation relative

to another MSR.

Proposition 1. Let X (·) and Y(·) be two market scoring rules. Also let u ∈ U be a

concave (convex) function. The following holds for all r0 ∈ [0, 1]:

∀p ∈ [0, 1] : FuX
(
p, r0

)
≤ FuY

(
p, r0

)
⇐⇒



u′
(
Y(q,r0,1)

)
u′
(
Y(q,r0,0)

) ≤ (≥)u
′
(
X(q,r0,1)

)
u′
(
X(q,r0,0)

) , ∀q ∈ [0, r0
]

u′
(
Y(q,r0,1)

)
u′
(
Y(q,r0,0)

) ≥ (≤)u
′
(
X(q,r0,1)

)
u′
(
X(q,r0,0)

) , ∀q ∈ [r0, 1
] (3.19)

Proof. Let ruX , ruX
(
p, r0

)
and ruY , ruY

(
p, r0

)
, be the expected utility-maximizing

report, defined in (3.4), of an agent in the Hanson MSR X and Y, respectively. By

the definition of deviation, Definition 3, we have:

FuX
(
p, r0

)
≤ FuY

(
p, r0

)
⇐⇒ |ruX − p| ≤

∣∣∣ruY − p∣∣∣ .
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Without loss of generality let p < r0 and u be a concave utility function. By Lemma 2-ii,

we have p < ruX , r
u
Y < r0 and thus we get:

FuX
(
p, r0

)
≤ FuY

(
p, r0

)
⇐⇒ ruX − p ≤ ruY − p ⇐⇒ ruX ≤ ruY .

By Lemma 2-i we have:

1−ru
X

ru
X

u′
(
X(ru

X ,r
0,1)
)

u′
(
X(ru

X ,r
0,0)
) = 1−p

p
= 1−ru

Y
ru
Y

u′
(
Y(ru

Y ,r
0,1)
)

u′
(
Y(ru

Y ,r
0,0)
) · (3.20)

By simplifying (3.20) we get:

1− ruX
ruX

u′
(
X
(
ruX , r

0, 1
))

u′
(
X
(
ruX , r

0, 0
)) = 1− ruY

ruY

u′
(
Y
(
ruY , r

0, 1
))

u′
(
Y
(
ruY , r

0, 0
)) · (3.21)

By (3.21) and simple comparison we get:

ruX ≤ ruY ⇐⇒
1−ru

X
ru
X
≥ 1−ru

Y
ru
Y
⇐⇒

u′
(
X
(
ruX , r

0, 1
))

u′
(
X
(
ruX , r

0, 0
)) ≤ u′

(
Y
(
ruY , r

0, 1
))

u′
(
Y
(
ruY , r

0, 0
)) · (3.22)

Consider q ∈
[
0, r0

]
and assume:

u′
(
X
(
q, r0, 1

))
u′
(
X
(
q, r0, 0

)) ≤ u′
(
Y
(
q, r0, 1

))
u′
(
Y
(
q, r0, 0

)) · (3.23)

To prove (3.19), in the case where q ∈
[
0, r0

]
, we need to show (3.22) ⇐⇒ (3.23).

• (3.22) =⇒ (3.23): By (3.22), ruX ≤ ruY . By Lemma 2-ii, and the fact that u′ is
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decreasing, we get:



Y
(
ruX , r

0, 1
)
≤ Y

(
ruY , r

0, 1
)

Y
(
ruY , r

0, 0
)
≤ Y

(
ruX , r

0, 0
)

=⇒
u′
(
Y
(
ruY , r

0, 1
))

u′
(
Y
(
ruY , r

0, 0
)) ≤ u′

(
Y
(
ruX , r

0, 1
))

u′
(
Y
(
ruX , r

0, 0
)) · (3.24)

By (3.22), the right hand side of (3.24) implies:

u′
(
X
(
ruX , r

0, 1
))

u′
(
X
(
ruX , r

0, 0
)) ≤ u′

(
Y
(
ruX , r

0, 1
))

u′
(
Y
(
ruX , r

0, 0
)) · (3.25)

Before we can proceed we need to show that the image of the univariate function

ruX
(
·, r0

)
is [0, 1]. By definition, we have:

Im
(
ruX
(
p, r0

))
⊆ [0, 1]. (3.26)

Also

ruX
(
p, r0

)∣∣∣∣
p=1

= arg max
q∈[0,1]

E1

[
u
(
X
(
q, r0, ω

))]
= 1

and

ruX
(
p, r0

)∣∣∣∣
p=0

= arg max
q∈[0,1]

E0

[
u
(
X
(
q, r0, ω

))]
= 0

{0, 1} ∈ Im
(
ruX
(
·, r0

))
. (3.27)

The function ruX r0 (p) is continuous and since the continuous image of a compact
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set is compact, (3.26) and (3.27) gives:

[0, 1] ⊆ Im
(
ruX
(
·, r0

))
,

which proves that the image of the univariate function ruX
(
·, r0

)
is [0, 1]. There-

fore (3.25) can be rewritten as:

u′
(
X
(
q, r0, 1

))
u′
(
X
(
q, r0, 0

)) ≤ u′
(
Y
(
q, r0, 1

))
u′
(
Y
(
q, r0, 0

)) ,

which proves (3.22) =⇒ (3.23).

• (3.23) =⇒ (3.22): Assume to the contrary that there exists p(0) ∈
[
0, r0

]
and

let auX , ruX
(
p(0), r0

)
and buX , ruY

(
p(0), r0

)
, such that:

u′
(
Y
(
buY , r

0, 1
))

u′
(
Y
(
buY , r

0, 0
)) <

u′
(
X
(
auX , r

0, 1
))

u′
(
X
(
auX , r

0, 0
)) · (3.28)

By (3.21), we get:

buX < auX · (3.29)

By (3.23), (3.29), and the fact that u′ is decreasing, we get:



X
(
auX , r

0, 1
)
≤ X

(
buY , r

0, 1
)

X
(
buY , r

0, 0
)
≤ X

(
auX , r

0, 0
)

=⇒
u′
(
X
(
auX , r

0, 1
))

u′
(
X
(
auX , r

0, 0
)) ≤ u′

(
X
(
buY , r

0, 1
))

u′
(
X
(
buY , r

0, 0
)) ·

(3.30)
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By (3.28), the right-hand side of (3.30) gives:

u′
(
Y
(
buY , r

0, 1
))

u′
(
Y
(
buY , r

0, 0
)) <

u′
(
X
(
buY , r

0, 1
))

u′
(
X
(
buY , r

0, 0
)) · (3.31)

Since u is concave, p(0) ∈
[
0, r0

]
and buX , ruY

(
p(0), r0

)
, we conclude that

buX ∈
[
0, r0

]
. Thus (3.31) is a contradiction with (3.23).

Corollary 1 is a special case of Proposition 1, as not all MSR pairs satisfy (3.32).

Equation 3.32 states that MSR Y dominates MSR X in a binary outcome space, see

Definition 1. However, if (3.32) is satisfied, then we no longer need condition (3.19)

that is a function of an agent’s utility. With (3.32) we are able to only compare the

underlying MSR function, as MSRs and the utility functions we consider are monotone.

Corollary 1 states that for a family of MSRs, including LMSRs, the deviation can be

compared between the two MSRs without considering agents’ utility.

Corollary 1. Let X (·) and Y(·) be two market scoring rules that satisfy:

∀r0 ∈ [0, 1] :



Y
(
q, r0, 1

)
≤ X

(
q, r0, 1

)
≤ X

(
q, r0, 0

)
≤ Y

(
q, r0, 0

)
, ∀q ∈

[
0, r0

]

Y
(
q, r0, 0

)
≤ X

(
q, r0, 0

)
≤ X

(
q, r0, 1

)
≤ Y

(
q, r0, 1

)
, ∀q ∈

[
r0, 1

]
· (3.32)

Therefore the following holds:

∀u ∈ U ,∀p ∈ [0, 1] : FuX
(
p, r0

)
≤ FuY

(
p, r0

)
.
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Proof. Let (3.32) hold, u(·) be concave and without loss of generality let q ∈
[
r0, 1

]
.

By Proposition 1, to prove the claim we need to prove the following:

u′
(
X
(
q, r0, 1

))
u′
(
X
(
q, r0, 0

)) ≤ u′
(
Y
(
q, r0, 1

))
u′
(
Y
(
q, r0, 0

)) · (3.33)

Since u(·) is concave and monotonically increasing, u′, the first derivative of the

function u(·), is monotonically decreasing. (3.32) and Lemma 1-ii gives:



Y
(
q, r0, 1

)
≤ X

(
q, r0, 1

)

X
(
q, r0, 0

)
≤ Y

(
q, r0, 0

)
=⇒

u′
(
X
(
q, r0, 1

))
u′
(
X
(
q, r0, 0

)) ≤ u′
(
Y
(
q, r0, 1

))
u′
(
Y
(
q, r0, 0

)) , (3.34)

which completes the proof in this case.

When u(·) is convex, by Proposition 1 we need to prove the reverse of (3.33).

However, since u(·) is convex and monotonically increasing, u′(·) is monotonically

increasing, and thus (3.32) is enough to show the reverse of (3.33).

In addition to LMSRs, two other families of MSRs satisfy (3.32), Quadratic MSRs,

and Spherical MSRs (Hanson 2003, Gneiting and Raftery 2007), with different b

parameters. Thus, when comparing the deviation between two MSRs from the same

family, two LMSRs for example, it is sufficient to compare their b parameters, as the

MSR with the larger b will have a larger deviation relative to the other MSR. For

example, let r0 = 0.5, and consider a risk-averse agent with utility u(x) = 1 − e−x,

and the belief of p = 0.75 on ω = 1. This agent’s report in X , a LMSR with b = 1,
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found by solving2 the optimization problem (3.4) is ∼ 0.634. The same agent’s report

in Y, a LMSR with b = 2, however, is ∼ 0.590 which is further from her belief of

0.75, relative to 0.634, which shows FuX (0.75, 0.5) < FuY(0.75, 0.5). Figure 3.1 is an

extended illustration of this numerical example for any given belief p ∈ [0, 1].

(a) MSR comparison. The solid black
line is Y(q, 0.5, 1) = 2 ln(q)−2 ln(0.5),
the solid grey line is X (q, 0.5, 1) =
ln(q)− ln(0.5), the dashed black line
is Y(q, 0.5, 0) = 2 ln(1− q)− 2 ln(1−
0.5), and the dashed grey line is
X (q, 0.5, 0) = ln(1− q)− ln(1− 0.5).

(b) Report comparison for the two MSRs X and Y
in Figure 3.1 (a), showing FuX (p, 0.5) ≤ FuY (p, 0.5)
for any given p ∈ [0, 1].

Figure 3.1: An extended numerical example of Corollary 1 for two MSRs from the
same family that satisfy (3.32), using u(x) = 1− e−x, and r(0) = 0.5.

Similar to the case in which we compare different MSRs from the same family,

when we compare the deviation between two MSRs from different families, a LMSR

and a Spherical MSR for instance, it is sufficient to compare their MSR functions as

both MSRs satisfy (3.32). In particular, we can verify that if Y is a LMSR with b = 1,

and X is Spherical MSR with b = 1, then X and Y satisfy (3.32), thus Y has more

deviation compare to X . For example, let r0 = 0.5, and consider a risk-averse agent
2We use the function ArgMax in Mathematica (Wolfram Research, Inc.) to numerically solve the

optimization problem.
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with utility u(x) = 1− e−x, and the belief of p = 0.9 on ω = 1. This agent’s report in

Y, a LMSR with b = 1, found by solving the optimization problem (3.4) is ∼ 0.750.

The same agent’s report in X , a Spherical MSR with b = 1, however, is ∼ 0.810 which

is closer to her belief of 0.9, relative to 0.750, which shows FuX (0.9, 0.5) < FuY(0.9, 0.5).

Figure 3.2 is an extended illustration of this numerical example for any given belief

p ∈ [0, 1]. Please note that Figures 3.1 and 3.2 are not a complete illustration of

Corollary 1 as the two variables of utility and market’s current estimate are fixed.

However, if we allow utility, market’s current estimate, and belief to all vary, then

Corollary 1 still holds, but we are not able to visually present this result, and the

numerical example simply highlights one situation.

(a) MSR comparison. The solid black
line is Y(q, 0.5, 1) = ln(q) − ln(0.5),
the solid grey line is X (q, 0.5, 1) =

q√
q2+(1−q)2

− 0.5√
0.52+(1−0.5)2

, the
dashed black line is Y(q, 0.5, 0) =
ln(1−q)−ln(0.5), and the dashed grey
line is X (q, 0.5, 0) = 1−q√

q2+(1−q)2
−

0.5√
0.52+(1−0.5)2

.

(b) Report comparison for the two MSRs X and Y
in Figure 3.2 (a), showing FuX (p, 0.5) ≤ FuY (p, 0.5)
for any given p ∈ [0, 1].

Figure 3.2: An extended numerical example of Corollary 1 for two MSRs from different
families that satisfy (3.32), using u(x) = 1− e−x, and r(0) = 0.5.
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3.3 Deviation and Liquidity

In this section, we present the analytical results that show the amount of liquidity

provided by a valid cost-function prediction market, as defined in Section 2.3, is closely

related to the deviation of reports in its corresponding MSR prediction market. We

use two measures of liquidity: inverse liquidity, and market depth, to illustrate the

relation between deviation and liquidity. In Section 3.3.1, we show that when inverse

liquidity is used to measure the amount of provided liquidity, a higher deviation implies

a higher liquidity. In Section 3.3.2, we show that when market depth is being used

to measure liquidity, the same results holds and a higher deviation implies a higher

liquidity. In Section 3.3.3, we discuss the other, perhaps more practical, implication of

our results that can help a market organizer determine the amount of market liquidity

required for a desired level of belief elicitation. Given a bound on a prediction market

populations’ risk preferences, a market organizer can optimize the market’s liquidity

constrained by the maximum allowed deviation. The established optimization problem

introduces an analytical criterion to determine the amount of market liquidity for a

MSR cost-function market maker while maintaining bounded subsidy.

3.3.1 Inverse Liquidity and Deviation

Recall that for a valid cost-function, say CX , another valid cost-function CXb (s) ,

b CX
(

1
b
s
)
can be generated for any positive scalar b. It is also straightforward to

show that the corresponding MSR for the cost-function CXb is b X (·), in which X (·) is

the underlying MSR of CX . Thus, given a cost-function, a family of cost-functions
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can be generated using different b parameters.

Proposition 2 shows that when two cost-functions from the same family are

compared using inverse liquidity; higher liquidity is equivalent to higher deviation.

To see this, recall that, by definition, higher b parameter equals to higher liquidity.

Moreover, a higher b parameter also increases the value of the underlying MSR function

which by Corollary 1, implies more deviation.

Proposition 2. Let CX and CY be the cost function market makers of the two MSRs

X and Y respectively, in which CY(s) = b CX (s/b) for some b > 1. The market maker

CY has more inverse liquidity if and only if Y has more deviation compared to X .

Given the definition of inverse liquidity, the implication of Proposition 2 is simple:

a higher b parameter presents a tension between two desirable properties of less

deviation and higher liquidity. Moreover, when inverse liquidity is used to measure

the market’s liquidity, deviation and liquidity are equivalent. However, by definition

of inverse liquidity, (2.10), we are unable to compare two MSRs from different families,

leading us to consider market depth when comparing MSRs from different families.

3.3.2 Market Depth and Deviation

When we use market depth to measure liquidity, we can compare cost-functions

from different families. For instance, we can conclude that the Logarithmic cost-

function market maker with b parameter of 1, has more market depth relative to a

Quadratic cost-function market maker (Chen and Pennock 2007) with b parameter

of 1. Proposition 3 shows that a higher deviation implies a higher market depth. To
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prove Proposition 3, we need to find the relation between a share quantity and the

price function. Fortunately (2.7) presents the unconstrained optimization problem we

need to solve to find the relation. In order to solve the unconstrained optimization

problem we consider the first order conditions of the objective function with respect

to q and derive the relation between the price and the share quantity, referred to as

the price-share relation. The price-share relationship allows us to implicitly calculate

the derivative of the price w.r.t. the quantity of outstanding shares for a given MSR.

It follows from the definition of market depth, Definition 2, that computing the

price-share relation allows us to compare the market depths of the cost-functions of

two MSRs. In particular, we show that for a cost-function CX , the depth of the market

is equal to ∂
∂q
X (q, 1)−X (q, 0)

∣∣∣
q=PrX1 (s)

. Using the previous equation, we relate the

depth of a cost-function market maker to its underlying proper scoring rule. Using

Corollary 1, and the simple definition of the first derivative, we can conclude that

more deviation in a MSR implies more market depth in its corresponding cost-function

market maker.

Proposition 3. Let CX and CY be the cost-function market makers of the two MSRs

X , and Y respectively. CX has more market depth relative to CY , only if X has more

deviation compared to Y.

Proof. By Equivalence relation (2.7) we have:

CX (s) = max
q∈[0,1]

s1q + s0(1− q)−
(
qX(q, 1) + (1− q)X(q, 0)

)
. (3.35)

By definition of the price function (2.8), (3.35), and the first order condition of (3.35);
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we have:

∂

∂q

(
s1q + s0(1− q)−

(
qX(q, 1) + (1− q)X(q, 0)

))∣∣∣∣∣
q=PrX1 (s)

= 0. (3.36)

Expanding (3.36) gives:

s1 − s0 −
(
X (q, 1)−X (q, 0)

)
+ q

∂

∂q
X(q, 1) + (1− q) ∂

∂q
X(q, 0)

∣∣∣∣∣
q=PrX1 (s)

= 0.

(3.37)

By Lemma 1-i, q ∂
∂q
X(q, 1) + (1− q) ∂

∂q
X(q, 0)

∣∣∣
q=PrX1 (s)

= 0, thus (3.37) reduces to:

s1 − s0 −
(
X
(
PrX1 (s, 1)

)
−X

(
PrX1 (s, 0)

))
= 0. (3.38)

From (3.38), we can implicitly derive the rate of change in PrX1 w.r.t. s1. By implicit

differentiation we get:

∂

∂s1
PrX1 (s) = 1

∂
∂q

(
X (q, 1)−X (q, 0)

)∣∣∣
q=PrX1 (s)

· (3.39)

Thus by definition of market depth, (2.11), we get:

ρX1 (s) = ∂

∂q

(
X (q, 1)−X (q, 0)

)∣∣∣∣∣
q=PrX1 (s)

(3.40)

Carrying our the procedure above, after replacing CY for CX we find:

ρY1 (s) = ∂

∂q

(
Y (q, 1)− Y (q, 0)

)∣∣∣∣∣
q=PrY1 (s)

. (3.41)
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Thus by Definition 2, CY has more market depth relative to CX , only if3:

∀a ∈ [0, 1] : ∂

∂q

(
X (q, 1)−X (q, 0)

)∣∣∣∣∣
q=a
≤ ∂

∂q

(
Y (q, 1)− Y (q, 0)

)∣∣∣∣∣
q=a

. (3.42)

Therefore, to show that CY has more market depth relative to CX it is enough to

show that (3.42) is satisfied.

By assumption, Y has more deviation compared to X . Corollary 1, for a given

a ∈ [0, 1] gives:


Y (q, a, 1) ≤ X (q, a, 1) ≤ X (q, a, 0) ≤ Y (q, a, 0) , q ≤ a

Y (q, a, 0) ≤ X (q, a, 0) ≤ X (q, a, 1) ≤ Y (q, a, 1) , q > a
(3.43)

Equation (3.43) gives:


X (q, a, 0)−X (q, a, 1) ≤ Y (q, a, 0)− Y (q, a, 1) : q ≤ a

X (q, a, 1)−X (q, a, 0) ≤ Y (q, a, 1)− Y (q, a, 0) : q > a
· (3.44)

Thus by definition of a MSR (3.1), (3.44) can be expanded to:


0 ≤ X (q, 0)−X (a, 0)−

(
X (q, 1)−X (a, 1)

)
≤ Y (q, 0)− Y (a, 0)−

(
Y (q, 1)− Y (a, 1)

) : q ≤ a

0 ≤ X (q, 1)−X (a, 1)−
(
X (q, 0)−X (a, 0)

)
≤ Y (q, 1)− Y (a, 1)−

(
Y (q, 0)− Y (a, 0)

) : q > a
· (3.45)

3Note that since |Ω| = 2, we only require to show (3.42) to conclude that CY has more market
depth relative to CX .
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Rearranging (3.45) gives:



Y (q,1)−Y (q,0)−(Y (a,1)−Y (a,0))
q−a ≤ X(q,1)−X(q,0)−(X(a,1)−X(a,0))

q−a q ≤ a

X(q,1)−X(q,0)−(X(a,1)−X(a,0))
q−a ≤ Y (q,1)−Y (q,0)−(Y (a,1)−Y (a,0))

q−a q > a

· (3.46)

By (3.46) and the limit definition of the first derivative we get:

∂

∂q

(
X (q, 1)−X (q, 0)

)∣∣∣∣∣
q=a
≤ ∂

∂q

(
Y (q, 1)− Y (q, 0)

)∣∣∣∣∣
q=a

. (3.47)

Note that the above equation holds since both score functions X(·) and Y (·) are

differentiable and continuous. Equation 3.47 shows that (3.42) is satisfied and the

proof is complete.

Similar to Proposition 2, Proposition 3 also shows that higher deviation implies

higher market depth. As both market depth and inverse liquidity are the two measures

of liquidity used in the literature, the two propositions, Proposition 2 and Proposition 3,

collectively state the same result: higher deviation implies higher liquidity. In the

next section, we discuss how this result can be used to determine an optimal amount

of liquidity given a desired level of belief elicitation.

3.3.3 Optimizing Market Depth and Report Deviation

As discussed in Section 2.1, setting the market depth of a market maker is often

described as “art.” In this section, we apply the results of Proposition 2 to show

how a market organizer can optimize inverse liquidity to bound a maximum value of
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deviation. Our result is similar to the work of Abernethy et al. (2014), where authors

show that lower inverse liquidity increases the difference between agents’ belief and

the market price, what we call deviation. The results of Abernethy et al. (2014), Sethi

and Vaughan (2016) suggest that a market organizer can change the market’s inverse

liquidity parameter to achieve a desirable value of belief elicitation. Unfortunately,

neither of these two papers formalize the relationship that exists between inverse

liquidity and deviation. As mentioned earlier, we fill in this gap by introducing an

optimization problem that can determine a minimum amount of inverse liquidity for a

desired level of deviation.

We can verify that for two binary LMSRs with parameter b1 and b2 in which

b2 > b1, the following holds:

∀r0 ∈ [0, 1] :



LMSRb2

(
q, r0, 0

)
≤ LMSRb1

(
q, r0, 0

)
≤ LMSRb1

(
q, r0, 1

)
≤ LMSRb2

(
q, r0, 1

)
, q ≥ r0

LMSRb2

(
q, r0, 1

)
< LMSRb1

(
q, r0, 1

)
< LMSRb1

(
q, r0, 0

)
< LMSRb2

(
q, r0, 0

)
, q < r0

· (3.48)

Thus by Corollary 1, the LMSRb2 has more deviation compared to LMSRb1 , By

Proposition 2, CLMSRb2 has more inverse liquidity compared to CLMSRb1 . Now assume

that ū(·) is the utility function of the most risk-averse/risk-seeking agent, as defined

in Section 2.2. We define the function DevMax(b) , max
r0,p∈[0,1]

F ūLMSRb
(p, r0) to be the

maximum possible deviation. The following optimization problem can determine the

maximum amount of market depth while guaranteeing the maximum market maker
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losses to B̄, and a maximum deviation of D̄.

max b

subject to:

DevMax(b) ≤ D̄ (deviation constraint)

b ln(2) ≤ B̄

b ≥ 0

(CP)

The budget constraint ensures that the liquidity parameter b does not exceed the

maximum subsidy requires to run a market (Chen and Pennock 2007). Using the

same analysis, we can set similar optimization problems to (CP), for other MSRs such

as QMSRs, and SMSRs. Figure 1 shows the value of parameter b as a function of

maximum deviation, D̄, accepted by the market maker for three different MSRs. In

the example of Figure 3.3, the value of b is determined by program (CP) for agents

with risk preferences determined by Babcock et al. (1993)4.

However, the results of Proposition 2, similar to the results of Abernethy et al.

(2014), Sethi and Vaughan (2016), only allow us to compare MSRs that belong to

the same family (for example, two LMSRs or two Quadratic MSRs, etc.). The fact

that Figure 3.3 was derived from the results of Proposition 2, it follows that the

lines in Figure 3.3 cannot be used to compare different MSR families to one another.

Fortunately, the results of Proposition 3 allows us to compare MSRs from different

families to one another. We note that for a comparison of two MSRs to be valid
4Babcock et al. (1993) models individuals’ risk attitudes using the constant absolute risk-aversion

(CARA) utility function, that is u(x) = 1− e−αx, in which α determines the amount of absolute risk
aversion for an individual’s risk preference. Babcock et al. (1993) show that for a gamble sizes of less
than or equal to $100, the value of the parameter α ranges from 0.0002 to 0.046204. In the example
of Figure 3.3, we use the value of ᾱ = 0.046204 to to determine the maximum deviation of D̄
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Figure 3.3: Approximations of parameter b as a function of D̄ for different MSRs.

our definition of one market having more market depth than another, we assume

the property, described in Definition 2, holds for all possible market prices. It is not

always possible to guarantee that one market will have a larger market depth than

another market for all market prices. We would like to point out that the results

of Proposition 3 may be extended to a locally defined variation of market depth.

However, we choose not to use this definition as the comparison of MSRs with a

locally defined variation of market depth will require the market maker to have prior

knowledge on the distribution of the market prices. If a market maker, has knowledge

on the distribution of market prices, then it is no longer clear why the market should

exist, as a distribution on market prices is equivalent to a distribution on the outcome

of the traded event.

To illustrate an application of Proposition 3, consider a set of MSRs X, not

necessarily from the same families of MSRs, and the set of their corresponding cost-

functions CX. Given a maximum value of deviation, say D̄, we may choose the MSR

X ? ∈ X, in which: X ? has a maximum deviation of D̄, and CX ?(·) has more market
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(a) Logarithmic and
Quadratic Cost-functions.

(b) Logarithmic and Spheri-
cal Cost-functions.

(c) Spherical and Quadratic
Cost-functions.

Figure 3.4: Depth comparison between Logarithmic, Quadratic, and Spherical cost-
function market makers. Inconclusive means that the conditions in the definition of
Market Depth, Definition 2, are violated.

depth relative to all other cost-functions in CX, if comparable. Figure 3.4 illustrates

the head-to-head comparison of the three popular variants of MSRs.

Using the depth comparison illustrated in Figure 3.4, we can numerically show

that when X includes three families of MSRs, Logarithmic, Quadratic, and Spherical

MSRs (Chen and Pennock 2007), for any given D̄, X ? is a LMSR. This is because a

logarithmic cost-function either: has more depth relative to any quadratic or spherical

cost-function market makers, or is not comparable to a quadratic or spherical cost-

function market maker. Moreover, the fact that X ? is a LMSR is independent of

the maximum risk preference. Using a similar numerical analysis, and assuming any

population has the same maximum risk preference found by Babcock et al. (1993),

we can show that when X includes only two families of Quadratic, and Spherical
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MSRs (Chen and Pennock 2007), X ? is a Quadratic MSR for any given D̄. We

note that, unlike the case with three families of MSRs, Logarithmic, Quadratic, and

Spherical MSRs, when X includes only two families of Quadratic, and Spherical MSRs,

the utility function of the most risk-averse/risk seeking agent determines if X ? is a

Quadratic or a Spherical MSR. Moreover, the class of MSRs where X ? belongs to,

may also depend on D̄.

3.4 Conclusion

In this chapter we study the effect of agent risk-bias on belief reporting in MSR

prediction markets and characterized the close relation with cost-functions’ market

liquidity and risk-bias in MSRs. Our analytical results suggest that myopic, utility

maximizing agents do not report their exact beliefs, unless their beliefs are identical

to the current market estimate. We introduced the concept of deviation to measure

the difference between an agent’s reported belief and personal belief. Our first finding

is that we can compare the value of deviation across all MSRs by comparing the

reward functions provided to agents. The higher the reward functions, the higher

the deviation. We also showed that for all MSRs, decreasing the deviation of a MSR

implies decreasing the liquidity of the MSR’s corresponding cost-function market

maker. We used this relation to introduce an analytical approach to determine the

amount of liquidity to use to ensure a desirable belief elicitation. Market organizers

who are interested in eliciting and aggregating traders’ belief on future outcomes can

utilize our findings by optimizing a prediction market’s liquidity to ensure a desired

level of belief elicitation.

56



Chapter 4

Flatness and Liquidity in Finite

Outcome Space

Recall that in Chapter 3, considering a binary outcome space, we find an analytical

relationship between deviation and market liquidity for the subsidized prediction

markets we consider. When a non-binary finite outcome space is considered, the

relationship between deviation and market liquidity may not hold.

For the deviation result found in Section 3.2 to hold, Lemma 2-ii is crucial.

However, Lemma 2-ii, cannot be generalized for any non-binary outcome space. The

main intuition provided by Lemma 2-ii is that a risk-averse agent’s report is always

bounded by the market’s current estimate and her belief. This is not the case for a non-

binary finite outcome space. For example, consider Ω = {1, 2, 3}, p = (0.3, 0.5, 0.2),

and r(0) = (0.4, 0.1, 0.5). Also, let the agent’s utility be u(x) = 1 − e−2x, where

she is participating in the MSR X in which X(q, i) = 2 log qi. Using a numerical
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optimization problem we have:

rX = (0.405238, 0.148058, 0.446704) , (4.1)

which indicates a violation of a generalized version of Lemma 2-ii for ω = 1. Recently,

in the work of Peysakhovich and Plagborg-Møller (2012), a similar finding has been

noted. As explained by Peysakhovich and Plagborg-Møller (2012), when strictly

proper scoring rules are considered, the classic results such as the work by Winkler

and Murphy (1970) and Kadane and Winkler (1988) on binary state spaces do not

generalize to cases where N > 2.

Fortunately, the deviation result found in Section 3.2, presents a different intuition

that can be generalized to any finite outcome space. The deviation result in binary

space, Corollary 1, also shows that given two MSRs, when a MSR function, say Y,

dominates another MSR function say X , as defined in (2.6); a risk-averse agent’s

report is closer to the market’s current estimate in Y compared to X . In this chapter,

we show that this results can be generalized to any finite outcome space. In particular,

we show that for any given finite outcome space, and a given market estimate, when a

MSR function dominates another MSR function, a risk-averse agent reports closer to

the market’s current estimate in the dominant MSR compared to the dominated MSR.

We use the concept of flatness, as defined in Definition 4, to measure the closeness of

an agent’s report to the markets current estimate. Furthermore, we show that the

liquidity result provided in Section 3.2 can also be generalized to any finite outcome

space. In combination, the generalized results can help market organizers to set the

liquidity parameters of a prediction market, in any finite outcome space, to control
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the maximum allowed flatness in the market. The rest of this chapter is organized

as follows. In Section 4.2 we utilize an optimization approach to study the behavior

of a risk-averse agent in a MSR prediction market. In Section 4.2, we show that for

any finite outcome space, the report of a risk-averse agent is closer to the market’s

current estimate in a dominant MSR market relative to a dominated MSR market. In

Section 4.3, we prove that for any finite outcome space, the cost-function prediction

market corresponding to a dominant MSR provides higher liquidity compared to the

cost-function prediction market corresponding to a dominated MSR.

4.1 Model Set-up

Consider a finite outcome space Ω = {1, 2, · · · , N}. Let ω represent the corresponding

random variable where ω ∈ Ω. Similar to our analysis in Chapter 3, we only analyze

the behavior of myopic agents one at a time, and therefore we use a similar notation

of X (r, r(0), ω) instead of X (r(t), r(t−1), ω), where r is the agents report and r(0) is the

market’s current estimate, at the time of making report. An agent with a personal

belief of p on ω, is asked to submit her probability estimates denoted by r. Once

the outcome is realised, the prediction market rewards the agent according to a MSR

function:

X
(
r, r(0), ω

)
= X (r, ω)−X

(
r(0), ω

)
, (4.2)

where the strictly proper score function X(·) has the following property:

X : ∆N−1 × Ω 7→ R is smooth on ∆N−1 for any given ω, (4.3)
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We assume agents are myopic, expected utility maximizers, and risk-averse. Note

that we do not address risk-seeking agents in this chapter. We assume agents have a

monotonically increasing, twice differentiable, and a concave utility. We refer to the

set of all such utilities as U c ⊂ RR. Given a market’s current estimate, an agent with

a utility function of the form u ∈ U c maximizes her expected utility on ω. Such an

agent’s expected utility from reporting any feasible report of q is as follows:

Ep

[
u
(
X (q, r(0), ω)

)]
= ∑

i∈Ω piu
(
X
(
q, r(0), i

))
. (4.4)

A risk neutral agent will report truthfully in any strictly proper MSR. Given a strictly

proper scoring rule X(·), and its corresponding MSR X , we formally define the

expected utility maximizing report of rXu
(
p, r(0)

)
as:

rXu
(
p, r(0)

)
, arg max

q∈[0,1]
Ep

[
u
(
X
(
q, r(0), ω

))]
. (4.5)

We assume all agents are myopic and rational, hence all reports made by agents will

be those that satisfy (4.5) and we thus refer to all reports adhering to (4.5) simply as

reports.

4.2 Risk-Averse Agent’s behavior in Finite Space

Following the new intuition of comparing agents’ report to the market’s current

estimate, as oppose to the agent’s belief, we propose an alternate way to compare two

market scoring rules, we call this comparison flatness.
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Definition 4. (Flatness) Let X and Y be two MSRs. We say Y is flatter than X if

for every agent, the following holds:

∀r(0),p ∈ ∆N−1 :
∣∣∣∣rYu (p, r(0)

)
− r(0)

∣∣∣∣
1
<

∣∣∣∣rXu (p, r(0)
)
− r(0)

∣∣∣∣
1
, (4.6)

in which | · |1 is the L1 norm.

Flatness and deviation are similar concepts. Both flatness and deviation indicate

a similar behavior in risk-averse agents’ reporting. A more deviated market causes

every risk-averse agent’s report to be less indicative of their beliefs. Similarly, in a

flatter market, a risk-averse agent’s report is closer to the market’s current estimate

and consequently less indicative of her belief.

The main result of this section, Proposition 4, is fundamentally based on the

findings in Lemma 3, and the use of the total variance distance. Lemma 3 is a

generalization of Lemma 2-i that finds a relationship between a risk-averse agent’s

report, her belief, and the market’s current estimate. Lemma 3 is similar to result of

(Peysakhovich and Plagborg-Møller 2012, Lemma 1), in which they show a similar

result considering strictly proper scoring rules. Our results in Lemma 3 is different

from the result of Peysakhovich and Plagborg-Møller (2012), as we consider MSRs,

and not scoring rules. Moreover, we require no further assumption on the underlying

scoring rule function other than smoothness, while Peysakhovich and Plagborg-Møller

(2012), require the underlying strictly proper score functions to be neutral, bounded

above, extensively continuous and semi quasi-convex.

In Lemma 3, we show that an agent’s report is a weighted distribution of the
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agent’s belief and her marginal utility in each outcome. To prove Lemma 3, we

solve for the first order condition of the problem in (4.5), to find the agent’s report,

which we show is unique and feasible. We show that for a risk-averse agent, the two

distributions of: the agent’s report, rXu
(
p, r(0)

)
, and a weighted vector of the agent’s

belief and her marginal utility in each outcome, pu ,
{

piu′
(
X
(
rX , r(0), 1

))}
i∈Ω

; are

two vectors in the null space of the MSR’s Jacobian matrix. By showing that the

MSR’s Jacobian matrix has a null space of dimension one, we show that the two

distributions of, rXu
(
p, r(0)

)
, and pu are scalar factors of each other.

Lemma 3. Let rX , rXu
(
p, r(0)

)
, be the expected utility-maximizing report, defined

in (4.5), of an agent in the MSR X , in which p is the agent’s belief on ω and r(0) is

the market’s current estimate. The following equations hold.

rXi =
piu′

(
X
(
rX , r(0), i

))
∑N
j=1 pju′

(
X
(
rX , r(0), j

)) : ∀i ∈ Ω. (4.7)

Proof. Without loss of generality, let p be an interior point of ∆N−1. Note that if p

is in closure of ∆N−1, thus there exist an outcome, say j ∈ Ω, where pj = 0, and the

claim can proven by induction on N , where Lemma 2-i is the base, and the remaining

of this proof is the induction step. Since X, the underlying score function of X is

smooth, X
(
·, r(0), ω

)
is also smooth, thus rX is an interior point and it satisfies the

first order conditions. That is:

∇

Ep

[
u
(
X
(
rX , r(0), ω

))] = 0.
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By chain rule we get:

∀j ∈ Ω :
N∑
i=1

piu′
(
X
(
rX , r(0), i

)) ∂

∂qj
X
(
q, r(0), i

)∣∣∣∣∣∣
q=rXu

= 0· (4.8)

By definition of MSR, (2.3), (4.8) can be simplified as

∀j ∈ Ω :
N∑
i=1

piu′
(
X
(
rX , r(0), i

)) ∂

∂qj
X (q, i)

∣∣∣∣∣∣
q=rXu

= 0· (4.9)

Consider the matrix JX (q) defined as

JX (q) =
{
∂

∂qj
X (q, i)

}
(i,j)∈Ω2

,

thus (4.8) can be rewritten as

JX
(
rX
)
× pu = 0 : pu =

{
piu′

(
X
(
rX , r(0), 1

))}
i∈Ω
· (4.10)

By definition of proper scoring rules, and the use of function JX (·) we also know that

JX
(
rX
)

rX = 0· (4.11)

By (4.9) and (4.11) we get

nullity
(
JX

(
rX
))
≥ 1.

We show that the nullity of the matrix JX (q) is exactly one for all q 6∈ {0, e1, e2, · · · , eN}.
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We prove the nullity claim by contradiction. Assume to the contrary that

nullity
(
JX (q)

)
> 1. (4.12)

By row-rank theorem we get

rank
(
JX (q)

)
≤ N − 2· (4.13)

Let JXi be the ith row of the matrix JX (q). By (4.13), we know that a set of N − 1

rows of the matrix JX (q) are linearly dependent, thus we get

∃α ∈ RN−1 − {0} :
N−1∑
i=1

αiJ
X
i = 0· (4.14)

Let k be the index of the greatest entry of α, that is:

k = arg max
i∈Ω

αi. (4.15)

Note that since α 6= 0, thus αk 6= 0. By (4.14) we get:

N−1∑
i=1

αi
αk
JXi = 0 (4.16)

By definition of strictly proper scoring rule, and the no arbitrage property, we get:

∀i ∈ Ω :
N∑
j=1

∂

∂qj
X (q, i)

∣∣∣∣∣∣
q=rX

= 0 =⇒
N∑
i=1

JXi = 0· (4.17)
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(4.16) and the right-hand-side of (4.17) gives:

JXN +
N−1∑
i=1

(
1− αi

αk

)
JXi = 0. (4.18)

By (4.18), for index k we get:

(
1− α1

αk

)
JX1 k +

(
1− α2

αk

)
JX2 k + · · ·+

(
1− αk−1

αk

)
JXk−1k +

(
1− αk+1

αk

)
JXk+1k + · · ·+

(
1− α1

αN−1

)
JXN−1k + JXN k = 0. (4.19)

By the fact the change in score X(·, j) is non-increasing while qk is increasing for all

j 6= k, (2.5), ∀i ∈ {1, 2, · · · , k − 1, k + 1, · · · , N}, we get

∂

∂qk
X (q, i) = JXi k ≤ 0. (4.20)

By (4.20) and (4.19) we get:

∃l ∈ {1, 2, · · · , k − 1, k + 1, · · · , N − 1} in which
(

1− αl
αk

)
< 0, (4.21)

otherwise, the left-hand-side of (4.19) is negative, which is not possible. Thus we

have 1 < αl

αk
or equivalently αk < αl, which is a contradiction with (4.15). Thus

nullity
(
JX

(
rXu
))

= 1, hence by (4.10) and (4.11) we get:

∃a ∈ R : rXu = apu.

Since ∑i∈Ω rX = 1, we get a = ∑
i∈Ω pui , and the above equation can equivalently be
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written as follows:

rXi =
piu′

(
X
(
rX , r(0), i

))
∑N
j=1 pju′

(
X
(
rX , r(0), j

)) : ∀i ∈ Ω.

Note that by definition rX is unique and feasible, and thus the proof is complete.

To prove the main result of this section, Proposition 4, and a preliminary result,

Lemma 4, we use the concept of total variance distance. The total variance distance

is a distance measure for probability distributions. Following Levin et al. (2009), the

total variation distance between two probability distributions x,y ∈ ∆N−1 is defined

as

|x− y|TV = arg max
A⊂Ω
|x (A)− y (A) |, (4.22)

in which x (A) = ∑
i∈A xi. As defined, the total variance distance is determined

over all possible subsets of Ω, which results in computational difficulty in calculating

the distance between two probability distributions. Fortunately, there is a useful

characterization of the total variation distance, that relates the total variance distance

to a simple L1 norm.

|x− y|TV = 1
2
∑
i∈Ω
|xi − yi| . (4.23)

For a proof see Proposition 4.2 in (Levin et al. 2009). Moreover, the proof of Proposition

4.2 in (Levin et al. 2009) also shows the following.

|x− y|TV =
∑

j:xj≥yj

xj − yj. (4.24)

66



Also note that since the total variance distance is symmetric, that is, |x− y|TV =

|y− x|TV , by 4.24 we also have:

|x− y|TV =
∑

j:xj≥yj

xj − yj =
∑

k:yk≥xk

yk − xk. (4.25)

To make our notations cleaner, we also use the following definition.

Definition 5. Let rX , rXu
(
p, r(0)

)
, be the expected utility-maximizing report, defined

in (4.5). The following two index sets I+
X , and I−X are called positive and negative

index sets respectively.
I+
X = {i : rXi > r(0)

i}

I−X = {i : rXi ≤ r(0)
i}
. (4.26)

Lemma 4 shows that for given MSRs Y and X , where Y dominates X , the

difference of the agent’s report and the current market estimate is smaller in Y relative

to X , for those states in which the agent’s report is greater than the market’s current

estimate. To prove Lemma 4, we consider the two possible cases when we compare rXi

and rYi for a given i ∈ I+
Y . We then use Lemma 3, to show that the claim’s inequality

holds in all cases.

Lemma 4. Let X and Y be two MSRs that satisfies (2.6). Moreover let rX ,

rX
(
p, r(0)

)
, and rY , ruY

(
p, r(0)

)
be the expected utility-maximizing reports, defined

in (4.5). The following holds:

∑
i∈I+
Y

rYi − r(0)
i <

∑
j∈I+
X

rXj − r(0)
j. (4.27)

Proof. We consider the following two possible cases and show that the claim in (4.27)
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holds in each case.

• Case 1: For all i ∈ I+
Y , rYi ≤ rXi .

By the assumption in this case, and Definition 5, we get I+
Y ⊂ I+

X . Moreover, we

have

∀i ∈ I+
Y : r(0)

i < rYi ≤ rXi .

Thus we get ∑
i∈I+
Y

rYi − r(0)
i <

∑
i∈I+
Y

rXi − r(0)
i.

Note that the strict inequality holds as rX 6= rY , hence there exist k, l ∈ Ω, such

that rXk < rYk and rYk > rXk . Since I+
Y ⊂ I+

X , we get

∑
i∈I+
Y

rYi − r(0)
i <

∑
j∈I+
X

rXj − r(0)
j,

which proves the claim in this case.

• Case 2: There exist i ∈ I+
Y in which rXi < rYi .

By (2.5), and the fact that rXi < rYi we get

X
(
rX , r(0), i

)
< X

(
rY , r(0), i

)
. (4.28)

When we compare r(0)
i to rXi we have the following two possibilities (note that

r(0)
i cannot exceed rYi , as i ∈ I+

Y ).
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(I) r(0)
i ≤ rXi < rYi . In this instance, by (2.6) we have

X
(
rX , r(0), i

)
< Y

(
rX , r(0), i

)
. (4.29)

Moreover, by (4.29) and (2.5) we have

X
(
rX , r(0), i

)
< Y

(
rY , r(0), i

)
. (4.30)

(II) rXi ≤ r(0)
i < rYi . In this instance, by (2.5), and definition of MSRs we know

that X
(
rX , r(0), i

)
is not positive and Y

(
rY , r(0), i

)
is positive. Thus we

have

X
(
rX , r(0), i

)
< Y

(
rY , r(0), i

)
. (4.31)

Given that for both possibilities of (I) and (II), we get

X
(
rX , r(0), i

)
< Y

(
rY , r(0), i

)
; (4.32)

the fact that u(·) is concave and non-decreasing, and thus u′(·) is non-increasing,

we get

u′
(
Y
(
rY , r(0), i

))
≤ u′

(
X
(
rX , r(0), i

))
. (4.33)

We now show that:

∀j ∈ I−Y : rXj < rYj ≤ r(0)
j. (4.34)

To show (4.34), for a given j ∈ I−Y , we compare rXj to rYj in the following cases

and we show that the only possibility is the one in (4.34).

69



(I) rYj ≤ r(0)
j < rXj .

In this instance, by (2.5), and definition of MSRs we know that X
(
rX , r(0), j

)
is positive and Y

(
rY , r(0), j

)
is non-positive. Moreover, since u(·) is concave

and non-decreasing, u′(·) is non-increasing and we have

u′
(
X
(
rX , r(0), j

))
≤ u′

(
Y
(
rY , r(0), j

))
. (4.35)

On the other hand, by Lemma 3 we have

rXi
rXj

u′
(
X
(
rX , r(0), j

))
u′
(
X
(
rX , r(0), i

)) = pi
pj

= rYi
rYj

u′
(
Y
(
rY , r(0), j

))
u′
(
Y
(
rY , r(0), i

)) . (4.36)

By (4.36), and the fact that rXi < rYi , and rYj < rXj , we get

u′
(
X
(
rX , r(0), j

))
u′
(
X
(
rX , r(0), i

)) >
u′
(
Y
(
rY , r(0), j

))
u′
(
Y
(
rY , r(0), i

)) . (4.37)

Since (4.33) holds, (4.37) implies

u′
(
X
(
rX , r(0), j

))
> u′

(
Y
(
rY , r(0), j

))
, (4.38)

which is a contradiction with (4.35). Thus this case is not possible.

(II) rYj < rXj ≤ r(0)
j.
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In this instance, by (2.5), and (2.6) we get

Y(rY , r(0), j) ≤ X (rY , r(0), j) < X (rX , r(0), j). (4.39)

Again, since u(·) is concave and non-decreasing, u′(·) is non-increasing,

thus (4.39) implies

u′
(
X (rX , r(0), j)

)
≤ u′

(
Y(rY , r(0), j)

)
. (4.40)

On the other hand, by Lemma 3 we have

rXi
rXj

u′
(
X
(
rX , r(0), j

))
u′
(
X
(
rX , r(0), i

)) = pi
pj

= rYi
rYj

u′
(
Y
(
rY , r(0), j

))
u′
(
Y
(
rY , r(0), i

)) . (4.41)

By (4.41), and the fact that rXi < rYi , and rYj < rXj , we get

u′
(
X
(
rX , r(0), j

))
u′
(
X
(
rX , r(0), i

)) >
u′
(
Y
(
rY , r(0), j

))
u′
(
Y
(
rY , r(0), i

)) . (4.42)

Since (4.33) holds, (4.42) implies

u′
(
X
(
rX , r(0), j

))
> u′

(
Y
(
rY , r(0), j

))
, (4.43)

which is a contradiction with (4.40). Thus this case is also not possible.

By considering the two cases (I), and (II), we conclude that (4.34), holds.
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(4.34) also shows that I−Y ⊂ I−X . Hence, we have

∑
k∈I−Y

r(0)
k − rYk <

∑
i∈I−Y

r(0)
k − rXk .

Note that the strict inequality holds as rX 6= rY , hence there exist s, t ∈ Ω, such

that rXs < rYt and rYs > rXt . Since I−Y ⊂ I−X , we get

∑
k∈I−Y

r(0)
k − rYk <

∑
l∈I−X

r(0)
l − rXl . (4.44)

By (4.25) we know that

∑
k∈I−Y

r(0)
k − rYk =

∑
k∈I+
Y

rYk − r(0)
k and

∑
l∈I−X

r(0)
l − rXl =

∑
l∈I+
X

rXl − r(0)
l. (4.45)

Combining (4.44), and (4.45), we get

∑
k∈I+
Y

r(0)
k − rYk <

∑
l∈I+
X

r(0)
l − rXl , (4.46)

which proves the claim in Case 2 as well.

Lemma 4 compares the difference of an agent’s report and the market’s current

estimate in those outcomes where the agent receives a positive score. Lemma 4 then

shows that when Y dominates X , an agent’s report is closer to the market’s current

estimate in Y than the same agent’s report in X , across all those outcomes where the

agent receives a positive score. Using Lemma 4 and the characterization of the total

72



variance distance (4.24), we can prove Proposition 4 which states that the agent’s

report is closer to the market’s current estimate in a dominant MSR compared to a

dominated MSR.

Proposition 4. Let X and Y be two MSRs that satisfies (2.6). Y is flatter than X .

Proof. For a given u, p, and r(0), let rX , rX
(
p, r(0)

)
, and rY , ruY

(
p, r(0)

)
be the

expected utility-maximizing report, defined in (4.5). By Lemma 4, we have

∑
i∈I+
Y

rYi − r(0)
i <

∑
j∈I+
X

rXj − r(0)
j. (4.47)

By (4.24), and (4.47) we get

∑
i∈Ω

∣∣∣rYi − r(0)
i

∣∣∣
TV

<
∑
i∈Ω

∣∣∣rXi − r(0)
j

∣∣∣
TV

. (4.48)

The above equation and (4.23) imply

∑
i∈Ω

∣∣∣rYi − r(0)
i

∣∣∣ <∑
i∈Ω

∣∣∣rXi − r(0)
j

∣∣∣ , (4.49)

which shows that Y is flatter than X .

4.3 Liquidity in General Cost Function Markets

In this section we show that similar to the liquidity-deviation relationship in binary

outcome space, the amount of liquidity provided by a valid cost-function prediction
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market is closely related to the concept of flatness defined in Definition 4.

In particular, Proposition 5 shows that when Y is flatter than X , then CY provides

more liquidity compared to CX . The proof of Proposition 5 is similar to the proof of

Proposition 3. To prove Proposition 5, we first find a relation between share quantities

and the price function by solving the first order conditions of the optimization problem

in (2.7). The unique and feasible solution of the first order conditions presents the

familiar price-share relation, similar to Section 3.3.2, in any finite outcome space. The

price-share relationship allows us to implicitly calculate the derivative of the price

w.r.t. the quantity of outstanding shares. We show that for a cost-function CX , the

depth of the market for security i is equal to

∂

∂qi
(
X (q, i)−X (q, N)

)∣∣∣∣∣
q=PrX (s)

Using the above equation, we relate the depth of a cost-function market maker to its

underlying proper scoring rule. Using Proposition 5, and the simple definition of the

first derivative, we can conclude the cost-function prediction market corresponding to

the flatter MSR, provides more market depth than the cost function market maker

that corresponds to the MSR that is not flatter.

Proposition 5. Let CX and CY be the cost function market makers of the two MSRs

X and Y respectively. CY has more market depth relative to CX , only if Y and X are

two MSRs that satisfy (2.6).

Proof. We start with a change of a variable from q ∈ ∆N−1, to q ∈ RN−1
+ , and

we define qN =
(
1−∑j∈Ω−{N} qj

)
. Note that this change of variable preserves the
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optimal point of the optimization problem in (2.7). By Equivalence relation (2.7) we

have

CX (s) = max
q∈RN−1

+

sTq −
∑
ω∈Ω

qiX(q, ω). (4.50)

By definition of the price function (2.8), and the first order condition of (4.50); we

have

∀k ∈ Ω− {N} : ∂
∂qk

(∑
i∈Ω−{N} siqi + sN

(
1−∑j∈Ω−{N} qj

)
−
(∑

i∈Ω−{N} qiX (q, i) +
(
1−∑j∈Ω−{N} qj

)
X(q, N)

))∣∣∣∣∣∣
q=PrX (s)

= 0.

(4.51)

Expanding (4.51) gives

∀k ∈ Ω− {N} : sk − sN −
(
X (q, k)−X (q, N)

)
−
(∑

i∈Ω−{N} qi ∂
∂qk

X (q, i) +
(
1−∑j∈Ω−{N} qj

)
∂
∂qk

X(q, N)
)∣∣∣∣∣

q=PrX (s)
= 0.

(4.52)

Since X(·) is a strictly proper scoring rule, for given r ∈ RN
+ , in which rN =(

1−∑j∈Ω−{N} rj
)
we have:

{r} = arg maxq∈RN
+
Er
[
X(q, ω)

]
.

As X(·) is also smooth, r is a stationary point of Er
[
X(q, ω)

]
. That is:

∇
(
Er
[
X(q, ω)

])∣∣∣∣
q=r

= 0 =⇒ ∀i ∈ Ω− {N} ∂
∂qi
Er
[
X(q, ω)

]∣∣∣
q=r

= 0. (4.53)

The right-hand-side of the above equation can be written as follows:

∀i ∈ Ω− {N} :
∑

j∈Ω−{N}
qj

∂

∂qi
X (q, j) +


1−

∑
k∈Ω−{N}

qj

 ∂

∂qi
X(q, N)


∣∣∣∣∣∣∣∣
q=r

= 0.
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Using the above equation for rX in place of r, (4.52) reduces to

sk − sN −
(
X
(
PrX (s), k

)
−X

(
PrX (s), N

))
= 0. (4.54)

From (4.54), we can implicitly derive the rate of change in PrXk w.r.t. sk. By implicit

differentiation we get

∂

∂sk
PrXk (s) = 1

∂
∂qk

(
X (q, k)−X (q, N)

)∣∣∣
q=PrX (s)

· (4.55)

Thus by definition of market depth, (2.11), we get

ρXk (s) = ∂

∂qk
(
X (q, k)−X (q, N)

)∣∣∣∣∣
q=PrX (s)

(4.56)

Carrying our the procedure above, after replacing CY for CX we find

ρYk (s) = ∂

∂qk
(
Y (q, k)− Y (q, N)

)∣∣∣∣∣
q=PrY (s)

. (4.57)

Thus by Definition 2, CY has more market depth relative to CX , only if

∀a ∈ ∆N−1 : ∂
∂qk

(
X (q, k)−X (q, N)

)∣∣∣
q=a
≤ ∂

∂qk

(
Y (q, k)− Y (q, N)

)∣∣∣
q=a

. (4.58)

Therefore, to show that CY has more market depth relative to CX it is enough to

show that (4.58) is satisfied.
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By assumption, X and Y , satisfy the followings


Y (q, a, k) ≤ X (q, a, k) ≤ X (q, a, N) ≤ Y (q, a, N) , qk ≤ ak

Y (q, a, N) < X (q, a, N) < X (q, a, k) < Y (q, a, k) , qk > ak
·

(4.59)

Equation (4.59) gives


X (q, a, N)−X (q, a, k) ≤ Y (q, a, N)− Y (q, a, k) : qk ≤ ak

X (q, a, k)−X (q, a, N) < Y (q, a, k)− Y (q, a, N) : qk > ak
· (4.60)

Thus by definition of a MSR (4.2), (4.60) can be expanded to


0 ≤ X (q, N)−X (a, N)−

(
X (q, k)−X (a, k)

)
≤ Y (q, N)− Y (a, N)−

(
Y (q, k)− Y (a, k)

) : qk ≤ ak

0 ≤ X (q, k)−X (a, k)−
(
X (q, N)−X (a, N)

)
≤ Y (q, k)− Y (a, 1)−

(
Y (q, N)− Y (a, N)

) : qk > ak
· (4.61)

Rearranging (4.61) gives



Y (q,k)−Y (q,N)−(Y (a,k)−Y (a,N))
qk−ak

≤ X(q,k)−X(q,N)−(X(a,k)−X(a,N))
qk−ak

: qk ≤ ak

X(q,k)−X(q,N)−(X(a,k)−X(a,N))
qk−ak

≤ Y (q,k)−Y (q,N)−(Y (a,k)−Y (a,N))
qk−ak

: qk > ak

·

(4.62)

By (4.62) and the limit definition of the first derivative we get

∂

∂qk
(
X (q, k)−X (q, N)

)∣∣∣∣∣
q=a
≤ ∂

∂qk
(
Y (q, k)− Y (q, N)

)∣∣∣∣∣
q=a

. (4.63)

Note that the above equation holds since both score functions X(·) and Y (·) are

differentiable on the interior of ∆N−1 and continuous on ∆N−1. Equation 4.63 shows

that (4.58) is satisfied and thus the proof is complete.
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When Proposition 5, and Proposition 4 are combined, we find the coveted rela-

tionship between flatness, as defined in Definition 4, and market liquidity, Definition 2.

Proposition 4 show that the agent’s report is closer to the market’s current estimate

in the MSR Y compared to a MSR X , when Y dominates X . This is a negative

situation that a market maker interested in eliciting agent’s belief would like to avoid.

In other words, as flatness increases, agents’ report can get arbitrary close to the

market’s current estimate. As such, a market organizer may not be able to interpret

any reports. The result points toward selecting X as oppose to Y . On the other hand,

Proposition 5 shows that when Y dominates X , a market maker can inject a higher

amount of liquidity by choosing the cost-function CY instead of CX . A market maker

prefers a more liquid market to a less liquid market. The result of Proposition 5, and

Proposition 4 present a tension between two desired properties of higher liquidity and

lower flatness. Similar to the result of Section 3.3.2, given a set of MSRs X, that may

or may not belong to the same family, and the set of their corresponding cost-functions

CX, we can choose a MSR X ? with a maximum flatness of F̄ , in which CX ? has more

market depth relative to all other cost-functions in CX.

4.4 Conclusion

In this chapter, we characterize the behavior of risk-averse agents in prediction markets

using MSRs for non-binary state spaces. We show that similar to MSRs with a binary

state space, myopic, utility maximizing agents do not report their exact beliefs, unless

their beliefs are identical to the current market estimate. We introduced the concepts of

flatness to measure the difference between an agent’s reported belief and the market’s
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current estimate. Our primary finding is that we can compare the flatness of MSRs by

comparing their corresponding reward functions provided to agents. We showed that

a MSR with a higher reward and a higher penalty is flatter than a MSR with lower

reward and a lower penalty. We also show that flatter MSRs provide higher liquidity

as well. We show that a market organizer can take advantage of the relationship

between flatness and liquidity to find a better market that provides the maximum

amount of liquidity while maintaining a desirable flatness.
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Chapter 5

Subsidized Versus Unsubsidized

Prediction Markets

The prediction market literature states that in thin markets MSRs aggregate the

information quicker than CDAs. Researchers studied the accuracy of CDAs and MSRs

extensively (Hanson 2003, Jian and Sami 2012, Wolfers and Zitzewitz 2004, Hanson

2012, Chen et al. 2010, Milgrom and Stokey 1982, Pennock 2004). However, to the

best of our knowledge, there has been few empirical studies comparing the information

flow across CDAs and MSRs aside from arbitrage opportunities (Kildal et al. 2012).

Given the fact that CDAs, USPMs in general, are costless, and potentially profitable,

and MSRs, SPMs in general, are costly and need an initial endowment to run, we

would like to address the following question. What is the number of trades needed for

a MSR to aggregate information quicker than a CDA?

Currently, we are only aware of one study that considers the differences across
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the two types of markets, but that study considers arbitrage opportunities that exist

for only one market with multiple outcomes (Kildal et al. 2012). In their paper the

authors consider how much profit can be made by an agent that buys in a CDA

market and sells in a MSR market and vise versa. They show that arbitrage exists

on average on an hour over hour time scale. However, it is not clear if the arbitrage

opportunity exists because the CDA market price trails the MSR market price or vise

versa, something we address in our study.

Perhaps the closest work to our study is the research by Jian and Sami (2012).

In their work, Jian and Sami (2012) run experiments to investigate the effect of the

prediction market mechanism on information aggregation by utilizing an experiment

on human subjects. However, their choice of prediction market mechanisms is between

two SPMs. The current understandings of subsidy in prediction market is: CDAs are

reliable when a large number of trades is expected, and MSRs are utilized when there

are concerns over issues such as thin markets and no trade situations. See Figure 5.1

for an illustration of SPM and USPM comparison.

Figure 5.1: Comparison between SPMs and USPMs (Adapted from Hanson (2003)).
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We use prediction market data gathered from a series of CDA and MSR markets

to characterize the switching point before which a MSR market price leads a CDA

market price, and in turn you may use the MSR market price to predict the CDA

market price, and after which the CDA market may be used to predict the MSR

market. We utilize time-series analysis to study the information flow between market

prices and determine the leading and the following markets. In this chapter, we say

market X aggregates information faster, or quicker, or with more speed than market

Y, when market X’s price leads market Y’s price, that is market X’s price causes

market Y’s price as explained in Section 5.3.

Some of the contributions of this chapter are as follows. This chapter provides much-

needed insight for prediction market operators when determining if they should run a

subsidized or unsubsidized prediction market. The current literature on prediction

markets suggests using MSRs, SPMs in general, when the number of trades is small.

Our empirical study supports this idea. We show that when the number of trades is

below a certain threshold, a CDA market, may not aggregate the information quicker

than a SPM market. Moreover, we show that when CDA and MSR markets aggregate

market informations simultaneously, MSRs require a lower number of trades compared

to CDA markets. Our study can help a growing number of managers and practitioners,

that are using prediction markets, choose the appropriate mechanism based on their

needs and expected trade volume.

The remainder of this chapter is organized as follows. Section 5.1 details our

hypotheses. In Section 5.2 we briefly describe the data that we use in our study. We

present our time series model in Section 5.3. We then discuss the causality results
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and its implications in Section 5.4.

5.1 Hypotheses

In order to extend the literature further, our first hypothesis is:

Hypothesis 1. There exists a threshold in the number of trades, say κ, such that

a CDA market aggregates information faster after κ trades than a MSR market after

the same number of trades.

Hypothesis 1 only considers the cases in which a CDA market aggregates infor-

mation quicker than a MSR, or vice versa. However, when both markets capture

the market consensus with the same speed, it is interesting to investigate which

market requires a lower number of trades to do so. This is in particular interesting

in application areas in which the market organizer cannot expect a large number

of trades. The current prediction market literature states that when the number of

trades is high both MSR and CDA aggregate information quickly. However, to our

knowledge, there has been no studies on the values of such large number of trades

and if it differs across different market mechanisms. On the other hand, there has

been much evidence that indicates that MSR markets encourage rational trades and

there are fewer irrational trades in MSRs compared to CDAs due to the presence of

a market maker (Hanson 2003). As such to extend the literature further our second

hypothesis is:

Hypothesis 2. When MSR and CDA markets aggregate information with

the same speed, a MSR market requires fewer number of trades, compared to its
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corresponding CDA market, to do so.

We use the prices of two prediction markets: Intrade, a CDA market, and iPredict,

a MSR market. Intrade and iPredict run prediction markets on a series of political,

economic, financial, and scientific events. Intrade and iPredict ran some markets, we

consider 129 as some markets had fewer than 10 trades or no trades at all, on the same

events. For two pairs of markets on the same event, we use time-series analysis on the

pair to determine if information is discovered faster in one relative to the other. We use

Granger-causality analysis to compare the information aggregation within each pair of

markets. The idea that prediction markets, or financial market, can aggregate traders’

information is based on the Efficient Market Hypothesis (Malkiel and Fama 1970). In

particular, semi-strong efficient market hypothesis (Malkiel and Fama 1970) states that

stock market prices quickly adjust to new information available to the public, in such

a way that trading can earn no excess return on that information. It is often suggested

that for the semi-strong efficient market hypothesis to stand, the alteration of stock

prices to the new information must happen very quickly (Malkiel and Fama 1970).

The application of semi-strong efficient market hypothesis in prediction markets states

that any prediction market price can quickly reflect all of the information currently

available to market participants, and newly available information causes the market

price to change immediately (Wolfers and Zitzewitz 2004, Luckner et al. 2011, Wolfers

and Zitzewitz 2006, Bell 2008). For example, without loss of generality if market A’s

price, say an Intrade security, changes to newly available information quicker than

market B’s price, say an iPredict security; market A’s price can then be used to predict

market B’s price. With this analytical approach, for each of 129 securities, that are

shared between iPredict and Intrade, we test if iPredict causes Intrade, Intrade causes
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iPredict, they both cause each other, or there is no causal relationship.

5.2 Data

We use the market prices of the two markets: Intrade (Intrade 2017) and iPredict (iPredict

2017). Intrade was an USPM that ran a wide variety of prediction markets on sport,

political, financial, economic and social events from 2007 to 2013. Intrade is considered

a successful prediction market; provided with approximately $13.5 million in venture

capital (Intrade 2017). Intrade prediction markets’ raw data is publicly available

for researchers (Data 2017). iPredict, on the other hand, is a SPM founded jointly

by the New Zealand Institute for the Study of Competition and Regulation and

Victoria University of Wellington. The iPredict data was acquired through personal

communication with the site operators. During the period of January, 2010 to March,

2013, iPredict and Intrade ran multiple markets on the same events. We find the

intersecting markets and normalize their corresponding prices. The normalization

consists of converting transaction times to a common time-zone and converting market

prices to the same scale, iPredict used values between $0.00 to $1.00, and Intrade

used values between 0 to 100 cents. After the normalization, a combined time series is

created for each intersecting market. The combined time series is an irregular, with

different time increments, binary variable observation. We then create a more detailed

series by incrementing the combined irregular series on 5 minutes intervals. Finally,

we consider the most recent observations with up to 8760 observations (one month).

We consider the most recent market prices as it can be shown that squared errors of

prediction market prices relative to the true outcome decrease with time (Arrow et al.
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2008). For a given pair of intersecting markets, we refer to the Intrade and iPredict

regular series as INT and IPR respectively. An example of a combined time series for

the security: “Mitt Romney to win the 2012 South Carolina Primary.” is illustrated

in Figure 5.2.

Figure 5.2: The combined normalized time series for the security of: Mitt Romney to
win the 2012 South Carolina Primary.

5.3 Methodology

We use multiple bivariate techniques to investigate the relationship between INT and

IPR pairs. In order to conduct our analysis, we follow the outline below propsed by

Lütkepohl (2005).

1. Test each of the time-series INT and IPR to determine their order of integration

using an Augmented Dicky Fuller (ADF) test.
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2. Set up a VAR model in the levels of the data. To determine the appropriate

maximum lag length for the variables in the VAR, say K, we use two information

criteria (AIC and BIC (Lütkepohl 2005)) for selecting the best parameterization.

In the case where different information criteria suggest different values of K, a

likelihood ratio test is utilized to choose the appropriate lag value.

3. Test to ensure the validity of the VAR model. In particular, we utilize a Breusch-

Godfrey test (Breusch 1978, Lütkepohl 2005, Section 4.4.4) to ensure that there

is no serial correlation in the residuals. In the presence of any serial correlation,

the value of K is increased until all autocorrelations are removed.

4. In the case where INT and IPR have the same order of integration, at Step 1,

we utilize a Johansen test, Section 5.3.2, to see if the two series are cointegrated.

5. Test for Granger causality via a Wald test. We use the approach introduced by

Toda and Yamamoto (1995) to avoid adjusting the Wald test in cases where at

least one of the series is not stationary, Step 1.

To be able to draw a reliable conclusion from our statistical tests, following the

steps above are crucial. Lütkepohl (2005) provides a complete technical explanation

regarding the importance of each step. In summary, before we are able to compare two

models in Step 5, we are required to fit the best model to our data, Step 2; and diagnose

the model to ensure proper statistical inference, Step 1, 3, and 4. Following the above

5 steps, in Section 5.3.1, we begin our analysis by testing the order of integration for

each series in a pair of INT and IPR time series. Section 5.3.2, details the Johansen

test that is utilized to find any long-run relationship in terms of co-integration. In

Section 5.3.3, we investigate any short-run relationship between each pair of time-series
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by performing a Granger-causality test.

5.3.1 Order of Integration and the general Vector Auto Re-

gression model

VAR is one of the widely used econometric techniques to model a data set for inference

and forecasting (Sims 1980, Enders 2004, Kennedy 2003). VAR models are commonly

used in application areas such as finance, policy making, health care, information

systems, etc (Adomavicius et al. 2012, Enders 2004, Kennedy 2003). Simply put, a

VAR model is a multi-variable linear model where each variable is regressed on its

own and others’ past values. The main advantages of VAR models compared to most

other traditional models is that they treat all variables as a priori endogenous. This

makes them ideal for our study as the relationship between SPMs’ and USPMs’ prices

are endogenous. As discussed in Chapter 2, prediction markets are theorized to react

to the change of traders’ available information, hence the endogenous relationship

between two market prices that run on the outcome of the same event.

A VAR model is often defined for a stationary time series and special care must

be taken when inference is taken from VAR models of time series that are not

stationary. A stationary time series is a stochastic process whose joint probability

distribution does not change when shifted in time. A series that is not stationary

is called non-stationary. The term order of integration, is defined as the minimum

number of differences required to obtain a covariance stationary series and is shown

via I(Order of Integration). A stationary series must be I(0), however, the converse

is not necessarily true. Determining the order of integration is crucial in multiple

88



steps of our analysis of causality and cointegration. Given a pair of INT and IPR

time series, we detect the order of integration for each series via an Augmented Dicky

Fuller (ADF) test (Fuller 2009). A summary of the results to determine the order of

integration is shown in Table 5.7. See Table 5.1, 5.2 and 5.3 for a mapping of market

ID’s to their security descriptions. Further, see Table 5.4, 5.5, and 5.6 for a summary

of markets’ statistics.

Regardless of the order of integration, we also estimate a two-variable VAR model

for each INT and IPR series as follows.

INT t = u1,t +∑K
i=1 θi,1INT t−i

IPRt = u2,t +∑K
i=1 θi,2IPRt−i

(5.1)

in which u1,t, and u2,t are white noise. White noise is a processes with a mean zero

and no correlation between its values at different times (Lütkepohl 2005, Section 2.1).

Given a sample of INT and IPR time-series, a VAR(K) can be efficiently estimated

by Ordinary Least-Squares (OLS) applied separately to each of the equations in (5.1).

Of course, a critical part of this model specification is to determine the number K.

The common approach to choosing the proper value of K is to use a combination of

information criteria (Lütkepohl 2005), that finds the best fit between the series and its

estimated VAR series. We use Schwartz Criterion and Akaike’s Information Criterion

(Lütkepohl 2005) to determine the lag length, K. In the case that the two criteria are

do not agree on the same number we use a likelihood ratio (LR) test to determine the

optimal lag. To ensure proper model selection, we also test the VAR(K) model to

make sure no serial correlation in the residuals is present. This is because a VAR(K)

model with serially correlated residuals can produce inefficient forecasts, that is, OLS
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Market ID Security Description
1073 Republican Party candidate to win 2012 Presidential Election
21 John McCain to win 2008 US Presidential Election
22 Barack Obama to win 2008 US Presidential Election
2595 Newt Gingrich to win the 2012 Iowa Caucus
2596 Ron Paul to win the 2012 Iowa Caucus
2603 Mitt Romney to win the 2012 New Hampshire Primary
2604 John Kerry to win the New Hampshire Primary
2606 Ron Paul to win the 2012 New Hampshire Primary
2607 Jon Huntsman to win the 2012 New Hampshire Primary
2623 Rick Santorum to win the 2012 South Carolina Primary
2634 Rick Santorum to win the 2012 Florida Primary
2636 Mitt Romney to win the 2012 Nevada Caucus
2637 Ron Paul to win the 2012 Nevada Caucus
2705 Nicolas Sarkozy to be elected President of France in 2012
2706 Francois Hollande to be elected President of France in 2012
2710 Mitt Romney to win the 2012 Maine Caucus
2711 Newt Gingrich to win the 2012 Maine Caucus
2712 Rick Santorum to win the 2012 Maine Caucus
2713 Ron Paul to win the 2012 Maine Caucus
2721 Mitt Romney to win the 2012 Colorado Caucus
2722 Newt Gingrich to win the 2012 Colorado Caucus
2723 Rick Santorum to win the 2012 Colorado Caucus
2724 Ron Paul to win the 2012 Colorado Caucus
2726 Mitt Romney to win the 2012 Minnesota Caucus
2727 Newt Gingrich to win the 2012 Minnesota Caucus
2728 Rick Santorum to win the 2012 Minnesota Caucus
2729 Ron Paul to win the 2012 Minnesota Caucus
2731 Mitt Romney to win the 2012 Arizona Primary
2732 Newt Gingrich to win the 2012 Arizona Primary
2733 Rick Santorum to win the 2012 Arizona Primary
2734 Ron Paul to win the 2012 Arizona Primary
2736 Mitt Romney to win the 2012 Michigan Primary
2737 Newt Gingrich to win the 2012 Michigan Primary
2738 Rick Santorum to win the 2012 Michigan Primary
2742 Mitt Romney to win the 2012 Washington Caucus
2745 Ron Paul to win the 2012 Washington Caucus
2748 Newt Gingrich to win the 2012 Alaska Caucus
2749 Rick Santorum to win the 2012 Alaska Caucus
2750 Ron Paul to win the 2012 Alaska Caucus
2752 Mitt Romney to win the 2012 Idaho Caucus
2754 Rick Santorum to win the 2012 Idaho Caucus
2757 Mitt Romney to win the 2012 North Dakota Caucus
2759 Rick Santorum to win the 2012 North Dakota Caucus
2760 Ron Paul to win the 2012 North Dakota Caucus
2762 Mitt Romney to win the 2012 Georgia Primary

Table 5.1: Market ID’s and their corresponding securities.
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Market ID Security Description
2763 Newt Gingrich to win the 2012 Georgia Primary
2764 Rick Santorum to win the 2012 Georgia Primary
2863 Mitt Romney to win the 2012 Ohio Primary
2864 Newt Gingrich to win the 2012 Ohio Primary
2865 Rick Santorum to win the 2012 Ohio Primary
2868 Mitt Romney to win the 2012 Oklahoma Primary
2869 Newt Gingrich to win the 2012 Oklahoma Primary
2870 Rick Santorum to win the 2012 Oklahoma Primary
2874 Mitt Romney to win the 2012 Tennessee Primary
2875 Newt Gingrich to win the 2012 Tennessee Primary
2876 Rick Santorum to win the 2012 Tennessee Primary
2882 Mitt Romney to win the 2012 Vermont Primary
2885 Ron Paul to win the 2012 Vermont Primary
2887 Mitt Romney to win the 2012 Virginia Primary
2889 Rick Santorum to win the 2012 Virginia Primary
2890 Ron Paul to win the 2012 Virginia Primary
2973 Mitt Romney to win the 2012 Kansas Caucus
2976 Rick Santorum to win the 2012 Kansas Caucus
2994 Mitt Romney to win the 2012 Alabama Primary
2995 Newt Gingrich to win the 2012 Alabama Primary
2997 Rick Santorum to win the 2012 Alabama Primary
3004 Mitt Romney to win the 2012 Hawaii Caucus
3007 Rick Santorum to win the 2012 Hawaii Caucus
3014 Mitt Romney to win the 2012 Mississippi Primary
3015 Newt Gingrich to win the 2012 Mississippi Primary
3017 Rick Santorum to win the 2012 Mississippi Primary
3024 Mitt Romney to win the 2012 Illinois Primary
3027 Rick Santorum to win the 2012 Illinois Primary
3029 Mitt Romney to win the 2012 Missouri Caucus
3032 Rick Santorum to win the 2012 Missouri Caucus
3034 Mitt Romney to win the 2012 Louisiana Primary
3035 Newt Gingrich to win the 2012 Louisiana Primary
3037 Rick Santorum to win the 2012 Louisiana Primary
3217 Rick Santorum to win the 2012 Maryland Primary
3220 Mitt Romney to win the 2012 Wisconsin Primary
3222 Rick Santorum to win the 2012 Wisconsin Primary
3242 Rick Santorum to win the Pennsylvania Primary
3287 Rick Santorum to win the 2012 Texas Primary
3713 Democratic nominee to win North Carolina
3714 Republican nominee to win North Carolina
3719 Republican nominee to win Florida
3720 Democratic nominee to win Florida
3722 Republican nominee to win Ohio
3723 Democratic nominee to win Ohio
3725 Republican nominee to win Virginia

Table 5.2: Market ID’s and their corresponding securities (Continued).
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Market ID Security Description
3726 Democratic nominee to win Virginia
3728 Republican nominee to win Arizona
3729 Democratic nominee to win Arizona
3731 Democratic nominee to win Colorado
3732 Republican nominee to win Colorado
3734 Democratic nominee to win Iowa
3735 Republican nominee to win Iowa
3739 Democratic nominee to win Minnesota
3740 Republican nominee to win Minnesota
3743 Democratic nominee to win New Hampshire
3746 Democratic nominee to win Nevada
3747 Republican nominee to win Nevada
3749 Democratic nominee to win Wisconsin
3750 Republican nominee to win Wisconsin
3753 Democratic nominee to win Michigan
3754 Republican nominee to win Michigan
3823 Republican nominee to win Montana
3832 Democratic nominee to win Oregon
3833 Republican nominee to win Oregon
3844 Democratic nominee to win Pennsylvania
4834 Republican candidate to win
4851 Republican candidate to win
4852 Democratic candidate to win
5573 Cardinal Peter Turkson (Ghana) to succeed Benedict XVI
5574 Cardinal Francis Arinze (Nigeria) to succeed Benedict XVI
5575 Cardinal Marc Ouellet (Canada) to succeed Benedict XVI
5576 Archbishop Angelo Scola (Italy) to succeed Benedict XVI
5578 Cardinal Gianfranco Ravasi (Italy) to succeed Benedict XVI
814 Neither Party to control the Senate after 2010 Congressional Elections
815 The Democrats to control the Senate after 2010 Congressional Elections
816 The Republicans to control the Senate after 2010 Congressional Elections
818 The Democrats to control the House of Representatives after 2010 Congressional Elections
819 The Republicans to control the House of Representatives after 2010 Congressional Elections

Table 5.3: Market ID’s and their corresponding securities (Continued).
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Market ID IPR Mean INT Mean IPR SD INT SD IPR Min INT Min IPR Max INT Max Period (min)
21 13.003 17.48 5.317 5.983 0.01 0.9 30.15 36 8641
22 86.226 82.862 5.582 6.035 69 64.6 99.41 99.3 8641
814 28.082 29.37 7.269 7.295 0.1 0.8 59.97 50 8641
815 56.058 56.345 9.746 9.904 35 35.1 99.9 99.6 8641
816 16.5 18.029 4.657 5.189 0.01 0.7 29.59 29.4 8641
818 12.57 15.716 6.362 7.036 0.01 0.8 24.35 30.8 8641
819 87.447 85.169 6.47 6.843 70 70 99.99 99.5 8641
1073 28.218 36.766 4.349 4.403 0.5 0.2 44.99 46.8 8641
2594 42.777 38.279 9.78 10.862 9.39 22 99.98 99.8 4488
2595 6.148 6.817 3.996 4.559 0.01 0.1 11.92 15 4447
2596 44.041 42.516 12.907 11.57 0.03 0.1 70.41 59.8 4465
2599 6.929 9.448 8.569 9.004 0.01 0.2 88.76 75 4480
2603 96.737 96.514 1.903 1.647 88.76 91.9 99.99 99.9 1833
2604 1.257 0.665 0.597 0.651 0.5 0.1 3.05 2.4 1692
2606 1.423 1.515 0.839 0.406 0.01 0.1 5.38 2.4 1764
2607 1.755 1.199 0.684 0.48 0.41 0.1 5.38 2.9 1760
2622 73.233 70.01 21.923 22.638 14.44 0.1 94.62 95 3795
2623 4.028 4.145 4.283 4.112 0.05 0.1 15.89 20.9 3747
2624 21.654 25.209 23.318 24.484 3.74 4.5 84.98 99.9 3795
2632 81.035 81.097 18.254 19.314 35.43 37.6 100 99.9 5554
2633 18.065 18.293 18.358 20.033 0.02 0.1 63.03 62.6 5529
2634 1.02 0.768 0.688 0.709 0.11 0.1 3.84 2.7 5228
2636 89.976 89.545 8.495 8.792 66.08 68 99.98 99.9 6753
2637 3.451 3.899 1.627 2.172 0.02 0.1 36.97 8.7 6754
2705 17.951 18.308 8.724 7.101 0.02 0.1 40.92 35 8641
2706 81.647 81.961 9.228 7.761 31 60 98.27 99.9 8641
2710 80.498 79.629 9.038 10.872 19.78 22 99.97 99.9 5217
2711 4.349 2.807 5.977 4.797 0.21 0.1 26.89 38 4901
2712 2.013 1.78 1.393 1.79 0.5 0.1 9.99 12 4936
2713 14.495 18.598 9.52 10.57 0.01 0.1 71.78 80 5407
2721 85.724 87.851 10.967 9.701 2 0.1 99.99 99.4 3814
2722 11.821 8.522 6.82 7.572 0.2 0.1 32.45 27 3776
2723 2.911 2.987 7.784 7.448 1 0.6 99.99 99.9 3770
2724 1.951 5.31 0.994 4.504 0.01 0.1 13.39 12 3747
2726 67.798 69.946 16.92 18.18 2.48 0.1 81.26 85 3799
2727 17.198 14.105 8.848 8.97 1.3 0.1 43.37 50 3794
2728 12.187 15.772 22.907 23.246 1.8 1 99.99 99.9 3817
2729 3.681 4.205 3.521 1.942 0.01 0.1 35.43 9 3794
2731 85.663 86.282 6.559 8.909 70.41 52.5 99.95 99.9 8641
2732 4.354 3.56 5.186 5.272 0.01 0.1 15.89 24 8641
2733 10.402 11.643 8.281 9.75 0.01 0.1 29.59 40 8641
2734 1.13 1.675 0.882 2.405 0.01 0.1 2.49 19 8641
2736 71.275 71.14 15.874 16.714 35.43 32.5 99.99 99.9 8641

Table 5.4: Statistic summary of Intrade and iPredict markets.
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Market ID IPR Mean INT Mean IPR SD INT SD IPR Min INT Min IPR Max INT Max Period (min)
2737 4.708 4.796 4.093 7.918 1.38 0.1 15.02 22 8641
2738 25.414 28.41 19.009 18.371 0.08 0.1 66.08 68.7 8641
2742 59.705 56.351 19.929 18.723 25.6 20.1 99.99 99.9 8641
2744 30.785 35.847 18.365 19.94 0.01 0.1 61.4 72.9 8641
2745 7.299 11.303 3.081 5.204 0.01 0.1 13.39 24.8 8641
2747 57.459 54.897 15.373 16.216 40.13 30 99.5 99.9 5892
2748 6.927 5.409 2.971 4.747 0.11 0.1 11.24 17.9 5384
2749 20.147 29.732 10.351 15.314 0.02 0.1 35.43 49.5 5646
2750 15.843 18.318 3.535 6.233 0.08 0.1 19.78 40 5801
2752 84.962 86.848 8.11 8.305 73.11 75 97.52 99.9 5606
2754 9.511 8.571 6.862 7.332 0.73 0.1 24.35 20 5808
2757 47.236 43.344 12.57 14.265 2 0.2 85.81 74.9 5533
2759 35.469 45.882 9.881 17.075 8.68 12 99 99.8 5494
2760 15.062 22.4 3.801 8.353 2.48 0.1 25.6 40 5535
2762 14.459 11.784 7.218 6.842 0.1 0.1 31 35.3 5820
2763 69.549 74.951 16.804 14.17 45.43 50 99.5 99.9 5809
2764 15.606 17.972 8.273 13.385 2.36 0.1 28.22 50 5736
2863 53.159 55.817 18.71 17.615 12.64 19 100 99.9 6088
2864 1.519 2.054 1.702 1.589 0.01 0.1 20.86 6.7 6103
2865 45.259 42.804 18.097 17.227 0.02 0.1 78.02 77 6103
2868 14.453 15.655 6.963 8.997 0.02 0.1 21.98 29.8 3858
2869 11.429 11.85 4.616 5.81 1.23 0.1 17.75 25 3874
2870 67.11 75.473 14.447 10.155 29.59 60 99.5 99.9 5796
2874 21.906 24.874 7.151 7.092 0.02 0.1 46.67 46.5 5735
2875 19.534 18.08 8.389 12.07 0.03 0.1 32.45 60 5736
2876 57.263 61.56 11.703 11.353 31 35.1 99 99.9 5792
2882 91.293 92.909 3.948 4.901 87.36 86 98.26 99.9 3171
2885 4.717 7.831 1.637 3.477 1 0.1 6.1 15 5469
2887 92.752 92.702 4.335 3.927 51.67 82.2 99.5 99.9 5560
2889 1.075 0.961 1.603 1.826 0.2 0.1 16.8 12.8 5460
2890 6.07 6.878 3.158 3.413 1.06 0.1 11.92 11.8 5484
2973 3.055 3.671 2.113 1.336 1.03 0.1 12 8 778
2976 96.618 96.223 2.044 1.766 87.36 92 99.25 99.9 832
2994 22.657 21.563 8.661 7.46 0.01 0.1 45 55.6 1776
2995 41.835 38.581 19.043 17.138 0.2 0.1 91.68 67.4 1776
2997 35.25 40.399 20.129 19.769 9.39 12.5 99.5 99.9 1759
3004 96.185 94.08 3.12 3.79 86.61 76.1 99.95 99.9 1583
3007 3.49 3.312 3.052 2.955 1 0.1 9.98 19.7 1584
3014 32.305 32.074 17.819 14.688 0.01 0.1 91.68 89.5 1696
3015 31.749 38.937 19.924 17.137 0.01 0.1 65 69.1 1719
3017 36.284 33.467 29.212 26.56 1.74 3 99 99.9 1747
3024 87.891 85.018 6.729 7.529 71.78 60 99.99 99.9 3687
3027 11.964 15.235 6.874 7.539 0.01 0.1 29.59 34.9 3680
3029 14.55 17.978 6.737 3.627 5.05 4 40.13 25 1494
3032 81.906 79.617 5.835 5.581 60 60.1 94.95 95.6 1566
3034 12.184 15.551 7.33 10.464 1.5 0.4 89.41 50 3902

Table 5.5: Statistic summary of Intrade and iPredict markets (Continued).
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Market ID IPR Mean INT Mean IPR SD INT SD IPR Min INT Min IPR Max INT Max Period (min)
3035 9.053 15.142 10.872 17.571 1 0.1 33.92 46 4760
3037 78.606 75.197 15.644 16.967 24.35 30.1 99.99 99.9 4769
3217 3.351 3.813 2.414 2.873 1.74 0.2 15.02 10.9 5438
3220 76.415 76.845 23.394 21.566 20.86 33.4 99.94 99.9 5524
3222 23.191 24.859 23.297 23.471 1 0.1 80.22 70.5 5516
3240 84.56 85.283 15.046 15.198 36.97 38.2 99.99 99.9 8641
3242 46.533 45.138 27.033 25.413 0 0.3 84.98 84.7 7427
3287 23.144 20.766 12.339 14.117 5.05 0.2 56.63 62 7417
3713 24.869 22.664 4.03 3.988 1.74 0.1 33.92 39.4 8641
3714 75.444 77.604 4.375 4.18 67 68.9 99 99.9 8641
3719 55.465 57.956 23.845 24.981 0.5 0.1 90 84.9 8641
3720 43.673 41.922 22.427 24.384 18.74 15.3 99 99.9 8641
3722 32.606 37.528 6.404 6.15 1.74 0.1 61.46 58 8641
3723 67.806 63.018 6.083 6.228 26.89 42 90 99.9 8641
3725 48.221 51.156 8.152 7.768 1.74 0.1 64.57 80 8641
3726 51.599 49.102 8.539 7.705 36.97 20 98.26 99.9 8641
3728 90.949 91.321 1.491 3.286 88.08 81 99 98.8 8641
3729 9.159 9.228 1.561 3.045 1.74 0.1 12 18.7 8641
3731 54.374 50.416 7.283 7.24 46.67 40 98.26 99.9 8641
3732 45.935 50.155 5.927 5.487 1.74 0.1 51.67 60 8641
3734 67.605 63.246 5.58 6.575 61.46 40 98.26 99.5 8641
3735 32.678 37.013 4.892 5.184 2.74 0.1 38.54 59.8 8641
3739 92.459 88.781 0.801 4.204 90.02 80.4 99 99.9 8641
3740 7.476 12.687 0.883 3.703 1.74 0.1 9.39 24.5 8641
3743 67.906 62.28 7.377 7.51 54.98 44 99.99 99.9 8641
3746 74.423 75.443 6.174 6.569 67.55 55 99 99 8641
3747 25.371 25.349 6.273 7.389 1.74 0.1 32.45 47.9 8641
3749 73.409 70.206 5.752 5.856 56.63 55.3 98.5 99.8 8641
3750 27.035 30.222 5.219 4.864 1.5 0.5 40.13 49 8641
3753 88.358 84.857 2.84 3.842 83.2 55 99 99.7 8641
3754 11.604 15.424 2.879 4.069 1.74 0.1 16.8 44.9 8641
3823 93.153 95.984 1.223 2.95 88.76 90 96.26 99 8641
3832 93.183 92.67 1.533 4.237 91.16 75 96.26 99 8641
3833 6.483 9.912 1.489 4.326 1.74 0.1 8.32 15 8641
3844 84.942 81.218 3.19 4.245 40.13 70.1 98.5 99.8 8641
4834 30.212 27.31 7.533 7.827 9.35 0.1 40.13 49.9 8641
4851 35.863 36.374 7.318 4.345 12.64 0.3 45.02 49.6 8641
4852 64.253 64.497 8.222 5.081 54.98 50.5 94.95 99.7 8641
5573 18.652 22.71 4.611 5.446 7.36 6.1 30 34.9 7322
5574 2.884 2.857 1.803 1.818 1 0.6 5.73 5.5 5584
5575 16.468 11.918 10.608 2.556 5.85 6.1 90 20 6914
5576 32.909 23.116 4.138 3.024 27.5 15 48 27.5 5797
5578 6.088 9.739 3.202 7.133 1 3 12.03 25 6209

Table 5.6: Statistic summary of Intrade and iPredict markets (Continued).
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Market ID I(IPR) I(INT) Market ID I(IPR) I(INT) Market ID I(IPR) I(INT) Market ID I(IPR) I(INT)
1073 1** 1** 3731 1** 1** 2713 1 0** 3024 1** 1**
21 0** 1** 3732 1** 1** 2721 1** 1** 3027 1** 1**
22 0** 1** 3734 1** 0** 2722 1** 1 3029 1** 1**
2622 1** 1** 3735 1** 0** 2723 1** 1** 3032 1** 1*
2623 1** 0** 3739 1** 0** 2724 0** 1** 3034 0** 1**
2624 1** 1** 3740 1** 0** 2726 1** 1** 3035 1** 1**
2636 1** 1** 3743 1** 1** 2727 0** 0** 3037 1* 1**
2637 0** 0** 3746 1** 0** 2728 1** 1** 3217 0** 0**
2742 1** 1** 3747 1** 0** 2729 0** 0** 5573 1 1**
2744 1** 1** 3749 1** 0** 2731 1** 1** 5574 1** 1**
2745 1** 0** 3750 1** 0** 2732 1** 0** 5575 0** 1**
2863 0** 0** 3753 1** 0** 2733 1** 1** 5576 0** 1
2864 0** 0** 3754 1** 0** 2734 1** 0** 5578 1** 1**
2865 0** 0** 3823 1 1* 2736 1** 1** 818 1** 1**
2868 1** 0** 3832 1 1 2737 1** 1** 819 1 0**
2869 1** 1** 3833 1** 1* 2738 1** 1**
2870 1** 0** 3844 1** 0** 2747 1 0**
2874 1** 1* 4834 1** 0** 2748 1** 1**
2875 1** 1** 4851 1** 0** 2749 1 0**
2876 1** 1** 4852 1** 1 2750 1 1*
2882 1** 1** 814 1** 1** 2752 1** 1**
2885 1** 0** 815 1** 1** 2754 1** 1
2887 0** 0** 816 1** 1** 2755 1** 0**
2889 0** 0** 2594 0** 0** 2757 1** 1**
2890 0** 1 2595 1** 1** 2759 1** 1**
3220 1** 1** 2596 1 1** 2760 0** 1
3222 1** 1** 2599 0** 0** 2762 1** 0**
3240 1 0** 2603 0** 0** 2763 1** 1*
3242 1** 0** 2604 0** 1** 2764 1** 0**
3287 1** 1 2605 1* 0** 2973 0** 1
3713 1** 0** 2606 0** 0** 2976 0** 1
3714 1** 0** 2607 1 0** 2994 1** 1
3719 1** 1** 2632 1** 1** 2995 1** 1**
3720 1** 1** 2633 1** 1** 2997 1** 1**
3722 1** 0** 2634 0** 1 3004 1 0**
3723 1** 0** 2705 1* 0** 3006 0** 1**
3725 1** 1** 2706 0** 0** 3007 1** 0**
3726 1** 1** 2710 0** 0** 3014 1** 1**
3728 1** 0** 2711 1 0** 3015 1** 1**
3729 1** 0** 2712 0** 0** 3017 1** 1**

Table 5.7: Markets order of integration determined by an ADF test at 90% level of
confidence (**, * indicate significance at 1%, and 5% probability levels respectively)
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will under/overestimate the sampling variances (McGuigan et al. 2013, Appendix 4A).

We use a Breusch-Godfrey test (Breusch 1978, Lütkepohl 2005, Section 4.4.4) with the

null hypothesis that residual errors are not serially correlated. Following the strategy

proposed by (McGuigan et al. 2013, Appendix 4A), the lag value K is increased until

the serial correlation in residuals is removed. The final result is a proper two-variable

VAR model.

5.3.2 Long-Run Relationship, Co-integration

When two series have the same order of integration, it is of great interest to investigate

whether the two series are co-integrated. Two series, say X and Y , are co-integrated

if there exist a stationary non-trivial linear combination between them, that is there

exist β in which the series ut, defined as

ut = Yt − βXt, (5.2)

is a stationary series. Such relation is often referred to as “long-run equilibria”, or

“long-run relationship” since it can be shown that co-integrated variables do not diverge

from one another in the long-run. Moreover, according to Granger (1988), there must

exist a causal relation between two co-integrated variables, one way or the other.

The converse however is not necessary true. Hence it is critical to test whether a

pair of INT, and IPR series are co-integrated before we test for the presence of any

causality. If a given pair of non-stationary INT, and IPR series have the same order

of integration, we use a co-integration test to investigate any long-run relationship

between them. We use the Johansen test (Johansen 1988, Lütkepohl 2005, Section
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8.2) to test whether a given pair of series are co-integrated. Johansen test uses the

VAR(K) model (5.1), rewritten as follows.

∆ (INT t, IPRt)T = ut +B (INT t−1, IPRt−1)T +
K−1∑
i=1
Ci∆ (INT t−i, IPRt−i)T , (5.3)

in which A =

 θi,1 0

0 θi,2

, B = ∑K
i=1 Ai− I, and Ci = −∑K

j=i+1Aj . It can be shown

that rank(B) is the number of co-integrated factors. For a technical explanation of

the Johansen test see (Lütkepohl 2005, Section 8.2). For instance if the two series

are not co-integrated, rank(B) = 0. Let λ1 and λ2 be the eigenvalues of the matrix

B in which λ1 > λ2; If λ1 = 0, then rank(B) = 0 and there are no co-integrating

vectors, otherwise the two series are co-integrated. Johansen’s eigenvalue test utilizes

a likelihood ratio test to examine whether the largest eigenvalue of B is zero, the null

hypothesis, versus the alternative that the largest eigenvalue is non-zero. Table 5.8

includes the result of Johansen’s maximum eigenvalue test on INT and IPR pairs that

have the same order of integration.

5.3.3 Short-Run Relationship, Granger Causality Test

We use Granger-causality to investigate any short-run interdependencies between

INT, and IPR series. Granger-causality is a popular approach to determine any

short-term predictive relationship between series. According to Granger (1969), when

past observations of series X and previous observations of the series Y can help us

better predict future values of Y, as oppose to using only past values of Y, we imply

that there exists a predictive relationship from X to Y. When we find statistically
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Makret ID Cointegrated? Makret ID Cointegrated? Makret ID Cointegrated?
1073 Yes** 3739 Yes* 2731 Yes**
21 Yes** 3740 Yes* 2732 Yes**
22 Yes** 3743 Yes** 2733 Yes**
2623 No** 3746 Yes** 2734 Yes*
2636 Yes** 3747 Yes** 2736 No**
2637 Yes** 3749 Yes** 2737 No**
2742 Yes** 3750 Yes** 2738 No**
2745 Yes* 3753 Yes** 2748 No**
2863 Yes** 3754 Yes** 2749 No**
2864 Yes** 3823 Yes 2750 Yes*
2865 Yes** 3832 No** 2752 No**
2868 Yes* 3833 No** 2754 Yes**
2869 No** 3844 Yes** 2757 Yes
2870 Yes** 4834 Yes** 2759 No**
2874 Yes** 4851 Yes** 2760 Yes
2875 Yes 4852 Yes** 2762 Yes**
2876 Yes* 814 Yes** 2763 Yes**
2882 No** 815 No** 2764 No**
2885 No** 816 Yes* 2973 No**
2887 Yes** 2595 Yes** 2976 Yes*
2889 Yes** 2596 Yes 2994 No**
2890 Yes** 2603 Yes** 2995 Yes**
3220 Yes** 2604 Yes** 2997 No**
3222 Yes** 2606 Yes** 3004 Yes**
3242 Yes** 2607 Yes* 3007 Yes*
3287 Yes** 2634 Yes* 3014 Yes*
3713 Yes** 2705 Yes** 3015 Yes*
3714 No** 2706 Yes** 3017 Yes
3719 Yes** 2710 Yes** 3024 Yes**
3720 Yes** 2711 Yes* 3027 Yes*
3722 Yes** 2712 Yes** 3029 No**
3723 Yes** 2713 Yes** 3032 Yes*
3725 Yes** 2721 No** 3034 Yes**
3726 Yes** 2722 Yes 3035 Yes
3728 Yes** 2723 Yes* 3037 Yes**
3729 No** 2724 No** 3217 Yes**
3731 Yes** 2726 Yes** 5573 Yes
3732 Yes** 2727 Yes** 5574 No**
3734 Yes** 2728 Yes** 5575 Yes**
3735 Yes** 2729 Yes** 5576 Yes*
819 Yes* 818 No** 5578 No**

Table 5.8: Johansen’s maximum eigenvalue test results at 90% level of confidence (**,
* indicate significance at 1%, and 5% probability levels respectively)
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significant evidence of such interdependency we say “X Granger causes Y”. Formally,

we use the following VAR(K) model of two series X and Y,

Yt = ut +
K∑
i=1

αiYt−i +
K∑
i=1

βiXt−i. (5.4)

If no lagged values of X are retained in the above regression, that is βi = 0 for

i ∈ {1, 2, , · · · , , K}, we imply that X does not Granger-causes Y . Similarly we can

set another VAR(K) model as follows

Xt = εt +
K∑
i=1

γiXt−i +
K∑
i=1

δiYt−i, (5.5)

and if δi = 0 for i ∈ {1, 2, , · · · , , K}, we imply that Y does not Granger-causes X.

Granger-causality test utilizes a Wald test (Granger 1969) with the null hypothesis that

there does not exist any statistically significant βi (δi), i.e., X does not Granger-causes

Y (Y does not Granger-causes X). Thus, if we have enough evidence to reject the null

hypothesis, we may conclude that there exists a short-run causal predictive relationship

from X to Y , or in short, X Granger causes Y , or vice versa. Granger-causality is

ideally suited for our analysis of information flow in Intrade and iPredict markets.

According to the prediction market literature, market prices react to the change of

information. Hence, if a market captures the newly available information quicker than

another market, then the latter market’s prices must be statistically significant when

predicting the former market’s prices.

When both time-series, X and Y , are stationary, the result of a Wald test

on the models (5.4) (or (5.5)) enables us to draw proper inferences regarding any
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causal relationship. However, when either of time series are non-stationary the

inference cannot be drawn because the VAR model does not have the usual asymptotic

distribution (Toda and Yamamoto 1995). Many studies are dedicated to this issue

and a proper inference is made possible via different techniques, many of such requires

transformation of the original series, or changing the VAR model (Lütkepohl 2005).

A common characteristic of these solution is their reliance on unit-root test which

have “notoriously low-power” (Giles et al. 2002). Toda and Yamamoto (1995) offer a

technique that bypasses the need for such unit-root tests and introduce a modified

Wald (MWALD) test on the following two augmented VAR models.

Yt = ut +∑K
i=1 αiYt−i +∑K

i=1 βiXt−i +∑K+mmax
j=K+1 βjXt−j +∑K+mmax

j=K+1 αjYt−j

Xt = εt +∑K
i=1 γiXt−i +∑K

i=1 δiYt−i +∑K+mmax
j=K+1 γjYt−j +∑K+mmax

j=K+1 δjXt−j

(5.6)

in which mmax is the maximum order of integration of the two series. To test for

causality we carry the same approach to test the null hypothesis of β1 = β2 = · · · =

βK = 0 (δ1 = δ2 = · · · = δK = 0) to test if X Granger-causes Y (X Granger-causes X).

According to Toda and Yamamoto (1995), the MWALD test on the above augmented

VAR models, ensures the proper asymptotic distribution and enables us to draw valid

inferences. The results of the proposed causality procedure to INT and IPR series are

shown in Table 5.9.
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Market ID G-Causality Results Market ID G-Causality Results Market ID G-Causality Results
1073 Feedback** 2757 Feedback** 3287 Intrade
21 Inconclusive** 2759 Feedback** 3713 Feedback**
22 Inconclusive** 2760 Feedback** 3714 Feedback**
2595 iPredict* 2762 Intrade* 3719 Feedback**
2596 Feedback** 2763 Feedback 3720 Feedback**
2603 Inconclusive** 2764 Inconclusive** 3722 Intrade**
2604 Feedback* 2863 Feedback** 3723 Feedback*
2606 Inconclusive** 2864 Intrade** 3725 Feedback**
2607 iPredict** 2865 Feedback** 3726 Feedback**
2623 Feedback** 2868 Intrade** 3728 Feedback**
2634 Inconclusive** 2869 Feedback** 3729 Feedback**
2636 Inconclusive** 2870 Inconclusive** 3731 Feedback**
2637 Intrade* 2874 Feedback** 3732 Feedback**
2705 Intrade** 2875 Feedback** 3734 Feedback**
2706 Inconclusive** 2876 Feedback** 3735 Feedback**
2710 Feedback** 2882 Feedback** 3739 Feedback**
2711 Feedback** 2885 Inconclusive** 3740 Feedback**
2712 Feedback** 2887 Inconclusive** 3743 Feedback**
2713 Feedback** 2889 Inconclusive** 3746 Feedback**
2721 Feedback** 2890 Inconclusive** 3747 Inconclusive**
2722 Intrade** 2973 Intrade** 3749 Feedback**
2723 Feedback** 2976 Inconclusive** 3750 Feedback**
2724 Inconclusive** 2994 Feedback** 3753 Feedback*
2726 Feedback** 2995 Feedback** 3754 Intrade**
2727 Feedback** 2997 Feedback** 3823 Feedback**
2728 Feedback** 3004 Feedback** 3832 Inconclusive**
2729 Inconclusive** 3007 Feedback** 3833 iPredict**
2731 Feedback 3014 Feedback** 3844 Inconclusive**
2732 Intrade** 3015 Feedback** 4834 Feedback**
2733 Feedback** 3017 Feedback** 4851 Feedback**
2734 Inconclusive** 3024 Feedback** 4852 Feedback**
2736 Feedback** 3027 Feedback** 5573 Inconclusive**
2737 Inconclusive** 3029 Inconclusive** 5574 Intrade**
2738 Feedback 3032 Inconclusive** 5575 Intrade**
2742 Feedback** 3034 Feedback** 5576 iPredict*
2745 Feedback** 3035 Intrade** 5578 Inconclusive**
2748 Inconclusive** 3037 Feedback** 814 Feedback**
2749 Feedback** 3217 Feedback** 815 Feedback**
2750 Feedback** 3220 Intrade** 816 Feedback**
2752 Feedback** 3222 Feedback** 818 Intrade**
2754 Feedback** 3242 Intrade** 819 Intrade

Table 5.9: Granger Causality results at 90% level of confidence (**, * indicate
significance at 1%, and 5% probability levels respectively)
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5.4 Results

We divide the causality results into three groups of INT =⇒ IPR, IPR =⇒ INT, and

INT⇐⇒ IPR in which the direction of causality is presented using the implication

sign. We discard the 26 cases in which there is no evidence of any short-run or long-run

relation between the two market. These market pairs, with no evidence of a short-run

relationship between them, illustrate a fourth option in which INT does not capture

information quicker IPR, and IPR does not capture information quicker that INT,

and INT and IPR do not capture information simultaneously. We do not consider

this fourth option in our study.

Let us recall that when INT =⇒ IPR (IPR =⇒ INT), we imply that there

is significant evidence that INT (IPR) captures the market information quicker

than IPR (INT). However, when the causality is significant in both direction, i.e.,

the case in which INT ⇐⇒ IPR, the interpretation is slightly different. Most

economists associate bi-directional causality with feedback systems, and the inference

from feedback systems are often complex. In our framework, however, bi-directional

causality between IPR and INT series indicates that both markets capture the market

information simultaneously. In other words, since both market prices are influenced by

the change in information available to the market participants, the feedback system

between IPR and INT indicates that there is significant evidence that market prices

simultaneously react to the change of information. Hence we may imply that both

markets capture the traders’ information with the same speed.

Our main objective of this study is to investigate the empirical relation between

information flow and the number of market trades. To illustrate the connection
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Figure 5.3: IPR and INT trades across market pairs labelled by the causality results
derived in Section 5.3.3.

between causality results and the number of trades we use a simple graph of market

pairs using their corresponding iPredict Trades, and Intrade Trades. We further

label these data points using their casual status derived in Section 5.3.3. Figure 5.3

illustrates the simple plot of labelled pairs. For example consider the market pair 2622,

which represents the security Mitt Romney to win the 2012 South Carolina Primary.

This market pair includes an INT market with 4670 trades, and an IPR with 1742

trades. According to our analysis in Section 5.3.3, for this pair, there exist a feedback

mechanism between IPR and INT market prices. Thus the data point representing this

pair is coordinated at (1742, 4670) with the label “Feedback”. Figure 5.3 illustrates

the two main intuitions behind the causality results.
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Figure 5.4: Market pairs with unidirectional causality results.

5.4.1 MSRs information aggregation in thin markets.

To study the effect of MSRs in thin markets, we need to investigate the cases in which

there exist a unidirectional causality, i.e., the cases labelled as INT =⇒ IPR, or

IPR =⇒ INT. Figure 5.4 isolates the cases with unidirectional causality from the rest.

To identify what part of the “iPredict’s trade - Intrade’s trade” space corresponds

to the cases in which INT =⇒ IPR, or vice versa, we are required to identify what

group, INT =⇒ IPRor IPR =⇒ INT, does the causality status of a new, unknown,

market pair belongs to. Fortunately, the answer to this problem can be found by

applying a simple classification algorithm using the labelled data. In particular, we

use Quadratic Discriminant Analysis with Leave-One-Out cross-validation (Kohavi

et al. 1995) to find the best classifier that describes the data presented in Figure 5.4.
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Figure 5.5: A probabilistic binary classification of unidirectional causality results.

Due to uneven number of observation points, we use the area under the curve as our

metric to choose the best model amongst linear and non-linear logistic regression,

linear and quadratic discriminant analysis, and recursive partitioning and regression

trees (Kuhn 2008).

For a given number of trades the estimated probability of Intrade Granger causing

iPredict can be determined using the posterior probability given by a quadratic

discriminant analysis model. As illustrated in Figure 5.5, the maximum number

of trades that results in a CDA performing better than a MSR is never more than

288, 310, and 352 at 90%, 95%, and 99% level respectively. Although this result is

consistent with prediction market literature (Hanson 2003) that argue MSRs should

be used in thin markets, we do not have sufficient data points to make such conclusion,

hence the first hypothesis which states:

There exists a threshold in the number of trades, say κ, such that a CDA

market aggregates information faster after κ trades than a MSR market after the

same number of trades.

is inconclusive. This inconclusive result could be down to two possible reasons.

First, the thin market in which a MSR could outperform a CDA market may have a

number of trades lower than the minimum number of trades in our data. Second, it

might simply be the case that with more market data, the significance of a classification

results, similar to the results shown in Figure 5.5, may increase.
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Figure 5.6: Market pairs with a causal feedback.

5.4.2 Feedback Analysis

As illustrated in Figure 5.3, in the majority of market pairs, there is a causal feedback

between CDAs’ and MSRs’ market prices. As discussed in Section 5.3, a causal

feedback between INT and IPR series can be interpreted as the case in which both

markets capture the available information with the same speed. The results from

Section 5.3.3 also offers us the opportunity to monitor the markets in which INT ⇐⇒

IPR. Similar to Figure 5.5, Figure 5.6 illustrates the simple plot of feedback pairs

using their corresponding market trades. To compare Intrade and iPredict markets

using their trade quantities, we find the distribution of the number of Intrade trades

relative to iPredict trades shown in Figure 5.7. As shown in Figure 5.7, in 80%

of cases, in a pair of markets in which INT ⇐⇒ IPR, IPR has a lower number of

trades. Moreover, in more than 46% of those cases, INT has at least twice as many
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Figure 5.7: Distribution of the number of Intrade trades relative to iPredict trades for
feedback market pairs.

trades as the corresponding IPR market. We further utilize a Wilcoxon signed-rank

test (Wilcoxon 1945, R Core Team 2013) to compare the two distribution of IPR

trades, and INT trades. The Wilcoxon signed-rank test, examines the hypothesis that

the distribution of IPR trades and INT trades are identical, versus the alternative

that INT trades are higher than IPR trades on average. The result of the Wilcoxon

signed-rank test indicates that there are significant evidence, at less than the 0.001

probability level, which indicates that INT trades are higher than IPR trades on

average. This observation indicates that when both CDAs and MSRs aggregate the

information with the same speed, MSRs often require a lower number of trades, which

confirms the second hypothesis.
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When MSR and CDA markets aggregate information with the same speed, a

MSR market requires fewer number of trades, compared to its corresponding CDA

market, to do so.

This result is in particular interesting in corporate settings in which achieving a

high number of trades may not be feasible.

5.5 Conclusion and Future Work

We conducted a time-series analysis to analyze the information aggregation performance

of subsidized and unsubsidized prediction markets. We find that, affirmative to the

current theory on prediction market literature, when subsidized and unsubsidized

prediction markets aggregate information simultaneously, subsidized prediction markets

require a lower number of trades. Our findings suggest that subsidized prediction

markets must be used when the trade frequencies are a concern to market organizers

interested in better information aggregation performance. We further examine a

threshold in the number of trades in which a market organizer can drop a subsidized

prediction market in favor of a subsidized prediction market without concerns regarding

the information aggregation performance. Although our findings indicate a small

threshold, in the number of 310 trades, the unidirectional subset of our dataset did

not contain sufficient observations to indicate a significance conclusion.
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Chapter 6

Concluding Remarks

In this thesis, we address issues in corporate prediction markets using an optimization

and statistical perspective. In particular, we covered the two issues of risk-preferences in

subsidized prediction markets and the selection criteria for using subsidy in prediction

markets. In particular, we showed that when designing a prediction market, ignoring

the risk-attitude of market participants may have negative consequences. Moreover,

we provide a systematic approach for market organizers to tune market parameters to

better control such consequences. Furthermore, we showed that our findings generalize

to any finite outcome space and are not limited to binary cases.

Concerning the subsidy in prediction markets, we utilized a statistical approach

to compare the information aggregation capabilities of different prediction market

mechanisms in different situations. Using an empirical framework, we showed that

unsubsidized prediction markets are ideal in situations when there is low trade

frequency and unsubsidized prediction markets can be used for markets with high
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number of trades. Furthermore, we showed that when both subsidized and unsubsidized

prediction markets aggregate traders’ information simultaneously, subsidized prediction

markets require a lower number of trades compared to unsubsidized prediction markets.

Prediction market organizers can utilize our findings when designing prediction

markets for corporations. We illustrate a systematic approach that analyzes different

prediction market mechanisms and recommends the best mechanism to ensure proper

elicitation and fast information aggregation. Moreover, corporate prediction market

organizers can use our results concerning subsidy to save on the operational costs

of running internal prediction markets by using unsubsidized prediction markets

whenever appropriate.

It is worth mentioning that Chapter 3, and Chapter 4 present sufficient conditions

for deviation-liquidity, and flatness-liquidity results and in the future we would like

to find necessary conditions. We also would like to extend our results concerning

risk attitudes in prediction markets, with other risky choice theories such as prospect

theory. In addition, the presented work in Chapter 3 and Chapter 4 only shows how

to choose the most liquid market maker amongst three popular MSR families. As a

future direction of study, we would like to optimize over the set of all possible MSRs

to find the one that has the optimal liquidity across all MSRs. We further plan to test

both deviation-liquidity and flatness-liquidity results in laboratory settings. Using our

empirical study in Chapter 5, we would also like to investigate the information aggre-

gation performance of prediction market mechanisms amongst subsidized prediction

markets.
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