
Scalable and Holistic Qualitative

Data Cleaning

by

Xu Chu

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada

c© Xu Chu 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the

Examining Committee is by majority vote.

External Examiner: Gerhard Weikum

Professor, Department of Databases and Information Systems

Max-Planck Institute for Informatics

Supervisor(s): Ihab Ilyas

Professor, David R. Cheriton School of Computer Science

University of Waterloo

Internal Members: Tamer Özsu

Professor, David R. Cheriton School of Computer Science

University of Waterloo

Grant Weddell

Associate Professor, David R. Cheriton School of Computer Science

University of Waterloo

Internal-External Member: Lukasz Golab

Associate Professor, Department of Management Sciences

University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this report. This is a true copy of the report,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Data quality is one of the most important problems in data management, since dirty

data often leads to inaccurate data analytics results and wrong business decisions. Poor

data across businesses and the government cost the U.S. economy $3.1 trillion a year,

according to a report by InsightSquared in 2012. Data scientists reportedly spend 60% of

their time in cleaning and organizing the data according to a survey published in Forbes

in 2016. Therefore, we need effective and efficient techniques to reduce the human efforts

in data cleaning.

Data cleaning activities usually consist of two phases: error detection and error repair.

Error detection techniques can be generally classified as either quantitative or qualita-

tive. Quantitative error detection techniques often involve statistical and machine learning

methods to identify abnormal behaviors and errors. Quantitative error detection tech-

niques have been mostly studied in the context of outlier detection. On the other hand,

qualitative error detection techniques rely on descriptive approaches to specify patterns or

constraints of a legal data instance. One common way of specifying those patterns or con-

straints is by using data quality rules expressed in some integrity constraint languages; and

errors are captured by identifying violations of the specified rules. This dissertation focuses

on tackling the challenges associated with detecting and repairing qualitative errors.

To clean a dirty dataset using rule-based qualitative data cleaning techniques, we first

need to design data quality rules that reflect the semantics of the data. Since obtaining

data quality rules by consulting domain experts is usually a time-consuming processing,

we need automatic techniques to discover them. We show how to mine data quality rules

expressed in the formalism of denial constraints (DCs). We choose DCs as the formal

integrity constraint language for capturing data quality rules because it is able to capture

many real-life data quality rules, and at the same time, it allows for efficient discovery

algorithm.

Since error detection often requires a tuple pairwise comparison, a quadratic complexity

that is expensive for a large dataset, we present a distribution strategy that distributes the

error detection workload to a cluster of machines in a parallel shared-nothing computing

environment. Our proposed distribution strategy aims at minimizing, across all machines,

iv

the maximum computation cost and the maximum communication cost, which are the two

main types of cost one needs to consider in a shared-nothing environment.

In repairing qualitative errors, we propose a holistic data cleaning technique, which

accumulates evidences from a broad spectrum of data quality rules, and suggests possible

data updates in a holistic manner. Compared with previous piece-meal data repairing

approaches, the holistic approach produces data updates with higher accuracy because

it realizes the interactions between different errors using one representation, and aims at

generating data updates that can fix as many errors as possible.

v

Acknowledgements

First, I would to offer my most sincere gratitude to my advisor, Prof. Ihab Ilyas.

Throughout my PhD study, Prof. Ilyas has always been my inspiration. He taught me

how to develop research ideas, how to write research papers, and how to give academic

talks. He offered tremendous support for my academic job search. I shall be indebted

for everything I have learned from him on both academic levels and personal levels. As

I pursue my academic career, Ihab will always be my advisor, my mentor, and my dear

friend.

I also would like to thank all the collaborators I have worked with over the years: Paolo

Papotti, Yeye He, Sam Madden, Surajit Chaudhuri, Peter Bailis, and many others. I would

not have had a successful PhD without them.

I am deeply grateful to my thesis committee members, Prof. Tamer Özsu, Prof. Grant

Weddell, Prof. Lukasz Golab, and Prof. Gerhard Weikum for the discussions and advices

throughout my PhD career, and for taking the time to read and to offer suggestions to

improve this thesis.

I would like to thank my parents, Xiaoping Chu and Jiying Wang, for their continuous

support and endless love. They are willing to give me everything and expect nothing in

return.

Finally, this dissertation would not have been possible without my lovely wife, Jianmei

Shi. She is always there to share joys with me in moments of happiness, and she is always

there to comfort me in moments of sadness.

vi

Dedication

This thesis is dedicated to my beloved wife Jianmei, and my wonderful parents.

vii

Table of Contents

List of Tables xii

List of Figures xiii

1 Introduction 1

1.1 Qualitative Data Cleaning Workflow . 2

1.2 Challenges in Qualitative Data Cleaning 4

1.3 Contributions and Outline . 6

2 Background and Related Work 9

2.1 Integrity Constraints . 10

2.1.1 Functional Dependencies . 10

2.1.2 Conditional Functional Dependencies 10

2.1.3 Denial Constraints . 12

2.1.4 Other Constraint Types . 13

2.2 Discovery of Integrity Constraints . 13

2.2.1 Schema-Driven FD Discovery . 14

2.2.2 Data-Driven FD Discovery . 16

viii

2.3 Taxonomy of Qualitative Error Detection 18

2.3.1 What to Detect . 21

2.3.2 How to Detect . 22

2.3.3 Where to Detect . 23

2.4 Taxonomy of Qualitative Error Repair . 25

2.4.1 What to Repair . 28

2.4.2 How to Repair . 30

2.4.3 Where to Repair . 36

3 Discovering Denial Constraints 41

3.1 Preliminary and Problem Definition . 46

3.1.1 Denial Constraints Preliminaries . 46

3.1.2 Problem Definition . 48

3.2 Static Analysis of DCs . 48

3.2.1 The Inference System of DCs . 49

3.2.2 The Implication Problem of DCs 51

3.3 DCs Discovery Algorithm . 54

3.3.1 Building the Predicate Space . 55

3.3.2 Building the Evidence Set . 56

3.3.3 DFS for Minimal Covers . 58

3.3.4 Dividing the Space of DCs . 61

3.3.5 Approximate DCs: A-FASTDC . 64

3.3.6 Constant DCs: C-FASTDC . 65

3.4 Ranking DCs . 67

ix

3.4.1 Succinctness . 67

3.4.2 Coverage . 68

3.4.3 Rank-aware Pruning in DFS Tree 70

3.5 Experimental Study . 71

3.5.1 Scalability Evaluation . 72

3.5.2 Qualitative Analysis . 75

4 Distributed Data Deduplication 81

4.1 Problem Definition and Solution Overview 84

4.1.1 Parallel Computation Model . 84

4.1.2 Formal Problem Definition . 85

4.1.3 Solution Overview . 86

4.2 Single Block Deduplication . 87

4.2.1 Lower Bounds . 88

4.2.2 Triangle Distribution Strategy . 89

4.3 Deduplication using Single Blocking Function 94

4.3.1 Lower Bounds . 94

4.3.2 Baseline Distribution Strategies . 95

4.3.3 The Proposed Strategy . 97

4.4 Deduplication using Multiple Blocking Functions 105

4.5 Experimental Study . 107

4.5.1 Single Block Deduplication Evaluation 110

4.5.2 Single Blocking Function Evaluation 112

4.5.3 Multiple Blocking Functions Evaluation 115

x

5 Holistic Data Cleaning 117

5.1 Problem Definition . 121

5.2 Solution Overview . 122

5.2.1 System Architecture . 122

5.2.2 Violations Representation: Conflict Hypergraph 124

5.2.3 Fixing Violation Holistically: Repair Context 125

5.3 Holistic Data Cleaning Algorithm . 127

5.3.1 The Iterative Algorithm . 127

5.3.2 Detect: Identifying Violations . 130

5.3.3 LookUp: Building the Repair Context 130

5.3.4 Determination: Finding Valid Assignments 132

5.4 Optimizations and Extensions . 135

5.5 Experimental Study . 137

5.5.1 Experimental Settings . 137

5.5.2 Experimental Results . 139

6 Conclusion and Future Work 144

6.1 Conclusion . 144

6.2 Future Work . 145

References 147

xi

List of Tables

1.1 An example employee table . 3

2.1 A sample of error detection techniques. 20

2.2 A sample of data repairing techniques. 27

3.1 Tax data records. 42

3.2 Operator Inverse and Implication. 47

3.3 # DCs before and after reduction through implication. 75

3.4 Sample DCs discovered in the datasets. 76

3.5 U-Precision. 79

4.1 Three example blocking functions . 96

4.2 Datasets Statistics . 109

4.3 Total number of comparisons W (in millions), for different number of block-

ing functions . 115

5.1 Table of conversion of the predicates in a DC for their repair. Predicate 6=t

states that the distance between two strings must be greater than t. 131

xii

List of Figures

1.1 Qualitative data cleaning workflow with an optional rule mining step, the

error detection step, and the error repair step 2

2.1 Tp for the CFD ({ST, LVL } → {SAL}, Tp) 11

2.2 TANE . 15

2.3 FASTFD . 18

2.4 Classification of qualitative error detection techniques. 19

2.5 A typical deduplication task. 21

2.6 HITs for data deduplication . 22

2.7 CrowdER: an example of using the hybrid human-machine workflow 24

2.8 The ETL stack. 25

2.9 Classification of error repair techniques. 26

2.10 Relative trust of FDs and data. 30

2.11 An initial conflict hypergraph . 33

2.12 A table T for soccer players . 34

2.13 KATARA patterns . 35

2.14 One-shot vs. probabilistic cleaning . 37

2.15 Probabilistic duplicate detection . 38

xiii

2.16 An example of U-clean relation . 40

2.17 U-clean relation query model . 40

3.1 Taxonomy Tree. 62

3.2 Scalability in |I| - Tax . 73

3.3 Scalability in |P| - Tax . 74

3.4 Threshold for Joinable Columns . 74

3.5 Ranking Function in Pruning . 75

3.6 G-Precision,Recall, and F-Measure on Tax 77

3.7 AFASTDC . 78

3.8 C-FASTDC Running Time . 79

4.1 Reducer arrangement. (The number in the upper left corner of each cell is

the reducer id.) . 90

4.2 Single block distribution example using three tuples, given reducers in Fig-

ure 4.1(b) . 92

4.3 Varying number of tuples . 111

4.4 Varying number of reducers . 112

4.5 Varying number of blocks . 113

4.6 Varying block size distribution . 114

4.7 Varying reducers on different datasets . 115

4.8 Varying number of blocking functions . 116

5.1 Local (L) and Global (G) relations for employees data. 118

5.2 Architecture of the system. 122

5.3 CH Example. 124

xiv

5.4 Compare data repairing on HOSP . 140

5.5 HOSP Exec. time . 140

5.6 Compare data repairing on Client . 141

5.7 Compare data repairing on Emp . 142

5.8 Results varying the number of constraints and the ordering criteria in Algo-

rithm 1. 142

xv

Chapter 1

Introduction

As businesses generate and consume data more than ever, enforcing and maintaining the

quality of their data assets become critical tasks. One in three business leaders does not

trust the information used to make decisions [40], since establishing trust in data becomes

a challenge as the variety and the number of sources grow. For example, in health care

domains, inaccurate or incorrect data may threaten patient safety [72]. Gartner predicted

that more than 25% of critical data in the world’s top companies is flawed [89]. Poor

data across businesses and the government costs the U.S. economy $3.1 trillion a year,

according to a report by InsightSquared [34]. With the increasing popularity of data

science, it became evident that data curation, preparation, cleaning, and other “janitorial”

data tasks, are key enablers in unleashing value of data, as indicated in a 2014 article in the

New York Times 1. According to a 2016 survey of about 80 data scientists conducted by

CrowdFlower, which was published in Forbes 2, data scientists spend 60% of their time in

cleaning and organizing the data, and 57% of data scientists regard cleaning and organizing

data as the least enjoyable part of their work. Therefore, we need effective and efficient

techniques to reduce the human efforts in data cleaning.

Data cleaning activities usually consist of two phases: error detection and error repair.

Error detection techniques can generally be classified as either quantitative or qualita-

1http://nyti.ms/1t8IzfE
2https://goo.gl/aPzGO5

1

http://nyti.ms/1t8IzfE
https://goo.gl/aPzGO5

tive. Quantitative error detection techniques often involve statistical and machine learning

methods to identify abnormal behaviors and errors [64] (e.g., “an employee salary that

is three standard deviation away from the mean salary is abnormal”). Quantitative error

detection techniques have been mostly studied in the context of outlier detection [6]. On

the other hand, qualitative error detection techniques rely on descriptive approaches to

specify patterns or constraints of a legal data instance. One common way of specifying

those patterns or constraints is by using data quality rules expressed in some integrity

constraint languages. Rule-based qualitative error detection techniques capture errors by

identifying violations of specified data quality rules. For example, a data quality rule of a

legal employee instance is “two persons with the same zip code live in the same state”. If

we identify two employees in a data instance, such that they have the same zip code but

different state, we are certain that at least one of the data values of zip code and state for

the two employees is erroneous.

The error repair phase of data cleaning is performed either by applying data trans-

formation scripts, which are usually generated according to the process used for error

detection, or by involving human experts in a principled manner, or by a combination of

both. This dissertation focuses on tackling the challenges associated with detecting and

repairing qualitative errors.

1.1 Qualitative Data Cleaning Workflow

Figure 1.1: Qualitative data cleaning workflow with an optional rule mining step, the error

detection step, and the error repair step

2

TID FN LN LVL ZIP ST SAL

t1 Anne Nash 5 10001 NM 110,000

t2 Mark White 6 87101 NM 80,000

t3 Jane Lee 4 10001 NY 75,000

Table 1.1: An example employee table

Figure 1.1 shows a typical workflow of qualitative data cleaning. In order to clean a

dirty dataset using qualitative data cleaning techniques, we need to define data quality

rules that reflect the semantics of the data. One way to obtain data quality rules is by

consulting domain experts, which requires a lot of domain expertise and is usually a time-

consuming processing. An alternative approach is to design an algorithm to automatically

discover data quality rules. Given a dirty dataset and the associated data quality rules,

the error detection step detects violations of the specified rules in the data. A violation is

minimal set of cells in a dataset that cannot coexist together. Finally, given the violations

and the rules that generate those violations, the error repair step produces data updates,

which are applied to the dirty dataset. The error detection and the error repair loop goes

on until the data conforms to the data quality rules, namely, there is no violations in the

data.

Example 1: Consider Table 1.1 that contains employee records in a company. Every tuple

specifies a person in a company with her id (GID), name (FN, LN), level (LVL), zip code

(ZIP), state (ST), and salary (SAL). Suppose two data quality rules hold for this table.

The first rule states that, if two employees have same zip code, they must have the same

state. The second rule states that among employees working in the same state, a higher

level employee cannot earn less salary than a lower level employee.

Given these two data quality rules, the error detection step detects two violations.

The first violation consists of four cells {t1[ZIP], t1[ST], t3[ZIP], t3[ST]}, which to-

gether violate the first data quality rules. The second violation consists of six cells

{t1[ROLE], t1[ST], t1[SAL], t2[ROLE], t2[ST], t2[SAL]}, which together violate the second

data quality rule. The data repair step takes the violations and produces an update that

changes t1[ST] from “NM” to “NY”, and the new data now has no violation with respect

3

to the two rules.

2

1.2 Challenges in Qualitative Data Cleaning

In this section, we discuss in detail the challenges associated with every one of the three

steps of qualitative data cleaning workflow.

• Rule Mining. Since designing data quality rules through consultation with domain

experts is an expensive and time-consuming process, automatically mining data qual-

ity rules is an appealing alternative. Obtaining data quality rules through mining

algorithms incurs multiple challenges:

(1) In order to mine data quality rules, we need a formal language to capture the

space of rules. Integrity constraints (ICs), such as domain constraints, functional de-

pendencies (FDs) [73], and their recent extension conditional functional dependencies

(CFDs) [22], provide formal languages to capture data quality rules. The question is

what IC language should we use to capture data quality rules? The more expressive

the language is, the more rules we can potentially capture. However, with increasing

expressiveness, it usually becomes harder to mine for rules due to a larger search

space. Therefore, we need to identify an IC language that strikes a balance between

the expressive power of the language, and the complexity of the algorithm to mine

for rules expressed in that language.

(2) We aim at mining valid ICs from a possibly dirty data instance, and use the mined

constraints to detect data errors in the dirty data. Therefore, the mining algorithm

has to be able to identify correct constraints in spite of potential violations of those

constraints in the dataset.

(3) Since the quality of ICs is crucial for data quality, discovered ICs need to be

verified by domain experts for their validity before using them for data cleaning.

Model discovery algorithms usually suffer from the problem of overfitting [20]; ICs

4

found on the input instance I of schema R may not hold on future data of R. Due

to the potentially large number of discovered ICs, we need to assist the users in

determining their validities.

• Error Detection. Detecting violations in a dataset with respect to a data quality

rule usually requires enumerating combinations of tuples in the data, and checking

whether a particular combination is in violation of the rule. For example, detecting

violation with respect to the rule in Example 1 requires us to enumerate all pairs

of tuples, a quadratic complexity that can be very expensive for a large dataset.

Therefore, we need scalable techniques to detect violations efficiently. Big data often

resides on a cluster of machines interconnected by a fast network, commonly referred

to as a “data lake”. Therefore, it is natural to leverage this scale-out environment to

develop efficient data distribution strategies that parallelize error detection. Multiple

challenges need to be addressed to perform distributed error detection:

(1) Unlike centralized settings, where the dominating cost is almost always the com-

putation cost of enumerating all tuple pairs, multiple factors contribute to the elapsed

time in a distributed computing environment, including network transfer time, local

disk I/O time, and CPU time. These costs also vary across different deployments.

(2) In a distributed setting, data skew can be an important performance factor [12,41].

Therefore, loading-balancing is needed to allow every machine to perform a roughly

equal amount of work in order to avoid situations where some machines take much

longer than others to finish, a scenario that greatly affects the overall running time.

• Error Repair. Error repair aims at producing updates to the dataset to resolve

the violations. While there is only one correct way to update the data, there might

be multiple possible updates to resolve a violation in the lack of the ground truth.

In Example 1, we only showed one way of resolving the violation consisting of four

cells {t1[ZIP], t1[ST], t3[ZIP], t3[ST]}. There are actually many different ways of

resolving it, for example, by updating t3[ST] from NY to NM, by updating t1[ZIP]

from 10001 to 10002, or by updating t1[ZIP] from 10001 to 10003. Identifying the

correct update among many possibilities has multiple challenges:

(1) The error repair techniques need to identify and focus on updating cells that

5

are most likely to be erroneous among cells participating in violations, as not all

of them are actually errors. We need techniques to accumulate different signals in

determining the actual erroneous cells.

(2) Even after we have determined a particular cell to be an error, there still might

be many possible ways to update it. Therefore, we need methods to collect repair

requirements and distinguish which updates are more likely to be the correct updates.

1.3 Contributions and Outline

In this dissertation, we make multiple contributions that address the challenges associated

with the three steps of qualitative data cleaning.

• Rule Mining. We propose an efficient algorithm to discover data quality rules

automatically from a possibly dirty dataset, and we also present ranking mechanisms

to assist the users in verifying the discovered rules [30,32]. Specifically, we make the

following contributions:

(1) We propose to use denial constraints [11], a universally quantified first order logic

formalism, as the formal language to capture a wide range of data quality rules. We

show that denial constraints are expressive — they subsume many previously pro-

posed integrity constraints, including FDs and CFDs [22]. We propose the FASTDC

algorithm for discovering DCs [30]. FASTDC avoids enumerating the exponential

number of candidate DCs by transforming the DC discovery problem to the problem

of finding set covers for a data structured called evidence sets built from the input

dataset.

(2) In order to discover valid DCs in spite of errors in the input, we propose a notion

of approximate DCs, which are candidate DCs that have a small number of violations

in the input dataset. We show that an approximate set cover for the evidence sets

corresponds to an approximate DC.

(3) We propose a novel scoring function, which combines succinctness and coverage

measures of discovered DCs in order to enable their ranking and pruning based on

6

thresholds, and thus reducing the cognitive burden for human verification of discov-

ered DCs.

• Error Detection. To tackle the scalability challenges for error detection, we study

the problem of how to distribute the tuple pairwise comparison in a distributed

shared-nothing computing environment. Tuple pairwise comparison is commonly

found operation in detecting errors. For example, detecting duplicate records requires

computing similarities or running a classifier for every tuple pair; detecting violations

of an IC involving two tuples, such as the FD in Example 1, requires checking whether

the IC is violated for every tuple pair. We study the problem of distributing tuple

pairwise comparison in the context of detecting duplicate records [29]. However, our

proposed distribution strategy applies to any error detection task that requires tuple

pairwise comparison. We propose a distribution strategy with optimality guarantees

for distributed data deduplication in a shared-nothing environment. Specifically, we

make the following contributions:

(1) We introduce a cost model that considers both the communication cost and the

computation cost, two main types of cost in a shared-nothing environment. We aim at

minimizing the maximum number of input tuples any machine receives (X), and the

maximum number of tuple pair comparisons any machine performs (Y). We provide

a lower bound analysis for X and Y that is independent of the actual dominating

cost in a cluster.

(2) We propose a distribution strategy for distributing the workload of tuple pairwise

comparison evenly to a cluster of machines. Both X and Y of our proposed strategy

are guaranteed to be within a small constant factor from the lower bounds for X and

Y .

(3)Blocking techniques are often employed to avoid comparing all tuple pairs [9, 19,

65]. They first partition all records into blocks and then only records within the

same block are compared. We show how our distribution strategy can be adapted

to evenly distribute the data deduplication workload when blocking techniques are

used.

• Error Repair. Since there might be many possible updates to resolve the de-

7

tected violations, we propose a holistic data cleaning technique, which accumulates

evidences from a broad spectrum of data quality rules, and suggests possible data

updates in a holistic manner [31]. Compared with previous piece-meal data repair-

ing approaches, the holistic approach produces data updates with higher accuracy

because it has on a global view of different violations on the data. Specifically, we

make the following contributions:

(1) Regardless of the data quality rules that generate the violations, we compile all

detected violations onto one data structure called the conflict hypergraph, where a

vertex corresponds to a cell, and a hyperedge corresponds to a violation. Intuitively, a

cell is more likely to be erroneous if it participates in multiple violations. Therefore,

we compute a minimal vertex cover for the conflict hypergraph, and we focus on

coming up with updates for cells in the minimal vertex cover.

(2) For a cell in the minimal vertex cover, we collect the necessary repair expressions

that need to satisfied in order to resolve the violations that cell is involved in. We

aim at producing an update for that cell that resolves as many violations as possible.

The remainder of the dissertation is organized as follows. In Chapter 2, we discuss

background and related work. In Chapter 3, we present our approach for discovering data

quality rules expressed in the formalism of denial constraints automatically. In Chapter 4,

we describe our distribution strategy to distribute the workload of detecting duplicate

records. In Chapter 5, we introduce how holistic data cleaning idea is able to suggest more

accurate data repairs than piece-meal data repairing approaches. Finally, in Chapter 6, we

conclude the dissertation with final remarks and directions for future work.

8

Chapter 2

Background and Related Work

There are various surveys and books on data quality and data cleaning. Rahm and Do [85]

give a classification of different types of errors that can happen in an Extract-Transform-

Load (ETL) process, and survey the tools available for cleaning data in an ETL process;

Grahne [59] focuses on the effect of incompleteness data on query answering, and the use of

a Chase procedure for dealing with incomplete data [60]; Hellerstein [64] focuses on clean-

ing quantitative data, such as integers and floating points, using mainly statistical outlier

detection techniques. Bertossi [14] provides complexity results for repairing inconsistent

data, and performing consistent query answering on inconsistent data; Fan and Geerts [45]

discuss the use of data quality rules in data consistency, data currency, and data complete-

ness, how different aspects of data quality issues might interact; Dasu and Johnson [37]

summarize how techniques in exploratory data mining can be integrated with data quality

management.

In this chapter, we discuss backgrounds and related works of qualitative data cleaning.

In Section 2.1, we review integrity constraints proposed in the literature for expressing data

quality rules. In Section 2.2, we discuss general approaches used for discovering integrity

constraints, and show two example algorithms for discovering functional dependencies. In

Section 2.3, we present a taxonomy of different qualitative error detection techniques. In

Section 2.4, we show a taxonomy of different error repair techniques. The two taxonomies

were first presented in our survey [68]. We use the taxonomies to discuss related works

9

of qualitative data cleaning, and show how our proposals in this dissertation fit in and

compare with the literature.

2.1 Integrity Constraints

Integrity constraints (ICs), which are usually declared as part of the database schema,

have been increasingly used to express data quality rules [46]. Data errors are captured

by identifying violations of ICs. In the following, we review the most commonly used IC

languages for expressing data quality rules in the literature.

2.1.1 Functional Dependencies

Functional dependencies (FDs) were originally proposed for database normalization [3].

However, there has been a recent interest in using FDs for detecting and repairing data

errors [15, 21,73].

Definition 1.1: Consider a relational schema R. A functional dependency (FD) ϕ is

defined as X → Y , where X ⊆ R and Y ⊆ R. An instance I of R satisfies FD ϕ, denoted

as I |= ϕ if for any two tuples tα, tβ in I, such that tα[X] = tβ[X], then tα[Y] = tβ[Y]. 2

In other words, if there exist any two tuples, tα, tβ, in any instance I, that have the

same value for attributes X, but different values for Y , then there must be some errors

present in tα or tβ. We call X the left hand side (LHS) of the FD, and Y the right hand

side (RHS) and the FD. The first data quality rule in Example 1 can be expressed as an

FD: ZIP → ST .

2.1.2 Conditional Functional Dependencies

Conditional functional dependencies (CFDs), an extension of FDs, are capable of capturing

FDs that hold partially on the data [22].

Definition 1.2: A CFD ϕ on R is a pair (R : X → Y, Tp), where:

10

• X, Y ⊂ R;

• X → Y is an FD, called embedded FD in the context of CFD; and

• Tp is called a pattern tableau of ϕ, where for every attribute A ∈ X ∪ Y and each

pattern tuple tp ∈ Tp, either tp[A] is a constant in the domain Dom(A) of A, or tp[A]

is a wild card ‘-’.

A tuple tα ∈ I is said to match a pattern tuple tp ∈ Tp, denoted as tα ≈ tp, if for every

attribute A ∈ X ∪ Y , tα[A] = tp[A], in case tp[A] is a constant. A relation instance I of

R is said to satisfy a CFD ϕ, denoted as I |= ϕ, if for every tuple tα, tβ ∈ I, and for each

tuple tp ∈ Tp, if tα[X] = tβ[X] ≈ tp[X], then tα[Y] = tβ[Y] ≈ tp[Y].

2

Intuitively, a CFD is a traditional FD with an added constraint of the pattern tableau.

If, for two tuples tα, tβ ∈ I, tα[X] and tβ[X] are equal and they both match tp[X], then

tα[Y] and tβ[Y] must also be equal and must both match the pattern tp[Y]. While it

requires two tuples to have a violation of an FD, one tuple may also violate a CFD. A

single tuple t violates a CFD if t matches the LHS of a tuple tp in the pattern tableaux, but

not the RHS, where tp consists of all constants, i.e.,, no wild cards, traditionally referred

to as “tuple check constraint”.

ST LVL SAL

NJ - -

GA - -

GA 7 120,000

Figure 2.1: Tp for the CFD ({ST, LVL } → {SAL}, Tp)

Example 2: Consider again Table 1.1 that contains employee records in a company.

Suppose the FD that an employee’s level determines her salary, i.e., LV L → SAL, is not

true for all employees in the company, however, it is true for employees in the state of NJ,

or in the state of GA. In addition, it holds that an employee of Level 7 in the state of

11

GA has salary 120K. The aforementioned data quality rules can be expressed as a CFD

({ST, LVL } → {SAL}, Tp) with Tp shown in Figure 2.1.

2

2.1.3 Denial Constraints

As powerful as CFDs are, they are still not capable of capturing many real life data

quality rules, such as rules include inequality comparisons. Denial constraints (DCs) [11],

a universally quantified first order logic formalism, which subsume FDs and CFDs, can

express the aforementioned rules.

Definition 1.3: A denial constraint (DC) ϕ on R is defined as: ∀tα, tβ, tγ, . . . ∈ R, q(P1 ∧
. . . ∧ Pm), where each predicate Pi is of the form v1θv2 or v1θc with v1, v2 ∈ tx.A, x ∈
{α, β, γ, . . .}, A ∈ R, c is a constant in the domain of A, and θ ∈ {=, <,>, 6=,≤,≥}. Note

that we use tα, tβ, tγ, . . . ∈ R to denote possible tuples in an database instance of schema

R.

A relation instance I of R is said to satisfy a DC ϕ, denoted as I |= ϕ, if for every

ordered list of tuples ∀tα, tβ, tγ, . . . ∈ I, at least one of Pi is false.

2

For a DC ϕ according to the definition, if ∀Pi, i ∈ [1,m] is of the form v1φv2, then we call

such DC a variable denial constraint (VDC), otherwise, ϕ is a constant denial constraint

(CDC). A DC states that all the predicates cannot be true at the same time, otherwise, we

have a violation. Single-tuple constraints (such as check constraints), FDs, and CFDs are

special cases of unary and binary denial constraints with equality and inequality predicates.

Example 3: The FD ZIP → ST in Example 1 can be expressed as a DC: ∀tα, tβ ∈
R, q(tα.ZIP = tβ.ZIP ∧ tα.ST 6= tβ.ST)

The second rule in Example 1 can also be expressed as a DC: ∀tα, tβ ∈ R, q(tα.ST =

tβ.ST ∧ tα.LV L > tβ.LV L ∧ tα.SAL < tβ.SAL)

In addition, the CFD in Example 2 can be expressed using the following three DCs:

12

∀tα, tβ ∈ R, q(tα.ST = NJ ∧ tβ.ST = NJ ∧ tα.LV L = tβ.LV L ∧ tα.SAL 6= tβ.SAL)

∀tα, tβ ∈ R, q(tα.ST = GA ∧ tβ.ST = GA ∧ tα.LV L = tβ.LV L ∧ tα.SAL 6= tβ.SAL)

∀tα ∈ R, q(tα.ST = GA ∧ tα.LV L = 7 ∧ tα.SAL 6= 120,000)

2

2.1.4 Other Constraint Types

Besides FDs, CFDs, and DCs, many other different types of ICs have been proposed for

capturing different types of data errors. Inclusion Dependencies (INDs) [3] can be used

for detecting inconsistencies or information incompleteness, and schema matching; Match-

ing dependencies (MDs) [49] use similarity measures to generalize the equality condition

used in FDs, to support record linkage across two tables; Metric functional dependencies

(MFDs) [77] can be considered as special MDs defined on one table, to capture small vari-

ations in the data; Numeric functional dependencies (NFDs) [44] can capture interesting

constraints involving numeric attributes, since NFDs allow arithmetic operations; Editing

rules (eRs) [51] not only provides a way to detect errors, but also tells how to fix errors by

referencing a master table; Fixing rules [95] precisely captures which attribute is wrong,

and how to correct the error, when enough evidence is present; Sherlock Rules [70] annotate

the correct and erroneous attributes, and precisely tell how to fix the errors by referencing

master tables.

2.2 Discovery of Integrity Constraints

Since manually designing ICs is expensive and time-consuming, automatic IC discovery

is an extremely useful functionality in bootstrapping the cleaning exercise. In order to

discover valid ICs that are correct for a database schema, IC discovery algorithms usually

first discover ICs that hold on the current input data instance, and then involve humans

to verify the discovered ICs for validity. IC discovery algorithms generally fall into two

13

categories: schema-driven approaches and instance-driven approaches [2, 68]. Schema-

driven IC discovery approaches usually enumerate all candidates ICs generated based on

the schema, and check whether each candidate IC holds on the data instance. On the other

hand, instance-driven IC discovery approaches avoid enumerating all candidate ICs by

usually building a special data structure using the data instance and searching directly for

ICs that hold on the data instance based on that data structure. Schema-driven approaches

are usually more sensitive to the size of the schema, while instance-driven approaches are

usually more sensitive to the size of the instance.

In this section, we use two example algorithms for discovery FDs to show the differences

between these two approaches: TANE [67] as an example of a schema-driven approach, and

FASTFD [98] as an example of an instance-driven approach. TANE adopts a level-wise

candidate generation and pruning strategy and relies on a linear algorithm for checking

whether a FD holds on the input instance. On the other hand, FASTFD first computes

difference sets from data, then adopts a heuristic-driven depth-first search algorithm to

search for covers of difference sets. TANE is sensitive to the size of the schema, while

FASTFD is sensitive to the size of the instance. We refer readers to our survey [68] for a

more comprehensive coverage on discovery algorithms proposed for FDs, CFDs, DCs, and

other types of ICs. Our algorithm FASTDC for discovering DCs in Chapter 3 is instance-

driven algorithm similar to FASTFD. However, FASTDC uses different data structure

and different pruning rules that are specific to DCs; in addition, FASTDC includes novel

interestingness functions both to rank discovered DCs for user verification and to early

stop the searching process.

2.2.1 Schema-Driven FD Discovery

An FD ϕ : X → A holds on the database instance I if there is no violation of ϕ on I.

FD ϕ is said to be minimal if removing any attribute from X would make it no longer

hold on I. Moreover, an FD is trivial if its RHS is a subset of its LHS. Since FDs with

multiple attributes in the RHS can be equivalently decomposed into multiple FDs with

one attribute in the RHS, only FDs with one attribute in the RHS need to be considered.

Thus, given a database instance I of schema R, the FD discovery problem is to find all

14

(a) Space of FDs (b) Candidate FDs pruned if A→ C holds

Figure 2.2: TANE

minimal nontrivial FDs with one attribute in the RHS that hold on I.

Assume the relational schema R has m attributes; |R| = m. Selecting an attribute as

the RHS of an FD, any subset of the remaining m− 1 attributes could serve as the LHS.

Thus, the space to be explored for FD discovery is m × 2m−1. Figure 2.2(a) shows the

space of candidate FDs organized in a lattice for a table with four columns, A,B,C, and

D, with every edge in the lattice represents a candidate FD. For example, edge A to AC

represents the FD A→ C.

Algorithm 1 describes TANE [67]. TANE searches the lattice level by level. The level-

by-level traversal ensures that only minimal FDs are in the output. There are three types

of pruning employed by TANE: (1) If X → A ∈ Σ, then all FDs of the form XY → A

are implied, and hence they can be pruned; (2) If X → A ∈ Σ, then all FDs of the form

XAY → B can be pruned. The reason is that if XY → B holds, then XAY → B is

implied by XY → B, which would be discovered earlier due to level-by-level traversal, and

if XY → B does not hold, then XAY → B also does not hold due to X → A; and (3) If

X is a key, then any node containing X can be pruned.

15

Algorithm 1 TANE
Require: One relational instance I, schema R

Ensure: All minimal FDs Σ

1: L1 ← {{A}|A ∈ attr(R)}
2: l← 1

3: while Ll 6= ∅ do
4: for all Node Y ∈ Ll do
5: for all Parent node X of Y do

6: if X → Y −X is valid then

7: add X → Y −X to Σ

8: pruning Ll based on the three pruning rules

9: Ll+1 ← generate next level based on Ll

10: l← l + 1

Partitioning I by X produces a set of nonempty disjoint subsets denoted as ΠX , and

each subset contains identifiers of all tuple in I sharing the same value for attributes X.

An FD X → A is valid if and only if |ΠX | = |ΠX∪A|, where |ΠX | denotes the number

of disjoint subsets in ΠX . The partitions need not be computed from scratch for every

set of attributes, rather, TANE computes ΠXY from two previously computed partitions,

ΠX and ΠY . Note that ΠXY contains all subsets of tuples, where each subset is in both

ΠX and ΠY . For example, if ΠX = {{t1}, {t2, t3}, {t4}} and ΠY = {{t1, t2, t3}, {t4}}, then

ΠXY = {{t1}, {t2, t3}, {t4}}. Therefore, TANE needs only to compute partitions for every

single attribute A ∈ R, partitions for every set of attributes X can be computed from a

previous level following the level-by-level traversal.

2.2.2 Data-Driven FD Discovery

FASTFD [98] is an instance-based FD discovery algorithm. We start by defining the

difference set of two tuples t1, t2 as D(t1, t2) = {A ∈ R | t1[A] 6= t2[A]}. The difference

sets of I are DI = {D(t1, t2) | t1, t2 ∈ I, D(t1, t2) 6= ∅}. Given a fixed attribute A ∈ R,

the difference sets of I modulo A are DA
I = {D − {A} | D ∈ DI , and A ∈ D}. An FD

X → A is a valid FD if and only if X covers DA
I , i.e.,, X intersects with every element in

16

DA
I . The intuition is that if X intersects with every element in DA

I , then X distinguishes

any two tuples that disagree on A.

Example 4: Consider a table I of R with four attributes as follows:

A B C D

t1 a1 b1 c1 d1

t2 a2 b1 c1 d2

t3 a1 b2 c2 d1

We have D(t1, t2) = {AD}, D(t1, t3) = {BC}, and D(t2, t3) = {ABCD}. Thus,

DI = {AD,BC,ABCD}, and DA
I = {D,BCD}. Since {D} is a minimal cover of DA

I , we

have D → A. 2

Therefore, the problem of finding all valid FDs is transformed to the problem of finding

all minimal set covers of DA
I for every attribute A ∈ attr(R). Every subset of attr(R)−A

is a potential candidate minimal cover of DA
I . Algorithm 2 describes FASTFD. In the

following, we describe the depth-first search (Line 4) of Algorithm 2 using the table in

Example 4.

Algorithm 2 FASTFD
Require: One relational instance I, schema R

Ensure: All minimal FDs Σ

1: for all A ∈ attr(R) do

2: calculate DA
I

3: for all A ∈ attr(R) do

4: Finding all minimal set covers of DA
I using a depth-first search

5: For every cover X, add X → A to Σ

To generate all possible minimal set covers for DA
I , that is all subsets of {BCD},

without repetition, the attributes are lexically ordered, i.e.,, B > C > D, and arranged

in a depth-first search tree, as shown in Figure 2.3(a). An improved version of the search

orders the remaining attributes dynamically according to how many difference sets they

cover. Ties are broken lexically. For example, to search for minimal covers of DA
I using

17

(a) Static order-

ing of attributes

(b) Dynamic ordering of attributes

Figure 2.3: FASTFD

{BCD}, the attributes are ordered D > B > C, since D covers two difference sets, while

B and C cover one difference set, as shown in Figure 2.3(b). If the algorithm reaches at a

node where there are no remaining difference sets left, we have reached a cover X, which

may not be minimal. If every immediate subset of X is not a cover, then X is minimal. If

a node is reached where there are still remaining difference sets, but no attributes left, the

depth-first search procedure terminates.

2.3 Taxonomy of Qualitative Error Detection

In this section, we discuss related works in qualitative error detection, and show how

our proposals in this dissertation fit in and compare with existing literature. Figure 2.4

depicts the classification we adopt to categorize the current error detection techniques. In

the following, we briefly discuss our classification dimensions and we expand on them in

the following subsections. The three adopted dimensions capture the three main questions

involved in qualitative error detection.

• Error Type (What to Detect?) Error detection techniques can be classified accord-

ing to which type of errors can be captured. In other words, what languages are

used to describe patterns or constraints of a legal data instance. A large body of

work uses integrity constraints (ICs), a fractional of first order logic, to capture data

18

Figure 2.4: Classification of qualitative error detection techniques.

quality rules that the database should conform to, including functional dependencies

(FDs) [73] and conditional functional dependencies [22]. While duplicate records can

be considered a violation of an integrity constraint (key constraint), we recognize the

large body of work that focuses on this problem and we treat it as a separate error

type from other types of integrity constraints.

We propose to use denial constraints (DCs), a universally quantified first order logic

formalism, as the formal language to capture a wide range of data quality rules,

and we design an efficient algorithm to automatically mine DCs, as we will show in

Chapter 3.

• Automation (How to Detect?) We classify proposed approaches according to

whether and how humans are involved in the error detection process. Most tech-

niques are fully automatic, for example, detecting violations of functional depen-

dencies, while other techniques involve humans, for example, to identify duplicate

records.

We address the scalability challenge in the context of automatically detecting dupli-

cate records, which discussed in Chapter 4. Data deduplication techniques usually

require computing a similarity score of each tuple pair. For a dataset with n tuples,

näıvely comparing every tuple pair requires O(n2) comparisons, a prohibitive cost

when n is large.

19

Error Type

What

Automation

How

BI Layer

Where

IC D
ata

d
ed

u
p
lication

A
u
tom

atic

H
u
m

an
in

volved

S
ou

rce

T
arget

FDs value modification [21] X X X

Holistic data cleaning [31] X X X

Distributed Data Deduplication [29] X X X

CrowdER [93] X X X

Corleone [56] X X X

Causality Analysis [81] X X X

Scorpion [96] X X X

DBRx [23] X X X

Table 2.1: A sample of error detection techniques.

• Business Intelligence Layer (Where to Detect?) Errors can happen in all stages

of a business intelligence (BI) stack, for example, errors in the source database are

often propagated through the data processing pipeline. While most error detection

techniques detect errors in the original database, some errors can only be discovered

much later in the data processing pipeline, where more semantics and business logics

becomes available, for example, constraints on total budget can only be enforced

after aggregating cost and expenses.

Table 2.1 shows a sample of error detection techniques, which cover all categories of the

proposed taxonomy. Our distributed data deduplication proposal targets duplicate records;

it is an automatic error detection technique; and it detected the duplicates at the source

data. Our holistic data cleaning proposal targets violations of ICs; it is an automatic error

detection technique; and it also detects errors at the source data.

20

Figure 2.5: A typical deduplication task.

2.3.1 What to Detect

Qualitative errors include violations of integrity constraints, and presence of duplicate

records. We have reviewed ICs in Section 2.1, and techniques for their discovery in Sec-

tion 2.2. Data deduplication, also known as duplicate detection, record linkage, record

matching, or entity resolution, refers to the process of identifying tuples in one or more

relations that refer to the same real world entity. The topic has been extensively covered

in many surveys [42, 43, 55, 66, 78, 82]: some aim at providing an extensive overview of all

the steps involved in data deduplication [43,55,66], some focus on the design of similarity

metrics [78, 82], some discuss the efficiency aspect of data deduplication [82], and some

focus on how to consolidate multiple records [42].

Example 5: Figure 2.5 illustrates a typical example of data deduplication. The similarities

between pairs of records are computed, and are shown in the similarity graph (upper right

graph in Figure 2.5). The missing edges between any two records indicate that they are

non-duplicates. Records are then clustered together based on the similarity graph. Suppose

21

the user sets the threshold to be 0.5, i.e.,, any record pairs having similarity greater than

0.5 are considered duplicates. Although Record P1 and P5 have similarity less than 0.5,

they are clustered together due to transitivity; that is, they are both considered duplicates

to Record P2. All records in the same cluster are consolidated into one record in the final

clean relation. 2

2.3.2 How to Detect

Since the notion of violation with respect to an IC is well defined, namely, the minimal

subset of database cells that cannot coexist, violation detection for ICs can be achieved

automatically [22, 31]. In contrast, deciding whether two records are duplicates usually

requires fuzzy matching, for which humans sometimes can achieve better accuracy [56,91,

93, 94]. We use CrowdER [93] as an example to show how crowd worker can aid a data

deduplication task.

(a) Pair-based HIT (b) Cluster-based HIT

Figure 2.6: HITs for data deduplication

The motivation for CrowdER is that while automatic techniques for data deduplication

22

have been improving, the quality remains far from perfect; meanwhile, crowdsourcing

platforms offer a more accurate, but expensive (and slow) way to bring human insight

into the process. Crowdsourcing platforms, such as Amazon Mechanic Turk, support

crowdsourced execution of “microtasks” or Human Intelligence Tasks (HITs), where people

do simple jobs requiring little or no domain expertise, and are paid per job. Figure 2.6

shows two types for HITs used by CrowdER. The pair-based HIT in Figure 2.6(a) asks a

human to check each pair of records individually; the cluster-based HIT in Figure 2.6(b)

asks a human to cluster multiple records at the same time.

CrowdER proposes a human-machine workflow, which first uses machine-based tech-

niques to compute, for each pair, the likelihood that they refer to the same entity. For

example, the likelihood could be the similarity value given by a similarity-based technique.

Then, only those pairs whose likelihood exceeds a specified threshold are sent to the crowd.

It is shown that by specifying a relatively low threshold the number of pairs that need to

be verified can be dramatically reduced with only a minor loss of quality. Given the set of

pairs to be sent to the crowd, the next step is to generate HITs so that people can check

them for matches. HIT Generation is a key component of the workflow. Finally, generated

HITs are sent to the crowd for processing and the answers are collected.

Example 6: Figure 2.7 shows a workflow of CrowdER for deduplicating a table consisting

of nine records r1, . . . , r9 by using pair-based HIT. Instead of asking humans to check all

pairs of records, that is 9∗8
2

= 36 pairs, CrowdER first employs a machine based approach

to calculate the similarities between pairs of records. Those record pairs whose similarities

are lower than a threshold are pruned, such as (r3, r6). The remaining ten pairs can fit into

five pair-based HITS, where each HIT contains two questions. The final matching pairs

are collected based on user answers. 2

2.3.3 Where to Detect

The problem of error detection is further complicated by the fact that errors are usually

discovered much later in the data processing pipeline, where more business logics becomes

available. Consider a simple example of two source tables, Employees and Departments.

23

Figure 2.7: CrowdER: an example of using the hybrid human-machine workflow

Detecting that the sum of employee salaries in a department exceeds the budget allocated

for that department cannot be done before joining the two tables and aggregating the

salaries of each group of employees.

In many applications, errors are detected in a target database (or a report) that is the

result of data transformations and queries applied on a source database. Figure 2.8 shows a

typical data Extract-Transform-Load (ETL) processing stack. In each of the layers, various

integrity constraints are defined as more semantics are added to the data. For example,

while Constraint (4) (S1.NAME is NOT NULL) can be defined directly on the sources,

Constraints (1) and (2) can only be defined at the application and reporting layer after

the necessary aggregation and joins have been performed.

Propagating errors detected in transformation results to the data sources is essential for

both repairing these errors and preventing them from reoccurring in the future. Techniques

for error propagation vary according to the type of data transformations and queries as-

sumed, such as Boolean expressions [81], aggregation on numerical attributes [96,97], and

more general SPJA queries [23].

24

Figure 2.8: The ETL stack.

2.4 Taxonomy of Qualitative Error Repair

In this section, we discuss related works in qualitative error repair, and show how our

proposals in this dissertation fit in and compare with existing literature. Figure 2.9 depicts

the classification we adopt to categorize the proposed error repair techniques. In the

following, we briefly discuss our classification dimensions, and their impact on the design

of underlying error repair techniques. The three adopted dimensions capture the three

main questions involved in repairing an erroneous database. We discuss in more detail the

three dimension in the following subsections.

• Repair Target (What to Repair?) Repairing algorithms make different assump-

tions about the data and the quality rules: (1) trusting the declared integrity con-

straints, and hence, only data can be updated to remove errors; (2) trusting the data

completely and allowing the relaxation of the constraints, for example, to address

schema evolution and obsolete business rules; and finally (3) exploring the possibility

25

Figure 2.9: Classification of error repair techniques.

of changing both the data and the constraints. For techniques that trust the rules,

and change only the data, they can be further divided according to the driver to the

repairing exercise, that is, what types of errors they are targeting. A majority of

techniques repair the data with respect to one type of errors only (one at a time),

while other emerging techniques consider the interactions among multiple types of

errors and provide a holistic repair of the data (holistic), such as our proposal in

Chapter 5.

• Automation (How to Repair?) We classify proposed approaches with respect to the

tools used in the repairing process. More specifically, we classify current repairing

approaches according to whether and how humans are involved. Some techniques

are fully automatic, for example, by modifying the database, such that the distance

between the original database I and the modified database I ′ is minimized according

to some cost function. Other techniques involve humans in the repairing process

either to verify the fixes, to suggest fixes, or to train machine learning models to

carry out automatic repairing decisions.

• Repair Model (Where to Repair?) We classify proposed approaches based on

whether they change the database in-situ, or build a model to describe the repair.

Most proposed techniques repair the database in place, thus destructing the original

database. For none in-situ repairs, a model is often built to describe the different

26

Repair target

What

Automation

How

Repair model

Where

D
ata

-
O

n
e

at
a

tim
e

D
ata

-
H

olistic

R
u
les

B
oth

A
u
tom

atic

H
u
m

an
in

volved

In
p
lace

M
o
d
el

b
ased

FDs value modification [21] X X X

FDs hypergraph [73] X X X

CFDs value modification [35] X X X

Holistic data cleaning [31] X X X

LLUNATIC [54] X X X

Record matching and data repairing [50] X X X

NADEEF [36] X X X

Generate optimal tablaux [57] X X X

Unified repair [25] X X X

Relative trust [16] X X X

Continuous data cleaning [92] X X X

AJAX [52,53] X X X

Potter’s Wheel [86] X X X

GDR [99] X X X

KATARA [33] X X X

DataTamer [88] X X X

Editing rules [51] X X X

Sampling FDs repairs [15] X X X

Sampling CFDs repairs [17] X X X

Sampling Duplicates [18] X X X

Table 2.2: A sample of data repairing techniques.

ways to repair the underlying database. Queries are answered against these repairing

models using, for example, sampling from all possible repairs and other probabilistic

query answering mechanisms.

Table 2.2 shows a sample of error repair techniques using the taxonomy. Our holistic

data cleaning technique changes the data only and is a holistic approach; it is an automatic

error repair technique; and it updates the data in place.

27

2.4.1 What to Repair

Business logic is not static; it often evolves over time. Previously correct integrity con-

straints may become obsolete quickly. Practical data repairing techniques must consider

possible errors in the data as well as possible errors in the specified constraints. Thus,

the repair targets include data only, rules only, and a combination of both. In data only

repairing, data is modified to conform to a set of ICs; in rules only repairing, rules are

modified, such that they hold on the data; and in data and rules repairing, data and rules

are simultaneously modified, such that the modified data conforms to the modified rules.

Repair Data Only

Data repairing techniques in this category assume there is a set of ICs Σ defined on the

database schema R, and any database instance I of R should conform to these constraints.

Data only repairing techniques make different assumptions about the driver of the repairing

process. In Section 2.4.1, we discussed different error types. For each type of error, such

as duplicate records and FD violations, multiple repairing algorithms are proposed. For

example, many techniques have been focusing on detecting and consolidating duplicate

records only [43, 91]. We will discuss a technique in Section 2.4.2 for repairing violations

of FD constraints as an example. Similarly, violations of CFD constraints have been

addressed in multiple proposals, either automatically [35] or by involving humans in the

loop [99]. We describe these techniques as One at a time techniques. Most available data

repair solutions are in this category. They address one type of error, either to allow for

theoretical quality guarantees, or to allow for a scalable system.

However, data anomalies and errors are rarely due to a single type; multiple data

quality problems, such as missing values, typos, the presence of duplicate records, and

business rule violations, are often observed in a single data set. These heterogeneous types

of errors interplay and conflict on the same dataset, and treating them independently

would miss the opportunity to correctly identify the actual errors in the data. We call

the proposals that take a more holistic view of the data cleaning process Holistic cleaning

approaches [31,36,48,50,54]. Geerts et al. [54] consider all constraints that can be expressed

28

as equality-generating dependencies. Fan et al. [50] integrate data repairing based on

CFDs and record matching based on MDs, and show that these two tasks benefit from

each other when coupled together. Our proposal in Chapter 5 considers a wide range of

ICs including, FDs, CFDs, and DCs, as long as the violations of ICs can be encoded as a

hyperedge in the conflict hypergraph.

Repair Rules Only

The techniques in this category assume data is clean, and ICs need to be changed, such

that data conforms to the changed ICs. In fact, the IC discovery problems discussed in

Section 2.2 can be considered in this category. Another particular example is the pattern

tableaux discovery problem for CFDs (cf. Section 2.1), where an embedded FD is given [57]

and the goal is to discovery the pattern tableaux for the given FD.

Repair Both Data and Rules

Cleaning techniques in this category assumes data and rules can be dirty at the same time.

Techniques for repairing both data and rules have mostly been studied when the rules are

expressed using FDs [16,25,92]. Given a database instance I and a set of FDs Σ such that

I 6|= Σ, we need to find another I ′ and Σ′, such that I ′ |= Σ′.

Example 7: Figure 2.10 shows a table with an FD stating that given name and surname

determine income. There are three violations of the FD, i.e.,, the first and the second

tuple, the third and the fourth tuple, and the fifth and the sixth tuple. If the FD is to

be completely trusted, three cell changes are required, shown in the bottom left table in

Figure 2.10. If the data is completely trusted, two attributes are added to the LHS of

the FD, shown in the bottom middle table in Figure 2.10. If the FD and data have equal

trustworthiness, a repair is to only change one cell value and add one attribute to the LHS

of the FD, shown in the bottom right table in Figure 2.10. 2

29

Figure 2.10: Relative trust of FDs and data.

2.4.2 How to Repair

In this section, we discuss data repairing techniques based on whether and how humans

are involved in the repairing process.

Automatic Error Repair

There exist multiple theoretic studies [4, 21, 26] and surveys [14, 45] on studying the com-

plexity of data repairing parameterized by different classes of ICs, such as FDs, CFDs,

and DCs, and different repairing operations, such as value updating, and tuple deleting.

Most of the automatic data repairing techniques aim at updating the database in a way

such that the distance between the original database I and the modified database I ′ is

minimized, which is also the objective adopted by our holistic data cleaning proposal in

Chapter 5. With a lack of ground truth, the main hypothesis behind the minimality objec-

tive function is that a majority of the database is clean, and, thus, only a relatively small

30

number of updates need to be performed compared to the database size. Many different

notions of minimality have been proposed in the literature, including Cardinality-Minimal

Repairs [73], Cost-Minimal Repairs [21], Set-Minimal Repairs [10,14,79], and Cardinality-

Set-Minimal [15] Repairs. In this section, we discuss an example data repair algorithm,

which adopts Cardinality-Minimal Repairs.

Let ∆(I, I ′) denote the set of cells that have different values in I and I ′. A repair I ′ of I

is cardinality-minimal if and only if there is no repair I ′′, such that |∆(I, I ′′)| < |∆(I, I ′)|.
In other words, a repair I ′ of I is cardinality-minimal if and only if the number of changed

cells in I ′ is minimum among all possible repairs of I. Algorithm 3 finds a repair I ′ whose

distance to I (i.e.,, number of changed cell) is within a constant factor of the optimum

∆(I, I ′), where the constant factor depends on the set of FDs [73]. The algorithm captures

the interplay among the defined FDs in a hypergraph, where each node represents a cell

in the database, and a hyperedge comprising multiple cells that cannot coexist together.

We call this data structure, a Conflict Hypergraph. The algorithm uses the notion of core

implicant to ensure the termination of the algorithm. A core implicant of an attribute

A w.r.t. a set of FDs Σ is a minimal set CA of attributes such that CA has at least one

common attribute with every implicant X of A, where X is an implicant of A if Σ implies

a nontrivial FD X → A. A minimal core implicant of an attribute A is the core implicant

with the smallest number of attributes. Intuitively, by putting variables in Attribute A

and all attributes in the core implicant of A, all violations involving A are resolved, and no

more new violations can be introduced, where a variable denotes an unknown value that

is not in the active domain, where two different variables will have different values.

The algorithm works as follows. First of all, an initial conflict hypergraph GI is built

for I. Then an approximate minimum vertex cover, V C, in GI is found. For each cell in

V C, either a value from the active domain (values that appear in the instance) is chosen

if it satisfies the set of defined FDs, if a new variable is chosen. After all cells in V C

have been changed, the resulting I ′ may contain new violations. A new violation of an FD

X → B is resolved by putting variables in one of the violating tuple for Attributes B and

the attributes in the minimal core implicant of B, which ensures that no more violations

are introduced [73].

31

Algorithm 3 FindVRepairFDs

Require: Database instance I, a set of FDs Σ

Ensure: Another instance I ′, such that I ′ |= Σ

1: create an initial conflict hypergraph GI for I

2: find an approximation V C for minimum vertex cover in GI
3: change← V C

4: I ′ ← I

5: while there exists two tuples t1, t2 ∈ I ′ violating an FD X → A ∈ Σ and t1[A] is the

only cell in V C do

6: t1[A]← t2[A]

7: change← change− t1[A]

8: for all Cell t[B] ∈ change do

9: I ′(t[B])← fresh variable

10: if there are new violations then

11: let t[B]← a cell in V C with the largest number of violations involving t[B]

12: let CI be the set of attributes in the minimal core implicant of Attribute B w.r.t.

Σ

13: for all Attribute C ∈ CI ∪B do

14: I ′(t[C])← fresh variable

Example 8: Consider a relational schema R(A,B,C,D,E) with FDs Σ = {A→ C,B →
C,CD → E}. An instance I is shown in Figure 2.11 with three hyperedges of three

different types (not all hyperedges are shown). The first type of hyperedge is due to

violation of a single FD, such as Hyperedge e1 that consists of four cells: t1[B], t2[B], t1[C]

and t2[C], which together violate the FD B → C. The second type of hyperedge is due to

the interaction of two FDs that share the same RHS attribute, such as Hyperedge e2 that

consists of six cells: t1[A], t1[B], t2[B], t2[C], t3[A] and t3[C], which cannot coexist together

due to the two FDs A → C and B → C. The third type of hyperedge is due to the

interaction of two FDs, where the RHS of one FD is part of the LHS of the other, such

as Hyperedge e3 that consists of eight cells: t4[B], t4[C], t5[B], t5[D], t5[E], t6[C], t6[D] and

t6[E], which cannot coexist together due to the two FDs B → C and CD → E.

32

Figure 2.11: An initial conflict hypergraph

There are two other hyperedges not shown in Figure 2.11: Hyperedge e4, that consists

of four cells: t1[A], t1[C], t3[A] and t3[C], and Hyperedge e5, that consists of four cells:

t4[B], t4[C], t5[B] and t5[C].

Suppose V C = {t2[C], t3[C], t4[B]}. Algorithm 3 enforces t2[C] to be the value c1 of

t1[C] because t2[C] is the only cell in V C among all cells in Hyperedge e1. Similarly, t3[C] is

assigned the value c1 of t1[C]. t4[B] is changed to a fresh variable. Algorithm 3 terminates

after all cells in V C are changed, because there is no more new violations introduced.

2

Human Involved Error Repair

Automatic data repairing techniques use heuristics, such as minimal repairs to automat-

ically repair the data in situ, and they often generate unverified fixes. Worse still, they

may even introduce new errors during the process. It is often difficult, if not impossible,

to guarantee the accuracy of any data repairing techniques without external verification

via experts and trustworthy data sources. This shooting in the dark approach, adopted by

most automatic data cleaning algorithms, motivated new approaches that effectively in-

33

A B C D E F G

t1 Rossi Italy Rome Verona Italian Proto 1.78

t2 Klate S. Africa Pretoria Pirates Afrikaans P. Eliz. 1.69

t3 Pirlo Italy Madrid Juve Italian Flero 1.77

Figure 2.12: A table T for soccer players

volve humans or experts in the cleaning process to generate reliable fixes. In the following,

we list a few examples: AJAX [52] shows how to involve users in a data cleaning process

modeled as a directed graph of data transformations; Potter’s Wheel [86] is an interactive

data cleaning system that tightly integrates data transformation and discrepancy detec-

tion; Data Wrangler [61,71] extends Potter’s Wheel’s data transformation language; GDR

(guided data repair) [99] shows how to effectively incorporate user feedback into CFDs

repairing algorithms; Editing rules [51] uses tabular master data and humans to generate

verified fixes; KATARA [33] combines kbs (e.g.,, Yago and DBPedia), which is a collec-

tion of curated facts, such as China hasCapital Beijing, and crowdsourcing to discover and

verify table patterns, identify errors, and suggest possible fixes; and Data Tamer [88] is a

data curation system that involves users with different expertise at multiple steps of the

curation process. We use KATARA as a concrete example to show how human can help

with data repair.

KATARA [33] aims at producing accurate repairs by relying on two authoritative data

sources, namely, knowledge bases (kbs), and domain experts. KATARA first discovers

table patterns to map the table to a kb, such as Yago or DBPedia. With table patterns,

KATARA annotates tuples as either correct or incorrect by interleaving the kb and humans.

For incorrect tuples, KATARA will extract top-k mappings from the kb as possible repairs

that are to be examined by humans.

Consider a table T for soccer players (Fig. 2.12). Table T has no table header, thus

its semantics are completely unknown. Assume that a kb K (e.g., Yago) contains some

information related to T . KATARA [33] works as follows:

(1) Pattern discovery. KATARA first discovers table patterns that contain the types of the

columns and the relationships between them. A table pattern is represented as a labelled

graph (Fig. 2.13(a)) where a node represents an attribute and its associated type, e.g.,, “C

34

A (person)

B (country) C (Capital)

D (football
club)

E (language)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (city)

hasClub

(a) A table pattern ϕs

A (Rossi)

B (Italy) C (Rome)

D (Verona)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Proto)

hasClub

(b) t1: validated by KB

A (Klate)

B (S. Africa) C (Pretoria)

D (Pirates)

E (Afrikaans)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (P. Eliz.)

hasClub

(c) t2: validated by KB&crowd

A (Pirlo)

B (Italy) C (Madrid)

D (Juve)

E (Italian)

hasCapital

locatedIn

nationality

bornIn

hasOfficalLanguage

F (Flero)

hasClub

(d) t3: Erroneous tuple

Figure 2.13: KATARA patterns

(capital)” means that the type of attribute C in kbK is capital. A directed edge between two

nodes represents the relationship between two attributes, e.g.,, “B hasCapital C” means

that the relationship from B to C in K is hasCapital. A column could have multiple

candidate types, e.g.,, C could also be of type city. However, knowing the relationship

from B to C is hasCapital indicates that capital is a better choice. Since kbs are often

incomplete, the discovered patterns may not cover all attributes of a table, e.g.,, attribute

G of table T is not described by the pattern in Fig. 2.13(a).

(2) Pattern validation. Consider a case where pattern discovery finds two similar patterns:

the one in Fig. 2.13(a), and its variant with Type location for column C. To select the

best table pattern, we send the crowd the question “Which type (capital or location) is

more accurate for values (Rome,Pretoria and Madrid)?” Crowd answers will help choose

the right pattern.

35

(3) Data annotation. Given the pattern in Fig. 2.13(a), KATARA annotates each tuple

with one of the following three labels:

(i) Validated by the kb. By mapping tuple t1 in table T to K, we found a full match,

shown in Fig. 2.13(b), indicating that Rossi (resp. Italy) is in K as a person (resp.

country), and the relationship from Rossi to Italy is nationality. Similarly, all other

values in t1 with respect to attributes A-F are found in K. We consider t1 to be

correct with respect to the pattern in Fig. 2.13(a) and to attributes A-F .

(ii) Jointly validated by the kb and the crowd. Consider t2 about Klate, whose explanation

is depicted in Fig. 2.13(c). In K, we find that S. Africa is a country, Pretoria is a capital.

However, the relationship from S. Africa to Pretoria is missing. A positive answer

from the crowd to the question “Does S. Africa hasCapital Pretoria?” completes the

missing mapping. We consider t2 correct and generate a new fact “S. Africa hasCapital

Pretoria”.

(iii) Erroneous tuple. Similar to case (ii). For tuple t3, there is no link from Italy to

Madrid in K. A negative answer from the crowd to the question “Does Italy hasCapital

Madrid?” confirms that there is an error in t3. At this point, however, we cannot

decide which value in t3 is wrong, Italy or Madrid. KATARA extracts evidence from

K, e.g.,, Italy hasCapital Rome and Spain hasCapital Madrid, joins them and generates

a set of possible repairs for this tuple.

2.4.3 Where to Repair

Data repair techniques are classified based on whether the database will be changed in

place by the repairing techniques, or using a model that describes the possible changes

that will be used to answer queries against the dirty data. Most of the proposed data

repairing techniques identify errors in the data, and find a unique fix of the data either by

minimally modifying the data according to a cost function or by using human guidance

(Figure 2.14(a)). In the following, we describe a different model-based approach for non-

destructive data cleaning. Data repairing techniques in this category do not produce a

36

Figure 2.14: One-shot vs. probabilistic cleaning

single repair for a database instance; instead, they produce a space of possible repairs

(Figure 2.14(b)). The space of possible repairs is used either to answer queries against the

dirty data probabilistically (e.g., using possible worlds semantics) [18], to sample from the

space of all possible clean instances of the database [15, 17], or to be used for consistent

query answering [10,14].

We give the details of one model-based algorithm, which creates a succinct model of

all possible duplicate-free instances from a dirty database with duplicates and provides

a probabilistic query engine to answer queries against the dirty data [18]. Beskales et

al. [18] study the problem of modeling and querying possible repairs in the context of

37

duplicate detection, which is the process of detecting records that refer to the same real-

world entity. Figure 2.15 shows an input relation representing sample census data that

possibly contains duplicate records. Duplicate detection algorithms generate a clustering

of records (represented as sets of record IDs in Figure 2.15), where each cluster is a set of

duplicates that are eventually merged into one representative record per cluster. A one-shot

duplicate detection approach identifies records as either duplicates or non-duplicates based

on the given cleaning specifications (e.g., a single threshold on record similarity). Hence,

the result is a single clustering (repair) of the input relation (e.g.,, any of the three possible

repairs shown in Figure 2.15). However, in the probabilistic duplicate detection approach,

this restriction is relaxed to allow for uncertainty in deciding on the true duplicates (e.g.,,

based on multiple similarity thresholds). The result is a set of multiple possible clusterings

(repairs), as shown in Figure 2.15.

Figure 2.15: Probabilistic duplicate detection

Beskales et al. [18] constrain the space of all possible repairs to repairs generated by

parameterized hierarchical clustering algorithms for two reasons: (1) the size of the space

of possible repairs is linear in the number of records in the unclean relation, and (2)

a probability distribution on the space of possible repairs can be induced based on the

probability distribution on the values of the parameters of the algorithm. Specifically, let

τ represent possible parameter values of a duplicate detection algorithm A (e.g.,, τ could

be the threshold value of deciding whether two clusters should be merged in a hierarchical

clustering algorithm), let [τ l, τu] represent the possible values of τ , and let fτ represent

the probability density function of τ defined over [τ l, τu]. The set of possible repairs X

38

is defined as {A(R, t) : t ∈ [τ l, τu]}. The set X defines a probability space created by

drawing random parameter values from [τ l, τu], based on the density function fτ , and

using the algorithm A to generate the possible repairs corresponding to these values. The

probability of a specific repair X ∈ X , denoted Pr(X), is equal to the probability of the

parameter range that generates such repair.

Uncertain clean relation (U-clean relation for short) is used to encode the possible

repairs X of an unclean relation R generated by a parameterized clustering algorithm A.

A U-clean relation, denoted Rc, is a set of c-records where each c-record is a representative

record of a cluster of records in R. Attributes of Rc are all attributes of Relation R, in

addition to two special attributes: C and P . Attribute C of a c-record is the set of record

identifiers in R that are clustered together to form this c-record. Attribute P of a c-record

represents the parameter settings of the clustering algorithm A that lead to generating

the cluster represented by this c-record. Figure 2.16 illustrates the model of possible

repairs for the unclean relation Person. U-clean relation Personc is created by clustering

algorithms A using parameters τ that is defined on the real interval [0, 10] with uniform

distributions. Relation Personc captures all repairs of the base relations corresponding to

possible parameter values. For example, if τ ∈ [1, 3], the resulting repair of Relation Person

is equal to {{P1, P2}, {P3, P4}, {P5}, {P6}}, which is obtained using c-records in Personc

whose parameter settings contain the interval [1, 3]. Moreover, the U-clean relation allows

for identifying the parameter settings of the clustering algorithm that lead to generating a

specific cluster of records. For example, the cluster {P1, P2, P5} is generated by algorithm

A if the value of parameter τ belongs to the range [3, 10).

Relational queries over U-clean relations are defined using the concept of possible worlds

semantics, as shown in Figure 2.17. More specifically, queries are semantically answered

against individual clean instances of the dirty database that are encoded in input U-clean

relations, and the resulting answers are weighted by the probabilities of their originating

repairs. For example, consider a selection query that reports persons with Income greater

than 35k, considering all repairs encoded by Relation Personc in Figure 2.16. One qualified

record is CP3. However, such a record is valid only for repairs generated at the parameter

settings τ ∈ [0, 3). Therefore, the probability that record CP3 belongs to the query result

is equivalent to the probability that τ is within [0, 3), which is 0.3.

39

Figure 2.16: An example of U-clean relation

Figure 2.17: U-clean relation query model

40

Chapter 3

Discovering Denial Constraints

Integrity constraints (ICs) are often used as a formal mechanism to capture data quality

rules; they provide a valuable tool for enforcing correct application semantics. Traditional

types of ICs, such as key constraints, check constraints, functional dependencies (FDs),

and their extension conditional functional dependencies (CFDs) have been proposed for

data quality management [22]. However, there is still a big space of data quality rules that

cannot be captured by the aforementioned types.

Example 9: Consider a table with the US tax records for individuals in Table 3.1. Each

record describes an individual address and tax information with 15 attributes: first and last

name (FN, LN), gender (GD), area code (AC), mobile phone number (PH), city (CT),

state (ST), zip code (ZIP), marital status (MS), has children (CH), salary (SAL), tax

rate (TR), tax exemption amount if single (STX), married (MTX), and having children

(CTX).

Suppose that the following constraints hold: (1) area code and phone identify a person;

(2) two persons with the same zip code live in the same state; (3) a person who lives in

Denver lives in Colorado; (4) if two persons live in the same state, the one earning a lower

salary has a lower tax rate; and (5) it is not possible to have single tax exemption greater

than salary.

Constraints (1), (2), and (3) can be expressed as a key constraint, an FD, and a CFD,

41

T
ID

F
N

L
N

G
D

A
C

P
H

C
T

S
T

Z
IP

M
S

C
H

S
A
L

T
R

S
T
X

M
T
X

C
T
X

t 1
M

ar
k

B
al

li
n

M
30

4
23

2-
76

67
A

n
th

on
y

W
V

25
81

3
S

Y
50

00
3

20
00

0
20

00

t 2
C

h
u
n
h
o

B
la

ck
M

71
9

15
4-

48
16

D
en

ve
r

C
O

80
29

0
M

N
60

00
0

4.
63

0
0

0

t 3
A

n
n
ja

R
eb

iz
an

t
F

63
6

60
4-

26
92

C
y
re

n
e

M
O

64
73

9
M

N
40

00
0

6
0

42
00

0

t 4
A

n
n
ie

P
u
er

ta
F

50
1

37
8-

73
04

W
es

t
C

ro
ss

et
t

A
R

72
04

5
M

N
85

00
0

7.
22

0
40

0

t 5
A

n
th

on
y

L
an

d
ra

m
M

31
9

15
0-

36
42

G
iff

or
d

IA
52

40
4

S
Y

15
00

0
2.

48
40

0
40

t 6
M

ar
k

M
u
rr

o
M

97
0

19
0-

33
24

D
en

ve
r

C
O

80
25

1
S

Y
60

00
0

4.
63

0
0

0

t 7
R

u
b
y

B
il
li
n
gh

u
rs

t
F

50
1

15
4-

48
16

K
re

m
li
n

A
R

72
04

5
M

Y
70

00
0

7
0

35
10

00

t 8
M

ar
ce

li
n
o

N
u
th

F
30

4
54

0-
47

07
K

y
le

W
V

25
81

3
M

N
10

00
0

4
0

0
0

T
ab

le
3.

1:
T

ax
d
at

a
re

co
rd

s.

42

respectively.

(1) : Key{AC,PH}
(2) : ZIP → ST

(3) : [CT = ‘Denver’]→ [ST = ‘CO’]

Since Constraints (4) and (5) involve order predicates (>,<), and (5) compares different

attributes in the same predicate, they cannot be expressed by FDs and CFDs. However,

they can be expressed in first-order logic.

c4 : ∀tα, tβ ∈ R, q(tα.ST = tβ.ST ∧ tα.SAL < tβ.SAL

∧tα.TR > tβ.TR)

c5 : ∀tα ∈ R, q(tα.SAL < tα.STX)

Since first-order logic is more expressive, Constraints (1)-(3) can also be expressed as

follows:

c1 : ∀tα, tβ ∈ R, q(tα.AC = tβ.AC ∧ tα.PH = tβ.PH)

c2 : ∀tα, tβ ∈ R, q(tα.ZIP = tβ.ZIP ∧ tα.ST 6= tβ.ST)

c3 : ∀tα ∈ R, q(tα.CT = ‘Denver’ ∧ tα.ST 6= ‘CO’)

2

The more expressive power an IC language has, the harder it is to exploit it, for example,

in automated data cleaning algorithms, or in writing SQL queries for consistency checking.

There is an infinite space of business rules up to ad-hoc programs for enforcing correct

application semantics. It is easy to see that a balance should be achieved between the

expressive power of ICs in order to deal with a broader space of business rules, and at

the same time, the restrictions required to ensure adequate static analysis of ICs and the

development of effective cleaning and discovery algorithms.

Denial Constraints (DCs) [14, 45], a universally quantified first order logic formalism,

can express all constraints in Example 9 as they are more expressive than FDs and CFDs.

DCs serve as a great compromise between expressiveness and complexity for the following

reasons: (1) they are defined on predicates that can be easily expressed in SQL queries for

consistency checking; (2) they have been proven to be a useful language for data cleaning in

many aspects, such as data repairing [31], consistent query answering [14], and expressing

43

data currency rules [45]; and (3) while their static analysis turns out to be undecidable [11],

we show that it is possible to develop a set of sound inference rules and a linear implication

testing algorithm for DCs that enable an efficient adoption of DCs as an IC language, as

we show in this chapter.

While DCs can be obtained through consultation with domain experts, it is an expensive

process and requires expertise in the constraint language at hand. Therefore, automatic

discovery techniques are necessary to suggest potential DCs, which are then verified by

domain experts. We identified three challenges that hinder the adoption of DCs as an

efficient IC language and in discovering DCs from an input data instance:

(1) Theoretical Foundation. The necessary theoretical foundations for DCs as a constraint

language are missing [45]. Armstrong Axioms and their extensions are at the core of state-

of-the-art algorithms for inferring FDs and CFDs [47,67], but there is no similar foundation

for the design of tractable DCs discovery algorithms.

Example 10: Consider the following constraint, c6, which states that there cannot exist

two persons who live in the same zip code and one person has a lower salary and higher

tax rate.

c6 : ∀tα, tβ ∈ R, q(tα.ZIP = tβ.ZIP ∧ tα.SAL < tβ.SAL

∧tα.TR > tβ.TR)

c6 is implied by c2 and c4: if two persons live in the same zip code, by c2 they would

live in the same state and by c4 one person cannot earn less and have higher tax rate in

the same state. 2

In order to systematically identify implied DCs (such as c6), for example, to prune

redundant DCs, a reasoning system is needed.

(2) Space Explosion. Consider FDs discovery on schema R, let |R| = m. Taking an

attribute as the right hand side of an FD, any subset of remaining m− 1 attributes could

serve as the left hand side. Thus, the space to be explored for FDs discovery is m ∗ 2m−1.

Consider discovering DCs involving at most two tuples without constants; a predicate space

needs to be defined, upon which the space of DCs is defined. The structure of a predicate

consists of two different attributes and one operator. Given two tuples, we have 2m distinct

44

cells; and we allow six operators (=, 6=, >,≤, <,≥). Thus the size of the predicate space

P is: |P| = 6 ∗ 2m ∗ (2m − 1). Any subset of the predicate space could constitute a DC.

Therefore, the search space for DCs discovery is of size 2|P|.

DCs discovery has a much larger space to explore, further justifying the need for a rea-

soning mechanism to enable efficient pruning, as well as the need for an efficient discovery

algorithm. The problem is further complicated by allowing constants in the DCs.

(3) Verification. Since the quality of ICs is crucial for data quality, discovered ICs are

usually verified by domain experts for their validity. Model discovery algorithms suffer

from the problem of overfitting [20]; ICs found on the input instance I of schema R may

not hold on future data of R. This happens also for DCs discovery.

Example 11: Consider DC c7 on Table 3.1, which states that first name determines

gender.

c7 : ∀tα, tβ ∈ R, q(tα.FN = tβ.FN ∧ tα.GD 6= tβ.GD)

Even if c7 is true on current data, common knowledge suggests that it does not hold in

general. 2

Statistical measures have been proposed to rank the constraints and assist the verifi-

cation step for specific cases. For CFDs it is possible to count the number of tuples that

match their tableaux [24]. Similar support measures are used for association rules [7].

Unfortunately, discovered DCs are more difficult to verify and rank than previous for-

malisms for three reasons: (1) similarly to FDs, in general it is not possible to just count

constants to measure support; (2) given the explosion of the space, the number of discov-

ered DCs is much larger than the size of discovered FDs; (3) the semantics of FDs/CFDs

is much easier to understand compared to DCs. A novel and general measure of interest-

ingness for DCs is therefore needed to rank discovered constraints.

Contributions. Given the DCs discovery problem and the above challenges, we make

the following three contributions:

1. We give the formal problem definition of discovering DCs (Section 3.1). We introduce

static analysis for DCs with three sound axioms that serve as the cornerstone for our

45

implication testing algorithm as well as for our DCs discovery algorithm (Section

3.2).

2. We present FASTDC, a DCs discovery algorithm (Section 3.3). FASTDC starts by

building a predicate space and calculates evidence sets for it. We establish the con-

nection between discovering minimal DCs and finding minimal set covers for evidence

sets. We employ depth-first search strategy for finding minimal set covers and use

DC axioms for branch pruning. To handle datasets that may have data errors, we

extend FASTDC to discover approximate constraints. Finally, we further extend it

to discover DCs involving constant values.

3. We propose a novel scoring function, the interestingness of a DC, which combines

succinctness and coverage measures of discovered DCs in order to enable their ranking

and pruning based on thresholds, thus reducing the cognitive burden for human

verification (Section 3.4).

3.1 Preliminary and Problem Definition

In this section, we first review the syntax and semantics of DCs. Then, we define minimal

DCs and state their discovery problem.

3.1.1 Denial Constraints Preliminaries

Syntax. Consider a database schema of the form S = (U,R,B), where U is a set of

database domains, R is a set of database predicates or relations, and B is a set of finite

built-in operators. In this paper, B = {=, <,>, 6=,≤,≥}. B must be negation closed, such

that we could define the inverse of operator φ as φ.

We support the subset of integrity constraints identified by denial constraints (DCs)

over relational databases. We introduce a notation for DCs of the form ϕ : ∀tα, tβ, tγ, . . . ∈
R, q(P1 ∧ . . . ∧ Pm), where Pi is of the form v1φv2 or v1φc with v1, v2 ∈ tx.A, x ∈

46

{α, β, γ, . . .}, A ∈ R, and c is a constant. For simplicity, we assume there is only one

relation R in R.

For a DC ϕ, if ∀Pi, i ∈ [1,m] is of the form v1φv2, then we call such DC variable denial

constraint (VDC), otherwise, ϕ is a constant denial constraint (CDC).

The inverse of predicate P : v1φ1v2 is P : v1φ2v2,with φ2 = φ1. If P is true, then P is

false. The set of implied predicates of P is Imp(P) = {Q|Q : v1φ2v2}, where φ2 ∈ Imp(φ1).

If P is true, then ∀Q ∈ Imp(P), Q is true. The inverse and implication of the six operators

in B is summarized in Table 3.2.

φ = 6= > < ≥ ≤
φ 6= = ≤ ≥ < >

Imp(φ) =,≥,≤ 6= >,≥, 6= <,≤, 6= ≥ ≤

Table 3.2: Operator Inverse and Implication.

Semantics. A DC states that all the predicates cannot be true at the same time,

otherwise, we have a violation. Single-tuple constraints (such as check constraints), FDs,

and CFDs are special cases of unary and binary denial constraints with equality and

inequality predicates. Given a database instance I of schema S and a DC ϕ, if I satisfies

ϕ, we write I |= ϕ, and we say that ϕ holds on I. ϕ is said to be a logically valid or valid

DC, if I |= ϕ for every correct instance I of S. Since we do not have every correct instance

I, to discover valid DCs, we first discover DCs that hold on the input instance I, and then

ask experts to verify the validity of discovered DCs.

If we have a set of DC Σ, I |= Σ if and only if ∀ϕ ∈ Σ, I |= ϕ. A set of DCs Σ implies

ϕ or ϕ is a logical consequence of Σ, i.e., Σ |= ϕ, if for every instance I of S, if I |= Σ, then

I |= ϕ.

In the context of this paper, we are only interested in DCs with at most two tuples.

DCs involving more tuples are less likely in real life, and incur bigger predicate space to

search as shown in Section 3.3. The universal quantifier for DCs with at most two tuples

are ∀tα, tβ. We will omit universal quantifiers hereafter.

47

3.1.2 Problem Definition

Trivial, Symmetric, and Minimal DC. A DC q(P1 ∧ . . . ∧ Pn) is said to be trivial

if it is satisfied by any instance. In the sequel, we only consider nontrivial DCs unless

otherwise specified. The symmetric DC of a DC ϕ1 is a DC ϕ2 by substituting tα with

tβ, and tβ with tα. If ϕ1 and ϕ2 are symmetric, then ϕ1 |= ϕ2 and ϕ2 |= ϕ1. A DC ϕ1 is

set-minimal, or minimal, with respect to I, if there does not exist ϕ2, s.t. I |= ϕ1, I |= ϕ2

, and ϕ2.P res ⊂ ϕ1.P res. We use ϕ.Pres to denote the set of predicates in DC ϕ.

Example 12: Consider three additional DCs for Table 3.1.

c8 :q(tα.SAL = tβ.SAL ∧ tα.SAL > tβ.SAL)

c9 :q(tα.PH = tβ.PH)

c10 :q(tα.ST = tβ.ST ∧ tα.SAL > tβ.SAL ∧ tα.TR < tβ.TR)

c8 is a trivial DC, since there cannot exist two persons that have the same salary, and

one’s salary is greater than the other. If we remove tuple t7 in Table 3.1, c9 becomes a DC

holds on Table 3.1, making c1 no longer minimal. c10 and c4 are symmetric DCs.

2

Problem Statement. Given a relational schema R and an instance I, the discovery

problem for DCs is to find all minimal DCs that hold on I. We assume that there are no

NULL values in I, and every cell in I contains a single value, so that there is no ambiguity

when evaluating whether a DC is violated. Since not all DCs that hold on I are necessarily

valid DCs, we also study the problem of ranking DCs with an objective function described

in Section 3.4 to assist the users in verifying the validity of discovered DCs.

3.2 Static Analysis of DCs

Armstrong Axioms are the fundamental building blocks for static analysis for FDs [3],

namely, determining whether a set of FDs implies another FD. Since DCs subsume FDs,

it is natural to ask whether we can perform similar static analysis for DCs, which can be

used to prune candidate DCs.

48

3.2.1 The Inference System of DCs

We present three symbolic inference rules for DCs, denoted as I, analogous to Armstrong

Axioms.

Triviality: ∀Pi, Pj, if Pi ∈ Imp(Pj), then q(Pi ∧ Pj) is a trivial DC.

Augmentation: If q(P1 ∧ . . .∧Pn) is a valid DC, then q(P1 ∧ . . .∧Pn ∧Q) is also a valid

DC.

Resolution: If q(P1 ∧ . . . ∧ Pn ∧ Q1) and q(R1 ∧ . . . ∧ Rm ∧ Q2) are valid DCs, and

Q2 ∈ Imp(Q1), then q(P1 ∧ . . . ∧ Pn ∧R1 ∧ . . . ∧Rm) is also a valid DC.

Triviality states that, if a DC has two predicates that cannot be true at the same time

(Pi ∈ Imp(Pj)), then the DC is trivially satisfied. Augmentation states that, if a DC is

valid, adding more predicates will always result in a valid DC. Resolution states, that if

there are two DCs and two predicates (one in each DC) that cannot be false at the same

time (Q2 ∈ Imp(Q1)), then merging two DCs plus removing those two predicates will

result in a valid DC.

Inference system I is a syntactic way of checking whether a set of DCs Σ implies a DC

ϕ. It is sound in that if by using I a DC ϕ can be derived from Σ, i.e., Σ `I ϕ, then Σ

implies ϕ, i.e., Σ |= ϕ. The completeness of I dictates that if Σ |= ϕ, then Σ `I ϕ. We

identify a specific form of DCs, for which I is complete. The specific form requires that

each predicate of a DC is defined on two tuples and on the same attribute, and that all

predicates must have the same operator θ except one that must have the reverse of θ.

Theorem 1: The inference system I is sound. It is also complete for VDCs of the form

∀tα, tβ ∈ R, q(P1 ∧ . . . ∧ Pm ∧ Q), where Pi = tα.Aiθtβ.Ai,∀i ∈ [1,m] and Q = tα.Bθtβ.B

with Ai, B ∈ U. 2

Proof: Soundness Proof of Inference System I for DCs

Reflexivity. The premise is Pj ⇒ Pi. Taking the contrapositive, we get Pi ⇒ Pj.

Augmenting both sides with Pj, we get Pi ∧ Pj ⇒ Pj ∧ Pj. Taking the contrapositive, we

49

get q(Pj ∧ Pj)⇒q(Pi ∧ Pj). Since q(Pj ∧ Pj) is trivially satisfied in all cases, q(Pi ∧ Pj) is

trivially satisfied as well.

Augmentation. We know that P1∧ . . .∧Pn∧Q⇒ P1∧ . . .∧Pn is a tautology. Taking

the contrapositive, we have q(P1 ∧ . . . ∧ Pn)⇒q(P1 ∧ . . . ∧ Pn ∧Q). q(P1 ∧ . . . ∧ Pn) is in

the premise, thus q(P1 ∧ . . . ∧ Pn ∧Q) is also valid.

Transitivity. Proof by contradiction. Assume that q(P1 ∧ . . .∧ Pn ∧R1 ∧ . . .∧Rm) is

not a valid DC. Then there must exist two tuples in r such that P1, . . . , Pn, R1, . . . , Rm are

true at the same time. Since q(P1∧ . . .∧Pn∧Q1) is a valid DC, then Q1 must be false. And

since q(R1∧ . . .∧Rm∧Q2) is a valid DC, then Q2 must be false also. Since Q2 ∈ Imp(Q1)

and Q1 is false, then Q2 must be true, which contradicts the falsity of Q2 we derived before.

Completeness Proof of Inference System for VDCs

We consider VDCs of the form ∀tα, tβ ∈ r, q(P1 ∧ . . . ∧ Pm ∧ Q), where Pi =

tα.Aiθtβ.Ai, ∀i ∈ [1,m] and Q = tα.Bθtβ.B with Ai, B ∈ U.

Completeness of Axioms states that for a set of DCs Σ, and one DC ϕ, if ϕ is logically

implied by Σ, denoted as Σ |= ϕ, ϕ can be derived from Σ using Axioms, denoted as Σ `I ϕ.

We prove the contrapositive: if Σ 0I ϕ, then Σ 6|= ϕ. We prove by providing an instance

I, s.t. I |= Σ, but I 6|= ϕ. Assume ϕ is of the form q(W∧Q), where W = {P1 ∧ . . .∧Pm}

The structure of I we contrive consists of two tuples t1, t2, s.t. 〈t1, t2〉 |= P, ∀P ∈
CloΣ(W), and 〈t1, t2〉 6|= P, ∀P ∈ Σ.P res− CloΣ(W). Due to the special structure of the

VDCs we are considering, we are able to construct such instance, because we could separate

the attributes of I into two parts: one part of attributes are those that are involved with

predicates in CloΣ(W), the other part of attributes are those that are involved with all the

other predicates. We make the following two claims: Claim 1 I |= φ,∀φ ∈ Σ and Claim

2 I 6|= ϕ. Now we prove two claims separately.

Claim 1: We distinguish two cases according to whether there exists a predicate in φ

that is in Σ.P res− CloΣ(W).

(Case 1:) If φ.Pres ⊆ Σ.P res, but φ.Pres * CloΣ(W), then it is easy to see that

I |= φ.

50

(Case 2:) If φ.Pres ⊆ CloΣ(W), we show that such φ is impossible. Let φ.Pres =

{P1, P2, . . . , Pm}. According to the definition of closure, we have that φ1 :q(W ∧ P1),

φ2 :q(W ∧ P2), . . . , and φm :q(W ∧ Pm) are valid DCs. Apply Axiom Transitivity on

φ, φ1, . . . , φm, we have that q(W) is a valid DC, which is impossible. Because if q(W)

is a valid DC, then according Axiom Augmentation ϕ :q(W ∧ Q) is a valid DC, which

contradicting the assumption that Σ 0I ϕ.

Claim 2: According to the assumption I 0I ϕ, so Q /∈ CloΣ(W). Thus I 6|= Q. Thus

I |= Q. Thus I |= W ∧Q. Thus I 6|=q(W ∧Q), i.e. I 6|= ϕ.

�

The completeness result of I for that form of DCs generalizes the completeness result

of Armstrong Axioms for FDs. In particular, FDs adhere to the form with θ being =. The

partial completeness result for the inference system has no implication on the completeness

of the discovery algorithms described in Section 3.3 The inference system for DCs, although

not complete, has a huge impact on the pruning power of the implication test and on the

FASTDC algorithm.

3.2.2 The Implication Problem of DCs

Implication testing refers to the problem of determining whether a set of DCs Σ implies

another DC ϕ. It has been established that the complexity of the implication testing

problem for DCs is coNP-Complete [11]. Given the intractability result, we have devised

a linear, sound, but not complete, algorithm for implication testing to reduce the number

of DCs in the discovery algorithm output.

In order to devise an efficient implication testing algorithm, we define the concept of

closure in Definition 1 for a set of predicates W under a set of DCs Σ. A predicate P is in

the closure if adding P to W would constitute a DC implied by Σ. It is in spirit similar

to the closure of a set of attributes under a set of FDs.

Definition 1 The closure of a set of predicates W, w.r.t. a set of DCs Σ, is a set of

predicates, denoted as CloΣ(W), such that ∀P ∈ CloΣ(W), Σ |=q(W ∧ P).

51

Algorithm 4 calculates the partial closure of W under Σ. We initialize CloΣ(W) by

adding every predicate in W and their implied predicates due to Axiom Triviality (Line

1-2). We add additional predicates that are implied by CloΣ(W) through basic algebraic

transitivity (Line 3). The closure is enlarged if there exists a DC ϕ in Σ such that all

but one predicates in ϕ are in the closure (Line 15-23). We use two lists to keep track of

exactly when such condition is met (Line 3-11).

Example 13: Consider Σ={c1, . . . , c5} and W = {tα.ZIP = tβ.ZIP, tα.SAL < tβ.SAL}.

The initialization step in Line(1-3) results in CloΣ(W) = {tα.ZIP = tβ.ZIP, tα.SAL <

tβ.SAL, tα.SAL ≤ tβ.SAL}. As all predicates but tα.ST 6= tβ.ST of c2 are in the

closure, we add the implied predicates of the reverse of tα.ST 6= tβ.ST to it and

CloΣ(W) = {tα.ZIP = tβ.ZIP, tα.SAL < tβ.SAL, tα.SAL ≤ tβ.SAL, tα.ST = tβ.ST}.
As all predicates but tα.TR > tβ.TR of c4 are in the closure (Line 22), we add the implied

predicates of its reverse, CloΣ(W) = {tα.ZIP = tβ.ZIP, tα.SAL < tβ.SAL, tα.SAL ≤
tβ.SAL, tα.TR ≤ tβ.TR}. No more DCs are in the queue (Line 16).

Since tα.TR ≤ tβ.TR ∈ CloΣ(W), we have Σ |=q(W ∧ tα.TR > tβ.TR), i.e., Σ |= c6.

2

Algorithm 5 tests whether a DC ϕ is implied by a set of DCs Σ, by computing the

closure of ϕ.Pres in ϕ under Γ, which is Σ enlarged with symmetric DCs. If there exists

a DC φ in Γ, whose predicates are a subset of the closure, ϕ is implied by Σ.

Example 14: Consider a database with two numerical columns, High (H) and Low (L).

Consider two DCs c11, c12.

c11 : ∀tα, (tα.H < tα.L)

c12 : ∀tα, tβ, (tα.H > tβ.H ∧ tβ.L > tα.H)

Algorithm 5 identifies that c11 implies c12. Let Σ = {c11} and W = c12.P res. Γ =

{c11, c13}, where c13: ∀tβ, (tβ.H < tβ.L). CloΓ(W) = {tα.H > tβ.H, tβ.L > tα.H, tβ.H <

tβ.L}, because tβ.H < tβ.L is implied by {tα.H > tβ.H, tβ.L > tα.H} through basic

algebraic transitivity (Line 3).

Since c13.P res ⊂ CloΓ(W), the implication holds. 2

52

Algorithm 4 Get Partial Closure:

Require: Set of DCs Σ, Set of Predicates W

Ensure: Set of predicates called closure of W under Σ : CloΣ(W)

1: for all P ∈W do

2: CloΣ(W)← CloΣ(W) + Imp(P)

3: CloΣ(W)← CloΣ(W) + Imp(CloΣ(W))

4: for each P , create a list LP of DCs containing P

5: for each ϕ, create a list Lϕ of predicates not yet in the closure

6: for all ϕ ∈ Σ do

7: for all P ∈ ϕ.Pres do

8: LP ← LP + ϕ

9: for all P /∈ CloΣ(W) do

10: for all ϕ ∈ LP do

11: Lϕ ← Lϕ + P

12: create a queue J of DC with all but one predicate in the closure

13: for all ϕ ∈ Σ do

14: if |Lϕ| = 1 then

15: J ← J + ϕ

16: while |J | > 0 do

17: ϕ← J.pop()

18: P ← Lϕ.pop()

19: for all Q ∈ Imp(P) do

20: for all ϕ ∈ LQ do

21: Lϕ ← Lϕ −Q
22: if |Lϕ| = 1 then

23: J ← J + ϕ

24: CloΣ(W)← CloΣ(W) + Imp(P)

25: CloΣ(W)← CloΣ(W) + Imp(CloΣ(W))
return CloΣ(W)

53

Algorithm 5 Implication Testing

Require: Set of DCs Σ, one DC ϕ

Ensure: A boolean value, indicating whether Σ |= ϕ

1: if ϕ is a trivial DC then return true

2: Γ← Σ

3: for φ ∈ Σ do

4: Γ← Γ + symmetric DC of φ

5: CloΓ(ϕ.Pres) = getClosure(ϕ.Pres,Γ)

6: if ∃φ ∈ Γ, s.t. φ.Pres ⊆ CloΓ(ϕ.Pres) then return true

3.3 DCs Discovery Algorithm

Algorithm 6 describes our procedure for discovering minimal DCs. Since a DC is composed

of a set of predicates, we build a predicate space P based on schema R (Line 1). Any subset

of P could be a set of predicates for a DC.

Algorithm 6 FASTDC

Require: One relational instance I, schema R

Ensure: All minimal DCs Σ

1: P← Build predicate space(I, R)

2: EviI ← Build evidence set(I,P)

3: MC← Search minimal covers(EviI , EviI , ∅, >init, ∅)
4: for all X ∈MC do

5: Σ← Σ+q(X)

6: for all ϕ ∈ Σ do

7: if Σ− ϕ |= ϕ then

8: remove ϕ from Σ

Given P, the space of candidate DCs is of size 2|P|. It is not feasible to validate each

candidate DC directly over I, due to the quadratic complexity of checking all tuple pairs.

For this reason, we extract evidence from I in a way that enables the reduction of DCs

discovery to a search problem that computes minimal DCs that hold on I without checking

54

each candidate DC individually.

The evidence is composed of sets of satisfied predicates in P, one set for every pair of

tuples (Line 2). For example, assume two satisfied predicates for one tuple pair: tα.A =

tβ.A and tα.B = tβ.B. We use the set of satisfied predicates to derive DCs that do not

violate this tuple pair. In the example, two sample DCs that hold on that tuple pair

are q(tα.A 6= tβ.A) and q(tα.A = tβ.A ∧ tα.B 6= tβ.B). Let EviI be the sets of satisfied

predicates for all pairs of tuples, deriving minimal DCs that hold on I corresponds to

finding the minimal sets of predicates that cover EviI (Line 3)1. For each minimal cover

X, we derive a minimal DC that holds on I by inverting each predicate in it (Lines 4-5).

We remove implied DCs from Σ with Algorithm 5 (Lines 6-8).

Section 3.3.1 describes the procedure for building the predicate space P. Section 3.3.2

formally defines EviI , gives a theorem that reduces the problem of discovering all minimal

DCs to the problem of finding all minimal covers for EviI , and presents a procedure

for building EviI . Section 3.3.3 describes a search procedure for finding minimal covers

for EviI . In order to reduce the execution time, the search is optimized with a dynamic

ordering of predicates and branch pruning based on the axioms we developed in Section 3.2.

In order to enable further pruning, Section 3.3.4 introduces an optimization technique that

divides the space of DCs and performs DFS on each subspace. We extend FASTDC in

Section 3.3.5 to discover approximate DCs and in Section 3.3.6 to discover DCs with

constants.

3.3.1 Building the Predicate Space

Given a database schema R and an instance I, we build a predicate space P from which DCs

can be formed. For each attribute in the schema, we add two equality predicates (=, 6=)

between two tuples on it. In the same way, for each numerical attribute, we add order

predicates (>,≤, <,≥). For every pair of attributes in R, they are joinable (comparable) if

equality (order) predicates hold across them, and add cross column predicates accordingly.

Profiling algorithms [38] can be used to detect joinable and comparable columns. We

1For sake of presentation, parameters are described in Section 3.3.3

55

consider two columns joinable if they are of same type and have common values2. Two

columns are comparable if they are both of numerical types and the arithmetic means of

two columns are within the same order of magnitude.

Example 15: Consider the following Employee table with three attributes: Employee ID

(I), Manager ID (M), and Salary(S).

TID I(String) M(String) S(Double)

t9 A1 A1 50

t10 A2 A1 40

t11 A3 A1 40

We build the following predicate space P for it.

P1 : tα.I = tβ.I P5 : tα.S = tβ.S P9 : tα.S < tβ.S

P2 : tα.I 6= tβ.I P6 : tα.S 6= tβ.S P10 : tα.S ≥ tβ.S

P3 : tα.M = tβ.M P7 : tα.S > tβ.S P11 : tα.I = tα.M

P4 : tα.M 6= tβ.M P8 : tα.S ≤ tβ.S P12 : tα.I 6= tα.M

P13 : tα.I = tβ.M P14 : tα.I 6= tβ.M

2

3.3.2 Building the Evidence Set

Before giving formal definitions of EviI , we show an example of the satisfied predicates for

the Employee table Emp above:

EviEmp = {{P2, P3, P5, P8, P10, P12, P14},
{P2, P3, P6, P8, P9, P12, P14}, {P2, P3, P6, P7, P10, P11, P13}}. Every element in EviEmp has

at least one pair of tuples in I such that every predicate in it is satisfied by that pair of

tuples.

2We show in the experiments that requiring at least 30% common values allows to identify joinable

columns without introducing a large number of unuseful predicates. Joinable columns can also be discov-

ered from query logs, if available.

56

Definition 2 Given a pair of tuple 〈tx, ty〉 ∈ I, the satisfied predicate set for 〈tx, ty〉 is

SAT (〈tx, ty〉) = {P |P ∈ P, 〈tx, ty〉 |= P}, where P is the predicate space, and 〈tx, ty〉 |= P

means 〈tx, ty〉 satisfies P .

The evidence set of I is EviI = {SAT (〈tx, ty〉)|∀〈tx, ty〉 ∈ I}.

A set of predicates X ⊆ P is a minimal set cover for EviI if ∀E ∈ EviI ,X ∩ E 6= ∅,
and @Y ⊂ X, s.t. ∀E ∈ EviI ,Y ∩ E 6= ∅.

The minimal set cover for EviI is a set of predicates that intersect with every element

in EviI . Theorem 2 transforms the problem of minimal DCs discovery into the problem of

searching for minimal set covers for EviI .

Theorem 2: q(X1 ∧ . . . ∧ Xn) is a minimal DC that holds on I if and only if X =

{X1, . . . , Xn} is a minimal set cover for EviI . 2

Proof. Step 1: we prove if X ⊆ P is a cover for EviI , q(X1 ∧ . . . ∧Xn) is a DC that

holds on I. According to the definition, EviI represents all the pieces of evidence that

might violate DCs. For any E ∈ EviI , there exists X ∈ X, s.t. X ∈ E; thus X /∈ E. I.e.,

the presence of X in q(X1 ∧ . . . ∧Xn) disqualifies E as a possible violation.

Step 2: we prove if q(X1 ∧ . . . ∧Xn) is a DC that holds on I, then X ⊆ P is a cover.

According to the definition of a DC holds on I, there does not exist tuple pair 〈tx, ty〉, s.t.

〈tx, ty〉 satisfies X1, . . . , Xn simultaneously. In other words, ∀〈tx, ty〉, ∃Xi, s.t. 〈tx, ty〉 does

not satisfy Xi. Therefore, ∀〈tx, ty〉, ∃Xi, s.t. 〈tx, ty〉 |= Xi, which means any tuple pair’s

satisfied predicate set is covered by {X1, . . . , Xn}.

Step 3: if X ⊆ P is a minimal cover, then the DC is also minimal. Assume the DC is

not minimal, there exists another DC ϕ whose predicates are a subset of q(X1 ∧ . . .∧Xn).

According to Step 2, ϕ.Pres is a cover, which is a subset of X = {X1, . . . , Xn}. It

contradicts with the assumption that X ⊆ P is a minimal cover.

Step 4: if the DC is minimal, then the corresponding cover is also minimal. The proof

is similar to Step 3. �

Example 16: Consider EviEmp for the table in Example 15.

57

X1 = {P2} is a minimal cover, thus q(P2), i.e., q(tα.I = tβ.I) is a DC holds on I, which

states I is a key.

X2 = {P10, P14} is another minimal cover, thus q(P10∧P14), i.e., q(tα.S < tβ.S ∧ tα.I =

tβ.M) is another DC that holds on I, which states that a manager’s salary cannot be less

than her employee’s. 2

The procedure to compute EviI follows directly from the definition: for every tuple

pair in I, we compute the set of predicates that tuple pair satisfies, and we add that

set into EviI . This operation is sensitive to the size of the database, with a complexity

of O(|P| × |I|2). In Chapter 4, we show a distributed strategy that can distribute such

“self-join” workload evenly among M parallel workers (machines).

3.3.3 DFS for Minimal Covers

Algorithm 7 presents the depth-first search (DFS) procedure for minimal covers for EviI .

Ignore Lines (9-10) and Lines (11-12) for now, as they are described in Section 3.3.4 and in

Section 3.4.3, respectively. We denote by Evicurr the set of elements in EviI not covered

so far. Initially Evicurr = EviI . Whenever a predicate P is added to the cover, we remove

from Evicurr the elements that contain P , i.e., Evinext = {E|E ∈ Ecurr ∧ P /∈ E} (Line

23). There are two base cases to terminate the search:

(i) there are no more candidate predicates to include in the cover, but Evicurr 6= ∅
(Lines 14-15); and

(ii) Evicurr = ∅ and the current path is a cover (Line 16). If the cover is minimal, we

add it to the result MC (Lines 17-19).

We speed up the search procedure by two optimizations: dynamic ordering of predi-

cates as we descend down the search tree and branching pruning based on the axioms in

Section 3.2.

Opt1: Dynamic Ordering. Instead of fixing the order of predicates when descend-

ing down the tree, we dynamically order the remaining candidate predicates, denoted as

>next, based on the number of remaining evidence set they cover (Lines 23 -24). Formally,

58

Algorithm 7 Search Minimal Covers
Require: 1. Input Evidence set, EviI

1: 2. Evidence set not covered so far, Evicurr

2: 3. The current path in the search tree, X ⊆ P

3: 4. The current partial ordering of the predicates, >curr

4: 5. The DCs discovered so far, Σ

Ensure: A set of minimal covers for Evi, denoted as MC

5: Branch Pruning

6: P ← X.last // Last Predicate added into the path

7: if ∃Q ∈ X− P , s.t. P ∈ Imp(Q) then return //Triviality pruning

8: if ∃Y ∈MC , s.t. X ⊇ Y then return //Subset pruning based on MC

9: if ∃Y = {Y1, . . . , Yn} ∈MC , and ∃i ∈ [1, n],

10: and ∃Q ∈ Imp(Yi), s.t. Z = Y−i ∪ Q and X ⊇ Z then return //Transitive pruning based

on MC

11: if ∃ϕ ∈ Σ, s.t. X ⊇ ϕ.Pres then return //Subset pruning based on previous discovered

DCs

12: if Inter(ϕ) < t, ∀ϕ of the form q(X ∧W) then return //Pruning based on Inter score

13: Base cases

14: if >curr= ∅ and Evicurr 6= ∅ then return //No DCs in this branch

15: if Evicurr = ∅ then
16: if no subset of size |X| − 1 covers Evicurr then

17: MC ←MC + X
return //Got a cover

18: Recursive cases

19: for all Predicate P ∈>curr do
20: X← X + P

21: Evinext ← evidence sets in Evicurr not yet covered by P

22: >next← total ordering of {P ′|P >curr P
′} wrt Evinext

23: Search Minimal Covers(EviI , Evinext, X, >next, Σ)

24: X← X− P

59

we define the cover of P w.r.t. Evinext as Cov(P,Evinext) = |{P ∈ E|E ∈ Evinext}|.
And we say that P >next Q if Cov(P,Evinext) > Cov(Q,Evinext), or Cov(P,Evinext) =

Cov(Q,Evinext) and P appears before Q in the preassigned order in the predicate space.

The initial evidence set EviI is computed as discussed in Section 3.3.2. To computer

Evinext (Line 21), we scan every element in Evicurr, and we add in Evinext those elements

that do not contain P .

Example 17: Consider EviEmp for the table in Example 15. We compute the cover for

each predicate, such as Cov(P2, EviEmp) = 3, Cov(P8, EviEmp) = 2, Cov(P9, EviEmp) = 1,

etc. The initial ordering for the predicates according to EviEmp is >init= P2 > P3 > P6 >

P8 > P10 > P12 > P14 > P5 > P7 > P9 > P11 > P13. 2

Opt2: Branch Pruning. The purpose of performing dynamic ordering of candidate

predicates is to get covers as early as possible so that those covers can be used to prune

unnecessary branches of the search tree. We list three pruning strategies.

(i) Lines(2-4) describe the first pruning strategy. This branch would eventually result

in a DC of the form ϕ :q(X− P ∧ P ∧W), where P is the most recent predicate added

to this branch and W other predicates if we traverse this branch. If ∃Q ∈ X− P , s.t.

P ∈ Imp(Q), then ϕ is trivial according to Axiom Triviality.

(ii) Lines(5-6) describe the second branch pruning strategy, which is based on MC . If

Y is in the cover, then q(Y) is a DC that holds on I. Any branch containing X would result

in a DC of the form q(X ∧W), which is implied by q(Y) based on Axiom Augmentation,

since Y ⊆ X.

(iii) Lines(7-8) describe the third branching pruning strategy, which is also based on

MC . If Y is in the cover, then q(Y−i∧Yi) is a DC that holds on I. Any branch containing

X ⊇ Y−i ∪ Q would result in a DC of the form q(Y−i ∧ Q ∧W). Since Q ∈ Imp(Yi), by

applying Axiom Transitive on these two DCs, we would get that q(Y−i ∧W) is also a DC

that holds on I, which would imply q(Y−i∧Q∧W) based on Axiom Augmentation. Thus

this branch can be pruned.

60

3.3.4 Dividing the Space of DCs

Instead of searching for all minimal DCs at once, we divide the space into subspaces, based

on whether a DC contains a specific predicate P1, which can be further divided according

to whether a DC contains another specific predicate P2. We start by defining evidence

set modulo a predicate P , i.e., EviPI , and we give a theorem that reduces the problem of

discovering all minimal DCs to the one of finding all minimal set covers of EviPI for each

P ∈ P.

Definition 3 Given a P ∈ P, the evidence set of I modulo P is, EviPI = {E − {P}|E ∈
EviI , P ∈ E}.

Theorem 3: q(X1∧ . . .∧Xn∧P) is a minimal DC that holds on I and contains predicate

P , if and only if X = {X1, . . . , Xn} is a minimal set cover for EviPI . 2

Proof: Follow the same line of the proof for Theorem 2. Consider X ⊆ P, P /∈ X,

that is a cover of EviPI . According to the definition, EviPI represents all the pieces of

evidences that might violate DCs containing predicate P . For any E ∈ EviPI , there exists

X ∈ X, X ∈ E. Thus, we know for sure that X /∈ E. In other words, the presence of X

disqualifies E as a possible violation of any DC containing predicate P . �

Example 18: Consider EviEmp for the table in Example 15, EviP1
Emp = ∅, EviP13

Emp =

{{P2, P3, P6, P7, P10, P11}}. Thus q(P1) is a DC that holds on I because there is nothing

in the cover for EviP1
Emp, and q(P13 ∧ P10) is a DC that holds on I as {P10} is a cover for

EviP13
Emp. It is evident that EviPEmp is much smaller than EviEmp. 2

However, care must be taken before we start to search for minimal covers for EviPI due

to the following two problems.

First, a minimal DC containing a certain predicate P is not necessarily a global minimal

DC. For instance, assume that q(P,Q) is a minimal DC containing P because {Q} is a

minimal cover for EviPI . However, it might not be a minimal DC because it is possible that

61

q(Q), which is actually smaller than q(P,Q), is also a DC that holds on I. We call such

q(P,Q) a local minimal DC w.r.t. P , and q(Q) a global minimal DC, or a minimal DC. It

is obvious that a global minimal DC is always a local minimal DC w.r.t. each predicate in

the DC. Our goal is to generate all globally minimal DCs.

Second, assume that q(P,Q) is a global minimal DC. It is an local minimal DC w.r.t.

P and Q, thus would appear in subspaces EviPI and EviQI . In fact, a minimal DC ϕ would

then appear in |ϕ.Pres| subspaces, causing a large amount of repeated work.

DCs

+R1 −R1

+R2 −R2

+R3 −R3

Figure 3.1: Taxonomy Tree.

We solve the second problem first, then the solution for the first problem comes nat-

urally. We divide the DCs space and order all searches in a way, such that we ensure

the output of a locally minimal DC is indeed global minimal, and a previously generated

minimal DC will never appear again in latter searches. Consider a predicate space P that

has only 3 predicates R1 to R3 as in Figure 3.1, which presents a taxonomy of all DCs.

In the first level, all DCs can be divided into DCs containing R1, denoted as +R1, and

DCs not containing R1, denoted as −R1. Since we know how to search for local minimal

DCs containing R1, we only need to further process DCs not containing R1, which can

be divided based on containing R2 or not, i.e., +R2 and −R2. We will divide −R2 as in

Figure 3.1. We can enforce searching for DCs not containing Ri by disallowing Ri in the

initial ordering of candidate predicates for minimal cover. Since this is a taxonomy of all

DCs, no minimal DCs can be generated more than once.

We solve the first problem by performing DFS according to the taxonomy tree in a

bottom-up fashion. We start by search for DCs containing R3, not containing R1, R2.

Then we search for DCs, containing R2, not containing R1, and we verify the resulting

62

DC is global minimal by checking if the reverse of the minimal cover is a super set of DCs

discovered from EviR3
I . The process goes on until we reach the root of the taxonomy, thus

ensuring that the results are both globally minimal and complete.

Dividing the space enables more optimization opportunities:

1. Reduction of Number of Searches. If ∃P ∈ P, such that EviPI = ∅, we

identify two scenarios for Q, where DFS for EviQI can be eliminated.

(i) ∀Q ∈ Imp(P), if EviPI = ∅, then q(P) is a DC that holds on I. The search for

EviQI would result in a DC of the form q(Q ∧W), where W represents any other set of

predicates. Since Q ∈ Imp(P), applying Axiom Resolution, we would have that q(W) is

a DC that holds on I, which implies q(Q ∧W) based on Axiom Augmentation.

(ii) ∀Q ∈ Imp(P), since Q ∈ Imp(P), then Q |= P . It follows that Q ∧W |= P and

therefore q(P) |=q(Q ∧W) holds.

Example 19: Consider EviEmp for the table in Example 15, since EviP1
Emp = ∅ and

EviP4
Emp = ∅, then Q = {P1, P2, P3, P4}. Thus we perform |P| − |Q| = 10 searches instead

of |P| = 14. 2

2. Additional Branch Pruning. Since we perform DFS according to the taxonomy

tree in a bottom-up fashion, DCs discovered from previous searches are used to prune

branches in current DFS described by Lines(9-10) of Algorithm 7.

Since Algorithm 7 is an exhaustive search for all minimal covers for EviI , Algorithm 6

produces all minimal DCs that hold on I.

Complexity Analysis of FASTDC. The initialization of evidence sets takes O(|P| ∗
n2). The time for each DFS search to find all minimal covers for EviPI is O((1+wP)∗KP),

with wP being the extra effort due to imperfect search of EviPI , and KP being the number

of minimal DCs containing predicate P . Altogether, our FASTDC algorithm has worst

time complexity of O(|P| ∗ n2 + |P| ∗ (1 + wP) ∗KP).

63

3.3.5 Approximate DCs: A-FASTDC

Algorithm FASTDC consumes the whole input data set and requires no violations for a

DC to be declared valid. In real scenarios, there are multiple reasons why this request may

need to be relaxed:

(1) overfitting: data is dynamic and as more data becomes available, overfitting con-

straints on current data set can be problematic; (2) data errors: while in general learning

from unclean data is a challenge, the common belief is that errors constitute small per-

centage of data, thus discovering constraints that hold for most of the dataset is a common

workaround [24,47,67].

We therefore modify the discovery statement as follows: given a relational schema R

and instance I, the approximate DCs discovery problem for DCs is to find all DCs that

approximately hold on I, where a DC ϕ approximately holds on I if the percentage of

violations of ϕ on I, i.e., number of violations of ϕ on I divided by total number of tuple

pairs |I|(|I| − 1), is within threshold ε. For this new problem, we introduce A-FASTDC.

Different tuple pairs might have the same satisfied predicate set. For every element E in

EviI , we denote by count(E) the number of tuple pairs 〈tx, ty〉 such that E = SAT (〈tx, ty〉).
For example, count({P2, P3, P6, P8, P9, P12, P14}) = 2 for the table in Example 15 since

SAT (〈t10, t9〉) = SAT (〈t11, t9〉) = {P2, P3, P6, P8, P9, P12, P14}.

Definition 4 A set of predicates X ⊆ P is an ε-minimal cover for EviI if

Sum(count(E)) ≤ ε|I|(|I| − 1), where E ∈ EviI ,X ∩ E = ∅, and no subset of X has

such property.

Theorem 4 transforms approximate DCs discovery problem into the problem of search-

ing for ε-minimal covers for EviI .

Theorem 4: q(X1 ∧ . . . ∧ Xn) is a valid approximate minimal DC if and only if

X={X1, . . . , Xn} is a ε-minimal cover for EviI . 2

64

Proof: The proof of Theorem 4 follows directly from the proof of Theorem 2. �

There are two modifications for Algorithm 7 to search for ε-minimal covers for EviI : (1)

the dynamic ordering of predicates is based on Cov(P,Evi) =
∑

E∈{E∈Evi,P∈E} count(E);

and (2) the base cases (Lines 12-17) are either when the number of violations of the

corresponding DC drops below ε|I|(|I|−1), or the number of violation is still above ε|I|(|I|−
1) but there are no more candidate predicates to include.

3.3.6 Constant DCs: C-FASTDC

FASTDC discovers DCs without constant predicates. However, just like FDs may not hold

on the entire dataset, thus CFDs are more useful, we are also interested in discovering

constant DCs (CDCs). Algorithm 8 describes the procedure for CDCs discovery. The

first step is to build a constant predicate space Q (Lines 1-6)3. After that, one direct

way to discover CDCs is to include Q in the predicate space P, and follow the same

procedure in Section 3.3.3. However, the number of constant predicates is linear w.r.t.

the number of constants in the active domain, which is usually very large. Therefore, we

follow the approach of [47] and focus on discovering τ -frequent CDCs. The support for a

set of constant predicates X on I, denoted by sup(X, I), is defined to be the set of tuples

that satisfy all constant predicates in X. A set of predicates is said to be τ -frequent if
|sup(X,I)|
|I| ≥ τ . A CDC ϕ consisting of only constant predicates is said to be τ -frequent if

all strict subsets of ϕ.Pres are τ -frequent. A CDC ϕ consisting of constant and variable

predicates is said to be k-frequent if all subsets of ϕ’s constant predicates are τ -frequent.

Example 20: Consider c3 in Example 9, sup({tα.CT = ‘Denver’}, I) = {t2, t6},
sup({tα.ST 6= ‘CO’}, I) = {t1, t3, t4, t5, t7, t8}, and sup({c3.P res}, I) = ∅. Therefore,

c3 is a τ -frequent CDC, with 2
8
≥ τ . 2

We follow an “Apriori” approach to discover τ -frequent constant predicate sets. We

first identify frequent constant predicate sets of length L1 from Q (Lines 7-15). We then

generate candidate frequent constant predicate sets of length m from length m− 1 (Lines

3We focus on two tuple CDCs with the same constant predicates on each tuple, i.e., if tα.Aθc is present

in a two tuple CDC, tβ .Aθc is enforced by the algorithm. Therefore, we only add tα.Aθc to Q.

65

Algorithm 8 C-FASTDC
Require: Instance I, schema R, minimal frequency requirement τ

Ensure: Constant DCs Γ

1: Let Q← ∅ be the constant predicate space

2: for all A ∈ R do

3: for all c ∈ ADom(A) do

4: Q← Q + tα.Aθc, where θ ∈ {=, 6=}
5: if A is numerical type then

6: Q← Q + tα.Aθc, where θ ∈ {>,≤, <,≥}

7: for all t ∈ I do

8: if t satisfies Q then

9: sup(Q, I)← sup(Q, I) + t

10: Let L1 be the set of frequent predicates

11: for all Q ∈ Q do

12: if |sup(Q, I)| = 0 then

13: Γ← Γ+q(Q)

14: else if |sup(Q,I)||I| ≥ τ then

15: L1 ← L1 + {Q}

16: m← 2

17: while Lm−1 6= ∅ do
18: for all c ∈ Lm−1 do

19: Σ← FASTDC(sup(c, I),R)

20: for all ϕ ∈ Σ do

21: Γ← Γ + φ, φ’s predicates comes from c and ϕ

22: Cm = {c|c = a ∪ b ∧ a ∈ Lm−1 ∧ b ∈
⋃
Lk−1 ∧ b /∈ a}

23: for all c ∈ Cm do

24: scan the database to get the support of c, sup(c, I)

25: if |sup(c, I)| = 0 then

26: Γ← Γ + φ, φ’s predicates consist of predicates in c

27: else if |sup(c,I)||I| ≥ τ then

28: Lm ← Lm + c

29: m← m+ 1

66

22-28), and we scan the database I to get their support (Line 24). If the support of the

candidate c is 0, we have a valid CDC with only constant predicates (Lines 12-13 and

25-26); if the support of the candidate c is greater than τ , we call FASTDC to get the

variable DCs (VDCs) that hold on sup(c, I), and we construct CDCs by combining the

τ -frequent constant predicate sets and the variable predicates of VDCs (Lines 18-21).

3.4 Ranking DCs

Though our FASTDC (C-FASTDC) is able to prune trivial, non-minimal, and implied DCs,

the number of DCs returned can still be too large. To tackle this problem, we propose a

scoring function to rank DCs based on their size and their support from the data. Given

a DC ϕ, we denote by Inter(ϕ) its interestingness score.

We recognize two different dimensions that influence Inter(ϕ): succinctness and cov-

erage of ϕ, which are both defined on a scale between 0 and 1. Each of the two scores

represents a different yet important intuitive dimension to rank discovered DCs.

Succinctness is motivated by the Occam’s razor principle. This principle suggests that

among competing hypotheses, the one that makes fewer assumptions is preferred. It is also

recognized that overfitting occurs when a model is excessively complex [20].

Coverage is also a general principle in data mining to rank results [7]. They design

scoring functions that measure the statistical significance of the mining targets in the

input data.

Given a DC ϕ, we define the interestingness score as a linear weighted combination of

the two dimensions: Inter(ϕ) = a× Coverage(ϕ) + (1− a)× Succ(ϕ).

3.4.1 Succinctness

Minimum description length (MDL), which measures the code length needed to compress

the data [20], is a formalism to realize the Occam’s razor principle. Inspired by MDL,

we measure the length of a DC Len(ϕ), and we define the succinctness of a DC ϕ, i.e.,

67

Succ(ϕ), as the minimal possible length of a DC divided by Len(ϕ) thus ensuring the scale

of Succ(ϕ) is between 0 and 1.

Succ(ϕ) =
Min({Len(φ)|∀φ})

Len(ϕ)

One simple heuristic for Len(ϕ) is to use the number of predicates in ϕ, i.e., |ϕ.Pres|.
Our proposed function computes the length of a DC with a finer granularity than a simple

counting of the predicates. To compute it, we identify the alphabet from which DCs are

formed as A = {tα, tβ,U,B, Cons}, where U is the set of all attributes, B is the set of all

operators, and Cons are constants. The length of ϕ is the number of symbols in A that

appear in ϕ: Len(ϕ) = |{a|a ∈ A, a ∈ ϕ}|. The shortest possible DC is of length 4, such

as c5, c9, and q(tα.SAL ≤ 5000).

Example 21: Consider a database schema R with two columns A,B, with 3 DCs as

follows:

c14 :q(tα.A = tβ.A), c15 :q(tα.A = tβ.B),

c16 :q(tα.A = tβ.A ∧ tα.B 6= tβ.B)

Len(c14) = 4 < Len(c15) = 5 < Len(c16) = 6. Succ(c14) = 1, Succ(c15) = 0.8, and

Succ(c16)=0.67. However, if we use |ϕ.Pres| as Len(ϕ), Len(c14) = 1 < Len(c15) = 1 <

Len(c16) = 2, and Succ(c14)=1, Succ(c15)=1, and Succ(c16)=0.5. 2

3.4.2 Coverage

Frequent itemset mining recognizes the importance of measuring statistical significance of

the mining targets [7]. In this case, the support of an itemset is defined as the proportion

of transactions in the data that contain the itemset. Only if the support of an itemset

is above a threshold, it is considered to be frequent. CFDs discovery also adopts such

principle. A CFD is considered to be interesting only if their support in the data is above

a certain threshold, where support is in general defined as the percentage of single tuples

that match the constants in the patten tableaux of the CFDs [24,47].

68

However, the above statistical significance measures requires the presence of constants

in the mining targets. For example, the frequent itemsets are a set of items, which are

constants. In CFDs discovery, a tuple is considered to support a CFD if that tuple matches

the constants in the CFD. Our target DCs may lack constants, and so do FDs. Therefore,

we need a novel measure for statistical significance of discovered DCs on I that extends

previous approaches.

Example 22: Consider c2, which is a FD, in Example 9. If we look at single tuples, just as

the statistical measure for CFDs, every tuple matches c2 since it does not have constants.

However, it is obvious that the tuple pair 〈t4, t7〉 gives more support than the tuple pair

〈t2, t6〉 because 〈t4, t7〉 matches the left hand side of c2. 2

Being a more general form than CFDs, DCs have more kinds of evidence that we exploit

in order to give an accurate measure of the statistical significance of a DC on I. An evidence

of a DC ϕ is a pair of tuples that does not violate ϕ: there exists at least one predicate in

ϕ that is not satisfied by the tuple pair. Depending on the number of satisfied predicates,

different evidences give different support to the statistical significance score of a DC. The

larger the number of satisfied predicates is in a piece of evidence, the more support it gives

to the interestingness score of ϕ. A pair of tuples satisfying k predicates is a k-evidence

(kE). As we want to give higher score to high values of k, we need a weight to reflect this

intuition in the scoring function. We introduce w(k) for kE, which is from 0 to 1, and

increases with k. In the best case, the maximum k for a DC ϕ is equal to |ϕ.Pres| − 1,

otherwise the tuple pair violates ϕ.

Definition 5 Given a DC ϕ:

A k-evidence (kE) for ϕ w.r.t. a relational instance I is a tuple pair 〈tx, ty〉, where k is

the number of predicates in ϕ that are satisfied by 〈tx, ty〉 and k ≤ |ϕ.Pres| − 1.

The weight for a kE (w(k)) for ϕ is w(k) = (k+1)
|ϕ.Pres| .

Example 23: Consider c7 in Example 11, which has 2 predicates. There are two types of

evidences, i.e., 0E and 1E.

69

〈t1, t2〉 is a 0E since t1.FN 6= t2.FN and t1.GD = t2.GD.

〈t1, t3〉 is a 1E since t1.FN 6= t3.FN and t1.GD 6= t3.GD.

〈t1, t6〉 is a 1E since t1.FN = t6.FN and t1.GD = t6.GD.

Clearly, 〈t1, t3〉 and 〈t1, t6〉 have higher weight than 〈t1, t2〉. 2

Given such evidence, we define Coverage(ϕ) as follows:

Coverage(ϕ) =

∑|ϕ.Pres|−1
k=0 |kE| ∗ w(k)∑|ϕ.Pres|−1

k=0 |kE|

The enumerator of Coverage(ϕ) counts the number of different evidences weighted by

their respective weights, which is divided by the total number of evidences. Coverage(ϕ)

gives a score between 0 and 1, with higher score indicating higher statistical significance.

Example 24: Given 8 tuples in Table 3.1, we have 8*7=56 evidences. Coverage(c7) =

0.80357, Coverage(c2) = 0.9821. It can be seen that coverage score is more confident about

c2, thus reflecting our intuitive comparison between c2 and c7.

Coverage for CDC is calculated using the same formula, such as Coverage(c3) = 1.0.

2

3.4.3 Rank-aware Pruning in DFS Tree

Having defined Inter, we can use it to prune branches in the DFS tree when searching

for minimal covers in Algorithm 7. We can prune any branch in the DFS tree, if we can

upper bound the Inter score of any possible DC resulting from that branch, and the upper

bound is either (i) less than a minimal Inter threshold, or (ii) less than the minimal Inter

score of the Top-k DCs we have already discovered. We use this pruning in Algorithm 7

(Lines 11-12), a branch with the current path X will result in a DC ϕ: q(X∧W), with X

known and W unknown.

Succ score is an anti-monotonic function: adding more predicates increases the length

of a DC, thus decreases the Succ of a DC. Therefore we bound Succ(ϕ) by Succ(ϕ) ≤

70

Succ(q(X)). However, as Coverage(ϕ) is not anti-monotonic, we cannot use q(X) to get

an upper bound for it. A direct upper bound, but not useful bound is 1.0, so we improve

it as follows. Each evidence E or tuple pair is contributing w(k) = (k+1)
|ϕ.Pres| to Coverage(ϕ)

with k being the number of predicates in ϕ that E satisfies. w(k) can be rewritten as

w(k) = 1− l
|ϕ.Pres| with l being the number of predicates in ϕ that E does not satisfy. In

addition, we know l is greater than or equal to the number of predicates in X that E does

not satisfy; and we know that |ϕ.Pres| must be less than the |P|
2

. Therefore, we get an

upper bound for w(k) for each evidence. The average of the upper bounds for all evidences

is a valid upper bound for Coverage(ϕ). However, to calculate this bound, we need to

iterate over all the evidences, which can be expensive because we need to do that for every

branch in the DFS tree. Therefore, to get a tighter bound than 1.0, we only upper bound

the w(k) for a small number of evidences4, and for the rest we set w(k) ≤ 1.

3.5 Experimental Study

We experimentally evaluate FASTDC, Inter function, A-FASTDC, and C-FASTDC. Ex-

periments are performed on a Win7 machine with QuadCore 3.4GHz cpu and 4GB RAM.

The scalability experiment runs on a cluster consisting of machines with the same config-

uration. We use one synthetic and two real datasets.

Synthetic. We use the Tax data generator from [22]. Each record represents an

individual’s address and tax information, as in Table 3.1. The address information is

populated using real semantic relationship. Furthermore, salary is synthetic, while tax

rates and tax exemptions (based on salary, state, marital status and number of children)

correspond to real life scenarios.

Real-world. We use two datasets from different Web sources5.

• Hospital data is from the US government. There are 17 string attributes, including

4We experimentally identified that 1000 samples improve the upper bound without affecting execution

times.
5http://data.medicare.gov, http://pages.swcp.com/stocks

71

Provider # (PN), measure code (MC) and name (MN), phone (PHO), emergency

service (ES) and has 115k tuples.

• SP Stock data is extracted from historical S&P 500 Stocks. Each record is arranged

into fields representing Date, Ticker, Open Price, High, Low, Close, and Volume of

the day. There are 123k tuples.

3.5.1 Scalability Evaluation

We mainly use the Tax dataset to evaluate the running time of FASTDC by varying the

number of tuples |I|, and the number of predicates |P|. We also report running time for

the Hospital and the SP Stock datasets. We show that our implication testing algorithm,

though incomplete, is able to prune a huge number of implied DCs.

Algorithms. We implemented FASTDC in Java, and we test various optimizations

techniques. We use FASTDC+M to represent running FASTDC on a cluster consisting of

M machines. We use FASTDC-DS to denote running FASTDC without dividing the space

of DCs as in Section 3.3.4. We use FASTDC-DO to denote running FASTDC without

dynamic ordering of predicates in the search tree as in Section 3.3.3.

Exp-1: Scalability in |I|. We measure the running time in minutes on all 13 at-

tributes, by varying the number of tuples (up to 1 million tuples), as reported in Fig-

ure 3.2. The size of the predicate space |P| is 50. The Y axis of Figure 3.2 is in log

scale. We compare the running time of FASTDC and FASTDC+M with number of blocks

B=2M to achieve load balancing. Figure 3.2 shows a quadratic trend as the computation

is dominated by the tuple pair-wise comparison for building the evidence set. In addition,

Figure 3.2 shows that we achieve almost linear improvement w.r.t the number of machines

on a cluster; for example, for 1M tuples, it took 3257 minutes on 7 machines, but 1228

minutes on 20 machines. Running FASTDC on a cluster is a viable approach if the number

of tuples is too large to run on a single machine.

Exp-2: Scalability in |P|. We measure the running time in seconds using 10k tuples,

by varying the number of predicates through including different number of attributes in the

Tax dataset, as in Figure 3.3(a). We compare the running time of FASTDC, FASTDC-DS,

72

 10

 100

 1000

 10000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Ru

nn
in

g
Ti

me
(m
in

s)
Tuples (*1M)

FASTDC
FASTDC+7

FASTDC+20

Figure 3.2: Scalability in |I| - Tax

and FASTDC-DO. The ordering of adding more attributes is randomly chosen, and we

report the average running time over 20 executions. The Y axes of Figures 3.3(a), 3.3(b)

and 3.3(c) are in log scale. Figure 3.3(a) shows that the running time increases expo-

nentially w.r.t. the number of predicates. This is not surprising because the number of

minimal DCs, as well as the amount of wasted work, increases exponentially w.r.t. the

number of predicates, as shown in Figures 3.3(b) and 3.3(c). The amount of wasted work

is measured by the number of times Line 15 of Algorithm 7 is hit. We estimate the wasted

DFS time as a percentage of the running time by wasted work / (wasted work + number of

minimal DCs), and it is less than 50% for all points of FASTDC in Figure3.3(c). The num-

ber of minimal DCs discovered is the same for FASTDC, FASTDC-DS, and FASTDC-DO

as optimizations do not alter the discovered DCs.

Hospital has 34 predicates and it took 118 minutes to run on a single machine using all

tuples. Stock has 82 predicates and it took 593 minutes to run on a single machine using

all tuples.

Exp-3: Joinable Column Analysis. Figure 3.4 shows the number of predicates

by varying the % of common values required to declare joinable two columns. Smaller

values lead to a larger predicate space and higher execution times. Larger values lead to

faster execution but some DCs involving joinable columns may be missed. The number of

predicates gets stable with low percentage of common values, and with our datasets the

quality of the output is not affected when at least 30% common values are required.

73

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

R
u
n
n
i
n
g

T
i
m
e
(
s
e
c
s
)

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(a)

 1

 10

 100

 1000

 10000

 5 10 15 20 25 30 35 40 45 50

#

M
i
n
i
m
a
l

D
C
s

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(b)

 1
 10

 100
 1000

 10000
 100000
 1e+06
 1e+07

 5 10 15 20 25 30 35 40 45 50

W
a
s
t
e
d

W
o
r
k

Predicates

FASTDC
FASTDC-DS
FASTDC-DO

(c)

Figure 3.3: Scalability in |P| - Tax

 30
 40
 50
 60
 70
 80
 90

 100
 110

 0 0.2 0.4 0.6 0.8 1

#

P
r
e
d
i
c
a
t
e
s

Percentage of Common Values

Tax
SPStock
Hospital

Figure 3.4: Threshold for Joinable Columns

Exp-4: Ranking Function in Pruning. Figure 3.5 shows the DFS time taken for

the Tax dataset varying the minimum Inter score required for a DC to be in the output.

The threshold has to exceed 0.6 to have pruning power. The higher the threshold, the

more aggressive the pruning. In addition, a bigger weight for Succ score (indicated by

smaller a in Figure 3.5) has more pruning power. Although in our experiment golden DCs

are not dropped by this pruning, in general it is possible that the upper bound of Inter for

interesting DCs falls under the threshold, thus this pruning may lead to losing interesting

DCs. The other use of ranking function for pruning is omitted since it has little gain.
Exp-5: Implication Reduction. The number of DCs returned by FASTDC can be

large, and many of them are implied by others. Table 3.3 reports the number of DCs

we have before and after implication testing for datasets with 10k tuples. To prevent

74

 0

 50

 100

 150

 200

 250

 0.5 0.55 0.6 0.65 0.7 0.75 0.8
D
F
S

T
i
m
e
(
s
e
c
s
)

Thre

a=0.6
a=0.5
a=0.4

Figure 3.5: Ranking Function in Pruning

interesting DCs from being discarded, we rank them according to their Inter function.

A DC is discarded if it is implied by DCs with higher Inter scores. It can be seen that

our implication testing algorithm, though incomplete, is able to prune a large amount of

implied DCs.

Dataset # DCs Before # DCs After % Reduction

Tax 1964 741 61%

Hospital 157 42 73%

SP Stock 829 621 25%

Table 3.3: # DCs before and after reduction through implication.

3.5.2 Qualitative Analysis

Table 3.4 reports some discovered DCs, with their semantics explained in English6. We

denote by Σg the golden VDCs that have been designed by domain experts on the datasets.

Specifically, Σg for Tax dataset has 8 DCs; Σg for Hospital is retrieved from [31] and has

7 DCs; and Σg for SP Stock has 6 DCs. DCs that are implied by Σg are also golden DCs.

We denote by Σs the DCs returned by FASTDC. We define G-Precision as the percentage

6All datasets, as well as their golden and discovered DCs are available at “http://da.qcri.org/dc/”.

75

http://da.qcri.org/dc/

Dataset DC Discovered Semantics

1 Tax q(tα.ST = tβ .ST ∧ tα.SAL < tβ .SAL
There cannot exist two persons who live

in the same state,

∧tα.TR > tβ .TR)
but one person earns less salary and has

higher tax rate at the same time.

2 Tax q(tα.CH 6= tβ .CH ∧ tα.STX < tα.CTX
There cannot exist two persons with both

having CTX higher than STX,

∧tβ .STX < tβ .CTX)
but different CH. If a person has CTX,

she must have children.

3 Tax q(tα.MS 6= tβ .MS ∧ tα.STX = tβ .STX)
There cannot exist two persons with same

STX, one person has higher STX than

∧tα.STX > tα.CTX)
CTX and they have different MS. If a

person has STX, she must be single.

4 Hospital q(tα.MC = tβ .MC ∧ tα.MN 6= tβ .MN) Measure code determines Measure name.

5 Hospital q(tα.PN = tβ .PN ∧ tα.PHO 6= tβ .PHO)
Provider number determines Phone

number.

6 SP Stock q(tα.Open > tα.High)
The open price of any stock should not be

greater than its high of the day.

7 SP Stock q(tα.Date = tβ .Date ∧ tα.T icker = tβ .T icker) Ticker and Date is a composite key.

8 Tax q(tα.ST = ‘FL’ ∧ tα.ZIP < 30397)
State Florida’s ZIP code cannot be lower

than 30397.

9 Tax q(tα.ST = ‘FL’ ∧ tα.ZIP ≥ 35363)
State Florida’s ZIP code cannot be higher

than 35363.

10 Tax q(tα.MS 6= ‘S’ ∧ tα.STX 6= 0)
One has to be single to have any single

tax exemption.

11 Hospital q(tα.ES 6= ‘Yes’ ∧ tα.ES 6= ‘No’)
The domain value of emergency service is

yes or no.

Table 3.4: Sample DCs discovered in the datasets.

of DCs in Σs that are implied by Σg, G-Recall as the number of DCs in Σs that are implied

by Σg over the total number of golden DCs, and G-F-Measure as the harmonic mean

of G-Precision and G-Recall. In order to show the effectiveness of our ranking function,

we use the golden VDCs to evaluate the two dimensions of Inter function in Exp-6, the

performance of A-FASTDC in Exp-7. We evaluate C-FASTDC in Exp-8. However, domain

experts might not be exhaustive in designing all interesting DCs. In particular, humans

have difficulties designing DCs involving constants. We show with U -Precision(Σs) the

percentage of DCs in Σs that are verified by experts to be interesting, and we report the

result in Exp-9. All experiments in this section are done on 10k tuples.

Exp-6: Evaluation of Inter score.

76

We report in Figures 3.6(a)– 3.6(c) G-Precision, G-Recall, and G-F-Measure for Tax,

with Σs being the Top-k DCs according to Inter by varying the weight a from 0 to 1.

Every line is at its peak value when a is between 0.5 and 0.8. Moreover, Figure 3.6(b)

shows that Inter score with a = 0.6 for Top-20 DCs has perfect recall; while it is not the

case for using Succ alone (a = 0), or using Coverage alone (a = 1). This is due to two

reasons. First, Succ might promote shorter DCs that are not true in general, such as c7.

Second, Coverage might promote longer DCs that have higher coverage than shorter ones,

however, those shorter DCs might be in Σg; for example, the first entry in Table 3.4 has

higher coverage than q(tα.AC = tβ.AC ∧ tα.PH = tβ.PH), which is actually in Σg. For

Hospital, Inter and Coverage give the same results, which are better than Succ because

golden DCs for Hospital are all FDs with two predicates, therefore Succ has no effect on

the interestingness. For Stock, all scoring functions give the same results because its golden

DCs are simple DCs, such as q(tα.Low > tα.High).

This experiment shows that both succinctness and coverage are useful in identifying

interesting DCs. We combine both dimensions into Inter with a = 0.5 in our experiments.

Interesting DCs usually have Coverage and Succ greater than 0.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
-
P
r
e
c
i
s
i
o
n

Weight a

Top-5
Top-10
Top-15
Top-20

(a) G-Precision

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
-
R
e
c
a
l
l

Weight a

Top-5
Top-10
Top-15
Top-20

(b) G-Recall

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

G
-
F
-
M
e
a
s
u
r
e

Weight a

Top-5
Top-10
Top-15
Top-20

(c) G-F-Measure

Figure 3.6: G-Precision,Recall, and F-Measure on Tax

Exp-7: A-FASTDC. In this experiment, we test A-FASTDC on noisy datasets. A

noise level of α means that each cell has α probability of being changed, with 50% chance of

being changed to a new value from the active domain and the other 50% of being changed

to a typo. For a fixed noise level α = 0.001, which will introduce hundreds of violating

tuple pairs for golden DCs, Figure 3.7(a) plots the G-Recall for Top-60 DCs varying the

77

approximation level ε. A-FASTDC discovers an increasing number of correct DCs as we

increase ε, but, as it further increases, G-Recall drops because when ε is too high, a DC

whose predicates are a subset of a correct DC might get discovered, thus the correct DC

will not appear. For example, the fifth entry in Table 3.4 is a correct DC; however, if ε

is set too high, q(tα.PN = tβ.PN) would be in the output. G-Recall for SPStock data

is stable and higher than the other two datasets because most golden DCs for SPStock

data are one tuple DCs, which are easier to discover. Finally, we examine Top-60 DCs to

discover golden DCs, which is larger than Top-20 DCs in clean datasets. However, since

there are thousands of DCs in the output, our ranking function is still saving a lot of

manual verification.

Figure 3.7(b) shows that for a fixed approximate level ε= 4× 10−6, as we increase the

amount of noise in the data, the G-Recall for Top-60 DCs shows a small drop. This is

expected because the nosier gets the data, the harder it is to get correct DCs. However,

A-FASTDC is still able to discover golden DCs.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 2 3 4 5 6 7 8 9

G
-
R
e
c
a
l
l

Appro. Level (*0.000001)

Tax
SPStock
Hospital

(a) Varying Approximation Level

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

G
-
R
e
c
a
l
l

Noise Level (* 0.001)

Tax
SPStock
Hospital

(b) Varying Noise Level

Figure 3.7: AFASTDC

Exp-8: C-FASTDC. Figure 3.8 reports the running time of C-FASTDC varying

minimal frequent threshold τ from 0.02 to 1.0. When τ = 1.0, C-FASTDC falls back to

FASTDC. The smaller the τ , the more the frequent constant predicate sets, the bigger

the running time. For the SP Stock dataset, there is no constant predicate set, so it is

a straight line. For the Tax data, τ = 0.02 results in many frequent constant predicate

78

sets. Since it is not reasonable for experts to design a set of golden CDCs, we only report

U-Precision.

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
u
n
n
i
n
g

T
i
m
e

(
s
e
c
s
)

frequency thre

Tax
SPStock
Hospital

Figure 3.8: C-FASTDC Running Time

FASTDC C-FASTDC

Dataset k=10 k=15 k=20 k=50 k=100 k=150

Tax 1.0 0.93 0.75 1.0 1.0 1.0

Hospital 1.0 0.93 0.7 1.0 1.0 1.0

SP Stock 1.0 1.0 1.0 0 0 0

Tax-Noise 0.5 0.53 0.5 1.0 1.0 1.0

Hosp.-Noise 0.9 0.8 0.7 1.0 1.0 1.0

Stock-Noise 0.9 0.93 0.95 0 0 0

Table 3.5: U-Precision.

Exp-9: U-Precision. We report in Table 3.5 the U-Precision for all datasets using

10k tuples, and the Top-k DCs as Σs. We run FASTDC and C-FASTDC on clean data,

as well as noisy data. For noisy data, we insert 0.001 noise level, and we report the best

result of A-FASTDC using different approximate levels. For FASTDC on clean data, Top-

10 DCs have U-precision 1.0. In fact in Figure 3.6(a), Top-10 DCs never achieve perfect

G-precision because FASTDC discovers VDCs that are correct, but not easily designed by

humans, such as the second and third entry in Table 3.4. For FASTDC on noisy data,

though the results degrade w.r.t. clean data, at least half of the DCs in Top-20 are correct.

79

For C-FASTDC on either clean or noisy data, we achieve perfect U-Precision for the Tax

and the Hospital datasets up to hundreds of DCs. SP Stock data has no CDCs. This is

because C-FASTDC is able to discover many business rules such as entries 8-10 in Table 3.4,

domain constraints such as entry 11 in Table 3.4, and CFDs such as c3 in Example 9.

80

Chapter 4

Distributed Data Deduplication

Data deduplication, also known as record linkage, or entity resolution, refers to the process

of identifying tuples in a relation that refer to the same real world entity. Data dedu-

plication is a pervasive problem, and is extremely important for data quality and data

integration [43]. For example, finding duplicate customers in enterprise databases is es-

sential in almost all levels of business. In our collaboration with Thomson Reuters, we

observed that a data deduplication project takes 3-6 months to complete, mainly due to

the scale and variety of data sources.

Data deduplication techniques usually require computing a similarity score of each

tuple pair. For a dataset with n tuples, näıvely comparing every tuple pair requires O(n2)

comparisons, a prohibitive cost when n is large. A commonly used technique to avoid

the quadratic complexity is blocking [9, 19, 65], which avoids comparing tuple pairs that

are obviously not duplicates. Blocking methods first partition all records into blocks and

then only records within the same block are compared. A simple way to perform blocking

is to scan all records and compute a hash value for each record based on a subset of its

attributes, commonly referred to as blocking key attributes. The computed hash values are

called blocking key values. Records with the same blocking key values are grouped into the

same block. For example, blocking key attributes can be the zipcode, or the first three

characters of the last name. Since one blocking function might miss placing duplicate tuples

in the same block, thus resulting in a false negative (for example, zipcode can be wrong

81

or obsolete), multiple blocking functions [43] are often employed to reduce the number of

false negatives.

Despite the use of blocking techniques, data deduplication remains a costly process that

can take hours to days to finish for real world datasets on a single machine [76]. Most of

the previous work on data deduplication is situated in a centralized setting [9,19,27], and

does not leverage the capabilities of a distributed environment to scale out computation;

hence, it does not scale to large distributed data. Big data often resides on a cluster

of machines interconnected by a fast network, commonly referred to as a “data lake”.

Therefore, it is natural to leverage this scale-out environment to develop efficient data

distribution strategies that parallelize data deduplication. Multiple challenges need to be

addressed to achieve this goal. First, unlike centralized settings, where the dominating

cost is almost always computing the similarity scores of all tuple pairs, multiple factors

contribute to the elapsed time in a distributed computing environment, including network

transfer time, local disk I/O time, and CPU time for pair-wise comparisons. These costs

also vary across different deployments. Second, as it is typical in a distributed setting,

any algorithm has to be aware of data skew, and achieve load-balancing [12, 41]. Every

machine must perform a roughly equal amount of work in order to avoid situations where

some machines take much longer than others to finish, a scenario that greatly affects the

overall running time. Third, the distribution strategy must be able to handle effectively

multiple blocking functions; as we show in this paper, the use of multiple blocking functions

impacts the number of times each tuple is sent across nodes, and also induces redundant

comparisons when a tuple pair belongs to the same block according to multiple blocking

functions.

A recent work Dedoop [74, 75] uses MapReduce [39] for data deduplication; however,

it only optimizes for computation cost, and requires a large memory footprint to keep the

necessary statistics for its distribution strategy, thus limiting its performance and appli-

cability.The problem of data deduplication is also related to distributed join computation.

However, parallel join algorithms are not directly applicable to our setting: (1) most of

the work on parallel join processing [5,83] is for two-table joins, so the techniques are not

directly applicable to self-join without wasting almost half of the available workers; (2)

even with an efficient self-join implementation, applying it to every block directly without

82

considering the block sizes yields a sub-optimal strategy; and (3) to the best of our knowl-

edge, there is no existing work on processing a disjunction of join queries, a problem we

have to tackle in dealing with multiple blocking functions.

In this paper, we propose a distribution strategy with optimality guarantees for dis-

tributed data deduplication in a shared-nothing environment. Our proposed strategy aims

at minimizing elapsed time by minimizing the maximum cost across all machines. Note

that while blocking affects the quality of results (by introducing false negatives), we do not

introduce a new blocking criteria, rather we show how to execute a given set of blocking

functions in a distributed environment. In other words, our technique does not change the

quality but tackles the performance of the deduplication process. We make the following

contributions:

•We introduce a cost model that consists of the maximum number of input tuples any

machine receives (X), and the maximum number of tuple pair comparisons any machine

performs (Y) (Section 4.1). We provide a lower bound analysis for X and Y that is

independent of the actual dominating cost in a cluster.

•We propose a distribution strategy for distributing the workload of comparing tuples

in a single block (Section 4.2). Both X and Y of our strategy are guaranteed to be within

a small constant factor from the lower bound Xlow and Ylow.

• We propose Dis-Dedup for distributing a set of blocks produced by a single blocking

function. The X and Y of Dis-Dedup are both within a small constant factor from Xlow and

Ylow, regardless of block-size skew (Section 4.3). Dis-Dedup also handles multiple blocking

functions effectively, and avoids producing the same tuple pair more than once even if that

tuple pair is in the same block according to multiple blocking functions (Section 4.4).

Although we tackle the problem of scalable error detection in the context of data

deduplication, our proposed strategy for distributing the workload of comparing tuples in

a single block in Section 4.2 is applicable to any error detection that requires tuple pairwise

comparison, such as detecting violations of the FD in Example 1 that requires checking

whether the IC is violated for every tuple pair, and detecting violations of DCs shown in

Example 9.

83

4.1 Problem Definition and Solution Overview

In this section, we present the parallel computation model we will use in this paper. We

formally introduce the problem definition, and provide an overview of our solution.

4.1.1 Parallel Computation Model

We focus on scale-out environments, where data is usually stored in what is called a data

lake. Such an environment usually adopts a shared-nothing architecture, where multiple

machines, or nodes, communicate via a high-speed interconnect network, and each node

has its own private memory and disk. In every node there are typically multiple virtual

processors running together, so as to take advantage of the multiple CPUs and disks

available on each machine and thus increase parallelism. These virtual processors that run

in parallel are called workers in this paper.

In a shared-nothing system, there is usually a trade-off between the communication

cost and the computation cost [90]. For a particular data processing task, it is often hard

to predict which type of cost is dominating, let alone constructing an objective function

that combines these two costs. In addition, the influence of each cost on the running time

is dependent on many parameters of the cluster configuration. For example, there are

more than 250 parameters that are tunable in a Hadoop cluster1. In this paper, we follow

a similar strategy used in parallel join processing [83], and seek to minimize both costs

simultaneously.

Since all workers are running in parallel, to minimize the overall elapsed time, we focus

on minimizing the largest cost across all workers. For worker i, let Xi be the communication

cost, and Yi be the computation cost. Assume that there are k workers available. We define

X (resp. Y) to be the maximum Xi (resp. Yi) at any worker:

X = max
i∈[1,k]

Xi Y = max
i∈[1,k]

Yi (4.1)

1http://tinyurl.com/puqduqj

84

http://tinyurl.com/puqduqj

A typical example of a parallel shared-nothing system is MapReduce [39]. MapReduce

has two types of workers: the mapper and the reducer. A mapper takes a key-value pair,

and generates a list of key-value pairs; while a reducer takes a key associated with a list

of values, and generates another list of key-value pairs. The input keys of the reducers

are the output keys of the mappers. Users have the option of implementing a customized

partitioner. Partitioners decide which key-value pairs are sent to which reducers, based

on the key. MapReduce balances the load between mappers very well, however, it is

the programmers’ responsibility to ensure that the workload across different reducers is

balanced.

4.1.2 Formal Problem Definition

We are given a dataset I with n tuples, s blocking functions h1, . . . , hs, and a tuple-pair

similarity function f . Every blocking function h ∈ {h1, . . . , hs} is applied to every tuple

t, and returns a blocking key value h(t). A blocking function h divides all n tuples into a

set of m blocks {B1, B2, . . . , Bm}, where tuples in the same block have the same blocking

key value. Tuple pairs in the same block are compared using f to obtain a similarity

score. Based on the similarity scores, a clustering algorithm is then applied to group

tuples together.

We perform data deduplication using the computational model described in Sec-

tion 4.1.1. In this case, Xi represents the number of tuples that Worker i receives; and

Yi represents the number of tuple pair comparisons that Worker i performs. We aim at

designing a distribution strategy that minimizes (a) the maximum number of tuples any

worker receives, namely, X, and (b) the maximum number of tuple pair comparisons any

worker performs, namely, Y , at the same time. This may not be possible for a given data

deduplication task, but we show that we can always achieve optimality for both X and Y

within constant factors. Hence, our algorithm will perform optimally independent of how

the runtime is as a function of X and Y .

Example 25: Consider a scenario where a single blocking function produces few large

blocks and many smaller blocks. To keep the example simple, suppose that a blocking

85

function partitions a relation of n = 100 tuples into 5 blocks of size 10 and 25 blocks of

size 2. The total number of comparisons W in this case is W = 5 ·
(

10
2

)
+ 25 ·

(
2
2

)
= 250

comparisons.

Assume k = 10 workers. Consider first a strategy that sends all tuples to every worker.

In this case, Xi = 100 for every worker i, which results in X = 100 according to Equa-

tion (4.1). We then assign Yi = W
k

= 25 comparisons to worker i (for example by assigning

to worker i tuple pairs numbered [(i − 1)W
k
, iW

k
]). Therefore, Y = 25 according to Equa-

tion (4.1).This strategy achieves the optimal Y , since W is evenly distributed to all workers.

However, it has a poor X, since every tuple is replicated 10 times.

Consider a second strategy that assigns one block entirely to one worker. For example,

we could assign each of the 5 blocks of size 10 to the first 5 workers, and to each of the

remaining 5 workers we assign 5 blocks of size 2. In this case, X = 10, since each worker

receives exactly the same number of tuples; moreover, each tuple is replicated exactly

once. However, even though the input is evenly distributed across workers, the number

of comparisons is not. Indeed, the first 5 workers perform
(

10
2

)
= 45 comparisons, while

the last 5 workers perform only 5 ·
(

2
2

)
= 5 comparisons. Therefore, Y = 45 according to

Equation (4.1). 2

The above example demonstrates that the distribution strategy has significant impact

on both X and Y , even in the case of a single blocking function. In the next three sections,

we show how we can construct a distribution strategy that achieves an optimal behavior

for both X and Y for any distribution of block sizes, and outperforms in practice any

alternative strategies.

4.1.3 Solution Overview

Consider a blocking function h that produces m blocks B1, B2, . . . , Bm. A distribution

strategy would have to assign, for every block Bi a subset of the k workers of size ki ≤ k

to handle Bi.

A straightforward strategy assigns one block entirely to one worker, i.e., ki = 1,∀i ∈
[1,m], hence, parallelism happens only across blocks. Another straightforward strategy

86

uses all the available workers to handle every block, i.e., ki = k,∀i ∈ [1,m], hence, par-

allelism is maximized for every block, and uses an existing parallel join algorithms [5, 83]

to handle every block. However, both strategies are not optimal, as we will show in Sec-

tion 4.3.2.

In light of these two straightforward strategies, we first study how to distribute the

workload of one block Bi to ki workers to minimize X and Y (Section 4.2). Given the

distribution strategy for a single block, we then show how to assign workers to blocks

B1, . . . , Bm generated by a single blocking function h, so as to minimize both X and Y

across all blocks (Section 4.3). Given the distribution strategy for a single blocking function

h, we will finally present how to assign workers given multiple blocking functions h1, . . . , hs,

so that the overall X and Y are minimized (Section 4.4).

The optimality results we will show next for X and Y hold as long as the distribution

strategy can be implemented in a shared-nothing system, where the distribution strategy

specifies (1) which tuples are sent to which workers; and (2) which tuple pairs are compared

inside each worker. However, whether our distribution strategy can be implemented in a

particular shared-nothing system depends on the APIs of the system. For simplicity, we

describe and implement our distribution strategy using MapReduce, which uses mappers

and partitioners to specify (1) and uses reducers to specify (2). Other example platforms

where our distribution strategies could be implemented include Spark [100], Apache Flink

(previously known as Stratosphere) [8], and Myria [63].

4.2 Single Block Deduplication

In this section, we study the problem of data deduplication for tuples in a single block that

is produced by one blocking function; in other words, we need to compare every tuple with

every other tuple in the block. The distribution strategy presented in this section will serve

as a building block when discussing distribution strategies in Sections 4.3 and 4.4. Assume

that there are n tuples in the block, and k available reducers to compute the pair-wise

similarities.

87

4.2.1 Lower Bounds

We first analyze the lower bounds Xlow and Ylow for X and Y , respectively. The lower

bounds are necessary to reason about the optimality of our distribution strategies.

Theorem 5: For any distribution strategy that performs data deduplication on a block of

size n using k reducers, the maximum input is X > Xlow = n√
k

and the maximum number

of comparisons is Y ≥ Ylow = n(n−1)
2k

. 2

Proof: To show the lower bound on the number of comparisons Y , observe that the total

amount of comparisons required is
(
n
2

)
= n(n−1)

2
. Since there are k available reducers, there

must exist at least one reducer j with Yj ≥ n(n−1)
2k

.

For the lower bound on the input, suppose for the sake of contradiction that the max-

imum input is n′ ≤ n/
√
k. Then, each reducer will perform at most

(
n′

2

)
comparisons,

which means that the total number of comparisons will be at most k
(
n′

2

)
= n(n−

√
k)/2 <

n(n− 1)/2, a contradiction (since the comparisons must be at least
(
n
2

)
). �

As we show in Section 4.2.2, our algorithm matches the lower bound Ylow, but not Xlow.

The problem of designing a strategy that matches Xlow is tightly related to an extensively

studied problem in combinatorics called covering design [87]. A (n, `, t)-covering design is

a family F of subsets of size ` from the universe {1, . . . , n}, such that every subset of size t

from the universe is a subset of a set in F . The task in hand is to compute the minimum size

C(n, `, t) of such a family. To see the connection with our distribution problem, consider

a (n,X, 2)-covering design F of size k. Then, we can assign to each of the k reducers a

set from the family (that will be of size X); but now, we can perform every comparison in

some reducer, since the covering design guarantees that every subset of size 2 (i.e., every

pair) will be in some set (i.e., in some reducer). Thus, designing a strategy that achieves

Xlow means finding a (n,Xlow, 2)-covering design, such that C(n,Xlow, 2) ≤ k.

The lower bound for X presented in Theorem 5 is called the Schönheim bound [87],

but the only constructions that match it are explicit constructions for fixed values of n, `.

There exists a large literature of such constructions [58], and it is an open problem to

88

find tight upper and lower bounds. Hence, instead of looking for an optimal solution, our

algorithm provides a constant-factor approximation of the lower bound.

4.2.2 Triangle Distribution Strategy

We present here a distribution strategy, called triangle distribution strategy, which guar-

antees with high probability a small constant-factor approximation of the lower bounds.

The name of the distribution strategy comes from the fact that we arrange the k

reducers in a triangle whose two sides have size l (thus k = l(l + 1)/2 for some integer l).

To explain why we organize the reducers in such a fashion, consider the scenario studied

in [5, 12] where we compute the cartesian product R × S of two relations of size n: in

this case, the reducers are organized in a
√
k ×
√
k square, as shown in Figure 4.1(a) for

k = 36. Each tuple from R is sent to the reducers of a random row, and each tuple from

S is sent to all the reducers of a random column; the reducer function then computes all

pairs it receives. However, if we apply this idea directly to a self-join (where R = S), the

comparison of each pair would be repeated twice, since if a tuple pair ends up together in

the reducer (i, j), it will also be in the reducer (j, i). For example, in Figure 4.1(a) tuple

t1 is sent to all reducers in row 2 and column 2, and tuple t2 is sent to all reducers in row

4 and column 4. Therefore, the joining of t1 and t2 is duplicated at reducers (2, 4) and

(4, 2). Because of the symmetry, the lower left half of the reducers in the square are doing

redundant work. Arranging the reducers in a triangle circumvents this problem and allows

us to use all available reducers.

Figure 4.1(b) gives an example of such an arrangement for k = 21 reducers with l = 6.

Every reducer is identified by a two dimensional index (p, q), where p is the row index,

and q is the column index, and 1 ≤ p ≤ q ≤ l. Each reducer (p, q) has a unique reducer

ID, which is calculated as (2l− p+ 2)(p− 1)/2 + (q − p+ 1). For example, Reducer (2, 4)

marked purple in Figure 4.1(b) is Reducer 9.

Algorithm 9 describes the distribution strategy given the arrangement for the k reduc-

ers. For any tuple t, the mapper randomly chooses an integer a, called an anchor, between

[1, l], and distributes t to all reducers whose row or column index = a (Lines 3-11). By

replicating each tuple l times, we can ensure that for every tuple pair, there exists at least

89

(a) R× S join (b) Self-join

Figure 4.1: Reducer arrangement. (The number in the upper left corner of each cell is the

reducer id.)

one reducer that receives both tuples. In fact, if two tuples have different anchor points,

there is exactly one reducer that receives both tuples; while if two tuples have the same

anchor point a, both tuples will be replicated on the same set of reducers, but we only

compare the tuple pair on reducer (a, a). The key of the key-value pair of the mapper

output is the reducer id, and the value of the key-value pair of the mapper output is the

tuple augmented with a flag L, S or R to avoid comparing tuple pairs that have the same

anchor points a in reducers other than (a, a). Within each reducer, tuples with flag L are

compared with tuples with flag R (Lines 28-31), and tuples with flag S are compared only

with each other (Lines 33-35).

Example 26: Figure 4.2 gives an example for three tuples t1, t2, t3 given the arrangement

of the reducers in Figure 4.1(b). Suppose that tuple t1 has anchor point a = 2, and tuples

t2, t3 have the same anchor point a = 4. The mapping function takes t1 and generates

the key-value pairs (2, L#t1), (7, S#t1),(8, R#t1),(9, R#t1),(10, R#t1),(11, R#t1). Note

the different tags L, S,R for different key-value pairs. Reducer 9 receives a list of values

90

Algorithm 9 Triangle distribution strategy
1: class Reducer

2: method Map(Tuple t, null)

3: Int a← a random value from [1,l]

4: for all p ∈ [1, a) do

5: rid← rid of Reducer (p, a)

6: Emit(Int rid, L#Tuple t)

7: rid← rid of Reducer (a, a)

8: Emit(Int rid, S#Tuple t)

9: for all q ∈ (a, l] do

10: rid← rid of Reducer (a, q)

11: Emit(Int rid,R#Tuple t)

12: class Partitioner

13: method Partition(Key rid,Value v, k)

14: Return rid

15: class Reducer

16: method Reduce(Key rid,Values [v1, v2 . . .])

17: Left← ∅
18: Right← ∅
19: Self ← ∅
20: for all Value (v) ∈ Values [v1, v2 . . .] do

21: t← v.subString(2)

22: if v starts with L then

23: Left← Left+ t

24: else if v starts with R then

25: Right← Right+ t

26: else if v starts with S then

27: Self ← Self + t

28: if Left 6= ∅ and Right 6= ∅ then
29: for all (t1) ∈ Left do
30: for all (t2) ∈ Right do
31: compare t1 and t2

32: else

33: for all (t1) ∈ Self do

34: for all (t2) ∈ Self do

35: compare t1 and t2

R#t1, L#t2, L#t3 associated with key 9, and compares tuples marked with R with tuples

marked with L, but not tuples marked with the same tag. Reducer 16 receives a list of

values S#t2, S#t3, and performs comparisons among all tuples marked with S. 2

Theorem 6: The distribution of Algorithm 9 achieves with high probability2 maximum

2The term “with high probability” means that the probability of success is of the form 1 − 1/f(n),

91

Figure 4.2: Single block distribution example using three tuples, given reducers in Fig-

ure 4.1(b)

input X ≤ (1 + o(1))
√

2Xlow and maximum number of comparisons Y ≤ (1 + o(1))Ylow.

2

We first provide the intuition , and then we provide a detailed proof. Fix a reducer

i = (p, q). If p 6= q, the reducer will receive in expectation n/l tuples with flag L (the

ones with anchor p) and n/l tuples with flag R (the ones with anchor R), therefore in

expectation Xi = 2n/l and Yi = n2/l2. If p = q, the reducer will receive in expectation n/l

tuples with flag S, therefore in expectation Xi = n/l and Yi = n2/2l2. We can show that

the Xi and Yi will also be concentrated around the expectation, and since k = l(l + 1)/2,

we have X ≈
√

2n√
k

and Y ≈ n2

2k
. Comparing X, Y with the lower bounds in Theorem 5, we

have Theorem 6.

Proof: Fix a reducer i = (p, q). If p 6= q, the receiver will receive in expectation n/l

tuples with flag L (the ones with anchor p) and n/l tuples with flag R (the ones with

anchor R). If p = q, the reducer will receive in expectation n/l tuples with flag S. We will

next use Chernoff bounds to show that with high probability the tuples with flag L, S or

where f(n) is some polynomial function of the size of the dataset n.

92

R are heavily concentrated around the expected value.

For some flag f ∈ {L, S,R}, let Xf
i be the tuples that end up in reducer i with flag f .

By applying the Chernoff bound, we have that for some 0 < δ < 1:

Pr[Xf
i ≥ (1 + δ)n/l] ≤ e

−δ2n
3l

Choose now δ =
√

3l ln(n)/n, which is o(1) assuming that l is much smaller than n. Then,

we obtain:

Pr[Xf
i ≥ (1 + δ)n/l] ≤ 1/n.

We now compute the probability that some input Xf
i exceeds (1 + δ)n/l by taking the

union bound over all inputs Xf
i . The number of inputs consists of ` inputs with flag S (the

diagonal reducers), and (k − `) inputs with flags L,R (the remaining reducers). Summing

up this gives `+ 2(k − `) = `2 different inputs. Thus:

Pr[∃i, f : Xf
i ≥ (1 + δ)n/l] ≤ l2/n.

Since n is much larger than l, this will hold with high probability (with high probability).

In this case, with high probability the maximum input is X ≤ (1 + δ)2n/l, and the

maximum number of comparisons is Y ≤ (1 + δ)n2/l2. Since 2k = l(l + 1), we have that√
k ≤ (l + 1)/

√
2 and thus:

X
n√
k

≤ 2(1 + δ)
√
k

l
≤ (1 + δ)(1 + 1/l)

√
2 = (1 + o(1))

√
2

Y
n(n−1)

2k

≤ (1 + δ)
n

n− 1
· 2k

l2
= 1 + o(1)

This concludes the analysis of the distribution algorithm. �

What happens if the k reducers cannot be arranged in a triangle? Following the same

idea that applies when k reducers cannot be arranged in a square for an R×S join [28], we

choose the largest possible integer l′, such that l′(l′+1)/2 ≤ k. We have l′(l′+1)/2 = k′ ≤ k

and (l′ + 1)(l′ + 2)/2 > k. Since both (l′ + 1)(l′ + 2)/2 and k are integers, we have

(l′+1)(l′+2)/2−1 ≥ k. Therefore, the reducer utilization rate is u = k′

k
≥ l′(l′+1)/2

(l′+1)(l′+2)/2−1
=

1− 2
l′+3
≥ 0.5. Even for k = 50 reducers, we have l′ = 9, and u = 0.83. Observe also that

the utilization rate u increases as l′ grows.

93

4.3 Deduplication using Single Blocking Function

In this section, we study distribution strategies to handle a set of disjoint blocks

{B1, . . . , Bm} produced by a single blocking function h. Let m denote the number of

blocks, and for each block Bi, where i ∈ [1,m], we denote by Wi =
(|Bi|

2

)
the num-

ber of comparisons needed. Thus, the total number of comparisons across all blocks is

W =
∑m

i=1Wi.

We will discuss the case where a single blocking function produces a set of overlapping

blocks when we discuss multiple blocking functions in Section 4.4.

4.3.1 Lower Bounds

We first prove a lower bound on the maximum input size X and maximum number of

comparisons Y for any reducer.

Theorem 7: For any distribution strategy that performs data deduplication for n tuples

and W total comparisons resulting from a set of disjoint blocks using k reducers, we have

X ≥ Xlow ≥ max(n
k
,
√

2W√
k

) and Y ≥ Ylow = W
k

.

2

Proof: Since the total amount of comparisons required is W , there must exist at least

one reducer j such that Yj ≥ W
k

. To prove a lower bound for the maximum input, consider

the input size Xj of the reducer j. The maximum number of comparisons that can be

performed will then be Xj(Xj − 1)/2, which happens when all tuples of the input belong

in the same block. Hence, Yj ≤ Xj(Xj − 1)/2 < X2
j /2. Since Yj ≥ W

k
, we obtain that

X2
j > 2W/k. The X ≥ n/k bound comes from the fact that every tuple will have to be

sent to at least one reducer, and thus the total size of the inputs must be at least n. �

Notice that Theorem 5 can be viewed as a simple corollary of the above lower bound,

since in the case of a self-join we have a single block of size n, so W =
(
n
2

)
.

94

4.3.2 Baseline Distribution Strategies

Assume we have k reducers to handle a set of blocks B1, B2, . . . , Bm produced by a single

blocking function. We analyze the baseline strategies Naive-Dedup and PJ-Dedup.

The first baseline strategy Naive-Dedup assigns every block Bi entirely to one reducer.

Consider the scenario where there exists a single block B1 with |B1| = n; then, Naive-

Dedup assigns B1 to one reducer, resulting in X = n and Y = W , which is k times

worse than Xlow and Ylow (cf. Section 4.3.1), completely defeating the purpose of having k

reducers. However, there are scenarios where Naive-Dedup behaves optimally as we show

in Example 27.

The second baseline strategy PJ-Dedup uses all k reducers to handle every block Bi,

and it uses the triangle distribution strategy discussed in Section 4.2 to perform self-

join for every block. However, instead of invoking Algorithm 9 m times for every block

Bi,∀i ∈ [1,m], which includes the overhead of initializing m MapReduce jobs, we design

PJ-Dedup to distribute the tuples as if there was a single block (hence using the triangle

distribution strategy of a self-join), and then perform grouping into the smaller blocks

inside the reducers. The mapper of PJ-Dedup is similar to that of Algorithm 9, except

that the key of the mapper output is a composite key, which includes both the reducer

ID (as in Algorithm 9) and the blocking key value. The partition function of PJ-Dedup

simply takes the composite key and returns the reducer ID part. The reduce function of

PJ-Dedup is exactly the same as that of Algorithm 9, since the MapReduce framework

automatically groups by blocking key values within each reducer. Regardless of the block

sizes, PJ-Dedup has X ≈
√

2n√
k

because the tuples are sent by the mappers in the same

way as Algorithm 9, and Y ≈ W
k

because the workload W is roughly evenly distributed

amongst k reducers.

Example 27: We consider three blocking functions that generate blocks of different sizes.

For each of them, we show the lower bounds Xlow and Ylow, and analyze how Naive-

Dedup, and PJ-Dedup perform w.r.t. those lower bounds. For PJ-Dedup, regardless of

the blocking function, X ≈
√

2n√
k

and Y ≈ W
k

, as explained previously.

(1) The first blocking function h1 produces βk blocks of equal size, for an integer β > 1,

95

that is, |Bi| = n
βk

for all i ∈ [1, βk]. In this case, W =
n
βk

(n
βk
−1)

2
βk, and thus Theorem 7

gives us Xlow = n
k

and Ylow = W
k

. For Naive-Dedup, every reducer receives βk
k

= β blocks.

Therefore, X = n
βk
β = n

k
and Y =

n
βk

(n
βk
−1)

2
β = W

k
, which is optimal.

(2) The second blocking function h2 produces only one block of size n. In this case,

W = n(n−1)
2

, and thus Theorem 7 gives us Xlow ≈ n√
k

and Ylow = W
k

. For Naive-Dedup,

one reducer does all the work, and thus X = n and Y = W .

(3) The third blocking function h3 produces k
β

blocks of equal size for some 1 ≤ β < k,

that is, |Bi| = βn
k

for all i ∈ [1, k
β
]. In this case, W =

βn
k

(βn
k
−1)

2
k
β
, and thus Theorem 7

gives us Xlow =
√
βn
k

and Ylow = W
k

. For Naive-Dedup, since the number of blocks is less

than the number of reducers, one block is assigned to one reducer, leading to X = βn
k

and

Y =
βn
k

(βn
k
−1)

2
= βW

k
, both of which are not bounded. For PJ-Dedup Y is optimal, but X

is a factor
√

2k
β

away from the lower bound.

The comparison is summarized in Table 4.1. For h1, Naive-Dedup matches the lower

bounds for both X and Y ; for h2, PJ-Dedup matches the lower bounds; and for h3, neither

matches the lower bounds.

2

h1 h2 h3

X Y X Y X Y

Lower bounds n
k

W
k

n√
k

W
k

√
βn
k

W
k

Naive-Dedup n
k

W
k n W βn

k
βW
k

PJ-Dedup
√

2n√
k

W
k

√
2n√
k

W
k

√
2n√
k

W
k

Table 4.1: Three example blocking functions

Example 27 demonstrates that (1) when the block sizes are small and uniform, such

as the ones produced by h1, we should use one reducer to handle each block, as in Naive-

Dedup; (2) when there are dominating blocks, such as the ones produced by h2, we should

use multiple reducers to divide the workload, as in PJ-Dedup; and (3) when there are

multiple relatively large blocks, we should use multiple reducers to handle every large

96

block to avoid unbalanced computation. However, using all k reducers for every large

block sends more tuples than necessary, since tuples from different blocks might be sent to

same reducer, even though they will not be compared, as in PJ-Dedup.

4.3.3 The Proposed Strategy

Dis-Dedup adopts a distribution strategy which guarantees that both X and Y are always

within a constant factor from Xlow and Ylow, by assigning reducers to blocks in proportion

to the workload of every block.

Intuitively, since we want to balance computation, a block of a larger size needs more

reducers than a block of a smaller size. Since the blocks are independent, we allocate the

reducers to blocks in proportion to their workload, namely, block Bi will be assigned to

ki = Wi

W
k reducers. However, ki might not be an integer, and it is meaningless to allocate

a fraction of reducers. Thus, ki needs to be rounded to an integer. If ki > 1, we can assign

bkic ≥ 1 reducers to Bi. On the other hand, if ki ≤ 1, which means bkic = 0, we must

still assign at least one reducer to Bi. The total number of reducers after rounding might

be greater than k, in which case reducers have to be responsible for more than one block.

Therefore, we need an effective way of assigning reducers to blocks, such that both X and

Y are minimized.

If ki ≤ 1, we call Bi a single-reducer block ; otherwise, Bi is a multi-reducer block. Let Bs
and Bl be the set of single-reducer blocks and multi-reducer blocks respectively. Next, we

show how to handle single-reducer blocks and multi-reducer blocks separately, such that

X and Y are bounded by a constant factor.

Bs = {Bi | Wi ≤
W

k
}, Bl = {Bi | Wi >

W

k
}

For the sake of convenience, assume that we have ordered the blocks in increasing order

of their workload: W1 ≤ W2 ≤ . . . ≤ Wc ≤ W
k
< Wc+1 ≤ . . . ≤ Wm. Let Wl =

∑m
i=c+1 Bi

be the total amount of workload for multi-reducer blocks, and Ws =
∑c

i=1 Bi be the total

amount of workload for single-reducer blocks. Also, let Xs (resp. Xl) be the maximum

number of tuples from single-reducer blocks (resp. multi-reducer blocks) received by any

97

reducer; and let Ys (resp. Yl) be the maximum number of comparisons from single-reducer

blocks (resp. multi-reducer blocks) performed by any reducer. Therefore, X ≤ Xs + Xl

and Y ≤ Ys + Yl.

Handling multi-reducer blocks

Every block Bi ∈ Bl has ki ≥ 1 reducers assigned to it, and we will use ki reducers to

distribute Bi via the triangle distribution strategy in Section 4.2. If ki is fractional, such

as ki = 3.1, we will simply use bkic reducers to handle Bi. Since
∑m

i=c+1 ki ≤ k, every

reducer will exclusively handle at most one multi-reducer block.

Example 28: Recall the blocking function h3 in Example 27: every block is large, since

Wi >
W
k

. Instead of using all k reducers to handle every block, we now use ki = Wi

W
k = β

reducers to handle block Bi. Thus, we have X = Xl =
√

2√
ki
|Bi| =

√
2β
k
n, and Y = Yl =

Wi

ki
= W

k
. Compared to the lower bound, we see that Y is optimal, and X is only

√
2 away

from optimal. 2

In fact, we can be even more aggressive in assigning reducers to big blocks, by assigning

ki = Wi

Wl
(instead of ki = Wi

W
) reducers to Bi. This still guarantees that there is at least one

reducer for every multi-reducer block, and one reducer handles at most one multi-reducer

block, since
∑m

i=c+1 ki = k. By handling multi-reducer blocks this way, Dis-Dedup achieves

the following bounds for Xl and Yl:

Theorem 8: Dis-Dedup has with high probability Yl ≤ (1 + o(1))2Ylow and Xl ≤ (1 +

o(1))2Xlow 2

Proof: Every multi-reducer block Bi will get assigned ki = bWi

Wl
kc ≥ Wi

2Wl
k reducers.

From the analysis of the triangle distribution strategy, we know that with high proba-

98

bility Yl will be an (1 + o(1)) factor away from the following quantity:

m
max
i=c+1

(
Wi

ki

)
=

m
max
i=c+1

(
Wi

bWi

Wl
kc

)

≤ m
max
i=c+1

(
2Wi

Wi

Wl
k

)
=

2Wl

k
≤ 2W

k

As for Xl, we know again that with high probability it will be an (1 + o(1))
√

2 factor from:

m
max
i=c+1

(
|Bi|√
ki

)
≤ m

max
i=c+1

 |Bi|√
Wi

2Wl
k


≤
√

2Wl√
k
· m

max
i=c+1

(
|Bi|√
Wi

)
≤
√

2Wl√
k
· m

max
i=c+1

(
|Bi|√

|Bi|(|Bi| − 1)/2

)

= (1 + o(1))
2
√
Wl√
k

Note that in the proof, we used bkic ≥ ki/2, which has accounted for the utilization rate

(which is at least 0.5) when bkic cannot be arranged in a triangle. Comparing this with

the lower bounds in Theorem 7, we conclude the proof. �

Handling single-reducer blocks

For every block Bi ∈ Bs, since we assign ki ≤ 1 reducers to it, we can use one reducer to

handle every single-reducer block, just like Naive-Dedup does. However, we must assign

single-reducer blocks to reducers to ensure that every reducer has about the same amount

of workload.

We first present a deterministic distribution strategy for single-reducer blocks, which

achieves a constant bound for Xs and Ys. However, the deterministic strategy requires

the mappers to keep the ordering of the sizes of single-reducer blocks in memory, which is

very costly. We next consider a randomized distribution, which is cheaper to implement,

99

but whose bound for X is dependent on k. Finally, we introduce a hybrid distribution

strategy that uses the randomized distribution for most of the single-reducer blocks, and

the deterministic distribution for only a small subset of the single-reducer blocks. The

hybrid distribution requires a small memory footprint, and in the same time achieves

constant bounds for both Xs and Ys.

Deterministic Distribution. In order to allocate the single-reducer blocks evenly,

we first order the c single-reducer blocks according to their block sizes, and divide them

into g = c
k

groups3, where each group consists of consecutive k blocks in the ordering.

Then, we assign to each reducer g blocks, one from each group.

Theorem 9: The deterministic distribution strategy for single-reducer blocks achieves Ys ≤
2Ylow and Xs ≤ 2Xlow. 2

Proof: Recall that we started by ordering the blocks in increasing size. Hence, we have

that Xs ≤
∑g

i=1 |Bi·k| and Ys ≤
∑g

i=1Wi·k, where the Xs and Ys reaches the worst if a

reducer happens to get assigned the biggest block from every group.

We first derive the bounds for Ys. Since W1 ≤ W2 ≤ . . . ≤ Wc, we can write the

following equation:

Ws =
c∑
i=1

Wi =
k∑
i=1

Wi +
2k∑

i=k+1

Wi + . . .+

gk∑
i=(g−1)k+1

Wi

≥
k∑
i=1

0 +
2k∑

i=k+1

Wk + . . .+

gk∑
i=(g−1)k+1

W(g−1)k

= k

g−1∑
i=1

Wi·k

Therefore, we have
∑g−1

i=1 Wi·k ≤ Ws

k
≤ W

k
. Also, Wg·k = Wc ≤ W/k. Thus, Ys ≤∑g−1

i=1 Wi·k +Wg·k ≤ 2W
k

.

3We assume that c
k is an integer; otherwise, we can conceptually add less than k empty blocks to Bs

to make c
k an integer, and the analysis remains intact.

100

We now derive the bounds for Xs. We have the following equation due to |B1| ≤ |B2| ≤
. . . ≤ |Bc|:

c∑
i=1

|Bi| =
k∑
i=1

|Bi|+
2k∑

i=k+1

|Bi|+ . . .+

gk∑
i=(g−1)k+1

|Bi|

≥
k∑
i=1

0 +
2k∑

i=k+1

|Bk|+ . . .+

gk∑
i=(g−1)k+1

|B(g−1)k|

= k

g−1∑
i=1

|Bi·k|

Therefore, we have
∑g−1

i=1 |Bi·k| ≤
∑c
i=1 |Bi|
k

≤ n
k
. Also, |Bg·k| = |Bc| ≤

√
2W√
k

, since we have

Wc = |Bc|(|Bc|−1)
2

≤ W
k

. Thus, Xs ≤
∑g−1

i=1 |Bi·k|+ |Bg·k| ≤ n
k

+
√

2W√
k
≤ 2 max(n

k
,
√

2W√
k

)

Compare Xs and Ys with the lower bounds in Theorem 7, we conclude the proof. �

The problem with implementing the deterministic distribution is that there can be a

large number of single-reducer blocks, and keeping track of the ordering of all block sizes

is an expensive task within each mapper, not to mention the need to actually order all the

single-reducer blocks.

Randomized Distribution. This algorithm simply distributes each single-reducer

block to a reducer by using a random hash function. In order to analyze the randomized

distribution, it suffices to consider the worst-case scenario, which is when we have k single-

reducer blocks, each with |Bi| = n/k. In this case, the problem becomes a balls-into-bins

scenario, where we have k balls (blocks) that we distribute independently and uniformly at

random into k bins (reducers). It then holds [84] that with high probability each reducer

will receive a maximum of O(ln(k)) blocks. Thus:

Theorem 10: The randomized distribution strategy for single-reducer blocks achieves Ys ≤
ln(k)Ylow and Xs ≤ ln(k)Xlow. 2

Proof: Under the worst case analysis, where we have k single-reducer blocks with size
n
k
, each reducer will receive, with high probability, at most ln(k) blocks. We also have the

101

workload of every single block is Wi = W
k

. Thus Ys ≤ ln(k)W
k

= ln(k)Ylow. Similarly, we

have Xs ≤ ln(k)n
k
≤ ln(k)Xlow. �

The randomized method is efficient in practice, since we do not have to keep track of

the single-reducer blocks, but we are adding (in the worst case) an additional ln(k) factor.

Hybrid Distribution. The hybrid algorithm combines the randomized and deter-

ministic distribution to achieve efficiency and almost optimal distribution. To start, we

set a threshold τ = W
3k ln(k)

.4 For the blocks where Wi ≥ τ (but still Wi ≤ W
k

), we use

the deterministic distribution, while for the blocks where Wi < τ we use the randomized

distribution. Observe that now the deterministic option is much cheaper, since we have

to keep track of at most 3k ln(k) blocks (which number depends only on the number of

reducers, and not n).

Theorem 11: The hybrid distribution strategy for single-reducer blocks has with high

probability Ys ≤ (1 + o(1))3Ylow and Xs ≤ (1 + o(1))3Xlow. 2

Proof: For the randomly distributed blocks, we can apply a result from [12] (based on

a type of Chernoff bound) on the weighted balls-into-bins problem, and obtain that with

high probability the maximum number of comparisons is Y r
s ≤ (1 + o(1))Ylow. Using

the same result, we can show that the maximum input size will be with high probability

Xr
s ≤ (1 + o(1))Xlow.

For the deterministically distributed blocks, since τ ≤ W
k

, we can directly apply The-

orem 9 to obtain that Y d
s ≤ 2Ylow and Xd

s ≤ 2Xlow. The desired result is obtained since

Xs ≤ Xr
s +Xd

s and Ys ≤ Y r
s + Y d

s . �

102

Algorithm 10 Dis-Dedup
1: class Mapper

2: BKV 2RIDs← empty dictionary

3: method MapperSetup(HM1, HM2)

4: Wl ←
∑
bkv∈HM1.keySet()

HM1[bkv]

5: S ← {1, 2, . . . , k}
6: for all bkv ∈ HM1.keySet() do

7: ki ← bHM1[bkv]
Wl

kc
8: RIDSi ← select ki elements from S

9: BKV 2RIDs[bkv]← RIDSi

10: S ← S −RIDSi
11: SortedBKV s← sort all keys in HM2

12: RID ← 0

13: for all bkv ∈ SortedBKV s do

14: BKV 2RIDs[bkv]← RID%k

15: RID ← RID + 1

16: method Map(Tuple t, null)

17: bkv ← h(t)

18: if BKV 2RIDs[bkv] 6= ∅ then
19: rid← a random number from [1, k]

20: Emit(Key rid#bkv, S#Tuple t)

21: else

22: RIDs← BKV 2RIDs[bkv]

23: ki ← RIDs.size()

24: li ← the large integer s.t. li(li − 1)/2 < ki

25: Int a← a random value from [1, li]

26: for all p ∈ [1, a) do

27: ridIndex← rid of Reducer [p, a]

28: rid← RIDs[ridIndex]

29: Emit(Key rid#bkv, L#Tuple t)

30: ridIndex← rid of Reducer [a, a]

31: rid← RIDs[ridIndex]

32: Emit(Key rid#bkv, S#Tuple t)

33: for all q ∈ (a, l] do

34: ridIndex← rid of Reducer [a, q]

35: rid← RIDs[ridIndex]

36: Emit(Key rid#bkv,R#Tuple t)

37: class Partitioner

38: method Partition(Key rid#bkv,Value v, k)

39: Return rid

40: class Reducer

41: method Reduce(Key rid#bkv,Values [v1, v2 . . .])

42: same as the reduce function in Algorithm 9

103

Implementation

Dis-Dedup combines the triangle distribution strategy for multi-reducer blocks and the

hybrid distribution for single-reducer blocks. However, given a new tuple ingested by a

mapper, how does the mapper know whether the tuple belongs to a multi-reducer block or

a single-reducer block? In order to make this decision, we need some preprocessing to

collect statistics to be loaded into each mapper. In particular, we need to compute the

blocking key values of every multi-reducer block Bi ∈ Bl, and the associated workload Wi.

Let HM1 denote the HashMap data structure that stores the mapping from a blocking key

value in the multi-reducer blocks to the size of the block. In addition, we need the blocking

key values of those single-reducer blocks Bi ∈ Bl that have Wi ≥ τ , and the associated

workload Wi, in order to implement the hybrid distribution strategy for the single-reducer

blocks. Let HM2 denote the HashMap data structure that stores the mapping from a

blocking key value to the size of the block.

To compute HM1 and HM2, we use three simple word-count alike MapReduce jobs.

The first job takes the original dataset as input, and counts the size of every block Bi. The

second job takes as input the result of the first job, and counts the total workload W . The

third job takes as input the result of the first job and W , and outputs the blocks for which

Wi >
W
k

, namely HM1, and also the blocks where W
3k ln(k)

< Wi ≤ W
k

, namely HM2.

Algorithm 10 describes in detail Dis-Dedup. The mapper now has a setup method that

needs to be executed, which allocates reducers to blocks in HM1 and HM2 (Lines 3-15).

To allocate reducers to blocks in HM1, we first compute the sum of workload of all the

multi-reducer blocks, i.e., Wl (Line 4). For every blocking key value in HM1, we calculate

the number of reducers ki allocated to it, and select ki reducers from the set of k reducers

(Lines 5-10). For every blocking key value in HM2, we first sort them based on their

workload (Line 11), and allocate one reducer to the sorted blocks in a round-robin manner

(Lines 12-15). In the actual mapping function, given a new tuple t and its blocking key

4The threshold value is chosen as a result of the connection to the weighted balls-into-bins problem.

When we throw k balls of weight W/k into k bins uniformly at random, the expected maximum number of

balls is O(ln(k)), and so the maximum weight is O(W ln(k)/k). If we instead throw k ln(k) balls of weight

W/k ln(k), the expected maximum number remains O(ln(k)), but since the balls are of smaller weight the

maximum weight decreases to O(W/k).

104

value bkv, we check if we have a fixed set of reducers allocated to it. If there is no such

fixed allocation, bkv must the block that is randomly distributed, and thus we randomly

choose a reducer to send the tuple (Lines 18-20). If there is a fixed set of reducer RIDs

allocated to it, we distribute t according to PJ-Dedup, by arranging reducer RIDs in a

triangle (Lines 22-36). The partitioner sends a key-value pair according to the rid part in

the key (Lines 37-39). The reducer is the same as that of Algorithm 9 (Lines 40-42).

Theorem 12: Dis-Dedup with hybrid distribution for single-reducer blocks achieves with

high probability X ≤ cxXlow, and Y ≤ cyYlow, where cx = 5 + o(1) and cy = 5 + o(1). 2

Theorem 12 is obtained by combining Theorems 8 and 11.

4.4 Deduplication using Multiple Blocking Functions

Since a single blocking function might result in false negatives by failing to assign duplicate

tuples to the same block, multiple blocking functions are often used to decrease the likeli-

hood of a false negative. In this section, we study how to distribute the blocks produced

by s different blocking functions h1, h2, . . . , hs.

A straightforward strategy to handle s blocking functions would be to apply Dis-Dedup

s times (possibly simultaneously). However, this straightforward strategy has two prob-

lems: (1) it fails to leverage the independence of the blocking functions, and the tuples from

blocks generated by different blocking functions might be sent to same reducer, where they

will not be compared. This is similar to PJ-Dedup’s failure to leverage the independence

of the set of blocks generated by a single blocking function, as shown in Example 27; and

(2) a tuple pair might be compared multiple times, if that tuple pair belongs to multiple

blocks, each from a different blocking function. We address these two problems by two

principles: (1) allocating reducers to blocking functions proportional to their workload;

and (2) imposing an ordering of the blocking functions.

Reducer Allocation. We allocate one or more reducers to a blocking function in

proportion to the workload of that blocking function, similar to Dis-Dedup discussed in

Section 4.3. Let mj denote the number of blocks generated by a blocking function hj, B
j
i

105

denote the i-th block generated by hj, and W j
i =

(|Bji |
2

)
denote the workload of Bj

i . Let

W j =
∑mj

i=1W
j
i be the total amount of workload generated by hj, and W =

∑t
j=1W

j

be the total workload generated by all t blocking functions. Therefore, the number of

reducers Bj
i gets assigned is

W j
i

W j · W
j

W
k, where W j

W
k is the number of reducers for handling

the blocking function hj. Thus, the number of reducers assigned to Bj
i is

W j
i

W
, regardless of

which blocking function it originates from.

This means that we can view the blocks from multiple blocking functions as a set of

(possibly overlapping) blocks produced by one blocking function, and apply Dis-Dedup as-

is. The only modification needed is that in the mapper of Dis-Dedup, instead of applying

one hash function to obtain one blocking key value, we apply s hash functions to obtain

s blocking key values (we also need to apply the body of the mapping function for every

blocking key value). We call the slightly modified version of Dis-Dedup to handle multiple

blocking functions Dis-Dedup+.

Theorem 13: For t blocking functions, Dis-Dedup+ achieves X < (5s + o(1))Xlow, and

Y = (5 + o(1))Ylow. 2

Proof: The lower bound for X and Y for s blocking functions is the same lower bound

for single blocking function, as stated in Theorem 12, except W now denotes the total

number of comparisons for all s blocking functions. The proof of Theorem 13 follows the

same line as the proof of Theorem 12. The only difference is when we are dealing with Bs:
instead of having the inequality

∑c
i=1 |Bi| < n for a single blocking function, we now have∑c

i=1 |Bi| < sn, which leads to an additional factor s in the bound for X. �

The above analysis tells us that the number of comparisons will be optimal, but the

input may have to be replicated as many as s times. The reason for this increase is that the

blocks may overlap, in which case tuples that belong in multiple blocks may be replicated.

The results from Theorem 13 can be carried to a single blocking function that produces a

set of overlapping blocks, where s =
∑m
i=1 |Bi|
n

.

Blocking Function Ordering. Since a tuple pair can have the same blocking key

values according to multiple blocking functions, a tuple pair can occur in multiple blocks.

106

To avoid producing the same tuple pair more than once, we impose an ordering of the

blocking functions, from h1 to hs. Every reducer has knowledge of all s blocking functions,

and their fixed ordering. Inside every reducer, before a tuple pair t1, t2 is compared ac-

cording to the jth blocking function hj, it applies all of the the lower-numbered blocking

function hz, ∀z ∈ [1, j − 1], to see if hz(t1) = hz(t2). If such hz exists, then the tuple

pair comparison according to hj is skipped in that reducer, since we are sure that there

must exist a reducer that can see the same tuple pair according to hz. In this way, every

tuple pair is only compared according to the lowest numbered blocking function that puts

them in the same block. The blocking function ordering technique assumes that applying

blocking functions is much cheaper than applying the comparison function. If this is not

true (e.g., the pairs comparison is cheap) the ordering benefit will not be obvious. Based

on our discussion with Thomson Reuters and Tamr, which are engaged in large-scale dedu-

plication projects, the assumption of expensive comparison is often true in practice, since

it is usually performed by applying multiple classifiers and machine learning models.

Example 29: Suppose two tuples t1 and t2 are in the same block according to the blocking

functions h2, h3, h5, namely, h2(t1) = h2(t2), h3(t1) = h3(t2) and h5(t1) = h5(t2). In this

case, we only compare t1 and t2 in the block generated by h2, and omit the comparison of

those two tuples in the blocks generated by h3 and h5. 2

To recognize which blocking function generated a tuple pair comparison, we augment

the key of the mapper from rid#bkv to rid#bkv#hIndex, where hIndex is the blocking

function number that generated this bkv. In the reduce function, before a tuple pair is

compared, we check if there is another blocking function whose index is smaller than the

hIndex that puts that tuple pair in the same block. If such a blocking function exists, we

skip the comparison.

4.5 Experimental Study

In this section, we evaluate the effectiveness of our distribution strategies. All experiments

are performed on a cluster of eight machines, running Hadoop 2.6.0 [1]. Each machine has

12 Intel Xeon CPUs at 1.6 GHz, 16MB cache size, 64GB memory, and 4TB hard disk. All

107

machines are connected to the same gigabit switch. One machine is dedicated to serve as

the resource manager for YARN and as the HDFS namenode, while the other seven are

slave nodes. The HDFS block size is the default 64MB, and all machines serve as data

nodes for the DFS. Every node is configured to be able to run 7 reduce tasks at the same

time, and thus in total, 49 reduce tasks can run in parallel. Our cluster resembles the

cluster that is used in production by Thomson Reuters to perform data deduplication. We

also use a real dataset from that company, as described next.

Datasets. We design a synthetic data generator, which takes as input the number of

tuples n, the number of blocks m, and a parameter θ controlling the distribution of block

sizes, following the zipfian distribution. Every generated tuple has two columns {A,B}.
Column A is the blocking key attribute, whose values range from 1 to m. The blocking

function h for a tuple t in the synthetic dataset is h(t) = t[A]. Thus, tuples with the same

value for A belong to the same block. Column B is a randomly generated string of 1000

characters. The comparison between two tuples is the edit distance between the two values

for B.

We use two real datasets. The first one is a list of publication records from CITE-

SEERX 5, called CSX. The second one, called OA, is a private dataset from Thomson

Reuters, containing a list of organization names and their associated information, such as

addresses and phone numbers, extracted from news articles. CSX uses the publication

title as the blocking key attribute, while OA uses the organization name. The blocking

function for both datasets uses minHash [69]. A minHash signature is generated for each

tuple, and tuples with the same signature belong in the same block. For each tuple in

CSX or OA, the blocking function extracts 3-grams from the blocking key attribute, and

applies a random hash function to the set of 3-grams; the minimum hash value for the

set of 3-grams is used as the minHash signature for that tuple. We can generate multiple

blocking functions by using different random hash functions. The comparison between two

tuples is the edit distance between the two values of the blocking key attributes.

Table 4.2 summarizes the statistics for each dataset we used for performing data dedu-

plication using a single blocking function in Section 4.5.2. We will use up to 20 block-

ing functions for performing data deduplication using multiple blocking functions in Sec-

5 http://csxstatic.ist.psu.edu/about

108

http://csxstatic.ist.psu.edu/about

Dataset # Tuples AVG block size MAX block size

CSX 1.4M 1.75 35021

OA 7.4M 1.31 7969

Synthetic 20M 4 3967

Table 4.2: Datasets Statistics

tion 4.5.3.

Algorithms. Dedoop [74,75] is a state-of-the-art distribution strategy for data dedu-

plication, which has two main drawbacks: (1) it only aims at optimizing Y , with no

consideration for X; and (2) it has large memory requirements for mappers and reducers.

Dedoop starts by assigning an index to every tuple pair that needs to be compared. For

example, for a block with four tuples t1, t2, t3, t4, tuple pair 〈t1, t2〉 has index 1, tuple pair

〈t1, t3〉 has index 2, and so on, and tuple pair 〈t3, t4〉 has index 6. Dedoop then assigns

each reducer an equal number of tuple pairs to compare. If W denotes the total number of

tuple pairs, the ith reducer will take care of tuple pairs whose indexes are in [(i−1)W
k
, iW

k
].

All the tuples necessary for a reducer to compare the tuple pairs assigned to it are sent to

that reducer. Dedoop always achieves the optimal Y , but could be arbitrarily bad for X.

For example, consider a single block of size n. The first reducer is responsible for tuple

pairs numbered [0, n(n−1)
2k

]. Since usually n� k, the first reducer is responsible for at least

n tuple pairs. Since the first n tuple pairs contain all n tuples, the first reducer will have to

receive all n tuples. In addition, in order for each mapper to decide which tuples to send to

which reducer, and for each reducer to decide which tuple pairs to compare, Dedoop loads

into the memory of each mapper and reducer a pre-computed data structure, called Block

Distribution Matrix, which specifies the number of entities for every block every mapper

processes. The size of the block distribution matrix is linear w.r.t. the number of blocks.

Indeed, the largest number of blocks reported in evaluating Dedoop is less than 15,000 [75].

We compare the following distribution strategies: (1) Naive-Dedup is the näıve distribu-

tion strategy, where every block is assigned to one reducer; (2) PJ-Dedup is the proposed

strategy where every block is distributed using the triangle distribution strategy, which

is strictly better than applying existing parallel join algorithms [5, 83]; (3) Dis-Dedup is

the proposed distribution strategy for a single blocking function, which is theoretically

109

optimal; (4) Dedoop; and (5) Dis-Dedup+, Naive-Dedup+, PJ-Dedup+, Dedoop+ are ex-

tensions of Dis-Dedup, Naive-Dedup, PJ-Dedup, and Dedoop+, respectively for multiple

blocking functions. Dis-Dedup+ is described in Section 4.4. Naive-Dedup+, PJ-Dedup+,

and Dedoop+ employ the same blocking function ordering technique to avoid comparing a

tuple pair multiple times.

Since the distribution strategies are random, we run each experiment three times, and

report the average. The time to compute the statistics for Dis-Dedup and Dedoop is

included in the time of Dis-Dedup and Dedoop, respectively.

4.5.1 Single Block Deduplication Evaluation

In this section, we compare Naive-Dedup, PJ-Dedup, and Dedoop when performing a

self-join on the synthetic dataset. We omit Dis-Dedup, since it is identical to PJ-Dedup

when there is only one block.

Exp-1: Varying number of tuples. Figure 4.3 shows the parameters X, Y , and

time for Naive-Dedup, PJ-Dedup, and Dedoop for k = 45 reducers. We terminate a job

after 6000 seconds. As we can see in Figure 4.3(c), Naive-Dedup exceeds this time limit

after 30K tuples, since the computation occurs only in a single reducer. In terms of X,

Figure 4.3(a) shows that PJ-Dedup achieves the best behavior, while for Naive-Dedup and

DedoopX is equal to the number of tuples n. Indeed, Naive-Dedup uses only one reducer,

and Dedoop has one reducer that gets assigned the first n(n−1)
2k

tuple pairs, which need

to access all n tuples. In terms of Y , as depicted in Figure 4.3(b), Naive-Dedup performs

the worst. Dedoop is slightly better than PJ-Dedup, since it distributes the comparisons

evenly amongst all reducers, while PJ-Dedup has more work for reducers indexed (p, q)

than reducers indexed (p, p).

The running time of all three algorithms is depicted in Figure 4.3(c), and it shows

that PJ-Dedup achieves the best performance. In fact, comparing Figure 4.3(a) with

Figure 4.3(c), we can see that as the number of tuples increases, the gap between PJ-

Dedup and Dedoop in terms of the input size X grows, and so does the running time.

This indicates that when Y is similar for PJ-Dedup and Dedoop, the input size X becomes

the differentiating factor.

110

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 10 15 20 25 30 35 40 45 50

X

(
i
n

t
h
o
u
s
a
n
d
s
)

numTuples (in thousands)

Naive-Dedup
PJ-Dedup

Dedoop

(a) X

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 10 15 20 25 30 35 40 45 50

Y

(
i
n

m
i
l
l
i
o
n
s
)

numTuples (in thousands)

Naive-Dedup
PJ-Dedup

Dedoop

(b) Y

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 10 15 20 25 30 35 40 45 50

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numTuples (in thousands)

Naive-Dedup
PJ-Dedup

Dedoop

(c) Time

Figure 4.3: Varying number of tuples

Exp-2: Varying number of reducers. Figure 4.4 shows the effect of the number

of reducers on the parameters X, Y , and time for both PJ-Dedup and Dedoop. We fix

the number of tuples to be n = 50K. The first observation is that PJ-Dedup outperforms

Dedoop for any k, as shown in Figure 4.4(c). In fact, PJ-Dedup runs 2X faster than

Dedoop. Second, both X and Y are decreasing for PJ-Dedup as k increases. However,

the decrease is not smooth across the values of k and we can observe a few dips for

k = 36, 45, 55, 66, 78. This behavior occurs because PJ-Dedup arranges the k reducers in

a triangle. Since for certain values of k this is not possible, we choose then the largest

subset of reducers that can be arranged into a triangle, and thus waste a small fraction of

reducers.

Finally, as we can see from Figure 4.4(c), the running time improves as k increases

for k < 50, and fluctuates as k increases when k > 50. This is because our cluster has a

maximum number of 49 reducers being able to run in parallel. If k > 50, not all reducers

can start at once; some reducers can only start after reducers in the first round finish.

Memory. An important requirement for any MapReduce job is to have sufficient

memory for each reducer. The maximum memory requirements for all algorithms are

linear with respect to X, since X represents the maximum number of tuples that need to

be stored in the heap space of a reducer. As we can see from Figure 4.3(a), PJ-Dedup

requires much less memory than Dedoop. Indeed, for Dedoop at least one reducer needs

to store all n tuples, while the heap space required for PJ-Dedup is O(n√
k
), which not

111

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 20 30 40 50 60 70 80

X

(
i
n

t
h
o
u
s
a
n
d
s
)

numReducers

PJ-Dedup
Dedoop

(a) X

 150

 200

 250

 300

 350

 400

 450

 500

 550

 20 30 40 50 60 70 80

Y

(
i
n

m
i
l
l
i
o
n
s
)

numReducers

PJ-Dedup
Dedoop

(b) Y

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numReducers

PJ-Dedup
Dedoop

(c) Time

Figure 4.4: Varying number of reducers

only is much smaller than O(n), but also decreases as k increases (this can be seen in

Figure 4.4(a)).

4.5.2 Single Blocking Function Evaluation

In this section, we compare Naive-Dedup, PJ-Dedup, Dis-Dedup, and Dedoop for dedu-

plication using a single blocking function on all three datasets.

Exp-3: Varying number of blocks. In this experiment, we fix the number of tuples

per block to be 4, and then vary the number of blocks, using the synthetic dataset. As

shown in Figure 4.5, Dedoop fails (heap space error) after 500,000 blocks. This is because

Dedoop keeps in memory of every mapper the blocking distribution matrix, which grows

as the number of blocks increases.

Dis-Dedup is identical to Naive-Dedup in this experiment, since all block sizes are the

same, and hence no multi-reducer blocks exist. Dis-Dedup is better than PJ-Dedup, since

the input size X for Dis-Dedup, which is n
k
, is smaller than that for PJ-Dedup, which is

√
2n√
k

.

Exp-4: Varying block size distribution. In order to test how different algorithms

handle block-size skew, we vary the distribution of the block sizes by varying the parameter

θ for the synthetic dataset, using n = 20M tuples, and 5M blocks. Figure 4.6(a) shows that

Dis-Dedup and Naive-Dedup send less tuples than PJ-Dedup, and Figure 4.6(b) shows that

112

 0

 50

 100

 150

 200

 250

 100 1000 10000 100000 1e+06 1e+07

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numBlocks (in log scale)

Naive-Dedup
PJ-Dedup
Dis-Dedup

Dedoop

Figure 4.5: Varying number of blocks

the number of comparisons Y increases as the data becomes more skewed across all three

algorithms. However, Y for PJ-Dedup grows at the lowest rate, and Y for Dis-Dedup is

just a little worse than PJ-Dedup. In terms of running time, Figure 4.6(c) shows that when

the data is not skewed (θ = 0.3, 0.4), Naive-Dedup and Dis-Dedup perform the best, since

X is now the differentiating factor. When the data becomes more skewed (θ = 0.5), Dis-

Dedup starts performing better than Naive-Dedup, which is still better than PJ-Dedup.

As θ further increases (θ = 0.6, 0.7), Y becomes the dominating factor in terms of running

time. Thus, the running time for Naive-Dedup degrades fast, while Dis-Dedup and PJ-

Dedup have similar performance. This observation supports our theoretical analysis that

Dis-Dedup can adapt to all levels of skew, while Naive-Dedup and PJ-Dedup perform

well only at one end of the spectrum. Note that Dedoop reports heap space error for this

synthetic under default memory settings; nevertheless, we increase memory allocation for

every mapper and reducer to 6G for Dedoop to compare with other distribution strategies.

Observe that Dedoop has the worst running time in Figure 4.6(c) even though the X and Y

of Dedoop are not the worst; this is mainly because (1) the number of concurrent mappers

and reducers of Dedoop is less than that under the default setting due to the increased

memory requirement of each mapper and reducer and (2) each mapper and reducer of

Dedoop has an additional initializing cost of processing the block distribution matrix,

whose size is linear w.r.t. the number of blocks.

Exp-5: Varying number of reducers. In this experiment, we vary the number of

113

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

X

(
i
n

t
h
o
u
s
a
n
d
s
)

Theta

Naive-Dedup
PJ-Dedup
Dis-Dedup

Dedoop

(a) X

 0

 200

 400

 600

 800

 1000

 1200

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

Y

(
i
n

m
i
l
l
i
o
n
s
)

Theta

Naive-Dedup
PJ-Dedup
Dis-Dedup

Dedoop

(b) Y

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

Theta

Naive-Dedup
PJ-Dedup
Dis-Dedup

Dedoop

(c) Time

Figure 4.6: Varying block size distribution

reducers k, and compare Naive-Dedup, PJ-Dedup, Dis-Dedup and Dedoop using all three

datasets. For the synthetic dataset, we used n = 20M , m = 5M , and θ = 0.5. Similar to

the previous experiment, for Dedoop to run, we increase the memory allocation for every

mapper and reducer to 6G for the OA and the synthetic datasets, and to 3G for CSX.

Figure 4.7 shows that Dis-Dedup is consistently the best algorithm for all three datasets,

and any number of reducers. Dedoop only performs better than Naive-Dedup on CSX

due to its small number of blocks, thus making the initializing cost of processing the block

distribution matrix relatively cheap; but Dedoop has the worst performance in other two

datasets for the same reasons as explained in Exp-4.

For the synthetic dataset, Naive-Dedup performs better than PJ-Dedup, while for the

two real datasets the opposite behavior occurs, since the number of multi-reducer blocks

in CSX and OA is bigger than that of the synthetic dataset. Another interesting trend

to note here is that as the number of reducers k increases, the difference in running time

between Dis-Dedup and PJ-Dedup also grows. The reason for this behavior is that X for

PJ-Dedup is a
√

2k factor away from the bound Xlow, and thus dependent on k, while X

for Dis-Dedup is only a constant factor 2 away.

114

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numReducers

Naive-Dedup
PJ-Dedup
Dis-Dedup

Dedoop

(a) Synthetic

 0

 100

 200

 300

 400

 500

 600

 700

 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numReducers

Naive-Dedup

PJ-Dedup

Dis-Dedup

Dedoop

(b) CSX

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

numReducers

Naive-Dedup

PJ-Dedup

Dis-Dedup

Dedoop

(c) OA

Figure 4.7: Varying reducers on different datasets

4.5.3 Multiple Blocking Functions Evaluation

In this section, we compare the algorithms Naive-Dedup+, PJ-Dedup+, Dis-Dedup+ and

Dedoop+, in the case of multiple blocking functions, using the two real datasets.

Dataset 1 5 10 15 20

CSX 667.45 710.64 741.52 768.51 784.40

OA 66.16 67.24 67.92 68.00 68.06

Table 4.3: Total number of comparisons W (in millions), for different number of blocking

functions

Exp-6: Varying the number of blocking functions. Figure 4.8 shows the

comparison using CSX. The input size X of all four algorithms increases linearly w.r.t.

the number of blocking functions, as shown in Figure 4.8(a), while the output Y of all

three algorithms increases very little, as shown in Figure 4.8(b). This behavior is observed

because many tuple pairs generated by a blocking function have already been compared

in previous blocking functions, and are thus skipped. Table 4.3 shows the total number

of comparisons W for various numbers of blocking functions, indicating that the new

tuple pair comparisons generated by 20 blocking functions is not much larger than the

comparisons generated by 1 blocking function.

Figure 4.8(c) shows the running time comparison. Dedoop+ performs the worst for

115

multiple blocking functions due to multiple reasons: (1) Dedoop+ has the worst X as

shown in Figure 4.8(a); (2) Dedoop+ has higher memory requirement, which limits the

number of concurrent mappers and reducers, as explained in Exp-4; and (3) Dedoop+ pays

the extra cost of initiating s (≥ 1) MapReduce job to handle s (≥ 1) blocking functions,

instead of using one MapReduce job to handle s blocking functions as Naive-Dedup+,

PJ-Dedup+, and Dis-Dedup+ do. The reason is again the high memory requirement of

Dedoop+; keeping the block distribution matrix produced by all s blocking functions in

memory exceeds the memory limit for s ≥ 5 even after we increase the memory allocation

of mappers and reducers to 6G.

Dis-Dedup+ achieves the best performance across any number of blocking functions.

As the the number of blocking functions increases, the gap between Naive-Dedup+ and

Dis-Dedup+ becomes smaller, while the gap between PJ-Dedup+ and Dis-Dedup+ becomes

larger. The reason is that the multi-reducer blocks for s1 blocking functions may become

single-reducer blocks for s2 > s1 blocking functions as W becomes larger. Therefore,

distributing those blocks to one reducer, as Naive-Dedup+ does, instead of distributing

them to multiple reducers, as PJ-Dedup+ does, becomes more efficient. Varying number

of blocking functions using the OA dataset shows similar results.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 2 4 6 8 10 12 14 16 18 20

X

(
i
n

t
h
o
u
s
a
n
d
s
)

Naive-Dedup+
PJ-Dedup+
Dis-Dedup+

Dedoop+

(a) X

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 0 2 4 6 8 10 12 14 16 18 20

Y

(
i
n

m
i
l
l
i
o
n
s
)

Naive-Dedup+
PJ-Dedup+
Dis-Dedup+

Dedoop+

(b) Y

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 2 4 6 8 10 12 14 16 18 20

T
i
m
e

(
i
n

s
e
c
o
n
d
s
)

Naive-Dedup+
PJ-Dedup+
Dis-Dedup+

Dedoop+

(c) Time

Figure 4.8: Varying number of blocking functions

116

Chapter 5

Holistic Data Cleaning

As discussed in Chapter 2, various types of data quality rules have been proposed for

detecting and repairing errors, and great efforts have been made to improve the effectiveness

and efficiency of their cleaning algorithms. Currently existing data cleaning techniques

often handle one type of errors at a time. While this approach minimizes the complexity of

the problem, it does not consider the interaction between different types of rules, and thus

can compromise the quality of the repairs due to the lack of end-to-end quality enforcement

mechanism, as we show in this chapter.

Example 30: Consider the GlobalEmployees table (G for short) in Figure 5.1. Every

tuple specifies an employee in a company with her id (GID), name (FN, LN), role, city,

area code (AC), state (ST), and salary (SAL). We consider only two rules for now. The

first is a functional dependency (FD) stating that the city values determine the values for

the state attribute. We can see that cells in t4 and t6 present a violation for this FD: they

have the same value for the city, but different states. We highlight the set S1 of four cells

involved in the violation in the figure. The second rule states that among employees having

the same role, salaries in NYC should be higher. In this case cells in t5 and t6 are violating

the rule, since employee Lee (in NYC) is earning less than White (in SJ). The set S2 of six

cells involved in the violation between Lee and White is also highlighted.

117

The two rules detect that at least one value in each set of cells is wrong, but taken

individually they offer no knowledge of which cells are the erroneous ones. 2

Figure 5.1: Local (L) and Global (G) relations for employees data.

Previously proposed data repairing algorithms focus on repairing violations that belong

to each class of constraints in isolation, e.g., FD violation repairs [21]. These techniques

miss the opportunity of considering the interaction among different classes of constraints

violations. For the example above, a desirable repair would update the city attribute for

t6 with a new value, thus only one change in the database would fix the two violations.

On the contrary, existing methods would repair the FD by changing one cell in S1, with

an equal chance to pick any of the four by being oblivious to violations in other rules. In

particular, most algorithms would change the state value for t6 to NY or the state for t4

to AZ. Similarly, rule based approaches, when dealing with application-specific constraints

such as the salary constraint above, would change the salaries of t5 or t6 in order to satisfy

the constraints. None of these choices would fix the mistake for city in t6, on the contrary,

they would add noise to the existing correct data.

This problem motivates the study of novel methods to correct violations for different

types of constrains with desirable repairs, where desirability depends on a cost model such

118

as minimizing the number of changes, the number of fresh values, or the distance between

the value in the original instance and the repair. To this end, we need quality rules that are

able to cover existing heterogeneous formalisms and techniques to holistically solve them,

while keeping the process automatic and efficient.

We have already shown in Chapter 3 that denial constraints (DCs) are more general

than existing constraint languages, including FDs and CFDs. Therefore, we aim at design-

ing data repair algorithms for violations of DCs. Cleaning algorithms for DCs have been

proposed before [13, 80], but they are limited in scope, as they repair numeric values only,

in generality, as only a subclass of DCs is supported, and in the cost model, as they aim

at minimizing the distance between original database and repair only. On the contrary,

our proposal can repair any value involved in the constraints, we do not have limits on the

allowed DCs, and we support multiple quality metrics (including cardinality minimality).

Example 31: The two rules described above can be expressed with the following DCs:

o1 : ∀tα, tβ ∈ G, q(tα.CITY = tβ.CITY ∧ tα.ST 6= tβ.ST)

o2 : ∀tα, tβ ∈ G, q(tα.ROLE = tβ.ROLE ∧ tα.ROLE = NYC ∧ tβ.ROLE 6= NYC ∧
tα.SAL ≤ tβ.SAL)

The DC in o1 corresponds to the FD in the global employee table: CITY → ST and

has the usual semantics: if two tuples have the same value for city, they must have the

same value for state, otherwise there is a violation. The DC in o2 states that every time

there are two employees with the same role, one in NYC and one in a different city, there

is a violation if the salary of the second is greater than the salary of the first. 2

Given a set of DCs and a database to be cleaned, our approach starts by compiling the

rules into data violations over the instance, so that, by analyzing their interaction, it is

possible to identify the cells that are more likely to be wrong. In the example, t6[CITY]

is involved in both violations, so it is the candidate cell for the repair. Once we have

identified what are the cells that are most likely to change, we process their violations to

get information about how to repair them. In the last step, heterogeneous requirements

from different constraints are holistically combined in order to fix the violations. In the

case of t6[CITY], both constraints are satisfied by changing its value to a string different

119

from “NYC”, so we update the cell with a new value.

Contributions. We propose a method for the automatic repair of dirty data, by

exploiting the evidence collected with the holistic view of the violations:

• We introduce a compilation mechanism to project denial constraints on the current

instance and capture the interaction among constraints as overlaps of the violations

on the data instance. We compile violations into a Conflict Hypergraph (CH) which

generalizes the one previously used in FD repairing [73] and is the first proposal

to treat quality rules with different semantics and numerical operators in a unified

artifact.

• We present a novel holistic repairing algorithm that repair all violations together

w.r.t. one unified objective function. The algorithm is independent of the actual

cost model and we present heuristics aiming at cardinality and distance minimality.

• We handle different repair semantics by using a novel concept of Repair Context

(RC): a set of expressions abstracting the relationship among attribute values and

the heterogeneous requirements to repair them. The RC minimizes the number of

cells to be looked at, while guaranteeing soundness.

We verify experimentally the effectiveness and scalability of the algorithm. In order to

compare with previous approaches, we use both real-life and synthetic datasets. We show

that the proposed solution outperforms state of the art algorithms in all scenarios. We

also verify that the algorithms scale well with the size of the dataset and the number of

quality rules.

Outline. We formally define the data repair problem in Section 5.1, and we give

an overview of the solution in Section 5.2. Technical details of the repair algorithms

are discussed in Section 5.3. System optimizations are discussed in Section 5.4, while

experiments are reported in Section 5.5.

120

5.1 Problem Definition

There exist multiple theoretic studies [21] and surveys [14,45] on studying the complexity

of data repairing parameterized by different classes of ICs, such as FDs, CFDs, and DCs,

and different repairing operations, such as value updating, and tuple deleting. In this

section, we discuss data repairing techniques that aim at updating the database in a way

such that the distance between the original database I and the modified database I ′ is

minimized.

Given as input a database I and a set of denial constraints Σ, we aim at finding a

repair Ir of I such that Ir |= Σ (consistency) and their distance cost(Ir, I) is minimized.

We assume that there are no NULL values in I, and every cell in I contains a single

value, so that there is no ambiguity when checking whether a DC is violated. With a lack

of ground truth, the main hypothesis behind the minimality objective function is that a

majority of the database is clean, and, thus, only a relatively small number of updates

need to be performed compared to the database size. A popular cost function from the

literature [21,35] is the following:∑
t∈I,t′∈Ir,A∈R

disA(I(t[A]), I(t′[A]))

where t′ is the repair for tuple t and disA(I(t[A]), I(t′[A])) is a distance between their values

for attribute A (an exact match returns 0)1. There exist many similarity measurements

for structured values (such as strings) and our setting does not depend on a particular

approach, while for numeric values we rely on the squared Euclidian distance (i.e., the sum

of the square of differences). It has been shown that finding a repair of minimal cost is

NP-complete even for FDs only [21]. Moreover, minimizing the above function for DCs

and numerical values only it is known to be a MaxSNP-hard problem [13]. If we rely on a

binary distance between values (0 if they are equal, 1 otherwise), the above cost function

corresponds to aiming at computing the repair with the minimal number of changes. The

1We omit the confidence in the accuracy of attribute A for tuple t because it is not available in many

practical settings. While our algorithms can support confidence, for simplicity we will consider the cells

with confidence value equals to one in the rest of the paper, as confidence does not add specific value to

our solution.

121

problem of computing such cardinality-minimal repairs is known to be NP-hard to be solved

exactly, even in the case with FDs only [73].

5.2 Solution Overview

In this section, we first present our system architecture, and we explain two data structures:

the conflict hypergraph (CH) to encode constraint violations and the repair context (RC)

to encode violation repairs.

5.2.1 System Architecture

The overall system architecture is depicted in Figure 5.2. Our system takes as input a

relational database (Data) and a set of denial constraints (DCs), which express the data

quality rules that have to be enforced over the input database.

Figure 5.2: Architecture of the system.

Example 32: Consider the LocalEmployee table (L for short) in Figure 5.1. Every tuple

represents information stored for an employee of the company in one specific location:

122

employee local id (LID), name (FN, LN), rank (RNK), number of days off (DO), number of

years in the company (Y), city (CT), manager id (MID), and salary (SAL). LocalEmployee

table and GlobalEmployee table constitute the input database. We introduce a third DC:

o3 : ∀tα, tβ ∈ L, tγ ∈ G q(tα.LID 6= tβ.LID ∧ tα.LID = tβ.MID ∧ tα.FN ≈ tγ.FN ∧
tα.LN ≈ tγ.LN ∧ tα.CT = tγ.CITY ∧ tγ.ROLE 6= M)

The constraint states that a manager in the local database L cannot be listed with a

status different from “M” in the global database G. The rule shows how different relations,

similarity predicate, and self-joins can be used together. 2

The DCs Parser provides rules for detecting violations (through the Detect module)

and rules for fixing the violations to be executed by the LookUp module as we explain in

the following example.

Example 33: Given the database in Figure 5.1, the DCs Parser processes constraint o3 and

provides the Detect module the rule to identify a violation spanning ten cells over tuples

t1, t2, and t3 as highlighted. Since every cell of this group is a possible error, DCs Parser

dictates the LookUp module how to fix the violation if any of the ten cells is considered

to be incorrect. For instance, the violation is repaired if “Paul Smith” is not the manager

of “Mark White” in L (represented by the repair expression (tα.LID 6= tβ.MID)), if the

employee in L does not match the one in G because of a different city (tα.CT 6= tγ.CITY),

or if the role for the employee in G is updated to manager (tγ.ROLE = M). 2

We described how each DC is parsed so that violations and fixes for that DC can be

obtained. However, our goal is to consider violations from all DCs together and generate

fixes holistically. For this goal we introduce two data structures: the Conflict Hypergraph

(CH), which encodes all violations into a common graph structure, and the Repair Context

(RC), which encodes all necessary information of how to fix violations holistically. The

Detect module is responsible for building the CH that is then fed into the LookUp module,

which in turn is responsible for building the RC. The RC is finally passed to a Determi-

nation procedure to generate updates. Depending on the content of the RC, we have two

Determination cores, i.e., Value Frequency Map (VFP) and Quadratic Programming (QP).

The updates to the database are applied, and the process is restarted until the database

123

is clean (i.e., empty CH), or a termination condition is met.

5.2.2 Violations Representation: Conflict Hypergraph

We represent the violations detected by the Detect module in a graph, where the nodes are

the violating cells and the edges link cells involved in the same violation. As an edge can

cover more than two nodes, we use a Conflict Hypergraph (CH) [73]. This is an undirected

hypergraph with a set of nodes P representing the cells and a set of annotated hyperedges

E representing the relationships among cells violating a constraint. More precisely, a

hyperedge (c; p1, . . . , pn) is a set of violating cells such that one of them must change to

repair the constraint, and contains: (a) the constraint c, which induced the conflict on the

cells; (b) the list of nodes p1, . . . , pn involved in the conflict.

Example 34: Consider Relation R in Figure 5.3(a) and the following constraints (ex-

pressed as FDs and CFDs for readability): ϕ1 : A→ C, ϕ2 : B → C, and ϕ3 : R[D = 5]→
R[C = 5]. CH is built as in Figure 5.3(b): ϕ1 has 1 violation e1; ϕ2 has 2 violations e2, e3;

ϕ3 has 1 violation e4.

(a) Data (b) CH

Figure 5.3: CH Example.

2

The CH represents the current state of the data w.r.t. the constraints. We rely on

this representation to analyze the interactions among violations on the actual database.

A hyperedge contains only violating cells: in order to repair it, at least one of its cells

124

must get a new value. Interestingly, we can derive a repair expression for each of the cell

involved in a violation, that is, for each variable involved in a predicate of the DC. Given

a DC ¬(P1 ∧ . . . ∧ Pm) and a set of violating cells (hyperedge) for it V = {v1, . . . , vn}, for

each vi ∈ V there is at least one alternative repair expression of the form viψz, where z is

a constant or a connected cell in V .

A näıve approach to resolve the violations in all hyperedges is to compute the repair by

fixing the hyperedges one after the other in isolation. This would lead to a valid repair, but,

if there are interacting violations, it would certainly change more cells than the repair with

minimal cost. As our goal is to minimize changes in the repair, we can rely on hyperedges

for identifying cells that are very likely to be changed. The intuition here is that, in the

spirit of [73], by using algorithms such as the Minimum Vertex Cover (MVC), we can

identify at the global level what are the minimum number of violating cells to be changed

in order to compute a repair.2 For instance, a possible MVC for the CH in Figure 5.3(b)

identifies t2[C] and t4[C].

After detecting all violations in the current database and building the CH, the next

step is to generate fixes taking into account the interaction among violations. In order to

facilitate a holistic repair, we rely on another data structure, which is discussed next.

5.2.3 Fixing Violation Holistically: Repair Context

We start from cells that MVC identifies as likely to be changed, and incrementally identify

other cells that are involved in the current repair. We call the starting cells and the newly

identified ones frontier. We call repair expressions the list of constant assignments and

constraints among the frontier. The frontier and the repair expressions form a Repair

Context (RC). We elaborate RC using the following example.

Example 35: Consider the database and CH in Example 34. Suppose we have t2[C]

and t4[C] from the MVC as starting points. We start from t2[C], which is involved in

3 hyperedges. Consider e1: given t2[C] to change, the expression t2[C] = t1[C] must

be satisfied to solve it, thus bringing t1[C] into frontier. Cell t1[C] is not involved in

2In order to keep the execution time acceptable an approximate algorithm is used to compute the MVC.

125

other hyperedges, so we stop. Similarly, t2[C] = t3[C] must be satisfied to resolve e2

and t3[C] is brought into the frontier. For e3, t2[C] = t4[C] is the expression to satisfy,

however, t4[C] is involved also in e4. We examine e4 given t4[C] and we get another

expression t4[C] = 5. The resulting RC consists of frontier: t1[C], t2[C], t3[C], t4[C], and

repair expressions: t2[C] = t1[C], t2[C] = t3[C], t2[C] = t4[C], t4[C] = 5.

Notice that by starting from t4[C] the same repair is obtained and the frontier contains

only four cells instead of ten in the connected component of the hypergraph. 2

An RC is built from a starting cell c with violations from DCs D with a recursive algo-

rithm (detailed in the next section). For each cell in the MVC, we exploit its violations with

the LookUp module to get the RC. Once all the expressions are collected, a Determination

step takes as input the RC and computes the valid assignments for the cells involved in it.

In this step, we rely on a function to minimize the cost of changing strings (VFM) and on

an external Quadratic Programming (QP) tool in order to efficiently solve the system of

inequalities that may arise when numeric values are involved. The assignments computed

in this step become the updates to the original database in order to fix the violations. The

following example illustrates the use of QP, while LookUp and Determination processes

will be detailed in the next section.

Example 36: Consider again the L relation in Figure 5.1. Two DCs are defined to check

the number of extra days off assigned to each employee:

o4 : ∀tα ∈ L, q(tα.RNK = A ∧ tα.DO < 3)

o5 : ∀tα ∈ L, q(tα.Y > 4 ∧ tα.DO < 4)

In order to minimize the change, the QP formulation of the problem for t1[DO] is

(x − 2)2 with constraints x ≥ 3 and x ≥ 4. Value 3 is returned by QP and assigned to

t1[DO]. 2

The holistic reconciliation provided by the RC has several advantages: the cells con-

nected in the RC form a subset of the connected components of the graph and this leads

to better efficiency in the computation and better memory management. Moreover, the

holistic choice done in the RC minimizes the number of changes for the same cell; instead

126

of trying different possible repairs, an informed choice is made by considering all the con-

straints on the connected cells. We will see how this leads to better repairs w.r.t. previous

approaches.

5.3 Holistic Data Cleaning Algorithm

In this section, we give the details of our algorithms. We start by presenting the iterative

algorithm that coordinates the detect and repair processes. We then detail the technical

solutions we built for Detect, LookUp, and Determination.

5.3.1 The Iterative Algorithm

Given a database and a set of DCs, we rely on Algorithm 11 to perform holistic data

cleaning. It starts by computing violations, the CH, and the MVC over it. These steps

bootstrap the outer loop (lines 5–26), which is repeated until the current database is clean

(lines 19–22) or a termination condition is met (lines 23–26). Cells in the MVC are ranked

in order to favor those involved in more violations and are repaired in the inner loop (lines

8–18). In this loop, the RC for the cell is created with the LookUp procedure. When

the RC is completed, the Determination step assigns the values to the cells that have

a constant assignments in the repair expressions (e.g., t1[A] = 5). Cells that do not have

assignments with constants (e.g., t1[A] 6= 1), keep their value and their repair is delayed

to the next outer loop iteration. If the updates lead to a new database without violations,

then it can be returned as a repair, otherwise the outer loop is executed again. If no

new cells have been involved w.r.t. the previous loop, then the termination condition is

triggered and the cells without assignments are updated with new fresh values in the post

processing final step.

The outer loop has a key role in the repair. In fact, it is possible that an assignment

computed in the determination step solves a violation, but raises a new one with values

that were not involved in the original CH. This new violation is identified at the end of

127

Algorithm 11 Holistic Repair

Require: Database I and set of DCs Σ

Ensure: Repair Ir

1: Compute violations, conflict hypergraph, MVC.

2: Let processedCells be a set of cells in the database that have already been processed.

3: sizeBefore ← 0

4: sizeAfter ← 0

5: repeat

6: sizeBefore ← processedCell.size()

7: mvc ← Re-order the vertices in MVC in a priority queue according to the number of

hyperedges

8: while mvc is not empty do

9: cell ← Get one cell from mvc

10: rc ← Initialize a new repair context for that cell

11: edges ← Get all hyperedges for that cell

12: while edges is not empty do

13: edge ← Get an edge from edges

14: LookUp(cell, edge, rc)

15: end while

16: assignments ← Determination(cell, exps)

17: data.update(assignments)

18: end while

19: reset the graph: re-build hyperedges, get new MVC

20: if graph has no edges then

21: return data

22: end if

23: tempCells ← graph.getAllCellsInAllEdges()

24: processedCells ← processedCells ∪ tempCells

25: sizeAfter ← processedCell.size()

26: until sizeBefore ≤ sizeAfter

27: return data.PostProcess(tempCells,MV C)

128

the inner loop and a new version of the CH is created. This CH has new cells involved in

violations and therefore the termination condition is not met.

Before returning the repair, a post-processing step updates all the cells in the last MVC

(computed at line 19) to fresh values. This guarantees the consistency of the repair and no

new violations can be triggered. Pushing to the very last the assignment of a fresh value

forces the outer loop to try to find a repair with constants until the termination condition

is met, as we illustrate in the following example.

Example 37: Consider again only rules o1 and o2 in the running example. After the first

inner loop iteration, the RC contains an assignment t6[CITY] 6= “NY C”, which is not

enforced by the determination step and therefore the database does not change. The HC

is created again (line 19) and it still has violations for o1 and o2. The cells involved in

the two violations go into tempCells and sizeAfter is set to 9. A new outer loop iteration

sets sizeBefore to 9, the inner loop does not change the data, and it gets again the same

graph at line 19. As sizeBefore = sizeAfter, it exits the outer loop and the post processing

assigns t6[CITY] = “FV ”. 2

The vertex cover problem is an NP-complete problem and there are standard approaches

to find approximate solutions. We use a greedy algorithm with factor k approximation,

where k is the maximum number of cells in a hyperedge of the HC. Our experimental

studies show that a k approximation of the MVC lead to better results w.r.t. alternative

ways to identify the seed cells for the algorithm. The complexity of the greedy algorithm

is linear in the number of edges. In the worst case, the number of iterations of the outer

loop is bounded by the number of constraints in Σ plus one: it is possible to design a

set of DCs that trigger a new violation at each repair, plus one extra iteration to verify

the termination condition. The complexity of the algorithm is bounded by the polynomial

time for the detection step: a DC with three tuples in the universal quantifier needs a

cubic number of comparisons in order to check all the possible triplets of tuples in the

database. In practice, the number of tuples is orders of magnitude bigger than the number

of DCs and therefore the size of the data dominates the complexity O(|I|cmax|Σ|), where

Σ is the set of input DCs, and cmax is the largest number of tuples a DC in Σ involves.

The complexity of the inner loop depends on the number of edges in the CH and on the

129

complexity of LookUp and Determination that we discuss next. �

Though Algorithm 11 is sound, it may not generate the optimal repair, such as the

repair with the minimal number of changes, as illustrated in the following example.

Example 38: Consider again Example 34. We showed a repair with four changes obtained

with our algorithm, but there exists a cardinality minimal repair with only three changes:

t1[C] = 3, t2[C] = 3, t4[D] = NV . 2

We now describe the functions to generate and manipulate the building blocks of our

approach.

5.3.2 Detect: Identifying Violations

Identifying violations is straightforward: every valid assignment for the denial constraint

is tested, if all the atoms for an assignment are satisfied, then there is a violation.

However, the detection step is the most expensive operation in the approach as the

complexity is polynomial with the number tuples in the universal quantifiers in the DC as

the exponent. For example, in the case of simple pairwise comparisons (such as in FDs),

the complexity is quadratic in the number of tuples. This is also exacerbated by the case

of similarity comparisons, when, instead of equality check, there is the need to compute

edit distances between strings, which is an expensive operation.

In order to improve the execution time on large relations, optimization techniques for

matching records are used. In particular, the blocking method partitions the relations into

blocks based on discriminating attributes (or blocking keys), such that only tuples in the

same block are compared.

5.3.3 LookUp: Building the Repair Context

Given a hyperedge e = {c; p1, . . . , pn} and a cell p = ti[Aj] ∈ P , the repair expression r for

p may involve other cells that need to be taken into account when assigning a value to p.

In particular, given e and p, we can define a rule for the generation of repair expressions.

130

predicate in dcs = 6= > >= < <= ≈t
predicate in repair exps 6= = <= < >= > 6=t

Table 5.1: Table of conversion of the predicates in a DC for their repair. Predicate 6=t

states that the distance between two strings must be greater than t.

As p ∈ Aφ(c), then it is required that r : pφcc, where φc is the predicate converted as

described in Table 5.1. Variable c can be a constant or another cell. For denial constraints,

we defined a function DC.Repair(e,c), based on the above rule, which automatically gen-

erates a repair expression for a hyperedge e and a cell c. We first show an example of its

output when constants are involved in the predicate and then we discuss the case with

variables.

Example 39: Consider the constraint o2 from the example. We show below two examples

of repair expressions for it.

DC.Repair((o2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),

t5[ROLE]) = {t5[ROLE] 6= “E”}
DC.Repair((o2; t5[ROLE], t5[CITY], t5[SAL], . . . , t6[SAL]),

t6[SAL]) = {t6[SAL] ≥ 80}

In the first repair expression the new value for t5[ROLE] must be different from “E” to

solve the violation. The repair expression does not state that its new value should be

different from the active domain of ROLE (i.e., t5[ROLE] 6= {“E”,“S”,“M”}), because in

the next iteration of the outer loop it is possible that another repair expression imposes

t5[ROLE] to be equal to a constant already in the active domain (e.g., a MD used for entity

resolution). If there is no other expression suggesting values for t5[ROLE], in a following

step the termination condition will be reached and the post-process will assign a fresh value

to t5[ROLE]. 2

Given a cell to be repaired, every time another variable is involved in a predicate, at

least another cell is involved in the determination of its new value. As these cells must be

taken into account, we also collect their expressions, thus possibly triggering the inclusion

131

of new cells. We call LookUp the recursive exploration of the cells involved in a decision.

Algorithm 12 LookUp

Require: Cell cell, Hyperedge edge, Repair Context rc

Ensure: updated rc

1: exps ← Denial.repair(edge, cell)

2: frontier ← exps.getFrontier()

3: for all cell ∈ frontier do

4: edges ← cell.getEdges()

5: for all edge ∈ edges do

6: exps ← exps ∪ LookUp(cell,edge,rc).getExps()

7: rc.update(exps)

Algorithm 12 describes how, given a cell c and a hyperedge e, LookUp processes

recursively in order to move from a single repair expression for c to a Repair Context.

The correctness of the RC follows from the traversal of the entire graph. Cycles are

avoided as in the expressions the algorithm keeps track of previously visited nodes. As it

is a Depth-first search, its complexity is linear in the size of graph and is O(2V −1), where

V is the largest number of connected cells in a RC.

Example 40: Consider the constraint o3 from Example 32 and an additional DC o6 :

∀tα ∈ G, q(tα.ROLE = V∧ tα.SAL < 200) , that is, a vice-president cannot earn less than

200. Given t3[ROLE] as input, LookUp processes the two edges over it and collects the

repair expressions t3[ROLE] 6= “V ” from o6 and t3[ROLE] = “M” from o3. 2

5.3.4 Determination: Finding Valid Assignments

Given the set of repair expressions collected in the RC, the Determination function

returns an assignment for the frontier in the RC. The process for the determination is

depicted in Algorithm 13: Given an RC and a starting cell, we first choose a (maximal)

132

subset of the repair expressions that is satisfiable, then we compute the value for the cells in

the frontier aiming at minimizing the cost function, and update the database accordingly

later.

Algorithm 13 Determination

Require: Cell cell, Repair Context rc

Ensure: Assignments assigns

1: exps ← rc.getExps()

2: if exps contain >,<,>=, <= then

3: QP ← computeSatisfiable(exps)

4: assigns ← QP.getAssigments()

5: else

6: V FM ← computeSatisfiable(exps)

7: assigns ← V FM.getAssigments()
return assigns

In Algorithm 13, we have two determination procedures. One is Value Frequency Map

(VFM), which deals with string typed expressions. The other is quadratic programming

(QP), which deals with numerical typed expressions3.

1) Function computeSatisfiable. Given the current set of expressions in the context, this

function identifies the subset of expressions that are solvable. Some edges may be needed

to be removed from the RC to make it solvable. First, a satisfiability test verifies if the

repair expressions are in contradiction. If the set is not satisfiable, the repair expressions

coming from the hyperedge with the smallest number of cells are removed. If the set of

expressions is now satisfiable, the removed hyperedge is pushed to the outer loop in the

main algorithm for repair. Otherwise, the original set minus the next hyperedge is tested.

The process of excluding hyperedges is then repeated for pairs, triples, and so on, until a

satisfiable set of expressions is identified. In the worst case, the function is exponential in

the number of edges in the current repair context. The following example illustrates how

the function works.

Example 41: Consider the example in Figure 5.1 and two new DCs:

3We assume all numerical values to be integer for simplicity

133

o7 : ∀tα ∈ L, q(tα.RNK = B ∧ tα.DO > 4)

o8 : ∀tα ∈ L, q(tα.Y > 7 ∧ tα.DO < 6)

That is, an employee after 8 years should have at least 6 extra days off, and an employee

of rank “B” cannot have more than 4 days. Given t2[DO] as input by the MVC, LookUp

processes the two edges over it and collects the repair expressions t2[DO] ≤ 4 from o7 and

t2[DO] ≥ 6 from c8. The satisfiability test fails (x ≤ 4∧ x ≥ 6) and the computeSatisfiable

function starts removing expressions from the RC, in order to maximize the set of satisfiable

constraints. In this case, it removes o7 from the RC and sets t2[DO] = 6 to satisfy o8.

Violation for o7 is pushed to the outer loop, and, as in the new MVC there are no new

cells involved, the post processing step updates t2[RNK] to a fresh value. 2

2) Function getAssignments. After getting the maximum number of solvable expres-

sions, the following step aims at computing an optimal repair according to the cost model

at hand. We therefore distinguish between string typed expressions and numerical typed

expressions for both cost models: cardinality minimality and distance minimality

String Cardinality Minimality. In this case we want to minimize the number of

cells to change. For string type, expressions consist only of = and 6=, thus we create a

mapping from each candidate value to the occurrence frequency (VFM). The value with

biggest frequency count will be chosen.

Example 42: Consider a schema R(A,B) with 5 tuples t1 = R(a, b), t2 = R(a, b), t3 =

R(a, cde), t4 = R(a, cdf), t5 = R(a, cdg). R has an FD : A→ B. Suppose now we have an

RC with set of expressions t1[B] = t2[B] = t3[B] = t4[B] = t5[B]. VFM is created with

b→ 2, cde→ 1, cdf → 1, cdg → 1. So value b is chosen. 2

String Distance Minimality. In this case we want to minimize the string edit

distance. Thus we need a different VFM, which maps from each candidate value to the

edit distance if this value were to be chosen.

Example 43: Consider the same database as Example 42. String cardinality minimality is

not necessarily string distance minimality. Now VFM is created as follows: b→ 12, cde→
10, cdf → 10, cdg → 10. So any of cde, cdf, cdg can be chosen. 2

134

Numerical Distance Minimality. In this case we want to minimize the squared

distance. QP is our determination core. In particular, we need to solve the following

objective function: for each cell with value v involved in a predicate of the DC, a variable

x is added to the function with (x− v)2. The expressions in the RC are transformed into

constraints for the problem by using the same variable of the function. As the objective

function given as a quadratic has a positive definite matrix, the quadratic program is

efficiently solvable.

Example 44: Consider a schema R(A,B,C) with a tuple t1 = R(0, 3, 2) and the two

repair expressions: r1 : R[A] < R[B] and r2 : R[B] < R[C]. To find valid assignments, we

want to minimize the quadratic objective function (x− 0)2 + (y − 3)2 + (z − 2)2 with two

linear constraints x < y and y < z, where x, y, z will be new values for t1[A], t1[B], t1[C].

We get solution x = 1, y = 2, z = 3 with the value of objective function being 3. 2

Numerical Cardinality Minimality. In this case we want (i) to minimize the number

of changed cells, and (ii) to minimize the distance for those changing cells. In order to

achieve cardinality minimality for numerical values, we gradually increase the number of

cells that can be changed until QP becomes solvable. For those variables we decide not to

change, we add constraint to enforce it to be equal to original values. It can be seen that

this process is exponential in the number of cells in the RC.

Example 45: Consider the same database as in Example 44. Numerical distance

minimality is not necessary numerical cardinality minimum. It can be easily spotted

that x = 0, y = 1, z = 2 whose squared distance is 4 only has one change, while

x = 1, y = 2, z = 3 whose squared is 3 has three changes. 2

5.4 Optimizations and Extensions

In this section, we briefly discuss two optimization techniques adopted in our system,

followed by two possible extensions that may be of interest to certain application scenarios.

Detection Optimization. Violation detection for DCs checks every possible ground-

ing of predicates in denial constraints. Thus improving the execution times for violation

135

detection implies reducing the number of groundings to be checked. We face the issue by

verifying predicates in a order based on their selectivity. Before enumerating all grounding

combinations, predicates with constants are applied first to rule out impossible ground-

ings. Then, if there is an equality predicate without constants, the database is partitioned

according to two attributes in the equality predicate, so that grounding from two different

partitions need not to be checked. Consider for example o3. The predicate (tγ.ROLE 6= M)

is applied first to rule out grounding with attribute tγ.ROLE equals M. Then predicate

(tα.LID = tβ.MID) is chosen to partition the database, so groundings with values of

attributes tα.LID and tβ.MID not being in the same partition will not be checked.

Hypergraph Compression. The conflict hypergraph provides a violation represen-

tation mechanism, such that all information necessary for repairing can be collected by the

LookUp module. Thus, the size of the hypergraph has an impact on the execution time of

the algorithm. We therefore reduce the number of hyperedges without compromising the

repair context by removing redundant edges. Consider for example a table T (A,B) with 3

tuples t1 = (a1, b1), t2 = (a1, b2), t3 = (a1, b3) and an FD: A→ B; it has three hyperedges

and three expressions in the repair context, i.e., t1[B] = t2[B], t1[B] = t3[B], t2[B] = t3[B].

However, only two of them are necessary, because the expression for the third hyperedge

can be deduced from the first two.

Custom Repair Strategy. The default repair strategy can easily be personalized

with a user interface for the LookUp module. For example, a user might want to enforce

the increase of the salary for the NYC employee whenever there is a violatino of the rule o2.

We have shown how repair expressions can be obtained automatically for DCs. In general,

the Repair function can be provided for any new kind of constraints that is plugged to the

system. In case the function is not provided, the system would only detect violating cells

with the Detect module. The iterative algorithm will try to fix the violation with repair

expressions from other interacting constraints or, if it is not possible, it will delay its repair

until the post-processing step.

Manual Determination. In certain applications, users may want to manually assign

values to dirty cells. In general, if a user wants to verify the value proposed by the system

for a repair, and eventually change it, she needs to analyze what are the cells involved in a

violation. In this scenario, the RC can expose exactly the cells that need to be evaluated

136

by the user in the manual determination. Even more importantly, the RC contains all the

information (such as constants assignments and expressions over variables) that lead to the

repair. In the same fashion, fresh values added in the post processing step can be exposed

to the user with their RC for examination and manual determination.

5.5 Experimental Study

The techniques have been implemented as part of the Nadeef data cleaning project at

QCRI4 and we now present experiments to show their performance. We used real-world

and synthetic data to evaluate our solution compared to state-of-the-art approaches in

terms of both effectiveness and scalability.

5.5.1 Experimental Settings

Datasets. In order to compare our solution to other approaches we selected three datasets.

• HOSP, is from US Department of Health & Human Services 5: HOSP has 100K

tuples with 19 attributes and we designed 9 FDs for it.

• CLIENT [13], has 100K tuples, 6 attributes over 2 relations, and 2 DCs involving

numerical values.

• EMP is a synthetic data that has two relations and 17 attributes in total. We designed

6 DCs for it, including a DC that involves three tuples from the two relations. For

the complete list of DCs, please refer to the paper [31].

Errors in the datasets have been produced by introducing noise with a certain rate, that

is, the ratio of the number of dirty cells to the total number of cells in the dataset. An error

rate e% indicates that for each cell, there is a e% probability we are going to change that

4http://da.qcri.org/NADEEF/
5http://www.hospitalcompare.hhs.gov/

137

cell. In particular, we update the cells containing strings by randomly picking a character

in the string, and change it to “X”, while cells with numerical values are updated with

randomly changing a value from an interval.6

Algorithms. The techniques presented in the paper have been implemented in Java.

As our holistic cleaning algorithm is modular with respect to the cost function that the

user wants to minimize, we implemented the two semantics discussed in Section 5.3. In

particular we tested the getAssigment function both for cardinality minimality (RC-C) and

for the minimization of the distance (RC-D).

We implemented also the following algorithms in Java: the FD repair algorithms

from [15] (Sample), [21] (Greedy), [73] (VC) for HOSP; and the DC repair algorithm

from [13] (MWSC) for CLIENT. As there is no available algorithm able to repair all

the DCs in EMP, we compare our approach against a sequence of applications of other

algorithms (Sequence). In particular, we ran a combination of three algorithms: Greedy

for DCs o1, MWSC for o2, o4, o5, o6, and a simple, ad-hoc algorithm to repair o3 as it is

not supported by any of the existing algorithms. In particular, for o3 we implemented a

simplified version of our Algorithm 11, without MVC and with violations fixed one after

the other without looking at their interactions. As there are six alternative orderings, we

executed all of them for each test and picked the results from the combination with the best

performance. For ≈t we used string edit distance with t = 3: two strings were considered

similar if the minimum number of single-character insertions, deletions and substitutions

needed to convert a string into the other was smaller than 4.

Metrics. We measure performance with different metrics, depending on the constraints

involved in the scenario and on the cost model at hand. The number of changes in the repair

is the most natural measure for cardinality minimality, while we use the cost function in

Section 5.1 to measure the distance between the original instance and its repair. Moreover,

as the ground truth for these datasets is available, to get a better insight about repair

quality we measured also precision (P , corrected changes in the repair), recall (R, coverage

of the errors introduced with e%), and F-measure (F = 2× (P ×R) (P +R)). Finally, we

measure the execution times needed to obtain a repair.

6Datasets can be downloaded at http://da.qcri.org/hc/data.zip

138

As in [15], we count as correct changes the values in the repair that coincide with the

values in the ground truth, but we count as a fraction (0.5) the number of partially correct

changes: changes in the repair which fix dirty values, but their updates do not reflect

the values in the ground truth. It is evident that fresh values will always be part of the

partially correct changes.

All experiments were conducted on a Win7 machine with a 3.4GHz Intel CPU and

4GB of RAM. Gurobi Optimizer 5.0 has been used as the external QP tool [62] and all

computations were executed in memory. Each experiment was run 6 times, and the results

for the best execution are reported. We decided to pick the best results instead of the

average in order to favor Sample, which is based on a sampling of the possible repairs and

has no guarantee that the best repair is computed first.

5.5.2 Experimental Results

We start by discussing repair quality and scalability for each dataset. Depending on the

constraints in the dataset, we were able to use at least two alternative approaches. We then

show how the algorithms can handle a large number of constraints holistically. Finally, we

show the impact of the MVC on our repairs.

Exp-1: FDs only. In the first set of experiments we show that the holistic approach

has benefits even when the constraints are all of the same kind, in this case FDs. As in

this example all the alternative approaches consider some kind of cardinality minimality as

a goal, we ran our algorithm with the getAssigment function set for cardinality minimality

(RC-C).

Figure 5.4 reports results on the quality of the repairs generated for the HOSP data with

four systems. Our system clearly outperforms all alternatives in every quality measure.

This verifies that holistic repairs are more accurate than alternative fixes. The low values

for the F-measure are expected: even if the precision is very high (about 0.9 for our

approach on 5% error rate), recall is always low because many randomly introduced error

cannot be detected. Consider for example R(A,B), with an FD: A → B, and two tuples

R(1,2), R(1,3). An error introduced for a value in A does not trigger a violation, as there

is not match in the left hand side of the FD, thus the erroneous value cannot be repaired.

139

Figure 5.4(c) shows the number of cells changed to repair input instances (of size

10K tuples) with increasing amounts of errors. The number of errors increases when e%

increases for all approaches; however, RC-C benefits of the holism among the violations

and is less sensitive to this parameter.

(a) # changes (b) F-Measure (c) % errors

Figure 5.4: Compare data repairing on HOSP

Execution times are reported in Figure 5.5, we set a timeout of 10 minutes and do not

report executions over this limit. We can notice that our solution competes with the fastest

algorithm and scales nicely up to large databases. We can also notice that VC does not

scale to large instances due to the large size of their hypergraph, while our optimizations

effectively reduces the number of hyperedges in RC-C.

Figure 5.5: HOSP Exec. time

Exp-2: DCs with numerical values. In the experiment for Client data, we com-

140

pare our solution against the state-of-the-art for the repair of DCs with numerical values

(MWSC) [13]. As MWSC aims at minimizing the distance in the repair, we ran the two

versions of our algorithm (RC-C and RC-D).

Figure 5.6 shows that RC-C and RC-D provide more precise repairs, both in terms of

number of changes and distance, respectively. As in Exp-1, the holistic approach shows

significant improvements over the state-of-the-art even with constraints of the same kind

only, especially in terms of cardinality minimality. This can be observed also with data

with increasing amount of errors in Figure 5.6(c). Notice that RC-C and RC-D have

very similar performances for this example. This is due to the fact that the dataset was

designed for MWSC, which supports only local DCs. For this special class the cardinality

minimization heuristic is not needed in order to obtain minimality.

(a) # changes (b) Distance (c) % errors

Figure 5.6: Compare data repairing on Client

In terms of execution time, the overheads for RC-C and RC-D are really small and the

execution times for them are comparable to MWSC.

Exp-3: Heterogeneous DCs. In the experiments for the EMP dataset, we compare

RC-C and RC-D against Sequence. In this dataset we have more complex DCs and, as

expected, Figures 5.7(a) and 5.7(c) show that RC-C performs best in terms of cardinality

minimality. Figure 5.7(b) reports that both RC-C and RC-D perform significantly better

than Sequence in terms of Distance cost. We observe that all approaches had low precision

in this experiment: this is expected when numerical values are involved, as it is very difficult

for an algorithm to repair a violation with exactly the correct value. Imagine an example

141

with value x violating x > 200 and an original, correct value equals to 250; in order to

minimize the distance from the input, value x is assigned 201 and there is a significant

distance w.r.t. the true value.

(a) # changes (b) Distance (c) % errors

Figure 5.7: Compare data repairing on Emp

The three algorithms have the same time performances. This is not surprising, as they

share the detection of the violations which is by far the most expensive operation due to

the presence of a constraint involving three tuples. The cubic complexity for the detection

of the violations clearly dominates the computation.

(a) HOSP # of DCs (b) MVC vs Order (log. scale)

Figure 5.8: Results varying the number of constraints and the ordering criteria in Algorithm

1.

Exp-4: Number of Rules. In order to test the scalability of our approach w.r.t. the

number of constraints, we generated DCs for the HOSP dataset and tested the performance

142

of the system. New rules have been generated as follows: randomly take one FD c from

the original constraints for HOSP, one of its tuples t from the ground truth, and create

a CFD c′, such that all the attributes in c must coincide with the values in t (e.g., c′ :

Hosp[Provider#=10018] → Hosp[Hospital=“C. E. FOUNDATION”]). We then generated

an instance of 5k tuples with 5% error rate and computed a repair for every new set of DCs.

For each execution, we increased the number of constraints as input. The results in Figure

5.8(a) verifies that the execution times increase linearly with the number of constraints.

Exp-5: MVC contribution. In order to show the benefits of MVC on the quality of

repair, we compared the use of MVC to identify conflicting cells versus a simple ordering

based on the number of violations a cell is involved (Order). For the experiment we used

datasets with 10k tuples, 5% error rate and RC-C. Results are reported in Figure 5.8(b).

For the hospital dataset the number of changes is almost the double with the simple

ordering (3382 vs 1833), while the difference is smaller for the other two experiments

because they show fewer interactions between violations.

143

Chapter 6

Conclusion and Future Work

In this chapter, we conclude the dissertation and discuss the future work.

6.1 Conclusion

In this dissertation, we tackled various challenges associated with the three steps of quali-

tative data cleaning, namely, the rule mining step, the error detection step, and the error

repair step.

We showed how to automatically mine data quality rules expressed in the formalism

of denial constraints (DCs). We choose DCs as the formal integrity constraint language

for capturing data quality rules because it is able to capture many real-life data quality

rules, and at the same time it allows for efficient discovery algorithm, namely, the FASTDC

algorithm as we have described. The main insight of FASTDC is that it transforms the

problem of discovering DCs to the problem of searching for minimal set covers of the

evidence set, a data structure built from the input data, and hence avoiding enumerating

all candidate DCs. FASTDC also contains several novel pruning optimizations, some of

which leverage the axioms we developed for DCs. We also show how FASTDC can be

adapted to discover approximate DCs from a dirty dataset. As the number of discovered

DCs can be large and some of them might not be correct due to overfitting, we provide an

144

interestingness measure, which includes succinctness and coverage, to rank the discovered

DCs.

We presented a distribution strategy that distributes the error detection workload

evenly to a cluster of machines in a parallel shared-nothing computing environment. The

distribution strategy was described in the context of detecting duplicate records; how-

ever, it is readily applicable to any error detection workload that requires a tuple pairwise

comparison. Our proposed distribution strategy aims at minimizing the maximum compu-

tation cost and the maximum communication cost, which are the two main types of cost

one needs to consider in a shared-nothing environment. Both costs of our proposed strat-

egy are guaranteed to be within a small constant factor from the lower bounds. We also

showed how our strategy can be used to evenly distribute a data deduplication workload

when blocking techniques are used to avoid exhaustively compare all tuple pairs.

We proposed a holistic data cleaning technique, which accumulates evidences from a

broad spectrum of data quality rules, and suggests possible data updates in a holistic man-

ner. Compared with previous piece-meal data repairing approaches, the holistic approach

produces data updates with higher accuracy because it compiles different errors into one

representation, namely, the conflict hypergraph, and aims at suggesting data updates that

can fix as many errors as possible.

6.2 Future Work

As discussed in Chapter 1, error detection techniques can be generally classified into ei-

ther qualitative or quantitative. This dissertation focused on qualitative error detection

techniques. In the future, we plan to investigate techniques to detect quantitative errors.

Data is increasingly generated by sensors, mobile devices, and automated processes

in a variety of domains, including manufacturing, transportation, health care, and smart

homes. Because the majority of this data reflects normal case operation, it is generally not

productive for analysts to exhaustively explore every value. Instead, a natural approach is

to look for unusual values and outliers, namely, quantitative errors. Example applications

include equipment monitoring (e.g., detecting faulty manufacturing components), intrusion

145

detection (e.g., building break-ins), environmental observation (e.g., occupancy and HVAC

control), and customer service (e.g., finding customers experiencing poor service). We plan

to investigate techniques to detect quantitative errors in two directions.

First, we plan to investigate contextual outliers ; sometimes a data point may not be

an outlier compared with the rest of the data set but is an outlier when compared with a

subgroup of the data. In our discussions with data analysts in multiple large enterprises,

these contextual outliers are useful in two important application scenarios: data exploration

and targeted error explanation and diagnosis.

Second, we also intend to discover errors in time series and sequence data generated

by sensors, machine logs, and other automated processes (also known as the Internet

of Things). In particular, we would like to discover abnormal state transition by first

identifying the underlying states the sensor readings represents and then flagging unlikely

state transitions.

146

References

[1] Apache hadoop. http://hadoop.apache.org.

[2] Ziawasch Abedjan, Lukasz Golab, and Felix Naumann. Data profiling: A tutorial.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 1747–1751, 2017.

[3] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases.

Addison-Wesley, 1995.

[4] Foto N Afrati and Phokion G Kolaitis. Repair checking in inconsistent databases:

algorithms and complexity. In Proc. 12th Int. Conf. on Database Theory, pages

31–41, 2009.

[5] Foto N Afrati and Jeffrey D Ullman. Optimizing joins in a map-reduce environment.

In Proc. 13th Int. Conf. on Extending Database Technology, pages 99–110, 2010.

[6] Charu C. Aggarwal. Outlier Analysis. Springer, 2013.

[7] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining association rules

between sets of items in large databases. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, pages 207–216, 1993.

[8] Alexander Alexandrov, Rico Bergmann, Stephan Ewen, Johann-Christoph Freytag,

Fabian Hueske, Arvid Heise, Odej Kao, Marcus Leich, Ulf Leser, Volker Markl, et al.

The stratosphere platform for big data analytics. The VLDB Journal, 23(6):939–964,

2014.

147

http://hadoop.apache.org

[9] Rohit Ananthakrishna, Surajit Chaudhuri, and Venkatesh Ganti. Eliminating fuzzy

duplicates in data warehouses. In Proc. 28th Int. Conf. on Very Large Data Bases,

pages 586–597, 2002.

[10] Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers in

inconsistent databases. In Proc. 18th ACM SIGACT-SIGMOD-SIGART Symp. on

Principles of Database Systems, pages 68–79, 1999.

[11] Marianne Baudinet, Jan Chomicki, and Pierre Wolper. Constraint-generating de-

pendencies. J. Comput. Syst. Sci., 59(1):94–115, 1999.

[12] Paul Beame, Paraschos Koutris, and Dan Suciu. Skew in parallel query processing.

In Richard Hull and Martin Grohe, editors, Proc. 33rd ACM SIGACT-SIGMOD-

SIGART Symp. on Principles of Database Systems, pages 212–223. ACM, 2014.

[13] Leopoldo Bertossi, Loreto Bravo, Enrico Franconi, and Andrei Lopatenko. Complex-

ity and approximation of fixing numerical attributes in databases under integrity

constraints. In Proc. 10th Int. Workshop on Database Programming Languages, 2005.

[14] Leopoldo E. Bertossi. Database Repairing and Consistent Query Answering. Syn-

thesis Lectures on Data Management. Morgan & Claypool Publishers, 2011.

[15] George Beskales, Ihab F Ilyas, and Lukasz Golab. Sampling the repairs of functional

dependency violations under hard constraints. Proc. VLDB Endowment, 3(1-2):197–

207, 2010.

[16] George Beskales, Ihab F. Ilyas, Lukasz Golab, and Artur Galiullin. On the relative

trust between inconsistent data and inaccurate constraints. pages 541–552, 2013.

[17] George Beskales, Ihab F Ilyas, Lukasz Golab, and Artur Galiullin. Sampling from

repairs of conditional functional dependency violations. VLDB J., 23(1):103–128,

2014.

[18] George Beskales, Mohamed A Soliman, Ihab F Ilyas, and Shai Ben-David. Modeling

and querying possible repairs in duplicate detection. volume 2, pages 598–609. VLDB

Endowment, 2009.

148

[19] Mikhail Bilenko, Beena Kamath, and Raymond J Mooney. Adaptive blocking: Learn-

ing to scale up record linkage. In Proc. 2006 IEEE Int. Conf. on Data Mining, pages

87–96, 2006.

[20] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag, 2006.

[21] Philip Bohannon, Wenfei Fan, Michael Flaster, and Rajeev Rastogi. A cost-based

model and effective heuristic for repairing constraints by value modification. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, 2005.

[22] Philip Bohannon, Wenfei Fan, Floris Geerts, Xibei Jia, and Anastasios Kementsiet-

sidis. Conditional functional dependencies for data cleaning. In Proc. 23rd Int. Conf.

on Data Engineering, pages 746–755, 2007.

[23] Anup Chalamalla, Ihab F Ilyas, Mourad Ouzzani, and Paolo Papotti. Descriptive

and prescriptive data cleaning. In Proc. ACM SIGMOD Int. Conf. on Management

of Data, pages 445–456, 2014.

[24] Fei Chiang and Renée J. Miller. Discovering data quality rules. Proc. VLDB Endow-

ment, 1(1):1166–1177, 2008.

[25] Fei Chiang and Renée J. Miller. A unified model for data and constraint repair. In

Proc. 27th Int. Conf. on Data Engineering, pages 446–457, 2011.

[26] Jan Chomicki and Jerzy Marcinkowski. Minimal-change integrity maintenance using

tuple deletions. Information and Computation, 197(1):90–121, 2005.

[27] Peter Christen. A survey of indexing techniques for scalable record linkage and

deduplication. IEEE Trans. on Knowl. and Data Eng., 24(9):1537–1555, September

2012.

[28] Shumo Chu, Magdalena Balazinska, and Dan Suciu. From theory to practice: Effi-

cient join query evaluation in a parallel database system. In Proc. ACM SIGMOD

Int. Conf. on Management of Data, pages 63–78, 2015.

149

[29] Xu Chu, Ihab F. Ilyas, and Paraschos Koutris. Distributed data deduplication. Proc.

VLDB Endowment, 9(11):864–875, 2016.

[30] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Discovering denial constraints. Proc.

VLDB Endowment, pages 1498–1509, 2013.

[31] Xu Chu, Ihab F. Ilyas, and Paolo Papotti. Holistic data cleaning: Putting violations

into context. In Proc. 29th Int. Conf. on Data Engineering, pages 458–469, 2013.

[32] Xu Chu, Ihab F. Ilyas, Paolo Papotti, and Yin Ye. Ruleminer: Data quality rules

discovery. In Proc. 30th Int. Conf. on Data Engineering, pages 1222–1225, 2014.

[33] Xu Chu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, Nan Tang,

and Yin Ye. KATARA: A data cleaning system powered by knowledge bases and

crowdsourcing. pages 1247–1261, 2015.

[34] Samuel Clemens. 7 facts about data quality. InsightSquared, 2012.

[35] Gao Cong, Wenfei Fan, Floris Geerts, Xibei Jia, and Shuai Ma. Improving data

quality: Consistency and accuracy. In Proc. VLDB Endowment, pages 315–326,

2007.

[36] Michele Dallachiesa, Amr Ebaid, Ahmed Eldawy, Ahmed K. Elmagarmid, Ihab F.

Ilyas, Mourad Ouzzani, and Nan Tang. NADEEF: a commodity data cleaning system.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 541–552, 2013.

[37] Tamraparni Dasu and Theodore Johnson. Exploratory Data Mining and Data Clean-

ing. John Wiley & Sons, Inc., 2003.

[38] Tamraparni Dasu, Theodore Johnson, S. Muthukrishnan, and Vladislav Shkapenyuk.

Mining database structure; or, how to build a data quality browser. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 240–251, 2002.

[39] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

150

[40] D. Deroos, C. Eaton, G. Lapis, P. Zikopoulos, and T. Deutsch. Understanding Big

Data: Analytics for Enterprise Class Hadoop and Streaming Data. McGraw-Hill,

2011.

[41] David J. DeWitt, Jeffrey F. Naughton, Donovan A. Schneider, and S. Seshadri.

Practical skew handling in parallel joins. In Proc. 18th Int. Conf. on Very Large

Data Bases, pages 27–40, 1992.

[42] Xin Luna Dong and Felix Naumann. Data fusion: resolving data conflicts for inte-

gration. Proc. VLDB Endowment, 2(2):1654–1655, 2009.

[43] Ahmed K. Elmagarmid, Panagiotis G. Ipeirotis, and Vassilios S. Verykios. Duplicate

record detection: A survey. IEEE Trans. Knowl. and Data Eng., 19(1):1–16, 2007.

[44] Grace Fan, Wenfei Fan, and Floris Geerts. Detecting errors in numeric attributes.

In Web-Age Information Management, pages 125–137. Springer, 2014.

[45] Wenfei Fan and Floris Geerts. Foundations of Data Quality Management. Synthesis

Lectures on Data Management. Morgan & Claypool Publishers, 2012.

[46] Wenfei Fan, Floris Geerts, and Xibei Jia. A revival of integrity constraints for data

cleaning. Proc. VLDB Endowment, 1(2):1522–1523, 2008.

[47] Wenfei Fan, Floris Geerts, Jianzhong Li, and Ming Xiong. Discovering conditional

functional dependencies. IEEE Trans. Knowl. and Data Eng., 23(5):683–698, 2011.

[48] Wenfei Fan, Floris Geerts, Nan Tang, and Wenyuan Yu. Conflict resolution with data

currency and consistency. Journal of Data and Information Quality, 5(1-2):6:1–6:37,

2014.

[49] Wenfei Fan, Xibei Jia, Jianzhong Li, and Shuai Ma. Reasoning about record matching

rules. Proc. VLDB Endowment, 2(1):407–418, 2009.

[50] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Interaction

between record matching and data repairing. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, pages 469–480. ACM, 2011.

151

[51] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, and Wenyuan Yu. Towards certain

fixes with editing rules and master data. VLDB J., 21(2), 2012.

[52] Helena Galhardas, Daniela Florescu, Dennis Shasha, Eric Simon, and Cristian-

Augustin Saita. Declarative data cleaning: Language, model, and algorithms. In

Proc. 27th Int. Conf. on Very Large Data Bases, pages 371–380, 2001.

[53] Helena Galhardas, Antónia Lopes, and Emanuel Santos. Support for user involvement

in data cleaning. In Data Warehousing and Knowledge Discovery - 13th International

Conference, DaWaK 2011, pages 136–151, 2011.

[54] Floris Geerts, Giansalvatore Mecca, Paolo Papotti, and Donatello Santoro. The

llunatic data-cleaning framework. Proc. VLDB Endowment, 6(9):625–636, 2013.

[55] Lise Getoor and Ashwin Machanavajjhala. Entity resolution: theory, practice & open

challenges. Proc. VLDB Endowment, 5(12):2018–2019, 2012.

[56] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan Ram-

palli, Jude Shavlik, and Xiaojin Zhu. Corleone: Hands-off crowdsourcing for entity

matching. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 601–

612, 2014.

[57] Lukasz Golab, Howard J. Karloff, Flip Korn, Divesh Srivastava, and Bei Yu. On gen-

erating near-optimal tableaux for conditional functional dependencies. Proc. VLDB

Endowment, 1(1):376–390, 2008.

[58] Daniel M. Gordon, Greg Kuperberg, and Oren Patashnik. New constructions for

covering designs. J. COMBIN. DESIGNS, 3(269–284), 1995.

[59] Gösta Grahne. The Problem of Incomplete Information in Relational Databases,

volume 554 of Lecture Notes in Computer Science. 1991.

[60] Sergio Greco, Cristian Molinaro, and Francesca Spezzano. Incomplete data and data

dependencies in relational databases. Synthesis Lectures on Data Management, 2012.

152

[61] Philip J. Guo, Sean Kandel, Joseph Hellerstein, and Jeffrey Heer. Proactive wran-

gling: Mixed-initiative end-user programming of data transformation scripts. In

ACM User Interface Software & Technology (UIST), 2011.

[62] Gurobi. Gurobi optimizer reference manual, 2012.

[63] Daniel Halperin, Victor Teixeira de Almeida, Lee Lee Choo, Shumo Chu, Paraschos

Koutris, Dominik Moritz, Jennifer Ortiz, Vaspol Ruamviboonsuk, Jingjing Wang,

Andrew Whitaker, et al. Demonstration of the myria big data management service.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 881–884. ACM,

2014.

[64] Joseph M Hellerstein. Quantitative data cleaning for large databases. United Nations

Economic Commission for Europe (UNECE), 2008.

[65] Mauricio A Hernández and Salvatore J Stolfo. The merge/purge problem for large

databases. ACM SIGMOD Rec., 24(2):127–138, 1995.

[66] Thomas N Herzog, Fritz J Scheuren, and William E Winkler. Data Quality and

Record Linkage Techniques. Springer Science & Business Media, 2007.

[67] Ykä Huhtala, Juha Kärkkäinen, Pasi Porkka, and Hannu Toivonen. TANE: An

efficient algorithm for discovering functional and approximate dependencies. Comput.

J., 42(2):100–111, 1999.

[68] Ihab F. Ilyas and Xu Chu. Trends in cleaning relational data: Consistency and

deduplication. Foundations and Trends in Databases, 5(4):281–393, 2015.

[69] Piotr Indyk. A small approximately min-wise independent family of hash functions.

Journal of Algorithms, 38(1):84–90, 2001.

[70] Matteo Interlandi and Nan Tang. Proof positive and negative in data cleaning. In

31st IEEE International Conference on Data Engineering, 2015.

[71] Sean Kandel, Andreas Paepcke, Joseph Hellerstein, and Jeffrey Heer. Wrangler: In-

teractive visual specification of data transformation scripts. In ACM Human Factors

in Computing Systems (CHI), 2011.

153

[72] K. Kerr, T. Norris, and R. Stockdale. Data quality information and decision making:

a healthcare case study. In ACIS, pages 5–7, 2007.

[73] Solmaz Kolahi and Laks V. S. Lakshmanan. On approximating optimum repairs for

functional dependency violations. In Proc. 12th Int. Conf. on Database Theory, 2009.

[74] Lars Kolb, Andreas Thor, and Erhard Rahm. Dedoop: efficient deduplication with

hadoop. Proc. VLDB Endowment, 5(12):1878–1881, 2012.

[75] Lars Kolb, Andreas Thor, and Erhard Rahm. Load balancing for mapreduce-based

entity resolution. In Proc. 28th Int. Conf. on Data Engineering, pages 618–629, 2012.

[76] Hanna Köpcke, Andreas Thor, and Erhard Rahm. Evaluation of entity resolution

approaches on real-world match problems. PVLDB, 3(1):484–493, 2010.

[77] Nick Koudas, Avishek Saha, Divesh Srivastava, and Suresh Venkatasubramanian.

Metric functional dependencies. In Proceedings of the 25th International Conference

on Data Engineering, pages 1275–1278, 2009.

[78] Nick Koudas, Sunita Sarawagi, and Divesh Srivastava. Record linkage: similarity

measures and algorithms. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, pages 802–803, 2006.

[79] Andrei Lopatenko and Leopoldo E. Bertossi. Complexity of consistent query answer-

ing in databases under cardinality-based and incremental repair semantics. In 11th

International Conference on Database Theory, pages 179–193, 2007.

[80] Andrei Lopatenko and Loreto Bravo. Efficient approximation algorithms for repairing

inconsistent databases. In Proc. 23rd Int. Conf. on Data Engineering, pages 216–225,

2007.

[81] Alexandra Meliou, Wolfgang Gatterbauer, Suman Nath, and Dan Suciu. Tracing

data errors with view-conditioned causality. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, pages 505–516, 2011.

154

[82] Felix Naumann and Melanie Herschel. An Introduction to Duplicate Detection. Syn-

thesis Lectures on Data Management. 2010.

[83] Alper Okcan and Mirek Riedewald. Processing theta-joins using mapreduce. In Proc.

ACM SIGMOD Int. Conf. on Management of Data, pages 949–960. ACM, 2011.

[84] Martin Raab and Angelika Steger. ”balls into bins” - A simple and tight analysis.

In RANDOM, pages 159–170, 1998.

[85] Erhard Rahm and Hong Hai Do. Data cleaning: Problems and current approaches.

IEEE Data Engineering Bulletin, 23:2000, 2000.

[86] Vijayshankar Raman and Joseph M. Hellerstein. Potter’s wheel: An interactive data

cleaning system. In Proc. 27th Int. Conf. on Very Large Data Bases, pages 381–390,

2001.

[87] J. Schönheim. On coverings. Pacific Journal of Mathematics, 14:1405–1411, 1964.

[88] Michael Stonebraker, Daniel Bruckner, Ihab F. Ilyas, George Beskales, Mitch Cher-

niack, Stanley B. Zdonik, Alexander Pagan, and Shan Xu. Data curation at scale:

The data tamer system. In Proc. 6th Biennial Conf. on Innovative Data Systems

Research, 2013.

[89] N. Swartz. Gartner warns firms of ’dirty data’. Information Management Journal,

41(3), 2007.

[90] Jeffrey D. Ullman. Designing good mapreduce algorithms. XRDS, 19(1):30–34,

September 2012.

[91] Norases Vesdapunt, Kedar Bellare, and Nilesh Dalvi. Crowdsourcing algorithms for

entity resolution. Proc. VLDB Endowment, 7(12), 2014.

[92] Maksims Volkovs, Fei Chiang, Jaroslaw Szlichta, and Renée J. Miller. Continuous

data cleaning. In Proc. 30th Int. Conf. on Data Engineering, pages 244–255, 2014.

[93] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder: Crowd-

sourcing entity resolution. Proc. VLDB Endowment, 5(11):1483–1494, 2012.

155

[94] Jiannan Wang, Guoliang Li, Tim Kraska, Michael J Franklin, and Jianhua Feng.

Leveraging transitive relations for crowdsourced joins. In Proc. ACM SIGMOD Int.

Conf. on Management of Data, pages 229–240, 2013.

[95] Jiannan Wang and Nan Tang. Towards dependable data repairing with fixing rules.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 457–468. ACM,

2014.

[96] Eugene Wu and Samuel Madden. Scorpion: Explaining away outliers in aggregate

queries. Proc. VLDB Endowment, 6(8):553–564, 2013.

[97] Eugene Wu, Samuel Madden, and Michael Stonebraker. A demonstration of dbwipes:

clean as you query. Proc. VLDB Endowment, 5(12):1894–1897, 2012.

[98] Catharine M. Wyss, Chris Giannella, and Edward L. Robertson. FastFDs: A

heuristic-driven, depth-first algorithm for mining functional dependencies from re-

lation instances. In DaWaK, pages 101–110, 2001.

[99] Mohamed Yakout, Ahmed K Elmagarmid, Jennifer Neville, Mourad Ouzzani, and

Ihab F Ilyas. Guided data repair. Proc. VLDB Endowment, 4(5):279–289, 2011.

[100] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker, and Ion

Stoica. Spark: cluster computing with working sets. In HotCloud, volume 10, page 10,

2010.

156

	List of Tables
	List of Figures
	Introduction
	Qualitative Data Cleaning Workflow
	Challenges in Qualitative Data Cleaning
	Contributions and Outline

	Background and Related Work
	Integrity Constraints
	Functional Dependencies
	Conditional Functional Dependencies
	Denial Constraints
	Other Constraint Types

	Discovery of Integrity Constraints
	Schema-Driven FD Discovery
	Data-Driven FD Discovery

	Taxonomy of Qualitative Error Detection
	What to Detect
	How to Detect
	Where to Detect

	Taxonomy of Qualitative Error Repair
	What to Repair
	How to Repair
	Where to Repair

	Discovering Denial Constraints
	Preliminary and Problem Definition
	Denial Constraints Preliminaries
	Problem Definition

	Static Analysis of DCs
	The Inference System of DCs
	The Implication Problem of DCs

	DCs Discovery Algorithm
	Building the Predicate Space
	Building the Evidence Set
	DFS for Minimal Covers
	Dividing the Space of DCs
	Approximate DCs: A-FASTDC
	Constant DCs: C-FASTDC

	Ranking DCs
	Succinctness
	Coverage
	Rank-aware Pruning in DFS Tree

	Experimental Study
	Scalability Evaluation
	Qualitative Analysis

	Distributed Data Deduplication
	Problem Definition and Solution Overview
	Parallel Computation Model
	Formal Problem Definition
	Solution Overview

	Single Block Deduplication
	Lower Bounds
	Triangle Distribution Strategy

	Deduplication using Single Blocking Function
	Lower Bounds
	Baseline Distribution Strategies
	The Proposed Strategy

	Deduplication using Multiple Blocking Functions
	Experimental Study
	Single Block Deduplication Evaluation
	Single Blocking Function Evaluation
	Multiple Blocking Functions Evaluation

	Holistic Data Cleaning
	Problem Definition
	Solution Overview
	System Architecture
	Violations Representation: Conflict Hypergraph
	Fixing Violation Holistically: Repair Context

	Holistic Data Cleaning Algorithm
	The Iterative Algorithm
	Detect: Identifying Violations
	LookUp: Building the Repair Context
	Determination: Finding Valid Assignments

	Optimizations and Extensions
	Experimental Study
	Experimental Settings
	Experimental Results

	Conclusion and Future Work
	Conclusion
	Future Work

	References

