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Abstract: 17 

Watershed spatial discretization is an important step in developing a distributed hydrologic 18 

model. A key difficulty in the spatial discretization process is maintaining a balance between the 19 

aggregation-induced information loss and the increase in computational burden caused by the 20 

inclusion of additional computational units. Objective identification of an appropriate 21 

discretization scheme still remains a challenge, in part because of the lack of quantitative 22 

measures for assessing discretization quality, particularly prior to simulation. This study 23 

proposes a priori discretization error metrics to quantify the information loss of any candidate 24 

discretization scheme without having to run and calibrate a hydrologic model. These error 25 

metrics are applicable to multi-variable and multi-site discretization evaluation and provide 26 

directly interpretable information to the hydrologic modeler about discretization quality. The first 27 

metric, a subbasin error metric, quantifies the routing information loss from discretization, and 28 

the second, a hydrological response unit (HRU) error metric, improves upon existing a priori 29 

metrics by quantifying the information loss due to changes in land cover or soil type property 30 

aggregation. The metrics are straightforward to understand and easy to recode. Informed by the 31 

error metrics, a two-step discretization decision-making approach is proposed with the advantage 32 

of reducing extreme errors and meeting the user-specified discretization error targets. The 33 

metrics and decision-making approach are applied to the discretization of the Grand River 34 

watershed in Ontario, Canada. Results show that information loss increases as discretization gets 35 

coarser. Moreover, results help to explain the modeling difficulties associated with smaller 36 

upstream subbasins since the worst discretization errors and highest error variability appear in 37 

smaller upstream areas instead of larger downstream drainage areas. Hydrologic modeling 38 

experiments under candidate discretization schemes validate the strong correlation between the 39 
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proposed discretization error metrics and hydrologic simulation responses. Discretization 40 

decision-making results show that the common and convenient approach of making uniform 41 

discretization decisions across the watershed performs worse than the proposed non-uniform 42 

discretization approach in terms of preserving spatial heterogeneity under the same 43 

computational cost.  44 

 45 

KEY WORDS: a priori spatial discretization error metrics; distributed hydrologic modeling; 46 

spatial heterogeneity; information loss; routing errors; discretization decision-making 47 

 48 

1. Introduction 49 

In distributed hydrologic modeling, a watershed is treated as a number of small homogeneous 50 

units to address the spatial heterogeneity which results from variability of physical processes and 51 

physical character across a watershed (Singh & Frevert, 2005). This spatial heterogeneity is often 52 

attributed to the uneven distribution of a hydrological properties across a watershed (Anselin, 53 

2010). The spatial discretization process, whereby we separate a watershed into homogeneous 54 

computational units for depiction in a hydrological model, is really the effort of determining how 55 

to characterize the inherent spatial heterogeneity found in a watershed. In general, spatial 56 

discretization should be detailed enough to capture the dominant processes and natural variability, 57 

while it also needs to be as concise as possible to save computation time and respect data 58 

availability (Booij, 2005). Excessively detailed spatial discretization increases model complexity 59 

(i.e., number of computational units) and thus increases model computation time. However, an 60 

overly coarse aggregation can lead to substantial information losses and give rise to increased 61 

model structural uncertainty, whose impacts on hydrological predictions are far more adverse 62 
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than those of parameter and data uncertainty (Liu & Gupta, 2007; Ludwig et al., 2009). 63 

Therefore, defining an appropriate level of discretization is a critical task in distributed 64 

hydrologic modeling.  65 

 66 

In order to investigate spatial discretization, it is necessary to first clarify the components of 67 

watershed discretization. For this paper, we will be examining the common subbasin-HRU 68 

discretization approach. In this approach, a watershed is discretized into a set of one or more 69 

subbasins, which can be further discretized into a number of contiguous or non-contiguous 70 

hydrological response units (HRUs), defined as areas with hydrologically unique response to 71 

meteorologic events. Subbasins are referred to by different names in the literature, including grid 72 

cell, subcatchment, and subwatershed (Tuppad, 2006). Here we recursively define a subbasin as 73 

the drainage area of a location on a stream network minus the drainage areas of one or more 74 

upstream subbasins which flow directly into the subbasin. Headwater subbasins are those which 75 

do not have any subbasins upstream, i.e., those whose drainage areas are equal to their subbasin 76 

area. An HRU is the basic computational unit of hydrological simulation and typically defined as 77 

a unique combination of hydrological response determinants such as soil, land cover, terrain type, 78 

and management policy (Flügel, 1995), often generated from readily available mapping products. 79 

The HRU is conceptually similar to other computational units such as the Representative 80 

Elementary Area (REA), Representative Elementary Watershed (REW), Grouped Response Unit 81 

(GRU), hydro-landscape unit, and field (Dehotin & Braud, 2008; Fenicia, Kavetski, Savenije, & 82 

Pfister, 2016; N Kouwen, Soulis, Pietroniro, Donald, & Harrington, 1993; Reggiani, Sivapalan, 83 

& Hassanizadeh, 1998; Wood, Sivapalan, Beven, & Band, 1988), and therefore the approach 84 

developed here will port over to models which are discretized using these alternative definitions 85 
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of the smallest computational unit. In recent decades, the traditional approach for watershed 86 

discretization has been to use Geographic Information Systems (GISs) such as ESRI’s ArcGIS 87 

software or ArcGIS-based toolkits such as Arc HYDRO, ArcSWAT, and HEC-GeoHMS (Doan, 88 

2000; ESRI, 2014; Maidment, 2002; Winchell, Srinivasan, Di Luzio, & Arnold, 2007). While 89 

such automatic techniques make watershed discretization easy to practically implement, they do 90 

not have an explicit mechanism to account for, or assess, spatial input data information losses 91 

due to discretization choices. Here, information loss refers to the content change between 92 

candidate discretization schemes and the original, fully detailed, input data layers. Instead, 93 

modelers can only explicitly assess the model complexity under candidate discretization schemes 94 

based on the number of modelled homogeneous areas (subbasin or HRU computational units).  95 

 96 

Haghnegahdar et al. (2015) claim that most modelers make discretization decisions in an ad hoc 97 

fashion. This approach is often based on the past experience of the modeler, rules of thumb or 98 

default discretization settings in specialized ArcGIS-based toolkits for creating a distributed 99 

hydrologic model (e.g., ArcSWAT (Winchell, et al., 2007)). The shortcoming with all ad hoc 100 

approaches is that there is no quantitative or formal justification of the selected discretization 101 

over other potential discretization choices. More sophisticated discretization approaches found in 102 

the literature use a cumbersome trial-and-error approach of building and then possibly calibrating 103 

multiple candidate models with different discretization levels in order to identify the most 104 

appropriate choice. For example, Arnold et al. (2010) compared the calibration and validation 105 

period flow simulation results of an enhanced SWAT model with four landscape delineations, 106 

and Petrucci and Bonhomme (2014) tested the calibration and validation period water quantity 107 

and water quality simulation results of six different discretization scenarios of the Stormwater 108 
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Management Model. Haghnegahdar et al. (2015) followed a similarly intensive but improved 109 

process except that they took into account the computational time spent for calibrating 110 

(calibration budget) and focused on the model performance in ungauged basins under four 111 

discretization schemes for a land-surface hydrologic modelling application. All of these 112 

approaches require model calibration in order to assess the quality of a given discretization 113 

scheme. 114 

 115 

Given the above limitations, other studies have instead focused on designing a priori 116 

discretization error metrics to quantify the information loss incurred from spatial discretization. 117 

Such metrics are advantageous in that they do not require model runs. Haverkamp et al. (2002) 118 

provided an entropy based statistical tool, the Subwatershed Spatial Analysis Toll (SUSAT), to 119 

estimate the information loss for subwatershed and HRU discretization, respectively. Booij 120 

(2003) utilized the bias of the variance of aerially averaged variables under different correlation 121 

lengths to decide the appropriate modeling scale. Dehotin and Braud (2008) used Manhattan 122 

distance to measure the composition descriptor (e.g., histogram, mean, standard deviation, or 123 

matrix of co-occurrence) similarity between each mapping cell and the reference zones. There 124 

are three main shortcomings of the existing a priori discretization error metrics. First, the metrics 125 

do not directly correlate to the information required by hydrologic modeling applications, in 126 

particular for semi-distributed modeling. For example, entropy represents spatial disorder from 127 

the systematic perspective, but spatial heterogeneity essentially describes spatial pattern 128 

variability (Journel & Deutsch, 1993). Changes in system disorder cannot fully reflect the (more 129 

hydrologically important) changes in spatial heterogeneity and hence entropy is not a directly 130 

interpretable indicator for hydrologic modeling. Second, their property change identification 131 
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process fails to refer to the original spatial input data in a complete way (i.e., cell-by-cell 132 

comparison). Instead, they use the overall heterogeneity statistics difference between a candidate 133 

discretization scheme and the original spatial input data as the information loss, which may lead 134 

to the equifinality problem. Finally, the existing a priori approaches are all aggregated (e.g., over 135 

the entire study watershed) and do not provide spatially distributed evaluations of candidate 136 

discretizations. The importance of evaluating distributed model behaviors rather than an 137 

integrated value (e.g., runoff at the watershed outlet) for distributed models has been highlighted 138 

by numerous researchers (Beven & Binley, 1992; Grayson, Blöschl, Moore, & Singh, 1995; 139 

Refsgaard, 1997; Shrestha & Rode, 2008). Just like multi-site calibration provides an efficient 140 

framework for spatially distributed evaluations (Madsen, 2003), multi-site discretization quality 141 

assessment is intrinsically valuable to reduce the prevalence of aggregation or compensation 142 

effects in distributed hydrologic modeling. With such shortcomings in mind, this study is 143 

focused on developing a priori discretization error metrics that are directly interpretable, 144 

spatially distributed, and hydrologically relevant, providing a direct measurement of information 145 

loss relative to the original spatial input data, where the original spatial data is presumed to have 146 

the highest information content. 147 

 148 

In addition to the information loss induced by the extensively studied HRU discretization, 149 

another type of information loss occurs due to subbasin discretization which affects the routing 150 

processes of semi-distributed and distributed models, hereinafter called routing information loss. 151 

In a finely discretized fully distributed model, channel structure, channel roughness, and 152 

therefore network travel times can be well-respected. As the watershed is discretized into 153 

subbasins, stream network branches are implicitly merged, replaced, and shortened. As far as we 154 
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know, in the published literature, the routing information loss has never been quantified though 155 

its significance has been highlighted by many studies. For example, Haverkamp (2002) indicates 156 

that the influences of the routing structure through subbasins to the watershed outlet should be 157 

considered in discretization evaluations when the effect of the routing on model results is not 158 

negligible. Dehotin and Braud (2008) emphasize the prospect of inclusion of linear 159 

discontinuities, including river reaches, hedges, ditches, and dikes, in order to properly describe 160 

networks in spatial discretization. Here, we address this need through the introduction of 161 

additional error metrics to estimate the routing information loss due to subbasin discretization.  162 

 163 

The specific goals of this study are to (1) introduce a priori discretization error metrics to 164 

quantify the information loss due to subbasin and HRU discretization, respectively; (2) propose a 165 

two-step decision-making approach to identify an appropriate discretization scheme; (3) apply 166 

the error metrics and decision-making approach to the discretization of the Grand River 167 

watershed in Ontario, Canada. The simplicity of the error metrics allows for easy recoding and 168 

adoption into the preprocessing of a wide range of distributed models, including all semi-169 

distributed models, such as HBV (Bergström, 1976, 1992), TOPMODEL (Beven & Kirkby, 170 

1979), WATFLOOD (Nicholas Kouwen, 1988), the Soil and Water Assessment Tool (SWAT) (J. 171 

G. Arnold, Srinivasan, Muttiah, & Williams, 1998), and Modélisation Environmentale–Surface 172 

et Hydrologie (MESH) (Pietroniro et al., 2007).  The error metrics may also be useful for fully 173 

distributed models, e.g., System Hydrologique Europeen (SHE) (Abbott, Bathurst, Cunge, 174 

O'Connell, & Rasmussen, 1986), TOPKAPI (Ciarapica & Todini, 2002), and Soil Moisture 175 

Distributed and Routing (SMDR) (Srinivasan, Gérard-Marchant, Veith, Gburek, & Steenhuis, 176 

2005) when the model cell scales are greater than the resolution of original spatial input data. 177 
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 178 

The reminder of the paper is organized as follows. Section 2 describes in detail the a priori 179 

discretization error metrics and the two-step discretization decision-making approach. Section 3 180 

explains the error metric applications to the Grand River watershed discretization. Section 4 181 

provides an effective discussion of the proposed methods. Section 5 summarizes conclusions.   182 

 183 

2. Methodology 184 

2.1. Discretization Error Metrics 185 

Our a priori discretization error metrics provide a novel and simple quantitative measurement of 186 

the information loss in the process of spatial discretization. They are introduced for the purpose 187 

of assessing candidate discretization schemes and finding an appropriate discretization level in 188 

data preprocessing without having to rely on computationally intensive hydrologic model 189 

building exercises. For each candidate discretization scheme, the metrics are designed to 190 

compare the user-defined key model input variable properties with that of a reference 191 

discretization scheme. The reference scheme is defined as a scheme that fully retains the 192 

information of the original spatial input data or, in special cases, the finest plausible 193 

discretization. Both a subbasin discretization error metric and a HRU discretization error metric 194 

are proposed. 195 

2.1.1. Subbasin Discretization Error Metric 196 

In general, the routing process has two components: in-catchment routing and in-channel routing. 197 

In-catchment routing occurs within a subbasin, and refers to the means of handling the delayed 198 

release of water from runoff, interflow, and baseflow to a subbasin outlet. This time delay is 199 
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typically described by a unit hydrograph. In contrast, in-channel routing is the means by which 200 

water is exchanged downstream between subbasins and within the main channel of each 201 

subbasin. These definitions are applied by other models like ArcSWAT and HEC-GeoHMS 202 

(Doan, 2000; Winchell, et al., 2007). Our subbasin discretization assessment focuses on the 203 

influences of discretization only on in-channel routing. The approach assumes that in-channel 204 

routing is unidirectional (i.e., water moves downstream only through a branching stream 205 

network), each subbasin has one outlet and one main channel, headwater subbasins have no main 206 

channel for routing, and non-headwater subbasins have upstream subbasin flows added to the 207 

beginning of their respective main channels. Should any of these assumptions not hold in other 208 

modelling case studies, the error metric procedures detailed below would need to be adjusted 209 

accordingly.    210 

 211 

Calculation of subbasin discretization errors requires a high resolution reference subbasin 212 

discretization scheme. For the drainage area upstream of a subbasin outlet, the in-channel routing 213 

length error (∆�� ) equals to the in-channel routing length difference between the reference 214 

scheme (scheme 0) and the evaluated discretization (scheme �) as shown in Equation 1. 215 

   ∆�� = �� − �� =
∑ ������

�
���

∑ ���
�
���  

−
∑ ������

�
���

∑ ���
�
���  

                                (1) 216 

where ��and ��are respectively the area-weighted in-channel routing length of scheme 0 and 217 

scheme s. For scheme 0, there are �  subbasins within the evaluated drainage area and � =218 

1,2, ⋯ , � represents subbasin indices. ��� is the area of subbasin � in scheme 0, and 
∑ ������

�
���

∑ ���
�
���  

  is 219 

the area-weighted sum of the in-channel routing length of subbasin � from the subbasin � outlet to 220 

the drainage area outlet of interest. For scheme s, there are � subbasins within the evaluated 221 
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drainage area and � = 1,2, ⋯ , �  represents subbasin indices. ���  is the area of subbasin �  in 222 

scheme s, and 
∑ ������

�
���

∑ ���
�
���  

 is the area-weighted sum of the in-channel routing length of subbasin � 223 

from the subbasin j outlet to the drainage area outlet of interest.  The total area of the drainage 224 

area is � = ∑ ���
�
��� = ∑ ���

�
��� . 225 

 226 

The calculation of the in-channel routing length difference between schemes is best described in 227 

Figure 1 below with a visual example. The example in Figure 1 demonstrates the in-channel 228 

routing length difference (∆��) between scheme 0 and scheme � as the difference in the thick 229 

routing arrows between the two discretization options. For example, in scheme 0, flows from 230 

headwater subbasins 1, 2 and 3 are all routed in the main channel of subbasin 7 for 2 km.  In 231 

comparison, with the coarser discretization scheme s, the flows from this region of the watershed 232 

(subbasins 1, 2 and 3 in scheme 0) are no longer routed in-channel for this distance and thus 233 

treated as a discretization error. A similar error occurs for the subarea including subbasins 4, 5 234 

and 6. In our metric, in-channel routing length errors are computed for subbasin outlets of 235 

interest and in this example, the ‘outlet’ is the site of interest in Figure 1. If all flows reaching the 236 

outlet had a 2 km shorter in-channel routing length in scheme s versus scheme 0, then ∆��would 237 

be 2 km at the outlet. This is not typically the case and so the representative change in routing 238 

length, ∆��, must account for this using area-weighting.  239 

 240 

Figure 1.  Here. 241 

 242 

 243 

   244 
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2.1.2. HRU Discretization Error Metric 245 

As explained before, the information loss from spatial discretization is due to the diminished 246 

representation of spatial data content between a candidate discretization scheme and the original, 247 

fully detailed, input data layer. To quantify the relevant (case study specific) information loss 248 

derived from HRU discretization, the dominant hydrologic processes should first be identified by 249 

considering the modeling purpose, physiographic characteristics and management measures 250 

within the watershed. These dominant processes can be linked to dominant hydrologic model 251 

input variables derived from map inputs which will be used to evaluate information losses. For 252 

example, in rainfall-runoff modeling, if infiltration is identified as a critical process then the most 253 

relevant variables to compute information losses for can be hydraulic conductivity and/or 254 

available water content.  255 

 256 

For a drainage area above an outlet, assume there are n HRUs in the reference scheme (scheme 257 

0), and m HRUs in the evaluated discretization (scheme s), and thus n ≥ m.  In order to 258 

effectively consider the spatial pattern changes between the two schemes, the evaluated scheme 259 

layer needs to be overlaid with the reference scheme layer using vector overlay tools (e.g., union) 260 

for vector maps or raster overlay tools (i.e., weighted overlay) for raster maps in ArcGIS (ESRI, 261 

2014). After overly, each polygon or cell of the output possesses both the evaluated and 262 

reference scheme HRU properties. Assume there are �  polygons (cells) (� = 1, … , �) of the 263 

output. HRU discretization error metrics are designed to go through each polygon (cell) and 264 

measure the relative error of variable change between scheme s and scheme 0. Two different a 265 

priori discretization error metrics corresponding to nominal (categorized) and quantitative 266 

(continuous) data are developed. 267 
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 268 

Figure 2 shows an example of the overlay comparison process required for computing HRU 269 

discretization errors for an example subbasin, corresponding to subbasin 1 of scheme 0 in Figure 270 

1, and uses a nominal variable (land cover) as an example. In scheme 0, there are four different 271 

land covers scattered over the entire subbasin (Figure 2a), but only two land covers remain in the 272 

coarser scheme s (Figure 2b). After overlay and property comparison, four cells show a property 273 

change as highlighted in Figure 2c, in which one cell of coniferous forest turns into deciduous 274 

forest, and one cell of coniferous forest and two cells of pasture turn into crop. The information 275 

loss due to recategorization is considered as a discretization error, expressed in terms of 276 

recategorized area (i.e., 4 km2 in this example). For quantitative variables, the only difference is 277 

the absolute values of the property changes are utilized as shown in the following equations.  278 

 279 

Figure 2. Here. 280 

 281 

For nominal input variables (e.g., soil and land cover), the relative error equals to the sum of 282 

areas with property change from scheme 0 to scheme � divided by the total drainage area. 283 

����� =
∑ ∆���

�
���

∑ ��
�
���

                                           (2) 284 

∆�= �
   0,         �� �������� ������� �� ���ℎ����� �������� �� �ℎ� ��������� ��ℎ���  

1,         �� �������� �������� �� �ℎ����� �������� �� �ℎ� ��������� ��ℎ���  
 (3) 285 

where ����� is relative error (0-1) of the evaluated scheme s describing the proportion of the 286 

drainage area where the variable property is changed and thus incorrect relative to the original 287 

spatial data. �� is the area of the uth polygon (cell) of the overlay output.  288 

 289 
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For quantitative input variables (e.g., hydraulic conductivity and available water content), the 290 

relative error equals to the area-weighted sum of the absolute values of input variable differences 291 

of all polygons (cells) between scheme � and scheme 0 divided by the area-weighted mean input 292 

variable value of scheme 0 within the drainage area. It is expressed as: 293 

����� =
∑ ��

�
��� |�������|

∑ ��
�
��� ���

                                   (4) 294 

where ����� is relative error (0-1) of the evaluated scheme s indicating the level of absolute 295 

input variable value change relative to the mean value of scheme 0.  ��� and ��� are the input 296 

variable values of the uth polygon (cell) in scheme � and scheme 0, respectively.  �� is the area 297 

weight of the uth polygon (cell)  of the total drainage area. It is calculated by: 298 

�� =
��

∑ ��
�
���

                                           (5) 299 

where ∑ ��
�
���  is the total area of the evaluated drainage area. 300 

 301 

The absolute value operation utilized in Equation (4) is to properly track all spatial heterogeneity 302 

changes once the input variable property differs from the original spatial input data.  In other 303 

words, compensation effects (two errors cancelling each other) are not allowed.  304 

 305 

2.2. Sensitivity of Hydrologic Model Simulation Results to Discretization Error Metrics 306 

To validate the impact of the a priori error metrics on hydrologic model simulation results, 307 

multiple hydrologic models were built (one for each candidate discretization scheme). The only 308 

difference between these models exists in discretization. We chose to build our simulation 309 

models for different discretization levels in the Raven hydrological modeling framework (Craig 310 

et al., 2016). All the models are semi-distributed with two buckets and simulate water transfer 311 
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between soil (upper and lower layers) and atmosphere through a series of hydrologic processes.  312 

The models simulate on an hourly time step and in-channel routing is based on a non-linear level 313 

pool routing approach using Manning’s equation. Specific details of the hydrologic model are 314 

provided in Appendix A.1 of this paper. 315 

 316 

Similar to discretization error metrics, hydrologic simulation results are assessed relative to a 317 

reference simulation result. The reference simulation result corresponds to the model using the 318 

reference discretization scheme (scheme 0). All other model simulation results are compared 319 

relative to the reference result using error indices such as the peak flow rate error, the peak flow 320 

timing error, and the cumulative flow volume error. The peak flow rate error is computed as the 321 

absolute peak flow rate difference between scheme s and scheme 0 divided by the peak flow rate 322 

of scheme 0. The peak flow timing error is the time of peak flow occurrence with scheme 0 323 

minus the time of peak flow occurrence with scheme s. The cumulative flow volume error is the 324 

absolute cumulative flow volume difference between scheme s and scheme 0 divided by the 325 

cumulative flow volume of scheme 0. Non-zero values for these indices are the direct result of 326 

different discretization choices.  327 

 328 

The relationship between discretization errors and model errors is estimated by the Spearman’s 329 

rank correlation coefficient (rs) which ranges from -1 to +1. The objective of this analysis is to 330 

validate that changes in our proposed error metrics indeed impact hydrologic model simulation 331 

results. Note that our analysis necessarily avoids the issue of model calibration and validation 332 

decisions confounding the analysis. A future larger scale, multi-basin study would be required to 333 
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properly validate the role discretization errors have in terms of their net impact on model 334 

predictive accuracy. 335 

 336 

2.3. Discretization Decision-Making Approach 337 

We demonstrate one of many ways modelers can utilize the proposed a priori error metrics by 338 

using them within a structured two-step approach to watershed discretization decision-making. 339 

The two-step approach is applicable to both subbasin and HRU discretization decisions and is 340 

described in the following two sections.   341 

2.3.1. Subbasin Discretization Decision-Making Approach 342 

Step 1: Select a subbasin scheme from candidate discretization schemes (Candidacy step). 343 

Candidate subbasin schemes would typically first be generated by placing subbasin outlets at the 344 

sites of interest within the watershed (e.g., gauge stations and/or reservoirs) and at stream 345 

junctions, with subbasin boundaries determined using standard terrain analysis algorithms.  The 346 

subbasin boundaries will vary depending on stream network resolution. Here, we generate the 347 

stream network and junctions based on a flow accumulation threshold as done in ArcSWAT 348 

(Winchell, et al., 2007). Other approaches to junction generation could be used, for example, 349 

truncating the stream network based upon Strahler stream order. The relationships between the 350 

flow accumulation threshold and the coarseness of the stream network are monotonic – as the 351 

accumulation threshold increases, stream network becomes less detailed and fewer subbasins are 352 

included. In this step, typically users should vary the spatially consistent flow accumulation 353 

threshold (uniformly applied for the entire watershed) and assess the resulting routing length 354 

errors.  355 
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 356 

A routing length error threshold (referred to as the preliminary error threshold) is then specified 357 

to select a subbasin scheme from candidates. The selected scheme meets the criteria that all sites 358 

of interest satisfy the preliminary error threshold at the minimum discretization complexity cost 359 

(i.e., the total number of subbasins) among all candidate schemes. Setting the preliminary error 360 

threshold to a very large value would function to select the most coarsely defined candidate 361 

scheme among the candidates.   362 

 363 

Step 2: Refine subbasin discretization for the areas with extreme discretization errors (Polishing 364 

step). 365 

This step is used to refine the candidate subbasin discretization selected in Step 1 for the areas 366 

with the most extreme discretization errors.  It can also be used to focus on minimizing 367 

discretization errors at modeler-specified critical sites of interest where smaller discretization 368 

errors are desired for some reason. Functionally speaking, this step is optional. If utilized, this 369 

step involves specifying a second, stricter routing length error threshold (referred to as extreme 370 

error threshold) and requires the stream junction locations of other finer resolution candidate 371 

schemes. Given a subbasin scheme from Step 1, the complete process of Step 2 is demonstrated 372 

by Figure 3. 373 

 374 

Figure 3. Here. 375 

 376 

Step 2a: Identify the sites of interest with extreme discretization errors. 377 

Sites of interest with discretization errors not satisfying the extreme error threshold are identified.  378 

These sites are referred to as extreme sites.  379 
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 380 

Step 2b: Replace junctions in the upstream refinement areas of extreme sites with those of the 381 

nearest, more detailed satisfactory discretization scheme.  382 

There are three cases in identifying the upstream refinement area for each extreme site: 383 

 Case 1. If the extreme site has no upstream sites of interest, increased resolution of the 384 

stream network is applied to the whole drainage area above the extreme site. 385 

 Case 2. If the extreme site has satisfactory (non-extreme) upstream site(s) of interest, 386 

increased network resolution is only applied to the intermediate area between upstream 387 

site(s) of interest and the extreme site.  388 

 Case 3. If the extreme site has an upstream extreme site(s), the network is not refined.  389 

What will happen in this case is that the upstream extreme site(s) will first be refined 390 

(under Case 1) and then in a future discretization refinement iteration, the intermediate 391 

area(s) will only be refined if the new discretization error(s) for the site in question 392 

remains extreme (the extreme site will be re-categorized into Case 2).  393 

Once the upstream refinement area is determined, replace the junctions within it with those of the 394 

nearest more detailed satisfactory scheme. More detailed alternate candidate schemes would 395 

typically be available from the candidacy selection step (Step 1) but if not, the modeler would be 396 

required to generate one or more detailed schemes (e.g., by decreasing the flow accumulation 397 

threshold). It is worth explaining the reason why there is no need to replace junctions for the 398 

extreme sites of Case 3.  In Case 3, the influence of the upstream refinement on the downstream 399 

error metric result is unclear unless the new errors are recalculated. If the extreme site located 400 

downstream can take the advantage of upstream refinement and obtain a satisfactory error result 401 
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without junction replacements, this will be the most cost-effective solution in terms of model 402 

complexity.   403 

Step2c: Re-discretize subbasins and re-calculate errors for the sites of interest. 404 

In order to get the systematic upstream-downstream flow path relation among subbasins, re-405 

discretize the watershed with the updated junctions and re-calculate the error metric results. The 406 

detailed re-discretization processes are provided in the Appendix A.2 of this paper. 407 

 If the new error metric results in all the previously extreme sites are satisfactory (less 408 

than the extreme error threshold), adopt these junctions. Step 2 ends. 409 

 If some extreme sites do not satisfy the extreme error threshold, return to Step 2b. 410 

Iterate Step 2b and Step 2c until all the extreme sites are satisfactory.  411 

 412 

Because the polishing step introduces non-uniformity to the discretization scheme (i.e., the 413 

refined areas have finer subbasin discretization than the non-refined areas), we refer to this 414 

discretization scheme as a non-uniform scheme.  415 

 416 

2.3.2. HRU Discretization Decision-Making Approach 417 

Similar to subbasin discretization decision-making, modelers can also choose an appropriate 418 

HRU discretization following the two-step decision-making approach outlined in Section 2.3.1. 419 

Step 1 is selecting a uniform HRU scheme from candidates based on some predefined uniform 420 

HRU discretization preliminary error threshold(s). As with subbasin discretization, the candidate 421 

HRU discretization schemes should each be based on some uniform level of detail across the 422 

watershed.  As described in Section 2.3.1, we identified candidate HRU schemes by varying an 423 
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HRU size threshold, below which the small HRUs in that subbasin are merged and replaced with 424 

more dominant HRU types. Again, the relationship between this size threshold and the model 425 

complexity is monotonic. Unlike the subbasin discretization step, there may be multiple 426 

hydrologic model input variables for which a modeler wishes to compute HRU discretization 427 

errors.  In this case, the metric results of multiple input variables can be treated equally or 428 

assigned different weights based on their importance in decision-making. 429 

 430 

Step 2 is polishing HRU discretization. The only difference from subbasin discretization 431 

refinement is that, in Step 2b, HRUs can be directly replaced without junction replacement. Step 432 

2c simply involves merging all resultant HRUs into an output layer and re-calculating errors for 433 

the sites of interest. 434 

 435 

3. Results of Discretization Error Metrics Application 436 

This study is conducted in the Grand River watershed in southwestern Ontario, Canada. With 437 

drainage area of 6704 km2, the Grand River flows south to Lake Erie and is mainly covered by 438 

agricultural land. The applications are presented in two sections. Section 3.1 shows the 439 

application of the subbasin discretization error metric, and Section 3.2 shows the application of 440 

the HRU discretization error metric.  441 

 442 
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3.1. Subbasin Discretization Error Metric Application 443 

3.1.1. Candidate Subbasin Discretization Schemes 444 

In this study, subbasins were represented in subwatershed format and derived from 10� × 10� 445 

digital elevation model (DEM) data. Subbasins were discretized based on the ArcSWAT 446 

(Winchell, et al., 2007) flow accumulation threshold approach as described in Section 2.3.1. 447 

Research shows that, reducing the flow accumulation threshold below 0.5% of the maximum 448 

flow accumulation doesn’t improve model performance but complicates remaining preprocessing, 449 

whereas increasing it significantly above 1% might lead to performance ramifications (Djokic, 450 

2008). According to these findings, we took the percentage of the maximum flow accumulation 451 

across the entire watershed as the subbasin discretization threshold and treated 0.5% as the 452 

minimum flow accumulation threshold value. Therefore, twelve candidate subbasin schemes 453 

were generated corresponding to twelve successively increasing flow accumulation thresholds. 454 

The detailed subbasin discretization results are listed in Table 1.  455 

 456 

Scheme 0 was defined as the reference scheme because subbasin discretization with threshold 457 

0.5% is the finest scheme of all the candidates and we assume the channel information loss 458 

between the real full channel scheme (i.e., one channel for each DEM cell) and scheme 0 is 459 

irremediable. Scheme Max only used the 32 sites of interest as subbasin outlets. The 32 sites 460 

include 24 gauge stations, 7 dams, and the watershed outlet, and their detailed information has 461 

been listed in Table 2. 462 

  463 
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Table 1.  Candidate subbasin discretization schemes 464 
Scheme Flow accumulation threshold (%) Number of subbasins 

0 0.5 130 
1 0.6 110 
2 0.7 100 
3 0.8 94 
4 0.9 92 
5 1.0 90 
6 2.0 60 
7 3.0 46 
8 5.0 44 
9 6.0 40 
10 10.0 38 

Max Only sites of interest 32 

 465 

Table 2.  Details of 32 sites of interest and their drainage areas 466 
Site of 

interest 
Site name 

Drainage area 
(km2) 

Site of 
interest 

Site name 
Drainage area 

(km2) 
1 02GA041 66 17 02GA015 565 
2 Luther Dam 45 18 02GA038 313 

3 02GA014 654 19 
Laurel Creek 

Dam 
31 

4 02GA039 272 20 02GA024 59 
5 Shand Dam 775 21 02GA047 757 
6 02GA016 776 22 02GA048 2477 

7 
Conestogo 

Dam 
559 23 

Shades Mill 
Dam 

96 

8 02GA028 564 24 02GA018 536 
9 02GA040 178 25 02GA003 3490 

10 
Woolwich 

Dam 
60 26 02GA010 1028 

11 Guelph Dam 241 27 02GB006 157 
12 02GA034 1148 28 02GB007 384 
13 02GA031 40 29 02GB001 4784 
14 02GA023 113 30 02GB008 378 
15 02GA029 226 31 02GB010 170 

16 02GA006 769 32 
Watershed 

outlet 
6704 

 467 

In this study, we consider all 32 sites of interest as locations where the discretization error 468 

metrics will be assessed.  Each drainage area is the combined total upstream area draining to the 469 

site as illustrated in Figure 4. For instance, drainage area 3 is defined to include subbasins 1, 2 470 

and 3.  471 
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 472 

Figure 4. Here. 473 

 474 

3.1.2. Subbasin Discretization Error Metric Results 475 

In distributed hydrologic modeling applications, most of the time modelers will only pay 476 

attention to the information loss at the sites of interest. Moreover, it is unnecessary to analyze 477 

error metric results for the sites above which candidate subbasin discretizations are always as 478 

fine as the reference one because in this situation the error metric result is always zero. As a 479 

result, we limited the subbasin error metric results analysis to the 32 sites as introduced in 480 

Section 3.1 and then excluded the 13 sites whose upstream subbasins do not change from scheme 481 

0 to scheme Max. The remaining 19 sites for analysis are sites 3, 5, 6, 7, 8, 9, 11, 12, 16, 17, 18, 482 

21, 22, 24, 25, 26, 28, 29, 32, and their error metric results for the twelve discretization schemes 483 

were computed. For brevity, only the results from nine representative subbasin schemes are 484 

shown in Figure 5.  485 

 486 
Figure 5. Here. 487 

 488 

In each subplot of Figure 5, the routing length errors of the 19 sites are plotted versus their 489 

drainage areas. Figure 5(a) shows that when discretization is detailed at the reference scheme 490 

level, no error exists. Then in Figure 5(b-i), as subbasin discretization gets coarser, the number of 491 

subbasins within a drainage area decreases, and the routing length error increases. This is 492 

reflected by the ranges of error values of Figure 5(b-i). Moreover, in each subplot, the 493 

downstream sites with the largest drainage areas typically have intermediate error values rather 494 

than the maximum value of all the errors at the 19 sites of interest. For example, moving 495 
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downstream in the Grand River watershed, site 22 (drainage area 2477 km2), site 25 (drainage 496 

area 3490 km2), and site 29 (drainage area 4784 km2) all get intermediate error values for all the 497 

subbasin schemes. This trend can be explained by the fact that, for in-channel routing, the 498 

downstream error integrates all its upstream errors in an area-weighted fashion (see Equation 1), 499 

so the drainage area outlet is not necessarily the point that has the largest information loss. This 500 

implies that if modelers are concerned about the multi-site discretization quality or the multi-site 501 

hydrologic model performance, multiple sites rather than just the watershed outlet are worth 502 

considering in subbasin discretization evaluation.  503 

 504 

3.1.3. Sensitivity of Hydrologic Model Simulation Results to Subbasin Discretization 505 

Error Metric 506 

To access the sensitivity of model simulation results to the proposed subbasin error metric, we 507 

built twelve hydrologic models corresponding to all the subbasin schemes of Table 1, in which 508 

their only difference is subbasin discretization and the connectivity between subbasins. We 509 

focused the analysis on a short period (Jan 4 – Jan 20, 2008) of peak or near peak measured 510 

flows over the last ~15 year period across the Grand River watershed. The reference simulation 511 

result corresponds to the model using the reference discretization scheme (scheme 0 of Table 1) 512 

and all simulation model results were compared relative to the reference result using the peak 513 

flow rate error and peak flow timing error.   514 

 515 

Taking the watershed outlet as an example, Figure 6 summarizes the relationship between the a 516 

priori routing length error metric and the hydrologic model error indices where each data 517 

corresponds to one of the eleven candidate subbasin discretization schemes. As the routing 518 
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length error increases, both model error indices increase (almost monotonically) to practically 519 

significant levels.  Correlation (rs) between the routing length error and the peak flow rate error 520 

is 0.99, and correlation (rs) between the routing length error and the peak flow timing error is 521 

also 0.99. This strong correlation is observed for the majority of sites of interest (e.g., 522 

considering the correlation between the routing length error and the peak flow rate error, 15 sites 523 

show rs values of 0.8 or more). 524 

 525 

Figure 6. Here. 526 

 527 

3.1.4. Subbasin Discretization Decision-making 528 

Based on the error metric results of all candidate subbasin discretization schemes, we applied the 529 

two-step decision-making approach to get an appropriate subbasin discretization scheme. It was 530 

assumed that all of the 19 sites of interest are equally important, and 21 km is selected as the 531 

preliminary routing length error threshold. The subjective value of 21 km was selected for 532 

demonstration purposes and based on balancing travel time error implications (assuming a 533 

reference velocity of 1 m/s) and computational complexity (limiting number of subbasins). 534 

Step 1: Select a subbasin scheme from candidate discretization schemes 535 

Scheme 6 (number of subbasins=60) was chosen as the uniform threshold subbasin scheme 536 

because the error metric values of all the 19 sites of scheme 6 are satisfactory (less than 21 537 

km) and the number of subbasins is the minimum among all the satisfactory schemes 538 

(schemes 1-6).  539 

Step 2: Refine subbasin discretization for the areas with extreme discretization errors 540 
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 Step 2a: Identify the sites of interest with extreme discretization errors (extreme sites). 541 

The extreme error threshold was 10.7 km, defined as the 90th  percentile of the error 542 

distribution of scheme 6, and the resultant extreme sites that have the highest 10% errors 543 

were sites 26 and 28, which are highlighted in Figure 7a and Figure 7b.  544 

 Step 2b: Replace junctions in the upstream refinement areas of extreme sites with those of 545 

the nearest, more detailed satisfactory discretization scheme. Specifically, different sites have 546 

different upstream refinement areas: 547 

Case 1: Site 28 has no upstream sites of interest, thus junction replacement is applicable 548 

to the whole drainage area above site 28. Since the error of site 28 in scheme 5 is 4.2 km 549 

(less than 10.7 km), scheme 5 is the nearest satisfactory scheme compared with scheme 6. 550 

Case 2: Site 26 has a satisfactory upstream site of interest, site 24, so junction 551 

replacement only takes place in the intermediate area between the site 24 and site 26. 552 

Since the error of site 26 in scheme 5 is 5.0 km (less than 10.7 km), scheme 5 is also the 553 

nearest satisfactory scheme relative to scheme 6.  554 

 Step2c: Re-discretize subbasins and re-calculate errors for the sites of interest. 555 

After re-discretization, the subbasin compositions within the upstream refinement areas were 556 

changed to the new more detailed subbasins as shown in Figure 7c. Meanwhile, the total 557 

number of subbasins for the entire Grand River watershed increased from 60 to 66. The 558 

routing length errors of sites 26 and 28 became satisfactory (less than 10.7 km as shown in 559 

Table 3).  560 

 561 

Figure 7. Here. 562 

 563 
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Table 3 shows the routing length errors of scheme 6, refined scheme 6, and scheme*. Scheme* 564 

has the same number of subbasins as refined scheme 6 but was generated with a uniform flow 565 

accumulation threshold of 1.55%. In addition to the purposeful reduction of routing errors at the 566 

two extreme sites, Table 3 also shows the substantial error decrease of all the associated 567 

downstream sites (e.g., sites 29 and 32) in refined scheme 6. Moreover, comparing refined 568 

scheme 6 with scheme*, the error mean and standard deviation of refined scheme 6 are lower 569 

than those of scheme*. This indicates that the refined subbasin discretization better represents the 570 

in-channel routing structure than the uniform discretization under the same number of 571 

computational (subbasin) units.   572 

 573 

Table 3.  Subbasin discretization error metric results for three subbasin discretization schemes. 574 
Scheme 6 is based on a flow accumulation threshold of 2.0%, while Scheme* is based on a 575 
threshold of 1.55%.  Sites of interest that are discretized the same way under all three schemes 576 
are not included.  Highlighted errors for refined scheme 6 are lower than corresponding errors in 577 
one or both of Scheme 6 and Scheme*.  Note that site 32 corresponds to the watershed outlet. 578 

Site of interest 
Scheme 6 Refined scheme 6 Scheme* 

Number of 
subbasins 

Error 
(km) 

Number of 
subbasins 

Error 
(km) 

Number of 
subbasins 

Error 
(km) 

7 4 4.0 4 4.0 6 0.9 
8 5 4.0 5 4.0 7 0.9 
16 6 6.4 6 6.4 2 3.9 
17 7 1.7 7 1.7 8 4.1 
18 3 0.0 3 0.0 7 1.7 
22 25 5.9 25 5.9 27 5.2 
25 37 4.7 37 4.7 39 4.2 
26e 5 20.7 9 5.0 5 20.7 
28e 1 20.4 3 4.2 3 4.2 
29 47 8.0 51 4.6 49 7.6 
32 60 8.5 66 5.2 66 7.0 

Error mean 
 

7.7 
 

4.2 
 

5.5 
Error St. deviation 

 
6.8 

 
1.8 

 
5.5 

Error 90th percentile f 
 

10.7f     
e denotes an extreme site under scheme 6 based on exceeding the 90th percentiles of the error 579 
metric. The subbasin discretization within this site’s drainage area is refined based on Step2.  580 
f The 90th percentile computed based on errors across all 19 sites considered (see Section  3.1.2).  581 
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3.2. HRU Discretization Error Metric Application 582 

3.2.1. Candidate HRU Discretization Schemes 583 

In this study, HRU is discretized after subbasin, and an HRU is defined as the unique 584 

combination of subbasin and soil and land cover categories. Subbasin input was one of the 585 

candidate subbasin schemes generated in Section 3.1. Soil spatial input data was from the 586 

Canadian Soil Information Service (CANSIS) available from Agriculture and Agri-Food Canada 587 

(2013) and subdivided into fourteen classes in terms of soil profile. Each soil profile except 588 

water is built up by a unique soil horizon combination from three mineral horizons A, B, C, and 589 

an organic horizon O. Soil profile A-B-C covers more than 70% of the Grand River watershed 590 

(Table 4a). Land cover spatial input data was from Canada’s National Land Cover Database 591 

available from Natural Resources Canada (2014) and subdivided in seven classes, in which 592 

cropland is dominant across the watershed (Table 4b). Soil and land cover inputs used here are 593 

vector coverages derived from 1:20,000 to 1:60,000 scale county-level soil maps attained from 594 

CANSIS and 1:50,000 scale land cover maps from Canada’s National Land Cover Database. 595 

 596 

The map obtained by the overlay (union) of the above subbasin, soil, and land cover layers 597 

defines the reference HRU scheme (scheme 0). Since the map algebra union operation usually 598 

leads to a very fragmented set of sliver HRUs, these sliver HRUs can be suppressed for 599 

aggregation based on certain HRU size threshold. Here, the HRU size threshold was defined as 600 

the HRU area percentage of its affiliated subbasin. The HRU whose area percentage is less than 601 

the size threshold was merged with its neighboring HRU sharing the longest border within the 602 

same subbasin. In order to investigate the influence of the subbasin discretization input on HRU 603 

discretization, we chose two representative subbasin schemes (scheme 5 and scheme Max) as 604 
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subbasin inputs to discretize HRUs, respectively. The generated candidate HRU schemes are 605 

listed in Table 5. For the HRU candidates under 90 subbasins, HRU scheme 0 (number of 606 

HRUs=2706) is the reference scheme; while for the HRU candidates under 32 subbasins, HRU 607 

scheme 0 (number of HRUs=1232) is the reference scheme. Each reference scheme retains 100% 608 

of land cover and soil data as the reference scheme does not eliminate/aggregate sliver HRUs. In 609 

HRU scheme Max, each subbasin is represented by the dominant HRU. Table 5 shows that 610 

subbasin discretization choice significantly affects HRU discretization complexity (i.e., the 611 

number of HRUs) because under the same HRU size threshold, the number of HRUs with 90 612 

subbasins input is always two to three times more than that with 32 subbasins input.  613 

 614 

Table 4.  Grand River watershed (a) Soil classes (b) Land cover classes and their percent 615 
coverage of the watershed. 616 

Soil class Area percentage (%) Land cover class Area percentage (%) 
A B C  72.29 Annual Cropland 40.70 
Water 8.17 Perennial Cropland and Pasture 33.91 
A B BC C  7.76 Deciduous Forest 14.74 
O B  3.40 Urban 5.43 
A B  3.32 Mixed Forest 2.98 
A AB B C  2.51 Wetland 1.24 
A B AB B C  1.13 Water 1.00 
AB  0.64 

 
C  0.27 

 
A C  0.25 

 
O C  0.12 

 
A  0.09 

 
C A C  0.04 

 
A AB C  0.03 

 
 617 

618 
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Table 5.  Candidate HRU discretization schemes with two subbasin discretization schemes (90 619 

and 32 subbasins) 620 

HRU Scheme 
HRU size threshold (% 

of subbasin area) 

Number of HRUs 
Number of 

subbasins=90  
Number of 

subbasins=32 
0 0 2706 1232 
1 1 852 333 
2 2 625 234 
3 3 502 190 
4 4 433 156 
5 5 385 135 
6 6 346 121 
7 7 318 109 
8 8 290 99 
9 9 252 90 
10 10 234 84 

Max One HRU per subbasin 90 32 

 621 

3.2.2. HRU Discretization Error Metric Results 622 

In this study, infiltration and evapotranspiration were identified as the two dominant 623 

hydrological processes, thus vertical hydraulic conductivity (Kz), available water content (AWC), 624 

and land cover were defined as the key hydrologic model input variables of interest. For each 625 

soil class of Table 4a, Kz and AWC are the weighted harmonic mean values of the Kz and AWC 626 

of its soil horizon components. The detailed soil horizon information is available from 627 

Agriculture and Agri-Food Canada (2013). The area-weighted mean values of Kz and AWC of 628 

the entire watershed are 0.9 cm/h and 12.6% (except the soil class water), respectively. Figure 8 629 

demonstrates the discretization error metric results of Kz, AWC, and land cover at the watershed 630 

outlet versus HRU size thresholds. As the HRU size threshold increases, discretization gets 631 

coarser, meanwhile the relative errors of all the three variables increase. However, the same 632 

HRU size threshold imposes different impacts on the information losses of different variables. 633 

For example, under the same HRU schemes (before HRU scheme Max), the relative errors of Kz 634 
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and land cover are always similar in magnitude (Figure 8a, Figure 8c), but the relative errors of 635 

AWC are comparatively smaller (less than 0.05 in Figure 8b). In HRU scheme Max, land cover 636 

error jumps to 0.55, while Kz and AWC errors are 0.15 and 0.05, respectively. Land cover errors 637 

jump to much higher values compared to Kz and AWC because some merged HRUs only 638 

experience land cover changes but no change in soil properties. The results show that, 639 

unsurprisingly, relative discretization errors are positively correlated with HRU size threshold.  640 

 641 

The subbasin discretization decision between 90 or 32 subbasins has a substantial influence on 642 

HRU discretization complexity (100%-200% increase in number of HRUs seen in Table 5).  643 

However, this decision does not make a big difference for information loss as Figure 8 indicates 644 

that two error metric results (AWC and land cover) of the three variables are almost identical and 645 

only one variable (Kz) obtains slightly different error metric results under different subbasin 646 

inputs. 647 

 648 

Figure 8. Here. 649 

 650 

Figure 8 supports how a modeler might make decisions based on a single watershed outlet. 651 

However, in distributed or semi-distributed modelling applications where distributed watershed 652 

responses are of interest, discretization errors should be assessed at multiple sites beyond just the 653 

outlet. Figure 9 is a more robust comparative approach than Figure 8 as it compares 654 

discretization errors at all the 32 sites of interest across the Grand River watershed under 655 

subbasin scheme 5 (number of subbasins = 90).  The interesting pattern in Figure 9 is that for all 656 

the three variables of interest (Kz, AWC, and Land cover), the largest discretization errors (and 657 
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the highest variance) appear in the relatively small drainage areas, and as drainage area increases, 658 

errors approach some constant level. Therefore, while errors for the watershed outlet might be 659 

sufficiently small, they can be unacceptably large in some small upstream subbasins. Although 660 

results are not shown, this pattern persists across all HRU discretization levels.  661 

 662 

Figure 9. Here. 663 

 664 

3.2.3. Sensitivity of Hydrologic Model Simulation Results to HRU Discretization Error 665 

Metrics 666 

Similar to the sensitivity analysis in Section 3.1.3, we checked the sensitivity of hydrologic 667 

model simulation results to the proposed HRU error metrics based on twelve hydrologic models. 668 

These models correspond to all the HRU schemes under 90 subbasins of Table 5, and the only 669 

difference between these models is the property of HRUs. The model output with scheme 0 670 

(Number of HRUs =2706) is the reference simulation result in model errors calculation. The 671 

peak flow rate error and cumulative flow volume error were computed.  672 

 673 

Figure 10 presents the relationship between the a priori HRU discretization error metrics and the 674 

model error indices where each data corresponds to one of the eleven candidate HRU 675 

discretization schemes at the watershed outlet (subbasin 32 outlet). The two model errors are 676 

plotted versus the HRU discretization errors of Kz, AWC, and land cover. Clearly, both model 677 

errors indices monotonically increase with the HRU discretization errors of the three variables. 678 

Correlations (rs) between the three HRU discretization errors (Kz, AWC, and land cover) and the 679 
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peak flow rate error are all 0.99. Similarly, correlations (rs) between the three HRU discretization 680 

errors and the cumulative flow volume error are also 0.99. This strong correlation also shows up 681 

in most sites of interest (e.g., considering the correlation between the land cover error metric and 682 

the peak flow rate error, 23 sites show rs values of 0.8 or more). 683 

 684 

Figure 10. Here 685 

 686 

Figure 11 provides a more complete description of hydrologic simulation responses by plotting 687 

all sites of interest model errors against their drainage areas under the same three representative 688 

HRU schemes of Figure 9. The upstream sites with relatively small drainage areas obtain a high 689 

variance of model errors, in which some of them have three or more times errors than their 690 

downstream sites. This observation appears in both the peak flow rate error and the cumulative 691 

flow volume error and is consistent with results from Figure 9 (indicating the largest HRU 692 

discretization errors are also associated with small drainage areas).   693 

 694 

Figure 11. Here 695 

 696 

3.2.4. HRU Discretization Decision-making 697 

An alternative to the commonly applied uniform discretization framework demonstrated above is 698 

to make discretization decisions differently in different parts of the watershed, in response to 699 

excessively high error metric values. This relies on the two-step HRU discretization decision-700 

making approach (see Section 2.3.2) where different subareas can use different HRU delineation 701 

thresholds. To demonstrate, assume subbasin scheme 5 (number of subbasins=90) is the subbasin 702 
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input for HRU discretization; all the 32 sites of interest and all the three hydrologic model input 703 

variables of interest are equivalently important in HRU scheme decision-making; and 0.40 is the 704 

preliminary error threshold for all the three variables. The subjective value of 0.40 was selected 705 

for demonstration purposes only and selected with the goal of generating a modest number of 706 

HRUs relative to the range of candidate HRU discretizations. 707 

 708 

Step 1: Select an HRU scheme from candidate discretization schemes. 709 

HRU scheme 10 (number of HRUs=234) was chosen as the uniform HRU scheme because 710 

the relative errors of all the sites of interest in scheme 10 are satisfactory (less than 0.40) and 711 

the number of HRUs is minimum among all the satisfactory schemes (schemes 1-10).  712 

Step 2: Refine HRU discretization for the areas with extreme discretization errors. 713 

 Step 2a: Identify the sites of interest with extreme discretization metrics (extreme sites).  714 

The extreme error thresholds were defined as the 90th percentiles of the error distributions of the 715 

three variables (0.13, 0.06, and 0.31 for Kz, AWC, and land cover, respectively).  As a result, the 716 

sites having the highest 10% Kz, AWC, or land cover errors were identified as the extreme sites 717 

of interest to have their discretization refined (i.e., sites 10, 13, 15, 19, 20, 23, 28, and 31). The 718 

drainage areas above sites 19 and 20 are highlighted for discretization refinement demonstration 719 

in Figure 12. 720 

 721 

 Step 2b: Replace HRUs in the upstream refinement areas of extreme sites with those of the 722 

nearest, more detailed satisfactory discretization scheme, in which different extreme sites 723 

have different upstream refinement areas. 724 
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Case 1: Extreme sites 10, 13, 19, 23, 28, and 31 have no upstream sites of interest, so the 725 

HRU refinement areas cover the whole drainage areas above these sites. 726 

Case 3: Extreme sites 15 and 20 have extreme upstream sites of interest (site 13 and 19, 727 

respectively), and it is unnecessary to replace HRUs across their entire drainage area in 728 

the first refinement iteration.  729 

Then, only Case 1 sites had the HRUs within them replaced with those of the nearest more 730 

detailed satisfactory HRU scheme relative to HRU scheme 10. This replacement step was 731 

applied independently for each of the refined extreme sites.  The detailed HRU replacement 732 

results are summarized in Table 6.  733 

 734 

Table 6.  HRU replacement results for the extreme sites in the first HRU discretization 735 
refinement iteration 736 

HRU replacement area 
Original number of 

HRUs 
Nearest satisfactory 

HRU Scheme 
New number of 

HRUs 
Drainage area above site 10 2 HRU scheme 1 10 
Drainage area above site 13 4 HRU scheme 9 5 
Drainage area above site 19 4 HRU scheme 5 8 
Drainage area above site 23 2 HRU scheme 7 5 
Drainage area above site 28 10 HRU scheme 5 16 
Drainage area above site 31 3 HRU scheme 3 7 

 737 
 738 

 Step 2c: Merge all resultant HRUs into an output layer and re-calculate discretization errors 739 

for the sites of interest. 740 

After the first refinement iteration, it was found that all Case 1 sites became satisfactory, but 741 

some errors of sites 15 and 20 were still extreme. Therefore, Step 2b needed to be repeated to 742 

replace HRUs for sites 15 and 20.  743 
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 Step 2b: Replace some or all HRUs in the upstream refinement areas of extreme sites with 744 

those of the nearest, more detailed satisfactory discretization scheme. 745 

Case 2: Extreme sites 15 and 20 became Case 2 after the first refinement iteration, and 746 

thus the intermediate area between sites 13 and 15 and the intermediate area between 747 

sites 19 and 20 were identified as the HRU replacement areas in the second refinement 748 

iteration. The HRUs within these intermediate areas were replaced with those of the 749 

nearest satisfactory schemes relative to HRU scheme 10. The detailed HRU replacement 750 

results are summarized in Table 7.  751 

 752 

Table 7.  HRU replacement results for the extreme sites in the second HRU discretization 753 
refinement iteration 754 

HRU replacement area 
Original number 

of HRUs 
Nearest satisfactory HRU 

Scheme 
New number of 

HRUs 
Intermediate area 13-15i 10 HRU scheme 8 16 
Intermediate area 19-20 1 HRU scheme 4 3 

i Intermediate area 13-15 means the intermediate area between site 13 and site 15. This also applies to 755 
intermediate area 19-20. 756 
 757 

 Step 2c: Merge all resultant HRUs into an output layer and re-calculate errors across the 758 

watershed. 759 

After the second iteration, the errors of all the originally identified extreme sites became 760 

satisfactory, thus the refinement process ended and this scheme was the refined HRU scheme. 761 

Figure 12 provides a visual comparison for the HRUs before and after refinement of the drainage 762 

areas of sites 19 and 20 under subbasin scheme 5 (90 subbasins). 763 

 764 

Figure 12. Here. 765 
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 766 

Table 8 shows the error metric results of HRU scheme 10, refined scheme 10, and scheme*. 767 

Scheme* has the same number of HRUs as refined scheme 10 (number of HRUs=271), but was 768 

generated with a uniform HRU size threshold of 8.4%. Through discretization refinement, the 769 

extreme errors identified in Step 2b above are reduced, and the discretization quality for site 32 770 

representing the entire watershed is also improved for all the three variables. Moreover, the 771 

discretization error means and standard deviations of the three variables across all the sites of 772 

interest of the refined scheme also decrease in contrast with scheme*. Therefore, the non-773 

uniform discretization functions to retain more input data information than the uniform 774 

discretization under the same discretization complexity. In addition, to get a sense of how non-775 

uniform the HRU discretization is in refined scheme 10, the average HRU sizes of the uniformly 776 

discretized areas and the non-uniformly discretized areas within the watershed were respectively 777 

calculated as 28.8 km2 and 13.6 km2. The latter is more than 50% smaller than the former, which 778 

means the HRUs within the refined areas are obviously finer than those of the uniformly 779 

discretized areas.  780 

781 
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Table 8.  Discretization error metric results for three HRU discretization schemes (using 90 subbasins).  782 
Scheme 10 is based on an HRU size threshold of 10%, while Scheme* is based on a threshold of 8.4%.  783 
Note that site 32 corresponds to the watershed outlet and sites of interest 1, 9, 11, 18, 24, 27 and 30 are 784 
not included because they are discretized the same way under all three schemes.  Highlighted errors for 785 
Refined scheme 10 are lower than corresponding errors in one or both of Scheme 10 and Scheme*. 786 

Site of interest 
Scheme 10 Refined scheme 10 Scheme* 

Number 
of HRUs 

Kz AWC 
Land 
cover 

Number 
of HRUs 

Kz AWC 
Land 
cover 

Number 
of HRUs 

Kz AWC 
Land 
cover 

2 3 0.06 0.02 0.25 3 0.06 0.02 0.25 4 0.02 0.01 0.22 
3 17 0.06 0.03 0.20 17 0.06 0.03 0.20 22 0.06 0.02 0.14 
4 7 0.02 0.01 0.12 7 0.02 0.01 0.12 8 0.02 0.01 0.07 
5 20 0.06 0.03 0.22 20 0.06 0.03 0.22 25 0.05 0.02 0.17 
6 22 0.06 0.03 0.22 22 0.06 0.03 0.22 28 0.05 0.02 0.17 
7 15 0.02 0.01 0.10 15 0.02 0.01 0.10 16 0.02 0.01 0.07 
8 18 0.02 0.01 0.10 18 0.02 0.01 0.10 19 0.02 0.01 0.07 

10e 2 0.11 0.06 0.11 10 0.06 0.02 0.02 2 0.11 0.06 0.11 
12 29 0.06 0.03 0.19 29 0.06 0.03 0.19 35 0.06 0.02 0.15 
13e 4 0.02 0.00 0.31 5 0.01 0.01 0.22 6 0.02 0.00 0.14 
14 4 0.12 0.05 0.14 12 0.10 0.03 0.08 4 0.12 0.05 0.14 
15e 14 0.03 0.01 0.36 21 0.03 0.01 0.26 20 0.03 0.01 0.30 
16 24 0.07 0.01 0.09 24 0.07 0.01 0.09 26 0.06 0.01 0.08 
17 33 0.05 0.02 0.27 40 0.05 0.02 0.23 40 0.05 0.02 0.23 
19e 4 0.23 0.03 0.35 8 0.13 0.01 0.17 4 0.23 0.03 0.35 
20e 5 0.23 0.03 0.34 11 0.13 0.02 0.17 5 0.23 0.03 0.34 
21 36 0.07 0.03 0.26 43 0.07 0.03 0.23 43 0.07 0.03 0.23 

22 89 0.08 0.02 0.15 103 0.08 0.02 0.15 102 0.08 0.02 0.12 
23e 2 0.13 0.07 0.39 8 0.03 0.01 0.07 5 0.05 0.02 0.18 
25 141 0.08 0.03 0.19 168 0.08 0.02 0.17 166 0.08 0.02 0.16 
26 19 0.12 0.03 0.16 19 0.12 0.03 0.16 20 0.12 0.02 0.16 
28e 10 0.21 0.06 0.13 16 0.12 0.03 0.08 11 0.20 0.05 0.13 
29 176 0.09 0.03 0.19 203 0.09 0.02 0.17 207 0.09 0.02 0.16 
31e 3 0.24 0.13 0.04 7 0.06 0.04 0.05 3 0.24 0.13 0.04 
32 234 0.12 0.04 0.16 271 0.10 0.03 0.15 271 0.11 0.04 0.14 

Error mean   0.09 0.03 0.20   0.07 0.02 0.15   0.09 0.03 0.16 

Error Std. deviation   0.07 0.03 0.09   0.04 0.01 0.07   0.07 0.03 0.08 

Error 90th percentile f   0.13 0.06 0.31                 
e denotes an extreme site under scheme 10 based on exceeding the 90th percentiles of the error metrics. 787 
The HRU discretization within this site’s drainage area is refined based on Step2.  788 
f The 90th percentile computed based on errors across all 32 sites of interest. 789 
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4. Discussion 790 

4.1. Reference Discretization Scheme Determination 791 

The reference scheme is defined as a scheme that fully retains the information of the original 792 

spatial input data or, in special cases, the finest plausible discretization.  The implication is that 793 

the modeler is interested in quantifying how much information is lost relative to the reference 794 

scheme.    795 

 796 

Our subbasin reference scheme was defined based on a subjective flow accumulation threshold 797 

to determine reference main channel lengths.  Alternatively, the real full flow path information 798 

(i.e., flow path of each cell in the DEM) can be obtained, for example, by the flow length tool of 799 

ArcGIS, and the corresponding discretization could be used as the reference scheme. For HRU 800 

discretization, our reference scheme retained all raw input spatial data and thus avoided any 801 

subjective decisions.  Alternatively, the reference HRU scheme could be subjectively defined as 802 

a discretization that addresses some numerical and topological problems if this discretization is 803 

the one that modelers will practically apply and want relative errors computed against (Sanzana 804 

et al., 2013).   While absolute discretization error metric values will be impacted by what can be 805 

a subjective reference scheme choice, the relative error values among candidate discretization 806 

choices should not change significantly.     807 

 808 
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4.2. Discretization Error Metrics 809 

The subbasin discretization error metric estimates the in-channel routing length difference 810 

relative to the reference scheme. An improved approach would be to instead consider travel time 811 

error by using a reference flow velocity. Assuming the reference flow velocity as a constant is an 812 

easy and common method for practical purposes (De Lavenne, Boudhraâ, & Cudennec, 2015; 813 

Rigon, Bancheri, Formetta, & de Lavenne, 2016; Sanzana, et al., 2013). However, this 814 

assumption is questionable as typical watersheds have faster velocity upstream reaches compared 815 

to lower velocity downstream reaches.  As such, a travel time error could instead be based on a 816 

spatially variable reference flow velocity.  In addition, other available roughness, geometry, 817 

channel slope information can be incorporated into the routing information loss estimation by 818 

being linked to flow velocity (e.g., with Manning’s Equation).  819 

 820 

The a priori metrics (both nominal and quantitative) are able to provide directly meaningful 821 

descriptions on information loss because they explicitly characterize how much area or value of 822 

the hydrologic model input variable is changed after discretization. Moreover, they are unique as 823 

compared to the existing a priori metrics in the way they identify the property change. 824 

Haverkamp et al.(2002) , Booij (2003), and Dehotin and Braud (2008) all define discretization 825 

information loss as the overall statistics difference between the candidate scheme and the 826 

reference scheme, failing to conduct the cell-by-cell comparison with the original spatial input 827 

data. In contrast, the metrics proposed here correspond one-to-one with information loss during 828 

discretization. The overlay comparison process is a straightforward technique and is feasible for 829 
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both raster and vector spatial input data.  This enables other hydrologic variables of interest such 830 

as land surface slope and aspect to be analyzed with similar a priori discretization error metrics.   831 

 832 

Figure 5 and Figure 9 show that discretization errors are highest in smaller upstream subbasins 833 

while Figure 11 shows that hydrologic model error indices (for peak flow and cumulative 834 

volume) are also highest in smaller upstream subbasins. This observation explains to some extent 835 

the modelling difficulties associated with small upstream subbasins in semi-distributed 836 

modelling. Although past studies such as Andersen (2001) and Tuppad (2006) have attributed the 837 

poor relative performance of calibrated upstream gauges to calibrated downstream locations to 838 

factors like more uncertain rainfall, our observation reveals that relatively poor performance in 839 

the smaller upstream subbasins of our case study can be expected since the discretization errors 840 

(and hydrologic model error indices) of these subbasins have a high variance and can be three 841 

times larger than the corresponding errors of the downstream larger drainage areas in the uniform 842 

threshold discretization framework. This demonstrates the utility of multi-site discretization 843 

evaluation in distributed modelling applications, and also suggests that a non-homogenous 844 

approach to watershed discretization decision-making would be beneficial. 845 

 846 

Our HRU error metric approach for nominal input data did not disaggregate the individual area 847 

changes of the different categories of nominal data. For example, the area changes of the crop 848 

land or the deciduous forest land. However, modelers may only care about the area change of a 849 

certain category in their watershed (e.g., the change from forest to suburban may be of 850 

consequence but the change from wetland to swamp may be immaterial). Although not 851 
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demonstrated in this work, the error metric for nominal variables (Equation 2) can be readily 852 

modified to assess the relative error of a specific category of nominal input data. 853 

 854 

4.3. Variations to Discretization Approach 855 

Our approach first generated all candidate subbasin schemes by ArcSWAT, and then generated 856 

candidate HRU schemes by sliver area aggregation. Any other candidate schemes generated by 857 

different discretization methods can also be evaluated by our proposed a priori discretization 858 

error metrics. Additional checks could be added to the subbasin discretization step, for example, 859 

checking the reference scheme against additional data such as orthophotos or hydrographic 860 

survey maps. Another variation is related to handling the small but potentially important sliver 861 

HRUs in HRU discretization simplification. For instance, in periurban areas where the land 862 

cover is very heterogeneous some small HRUs can be meaningful in terms of hydrology, thus 863 

such HRUs should be protected from merging in discretization simplification. One approach to 864 

preserve these key HRUs is to introduce an importance factor that would artificially increase the 865 

areas of key HRUs so that they would exceed the HRU discretization threshold used to aggregate 866 

small HRUs.  867 

 868 

5. Conclusions  869 

This study proposed a priori discretization error metrics that can estimate the information loss 870 

for any candidate discretization scheme. These metrics do not require model simulation, are 871 

independent of any specific modelling software, provide modelers with directly interpretable 872 

information on discretization quality, and allow for multi-site and multi-variable discretization 873 
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evaluations prior to model development. In particular, the subbasin error metric provides the first 874 

attempt at quantifying the routing information loss from discretization; the HRU error metrics 875 

improves upon the existing a priori metrics in variable property change identification by the 876 

overlay comparison process. The proposed error metrics are straightforward to understand and 877 

easy to recode into the preprocessing of any semi-distributed hydrologic models and the fully 878 

distributed models using spatial input data aggregation. As a potential application of the 879 

proposed a priori discretization error metrics, a two-step decision-making approach was 880 

formulated to help modelers to get the appropriate subbasin and HRU discretization schemes, 881 

respectively. The approach does not only allow choosing a traditional spatially uniform-threshold 882 

discretization scheme based on the modeler-defined error threshold(s), but also enables 883 

compressing extreme errors to satisfy the modeler-specified discretization error targets.  884 

 885 

These a priori discretization error metrics were applied to the discretization of the Grand River 886 

watershed. Results indicated that the discretization-induced information loss as measured by our 887 

discretization error metrics monotonically increases as discretization gets coarser. Hydrologic 888 

modeling under candidate discretization schemes validates the strong correlation between our 889 

discretization error metrics and model predictions (peak flow rate, cumulative flow and peak 890 

flow timing).  Discretization evaluation results show that model accuracy moving from larger 891 

downstream locations to smaller upstream locations would be expected to increase since the 892 

largest discretization errors and highest error variability occur in smaller upstream locations. 893 

This pattern is also evident when changes in hydrologic model outputs were used in place of 894 

HRU discretization error metrics. Finally, results show that the common and convenient 895 

approach of applying uniform discretization across the watershed domain performs worse 896 
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compared with the metrics-informed non-uniform discretization approach as the latter is able to 897 

preserve more input data information using the same number of computational units. However, 898 

the influence of non-uniform discretization on hydrologic model outputs should be further 899 

studied using a number of hydrologic models and case studies. 900 

 901 

In applying the proposed a priori discretization error metrics to discretization decision-making, 902 

accounting for input forcing data (e.g., precipitation and temperature) resolution is also an 903 

important future consideration. This will require comparing the spatial and temporal distributions 904 

of the forcing input data under candidate schemes and those under the reference scheme. Beyond 905 

the application in discretization decision-making, future studies can utilize the discretization 906 

error metrics in other ways.  For instance, the discretization error metrics may be useful in trying 907 

to account for the uncertainty induced by watershed discretization decisions which is commonly 908 

ignored. Furthermore, the discretization error metrics should prove useful even when they are not 909 

calculated a priori in that they could serve an important role in diagnosing the causes of model 910 

prediction errors in distributed modeling applications.       911 
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