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Abstract

Classi�cation is essential in statistical learning. This thesis deals with three topics

in classi�cation: multi-label classi�cation, nonparametric multi-class classi�cation and a

special type of text categorization called occupation coding. For each topic, novel ap-

proaches are proposed with the goal of high predictive performance. This is empirically

demonstrated for each method.

In multi-label classi�cation, observations may be associated with multiple classes or

labels simultaneously. Generally, correlations exist between labels and taking into account

the label correlations is important during the classi�cation process. This thesis proposes

an approach based on the nearest neighbor principle that considers neighbors both in the

feature (x) and the label (y) space. The proposed method chooses the labelset of a training

observation that minimizes a weighted function of the distances in feature and label space.

By selecting an entire labelset as the prediction, the method implicitly considers label

correlations.

In multi-class classi�cation, the well-known k-nearest neighbors method is especially

desirable when the response surface exhibits highly local behavior. A novel approach is

presented that makes a prediction based on the kth nearest neighbor from each class. The

method not only provides estimates for class posterior probabilities but also converges

to the Bayes classi�er as the size of the training data increases. Further, the method is

extended using the idea of an ensemble.

Occupation coding is an important multi-class text categorization problem. Since fully

automated classi�cation is challenging, researchers focus more on partially automated cod-

ing. Three approaches based on underlying statistical learning methods are proposed to

improve the classi�cation accuracy of the underlying statistical learning methods.
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Chapter 1

Introduction

With the advent of the information age, data are everywhere and statistical problems

have exploded both in size and complexity. Learning from data is essential for statistical

researchers. As the amount of data grows, classifying data manually has become infeasible.

At the same time, automated classi�cation using statistical learning algorithms has been

an essential part of modern statistics.

In traditional classi�cation problems, each observation is associated with a single class

label. Such a problem is called either binary classi�cation when there are only two classes

or multi-class (or multinomial) classi�cation when there are more than two classes. (For

the rest of this thesis, we refer single-label classi�cation as multi-class classi�cation for

convenience.) On the other hand, in multi-label classi�cation each observation may be-

long to multiple labels simultaneously. Compared with multi-class classi�cation, learning

from multi-label data has recently received increasing attention from machine learning

researchers (Madjarov et al., 2012; Tsoumakas et al., 2010).

There are many approaches to classi�cation. The k nearest neighbor (kNN) method
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(Fix and Hodges, 1951) is one of the most popular approaches (Wu et al., 2008). The

principle of kNN is simple; for the prediction of a new observation, kNN identi�es nearest

training observations based on the feature information and makes a prediction using the la-

bels/classes of the nearest observations. Despite its simplicity, kNN performs well in many

classi�cation problems. This thesis proposes various approaches to di�erent classi�cation

problems that extend the nearest neighbor principle.

This thesis contributes novel approaches to both multi-class and multi-label classi�ca-

tions in statistical learning. Evaluated on a suite of data sets, the proposed approaches

compare favorably to state-of-the-art methods on one or multiple criteria. Speci�cally,

this thesis covers three di�erent topics in supervised classi�cation: (a) multi-label classi-

�cation, (b) nonparametric multi-class classi�cation, and (c) an important application of

multi-class classi�cation called occupation coding. Although many of the proposed ap-

proaches are based on the nearest neighbor principle, the approaches are all di�erent. For

multi-label classi�cation, we propose a method that �nds the nearest neighbor using both

the feature and label spaces. For nonparametric multi-class problems, we propose a method

that predicts using nearest neighbors conditional on each class. For occupation coding, we

propose a modi�ed nearest neighbor approach, as well as two other statistical learning

methods, to improve the quality of automated coding.

Signi�cant parts of the work presented in this thesis are published or have been sub-

mitted for publication:

• H. Gweon, M. Schonlau, S. H. Steiner. �Nearest Labelset Using Double Distances for

Multi-label Classi�cation�. Submitted to ECML-PKDD.

• H. Gweon, M. Schonlau, S. H. Steiner. �The k Conditional Nearest Neighbor Algo-

rithm for Classi�cation�. Submitted to ICML.
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• H. Gweon, M. Schonlau, L. Kaczmirek, M. Blohm, S. Steiner. �Three Methods for

Occupation Coding Based on Statistical Learning�. Journal of O�cial Statistics.

Volume 33, Issue 1, Pages 101�122, 2017.

Chapters 2, 3 and 4 are self-contained and each corresponds to one of the papers listed

above. This thesis is organized as follows.

In Chapter 2, we study multi-label classi�cation. Predicting each label independently

has been criticized for not exploiting any correlation between labels. We propose a novel

approach, called Nearest Labelset using Double Distances (NLDD). The proposed method

is based on the distances between new and training observations both in the feature and

in the label spaces. The predicted labelset is the labelset of a training observation that

minimizes a weighted sum of the two distances. The weights are estimated from binomial

regression of the number of misclassi�ed labels on the two distance variables. The weights

are estimated by maximum likelihood. NLDD only considers labelsets observed in the

training data, thus implicitly taking into account label dependencies. Experiments on

benchmark multi-label data sets show that NLDD on average outperforms other well-

known approaches.

In Chapter 3, we study nearest neighbor-based nonparametric approaches to multi-class

classi�cation. We introduce a novel nonparametric method, called k conditional nearest

neighbor (kCNN), based on nearest neighbors conditional on each class: kCNN calculates

the distance between a new observation and the kth nearest neighbor from each class,

estimates posterior probabilities of class memberships using the distances, and assigns the

observation to the class with the largest posterior. We prove that the kCNN approach

converges to the Bayes classi�er as the size of the training data increases. Further, we

extend the proposed approach to an ensemble method. Experiments on benchmark data
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sets show that both kCNN and the ensemble version of kCNN on average outperform

other methods including the traditional k nearest neighbor method.

In Chapter 4, we study occupation coding, an important application of multi-class clas-

si�cation. Occupation coding is a type of text categorization where the features are text

answers from survey respondents and the response variable is occupation codes, where

an occupation code refers to a hierarchically structured numeric code that identi�es a

unique job title as well as its parent groups. Usually occupation coding is partially auto-

mated; some answers need to be coded manually. The goal is to determine the fraction

of the observations that can be coded automatically with high coding quality. We in-

troduce three methods for automatic coding: combining separate models for the detailed

occupation codes and for aggregate occupation codes, a hybrid method that combines a

duplicate-based approach with a statistical learning method, and a modi�ed nearest neigh-

bor approach. Using data from the German General Social Survey (ALLBUS), we show

that the methods improve the automated coding accuracy of the underlying statistical

learning methods. Also, we show that the proposed methods allow us to code a larger

fraction of the observations automatically for any given target accuracy. Further, we �nd

de�ning duplicates based on ngram variables is preferable to one based on exact string

matches.

In Chapter 5, we summarize the thesis and discuss future work.
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Chapter 2

NLDD: a new algorithm for Multi-label

classi�cation

2.1 Introduction

In multi-label classi�cation, an observation can belong to multiple labels at the same

time. This is di�erent from multi-class or binary classi�cation, where an observation can

only be associated with a single label. For example, a newspaper article talking about

electronic books may be labelled with multiple topics such as business, arts and technology

simultaneously. Multi-label classi�cation has been applied in many areas of application

including text (Schapire and Singer, 2000; Godbole and Sarawagi, 2004), image (Boutell

et al., 2004; Zhang and Zhou, 2007), music (Li and Ogihara, 2003; Trohidis et al., 2008) and

functional genomics (Elissee� and Weston, 2001; Struyf et al., 2005; Blockeel et al., 2006).

A labelset for an observation is the set of all labels that are associated with that observation.

A multi-label classi�cation problem is a special case of multi-target classi�cation (also

5



known as multi-dimensional or multi-objective classi�cation), where each label can take

multiple values rather than binary (Bielza et al., 2011).

Approaches for solving multi-label classi�cation problems may be categorized into ei-

ther problem transformation methods or algorithm adaptation methods (Tsoumakas and

Katakis, 2007). Problem transformation methods transform a multi-label problem into one

or more single-label problems. For the single-label classi�cation problems, binary or multi-

class classi�ers are used. The results are combined and transformed back into a multi-label

representation. Algorithm adaptation methods, on the other hand, modify speci�c learn-

ing algorithms directly for multi-label problems. Tsoumakas et al. (2010), Madjarov et al.

(2012) and Zhang and Zhou (2014) give overviews over multi-label algorithms and evalua-

tion metrics. Also, Madjarov et al. (2012) conduct an extensive experimental comparison

of various multi-label learning methods.

In this chapter, we propose a new problem transformation approach that applies the

nearest neighbor method based on the shortest distance in the feature space. However,

because we have multiple labels, we additionally consider the shortest (Euclidean) distance

in the label space where the input of the test observation in the label space consists of

probability outputs obtained by independent binary classi�ers. We then �nd the labelset

that minimizes the expected label misclassi�cation rate as a function of both distances,

feature space and label space, exploiting high-order interdependencies between labels. The

nonlinear function is estimated using maximum likelihood.

The e�ectiveness of the proposed approach is evaluated with nine multi-label data

sets. Our experiments show that the proposed method achieves the lowest average rank

on 0/1 loss and multi-label accuracy, and the second lowest on Hammming loss and

F -measure, compared with eight other commonly used algorithms.
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2.2 Approaches for Multi-label Classi�cation

In this section, we brie�y review the multi-label approaches that are existing competitors

to our proposed approach.

The most common approach, Binary Relevance (BR) (Zhang and Zhou, 2005; Tsoumakas

and Katakis, 2007), transforms a multi-label problem into separate binary problems. That

is, using training data, BR constructs a binary classi�er for each label independently.

Suppose there are L possible labels. For a test observation, the prediction set of labels is

obtained simply by combining the individual binary results. In other words, the predicted

labelset is the union of the results predicted from the binary models. This approach re-

quires one binary model for each label. The method has been adapted in many domains

including text (Gonçalves and Quaresma, 2003), music (Li and Ogihara, 2003) and images

(Boutell et al., 2004). One drawback of the basic binary approach is that it does not ac-

count for any correlation that may exist between labels, because the labels are modelled

independently. Taking correlations into account is often critical for good prediction in

multi-label problems (Godbole and Sarawagi, 2004; Ji et al., 2008).

Subset-Mapping (SMBR) (Schapire and Singer, 1999; Read et al., 2011) is a method

related to BR. For a new observation, a vector of labels is obtained by the binary outputs

of BR and the �nal prediction is made by the training labelset with the shortest Hamming

distance to the prediction set. SMBR makes predictions by selecting labelsets observed in

the training data. Once a labelset is obtained by BR, the latter process can be considered

a nearest neighbor approach in the label space with Hamming distance as the distance

metric.

An extension of binary relevance is Classi�er Chain (CC) (Read et al., 2011). CC �ts

labels sequentially using binary classi�ers. Labels already predicted are included as fea-
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tures in subsequent classi�ers until all labels have been �t. Including previous predictions

as features �chains� the classi�ers together and also takes into account potential label cor-

relations. However, the order of the labels in a chain a�ects the predictive performances.

Read et al. (2011) also introduced the ensemble of classi�er chains (ECC), where multiple

CC are built with re-sampled training sets. The order of the labels in each CC is ran-

domly chosen. The prediction label of an ECC is obtained by the majority vote of the

CC models.

Label Powerset learning (LP ) transforms a multi-label classi�cation into a multi-class

problem (Tsoumakas and Katakis, 2007). In other words, LP treats each labelset as a

single label. The transformed problem requires a single classi�er. Although LP captures

correlations between labels, the number of classes in the transformed problem increases

exponentially with the number of original labels. LP learning can only choose observed

labelsets for predictions (Tsoumakas and Katakis, 2007; Read et al., 2008).

The random k-labelsets method, (RAKEL) (Tsoumakas and Vlahavas, 2007), is a

variation on the LP approach. In a multi-label problem with L di�erent labels, RAKEL

employs m multi-class models each of which considers k(≤ L) randomly chosen labels,

rather than the entire labelset. For a test observation, the prediction labelset is obtained

by the majority vote of the results based on themmodels. RAKEL overcomes the problem

that the number of multinomial classes increases exponentially as a function of the number

of labels. It also considers interdependencies between labels by using multi-class models

with subsets of the labels.

A hierarchy of multi-label classi�ers (HOMER) (Tsoumakas et al., 2008) constructs

a tree-shaped hierarchy by partitioning the labels recursively into smaller disjoint subsets

(i.e. nodes) using a balanced clustering algorithm. Tsoumakas et al. (2008) proposed

a balanced k means algorithm that extends the k means algorithm with an additional
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constraint on the size of each cluster. Using the balanced algorithm places similar labels

together into the same subsets. After that, HOMER constructs a multi-label classi�er for

the labelsets in each node. For the prediction of a new observation, HOMER follows a

top-down recursive process from the root. A classi�er on a non-root node is called only

if the prediction of its parent node is positive. The �nal labelset is determined by the

positive leaves (i.e. labels) whose parent nodes are all positive.

A popular learning algorithm based on the k Nearest Neighbours (kNN) approach is

MLKNN (Zhang and Zhou, 2007). Like other kNN -based methods, MLKNN identi�es

the k nearest training observations in the feature space for a test observation. Then,

for each label, MLKNN estimates the prior probability and probability for the number

of neighbours associated with the label. Using Bayes theorem, MLKNN calculates the

posterior probability from which a prediction is made.

The Conditional Bernoulli Mixtures (CBM) (Li et al., 2016) approach transforms a

multi-label problem into a mixture of binary and multi-class problems. CBM divides the

feature space into K regions and learns a multi-class classi�er for the regional components

as well as binary classi�ers in each region. The posterior probability for a labelset is

obtained by mixing the multi-class and multiple binary classi�ers. The model parameters

are estimated using the Expectation Maximization algorithm.

Multi-target classi�cation approaches may also be used for multi-label classi�cation. A

number of multi-target learning methods use the predictive clustering tree (PCT ) (Blockeel

et al., 1998) as the base classi�er (Kocev et al., 2007; Madjarov et al., 2016). A competitive

approach is random forest of predictive clustering trees (RF -PCT ) (Kocev et al., 2007).

RF -PCT is a tree-based ensemble method using PCT s as base classi�ers. Di�erent PCT s

are constructed by using di�erent bootstrap training data (Breiman, 1996) and a random

subset of the features during learning. It has been shown in Madjarov et al. (2012) that
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RF -PCT is competitive for multi-label classi�cation.

2.3 The Nearest Labelset Using Double Distances Ap-

proach

2.3.1 Hypercube View of a Multi-label Problem

In multi-label classi�cation, we are given a set of possible output labels L = {1, 2, ..., L}.

Each observation with a feature vector x ∈ Rp is associated with a subset of these labels.

Equivalently, the subset can be described as y = (y(1), y(2), ..., y(L)), where y(i) = 1 if label

i is associated with the observation and y(i) = 0 otherwise. A multi-label training data set

is described as T = {(xi,yi), i = 1, 2, ..., N}.

Any labelset y can be described as a vertex in the L-dimensional unit hypercube (Tai

and Lin, 2012). Each component y(i) of y represents an axis of the hypercube. As an

example, Figure 2.1 illustrates the label space of a multi-label problem with three labels

(y(1), y(2), y(3)).

Assume that the presence or absence of each label is modeled independently with a

probabilistic classi�er. For a new observation, the classi�ers provide the probabilities,

p(1), ..., p(L), that the corresponding labels are associated with the observation. Using the

probability outputs, we may obtain a L-dimensional vector p̂ = (p(1), p(2), ..., p(L)). Every

element of p̂ has a value from 0 to 1 and the vector p̂ is an inner point in the hypercube

(see Figure 2.1). Given p̂ the prediction task is completed by assigning the inner point to

a vertex of the cube.

For the new observation, we may calculate the Euclidean distance, Dyi
, between p̂ and
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each yi (i.e. the labelset of the ith training observation). In Figure 2.1, three training

observations y1, y2 and y3 and the corresponding distances are shown. A small distance

Dyi
indicates that yi is likely to be the labelset for the new observation.

Figure 2.1: An illustration of the label space when L = 3. Each vertex represents a labelset.

The inner point represents a �tted vector of an observation. Dyi
represents the distance

between p̂ and yi.

2.3.2 Nearest Labelset Using Double Distances (NLDD)

In addition to computing the distance in the label space, Dyi
(as shown in Figure 2.1),

we may also obtain the (Euclidean) distance in the feature space, denoted by Dxi
. Note

Dyi
, Dxi

≥ 0. The proposed method, NLDD, uses both Dx and Dy as predictors to �nd

a training labelset that minimizes the expected loss. For each test observation, we de�ne

loss as the number of misclassi�ed labels out of L labels. The expected loss is then Lθ

where θ = g(Dx, Dy) represents the probability of misclassifying each label. The predicted
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labelset, ŷ∗, is the labelset observed in the training data that minimizes the expected loss:

ŷ∗ = argmin
y∈T

Lg(Dx, Dy) (2.1)

The loss follows a binomial distribution with L and a parameter θ. We model θ = g(Dx, Dy)

as follows:

log

(
θ

1− θ

)
= β0 + β1Dx + β2Dy (2.2)

where β0, β1 and β2 are the model parameters. Larger values for β1 and β2 imply that θ

becomes more sensitive to the distances in the feature and label spaces, respectively. The

misclassi�cation probability decreases as Dx and Dy approach zero.

A test observation with Dx = Dy = 0 has a duplicate observation in the training data

(i.e. with identical features). In this case, the predicted probabilities for the test observa-

tion are either 0 or 1 and match the labels of the duplicate training observation. For such

a �double�-duplicate observation (i.e. Dx = Dy = 0), the probability of misclassi�cation

is 1/(1 + e−β0) > 0. As expected, the uncertainty in classifying a test observation with a

�double-duplicate� training observation is greater than zero.

The model in (2.2) implies g(Dx, Dy) = 1/(1 + e−(β0+β1Dx+β2Dy)). Because log
(

θ
1−θ

)
is

a monotone transformation of θ and L is a constant, the minimization problem in (2.1) is

equivalent to

ŷ∗ = argmin
y∈T

β1Dx + β2Dy (2.3)

That is, NLDD predicts by choosing the labelset of the training observation that minimizes

the weighted sum of the distances. The prediction does not change if the argument β1Dx +

β2Dy is multiplied by a constant. Therefore, only the relative weight β2/β1 matters for the

minimization. For prediction, the only remaining issue is how to estimate the weights.
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2.3.3 Estimating the Relative Weights of the Two Distances

We need to estimate the parameters β0, β1 and β2. This requires computing Dy, but of

course the outcomes in the test data are not known. We therefore split the training data,

T , equally into two data sets, T1 and T2. T2 is used for validation. Using T1, we next �t

a binary classi�er to each of the L labels separately and obtain the labelset predictions

(i.e. probability outcomes) for the observations in T2. We then create a set of (Dx, Dy) by

pairing observations in T1 with those in T2. Note that matching any single observation in

T2 to those in T1 results in N/2 distance pairs. Most of the pairs are uninformative because

the distance in either the feature space or the label space is very large. Moreover, since

T2 contains N/2 observations, the number of possible pairs is potentially large (N2/4).

Therefore, to reduce computational complexity, for each observation we only identify two

pairs: the pair with the smallest distance in x and the pair with the smallest distance in

y. Note that more than two distance pairs may be used. Using two pairs is the smallest

set. In case of ties in one distance, the pair with the smallest value in the other distance

is chosen. More formally we identify the �rst pair mi1 by

mi1 = argmin
(Dx,Dy)∈Wix

Dy

where Wix is the set of pairs that are tied; i.e. that each corresponds to the minimum

distance in Dx. Similarly, the second pair mi2 is found by

mi2 = argmin
(Dx,Dy)∈Wiy

Dx.

where Wiy is the set of labels that are tied with the minimal distance in Dy. Figure 2.2

illustrates an example of how to identify mi1 and mi2 for N = 20. Our goal was to

identify the observation with the smallest distance in x and the observation with the

smallest distance in y. Note that mi1 and mi2 may be the same observation If we �nd a
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single observation that minimizes both distances, we use just that observation. (A possible

duplication of that observation is unlikely to make any di�erence in practice).

Figure 2.2: An illustration of how to identify mi1 and mi2 for N = 20. T1 and T2 contain

10 observations each. The 10 points in the scatter plot were obtained by calculating Dx

and Dy between an observation in T2 and the 10 observations in T1. In this example two

points have the lowest distance in Dy and are candidates for mi2 . Among the candidates,

the point with the lowest Dx is chosen.

The two pairs corresponding to the ith observation in T2 are denoted as the set Si =

{mi1 ,mi2}, and their union for all observations is denoted as S =
⋃N/2
i=1 Si. The binomial

regression speci�ed in (2.2) is performed on the observations in S and maximum likelihood

estimators of the parameters are obtained. Algorithm 1 outlines the training procedure.

For the classi�cation of a new observation, we �rst obtain p̂ using the probabilistic clas-

si�ers �tted to the training data T . Dxj
and Dyj

are obtained by matching the observation

with the jth training observation. Using the MLEs β̂0, β̂1 and β̂2, we calculate θ̂j = ef̂j

1+ef̂j
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Algorithm 1 The training process of NLDD
Input: training data T , number of labels L

Output: probabilistic classi�ers h(i), binomial regression g

Split T into T1 and T2

for i = 1 to L do

train probabilistic classi�er h(i) based on T

train probabilistic classi�er h
(i)
∗ based on T1

end for

S,W ← ∅

for each observation in T2 do

obtain p̂ = (h
(1)
∗ (x), ..., h

(L)
∗ (x))

for each observation in T1 do

compute Dx and Dy

W ← W ∪ (Dx, Dy)

end for

�nd m1,m2 ∈ W

update S ← S ∪ {m1,m2}

end for

Fit log
(

θ
1−θ

)
= β0 + β1Dx + β2Dy to S

Obtain g : S → θ̂ = ef̂

1+ef̂
where f̂ = β̂0 + β̂1Dx + β̂2Dy
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where f̂j = β̂0 + β̂1Dxj
+ β̂2Dyj

. The �nal prediction of the new observation is obtained by

ŷ = argmin
yj∈T

Ê(loss) = argmin
yj∈T

θ̂j.

The second equality holds because Ê(loss) = Lθ̂ and L is a constant. As in LP , NLDD

chooses a training labelset as the predicted vector. Algorithm 2 outlines the classi�cation

procedure.

Algorithm 2 The classi�cation process of NLDD

Input: new observation x, binomial model g, probabilistic classi�ers h(i), training data

T of size N

Output: multi-label classi�cation vector ŷ

for j = 1 to N do

compute p̂ = (h(1)(x), ..., h(L)(x))

compute Dxj
and Dyj

obtain θ̂j ← g(Dxj
, Dyj

)

end for

return ŷ← argmin
yj∈T

θ̂j

The training time of NLDD is O(L(f(d,N) + f(d,N/2) + g(d,N/2)) + N2(d + L) +

Nlog(k)) where O(f(d,N)) is the complexity of each binary classi�er with d features

and N training observations, O(g(d,N/2)) is the complexity for predicting each label for

T2, N
2(d + L) is the complexity for obtaining the distance pairs for the regression and

O(Nlog(k)) is the complexity for �tting a binomial regression with k-digit precision of

the parameters. T1 and T2 have N/2 observations respectively. O(Lf(d,N/2)) is the

complexity for �tting binary classi�ers using T1 and obtaining the probability results for

T2 takes O(Lg(d,N/2)). For each observation of T2, there are N/2 numbers of distance
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pairs. This has complexity O((N/2)(d + L)). Since there are N/2 observations, overall it

takes O((N/2)(N/2)(d+L)) or O(N2(d+L)) when omitting the constant. Among the N/2

pairs for each observation of T2, we only identify at most 2 pairs. This impliesN/2 ≤ s ≤ N

where s is the number of elements in S. Each iteration of the Newton-Raphson method

has a complexity of O(N). For k-digit precision complexity O(logk) is required (Ypma,

1995). Combined, the complexity for estimating the parameters with k-digit precision is

O(Nlog(k)). In practice, however, this term is dominated by N2(d + L) as we can set

k << N .

2.4 Experimental Evaluation

In this section we compare six algorithms for multi-label classi�cation on nine data sets

in terms of Hamming loss, 0/1 loss, multi-label accuracy and F -measure. We next

introduce the data sets and the evaluation measures and then present the results of our

experiments.

2.4.1 Data Sets

We evaluated the proposed approach using nine commonly used multi-label data sets from

di�erent domains. Table 3.1 shows basic statistics for each data set including its domain,

numbers of labels and features. In the text data sets, all features are categorical (i.e.

binary). The last column �lcard�, short for label cardinality, represents the average number

of labels associated with an observation. The data sets are ordered by (|L| · |X| · |E|).

The emotions data set (Trohidis et al., 2008) consists of pieces of music with rhythmic

and timbre features. Each observation is associated with up to 6 emotion labels such as
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�sad-lonely�, �amazed-surprised� and �happy-pleased�. The scene data set (Boutell et al.,

2004) consists of images with 294 visual features. Each image is associated with up to

6 labels including �mountain�, �urban� and �beach�. The yeast data set (Elissee� and

Weston, 2001) contains 2417 yeast genes in the Yeast Saccharomyces Cerevisiae. Each gene

is represented by 103 features and is associated with a subset of 14 functional labels. The

medical data set consists of documents that describe patient symptom histories. The data

were made available in the Medical Natural language Processing Challenge in 2007. Each

document is associated with a set of 45 disease codes. The slashdot data set consists of 3782

text observations with 22 labels obtained from Slashdot.org. The enron data set (Klimt

and Yang, 2004) contains 1702 email messages from the Enron corporation employees.

The emails were categorized into 53 labels. The ohsumed data set (Hersh et al., 1994) is a

collection of medical research articles from MEDLINE database. We used the same data set

as in Read et al. (2011) that contains 13929 observations and 23 labels. The tmc2007 data

set (Srivastava and Zane-Ulman, 2005) contains 28596 aviation safety reports associated

with up to 22 labels. Following Tsoumakas et al. (2011), we used a reduced version of

the data set with 500 features. The bibtex data set (Katakis et al., 2008) consists of 7395

bibtex entries for automated tag suggestion. The entries were classi�ed into 159 labels.

All data sets are available online at: http://mulan.sourceforge.net/datasets-mlc.html and

http://meka.sourceforge.net/#datasets.

2.4.2 Evaluation Metrics for Multi-label Classi�cation

Multi-label classi�ers can be evaluated with various loss functions. Here, four of the most

popular criteria are used: Hamming loss, 0/1 loss, multi-label accuracy and F -measure.

These criteria are de�ned in the following paragraphs.
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name domain labels (|L|) features (|X|) examples (|E|) lcards

emotions music 6 72 593 1.87

scene image 6 294 2407 1.07

yeast biology 14 103 2417 4.24

medical text 45 1449 978 1.25

slashdot text 22 1079 3782 1.18

enron text 53 1001 1702 3.37

ohsumed text 23 1002 13929 1.66

tmc2007 text 22 500 28596 2.16

bibtex text 159 1836 7395 2.40

Table 2.1: Multi-label data sets and their associated characteristics. Label cardinality

(lcards) is the average number of labels associated with an observation

Let L be the number of labels in a multi-label problem. For a particular test observation,

let y = (y(1), ..., y(L)) be the labelset where y(j) = 1 if the jth label is associated with the

observation and 0 otherwise. Let ŷ = (ŷ(1), ..., ŷ(L)) be the predicted values obtained by

any machine learning method. Hamming loss refers to the percentage of incorrect labels.

The Hamming loss for the observation is

Hamming loss = 1− 1

L

L∑
j=1

1{y(j) = ŷ(j)}

where 1 is the indicator function. Despite its simplicity, the Hamming loss may be less

discriminative than other metrics. In practice, an observation is usually associated with a

small subset of labels. As the elements of the L-dimensional label vector are mostly zero,

even the empty set (i.e. zero vector) prediction may lead to a decent Hamming loss.
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The 0/1 loss is 0 if all predicted labels match the true labels and 1 otherwise. Hence,

0/1 loss = 1− 1{y = ŷ}.

Compared to other evaluation metrics, 0/1 loss is strict as all the L labels must match to

the true ones simultaneously.

The multi-label accuracy (Godbole and Sarawagi, 2004) (also known as the Jaccard

index) is de�ned as the number of labels counted in the intersection of the predicted and

true labelsets divided by the number of labels counted in the union of the labelsets. That

is,

Multi-label accuracy =
|y ∩ ŷ|
|y ∪ ŷ|

.

The multi-label accuracy measures the similarity between the true and predicted labelsets.

The F -measure is the harmonic mean of precision and recall. The F -measure is de�ned

as

F -measure =
2|y ∩ ŷ|
|y|+ |ŷ|

.

The metrics above were de�ned for a single observation. On each metric, the overall

value for an entire test data set is obtained by averaging out the individual values.

2.4.3 Experimental Setup

We compared our proposed method against BR, SMBR, ECC, MLKNN , RAKEL

and CBM . To train multi-label classi�ers, the parameters recommended by the authors

were used. In the case of MLKNN , we set the number of neighbors and the smoothing

parameter to 10 and 1 respectively. For RAKEL, we set the number of separate models

to 2L and the size of each sub-labelset to 3. For ECC, the number of CC models for each
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ensemble was set to 10. For HOMER, the number of clusters was set to 3 as used in Liu

et al. (2015). On the larger data sets (ohsumed, tmc2007 and bibtex), we �t ECC using

reduced training data sets (75% of the observations and 50% of the features) as suggested

in Read et al. (2011). On the same data sets, we ran NLDD using 70% of the training

data to reduce redundancy in learning.

For NLDD, BR, SMBR, ECC, RAKEL and HOMER, support vector machines

(SVM) (Vapnik, 2000) were chosen as a base classi�er using unscaled variables with a linear

kernel and tuning parameter C = 1. The SVM scores were converted into probabilities

using Platt's method (Platt, 2000). The analysis was conducted in R (R Core Team, 2014)

using the e1071 package (Meyer et al., 2014) and utiml (Rivolli, 2016) packages. For the

data sets with less than 5,000 observations 10-fold cross validations (CV ) were performed.

On the larger data sets, we used 75/25 train/test splits. For �tting binomial regression

models, we divided the training data sets at random into two parts of equal sizes.

For RF -PCT , we used the Clus1 system. In the pre-pruning strategy of PCT , the

signi�cance level for the F-test was automatically chosen from {0.001, 0.005, 0.01, 0.05,

0.1, 0.125} using a reserved prune-set.

For implementing CBM we used a Java program2 developed by the authors. The

default settings (e.g. logistic regression and 10 iterations for the EM algorithm) were used

on non-large data sets. For the large data sets tmc2007 and bibtex, the number of iterations

was set to 5 and random feature reduction was applied as suggested by the developers. On

each data set we used train/test split available at their website (https://github.com/cheng-

li/pyramid).

To test the hypothesis that all classi�ers perform equally, we used the Friedman test

1http://clus.sourceforge.net
2https://github.com/cheng-li/pyramid
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as recommended by Dem²ar Dem²ar (2006). We then compared NLDD with each of the

other methods using Wilcoxon signed-rank tests. We adjusted p-values for multiple testing

using Hochberg's method Hochberg (1988).

In NLDD, when calculating distances in the feature spaces we used the standardized

features so that no particular features dominated distances. For a numerical feature vari-

able x, the standardized variable z is obtained by z = (x− x̄)/sd(x) where x̄ and sd(x)

are the mean and standard deviation of x in the training data.

2.4.4 Results

Tables 2.2 to 2.5 summarize the results in terms of Hamming loss, 0/1 loss, multi-label

accuracy and F -measure, respectively. We also ranked the algorithms for each metric.

According to the Friedman tests, the classi�ers are not all equal (p < 0.05). The post-

hoc analysis - adjusted for multiple testing - showed that NLDD performed signi�cantly

better than SMBR on all metrics, signi�cantly better than BR, RAKEL and MLKNN

on all but Hamming loss, signi�cantly better than HOMER on Hamming loss and

0/1 loss, and signi�cantly better than ECC and RF -PCT on 0/1 loss. On any evaluation

metric, no method performed statistically signi�cantly better than NLDD.

NLDD achieved highest average ranks on 0/1 loss and multi-label accuracy, while

ECC andRF -PCT achieved the highest average ranks on the F -measure andHamming loss,

respectively. On both F -measure and Hamming loss, NLDD achieved the second lowest

(i.e. best) average ranks. CBM achieved the second lowest average rank on 0/1 loss

and multi-label accuracy. The performance of CBM on the 0/1 loss was very variable

achieving the highest rank on �ve out of nine data sets and the second worst on two data

sets.
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Table 2.6 shows the running time in seconds of the methods. On the non-large data

sets, the relative di�erences of running time between NLDD and BR tended to increase

with the size of the data sets. On two of the large data sets, ohsumend and tmc2007,

NLDD required less time than BR as we only used 70% of the training data.

Data BR SMBR NLDD ECC RAKEL HOMER RF−PCT MLKNN CBM

emotions 0.1964(4) 0.1995(5) 0.1901(2) 0.2010(6) 0.1952(3) 0.2113(7) 0.1883(1) 0.2646(8) 0.3366(9)

scene 0.1042(7) 0.1298(9) 0.0948(5) 0.0939(4) 0.0895(2) 0.1087(8) 0.0882(1) 0.0903(3) 0.0953(6)

yeast 0.1990(5) 0.2048(6) 0.1902(1) 0.2056(7) 0.1964(4) 0.2544(9) 0.1916(2) 0.1952(3) 0.2130(8)

medical 0.0096(3) 0.0111(6) 0.0097(4) 0.0091(2) 0.0097(5) 0.0135(8) 0.0120(7) 0.0153(9) 0.0086(1)

slashdot 0.0467(5) 0.0541(8) 0.0452(4) 0.0473(6) 0.0439(2) 0.0552(9) 0.0444(3) 0.0518(7) 0.0436(1)

enron 0.0578(9) 0.0563(8) 0.0550(5) 0.0528(3) 0.0552(6) 0.0553(7) 0.0456(1) 0.0526(2) 0.0531(4)

ohsumed 0.0670(5) 0.0717(7) 0.0630(3) 0.0737(8) 0.0605(2) 0.0794(9) 0.0565(1) 0.0697(6) 0.0638(4)

tmc2007 0.0583(2) 0.0587(3) 0.0595(5) 0.0633(6) 0.0588(4) 0.0646(7) 0.0534(1) 0.0706(9) 0.0699(8)

bibtex 0.0158(8) 0.0151(7) 0.0134(1) 0.0147(6) 0.0150(5) 0.0205(9) 0.0135(2) 0.0139(4) 0.0138(3)

av. ranks 5.3 6.6 3.4 5.2 3.7 8.1 2.1 5.7 4.8

Table 2.2: Hamming loss (lower is better) averaged over 10 cross validations (with ranks

in parentheses). The data sets are ordered as in Table 3.1. The results from the Wilcoxon

test on whether or not any two results are statistically signi�cant from one another are

summarized at the bottom of the table.

We next look at the performance of NLDD by whether or not the true labelsets were

observed in the training data. A labelset has been observed if the exact labelset can be

found in the training data and unobserved otherwise. Since NLDD makes a prediction

by choosing a training labelset, a predicted labelset can only be partially correct on an

unobserved labelset. Table 2.7 compares the evaluation results of BR and NLDD on two

separate subsets of the test set of the bibtex data. The bibtex data were chosen because the

data set contains by far the largest percentage of unobserved labelsets (33%) among the
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Data BR SMBR NLDD ECC RAKEL HOMER RF−PCT MLKNN CBM

emotions 0.7181(7) 0.7080(5) 0.6900(3) 0.7100(6) 0.6793(2) 0.6949(4) 0.6623(1) 0.8850(9) 0.7980(8)

scene 0.4674(9) 0.4242(7) 0.3190(1) 0.3511(3) 0.3640(4) 0.3769(6) 0.4362(8) 0.3702(5) 0.3211(2)

yeast 0.8940(8) 0.8180(6) 0.7484(1) 0.7977(3) 0.8130(4) 0.9768(9) 0.8212(7) 0.8179(5) 0.7514(2)

medical 0.3191(6) 0.3068(4) 0.2792(2) 0.3017(3) 0.3191(5) 0.3212(7) 0.3916(8) 0.4940(7) 0.2263(1)

slashdot 0.6452(7) 0.6253(5) 0.5232(2) 0.6000(4) 0.6277(6) 0.5970(3) 0.7967(8) 0.9386(9) 0.5127(1)

enron 0.9065(8) 0.8765(4) 0.8657(2) 0.8788(5) 0.9000(6) 0.9060(7) 0.8707(3) 0.9588(9) 0.8300(1)

ohsumed 0.7990(7) 0.7872(6) 0.7462(2) 0.8193(8) 0.7742(4) 0.7759(5) 0.7682(3) 0.9495(9) 0.7338(1)

tmc2007 0.7063(5) 0.7043(4) 0.7030(3) 0.7316(7) 0.7026(2) 0.7299(6) 0.6452(1) 0.7732(9) 0.7360(8)

bibtex 0.8504(6) 0.8201(3) 0.8081(2) 0.8391(4) 0.8413(5) 0.8994(7) 0.9134(8) 0.9441(9) 0.7815(1)

av. ranks 6.8 4.9 2.0 4.8 4.3 6.1 5.2 8.1 2.8

Table 2.3: 0/1 loss (lower is better) averaged over 10 cross validations (with ranks in

parentheses). The loss is 0 if a predicted labelset matches the true labelset exactly and

1 otherwise. The results from the Wilcoxon test on whether or not any two results are

statistically signi�cant from one another are summarized at the bottom of the table.

data sets investigated. The test data set was split into subsets A and B; if the labelset of

a test observation was an observed labelset, the observation was assigned to A; otherwise

the observation was assigned to B. For all of the four metrics, NLDD outperformed BR

even though 33% of the labelsets in the test data were unobserved labelsets.

We next look at the three regression parameters the proposed method (NLDD) esti-

mated (equation 2.2) for each data set in more detail. Table 2.8 displays the MLE of the

parameters of the binomial model in each data set. In all data sets, the estimates of β1

and β2 were all positive. The positive slopes imply that the expected loss (or, equivalently

the probability of misclassi�cation for each label) decreases as Dx or Dy decreases.

From the values of β̂0 we may infer how low the expected loss is when either Dx or

Dy is 0. For example, β̂0 = −3.5023 in the scene data set. If Dx = 0 and Dy = 0,
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Data BR SMBR NLDD ECC RAKEL HOMER RF−PCT MLKNN CBM

emotions 0.5248(7) 0.5467(6) 0.5624(2) 0.5587(3) 0.5548(4) 0.5787(1) 0.5523(5) 0.3253(9) 0.4033(8)

scene 0.6357(8) 0.6512(7) 0.7422(1) 0.6985(4) 0.6990(3) 0.6919(5) 0.5873(9) 0.6900(6) 0.7178(2)

yeast 0.4992(8) 0.5092(7) 0.5461(1) 0.5428(2) 0.5194(4) 0.4306(9) 0.5154(5) 0.5103(6) 0.5216(3)

medical 0.7655(6) 0.7676(5) 0.7991(2) 0.7934(3) 0.7643(7) 0.7694(4) 0.6747(9) 0.5787(8) 0.8167(1)

slashdot 0.4517(7) 0.4687(5) 0.5354(2) 0.5067(3) 0.4577(6) 0.4950(4) 0.2159(8) 0.0694(9) 0.5495(1)

enron 0.3974(8) 0.4226(5) 0.4122(6) 0.4708(1) 0.4088(7) 0.4273(4) 0.4527(2) 0.3175(9) 0.4297(3)

ohsumed 0.3848(7) 0.3968(5) 0.4105(4) 0.4316(2) 0.3940(6) 0.4220(3) 0.3409(8) 0.0798(9) 0.4918(1)

tmc2007 0.5750(5) 0.5784(4) 0.5692(6) 0.5670(7) 0.5710(3) 0.5738(2) 0.6074(1) 0.4719(9) 0.5186(8)

bibtex 0.3259(6) 0.3387(3) 0.3492(2) 0.3321(4) 0.3335(5) 0.2556(7) 0.1588(8) 0.1281(9) 0.3761(1)

av. ranks 6.7 4.9 2.9 3.3 5.1 4.7 6.0 8.3 3.1

Table 2.4: Multi-label accuracy (higher is better) averaged over 10 cross validations (with

ranks in parentheses). The results from the Wilcoxon test on whether or not any two

results are statistically signi�cant from one another are summarized at the bottom of the

table.

p̂ = 0.0292 because log p̂
1−p̂ = −3.5023. Hence Ê(loss) = Lp̂ = 6 · 0.0292 = 0.1752. This is

the expected number of mismatched labels for choosing a training labelset whose distances

to the new observation are zero in both feature and label spaces. The results suggest the

expected loss would be very small when classifying a new observation that had a duplicate

in the training data (Dx = 0) and whose labels are predicted with probability 1 and the

predicted labelset was observed in the training data (Dy = 0).

2.4.5 How NLDDWorks ComparedWith BR Using the yeastData

In this section, we illustrate how NLDD can outperform BR using the yeast data set.

The yeast data set contains 14 distinct labels (i.e. L = 14). The binomial regression

model for the expected misclassi�cation rate based on the training data was obtained as

25



Data BR SMBR NLDD ECC RAKEL HOMER RF−PCT MLKNN CBM

emotions 0.6033(7) 0.6291(5) 0.6446(3) 0.6477(2) 0.6316(4) 0.6699(1) 0.6283(6) 0.3989(9) 0.4723(8)

scene 0.6245(8) 0.6429(7) 0.7358(1) 0.7150(4) 0.6922(5) 0.7155(3) 0.5952(9) 0.6833(6) 0.7307(2)

yeast 0.6094(8) 0.6159(5) 0.6438(2) 0.6465(1) 0.6249(3) 0.5615(9) 0.6215(4) 0.6140(7) 0.6154(6)

medical 0.7945(6) 0.7957(5) 0.8268(2) 0.8257(3) 0.7928(7) 0.8005(4) 0.6966(8) 0.6030(9) 0.8310(1)

slashdot 0.5027(6) 0.5163(5) 0.5619(2) 0.5612(3) 0.5021(7) 0.5279(4) 0.2201(8) 0.0733(9) 0.5673(1)

enron 0.5119(8) 0.5299(4) 0.5200(7) 0.5852(1) 0.5224(5) 0.5459(3) 0.5619(2) 0.4259(9) 0.5220(6)

ohsumed 0.4529(7) 0.4546(6) 0.4758(4) 0.5238(1) 0.4550(5) 0.4973(2) 0.3813(8) 0.0910(9) 0.4942(3)

tmc2007 0.6662(4) 0.6703(3) 0.6552(7) 0.6635(5) 0.6596(6) 0.6722(2) 0.6875(1) 0.5561(9) 0.6013(8)

bibtex 0.3966(5) 0.3929(6) 0.4130(2) 0.4055(3) 0.4023(4) 0.3231(7) 0.1904(8) 0.1601(9) 0.4372(1)

av. ranks 6.6 5.1 3.3 2.6 5.1 3.8 6.0 8.4 4.0

Table 2.5: F -measure (higher is better) averaged over 10 cross validations (with ranks in

parentheses). The results from the Wilcoxon test on whether or not any two results are

statistically signi�cant from one another are summarized at the bottom of the table.

log
(

θ̂

1−θ̂

)
= −3.9 + 0.12Dx + 0.92Dy. For example, one of the test observations had true

labelset (0,0,1,1,0,...,0,1,1,0). The BR approach predicted the labelset (0,0,1,0,...,0,1,1,0)

failing to predict y(4) correctly. On the other hand, NLDD chose the correct labelset

(0,0,1,1,0,...,0,1,1,0), since the selected training observation had both small Dx and small

Dy. The labelset predicted by BR was not observed in the training data, meaning that

NLDD would not consider the labelset for a prediction. If only Dy was used without

Dx, another incorrect labelset (0,0,0,0,0,...,0,1,1,0) would be chosen. If only Dx was used

without Dy, another incorrect labelset (1,1,1,1,0,...,0,1,1,0) would be chosen.

Now consider another example where the labelset chosen by BR is observed in the

training data. Speci�cally, a test observation had true labelset (1,1,0,0,0,1,1,1,0...,0,1,1,0).

The BR approach predicted the labelset (1,1,0,...,0,1,1,0) failing to predict y(6), y(7) and

y(8) correctly. NLDD chose the correct labelset, since the chosen observation had both
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Data BR SMBR NLDD ECC RAKEL HOMER RF -PCT MLKNN CBM

emotions 19 19 27 40 21 14 9 4 23

scene 37 38 88 104 57 34 45 112 195

yeast 59 61 96 141 90 43 177 59 530

medical 43 44 101 312 73 17 54 93 1809

slashdot 52 57 428 280 104 40 66 1023 2540

enron 126 127 248 572 265 119 128 201 16232

ohsumed 22834 22987 12152 15799 37872 28784 799 10641 7588

tmc2007 21376 22145 16253 10023 23252 22340 1400 27394 38912

bibtex 2337 2466 2762 3574 5017 1220 2356 6280 48834

Table 2.6: Running times (seconds) on benchmark multi-label data sets

small Dy (= 1.39) and Dx (= 4.24) resulting in θ̂ = 0.103. Because it was observed,

NLDD would choose the same labelset as BR if only Dy was used without Dx. Despite

the small Dy (= 0.96), this labelset was not chosen because the corresponding observation

had a large Dx (= 10.26) resulting in θ̂ = 0.135.

2.4.6 Scaling Up NLDD

As seen in Section 2.3.2, the time complexity of NLDD is dependent on the size of the

training data (N). In particular, the term O(N2(d+L)) makes the complexity of NLDD

quadratic in N . For larger data sets the running time could be reduced by running the

algorithm on a fraction of the N observations, but performance may be a�ected. This is

investigated next.

Figure 2.3 illustrates the running time and the corresponding performance of NLDD

as a function of the percentage of N . For the result, we used the tmc2007 data with 75/25

train/test splits. After splitting, we randomly chose 10% - 100% of the training data and
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Subset A Subset B Total (A ∪B)

BR NLDD BR NLDD BR NLDD

Hamming loss 0.0113 0.0091 0.0250 0.0224 0.0158 0.0134

0/1 loss 0.7804 0.7163 0.9958 1.0000 0.8504 0.8084

Multi-label accuracy 0.3807 0.4273 0.2118 0.1870 0.3259 0.3492

F -measure 0.4402 0.4785 0.3065 0.3058 0.3966 0.4130

Table 2.7: Evaluation results on the bibtex data set by whether or not the labelset was

observed (Subset A) or unobserved (Subset B) in the training data. Subset A contains

67% of the test observations and subset B contains 33%. For Hamming loss and 0/1 loss,

lower is better. For Multi-label accuracy and F -measure, higher is better.

ran NLDD with the reduced data. As before, we used SVM with a linear kernel as the

base classi�er.

The result shows that NLDD can obtain similar predictive performances for consid-

erably less time. The running time increased quadratically as a function of N while the

improvement of the performance of NLDD appeared to converge. Using 60% of the train-

ing data, NLDD achieved almost the same performance in the number of mismatched

labels as using the full training data. Similar results were obtained on other large data

sets.

2.5 Discussion

For the sample data sets selected, NLDD achieved the lowest average ranks on 0/1 loss

and multi-label accuracy. NLDD performed signi�cantly better than SMBR on all of the
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Figure 2.3: Running time (left) and the average number of mismatched labels (right) as a

function of the percentage of the observation space for NLDD
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Data β̂0 β̂1 β̂2

emotions -2.6353 0.0321 1.0912

scene -3.5023 0.0134 1.8269

yeast -3.9053 0.1409 0.8546

medical -5.5296 0.1089 1.6933

slashdot -4.2503 0.1204 1.3925

enron -3.8827 0.0316 0.7755

bibtex -4.8436 0.0093 0.7264

ohsumed -3.1341 0.0022 0.9855

tmc2007 -3.6862 0.0370 1.1056

Table 2.8: The maximum likelihood estimates of the parameters of equation 2.2 averaged

over 10 cross validations

four metrics. NLDD also signi�cantly outperformed BR, RAKEL and MLKNN on all

but Hamming loss, HOMER on Hamming loss and 0/1 loss, and ECC and RF -PCT

on 0/1 loss. NLDD achieved lower average ranks than CBM on all of the four metrics

(not statistically signi�cant).

Like BR, NLDD uses outputs of independent binary classi�ers. Using the distances

in the feature and label spaces in binomial regression, NLDD can make more accurate

predictions than BR. NLDD was also signi�cantly superior to SMBR, which is similar

to NLDD in the sense that it makes predictions by choosing training labelsets using binary

classi�ers. SMBR is based on the label space only, while NLDD uses the distances in the

feature space as well.

Like LP , the proposed method treats each training labelset as a di�erent class of a
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single-label problem in the prediction stage. Using a training labelset as a predicted vector,

the proposed approach takes potentially high order label correlations into account.

In �tting the binomial regression, NLDD restricts the �t of the binomial model to

distance pairs with low distances in the feature and label spaces. This dramatically reduces

the size of the data used for regression �tting. In the yeast data set, the training data

T contained 2178 observations. Since we equally divided the training data into T1 and

T2, each of them contained 1089 observations. Hence the number of possible observations

available for �tting is 1089 ∗ 1089 = 1, 185, 921. On the other hand, NLDD used only

2, 018 observations which is less than 0.2% of all observations.

NLDD has higher time than BR. The relative di�erences of running time between

NLDD and BR depended on the size of the training data (N). The number of labels and

features had less impact on the di�erences, as the complexity of NLDD is linear in them.

For the larger data sets, we reduced the running time of NLDD by using a subset (70%)

of the training data. The results of ohsumed and tmc2007 data sets show that NLDD

with reduced data can perform fast compared to not only BR but also the other methods

on large data problems.

Because NLDD makes a prediction by choosing a training labelset, the prediction label

vector is con�ned to a labelset appearing in the training data. If a new observation has a

true labelset unobserved in the training data, there will be at least one incorrect predicted

label. Even so, NLDD beat the other methods on average. How frequently an unobserved

labelset occurs depends on the data set. For most data sets, less than 5% of the test data

contained labelsets not observed in the training data. In other words, most of the labelsets

of the test observations could be found in the training data. However, for the bibtex data

set about 33% of the test data contained unobserved labelsets. As seen in Table 2.7, when

the true labelsets of the test observations were not observed in the training data (subset
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B), BR performed slightly better than NLDD in terms of 0/1 loss, multi-label accuracy

and F -measure. On the other hand, when the true labelsets of the test observations were

observed in the training data (subset A), NLDD outperformed BR on all of the metrics.

Combined, NLDD achieved higher performances than BR on the entire test data. For the

bibtex data set, NLDD performed the best on Hamming loss and the second best on the

other three metrics.

NLDD uses binomial regression to estimate the parameters. This setup assumes that

the observations in S are independent. While it turned out that this assumption worked

well in practice, dependencies may arise between the two pairs of a given Si. If required

this dependency could be modeled using, for example, generalized estimating equations

(Liang and Zeger, 1986). We examined results from a GEE model on the selected data

using an exchangeable correlation structure. The estimates were almost the same and the

prediction results were unchanged. The analogous results are not shown.

For prediction, the minimization in (2.3) only requires the estimates of the coe�cients

β1 and β2 which determine the tradeo� between Dx and Dy. The estimate of β0 is not

needed. However, estimating β0 allows us to estimate the probability of a misclassi�cation

of a label for an observation, θ̂. Such an assessment of uncertainty of the prediction can be

useful. For example, one might only want to classify observations where the probability of

misclassi�cation is below a certain threshold value.

NLDD uses a linear model for binomial regression speci�ed in 2.2. To investigate

how the performance of NLDD changes in nonlinear models, we also considered a model:

log
(

θ
1−θ

)
= β0 + Dβ1

x · Dβ2
y in which the distances are combined in a multiplicative way.

The di�erence of prediction results obtained by the linear and multiplicative models was

small. The analogous results are not shown.
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While SVM was employed as the base classi�er, other algorithms could be chosen

provided the classi�er can estimate posterior probabilities rather than just scores. Better

predictions from the binary classi�ers will make distances in the label space more useful

and hence lead to a better performance.
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Chapter 3

kCNN : a new algorithm for

classi�cation based on conditional

nearest neighbors

3.1 Introduction

This chapter concerns nearest neighbor-based nonparametric approaches to multi-class

classi�cation. Nonparametric classi�ers are often used when it is di�cult to make assump-

tions about the class distribution for the problem. The k-nearest neighbor (kNN) approach

(Fix and Hodges, 1951) is one of the most popular nonparametric approaches (Wu et al.,

2008). For an input x, the kNN algorithm identi�es k objects in the training data that

are closest to x in a prede�ned metric and makes a prediction by majority vote from the

classes of the k objects. Although the kNN method is simple and does not require a priori

knowledge about the class distributions, kNN has been successfully applied in many prob-
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lems such as character recognition (Belongie et al., 2002), image processing (Mensink et al.,

2013) and bioinformatics (Raymer et al., 2003; Maji, 2011). A number of experiments on

di�erent classi�cation problems have demonstrated its competitive performance (Ripley,

2007). Moreover, it has been shown that the error rate (or misclassi�cation rate) of kNN

converges to the optimal Bayes error rate when the number of training observations N and

the number of neighbors k increase and k/N → 0 (Cover and Hart, 1967). Approaches to

improving the kNN method include weighted kNN (Dudani, 1976; Gou et al., 2012), con-

densed nearest neighbor (Gowda and Krishna, 1979), rank nearest neighbor (Bagui et al.,

2003), clustered kNN (Yong et al., 2009) and prototype based nearest neighbor (Garcia

et al., 2012). A detailed survey of the literature about kNN can be found in (Bhatia and

Vandana, 2010).

A successful extension of the kNN method is the local mean based k nearest neighbor

approach (LMkNN) (Mitani and Hamamoto, 2006). The LMkNN method (Mitani and

Hamamoto, 2006) calculates the local mean vector for each class and uses them as the class

prototypes for prediction. Let xw|i be the wth nearest neighbor of class ci (i = 1, ..., L)

where L is the number of classes. Given a �xed k, the LMkNN computes x̄i the local

mean vector for class ci as

x̄
(k)
i =

1

k

k∑
w=1

xw|i. (3.1)

For prediction, LMkNN chooses class ĉ if

ĉ = argmin
i
|x− x̄

(k)
i | (3.2)

That is, the distance between x and each local mean is calculated and the class cor-

responding to the smallest distance is assigned to x. Empirical evidence suggests that
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compared to kNN , LMkNN is robust to outliers when the training data are small (Mi-

tani and Hamamoto, 2006). The idea of LMkNN has been applied to many other methods

such as pseudo nearest neighbor (Zeng et al., 2009), local mean-based pseudo k-nearest

neighbor (Gou et al., 2014), group-based classi�cation (Samsudin and Bradley, 2010), dis-

criminant analysis (Yang et al., 2011). Recently, an extension of LMkNN , the multi-local

means-based k-harmonic nearest neighbor (MLM -kHNN) (Pan et al., 2017), was intro-

duced. Instead of a single local mean vector, MLM -kHNN combines multiple local mean

vectors using the harmonic mean metric. For each class ci, MLM -kHNN calculates k lo-

cal mean vectors x̄
(1)
i , x̄

(2)
i , ..., x̄

(k)
i . The harmonic mean distance of the local mean vectors

is obtained by

HMD(x, x̄
(k)
i ) =

k∑k
w=1

1

|x−x̄(w)
i |

(3.3)

For prediction, MLM -kHNN chooses class ĉ if

ĉ = argmin
i

HMD(x, x̄
(k)
i ). (3.4)

Unlike LMkNN , MLM -kHNN computes k di�erent local mean vectors in each class.

MLM -kHNN calculates their harmonic mean distance to x and assigns the class with

the minimum distance. An experimental study showed that MLM -kHNN achieves high

classi�cation accuracy and is less sensitive to the parameter k compared to other kNN -

based methods.

In this chapter, we propose a new nonparametric classi�er, k conditional nearest neigh-

bor (kCNN), based on nearest neighbors conditional on each class. For any positive integer

k, the proposed method estimates posterior probabilities using the kth nearest neighbor in

each class. We show that classi�cation based on those posteriors is approximately Bayes

optimal for a two-class problem. Furthermore, we demonstrate that the classi�cation ap-

proach converges in probability to the Bayes classi�er as the size of the training data
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increases. We also introduce an ensemble of kCNN that combines kCNN classi�ers with

di�erent values for k. Our experiments on benchmark data sets show that the proposed

methods perform on average better than kNN , LMkNN and MLM -kHNN in terms of

the error rate.

3.2 Methods

3.2.1 The k Conditional Nearest Neighbor Algorithm

In multi-class classi�cation, an observation with a feature vector x ∈ Rp is associated

with one of the possible classes c1, ..., cL. We assume a set of training data containing N

classi�ed observations. For any x and a given k, we denote by xk|i the k
th nearest neighbor

of class ci (i = 1, ..., L). Let d(x,xk|i) = |x − xk|i| be the (Euclidean) distance between x

and xk|i. Figure 3.1 illustrates an example that points out the distance between x and the

second nearest neighbor (i.e. k = 2) of each class.

Figure 3.1: An illustrative example of d(x,xk|i), i=1,2, when k = 2
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Consider a hypersphere with radius d(x,xk|i) centered at x. By the de�nition of xk|i, the

hypersphere contains k observations of class ci. We may approximate the local conditional

density p(x|ci) as

p̂(x|ci) =
k

NiVi
(3.5)

where Vi is the volume of the hypersphere with radius d(x,xk|i) centered at x and Ni

represents the number of observations classi�ed as class ci. This approximation was also

introduced in (Fukunaga and Hostetler, 1975). The approximation assumes that p(x|ci)

is nearly constant within the hypersphere of volume Vi. Using the prior p̂(ci) ≈ Ni

N
where

N =
∑L

i=1 Ni and Bayes theorem, the approximate posterior may be obtained as

p̂k(ci|x) =
p̂(ci)p̂(x|ci)

p̂(x)
=

1

p̂(x)

k

NVi
. (3.6)

Because
∑L

i=1 p̂(ci|x) = 1, we have p̂(x) =
∑L

i=1
k
NVi

. Then, p̂k(ci|x) may be obtained as

p̂k(ci|x) =
k
NVi∑L
j=1

k
NVj

=
d(x,xk|i)

−p∑L
j=1 d(x,xk|j)

−p

since Vi ∝ d(x,xk|i)
p. The class with the shortest distance among the L distances has the

highest posterior.

Smoothing parameters can improve predictive accuracy (e.g., LaPlace smoothing for

Naive Bayes algorithm (Mitchell, 1997, Chapter 6.9). We introduce an optional tuning

parameter, r, as follows:

p̂k(ci|x) =
d(x,xk|i)

−p/r∑L
j=1 d(x,xk|j)

−p/r (3.7)

where r ≥ 1 controls the in�uence of the dimension of the feature space p. As r increases,

each posterior converges to 1/L. That is, increasing r smoothes the posterior estimates.
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The k conditional nearest neighbor (kCNN) approach classi�es x into the class with

the largest estimated posterior probability. That is, class ĉ is assigned to x if

ĉ = argmax
i

p̂k(ci|x).

The proposed classi�er is equivalent to kNN when k = 1. We summarize the kCNN

classi�er in Algorithm 3.

Algorithm 3 The k conditional nearest neighbor algorithm

Input: A training data set D, an observation vector x with dimension p, a positive

integer k, parameter r, a distance metric d

for i = 1 to L do

(a) From D, select xk|i, the k
th nearest neighbor of x for class ci

(b) Calculate d(x,xk|i), the distance between x and xk|i

end for

for i = 1 to L do

Obtain p̂k(ci|x)← d(x,xk|i)
−p/r∑L

j=1 d(x,xk|j)−p/r

end for

Classify x into ĉ if ĉ = argmax
i

p̂k(ci|x)

Note that r does not a�ect the classi�cation. However, we will show in Section 3.3

that the tuning parameter a�ects the classi�cation of the ensemble of kCNN , which is

presented in Section 3.2.4.

Figure 3.2 illustrates an example of a two-class classi�cation problem. For a given k, the

method calculates the distance between x and the kth nearest neighbor of each class. When

k = 1 and k = 3, class c2 has a larger posterior probability than c1 as the corresponding

distance is shorter. When k = 2, however, the posterior for class c1 is greater.
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Figure 3.2: Comparing posteriors using distances between x and conditional nearest neigh-

bors. Class c2 has higher posteriors than class c1 when k = 1 and 3 while class c1 has a

higher posterior when k = 2.

3.2.2 Convergence of kCNN

Theorem (convergence of kCNN): Consider a two-class problem with c1 and c2 where

p(c1) > 0 and p(c2) > 0. Assume that p(x|ci) (i = 1, 2) is continuous on Rp. If the following

conditions (a) k → ∞, and (b) k
miniNi

→ 0 are satis�ed, then for any x where p(x) > 0,

kCNN with r = 1 converges in probability to the Bayes classi�er.

Proof: Since kCNN makes predictions by approximate posteriors in (3.6), it is su�cient

to show that p̂k(ci|x) converges in probability to the true posterior.

We �rst consider the convergence of the prior estimate p̂(ci) = Ni/N . Let c(j) be the

class of the jth training observation. The prior estimate may be described as p̂(ci) =

1
N

∑N
j=1 I(c(j) = ci) where I is the indicator function. Hence, by the weak law of large
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numbers, p̂(ci)
p−→1 p(ci).

We next show that the approximation p̂(x|ci) in equation (3.5) converges in probability

to the true conditional density function. Let fN(x) = k
NV

be an estimate of the density

function f(x) where V is the volume of the hypersphere centered at x containing k train-

ing observations. Loftsgaarden and Quesenberry (1965) showed that fN(x) converges in

probability to f(x) if k →∞ and k
N
→ 0 as N increases. We may apply this result to the

convergence of the conditional density functions. By the second condition, both k
N1

and k
N2

converge to zero. Hence, p̂(x|ci) converges in probability to the true conditional density

function p(x|ci).

Since p̂(ci)
p−→ p(ci) and p̂(x|ci)

p−→ p(x|ci), p̂(x) =
∑2

i=1 p̂(ci)p̂(x|ci)
p−→
∑2

i=1 p(ci)p(x|ci) =

p(x). Hence, the approximate posterior in (3.6) converges in probability to the true pos-

terior. This implies that kCNN converges in probability to the Bayes classi�er.

3.2.3 Time complexity of kCNN

The time complexity of kNN is O(Np + Nk) (Zuo et al., 2008) (O(Np) for computing

distances and O(Nk) for �nding the k nearest neighbors and completing the classi�cation).

In the classi�cation stage, kCNN (a) calculates the distances between the test observation

to all training observations from each class, (b) identi�es the kth nearest neighbor from

each class, and (c) calculates posterior estimates by comparing the L distances and assigns

the test observation to the class with the highest posterior estimate. Step (a) requires

O(N1p+...+NLp) = O(Np) multiplications. Step (b) requires O(N1k+...+NLk) = O(Nk)

comparisons. Step (c) requires O(L) sum and comparison operations. Therefore, the time

complexity for kCNN is O(Np+Nk +L). In practice the O(L) component is dominated

1A
p−→ B means A converges in probability to B.
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by the other components, since L is usually much smaller than N . That is, the di�erence

of the complexities between kNN and kCNN is small.

3.2.4 Ensemble of kCNN

The illustrative example in Figure 3.2 shows that the classi�cation is a�ected by the choice

of k. Therefore, we propose an ensemble version of kCNN that combines the multiple

kCNN algorithms with di�erent values of k. Ensembles are well known as a method for

improving predictive performance (Wu et al., 2008; Rokach, 2010). The ensemble of k

conditional nearest neighbor (EkCNN) method makes a prediction based on the averaged

posteriors for di�erent values of k. These values are now indexed by w: w = 1, ..., k. In the

ensemble EkCNN , k represents the number of ensemble members. Suppose that posterior

probability p̂w(ci|x) is estimated by (3.7) for each w = 1, ..., k. For a new observation x

the predicted class ĉ is determined by

ĉ = argmax
ci

p̂(ci|x) = argmax
ci

1

k

k∑
w=1

p̂w(ci|x).

That is, EkCNN assigns x to the class with the highest average posterior estimate. Using

multiple values of k makes the prediction less reliant on single k.

The complexity of EkCNN may be obtained analogously to steps (a)-(c) in Section

3.2.3. The complexities of EkCNN required in step (a) and (b) are the same as those of

kCNN . In step (c), EkCNN requires O(kL) sum and comparison operations. Hence, the

complexity of EkCNN is O(Np+Nk + kL).
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3.3 Experimental evaluation

3.3.1 Data sets

We evaluated the proposed approaches using real benchmark data sets available at the

UCI machine learning repository (Lichman, 2013). Table 3.1 shows basic statistics of each

data set including its numbers of classes and features. All data sets are available online at:

https://archive.ics.uci.edu/ml/datasets.html. The data sets are ordered by the

number of observations.

3.3.2 Experimental setup

We compared kCNN and EkCNN against kNN , LMkNN and MLM -kHNN . For

EkCNN , we used r = p where p is the number of features of the data set. For kCNN

and EkCNN , we added ε = 10−7 to each distance in equation (3.7) to avoid the division

of zero when the distance is zero.

The analysis was conducted in R (R Core Team, 2014). For assessing the performance

of the classi�ers, we used 10-fold cross validation for each data. In the experiments, we

varied the size of the neighborhood k from 1 to 15. For each method, the optimal value of

k has to be determined based on the training data only. To that end, each training fold

of the cross-validation (i.e., 90% of the data) was split into two random parts: internal

training data (2/3) and internal validation data (1/3). The optimal k was the value that

minimized classi�cation error on the internal validation set.

We applied the Wilcoxon signed-rank test (Wilcoxon, 1945; Dem²ar, 2006) to carry out

the pairwise comparisons of the methods over multiple data sets because unlike the t�test

43

https://archive.ics.uci.edu/ml/datasets.html


name features classes observations

Wine 13 3 178

Parkins 22 2 195

Cancer 24 2 198

Sonar 60 2 208

Seeds 7 3 210

Haberman 3 2 306

Ecoli 7 8 336

Blood 4 2 748

Diabetes 8 2 768

Vehicle 18 4 846

German 24 2 1000

Yeast 8 10 1484

Image 19 7 2310

Wave 21 2 5000

Magic 10 2 19020

Table 3.1: 15 benchmark data sets and their associated characteristics
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it does not make a distributional assumption. Also, the Wilcoxon test is more robust to

outliers than the t�test (Dem²ar, 2006). The Wilcoxon test results report whether or not

any two methods were ranked di�erently across data sets. Each test was one-sided at a

signi�cance level of 0.05.

3.3.3 Results

Table 3.2 summarizes the error rate (or misclassi�cation rate) of each approach on each data

set under the optimized value of k. Note that di�erent approaches may achieve the lowest

error rate at di�erent values of k. EkCNN performed best on 8 out of the 15 data sets and

kCNN performed best on 3 data sets. EkCNN achieved the lowest (i.e. best) average

rank and kCNN the second lowest average rank. In the cases where kCNN performed

the best, EkCNN was the second best method. According to the Wilcoxon test, EkCNN

had a signi�cantly lower (i.e. better) rank than kNN , LMkNN and kCNN with p-values

0.0005, 0.0042 and 0.0035 respectively. There was marginal evidence that EkCNN had

a lower average rank than MLM -kHNN (p-value = 0.0535). Also, kCNN performed

signi�cantly better than kNN and LMkNN with p-values 0.002 and 0.013 respectively.

Equation (3.7) contains a tuning parameter r. As mentioned above, increasing r

smoothes posterior estimates. For the results of EkCNN presented in Table 3.2, we chose

r = p for all data sets. While not shown here, using r = p resulted in lower or equal error

rates compared with using r = 1 on 14 out of 15 data sets. Specifying r = p reduced the

error rate up to 6% relative to the error rate for r = 1.

For the ecoli and yeast data sets, some classes contained only a few observations. As

k increased, k became larger than the number of training observations for those sparse

classes. Considering that the kth nearest neighbors of those classes were not available,
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kCNN assigned the zero posterior probability to those classes. The posterior probabilities

for the other classes were estimated using the kth nearest neighbors of the available classes.

Figure 3.3 and 3.6 illustrate the error rate of each method on each data set varying with

k. Note that the di�erent error rates of the methods at k = 1 on data sets Haberman and

Blood were due to ties. Compared to kNN , EkCNN tends to outperform throughout the

whole range of k. Also, kCNN -3 outperformed kCNN -2 for most data sets and choices

of k.

3.3.4 Illustrating the choice of r and ε on the sonar data set

In this section, we investigated the impact of r on error rate for the sonar data set. The

sonar data set has the largest number of features (p = 60) among the 15 data sets presented

in Table 3.1.

Figure 3.7 shows that the error rate varied little for small values of k. For this data

set, larger values of r are consistently preferable to smaller values. Note that error rates

for r = 60 were almost identical to those for r = 100.

In our experiments, we added a tiny value ε = 10−7 to each distance to avoid the

division of zero. Figure 3.8 shows that the estimate is not sensitive to the exact value of

ε when ε is small. The error rate e�ectively does not change whether ε is very small (e.g.

0.01) or tiny (e.g. 0.0000001).

3.4 Exploring properties of kCNN via simulation

In the following subsections, we investigate kCNN 's decision boundary and posterior prob-

ability using simulation. Further, we also discuss where kCNN beats kNN for posterior
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kNN LMkNN MLM -kHNN kCNN EkCNN

Wine 0.2871 0.2819 0.2361 0.2770 0.2534

Parkins 0.1783 0.1983 0.1833 0.1783 0.1710

Cancer 0.2782 0.3006 0.2927 0.2524 0.2410

Sonar 0.1815 0.1820 0.1534 0.1767 0.1666

Seeds 0.1500 0.0952 0.1000 0.1000 0.0901

Haberman 0.2769 0.3305 0.3388 0.2572 0.2604

Ecoli 0.1365 0.1482 0.1335 0.1394 0.1305

Blood 0.2438 0.2433 0.3208 0.2432 0.2207

Vehicle 0.3666 0.3028 0.3087 0.3643 0.3560

Diabetes 0.2643 0.2629 0.2759 0.2616 0.2560

German 0.3200 0.3200 0.3120 0.3020 0.3100

Yeast 0.4143 0.4219 0.4191 0.4029 0.3812

Image 0.0346 0.0337 0.0316 0.0346 0.0346

Wave 0.1590 0.1522 0.1606 0.1478 0.1520

Magic 0.1856 0.1962 0.1859 0.1854 0.1780

Average 0.2321 0.2313 0.2302 0.2223 0.2143

Ranking 3.8 3.8 3.3 2.5 1.7

Table 3.2: The lowest error rates of each method on benchmark data. �Ranking� refers to

the average ranking score of each method over the �fteen data sets. Lower is better.
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(a) Wine (b) Parkins

(c) Cancer (d) Sonar

Figure 3.3: Error rates averaged over 10 cross validations for the wine, parkins, cancer

and sonar data sets.
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(a) Seeds (b) Haberman

(c) Ecoli (d) Blood

Figure 3.4: Error rates averaged over 10 cross validations for the seeds, haberman, ecoli

and blood data sets.
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(a) Vehicle (b) Diabetes

(c) German (d) Yeast

Figure 3.5: Error rates averaged over 10 cross validations for the vehicle, diabetes, german

and yeast data sets.
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(a) Image (b) Wave

(c) Magic

Figure 3.6: Error rates averaged over 10 cross validations for the image, wave and magic

data sets.

51



Figure 3.7: Impact of the tuning parameter r on error rates using the sonar data set.
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Figure 3.8: Impact of ε on error rates using the sonar data set.

53



estimation.

3.4.1 Decision boundary of kCNN and EkCNN with varying k

This section illustrates that the decision boundary is more smooth as k increases for both

kCNN and EkCNN . We used a simulated data set from Friedman et al. (2001). The

classi�cation problem contains two classes and two real value features.

Figure 3.9 shows the decision boundary of kCNN with di�erent k (solid curve) and the

optimal Bayes decision boundary (dashed red curve). Increasing k resulted in smoother

decision boundaries. However, when k is too large (e.g., k = 30 in this example), the

decision boundary was overly smooth.

Analogously, Figure 3.10 shows the decision boundary of EkCNN at r = 2 and dif-

ferent values k. Similar to kCNN , the decision boundary was smoothed as k increased.

However, the magnitude of the changes was relatively less variable. For example, the de-

cision boundaries of EkCNN at k = 10 and k = 30 were similar, while those of kCNN

were quite di�erent.

3.4.2 Comparison of the posterior probability distribution of kNN

and kCNN

Rather than considering classi�cation, this section compares kCNN with kNN in terms

of posterior probabilities. Probabilities are of interest, for example, when evaluating the

entropy criterion. Using the same data set as in Section 3.4.1, we plot the full posterior

probability contours of kNN and kCNN in Figure 3.11. We set r = p = 2 for kCNN .

For k = 1, as expected, the posteriors estimated by kNN was always either 0 or 1. By
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Figure 3.9: kCNN on the simulated data with di�erent choices of k. The broken red curve

is the Bayes decision boundary.
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Figure 3.10: EkCNN on the simulated data with di�erent choices of k. The broken red

curve is the Bayes decision boundary.
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contrast, kCNN provided less extreme posterior results even at k = 1. The posterior

probabilities changed more gradually.

When k = 3, posterior probabilities from kNN jumped between four possible values

(0, 1/3, 2/3, 1), whereas those from kCNN were much smoother. The result shows that

unlike kNN , kCNN can produce smooth posterior probability �elds even at small values

of k.

3.4.3 Under what circumstances does kCNN beat kNN for poste-

rior estimation?

kCNN may be useful when the true posterior distribution has a full range of probabil-

ities rather than near dichotomous probabilities (close to 0 or 1). This occurs when the

distributions of the classes substantially overlap. When the distribution of each class is

well separated, for any data point the classi�cation probabilities will be (near) 1 for one

class and (near) 0 for the other classes. Otherwise, when the distributions overlap, the

classi�cation probabilities will be less extreme.

We conducted a small simulation to illustrate that kCNN is preferable to kNN when

k is small and the distributions of the classes overlap. Assume that instances from each

class are independently distributed following a multivariate normal distribution. Denote

by µi the mean vector and by
∑

i the covariance matrix of class ci. The parameters were

given as

µ1 = (0, 0, ..., 0),
∑

1
= Ip

µ2 = (
s
√
p
, ...,

s
√
p

),
∑

2
= Ip
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Figure 3.11: Contour plots of posterior probabilities of kNN and kCNN for k = 1 and

k = 3
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where Ip is the p dimensional identity matrix. Note that s is the Euclidean distance between

the two means. Therefore, s controls the degree of overlap between the distributions of the

two classes.

In order to obtain less variable results, we used 10 independent replicates for each

parameter setting. The �nal outputs were obtained by averaging the results. We used 100

training and 1000 test instances and the equal prior setting for the classes. Like Wu et al.

(2004), we evaluated the posterior estimates based on mean squared error (MSE). The

MSE for the test data is obtained as

MSE =
1

1000

1

2

1000∑
j=1

2∑
i=1

(p̂(ci|xj)− p(ci|xj))
2

where xj represents the j
th test instance.

Table 3.3 shows the MSE for each method as a function of s and k when p = 2.

The kCNN method beat kNN for small values of s. Small values of s mean that the

mean vectors are close to each other, and hence there is more overlap between the two

conditional densities. The di�erence in performance between the two methods decreased

as s or k increased.

Next, we considered the e�ect of feature dimension p on each method. Table 3.4 shows

the MSE for each method as a function of p and k when s = 0.1. Throughout the range

of p, kCNN outperformed kNN . As p increased the MSE for kCNN was less a�ected

by the choice of k.

3.5 Discussion

For the 15 benchmark data sets, EkCNN had the lowest and kCNN the second lowest

error rate (or, equivalently, accuracy). In terms of statistical signi�cance, EkCNN per-
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Table 3.3: MSE as a function of k and s for kNN and kCNN . 100 training instances

and p = 2 were used. The results were the averages of 10 replicates.

k=1 k=5 k=10 k=20

s kNN kCNN kNN kCNN kNN kCNN kNN kCNN

0.1 0.504 0.074 0.115 0.017 0.065 0.011 0.038 0.006

0.5 0.483 0.080 0.094 0.022 0.046 0.019 0.025 0.016

1 0.449 0.113 0.082 0.054 0.042 0.053 0.028 0.058

1.5 0.308 0.104 0.056 0.064 0.024 0.073 0.016 0.085

2 0.211 0.096 0.045 0.082 0.024 0.094 0.016 0.113

formed signi�cantly better than kNN , LMkNN and kCNN on error rate. For the same

data sets, kCNN performed signi�cantly better than kNN and LMkNN .

The ensemble method EkCNN performed better than kCNN . For each k, kCNN uses

a single posterior estimate for each class, whereas EkCNN combines multiple posterior

estimates. This more di�erentiated estimate for posteriors may be the reason for the

greater classi�cation accuracy.

We have shown that kCNN is asymptotically Bayes optimal for r = 1. It is interesting

that for the ensemble version of kCNN , r = p is clearly better for large p. While surprising,

this is not contradictory since the Bayes optimality only applies asymptotically and only

for kCNN and not for the ensemble version EkCNN .

While the tuning parameter r does not a�ect classi�cation for kCNN , r does a�ect

classi�cation for EkCNN . For the empirical results presented in Table 3.2, we chose r = p

for all data sets. We also noted that in 14 of the 15 data sets r = p leads to a lower or

equal error rate as compared to r = 1. Rather than just tuning the parameter k, it would
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Table 3.4: MSE as a function of k and p for kNN and kCNN . 100 training instances

and s = 0.1 were used. The results were the averages of 10 replicates.

k=1 k=5 k=10 k=20

p kNN kCNN kNN kCNN kNN kCNN kNN kCNN

2 0.502 0.070 0.122 0.014 0.054 0.006 0.022 0.004

5 0.499 0.017 0.100 0.003 0.048 0.002 0.021 0.002

10 0.503 0.007 0.112 0.003 0.058 0.002 0.027 0.002

30 0.500 0.002 0.102 0.002 0.053 0.001 0.026 0.001

50 0.494 0.002 0.103 0.001 0.049 0.001 0.023 0.001

be possible to simultaneously tune k and r. While this may further improve the error

rates of EkCNN , the improvement, if any, comes at additional computational cost and is

not expected to be appreciably large. For example, for the sonar data set - the data set

with the largest number of features - we have also demonstrated in Section 3.3.4 that no

improvement was obtained when r > p.

The simulation study in Section 3.4 showed that the decision boundary obtained by

kCNN can be smoothed by increasing k. Although this aspect seems similar to that of

kNN , the reasons for smoothed decision boundaries are di�erent. As k increases, kNN

considers more observations for classi�cation and thus the classi�cation is less a�ected by

noise or outliers. By contrast, kCNN always uses the same number of observations (the

number of classes) to make a prediction regardless of k. The kCNN approach ignores the

�rst k-1 nearest neighbors from each class and this makes the decision boundary less local.

Since EkCNN is a combination of multiple kCNN classi�ers, its decision boundary is

also a combined result of multiple decision boundaries from kCNN . Because the decision
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boundary obtained by kCNN is smoothed as k increases, that obtained by EkCNN is

also smoothed. However, the smoothing occurs more gradually, since the decision boundary

obtained at k is always combined with the k-1 less smooth decision boundaries. This implies

that EkCNN is more robust against under�tting than kCNN that may occur at large k.

The decision boundaries shown in Section 3.4.1 con�rmed this.

An advantage of kCNN over kNN , especially when k is low, is that kCNN can

estimate more �ne-grained probability scores than kNN , even at low values of k. For

kNN , a class probability for a new observation is estimated as the fraction of observations

classi�ed as that class. By contrast, kCNN estimates the posteriors based on distances and

thus gives more �ne-grained probability scores. The probability contour plots in Section

3.4.2 con�rmed this.

The simulation in Section 3.4.3 suggests that the greater the overlap among the pos-

terior distribution of each class, the more likely that kCNN beats kNN in terms of the

MSE. In most applications class distributions overlap, which partially explains why in

the experiment in Section 3.3.3 kCNN performed better than kNN in many cases.
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Chapter 4

Improving Automated Occupation

coding

4.1 Introduction

Classifying a respondent's occupation is essential in o�cial statistics and social science

research. It enables the international comparison of the o�cial statistics on occupation

and work and is the starting point for numerous status scales or prestige measures. It

is a �foundation of much, if not most research on social strati�cation� (Ganzeboom and

Treiman, 2003) and social inequality. Because occupation is a risk factor in many diseases,

classifying occupations is an important �rst step for epidemiological analyses, industrial

hygiene, and other biomedical sciences.

There are quite a few di�erent classi�cation schemes but all have hundreds of occupation

codes and the codes are always nested in hierarchies. For example, the International

Standard Classi�cation of Occupations 1988 (ISCO-88) (Elias, 1997) is a classi�cation of
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four nested levels characterized by four digits. The �rst digit distinguishes nine major

groups and an undi�erentiated tenth major group for the Armed Forces. There are 28 sub-

major groups (2-digit combinations), 116 minor groups (3-digit combinations) and 390 unit

groups (4-digit combinations). Table 4.1 gives coding for sub-major group 71, extraction

and building trades workers.

To ascertain a survey respondent's occupation, typically an open-ended question is

asked (Belloni et al., 2014). Alternative ways to �nd a respondent's occupation include

the use of search trees in web surveys (Tijdens, 2014, 2015), but open-ended questions

are most common. The main example in this paper is the bi-annual ALLBUS survey

(ALLBUS, 2015) conducted by GESIS, a German social science institute. The ALLBUS

survey uses open-ended questions to ask about occupation (Scholz and Wasmer, 2009).

Using multiple choice questions to elicit 4-digit occupation codes is not sensible because

there are too many codes, and more importantly, respondents often would not know how

to classify themselves because occupation coding rules are complex (International Labour

O�ce, 1990; Geis, 2011; Elias, 1997; Belloni et al., 2014).

Traditionally, assigning an occupation code to each answer text has been conducted

manually by human coders. Manual coding is time-consuming and expensive, requiring

professional knowledge. Occupation coding is also di�cult: there are hundreds of pre-

de�ned occupation codes and even more occupation titles. For example, the ISCO-88

classi�cation contains 390 four-digit occupation codes. Another di�culty is that coding

even by professional coders may be inconsistent. The coding quality of a record depends

on the length of the occupation description as well as the di�culty of the words in the

record (Conrad et al., 2016).

In an attempt to partially automate coding, researchers have implemented various rule-
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71

Extraction and building trades workers

711
Miners, shot�rers, stone cutters and carvers

7111 Miners and quarry workers

7112 Shot�rers and blasters

7113 Stone splitters, cutters and carvers

712
Building frame and related trades workers

7121 Builders

7122 Bricklayers and stonemasons

7123 Concrete placers, concrete �nishers and related workers

7124 Carpenters and joiners

7129 Building frame and related trades workers not elsewhere classi�ed

713

Building �nishers and related trades workers

7131 Roofers

7132 Floor layers and tile setters

7133 Plasterers

7134 Insulation workers

7135 Glaziers

7136 Plumbers and pipe �tters

7137 Building and related electricians

7139 Building �nishers and related trade workers not elsewhere classi�ed

714 Painters, building structure cleaners and related trades workers

7141 Painters and related workers

7143 Building structure cleaners

Table 4.1: ISCO-88 Sub-Major Group 71:Extraction and building trades workers

65



based coding schemes. For example, if the text answer contained a word matching an entry

in a pre-de�ned dictionary, then the corresponding code in the dictionary was assigned.

More recently, statistical learning or machine learning approaches (Statistical learning and

machine learning are synonymous for the purpose of this paper. For brevity we just use the

phrase �statistical learning� for the remainder of the paper.) have been employed: a model

is trained on manually coded training data and is then used to predict the most probable

code for new data. This approach is favored, for example, by the Australian Bureau of

Statistics (Clarke and Brooker, 2011). Autocoders based on statistical learning have also

been developed in the U.S.A (Day, 2014) and in Germany (Bethmann et al., 2014).

Although the automated methods reduce costs for occupation coding, fully automated

coding remains challenging. With partial automatic coding easy-to-code answers are coded

automatically, and-hard-to-code answer are coded manually. A measure of con�dence � a

numerical score � is used to distinguish between easy-to-code and hard-to-code text answer

(Scholtus et al., 2014). For example, the CASCOT system proposes to code manually when

a score for the coding quality drops below a modi�able threshold (Jones and Elias, 2004).

In this chapter we consider three new techniques for improving automated coding: a)

combining two statistical learning models for di�erent levels of aggregation, b) combining a

duplicate-based approach with a statistical learning one, and c) a modi�ed nearest neighbor

approach. We evaluate the proposed approaches with data from the 2006 German ALLBUS

survey coded by GESIS based on ISCO-88 codes.

4.2 Automated occupation coding

This section gives an overview of how to evaluate the performance in automated occupation

coding as well as two commonly used approaches: rule-based approaches and approaches
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based on statistical learning. The new approaches we introduce in this chapter are mostly

based in statistical learning.

4.2.1 Production rate and accuracy

When some answer texts are coded automatically and some manually, a score or a prob-

ability is needed to distinguish between hard-to-code and easy-to-code answers. All new

records with scores above a threshold are coded automatically; all others are coded manu-

ally. The threshold is set according to the desired combination of accuracy and production

rate. The production rate is the proportion of observations that can be coded automat-

ically. For a given production rate, accuracy is the proportion of codes that are coded

correctly. Note there is a tradeo� between accuracy and production rate. High accuracy

can be achieved for a small number of easy-to-code records. However, as the production

rate increases and more di�cult answers are included, accuracy tends to decrease. The

tradeo� relationship was illustrated in (Chen et al., 1993).

4.2.2 Preprocessing

Before automated coding begins, text is often preprocessed. There is no standardized way

of preprocessing but there are a range of options such as lower or upper casing all letters,

removing duplicate blank spaces, automatically correcting spelling errors, removing very

common words (so-called stopwords), and, less common in occupation coding but common

in text mining, reducing words to their grammatical root (stemming). Preprocessing is an

attempt to reduce the noise in the data.
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4.2.3 Rule-based occupation coding

If the text answer meets a prespeci�ed logical condition (e.g., presence of a certain word)

a speci�c code is assigned. Such �if-then� statements are called rules. Rules are written by

experts or can be based on previous data analysis. Rules can be combined using boolean

logic. Any one rule based coding scheme consists of hundreds of rules leading to large

dictionaries or look-up tables. Schierholz (2014) reports that this approach rarely codes

more than 50% of records accurately. A variation on rule-based methods is to assign a

score in favor of a category. If a text answer matches a rule, evidence can accumulate for

multiple codes. In the end the text answer is classi�ed into the occupation code with the

highest score. One of the earliest references to rule-based coding is O'Reagan (1972).

Rule based systems are implemented in many institutions: the Washington State De-

partment of Health (Ossiander and Milham, 2006), the 1970 U.S. Population and Housing

Census (Knaus, 1987), the 1991 census data for Croatia and Bosnia-Herzegovina (Kalpic,

1994), the AIOCS system at the U.S. Census Bureau (Appel and Hellerman, 1983; Chen

et al., 1993). Statistics Canada further developed the AIOCS system and created the G-

Code (old name ACTR) software (Wenzowski, 1988; Tourigny and Moloney, 1995), which

was also used for Italian census data (Ferrillo et al., 2008). The University of Warwick

has a popular tool for automatic categorization called CASCOT (Jones and Elias, 2004),

which also has been adapted to the Dutch language (Belloni et al., 2014).

4.2.4 Occupation coding based on statistical learning

Statistical models learn from already classi�ed training data. Such methods can be used

not only for occupation coding but also for general classi�cation problems. Once the model

has been trained, other observations can be classi�ed automatically.
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To build a model, text is �rst converted to numerical data. The standard text mining

approach is to create a variable for each word that occurs in any of the answer texts. These

so-called unigram variables or 1-grams either record the frequency of the word occurring

in an answer text or simply the presence or absence of the word from the given answer

text (Weiss et al., 2010; Joachims, 1998). There are many di�erent variations of this text

mining approach, adding variables for the presence or absence of multi-word sequences

(ngram variables), removing highly used words (stopwords) because they are probably not

useful, and stemming words to their grammatical root. The large number of variables are

modeled with black-box statistical learning algorithms, such as support vector machines

(SVM) (Vapnik, 2000). The model may incorporate additional variables if available.

Di�erent learning algorithms have been used for occupation coding. The Australian

Bureau of Statistics (ABS) employed fully automatic categorization using support vec-

tor machines to code data from the 2006 Australian Census (Clarke and Brooker, 2011).

The ABS uses the Australian and New Zealand Standard Classi�cation of Occupation

(ANZSCO) scheme. To our knowledge this system is still in use by the ABS.

The American Community Survey (ACS) uses a variation on text mining (Thompson

et al., 2012). Variables created from the text include one-word and two-word sequences

(called �wordbits�) as well as the full text. To limit the number of variables for analysis, a

rareness threshold of 30 is used (i.e. the text has to occur at least 30 times before it is used

as a variable). To further limit the number of variables for analysis, the corresponding text

has to be �associated with a single industry/occupation code at least 50% of the time�.

The remaining variables, as well as variables like age and gender, are fed into a logistic

regression. The code with the highest probability obtained by the logistic regression is

assigned to a new record.

Some authors have investigated a nearest neighbor strategy, which assigns the code of
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the answer in the training data that most closely resembles the answer in question. Di�erent

similarity metrics have been employed to measure nearness or resemblance between two

answers. The PACE system employed the k nearest neighbor method with weighted feature

metrics and reported accuracy 0.86 at production rate 0.57 for the U.S. Census Bureau

data (Creecy et al., 1992). Jung et al. (2008) used cosine similarity but found this did not

work well, possibly because they were working in Korean, a language quite di�erent from

languages with roots in Latin. Russ et al. (2014) used the nearest neighbor approach with

a Jaccard similarity measure for classifying text answers into the Standard Occupational

Classi�cation (SOC) scheme. Coding by the nearest neighbour approach was considered

correct if it agreed with one or both of the codes provided by the two human coders. The

accuracy, i.e. the proportion of correctly classi�ed observations, for fully automated coding

was 0.51 at the 6-digit level and 0.64 at the 3-digit level.

The ALWA survey at the German Institute for Employment Research (IAB) used the 5-

digit German national classi�cation KldB 2010 (Schierholz, 2014). The approach presented

in Schierholz (2014) used the full pre-processed verbatim answer text rather than the

text mining approach using ngram variables. Preprocessing included converting special

German characters into regular ones, stripping leading and trailing spaces. Using verbatim

answers (rather than ngrams) drastically reduced the number of variables for learning.

Schierholz (2014) then experimented with various methods including Naive Bayes and a

gradient boosting model (Friedman, 2001). The experiment concluded that boosting and

the Bayesian approaches performed similarly when high accuracy was desired.
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4.3 Three methods for automated occupation coding

We �rst explain the duplicate method, a simple automated coding approach based on dupli-

cate training observations. Next, we propose three new methods for automated occupation

coding. The �rst of these methods, combining statistical learning models at di�erent levels

of aggregation, is later also incorporated with the second method resulting in two versions

of the second method. For statistical learning models, any method that outputs probabili-

ties can be used. In Section 4.4, we chose Support Vector Machines (Vapnik, 2000) for our

application.

For each method the predicted occupation code is the code that has the highest score.

4.3.1 The duplicate method with the ngram based de�nition of

duplicates

An exact-string duplicate refers to two strings that are identical. Simple string preprocess-

ing might improve performance and leads to what we call a preprocessed-string duplicate.

Preprocessing the string might consist, for example, of lower-casing all letters and remov-

ing leading and trailing blanks. For example �Apotheker� (pharmacist), �apotheker� and �

apotheker� would be considered duplicates after preprocessing.

We introduce a di�erent de�nition of duplicates based on ngram variables: An ngram-

duplicate refers to a training observation with a text answer that has the same ngram

representation (i.e. the same values for the variables created from the text). This is

slightly di�erent than an observation with the identical text answer. For example, the

answer �Verwaltungsangestellte im Krankenhaus� (administrator in the hospital) and �Ver-

waltungsangestellte in einem Krankenhaus� (administrator in a hospital) are not identical
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texts. However, since �in�, �im� and �einem� are stopwords and stopwords are removed,

these two strings contain the same unigrams (�Verwaltungsangestellte�, �Krankenhaus�).

Suppose that there exist some duplicates of a new input record x. Let mi(x) be the

number of training duplicates having code ci (i = 1, 2, ..., L). We estimate the probability

pd(ci|x) based on the relative frequency of the training duplicates having code ci:

p̂d(ci|x) =


mi(x)

M(x)
if M(x) > 0

1

L
otherwise

where M(x) =
∑L

i=1 mi(x) is the number of duplicates of x found in the training data. If

no duplicate is found, the method assigns equal probability to each class. The code with

the highest probability is chosen as the predicted code. The duplicate method leads to high

accuracy for duplicates but not to 100% accuracy because coders try to resolve ambiguous

situations with additional undocumented information or because of human error.

4.3.2 Combining models from di�erent levels of aggregation

As seen in Table 4.1, occupation codes have a hierarchical structure. The ISCO-88 occu-

pation codes consist of 4-digit numbers. For example, the code 7131 (roofers) is part of

the minor group 713 (Building �nishers and related trades workers). Three digit group

codes aggregate related occupations. We propose to apply statistical learning separately

to the 4-digit unit occupation codes and to the 3-digit groups and to combine probabilities

as explained in the next paragraph. The motivation is as follows: Given the large number

of occupation codes the number of observations at the 4-digit level can be sparse. The

number of observations will be relatively less sparse at the 3-digit level. If classi�cation

from a 4-digit classi�er results in a near tie of occupation codes with di�erent minor groups
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(di�erent 3rd digit), the evidence from the 3-digit classi�er may sway the classi�cation to

the correct 4-digit code.

Suppose that code ci (i = 1, ..., L) belongs to a 3-digit minor group mj (j = 1, ..., l)

where L and l are the numbers of the 4-digit and 3-digit group codes respectively. Denote

the probabilities from the statistical learning model for 3-digits and 4-digits as p̂3digit(mj|x)

and p̂4digit(ci|x) for a record x, respectively. We average the two probabilities:

p̂3/4digit(ci|x) =
p̂3digit(mj|x) + p̂4digit(ci|x)

2
. (4.1)

This averaging approach will also break ties at the four digit level, unless the tied codes

have the same three digit code. A recent review of hierarchical classi�cation methods in

general (Silla and Freitas, 2011), does not contain the proposed method. However, the

proposed method may be viewed as a member of the local-classi�er-per-level approaches

as it �ts a classi�er for each of 3-digit and 4-digit levels independently.

4.3.3 A hybrid approach: Combining duplicate and statistical

learning approaches

The proposed hybrid approach combines the approach based on duplicates in the training

data with a statistical learning approach.

Let p̂s(ci|x) be the estimated probability obtained by a statistical learning approach.

For the hybrid approach we de�ne a combined score θ(ci|x) as

θ(ci|x) =
M(x)

M(x) + 1
· p̂d(ci|x) +

1

M(x) + 1
· p̂s(ci|x) (4.2)

If there are no duplicates the score equals the probability from the statistical learning

approach p̂s(ci|x). When there are duplicates, coding by the duplicate method is desirable
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as it leads to high accuracy. Hence in the hybrid approach the statistical learning algorithm

only in�uences the prediction when there is a tie among di�erent duplicate codes. Equation

(4.2) assigns the statistical learner a weight equivalent to that of a single duplicate and the

single duplicate is downweighted by the probability p̂s(ci|x) < 1.

When the production rate is less than 100%, the easier-to-learn new records are catego-

rized automatically. The statistical learning algorithms also in�uences this prioritization

of new records. When two new records each have the same number of duplicates and if

p̂d(ci|x) is the same in each case, the record with the larger p̂s(ci|x) is assigned a greater

θ(ci|x) and therefore is prioritized for lower production rates.

We call this approach �hybrid-4digit� when ps(ci|x) in equation (4.2) is estimated using

the statistical learning model for 4-digit occupation codes, p̂4digit(ci|x). Section 4.3.2 de-

�ned p̂3/4digit(ci|x) in equation (4.1) which combined two statistical learning models from

di�erent levels of aggregation. This idea can also be applied here. We call this approach

�hybrid-3/4digit� when ps(ci|x) in equation (4.2) is estimated using p̂3/4digit(ci|x).

4.3.4 A Modi�ed Nearest Neighbor Approach

The nearest neighbour approach (NN) (Fix and Hodges, 1951) is another method employed

in the occupation coding. NN classi�cation �nds a new record's nearest neighbor in

the training data and assigns the occupation code of that nearest neighbor to the new

record also. There can be multiple nearest neighbors (Yu, 2003). NN can be viewed as a

generalization of the duplicate approach: Duplicates are nearest neighbors with a distance

of zero. To de�ne �near�, a measure of distance, or, equivalently, a measure of similarity

is needed. For text classi�cation cosine similarity is widely used (Knaus, 1987; Iezzi et al.,

2014; Maitra and Ramler, 2010). Cosine similarity between two vectors u and v is de�ned
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as

cosine(u,v) =
u · v
|u||v|

=

∑
uivi√∑

u2
i

√∑
v2
i

. (4.3)

where u and v are vector representations of presence or absence of ngrams in the text.

Similarity ranges from 0 to 1 depending on the degree of the similarity between two records.

Similarity is 0 if two records have no common words and 1 if the two records are identical

(in the sense of having the same ngram representation). When duplicates exist, the NN

method predicts the code of records with similarity 1, which is equivalent to the duplicate

method.

As before, we may want to only code easy-to-code text answers and leave di�cult

ones for manual coding. Hence, we propose to use a score that assigns a higher value

to NN predictions that are believed to be more accurate. Given a new text input x,

denote K(x) the number of nearest neighbors in the training data and s(x) the similarity

of the nearest neighbors. (Often K(x) > 1 when multiple observations are the nearest

neighbors.) Suppose that ki(x) out of the K(x) records have code ci (i = 1, ..., L). As

in the duplicate method, we estimate the probability for code ci in the NN approach by

p̂nn(ci|x) = ki(x)/K(x). We de�ne the score for the text answer as

γ(ci|x) = p̂nn(ci|x) s(x)

(
K(x)

K(x) + 0.1

)
. (4.4)

The predicted code depends only on p̂nn(ci|x) because K(x) and s(x) are constant for any

given answer text. The role of s(x) and K(x)/(K(x) + 0.1) is to order observations such

that easier-to-classify-answers have a higher score.

The multiplier s(x) makes sense: greater similarity of a new text and its nearest neigh-

bor leads to more accurate classi�cations. The last term in equation (4.4) can be motivated

as follows: All else being equal, classi�cation based on a larger number of nearest neighbors
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will likely be more accurate than that based on fewer nearest neighbors. The multiplier

K(x)/(K(x) + 0.1) equals 0.91 when K(x) = 1 and converges to 1 as K(x) increases.

Re�ecting lesser importance, this multiplier can at most reduce the score by about 10%

whereas both p̂nn(ci|x) and s can drive the score to zero. We will show below that this

works empirically, however, we readily admit this is not the only multiplier that achieves

this goal and the choice of 0.1 is arbitrary. Using a larger constant extends the range of

the multiplier component and hence makes the score more sensitive to K(x). (This is not

desirable as the other two multipliers are more important.)

For example, the text answer of a new record was �Heizungs und Lüftungsbauer,

Drucker�. The text consisted of three (stemmed) unigram variables: �heizung� (heating),

�lüftungsbau� (ventilation construction) and �druck� (printer). No duplicates existed but

4 records in the training data contained one of the three words. Table 4.2 shows that 3

out of the 4 training records had the answer �Drucker� (�druck� in the stemmed ngram

representation) with code 8251 and the other had �Lüftungsbauer� (�lüftungsbau� in the

stemmed ngram representation) with code 7136. Based on equation (4.3) the similarity

between the test answer and any of the training records in Table 4.2 was
1√
3
√

1
= 0.5774.

So the multiplier in equation (4.4) is K(x)/(K(x) + 0.1) = 4/4.1 = 0.9756. However,

p̂nn(ci = 8251|x) = 3/4 and p̂nn(ci = 7136|x) = 1/4. The di�erence of the γ scores of the

two codes was due to the di�erent probability estimates. In this example, the test answer

was assigned code 8251 because it had the largest score (γ = 0.4225).

4.4 Occupation coding for the ALLBUS survey

We �rst describe the ALLBUS data (Section 4.4.1) and then show the importance of our

de�nition of duplicates (Section 4.4.2). Next, we compare the proposed automatic coding
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Record (Nonzero) ngram variables Occ. code p̂nn(ci|x) s(x) K(x)
K(x)+0.1

γ(ci|x)

heizung lüftungsbau druck

Training 1 0 0 1

Training 2 0 0 1 8251 0.75 0.5774 0.9756 0.4225

Training 3 0 0 1

Training 4 0 1 0 7136 0.25 0.5774 0.9756 0.1408

Test answer 1 1 1 ĉi = 8251

Table 4.2: Illustration of calculating γ(ci|x). The unigram variables contain 1 if the word

is present in the record and 0 otherwise.

methods on the ALLBUS data (Sections 4.4.3 and 4.4.4). We conclude with a simulation

to explore the in�uence of duplicates and noise variables in Section 4.4.5.

4.4.1 Problem and Data

The German General Social Survey (ALLBUS) conducts repeated cross-sectional surveys

of the adult German population living in private households, with an oversampling of

the residents of Eastern Germany. ALLBUS has been conducted every two years since

1980; initially covering West Germany and expanding to East Germany since German

reuni�cation in 1990 (ALLBUS, 2015; Koch and Wasmer, 2004). The main topics concern

attitudes, behavior and social structure.

The targeted net sample size is usually 3, 500. Since 1994, the samples are drawn in two

stages. In the �rst stage, about 160 communities (primary sampling units) are selected. In

the second stage, addresses of individuals are randomly selected from the lists of residents

for every community. Every two years a fresh probability sample is drawn from the German

register. ALLBUS surveys are conducted face-to-face.
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ALLBUS interviewers asked about occupation multiple times: current occupation of

respondent, last occupation of respondent (if not employed), occupation of spouse (if mar-

ried), occupation of partner (if not married but with partner), occupation of father, oc-

cupation of mother. In the ALLBUS survey the interviewer asks the following questions

which are recommended by o�cial statistics in Germany (Statistisches Bundesamt, 2010):

�What work do you do in your main job? Please describe your work precisely. Does this

job, this work have a special name?� (Scholz and Wasmer, 2009). Interviewers were free

to combine the answers, and were not asked to write one answer after another. The occu-

pation questions for partners/spouses/parents are analogous with the same format. The

answers were pooled to form a single dataset. Prior to the open-ended questions for all

occupations, respondents were also asked: �Please classify your occupational status accord-

ing to this list.� The list contains 32 occupation statuses in 12 categories. We refer to this

below as (self-recorded) occupation status.

The ISCO-88 coding of the text answers was done by GESIS in a two-step proce-

dure. First, automatic coding was attempted with the in-house software textpack (Geis

and Ho�meyer-Zlotnik, 2000; Züll, 2014). Such automatically coded answers were veri�ed

by a professional coder afterwards. All remaining responses were coded in a second step

manually according to an extensive coding manual (Geis, 2011). The in-house software

used a dictionary with about 4, 500 prede�ned combinations of ISCO codes. Because the

dictionary mostly contains duplicates from previous surveys, textpack implements the du-

plicate approach with additional hand-crafted rules (however, the coder may also override

some codes in light of occupational status, education or other information).

For each word or phrase listed in the dictionary, textpack searches for exact matches in

the data and outputs the associated code. Such rules were applied one at a time (and the

rule order may a�ect the result). If a rule was matched exactly, a response was coded. If
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none of the rules applied, it was manually coded by professional coders. Typically, textpack

coded about 50% of the responses. GESIS used self-reported occupation status only if text

was unclear or ambiguous. In the 2006 survey, the 9, 137 observations were coded into 399

distinct unit occupation codes and 140 minor group codes.

To apply the proposed methods we encoded text answers into unigram variables (Schon-

lau and Guenther, 2016). All such variables were indicator variables specifying the presence

or absence of the corresponding word. We applied stemming using a German Porter stem-

mer (Snowball, 2015) and removed German �stopwords� as well as punctuation marks.

The removal of stopwords and stemming reduced the number of ngram variables. As is

standard practice, we also created a variable that counted the number of words contained

in the answer. All in all, 4, 232 indicator variables were created in addition to the number-

of-words variable. In addition to the text response the survey also contains self-reported

occupation status which was also included among the independent variables.

For a statistical learning approach we use support vector machines (SVM) (Vapnik,

2000) with a linear kernel, which has been shown to work well in text categorization

(Joachims, 1998). The linear kernel requires only a single tuning parameter, C, that

controls the trade o� between the training error and model complexity. In this data set

the choice of C had little in�uence on prediction accuracy and we used C = 1 throughout

the study. As is common, the SVM scores were converted into probabilities using Platt's

method (Platt, 2000) which performs a regularized logistic regression of class membership

on the SVM score.

We evaluate the approaches using 10-fold cross validation (CV ). This means, we ran-

domly divide the data into 10 equal sized parts. We use the �rst 9 parts to train the model,

and the last part to test the model. Accuracy is only evaluated on the test data. In turn,

we use each of the 10 parts as test data and average the results. As a consequence, the size
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of the training data is therefore 90% of the data or 8,223 observations. For the purpose of

evaluating prediction accuracy we assume that the original codes assigned by GESIS and

the professional coders are correct.

The analysis was carried out in R (R Core Team, 2014), and package e1071 (Meyer

et al., 2014) is used for the construction of the SVM models.

Most open-ended answers were short. 66.5% of the answers consisted of a single word.

The median length was 1 word; the average length 1.8 words and the maximum length 17

words. About 60% of the data consisted of (ngram-based) duplicate observations. Among

duplicate observations, the median number of duplicates was 3 with a higher average (6.8)

due to some very frequent duplicates (maximum = 221 duplicates). The text with the

most duplicates was �Landwirt� (farmer).

4.4.2 ngram vs. string-based de�nition of duplicates

The purpose of this section is to demonstrate that the ngram-based method of duplicate

is preferable to the string-based ones. Here we explore how much the de�nition of du-

plicate mattered for the two best performing methods, NN-3 and hybrid-3/4digit, which

are explained later. We compared the ngram-based method with original string (without

any processing) and preprocessed string methods. Preprocessed strings refer to lower cas-

ing and stripping o� leading and trailing spaces of the original strings. As described in

Section 4.4.1, ngram variables were obtained after stemming and removing stopwords and

punctuation marks.

The percentage of duplicates is 52.6% for the identical-string-duplicates, 56.7% for

the preprocessed-string-duplicates, and 60.0% for the ngram-duplicates. However, the

quality of the duplicates did not degrade: identical-string-duplicates (preprocessed-string-
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duplicates, ngram-duplicates) had identical occupation codes 91.9% (91.6%, 92.0%) of the

time. The remaining 8% represent coders' attempt to recode otherwise unambiguous text

in light of occupational status or education. For example, a pharmacist with lower occupa-

tional status might be reclassi�ed as pharmaceutical assistant. Of course, misclassi�cation

errors are possible, too.

Figure 4.1 shows the tradeo� between accuracy and production rate for the three def-

initions of duplicates for hybrid-3/4digit (left panel) and NN-3 (right panel). The use of

the ngram de�nition of duplicates improved accuracy in both methods for moderate and

high production rates. With full automation, the accuracy increased from 0.54 (without

preprocessed) to 0.65 for the hybrid-3/4digit method and from 0.47 (without preprocessed)

to 0.65 for the NN-3 method. Preprocessed-string-duplicates fare somewhat better than

unprocessed strings, but the success of the ngram-based de�nition clearly goes far beyond

string preprocessing.

4.4.3 Accuracy of the nearest neighbor method

We �rst investigated the coding performance of the modi�ed NN method. The score in

equation (4.4) has three components. To demonstrate that all three components are helpful,

we evaluate both the proposed overall score (NN-3) as well as reduced score missing one

(NN-2) or two components (NN-1) with corresponding scores γ1, γ2 and γ3:

(NN-1) γ1 = max
i

p̂nn(ci|x)

(NN-2) γ2 = max
i

p̂nn(ci|x) s(x)

(NN-3) γ3 = max
i

p̂nn(ci|x) s(x)
(

K(x)
K(x)+0.1

)
Figure 4.2 shows the accuracies of each approach as a function of the production rate.

(These were average accuracies from the 10-fold cross validation mentioned earlier). Answer
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Figure 4.1: Accuracy for a given production rate for two approaches based on three di�erent

de�nitions of duplicates �ngram�, �string� and �preprocessed string�. The left panel shows

the results of hybrid-3/4digit and the right panel shows those of NN-3. The �ngram�

de�nition of duplicates is far superior.
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texts with higher scores were coded �rst; a production rate of, say, 10% refers to coding 10%

of the answer texts with the highest scores automatically. When the production rate equals

100%, the accuracy is the same for all the approaches because the second and third terms

in equation (4.4) do not a�ect which code is assigned, but rather used to prioritize more

similar observations and observations with multiple nearest neighbors by assigning them

a higher score. Prioritizing a�ects the accuracy at production rates of less than 100%

(because observations with the highest score are chosen �rst). The improvement from

NN-1 to NN-2 showed that similarity s was helpful for �nding easier-to-classify-answers.

Likewise, the accuracy di�erences between NN-2 and NN-3 showed that the term K(x)
K(x)+0.1

improved the performance at low to medium production rates.

Having established that NN-3 is preferable to NN-1 and NN-2, we next compare NN-3

with all other approaches.

4.4.4 Comparison of methods

Here we compare the accuracy as a function of production rate for the proposed methods

(hybrid-4digit, hybrid-3/4digit, and NN-3) as well as some default methods (duplicate

method, svm-4digit, svm-3/4digit). The duplicate method refers to assigning the code of

ngram duplicates (or a random code if no duplicates exist), svm-4digit refers to an SVM

model based on 4-digit occupation codes. svm-3/4 digit refers to an SVM model based

on averaged probability from separate models for 3-digit and 4-digit occupation codes as

described in equation (4.1). For all methods, a production rate of x% refers to the x% of

the data that have the highest score (or probability).

Figure 4.3 shows the accuracy as a function of the production rate for the di�erent

methods. For all methods, there were trade-o�s between the accuracy and the production
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Figure 4.2: Accuracy of three variations on the nearest neighbor approach as a function

of production rates. NN-1, NN-2 and NN-3 refer to scores using γ1 = p̂nn(ci|x), γ2 =

p̂nn(ci|x)s and γ3 = p̂nn(ci|x)s
(

K(x)
K(x)+0.1

)
, respectively.
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rate. The modi�ed nearest neighbor method, NN-3, performs equal to or slightly better

than the next best method, hybrid-3/4digit. NN-3, hybrid-4digit and hybrid-3/4digit

uniformly beat the duplicate method and both SVM methods.

A production rate of 100% corresponds to classifying all answers automatically. At

full automation, NN-3 and hybrid-3/4digit perform equally well. At full automation, svm-

3/4digit has an accuracy of 59%, the duplicate method has an accuracy of 53%, and the

hybrid-3/4digit method increases the accuracy to 65%.

Figure 4.3 also shows the duplicate accuracy stayed at around 95% up to a production

rate of about 0.55. About 55% of the test data in any given cross validation were duplicates

and thus duplicates were used for coding. However, when no duplicates exist in the train-

ing data the duplicate approach assigned equal probabilities to all codes, resulting in the

random code assignment and accuracy near zero. The accuracy started decreasing at pro-

duction rate around 0.55 from which no additional records of some CV test samples could

be classi�ed by the method. From production rate 0.60, all of the CV test datasets had

no duplicates and the method performed poorly. NN-3, hybrid-4digit and hybrid-3/4digit

beat the duplicate method even for production ranges where duplicates are available.

Combining the 4-digit unit and 3-digit minor code methods (svm-3/4digit) was uni-

formly superior to using the unit code method only (svm-4digit). For example, for fully

automated coding, the accuracy for svm-3/4digit was 0.59 as compared to 0.52 for svm-

4digit. The hybrid approaches performed very similarly up to about a production rate of

60%. After that, the hybrid-3/4digit performs a little better than hybrid-4digit. When

duplicates were available for hybrid-3/4digit, the predicted codes mostly agreed (83%) with

those predicted by the duplicate method.

The performances of hybrid-3/4digit and the NN-3 were similar for fully-automated

85



Figure 4.3: Comparison of di�erent methods for occupation coding. Methods include

statistical learning (svm-4digit), statistical learning from two models at di�erent levels of

aggregation (svm-3/4digit), and two hybrid methods combining duplicate-predictions with

svm-4digit and svm-3/4digit, respectively.
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coding as well as at low-medium production rates. NN-3 appeared to slightly outperform

hybrid-3/4digit at medium-high production rates.

The curves in Figure 4.3 help us decide which texts should be classi�ed automatically

and which manually. For example, if the client decides that 80% accuracy is required,

then Figure 4.3 suggests that 76% of the data can be classi�ed automatically with the

hybrid method and 81% with the NN-3 method. Relative to applying the duplicate based

approach, this increases production from about 58% to 76% or 81%.

4.4.5 Simulation

The purpose of this section is to explore to what extent the methods are robust to possible

idiosyncrasies of the data. We considered two possible concerns with our example data: 1)

The data contain a large percentage (50%) of duplicates. 2) The text answers are unusually

clean and contain fewer super�uous words than usual.

For the �rst case, in the context of occupation coding a large number of duplicates is

very common. (Duplicates here refers to ngram duplicates). To simulate a data set with

fewer duplicates, a random subset of duplicate records was removed so that in the reduced

data only about 10% duplicates of the test records had duplicates. The reduced dataset

contained 4,722 observations.

As expected, Figure 4.4 shows that the accuracy (for a given production rate) for all

methods decreased for this much harder problem. The relative performance of the methods

is very similar with one notable exception: Previously, both NN-3 and hybrid3/4-digit

performed similarly. Now, NN-3 clearly outperforms the hybrid-3/4digit method. The

NN-3 method remains superior to NN-1 and NN-2 analogous to Figure 4.2 (The analogous

Figure is not shown).
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Figure 4.4: Comparison of the same methods as in Figure 4.3 on a reduced dataset con-

taining only 10% duplicates.
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For the second case, less clean text answers would have resulted into additional words

that are not related to the occupation code. Such additional words translate into indicator

variables (presence or absence of the word) in the data. There are typically many of

such variables, each with a low probability. We added 100 independent �noise� indicator

variables to the data. Each variable followed a Bernoulli distribution with probability of

success of 0.01.

The results are shown in Figure 4.5. Adding the noise variables decreased the number

of duplicates. Hence the accuracy of the duplicate method started decreasing at production

rate around 0.2 instead of around 0.55. The results lead to roughly the same conclusions

as we obtained from Figures 4.3 and 4.4. NN-3 and hybrid-3/4digit were comparable with

NN-3 having a slight edge at lower production rates.

4.5 Discussion

We have investigated several novel approaches for automated occupation coding for any

desired production rate. The two best performing methods, the modi�ed nearest neighbor

method (NN-3) and a hybrid method (hybrid-3/4digit) substantially improve the accuracy

compared to both statistical learning (SVM in the example) by itself and the duplicate

method at any production rate in the ALLBUS data. As the percentage of duplicates

decreases, a simulation shows that NN-3 gains a relative advantage over the hybrid method.

Either accuracy or production rate can be set to a target rate which determines the

second measure. For example, targeting 80% accuracy for the automated coding, the

hybrid-3/4digit and NN-3 approaches could categorize 76% and 81% of the data auto-

matically, while the numbers obtained by the SVM and duplicate methods individually

were 60% and 66%, respectively. If production rate is �xed at 80%, the hybrid-3/4digit
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Figure 4.5: Comparison of the same methods as in Figure 4.3 with 100 noise variables

added to the data.
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and NN-3 could achieve accuracy of 77% and 81%, while the SVM and duplicate ap-

proaches reported accuracy of 69% and 66%. Note that accuracy for each category may

di�er from the overall accuracy. Categories that contain more hard-to-code answers than

others achieve lower accuracies.

In addition, we have learned: 1) Even at low production rates when duplicates exist,

NN-3 and hybrid achieve a higher accuracy than the duplicate method. 2) Using the

duplicate method where duplicates exist and using statistical learning otherwise is not the

best strategy (Figure 4.3 shows the proposed methods beat the duplicate method where

duplicates exist.). We instead recommend the hybrid method that integrates the two

approaches. 3) Combining aggregate and detailed learners improves accuracy for some

learning algorithms. For example, where svm-4digit and svm-3/4digit disagree in the

ALLBUS data, svm-3/4digit is 87% of the time correct.

Why do the NN-3 and hybrid methods beat SVM and the duplicate approach? Because

a duplicate is also a nearest neighbor, both methods rely on nearest neighbors. Nearest

neighbor algorithms are e�ective when prediction is highly local and little can be gained

from observations farther away. This may explain why NN-3 and hybrid methods beat

SVM , one of best statistical learning algorithms in existence. Both proposed methods

beat the duplicate approach because a) they both can distinguish between easier-to-code

and harder-to-code duplicates leading to higher accuracies at lower production rates, b)

the hybrid- 3/4 method can break ties among duplicates and c) the duplicate approach

performs poorly when no duplicates exist.

The NN-3 approach can be computationally expensive when the training dataset is very

large. The hybrid method requires �nding duplicates but �nding duplicates is much less

expensive because it does not require a sorting step.
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We have combined the aggregate method with the hybrid method leading to better

results. The modi�ed nearest neighbor method could also be combined with the idea of

aggregating di�erent level scores. However, the resulting method showed almost the same

performance as NN-3.

We now comment on the importance of some data analysis choices. First, duplicates

were de�ned as having the same ngram representation rather than being identical strings.

This increased the number of duplicates and substantially improved accuracy at moderate

and high production levels. Second, self-reported occupation status (STIB) was used as a

covariate for statistical learning. We found including STIB made little di�erence. Third,

we supported German language stemming, but it turned out this had almost no e�ect.

Because the text was written by interviewers (rather than respondents) our data were

relatively clean with many one-word answers. Stemming is likely more important with

messier data.

We next comment on possible limitations arising from idiosyncrasies of the ALLBUS

data set. The proposed methods are not limited to ISCO-88 coding scheme. One of the

methods relies on a hierarchical coding scheme, but all occupation codes are hierarchical.

We have analysed 9137 observations. While this data set is probably larger than most

data sets analysed in statistical journals, at national statistics agencies far larger data sets

arise with sometimes millions of observations. The proposed methodology is not limited

to a speci�c data size, but it is unclear whether the performance of the proposed method-

ology relative to the alternative algorithms would be equally impressive with millions of

observations. We have pooled self-recorded occupations and occupations from partners,

spouses and parents. We investigated whether this distorted result somehow. Speci�cally,

we reduced the data set to one occupation question per respondent. We found this did not

meaningfully a�ect the results.
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For the hybrid method we used SVM as the statistical learning method of choice. While

SVM is one of best performing methods available, other statistical learning methods could

be chosen provided that they output a probability (or a score that can be transformed into

a pseudo-probability) rather than just a classi�cation. Naturally, better predictions from

the statistical learning method will tend to improve the hybrid method also, particularly

when there are no duplicates.

All proposed approaches rely on training data. For statistical learning, the size of the

training data needs to be large relative to the number of occupation codes. In the ALLBUS

data the size of the training data (implied by cross validation) was 8, 226. Relative to the

399 occupation codes, this is an average of 20.6 observations per code. More training data

will tend to increase the number of duplicates.

Cross validation deals with unseen data but does not take into account time trends. To

the extent that language use changes from year to year, any classi�er would slowly degrade

over time.

In summary, we proposed new approaches to automated occupation coding that lead

to vastly improved coding accuracy at both high and low production rates in our example

data. While not conclusive, this bodes well for other occupation data sets.
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Chapter 5

Summary and Future Work

5.1 Summary of the Thesis

This thesis addressed three di�erent topics in statistical learning: (a) general multi-label

classi�cation, (b) nonparametric multi-class classi�cation and (c) automated occupation

coding. The major contributions of this thesis are di�erent novel classi�cation approaches

in order to achieve higher prediction performance compared with other methods.

In Chapter 2, we have presented NLDD based on probabilistic binary classi�ers. The

proposed method chooses a training labelset with the minimum expected loss, where the

expected loss is a function of two variables: the distances in feature and label spaces. The

parameters are estimated by maximum likelihood. NLDD relies on labelsets observed

in the training data and is unable to predict previously unobserved labelsets. NLDD

outperformed other methods on the selected data sets where most test data sets contained

5% unobserved labelsets. While the method still outperforms the other methods with 33%

of unobserved labelsets on the bibtex data, the method might not fare as well when the
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percentage of unobserved labelsets is substantially greater.

In Chapter 3, we have proposed a new nonparametric classi�cation method, kCNN ,

using the kth nearest neighbor from each class. We have demonstrated that kCNN is

an approximation of the Bayes classi�er. Moreover, we showed that kCNN converges

in probability to the Bayes classi�er as the number of training instances increase. We

also considered an ensemble type of kCNN (EkCNN). Our experimental results on 15

benchmark data sets showed that EkCNN was signi�cantly superior to kNN , kCNN and

LMkNN in terms of the error rate.

In Chapter 4, we have investigated several novel approaches for automated occupation

coding for any desired production rate. The proposed approaches to automated occupation

coding lead to vastly improved coding accuracy at both high and low production rates in

our example data. While not conclusive, this bodes well for other occupation data sets.

5.2 Future Work

5.2.1 A weighted EkCNN classi�er

In this thesis we have shown that the EkCNN nonparametric classi�er is simple and

�exible, and can outperform kNN . The EkCNN classi�er still has signi�cant potential

for further improvements and applications. Many of the directions for improving EkNN

may also be applied for improving the kCNN method. One way is to give di�erent weights

for di�erent k. In the context of kNN , a number of weighted kNN approaches have been

introduced (Dudani, 1976; Keller et al., 1985; Gou et al., 2012). Many of the methods

give large weights to closer neighbors and small weights to farther ones. Similar to this

idea, we may consider a weighting method that gives large weights to kCNN classi�ers
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with small k and small weights to kCNN with large k. On the other hand, the results

of kCNN in Chapter 3 show that the performance of kCNN is dependent on k. Based

on the performances of kCNN with di�erent k, we may also consider a weighting method

that gives large weights to more accurate kCNN .

5.2.2 Multi-label and other types of classi�cation

TheNLDD classi�er may still be improved in terms of its run time and prediction accuracy.

The directions for future research include examining feature selection, label thresholding,

and prototype labelset approaches. The NLDD method may also be used in other types of

practical classi�cation problems, including hierarchical (possibly multi-label) classi�cation

where the class sets are organized into a class hierarchy. Di�erent algorithms have been

developed for multi-label classi�cation, yet few of them have been extended to hierarchi-

cal classi�cation contexts. I propose to extend our multi-label classi�er to hierarchical

classi�cation problems. The idea is to transform a hierarchical problem into a multi-label

problem by treating the ancestor (or intermediate) classes as additional labels.
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