
An Intelligent Multi-stage Channel
Acquisition Model for CR-WBANs:

A Context Aware Approach

by

Refga Elgadi

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Applied Science
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

© Refga Elgadi 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144150845?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,

including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii



Abstract

Cognitive Radio (CR) came as a solution to mitigate challenges that wireless body area

networks (WBANs) suffer from. CR is an intelligence-based technology that senses, ob-

serves, and learns from its operating environment to access licensed bands in the spectrum

when they are not being utilized by primary users. Deploying a CR technology in WBANs

applications, enhances spectrum scalability, increases system robustness, and decreases la-

tency. Accordingly, CR-WBANs help in building a more efficient and reliable ubiquitous

healthcare system than conventional WBANs do. However, CR-WBANs are still evolving,

and many challenges need to be investigated, in particular, is how to acquire a channel

and prioritize data streams among multiple CR-users (i.e., multiple patients) based on the

severity of their health status, in a manner to decrease network latency and increase net-

work scalability. To address this challenge, this work proposes a novel intelligent channel

acquisition model for multiple CR-WBANs within ubiquitous healthcare system, whereby

contextual data, namely, channel properties, intra-node characteristics, and patients profile

information, is integrated in channel acquisition decision process. The proposed work is

a multi-stage fusion system that is composed of local and global decisions units. A fuzzy

logic system is utilized to make decisions in the local unit, which are sensing the chan-

nel availability and assessing the severity of patients’ health status. Moreover, a neural

network is employed as a global sensing decision center, whereby local sensing decisions,
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channel properties, and intra-node characteristics are augmented in the decision process.

Furthermore, a cluster-based heuristic algorithm is formulated, in the global decision unit,

to prioritize data streams among CR-users based on the criticality of their health condi-

tions (i.e., acute, urgent, and normal). Patients’ local health assessments and avatars (e.g.,

age, medical history, etc.) are exploited in the prioritization process.

The proposed model has improved spectrum sensing accuracy and channel acquisition

probability, for all CR-users in the network, under the consideration of the severity of their

health status. Thus, network latency has reduced and network scalability has increased,

and so more lives can be saved. The proposed work has gone through extensive experi-

mental simulations to evaluate its performance. The results have shown that the channel

acquisition model is robust, scalable, accurate, and reliable in acquiring a channel and

prioritizing data streams among patients based on their health conditions.
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Chapter 1

Introduction

Wireless body area networks (WBANs) have revolutionized the healthcare system by as-

sisting patients with life-threatening situations and facilitating the continuous monitoring

of patients while enabling their mobility [7]. WBANs comprise tiny wearable and im-

plantable body sensors that collect and analyze patients vital signs, such as, heart rate,

respiratory rate, brain activities, and temperature. These sensors also provide real-time

feedback about patients health status. All these body sensors are connected to a central-

ized node called body controller unit (BCU). Each BCU is responsible for managing a

WBAN and recognizing all sensors that are connected to its network. It is also responsible

for transmitting vital-data to different medical locations (e.g., hospital systems, specialists,

and pharmacists) via an access point.

However, the demand for deploying wireless technologies in healthcare programs is

increasing rapidly. In fact, the international data corporation (IDC) has announced that
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the total number of health monitoring wearables to be shipped worldwide during a five-

year period is expected to reach 155.7 million units in 2019, as depicted 1.1 [5]. All these

demands result in new challenges in the network, such as, interference with other electronic

devices, spectrum scarcity, and transmission failure, all of which may put patients lives at

risk.

Cognitive Radio (CR) came as a technology to mitigate these challenges. It is an

intelligent based technology that allows its users to sense, observe, and learn from its

operating environment to opportunistically access licensed bands in the spectrum when

they are not being utilized by primary users (PUs). Deploying the CR technology in

medical services, increases system’s robustness and scalability, reduces interference, and

decreases latency [8].

However, CR-WBANs are still in its infancy stage, so various challenges need to be

tackled, to apply the network in real-life applications. Channel acquisition is a crucial issue

in CR-WBANs. Since the transmitted data in the network is associated with saving lives,

acquiring a channel in the network must be accurate and reliable based on the severity level

of patients health status. Different parameters can be included in designing an appropriate

channel acquisition model in CR-WBANs: spectrum sensing and data prioritization are

main parameters. Spectrum sensing is a major channel acquisition mechanism in CR

networks. It is the first function that a CR-user performs and has a fundamental role in
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enabling efficient spectrum utilization. Spectrum sensing enables CR-users, or secondary

users (SUs), to detect primary users (PUs) activities and makes a decision to utilize vacant

channels in the spectrum. Data prioritization has a main function in saving patients with

life-threatening situations. An appropriate prioritization mechanism must be applied to

prioritize data transmission among body sensors and a BCU, or among multiple WBANs

and an access point.

Figure 1.1: IDC world wearable devices forecast from 2014 until 2019[5]
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1.1 Thesis motivation

Recently, demands of individuals with needs in the healthcare system have been rising

significantly. In fact, according to Statistics Canada, in 2014/2015, the growth rate of the

population over 64 is almost four times higher than the growth rate of the total population

[9]. Additionally, due to the increasing cost of hospitalizations and specialist organizations

[10], designing an intelligent ubiquitous healthcare system can assist healthcare profes-

sionals to overcome previous challenges and save more lives. WBANs are the first step

in building an intelligent ubiquitous healthcare system. However, due to the increasing

usage of WBANs in healthcare services, different challenges have faced the network, such

as transmission failure, interference, and channels scarcity. all that may put lives’ at risk.

CR-WBANs came as a solution to overcome different challenges that conventional

WBANs suffer from. Moreover, building a high performing ubiquitous healthcare system

with multiple CR-WBANs to serve the increasing number of patients requires designing

an appropriate channel acquisition model. However, most of the state-of-the-art research

is focused on acquiring a channel to transmit vital data among a BCU and body sensors.

Ignoring that acquiring a channel effectively to send and prioritize data among multiple

patients, based on their health status, can increase system robustness and scalability, and

reduce system latency.
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1.2 Research contributions

This research proposes a novel multi-stage intelligent channel acquisition model for CR-

WBANs within ubiquitous healthcare system, whereby patients’ contextual data, namely,

intra-node characteristics, environmental properties, and patients’ profile information, is

augmented to acquire a channel for a patient with the highest priority level based on that

patient health status. Main contributions of this work are:

� Building an intelligent channel acquisition model for multiple CR-WBANs within

ubiquitous healthcare system, whereby patients with acute health status have the

highest priority in acquiring a channel.

� Designing an architecture for the proposed intelligent channel acquisition model for

CR-WBANs. The architecture is composed of 1) local decisions unit, where the

intelligence is embedded in BCUs; and 2) global decisions unit, where the intelligence

is encapsulated in access points.

� Designing an intelligent spectrum sensing model with high spectrum sensing accuracy

for the channel acquisition model, whereby intra-node characteristics and environ-

mental properties are included in spectrum sensing process.

� Utilizing fuzzy logic system and neural network, in local and global units, to sense
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channel availability.

� Designing data prioritization model based on the criticality of patients health status

(e.g., acute, urgent, and normal).

� Exploiting fuzzy logic system, again, in the local unit, to appraise the severity of

patients’ health according to their real-time vital signs measurements

� A cluster-based heuristic algorithm is formulated, in the global unit, to prioritize

data transmission based on patients’ local health assessment and patients’ avatars

(e.g., age, body mass index, etc.).

1.3 Thesis organization

This dissertation is composed of six chapters: Chapter 1 provides a brief introduction to

the research area, research motivations and contributions.

Chapter 2 introduces a comprehensive overview of wireless body area networks (WBANs),

its architecture, design requirements and challenges. Furthermore, this chapter provides

an overview of cognitive radio (CR) and defines spectrum sensing and its techniques. It

also presents a survey of state-of-the-art applications for CR-WBANs. Challenges that

confront CR-WBANs are discussed briefly, to promote research in this area.
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The architecture of the proposed intelligent channel acquisition model for CR-WBANs

within ubiquitous healthcare system is presented in chapter 3. It is composed of two units,

namely: the local and global decision units. Each unit consists of two modules: 1) the

local decision unit consists of local sensing and health assessment decisions. 2) the global

decision unit consists of global sensing and data prioritization decisions.

Chapter 4 describes design details of the proposed intelligent hybrid cooperative spec-

trum sensing model, which brings together the local sensing and global sensing decision

modules. The chapter also presents extensive experimental simulations that are conducted

to validate the model’s performance regarding the probability of detection and spectrum

sensing accuracy, for different number of CR-users.

Chapter 5 describes the proposed design details of the intelligent data prioritization

model, which includes the local health assessment and global data prioritization decision

modules. Patients’ contextual information is utilized in the prioritization process. Ex-

perimental simulations are conducted to validate model’s performance in terms of the

probability of channel acquisition, network scalability and latency.

Finally, chapter 6 concludes this work and presents future recommendations
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Chapter 2

Background and Literature Review

2.1 Introduction

WBANs positively affect the healthcare system by providing real-time monitoring, facili-

tating patient mobility, and reducing the cost of long-term treatment in hospitals [7]. It

also provides remote monitoring for the elderly and individuals with chronic diseases which

assist them for proceeding with their regular activities [11]. However, the increasing de-

mands for employing WBANs in the healthcare system have brought new challenges to the

network, such as interference with other electronic devices, spectrum scarcity, transmission

delay, and transmission failure [11]. All of these challenges may put patients lives at risk.

Cognitive radio technology came as a solution to mitigate previous issues and enhance

network performance.

Cognitive radio (CR) technology is an emerging paradigm that provides more flexible
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and efficient usage of the radio spectrum. It allows illegitimate users to opportunistically

access the spectrum without causing any harmful interference to legitimate users (i.e.,

primary users (PUs)). The CR technology adds cognition as an intelligent component in

the radio spectrum, to detect a candidate channel that unlicensed users (secondary users

(SUs)) can occupy in a manner to maximize spectrum utilization. The CR network can

make a decision intelligently, learn to consider future goals, provide data prioritization,

and be aware of the surrounding environment[12]. Hence, deploying CR in WBANs will

improve system performance and overcome the pre-mentioned challenges.

This chapter provides a broad discussion on WBANs; overviews of CR technology;

presents a novel categorization for the limited state-of-the-art applications for CR-WBANs;

and discusses open issues to promote future research direction..

2.2 Wireless body area networks (WBANs)

WBANs are composed of small size, low power, low cost, and lightweight physiological

sensors. These sensors can monitor several functions for different organs and vital signs

in, on or around the human body, and collect and analyze the data in tests, such as blood

rate, electrocardiogram (ECG), electroencephalography (EEG), pressure, and temperature

[8][13]. The collected data is transmitted wirelessly to different healthcare services (e.g.

hospitals, emergency rooms (ERs), specialists, or ambulances) depending on the purpose
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for collecting the data.

WBANs can be used in different areas, such as the military to track soldiers loca-

tions, entertainment in interactive gaming, and healthcare systems whether in medical or

non-medical fields. In medical fields, WBANs can be used for diagnostics, therapeutic

monitoring, acute situations, and remote monitoring for the elderly and patients in need

at home. Also, for non-medical fields, WBANs can be deployed in sports to monitor fit-

ness performance indicators, such as speed, distance, and heart rate. WBANs can also be

utilized in wearables, such as, smart watches, Google glasses, and ear wears.

2.2.1 WBANs architecture

The general architecture of WBANs is divided into three tiers: the intra-BAN, the inter-

BAN, and the Beyond-BAN [14], as shown in Figure 2.1. The intra-BAN is responsible

for the communication between sensors and the body controller unit (BCU), sometimes

called the central node or the personal server. According to the literature, there are four

types of nodes within the intra-WBAN: 1) Core sensors, which collect and process data

and then transmit it to the BCU; 2) Actuators, which do not gather any information

by themselves, but work in sensor management where they act depending on the data

they receive from core sensors, or by collaborating with patients [15]; 3) Relay sensors,

whose task is to relay data from one node to another and which can be applied in hopping
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networks; and 4) the BCU which manages the network, where it communicates with sensors

through different technologies, such as ZigBee and low power Bluetooth. The BCU is also

responsible for gathering data, and organizing channel sharing and synchronization between

sensors. Moreover, the BCU communicates nodes in a WBAN with a reachable network

(e.g., WLANs, WANs, and the Internet) through an access point that exists in the second

tier.

The intre-BAN tier is composed of an access point (i.e., gateway) and the cloud (i.e.,

the internet). The gateway is responsible for transferring data to the third tier, which is

the beyond-BAN that includes different services, such as system hospitals, ambulances,

and pharmacists, or any other healthcare providers, or with family members in cases of

emergency.

2.2.2 WBANs requirements

The primary role of WBANs is enhancing individuals lives by facilitating their mobility.

To accomplish that, certain requirements need to be taken into consideration:

� Sensor characteristics: Sensors must have low weight, small size, low power consump-

tion, low cost, an adjustment that is tolerable for each patient, intact manufactured

materials, avoid the use wired connections, be self-organized, and allow data regis-

tration in periodic and real times.
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� Data transmission: transmission must be reliable with high throughput, secure, low

latency, and prioritized.

� Network design: good design requires an acceptable quality of service (QoS) perfor-

mance, interoperability among different body networks, traffic heterogeneity, mini-

mum energy consumption, and scalability features.

Internet  

BCU 

Body sensors 

Gateway  
Applications 

Doctors & 

specialist  

Hospital 

System 
Ambulance  

Pharmacist  

Tier 1: Intra-WBAN Tier 2: Inter-WBAN Tier 3: Beyond-WBAN 

Figure 2.1: The general architecture of WBAN.
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2.2.3 WBANs challenges

Designing WBANs that satisfy different requirements mentioned previously ,has many

challenges: Increased energy consumption, latency, interference, and degradation in spec-

tral efficiency. All these challenges need to be carefully addressed during network design

to achieve satisfactory Quality of services (QoS) performance.

� Interference: WBAN’s performance is influenced by the interference that may result

from communication through a human body, nodes that are close to each other,

and nodes that are nearby electronic equipment [15]. Interference decreases system

reliability, since it increases packet loss and transmission delay.

� Security: the transmitted data in WBANs is personal and private since it contains

information related to patients health and personal lives. Thus, appropriate security

models need to be incorporated in the network design to protect patients rights.

� Power consumption: sensors in WBANs are power constraint devices, meaning that

some sensors have a five-year battery lifetime and others have a 12-hour battery

lifetime, depending on the required application. Thus, different actions, such as idle

listening and increasing the number of retransmissions, will cause depletion in sensors

power. Accordingly, designing a network with high power efficient model is required
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� Latency: it is considered a main challenge in WBANs, since the transmitted data

helps to save lives. Fading and collisions are two important factors that increase

packet retransmissions, hence latency will increase also. Thus, designing a network

with low latency, especially for patients with acute status, helps to save more lives.

� Data prioritization: since the transmitted data is related to saving individuals with

life-threatening situations, it is crucial to design a network that prioritizes transmis-

sion based on the severity of patients conditions.

� Spectral efficiency: The demand for using WBANs is increasing, and bands in the

spectrum are fully allocated for different applications, but not fully utilized. This case

will degrade system performance by increasing collisions, packets retransmissions,

and latency; as a result, it will decrease QoS performance. Efficient technologies

need to be incorporated with WBANs to enhance spectrum utilization. Cognitive

radio is one paradigm that can be employed to improve spectrum utilization.

2.3 An overview of cognitive radio (CR) technology

The term cognitive radio was first coined by Dr. Mitola in the late 90s [16]. Cognitive

radio (CR) is an emerging paradigm that has built based on software defined radio. CR can

be described as an intelligent radio that employs different methodologies to recognize its
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surrounding environment by observing, learning and then adopting its parameters based

on its previous knowledge [16] [17]. Applying the idea of cognition to the radio spectrum

enhances spectrum efficiency, provides smoothness to the interoperability process between

different wireless communication systems and provides reliable transmission between radio

services. Main goals for CR-network are the following: provide decent communication

when it needs, and increase the usage of unoccupied spectrum bands.

A CR-user has two essential characteristics: capability is the ability to sense and un-

derstand the surrounding environment, to detect the empty spaces in the spectrum. Con-

figurability is the ability to allow a CR-user to change transmission channel as soon as

it senses the presence of a PU. Moreover, the CR implements four main functions: spec-

trum sensing, spectrum management, spectrum sharing, and spectrum mobility. Spectrum

sensing is considered a chief component of cognitive radio technology, which helps SUs to

sense and learn about white spaces in the spectrum, and makes sure that these spaces are

empty. Spectrum management is responsible for choosing the best candidate channel in the

spectrum. Spectrum sharing allows SUs to share the band seamlessly without harming a

PU. Spectrum mobility assists an SU in evacuating the channel when a PU presents again

to reuse the licensed band and resuming transmission from another available channel. To

understand the concept of CR technology, it is crucial to understand the cognitive cycle,

which is shown in Figure 2.2.
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Cognitive cycle: a CR user starts to observe and learn about its surrounding envi-

ronment by becoming aware of the environment characteristics (i.e., modulation scheme,

transmission power, and bit rate) of empty bands in the spectrum using spectrum sensing

capabilities. A CR user will analyze its observations and learn from previous experiences

to make an intelligent decision, by choosing the best candidate band corresponding to its

requirements and characteristics then adopting the decision and moving to the selected

band in the spectrum.

Figure 2.2: A cognitive user cycle.
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2.3.1 Spectrum sensing (SS)

Spectrum sensing is the main component between the four functions in the cognitive cy-

cle, where all next CR functionalities (i.e., spectrum management, spectrum sharing, and

spectrum mobility) depend on spectrum sensing [18]. In spectrum sensing (SS) process,

the cognitive user will start sensing for empty holes in the spectrum, to occupy them op-

portunistically. The major challenge in SS is to detect the PU signal accurately. There are

different SS techniques exist in the literature. The general classification for SS is divided

into three broad categories:

� Non-cooperative spectrum sensing:

It also is known as local spectrum sensing techniques, which is based on extracting

some features from a PU signal to calculate the decision statistic, and then com-

paring it with a predefined threshold or a certain reference level [18]. Furthermore,

local sensing is classified from different aspects: coherent and non-coherent spec-

trum sensing. Coherent sensing requires previous knowledge of the PU activities to

compare its features with the received ones. Non-coherent spectrum sensing, on the

other hand, does not demand any prior knowledge of a PU signal, where it compares

the received signal with a predefined threshold. Local spectrum sensing employs the

pre-mentioned classifications under three different methods:
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– Energy detection (ED):

It is a non-coherent energy detection method [19], where it does not need any

prior knowledge of a PU signal. It considers the most common local spectrum

sensing technique due to its simplicity and its relatively small sensing time for

high decision accuracy [18].

– Matched filter (MF):

Unlike ED, MF is considered as a coherent detector, where it requires a prior

knowledge about PU activities. MF correlates the received signal based on the

known characteristics of a PU signal (i.e., modulation type, carrier frequency,

data rate), then compares it with a predetermined threshold to decide the pres-

ence or absent of a PU. MF performs accurately in the white Gaussian channel

if the information about a PU signal is available, which is not always the case.

MF also maximizes the SNR at the output of the detector to increase sensing

accuracy. However, for MF to achieve a highly accurate decision, each CR user

needs a dedicated receiver for every PU signal to extract its characteristics [17].

– Cyclostationary feature detection (CFD):

Basically, CFD extracts periodic features of a received signal (i.e., mean and

auto-correlation) to detect a PU signal, by using characteristics that exist in

the signal that are not presented in the noise. The main advantage of CDF is
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the ability to detect a PU at very low SNR, which makes CDF robust against

noise uncertainty problem that the ED technique suffers from. However, the

main drawback in CFD is its designing complexity; it requires high cost and

higher observation time.

� Cooperative spectrum sensing:

The pre-mentioned local sensing techniques may be affected by multipath fading

and shadowing, and hidden nodes problem. Cooperative spectrum sensing comes

as a solution to mitigate these challenges. In cooperative sensing, all nodes in the

network share their sensing information or decision about the desired channel and

augment sensing outcomes via a fusion rule center to make sensing decision, locally

or globally. Moreover, cooperative sensing can be schemed based on how nodes

cooperate: centralized, decentralized, and hybrid cooperative sensing schemes. Also,

cooperative sensing can be divided depending on the type of the fused information:

hard and soft fusion schemes.

– Scheme one: based on type of cooperation

1. Centralized cooperative sensing: in this method, all nodes make their local

decisions, then transmit their decisions to a central unit where all received

data is fused using one of the fusion techniques to conclude an optimal
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(global) decision.

2. Decentralized cooperative sensing: in this technique there is no central unit.

All nodes share their sensing information among each other until they reach

an optimal decision; however, each node makes its own final decision. De-

centralized sensing has the superiority in terms of complexity, since it does

not need extra infrastructure for a central unit, but at same time the com-

munication between nodes consumes more power.

3. Hybrid cooperative sensing: This approach is a combination between cen-

tralized cooperative sensing and decentralized cooperative sensing. This

means that nodes share their sensing information among each other and

with a centralized unit.

– Scheme two: based on the type of the fused information

1. Hard fusion: all SUs share their final local decisions, and the decision is

made, locally or globally. The main benefit of this scheme is only requires

one bit transmission, which means less overhead [6].

2. Soft fusion: SUs do not make any local decisions; instead, they share their

sensed information, and based on these information, a decision is made via

fusion rule center, locally or globally. Soft fusion provides better sensing

performance than the hard fusion; however, it requires more transmission
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overhead [6]. Recently, soft computation has gripped significant attention

in designing decision fusion models instead of hard computation, because

of soft computing high efficiency in dealing with uncertainties and nonlin-

earities.

2.4 Cognitive radio based wireless body area networks

(CR−WBANs)

This section provides an overview of CR-WBANs, discusses state-of-the-art applications,

introduces challenges in this research area, and makes suggestions for future investigation.

2.4.1 An overview of CR−WBANs

The main concept in CR-WBANs is merging two important technologies (i.e., CR and

WBAN) to provide more flexible and efficient ubiquitous healthcare system. CR-WBANs

help to overcome issues that conventional WBANs experience. Deploying CR in WBANs

reduces Interference, energy consumption, and latency. It also increases spectrum scala-

bility, and system robustness.

The architecture of CR-WBAN is very similar to conventional WBAN except for the

intelligent components that are embedded in the network. As discussed, WBAN consists

of three tiers: Intra-BAN, inter-BAN, and beyond-BAN. It would not be practical to add
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cognition to the core or actuator sensors that exist in the first tier, since such sensors would

consume power and cause harmful electromagnetic fields to patients bodies. Additionally,

the need for frequent battery replacement would be problematic, especially for sensors

implanted inside patients’ body.

It is more convenient to add cognition to BCUs, since they have longer battery life

and higher processing capacity. BCUs are also responsible for communication between

the two tiers (i.e., inter and intra-BAN), so adding intelligence to BCUs helps to organize

spectrum accessing between nodes, with more efficiently and reliability. Moreover, in the

second tier (the inter-BAN) cognitive capabilities can be integrated into an access point

(gateway), whose primary function is providing communication between patients, through

BCUs, and different healthcare services. Therefore, making communication between BCUs

and the gateway more intelligent enhances network performance in terms of prioritizing

data, avoiding collisions and retransmissions, reducing latency, and increasing spectrum

efficiency [14].

2.4.2 CR−WBANs applications: the−state−of−the−art

Although there is extensive research related to applications in WBANs, only limited lit-

erature is specifically concerned with CR-WBANs. This section presents state-of-the-art

applications for CR-WBANs to promote more research in this field and provides different
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categorizations for these applications regarding their main goals, metric performance, and

layers.

Figure 2.3 provides analysis of the state-of-the-art CR-WBAN applications with respect

to: system’s goals, metric performance, and applied layers. Most of the-state-of-the-art

applications are focused on deploying CR technology in the physical layer and media access

control (MAC) sublayer. Moreover, most of the research is focused on reducing latency

and energy consumption, and increasing throughput.

In [20], the authors introduce an infrastructure based on CR that is composed of a cog-

nitive base station (CBS) and health care station (H-station). H-station has two interfaces;

one collects the healthcare data from sensors through WBAN or WPAN, and the second

one communicates with the CBSs. Each CBS is covering a certain area (C-cell) and each

area is containing a number of H-stations. This article prioritizes data with low latency by

presenting two sensing methods, periodic and triggered based on the traffic level (periodic

or urgent). In periodic sensing, the CBS senses the spectrum periodically and only sends

the data (periodic traffic) during certain period. On the other hand, triggered sensing, it

senses the spectrum all the time and once the CBS is lost the channel it switches imme-

diately to the another channel and continuous sending the data (urgent traffic). However,

the proposed system still requires another prioritizing mechanism to help prioritizing ur-

gent traffic that may come from different H-stations and so to avoid collisions and enhance
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throughput.

Prioritizing data with low delay is presented again in [21], traffic is divided into two

levels: critical and non-critical. These two levels are done by sending critical data with high

power and non-critical data with low power. However, the results of this proposal show

that critical data experience collisions when two or more packets are transmitted at the

same time. Also, increasing the power for sensors that have critical data will increase power

consumption which is not practical for WBAN, since it is a power constraint network.

In [22] the authors, proposed a technique for prioritizing data and choosing the optimum

access point for transmitting the urgent data with minimum delay and cost. The article

constructs a queuing system in the coordinator node with three priority levels and chooses

the optimum access point to reduce latency based on three parameters: the speed of CR-

users, access point delay, and connection cost. However, this article does not explain how

the coordinator prioritizes data. In [23], Dong et al. propose a CR-based mobile ad hoc

network for WBAN, with architecture and design of a healthcare automation system to

collect and document patients’ information with lower cost than the typical network (i.e.,

WiFi). The system shows better transmission performance in interference environments

and higher channel utilization.

The authors in [24] and [25] suggest applying cognition and cooperation concepts in

WBAN to enhance transmission reliability and decrease energy consumption. In [24] au-
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Figure 2.3: Analysis of the-state-of-the-art applications

thors suggest using transceivers as relay nodes, by sharing a part of their band. The game

theory approach is proposed as a cooperative mechanism, where each BAN (i.e., commu-

nications between BNC and sensor) is considered to be a player, and a fixed bandwidth

is allocated to each sensor. Each sensor can play as a relay node and share a part of its

allocated bandwidth with another user, to send sensors vital data. The article also intro-

duces an optimal frequency allocation for finding the best bandwidth set from all relay

nodes based on different parameters: SNR, channel gain, and battery level. However, the

proposed system does not consider the cognitive model particularly, only the intelligent
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reuse of the bandwidth gives a cognition aspect.

In [25], on the other hand, the authors use an intelligent mobile device (i.e., a coordi-

nator) that acts as a common relay for all sensors in BAN. The mobile device also behaves

as a gateway that transmits data collected from sensors to a hospital server via the Inter-

net. Two cooperative schemes are proposed: energy-conserved cooperative transmission,

which is applied to transmit data when the power of the sensors or mobile device is low.

Reliability-driven cooperative communication which is applied when the data that needs

to be sent is critical.

Also in [11], CR is employed with ultra wide band (UWB) technology to decrease

power consumption, provide more reliable data transmission, and more data security. The

cognition is implemented on BCUs using two UWB modalities: impulse radio (IR) and

multiband orthogonal frequency-division multiplexing (MB-OFDM). The impulse radio

(IR)-UWB radio interface is implemented between a BCU and body sensors in the first tier.

The MB-OFDM-UWB is performed between a BCU and gateway to reduce interference.

The proposed architecture enhances interference avoidance through two main features:

frequency agility, which assists sensor nodes to, rapidly, change their frequency band to an

unoccupied one; spectrum shaping which is used to protect the nearby electronic devices.

However; the proposed work does not use any simulation to validate the approach.

The authors in [26] and [27] propose the CR-WBAN platform to realize practical sit-
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uations, by augmenting the hardware and software components. In [26], hybrid cognitive

validation platform (HCVP) is proposed which uses CC2510 SoC for the hardware part

to guarantee low power consumption and easy configuration. For the software part, the

CR-MAC algorithm is adopted to reduce interference and collision rate. On the other

hand, an adaptive cognitive enhanced platform for WBAN (ACEP) is suggested. As in

[27] a CC2510 SoC is used, for the hardware part. For the software part, fast dynamic

cognitive radio (FDCR) algorithm is implemented to improve the performance of ACEP

by alleviating the effect of interference due to the coexistence with another network on

the same band, and this is done by reducing the packets drop rate and increasing channel

utilization.

2.4.3 Open issues and future research direction in CR−WBANs

Deploying CR in WBAN improves overall system performance; however, it brings new

challenges to the network. Many issues need to be discussed and tackled. This section pro-

vides an overview of some important problems in CR-WBAN and provides some directions

for future work.

� Power consumption: consuming power in sensor networks was and is still an open

issue that needs to be considered. It is known that sensors in WBANs are power

constraint devices; thus, implementing cognitive functionalities will consume power.
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Various techniques can be applied to avoid power consumption:

1. Designing energy efficient algorithms that minimize the wasted power caused

by collisions, retransmissions, and idle listening.

2. Deploying artificial intelligence tools helps to enhance the performance of cog-

nitive radio networks [28]. However, there is a lack of the proposed literature,

as far as research knowledge, in deploying artificial intelligence in CR-WBANs.

3. Energy harvesting has a significant role in future research, especially for im-

planted devices, whereby energy can be collected from external sources and

stored in autonomous devices. In the healthcare field, the human body and its

organs are external energy sources, and they are called enzymatic biofuel cells.

These environmentally friendly cells convert chemical energy to a fuel source.

� Security and confidentiality: deploying CR in WBANs adds more security issues to

the network, such as PU emulation attack. CR-WBANs face many security challenges

that put patients information at risk more than a conventional WBAN, due to the

nature of its operating environment (i.e., sensing, learning, and adopting). Although

there are few security algorithm proposals in the literature, this area of research needs

more investigation.

� QoS performance: the QoS performance of the network must be high, by increasing
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data transmission. On the other hand, QoS performance of a PU should not be

affected. Thus, an SU (i.e., a BCU) should accurately sense the presence of a PU.

This can be done by designing sensing mechanisms that can highly detect the presence

of a PU.

� Channel acquisition: to provide CR-WBANs with appropriate services, acquiring a

channel with high accuracy and reliability is a major factor. Designing a channel

acquisition model can include various parameters such as sensing performance and

data prioritization. Even though channel acquisition is an influential element in the

performance of CR-WBANs, there is a lack of the literature in designing such models.

� Data prioritization: the main goal in CR-WBANs is saving patients with life-threatening

situations; prioritizing data based on patients health status is a primary concern.

State-of-the-art research has proposed different algorithms to tackle this issue, espe-

cially, in the first tier (i.e., between body sensors and a BCU). However, prioritizing

data in the second tier (i.e., between a BCU and an access point) and third tier (i.e.,

between an access point and healthcare services) have not been discussed heavily.

� Communication among multiple body controller units (multiple CR-users): it has a

significant role in building an adequate ubiquitous healthcare system with efficient

and reliable performance. A Few research is focused on communications among
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multiple BCUs on the same network. Thus, this area is still a real challenge and

needs more investigation, to build a robust pervasive healthcare system.

2.5 Summary

A discussion about WBANs, its architecture, requirements, and challenges are presented in

this chapter. Moreover, the chapter presents an overview of CR technology and proposes

the concept of spectrum sensing techniques. A comprehensive survey is presented about

state-of-the-art applications for CR-WBANs. Last, a brief discussion of open issues that

CR-WBANs may confront to design a network with high performance is reviewed. CR-

WBANs are a rich area for new research and innovation, since CR-WBANs overcome

challenges that WBANs suffer from, CR-WBANs can help to build more efficient and

reliable intelligent ubiquitous healthcare system that will facilitate patients lives, save

individuals from life-threatening situations, and reduce the cost of long-term treatment in

hospitals. This intelligent ubiquitous healthcare system could include multiple intelligent

entities (e.g., CR-WBANs, intelligent-BCUs and -access points).
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Chapter 3

The Architecture of The Proposed
Channel Acquisition Model

Demands for utilizing healthcare services, not only at hospitals but also at homes for the

elderly and patients with chronic diseases are growing rapidly [29]. Moreover, increasing

the cost of long-term treatments in hospitals and the shortness of medical staff members

[30], have made building an intelligent ubiquitous healthcare system an essential solution.

In order for a ubiquitous healthcare system to perform efficiently, it requires an accurate

and reliable communication among multiple CR-WBANs with least latency. Thus, to

achieve these requirements, system foundations have to be designed carefully. Channel

acquisition is a major foundation in building an intelligent ubiquitous healthcare system.

One of the main challenges is how CR-users can accurately sense a channel and transmit

their data, according to the severity of their health status, whereby patients with acute

conditions have the preference in transmission. Spectrum sensing and data prioritization
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are key factors in designing an appropriate channel acquisition model with high spectrum

sensing accuracy and channel acquisition probability.

Hence, this chapter describes the architecture of the proposed intelligent channel ac-

quisition model. The architecture is a multi-stage fusion model that is composed of local

and global decision units; each unit has two modules. The local unit is comprised of: local

sensing and health assessment decisions. The global unit is composed of: global sensing

and data prioritization decisions.

3.1 The architecture of the proposed channel acqui-

sition model for CR−WBANs

This research proposes an intelligent multi-stage channel acquisition model for multiple

CR-WBANs within ubiquitous healthcare system, whereby patients contextual data, par-

ticularly, intra-node characteristics, environmental properties, and patients profile infor-

mation, are augmented to acquire a channel based on the severity of patients health.

Demands for acquiring a channel, intelligently, are sensing a channel and prioritizing

data streams among multiple CR-users (i.e., multiple patients) based on the criticality of

their health status, as expressed in Equation 3.1. Mainly, the first stage, which is the local

unit, helps to make preliminary decisions about sensing the channel and assessing patients’

health. The second stage will make the intensive processing to decide channel availability
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and then prioritize data transmission among patients with respect to their local decisions

and avatars. Designing a multi-stage model aims to increase system’s accuracy and re-

liability in acquiring a channel among patients, by taking patients’ contextual data (i.e.,

environmental properties, node characteristics, and patients’ avatars) into consideration.

Hence, the proposed model can help in saving more individuals with life-threatening situ-

ations. The model comprises two models: the hybrid cooperative spectrum sensing model

and the data prioritization model. The architecture of the proposed channel acquisition

model is shown in Figure 3.1, which consists of the following components:

CHacq = CHidle ∩ PShighest; (3.1)

where CHacq: represents the condition for acquiring a channel successfully by a CR-user,

CHidle: represents that the channel must be idle(the PU is not present), and PShighest:

represents that a CR-user (i.e., patient) has the highest severity health status among all

users in the network.

3.1.1 Body controller units (BCUs):

A BCU, or a CR-user, is the component that has intelligence capabilities, where all local

decisions are made there. A BCU is responsible for sensing the spectrum to make local

sensing decisions and collecting data from body sensors to make local health assessment
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Figure 3.1: the architecture of the proposed intelligent channel acquisition model.

decisions. The intelligence in each BCU is embedded in the local decision unit which is

composed of two modules:

� The local sensing decision: it is made by integrating intra-node characteristics and

environmental properties in the decision-making process. Fuzzy logic system is uti-

lized as a decision fusion center.

� The local health assessment decision: each BCU aggregates patients vital signs data
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from that patient’s body sensors to make an assessment about patients health status

(i.e., a patient has acute, urgent, or normal health status). Fuzzy logic system is

utilized, again, to fuse vital signs data to indicate the criticality of that patient

condition.

3.1.2 Access points (gateways):

All BCUs in the network aggregate their local decisions within an access point, which by

itself transmit BCUs’ data to different healthcare services via reachable networks. In the

proposed architecture, the intelligence is also embedded in the gateway, whereby the global

decision unit is built within the gateway. The global unit comprises two modules:

� The global sensing decision: in this module, a neural network is utilized as a global

controlling unit that augments local sensing decisions, intra-node characteristics, and

channel properties for all CR-users (i.e., BCUs) in the network to optimize a global

sensing decision.

� The global prioritization decision: in this module, the data prioritization controlling

unit (PCU) is the unit that is responsible for making global prioritization decisions.

The PCU is built based on a cluster-based heuristic algorithm that is designed to pri-

oritize transmission among multiple patients in the network, according to the severity
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of patients health status, and patients’ contextual data (i.e., patients’ avatars). Pa-

tients’ avatars are updated and stored in the patients’ profile center, within the global

decision unit.

3.2 An overview of the process for acquiring a chan-

nel among multiple CR-users

Each CR-user is considered to be mobile to include users mobility in a decision-making

process. If N-CR-users have data to transmit, the model will perform the following proce-

dures:

� Each BCU (i.e., CR-user) senses PU-activities in the channel, by utilizing local sens-

ing decision module, and makes a local sensing decision. Simultaneously, each BCU

collects vital signs measurements from patient’s body sensors, to makes a local assess-

ment of patients health status; this is done via the local health assessment module.

� Both local decisions (sensing and patients health assessment decisions) are trans-

mitted to the global decision unit. The information about node characteristics and

channel environmental properties are also sent, to be utilized in the global sensing

decision module.

� The global sensing module will make a sensing decision, according to the received data

36



from N-BCUs. At the same time, the global data prioritization module will prioritize

transmission among patients based on their local health assessment decisions and

contextual information (i.e., patients avatars).

� Successively, all BCUs will transmit their data, to the required healthcare service, as

soon as the sensing unit has sensed a new idle channel; whereby patients with the

acute health status have the highest priority in transmission.

All previous steps will be repeated each time there is a patient who has data to trans-

mit. However, using a multi-stage prediction model increases the network complexity,

regarding communication overhead between the local and global units which may increase

the consumed power. Hence, there is a trade-off between increasing the spectrum sensing

accuracy and decreasing power consumption. In this design, different considerations have

been taken to reduce the consumed power and keep high performance:

� If the global sensing decision shows that a PU occupies the sensed channel, then data

the PCU will store the prioritized data until spectrum sensing model senses an empty

channel. Hence, the local health assessment modules do not need to retransmit their

data all over again.

� During the waiting for an idle channel, only BCUs with updated local health assess-

ment information will retransmit their recent data to the global prioritization module,
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which itself will rearrange prioritization based on the updated severity levels.

� For the local sensing decision, each BCU (i.e., SU) will exchange the data with the

two nearest neighbors only to reduce the overheads resulting from the communication

in the local unit.

� All BCUs that do not have any updated vital signs data to transmit will go to in-

active mode, and they will not make any local sensing decisions or participate in the

global sensing decision.

3.3 Summary

To design CR-WBANs with high sensing accuracy and reliability, this chapter proposes

an intelligent multi-stage architecture for the channel acquisition model for CR-WBANs

within ubiquitous healthcare system. The architecture is composed of Local decision unit

that comprises: 1) local sensing and health assessment decision modules. 2) Global decision

unit also comprises global sensing and data prioritization decision modules.

Details design of the sensing model, which brings together both local and global sensing

modules, and the data prioritization model, which, also, brings together both local health

assessment and global prioritization modules, are presented in depth, in chapters 4 and 5,

respectively.
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Chapter 4

The Intelligent Hybrid Cooperative
Spectrum Sensing Model

Cooperative spectrum sensing is a powerful sensing approach which is based on sharing

information about channel activities among secondary users (SUs). Cooperative spectrum

sensing aims to overcome hidden node problem and shadowing and fading problems, and

it also enhances sensing accuracy. However, sensing accuracy may degrade due to various

reasons: if the detect PU-signal is low due to poor environmental conditions or intra-node

characteristics are continuously altering. Recently, soft computation has brought significant

attention in designing decision fusion models instead of hard computation, because of

soft computing high efficiency in dealing with uncertainties and nonlinearities. Different

methods from artificial intelligence are deployed in soft fusion computation, such as hidden

Markov model, Bayesian inference, neural networks, and fuzzy logic [21].

Fuzzy logic and neural network have been recently introduced in the literature as CR-
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fusion centers to control sensing decisions. Although various papers have proposed fuzzy

logic as a local or global fusion center, [31] [32] [2] [3], these papers have not taken into

consideration the impact of, both, intra-node characteristics and channel properties in the

decision-making process. Furthermore, most of the proposed research has not considered a

multi-stage sensing model, where the sensing decision is made locally and then is optimized

in an NN based-global fusion center. Optimizing the sensing decision, globally, helps to

improve the spectrum sensing accuracy. Providing spectrum sensing models with high ac-

curacy is important in healthcare applications, such as CR-WBANs, since the transmitted

data can save individuals with life-threatening situations.

Thereby, this chapter proposes a unique intelligent multi-stage hybrid cooperative spec-

trum sensing approach based on integrating the effect of environmental properties and

intra-node characteristics in the decision making process. The first stage utilizes a fuzzy

logic system for local fusion center, whereby SU-mobility and its signal-to-noise ratio

(SNR), and its neighbors SNRs are included in the local sensing decision process. The

second stage proposes a neural network, based on feed forward backpropagation learn-

ing algorithm, for global fusion center. All SUs transmit their sensing information, local

decisions, and their mobility levels to be augmented for an optimized global sensing de-

cision. A neural network is trained based on a real-world measured power dataset. Main

contributions in this chapter are:
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� Providing an intelligent pervasive cooperative spectrum sensing algorithm that can

be utilized in various applications (e.g., WBAN).

� Designing a hybrid multi-stage spectrum sensing model.

� Including the effect of neighbors environmental properties in each SUs local decision.

� Maintaining system robustness against unpredictable changes in node characteristics.

� Reducing the effect of shadowing and fading by including SNRs in the decision pro-

cess.

The remainder of this chapter is arranged as follows: section 2 provides an overview on

deploying artificial intelligence in spectrum sensing process. Section 3 presents an overview

of the related work in deploying fuzzy logic and neural network in spectrum prediction.

Section 4 explains design details of the multi-stage cooperative spectrum sensing model.

Section 5 discusses simulation results of the proposed model and illustrates the merits of

the proposed model over the state-of-the-art work. Section 6 concludes this chapter.

4.1 Background

Different techniques have been proposed in the literature to design an efficient classifier with

high observing and learning capabilities. Artificial intelligence tools have been proposed
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as classifiers to predict PU activities. The merits of deploying artificial intelligence in

prediction models are their ability to model humans intelligence to deal with uncertainty

and imprecision situations which bring robustness to the decision making process. Neural

network (NN) and fuzzy logic system (FLS) have gripped considerable attention in the

literature of spectrum sensing techniques. Fuzzy logic and neural network are branches

from soft computing techniques. This section provides a brief overview of NN and FLS.

FLS was first introduced by Zadeh in 1965 [33]. FLS is a set of linguistic rules that

represent actions or vague situations and convert these rules into a mathematical represen-

tation based on using fuzzy membership functions instead of crisp membership functions.

Fuzzy inference system is preferable to be used in the decision-making process in CR net-

works, and it is composed of: fuzzification, inference engine, set of rules, and defuzzification

as shown in Figure 4.1. FLS also uses the fuzzy set theory for its representation, and a

fuzzy set theory is a set that does not have precise boundaries whereby unprecise member-

ship functions can symbolize entity of situations (input) (e.g., cold, cool, warm, hot, etc.,)

[34]. Each membership function represents a specific ambiguous situation for the input,

and the same for the output. There are different representations for membership functions

such as triangular, trapezoidal, and Gaussian functions [34].

On the other hand, the origin of NN was in early 40s when W. McCulloch and W.

Pitts attempted to mimic the functionality of the humans neural network using electrical
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Figure 4.1: the fuzzy inference system

circuits [19]. Mainly, NN recognizes the pattern of a data and gathers information to build

its knowledge. It consists of hundreds or thousands of components (i.e., neurons). The

significance of an NN comes from an interconnecting group of neurons in parallel into one

network, and because of this structure, it considers as a promising modeling technique for

nonlinear systems [6]. NN can tackle advanced problems without having knowledge of the

input data. However, since NN consists of a large number of weights which need to be

estimated, it requires greater amount of dataset to be trained from, where the bigger the

trained dataset the better the learning was. Figure 4.2 illustrates NN-neuron model.

NN can be classified from different aspects [6]. First, based on types of connections

between neurons: feedforward connection, it does not have any feedback to the input of
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Figure 4.2: Model of the NN-neuron [6]

the neuron. Multi-layered perceptron (MLP) neural network is one of the most popular

connections in feedforward NNs. Feedback connection has a feedback route to the input

of the neuron and makes the next state becomes depending on the input and the current

state. Hopfield network is the mostly employed in feedback NNs. Second, NN has two

types in terms of learning rules: Backpropagation (BP), and delta rules. Third, NN also

classified based on different training models: Supervised and unsupervised models. The

most common NN is supervised with backpropagation learning rule. This method has the

superiority in tasks that require prediction and classification.
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4.2 Related work

Fuzzy logic has been recently introduced in the literature as a CR fusion center to control

sensing decisions. However, most of the-state-of-the-art research focuses on fusing the

sensed power to make a sensing decision, ignoring the impact of channel properties and

intra-node characteristics on the decision process. The work in [31] has proposed a fuzzy

logic based cooperative spectrum model at the global fusion center. The fuzzy logic is

utilized to make a global decision if a PU is present or absent. Each SU senses energy level

in a channel using energy detection technique and sends the local information to the fusion

center to make a global decision, where multiple thresholds are entered, and majority rule

is applied to obtain the final decision. However, the impact of node characteristics, such as

node mobility, and environmental properties to overcome Shadowing and fading problem,

did not be considered in the decision process.

Authors in [32] have, again, proposed a fuzzy logic system at the global fusion center to

overcome the fading problems using 27 different combination rules. Where local decisions

are made based on hopping sequence module that randomly selects three SUs to sense the

channel and collects the local information by implementing two different schemes: Random

hopping and sequential hopping. The local sensing information is then transmitted to the

global fusion center to make a global decision. Still, the work in [32] did not include users’
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mobility or any other node characteristics in the decision process.

[2] has proposed a distinct work, wherein a fuzzy logic based cooperative spectrum

sensing system has been presented for a local fusion. The work includes the received energy

of the two nearest neighbors, and the energy and SNR of the desired node to make its local

sensing decision. The advantage in this work is including the effect of SNR that reduces

the impact of neighbors who are under fading or shadowing problems. However, the use

of dependent resources at the fuzzy input (i.e., sensed energy and SNR level of the node

of interest) could bias the sensing decision. Moreover, the impact of node characteristics,

also, did not be considered in the channel sensing decision.

Neural network (NN) has been employed in spectrum sensing to optimize the detection

decision by utilizing a prior sensing experience. Feed forward neural network with back

propagation algorithm (MLP-BP) is one of the most popular techniques in NN-spectrum

prediction, due to its high performance in classifying very complicated nonlinear problems,

and its high learning capabilities. In [3], the authors have introduced neural network based

sensing algorithm, whereby the SNR, the sensed energy, and the probability of false alarm

have been used to train the feed forward neural network. The proposed model has achieved

prediction accuracy up to 94% at -5dB SNR level. However, the impact of users’ mobility

has not been included; also, the work in [3] did not use real-world dataset to train its neural

network.
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On the other hand, authors in [4] have proposed an improved feed forward back prop-

agation algorithm to detect vacant channels, by using momentum and genetic algorithms

in the training stage. The channel state is used instead of using power values in the train-

ing stage. The proposed system has achieved prediction accuracy up to 91.1%. However,

Neither the influence of node characteristics nor environmental properties are included in

the decision process.

In [35] the author has proposed NN based cooperative spectrum sensing to detect

PU activities, whereby context information and local decision for each SU are fused to

optimize a global sensing decision for N-users in the network. However, the impact of node

characteristics is not included in the decision process; also, a simulated data is used to

train the network instead of real-world power measurements dataset.

In [36] authors have introduced two local decision fusion stages; namely, fuzzy logic

and neural network. In the fuzzy logic stage, the channel access decision is made based

on the SUs intra-node characteristics. The neural network, as second stage, is deployed to

optimize the local sensing decision. However, the work in [36] did not consider any channel

properties in the decision process, locally and globally.
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4.3 The proposed intelligent hybrid cooperative spec-

trum sensing model

The architecture of the proposed model of the intelligent hybrid cooperative spectrum

sensing, as discussed in chapter 3 encapsulates local and global sensing decision modules,

as shown in Figure 4.3. The proposed model is based on deploying fuzzy logic for local

decision and neural network to optimize a global decision. It is considered that N mobile-

SUs surround a single PU, each SU estimates its SNR. Different techniques have been

suggested in the literature to determine the SNR levels in CR networks, such the one

proposed in [37],

In this work, a real-world power measurements dataset from [38] is utilized to calculate

SNR values. The used dataset is collected by using netBravo app that can be downloaded

in any smart phone and will automatically record the characteristics of the signal from

different mobile networks and WiFi at various locations (e.g., city, urban areas, etc.). For

privacy reasons, the collected data, by the netBravo app, is anonymised and will not store

any personal information about the data collectors. The data is generated monthly and

published by the European Commission, open data portal (ODP). The measured data is

signal strength, in dBm, for cellular networks 2G, 3G, and 4G at different locations. The

measurements are taken over 100m and 1Km geospatial grid. for this work, the collected

data for 1Km is used to train the NN.

48



It is also considered that Gaussian noise and Rayleigh fading affect the received signal

from a PU. Equation 4.1 is deployed to calculate SNR values. At the same time, all SUs

can estimate their mobility using different techniques proposed in the literature, such as

the one in [39].

SNR(dB) = P (dBm)−Noise(dBm) (4.1)

Figure 4.3: The architecture of the proposed spectrum sensing model.

49



4.3.1 Stage one: the intelligent fuzzy logic-local fusion model [1]

This work proposes an intelligent cooperative spectrum sensing model based on utilizing

fuzzy logic for local fusion center, by including the influence of environmental properties

and intra-node characteristics in sensing decision. Integrating these parameters in the

prediction model increases detection probability under poor environmental conditions, and

stabilizes system performance at unpredictable changes in intra-node characteristics. This

approach aggregates the SNR of an SU and its corresponding mobility, and the SNR of an

SU’s nearest two neighbors as inputs for the fuzzy logic system.

The Mamdani model is deployed to design the fuzzy logic system as follows: the fuzzifier

maps SU parameters (i.e., SNR and SU-mobility) to fuzzy inputs, using Gaussian function

method. The set of rules represents different knowledge base for various access spectrum

options. The inference engine is used to aggregate the real-time measured features at the

input with different rules to estimate the presence or absence of the PU activity.

Furthermore, to reduce communication overheads and power consumption resulting

from sharing sensing information among users, it is considered that SU exchanges data

with one-hop neighbors using Route Discovery protocol. In this work, SUs will exchange

information, only, with their two nearest one-hop neighbors, which will be chosen based

on their proximity. Moreover, each SU and its nearest neighbors are communicating to ex-
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change environmental properties information, by considering local consensus among users.

Various consensus algorithms for wireless ad hoc networks have been introduced in the lit-

erature, such as the one proposed in [40]. All previous features (i.e., SU-SNR, SU-velocity,

and the SNR of the nearest SU-neighbors) are gathered at the fuzzy logic system to predict

channel status based on the knowledge base.

The system has four inputs: SNR of the desired node and its velocity, and SNRs from

the first and the second nearest neighbors. Each input is represented in the fuzzification

model with three membership function levels. SNRs membership functions are defined

by: Low (L), Moderate (M), and High (H). Velocity membership functions are defined by:

Slow (S), Normal (N), and Fast (F). The representation of membership functions for SNR

and velocity are shown in Figure 4.4.

To include the impact of user’s mobility on the decision making process, the fuzzy

inference rule set is built according to the following conditions:

� If the velocity of an SU is Fast (F), then the weights between,user’s measurements

(i.e., the SNR of the SU) and its neighbors (the SNR of the two nearest neighbors)

are normally distributed.

� If the velocity of an SU is low/normal, then user’s measurements get the heaviest

weight in the decision making.
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Figure 4.4: Input membership functions.

The output is considered to represent the probability that a PU is present, and three

crisp membership functions define it: Low (low probability that the PU is present, Good

(good probability that PU is present), or High (high probability that PU is present).

4.3.2 Stage two: the intelligent neural network (NN)-global fu-
sion model

The second stage proposes a neural network (NN) for global decision fusion center, whereby

environmental properties, intra-node characteristics, and local decision for each SU are

augmented as input features for NN- fusion center. Employing NN as global fusion unit

optimizes the local decision of all SUs in the network; hence, the network prediction ac-

curacy will increase. A real-world power dataset is adopted from [38] to formulate the
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training dataset for NN. Moreover, a feed forward multi-layer perceptron with back prop-

agation learning algorithm (MLP NN- BPL) is chosen to be employed to predict channel

activities. The proposed model is designed based on following steps:

� Training step: it is important for networks with supervised learning to be provided

by appropriate dataset with different features and targets. This work uses real-world

dataset power measurements from [38] to train the network. The extracted features

for the training are: SU-SNR, SU-mobility, and SU-local decision. Targets represent

the real status of a PU-channel [1 PU is active and 0 PU is inactive].

� Testing step: after each SU makes its local decision based on the proposed local

sensing model. Each SU transmits its three features: SU-local decision, SU-SNR

level, and SU-mobility to the NN-global fusion center. According to the extensive

knowledge that the NN gained from the prior training step an transmitted features,

the network can make an accurate spectrum sensing decision.

Pseudocode for the proposed multi-stage hybrid cooperative spectrum sensing model is

presented in Table 4.1.
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Table 4.1: pseudocode of the proposed multi-stage hybrid cooperative sensing model

Fuzzy inputs SU-SNR, SU-velocity, SNR1, SNR2
Fuzzy outputs 1/0, PU is present or absent

NN-inputs SU-SNR, SU-velocity, SU-local fuzzy output
NN-output 1/0 , PU is present or absent

Entre parameters N-users, 1-hidden layer, N-hidden nodes
Stage one: Local decision

1- Each SU senses the power of the desired channel.
2- Simultaneously, each SU estimates

- Its SNR value:
SNR(dB) = Power(dBm)−Noise(dBm)

- Its velocity
4- Each SU, Receives SNR1, SNR2 from its nearest two neighbors
5- Insert SU-SNR, SU-velocity, SNR1, SNR2 at the fuzzy

input.
6- Apply the rule base:

- IF the SU-velocity is F THEN
Normally distributes the weights between SU and
its neighbors

- IF the SU-velocity is N/L THEN
the SU measurement gets the heaviest weight

Stage two: Global decision
7-Train the NN based on the collected features and corresponding

targets that formulated from [38]:
- Features [SU-SNR, SU-velocity,]
and SU-local detection probability”

- Targets [1 PU is present/ 0 PU is absent]
8- Each SU transmits its parameters for NN-fusion center
9- NN classifies the data and determines channel status

4.4 Simulation results and discussion

The simulation considers N mobile-SUs surround a single PU. It is also assumed that the

received signal of a PU is affected by white Gaussian noise and Rayleigh fading. A real-
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world measured power dataset from [38] is used to formulate the trained data. The work is

tested at different SNR values ranging from [-25 dB to 5 dB]. The velocity of mobile objects

in this simulation is the average speed for humans. Accordingly, velocity levels have been

selected based on uniform distribution and are ranged from [1 Km/h (human is moving

slowly) to 10 Km/h (human is moving fast)]. Various sizes of training dataset for the NN

are tested, and different numbers of hidden nodes are inserted. The model performance is

evaluated through the probability of detection, spectrum sensing accuracy, and F1-score.

4.4.1 Stage one: results of the intelligent fuzzy logic local fusion
model

For this stage, Monte-Carlo simulation is carried out to analyze the probability of detec-

tion with 105 iterations. The results of the proposed approach are compared with those

presented in [2]. Figure 4.5 shows the detection probability (Pd) for the local sensing fu-

sion center, for a single SU. The mobility levels for an SU are uniformly distributed during

the experiment at different SNR values. The system has maintained a robust performance

during unpredictable changes in SU-mobility levels, whereby the Pd improves when the

SNR improves.

Figure 4.6 illustrates the probability of detection (Pd) for different SNR values, for a

single SU, at each speed level. The system shows high accuracy in predicting PU activities,

particularly, when the SU has low to normal speeds; however, the probability of detection
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Figure 4.5: probability of detection (Pd) at different SNR values, with unpredicted changes
in SU speed levels

decreases when the SU has high speed, which proves that node mobility has a significant

impact on sensing performance.

Table 4.2 compares the probability of detection, at different SNR levels, of the proposed

work and the work presented in [2]. The results show that the proposed work performs

approximately twice better than the work in [2] at -5dB at all speed levels; however, the

probability of detection decreases at fast speed, which confirms the impact of SU mobility

on sensing performance.
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Figure 4.6: Probability of detection(Pd) at different SNRs values when SU-mobility has
constant speed level (slow, normal, or fast)

Table 4.2: A comparison in terms of probability of detection(Pd) between the work done
in [2] and the proposed local sensing model at different SNR levels

Pd at -15dB -10dB -5dB
The work proposed in [2] 0.28(stationary) 0.38(stationary) 0.43(stationary)

The proposed
local sensing
model

0.3(stationary) 0.48(stationary) 1(stationary)
0.3(slow) 0.48(slow) 1(slow)

0.3(normal) 0.5(normal) 1(normal)
0.22(fast) 0.33(fast) 0.7(fast)
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4.4.2 Stage two: results of the intelligent neural network (NN)
global fusion model

In this stage, all SUs have made their local sensing decision. Each SU transmits its three

features: SU-local decision, SU-SNR level, and SU-mobility to the NN-global fusion center.

The first step is training; the neural network is trained by various training dataset sizes

to investigate how the training size affects the prediction accuracy. The number of hidden

layers is set to one since a single layer can provide less complexity regarding network design.

The number of users is varied between 100 to 200 to test the model scalability. The setup

division of data for training (tr), validation (va), and testing (t) are set 70%, 15%, and

15%, respectively. Parameters for NN-simulation are listed in Table 4.3.

Table 4.3: simulation parameters for the global sesning module

Network Parameters Feed forward multi-layer perceptron
N-Users 100, 200

Training algorithm Backpropagation
Training function trainscg

Training dataset size vary [1000-3000]
Number of hidden layers 1
Number of hidden nodes 1,3,10
Data division: tr, va, test 70% ,15%, 15%

Table 4.4 shows calculations of spectrum sensing accuracy and F1-socre for different

experiments. Results show that the performance of the detection model improves when

the size of the training dataset is enlarged. Furthermore, results prove that when the
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size of the training dataset is small, the performance can be enhanced by increasing the

number of hidden nodes. However, when the dataset size reaches 3000, the detection model

can achieve satisfying performance with three hidden nodes. Thus, using small dataset

size to train the network comes with the cost of increasing the number of hidden nodes;

accordingly, the system complexity. Moreover, Figure 4.7 illustrates the performance of

the spectrum sensing model by varying dataset size and number of hidden nodes. Results

show that by training the NN with larger dataset size, the spectrum sensing accuracy of

the proposed model increases with less number of hidden nodes.

Table 4.4: calculations of the accuracy and F1-score of thespectrum sensing model with
different parameters

Test 1 (N-users=100, training dataset size=1000)
N-hidden nodes 1 3 10

Accuracy% 95.3 96 96.7
Modelsensitivity% 93.5 93.8 96
Modelprecision% 95.1 97.9 96

F1score 94.32 95.8 96
Test 2 (N-users=200, training dataset size=2000)
N-hidden nodes 1 3 10

Accuracy% 96.7 97 97.3
Modelsensitivity% 94.1 94.6 94.8
Modelprecision% 98.5 99.2 99.2

F1score 96 96.8 97
Test 3 (N-users=200, training dataset size=3000)
N-hidden nodes 1 3 10

Accuracy% 98.2 98.9 99
Modelsensitivity% 97.2 97.6 98
Modelprecision% 99.6 100 100

F1score 98.2 98.5 98.9
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Figure 4.7: performance in terms of spectrum sensing accuracy with various N-hidden
nodes and dataset sizes

Furthermore, Table 4.5 compares calculations of spectrum sensing accuracy of: 1) the

proposed intelligent multi-stage hybrid cooperative spectrum sensing model, where the

intelligence is embedded in local and global decision units; 2) the multi-stage hybrid co-

operative spectrum sensing model, where the intelligence is only embedded in the local

decision unit and the global decision is designed by applying the majority rule; 3) and

the single stage cooperative spectrum sensing, where the intelligence is embedded in the

local unit and no global decision is made. The results show that the proposed intelli-

gent multi-stage hybrid cooperative spectrum sensing model outperforms the other models
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dramatically.
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Table 4.6 compares the spectrum sensing accuracy of the proposed multi-stage hybrid

cooperative spectrum sensing with the state-of-the-art research proposed in [3] and [4]. Like

the proposed work, both proposals [3] and [4], have employed the MLP-BP NN as a single-

stage prediction model; The simulated data is used to train the NN in both proposals.

Thus, this yields a better detection performance for the proposed multi-stage spectrum

sensing than the other works proposed in [3] and [4].

Thus, this confirms that utilizing intelligence in, both, global and local units improves

spectrum sensing accuracy. Although multi-stage cooperative spectrum sensing model

increases the system complexity it certainly increases the system accuracy which is a fun-

damental necessity in CR-WBANs.
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4.5 Summary

This chapter has proposed an intelligent multi-stage hybrid cooperative spectrum sensing

model, by considering the effect of, both, environmental properties and intra-node char-

acteristics in the decision process. The first stage is a fuzzy logic that is utilized as a

local fusion center. In the second stage, a neural network is deployed as a global fusion

center to optimize local sensing decisions for all SUs in the network. Real-world power

measurements dataset is utilized to train the NN.

Results of the proposed model have shown high robustness against unpredictable changes

in SU-mobility levels. Moreover, the work has shown its superiority compared with the

state-of-the-art research, at low SNRs and different SU-mobility levels, with spectrum sens-

ing accuracy reaches up to 99%. Furthermore, the results have clarified that the intelligent

multi-stage prediction model outperforms single-stage (i.e., intelligence is embedded in lo-

cal stage and no global unit exists) and multi-stage prediction models (i.e., intelligence is

only embedded in the local stage, and majority rule is applied in the global unit).

Acquiring a channel with high spectrum sensing accuracy is an imperative factor, in

applications such as CR-WBANs, when the transmitted data is related with saving lives.

However, building an efficient and reliable channel acquisition models is not only relay

upon spectrum sensing accuracy, but also upon in prioritizing data transmission among
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patients according to the severity of their health status. Accordingly, the next chapter

proposes an intelligent data prioritization model.
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Chapter 5

The Intelligent Data Transmission
Prioritization Model

Prioritizing data among multiple CR-WBANs within an ubiquitous healthcare system is

a crucial function, since doing so reduces network latency and saves more patients with

life-threatening situations [41]. In fact, adding more cognition to intelligent components,

develops components’ capabilities in terms of more reliable prioritization process based

on patients’ health [41]. The concept of context awareness has been introduced in the

literature in attempts to design more reliable and efficient data prioritization models [29].

The concept is based on integrating intelligence within the data prioritization process.

Integrating more intelligence is done by building a knowledge base of parameters that

help to distinguish patients states at a particular time, such as, channel status, patients

activities and vital signs, patients’ geolocations, environmental conditions, and patients’

avatars (i.e., a contextual data that indicates each patient’s medical history, such as, age,
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gender, and medical record). Even without context awareness, CR-WBANs overcome

various challenges that exist in conventional WBANs. Thus, augmenting context awareness

will certainly improve data prioritization in the network, and so save more individual with

critical conditions

However, most of the state-of-the-art research, which has deployed context awareness to

prioritize data among multiple BCUs [29] [42] [43] and [44], did not consider the effect of the

local health assessment of the patient in prioritizing data transmission in the global unit.

Local assessment helps to reduce processing time at the global unit and gives an indication

of the criticality level of patient’s health (i.e., is a range from normal to acute). Although,

different research has augmented different contextual data (e.g., patients location, patients

activities, etc.) in the global prioritization process the contribution of including patients

avatars as a contextual data has not been introduced yet. Thus, this chapter proposes a

novel multi-stage data prioritization model, whereby the effect of patients real-time vital

signs data and patients’ avatars are utilized in prioritization decisions. The first stage is

deploying fuzzy logic, as an intelligent component, for the local assessment about patient’s

health status based on the collected vital signs data. The second stage proposes a cluster-

based heuristic algorithm that prioritizes transmitted data among multiple patients. The

prioritization is based on clustering the transmitted data, according to the severity of

patients health status, into one of the three levels: acute, urgent, or normal. Patients
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avatars and local health status decisions made for these patients are augmented in the

prioritization controlling unit (PCU), to make global prioritization decision among multiple

patients (i.e., BCUs). Main contributions in this chapter are:

� Designing a local health status model that provides a preliminary assessment about

patients health condition according to that patient real-time vital signs measure-

ments.

� Including patients’ contextual data (i.e., patients’ avatars) and local health assess-

ment in the prioritization process.

� Building a cluster-based heuristic algorithm that prioritizes transmission according

to the severity of patients’ health condition, whereby patients with acute status have

the highest priority in transmission.

The remainder of this chapter is organized into four sections: section 2 introduces

the related work in deploying context awareness in WBANs and remarks the absence

of studies on deploying contextual data in CR-WBANs. Section 3 explains the design

and implementation of the proposed intelligent data prioritization approach for multiple

CR-WBANs. Section 4 discusses simulation results for the proposed model, the chapter

concludes with a summary in section 5.
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5.1 Related work

This section introduces the related work in deploying context awareness in WBANs and

remarks the absence of studies on deploying contextual data in CR-WBANs. Most of

state-of-the-art applications, [42] [43] [29] [44], have added more awareness to WBANs, by

including contextual data related to patients states (e.g., patients’ environment, location,

vital signs, etc.) and did not consider the effect of patients’ avatars (e.g., age, gender,

etc.) in the prioritization process. Moreover, the research has focused on deploying this

concept in the first tier in the network (i.e., between body sensors and a body controller

unit (BCU)), and did not consider that augmenting contextual data in the second tier (i.e.,

between multiple BCUs and the access point) helps to prioritize data transmission among

patients based on the state indicated by their context.

In [42], the authors have proposed remote monitoring for patients, wherein nodes with

abnormal data have a higher transmission probability. In [10], the authors have proposed

an aware WBAN protocol, whereby slot allocations among body sensors are dynamically

changing based on the priority of data. The authors in [43] has used a hybrid access scheme

combining contention-based and time division multiple access (TDMA)-based schemes to

enhance transmission reliability and efficiency. All previous proposals have focused on

prioritizing data within the first tier. On the other hand, in [29] the authors have pro-
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posed ubiquitous healthcare system, whereby different wireless communication tools have

deployed in a wirelessly connected local mobile computing grid, which consists of multiple

wireless components (e.g., a laptop, computer, etc.,). The authors have proposed a priori-

tization model that can prioritize data among BCUs; the network is divided into clusters,

and each cluster has a central node that fuses data of all BCUs in the cluster. The model

uses a distributed cluster head mechanism to select a node with higher capabilities to act

as a gateway that fuses the data for transmission to the most appropriate base station. The

base station will then transmit data for preprocessing in the computing grid. In [44], the

author has proposed a cloud-based context-aware system for assisted living. This context-

aware cloud is designed to gather different data from sensor nodes in the network, and then

fuses the data to conclude the type of context from the collected data. The contextual

data can be a user activity, heart rate signal, temperature, environmental conditions, etc..

5.2 The proposed intelligent data transmission prior-

itization model

The architecture of the proposed intelligent data transmission prioritization model is shown

in Figure 5.1. This work considers a homogeneous network, where all patients have body

sensors with same functionalities. A fuzzy logic system is utilized to fuse vital signs mea-

surements, locally, to assess patients health status. A prioritization controlling unit (PCU)

71



has been constructed to prioritize data among multiple BCUs (i.e., patients). Moreover,

a cluster-based heuristic algorithm is designed within the PCU to prioritize transmissions

according to the severity of patients health status. The proposed algorithm integrates

different parameters that influence data prioritization which are: the patient local health

assessment, patient avatar, and patient health status factor (i.e., the cluster factor). The

patient avatar is the collected contextual data of that particular patient that is likely to

influence the assessment of that patients health status (e.g., age, medical record, body

mass index (BMI), etc.). Each patient in the network will have his/her patient avatar,

which is updated and stored in the patient profile center.

5.2.1 Local health assessment decision module

It is assumed that there are N-patients in the system. Each patient has an intelligent

BCU that deploys a fuzzy logic system for local decision making to assess patients health

condition. The fuzzy logic system fuses measurements of four vital sign sensors: blood

pressure, temperature, pulse rate, and respiratory rate. These vital signs are the most

common tools in monitoring patients health. The proposed fuzzy logic system is designed

as follows: the fuzzifier maps vital signs that body sensors measure to fuzzy inputs, using

membership functions that are represented by high (patient’s vital data is up normal),

normal (patient’s vital data is regular), and low (patient’s vital data is below the normal).

72



Figure 5.1: the architecture of the proposed data prioritization model for multiple CR-
WBANs

The set of rules represents knowledge for different health status and is built with the help

of a medical expert. The inference engine is used to aggregate the real-time measured

vital sign data at the input with different rules, to evaluate patient health status which is

represented with a certain probability. The defuzzifier is used to convert the fuzzy output

to a crisp one using membership functions.

The fuzzy logic system has three inputs with three membership functions, and the

fourth input has two membership functions. In the defuzzification model, one output is
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considered which represents the critical level of patients health status, and it is defined by

three membership functions, namely, normal (patient has stable vital signs measurement),

urgent (patient has demanding vital signs measurements), and acute (patient has dangerous

vital signs measurements).

5.2.2 Global prioritization decision module

The global prioritization module comprises the patients’ profile center and the prioritization

controlling unit (PCU). Mainly, the PCU receives decisions about patients’ health status

from all BCUs (i.e., local health assessment modules) in the network. The PCU requests

patients’ avatars from patients profile center, where a common ID identifies each patient in

all components in the prioritization model. In this subsection, the description and process

for each element of the global prioritization module is discussed in details:

� The patient profile center

It gathers patients avatars that distinguish each patients state at a particular time.

Each patients avatar is characterized with the following parameters:

– Patient age: can be divided into different groups, whereby each group can be

monitored differently.

– Patient medical record: it includes patients medical history, such as, heart and
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kidney diseases, diabetes mellitus, or asthma disease.

– Patient body mass index (BMI): indicates whether a ptatient has an obesity or

below the normal weight.

– Experts’ health evaluation index: it represents the opinions of specialists about

monitoring patients’ health. The experts regularly update the index based on

the last assessment of the patient health.

A patient avatar can include other parameters, such as patient’s gender, location,

etc.. In this design, only, the mentioned parameters are chosen as patients’ contextual

data.

� The prioritization controlling unit (PCU)

The PCU aggregates the following information: cluster factor, patient’s avatar, and

local health assessment for each patient in the network. The PCU receives the local

health assessment from the local module and the patient’s avatar from the patient

profile center. The cluster factor is generated within the PCU. The PCU utilizes a

cluster-based heuristic algorithm to aggregates all the previous information to even-

tually calculate the probability of acquiring a channel Pca for each patient. Hence,

the data that need transmission will align based on the predetermined channel ac-
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quisition probability of each patient (i.e., from the highest to the lowest probability).

– The cluster factor: the PCU categorizes the transmitted data into three clusters:

acute, urgent, and normal. Each group is defined by a certain weight (i.e.,

cluster factor) that describes its priority level. Cluster factor varies between 1

to 0 based on the required severity for each cluster.

– The cluster-based heuristic algorithm: it aggregates the influential factors of

each patient, namely, patients local decision, cluster factor, and patient’s avatar.

Then, allocates an appropriate weight for each influential factor. Integrating all

these weighted factors defines the probability of channel acquisitionPca/patient

as expressed in Equation 5.1.

Pca/patient = Lassess ∗ w1 + Paavatar ∗ w2 + Cfactor ∗ w3; (5.1)

where Pca/patient: the probability of channel acquisition model for each pa-

tient; Lassess: the local health assessment for each patient; Paavatar: patient

avatar; Cfactor: the cluster factor; and w1,w2, and w3 are the allocated weights

for each influential factor. The allocated weight w2 is distributed among dif-

ferent information that a patient’s avatar includes. For example, patients with

acute status have the highest cluster factor; hence, have top priority in trans-

mission (i.e., patients with Acute status transmit before patients with urgent
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and normal health status). Additionally, patients within the acute cluster will

be prioritized based on their contextual data (i.e., patients’ avatar), from the

highest severity condition to the lowest one. The same prioritization process is

applied in each cluster.

The value of the allocated weights is flexible based on the application requirements.

The pseudocode for the proposed intelligent data transmission prioritization Model is

shown in Table 5.1

Table 5.1: pseudocode for the proposed Intelligent Data Transmission Prioritization Model

Fuzzy input blood pressure, temperature, pulse rate, and respiratory rate
fuzzy output Local health assessment (normal, urgent, or acute)
Pcu-input Fuzzy output and patients avatars
Pcu-output Patients prioritized according to their health status
Stage one: local decision

1.Each BCU fuses its vital data using fuzzy system
2.The fuzzy system evaluates patients health condition:

Acute, Urgent, and Normal
3.The local health assessment is made and transmitted

Stage two: global decision
4.Patients profile center (i.e., patients avatars) is updated and stored
5.Cluster factor is distributed among patients based on their health status:

Acute, Urgent, and Normal
6.Prioritization controlling unit (PCU) aggregates all influential factors:

Patients local decision, Cluster factor, Patient avatar
7.The PCU distributes weights among the influential factors to produce the Pca/patient:
Lassess ∗ w1 + Paavatar ∗ w2 + Cfactor ∗ w3

8.The global prioritization units Aligns data transmission according to Pca of each patient.
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5.3 Simulation results and discussion

This simulation is conducted for assisted living system of multiple CR-WBANs, whereby

all patients have four vital sensors for their health monitoring. The following steps show

the model design for this simulation:

� The local stage: Table 5.2 represents input membership functions for all vital signs,

whereby ranges are considered according to the elderly vital signs:

Table 5.2: input membership functions and their ranges for four vital signs

Level-1 Level-2 Level-3
Temperature (F°) High (>99) Normal (96-99) Low (<96)

Heart rate (BPM) High (>130) Normal (90-130)
According to the experts opinion,
it is not a usual case for the elderly.

Blood pressure rate High (>144/90) Normal (131/86) Low(<118/82)
Respiratory rate High(>20) Normal(12-20) Low (0-12)

� The global stage:

– Parameters of patients profile center, which constitutes N-patients avatars, are

considered as shown in Table 5.3.

– The weights for each cluster are generated in the PCU, based on the local health

assessment levels as illustrated in Table 5.4.

– The probability of channel acquisition Pca for each patient is calculated by

determining the weights for each influential factor. Different weights have been
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Table 5.3: contextual data of each patient avatar

patient avatar Description Normalized value
patient’s age Vary [65-100] (Patient age - 65)/(100-65)

Patient medical record

It considers the most illness
that the elderly has:
- Kideny diseases.
- Heart attack.
- Stroke.
- Diabetes.

- 1: patient has a disease.
- 0: patient dose not have

any diseases

BMI
Normal BMI is ranged
[25 to 30]

- 0: BMI is normal
- 1: BMI is not normal.

Expert’s health evaluation index Ranges [1 to 0]
- 1: patient requires

special monitoring
- 0: patient dose not require

any special monitoring

Table 5.4: the distributed weights for each cluster

cluster factor Weight
patients with acute conditions 1
patients with urgent conditions 0.7
patients with normal conditions 0.3

tested, and the best results performance is yielded when w1 = 0.4, w2 = 0.4,and

w3 = 0.2, for the given scenario. It can be noted that cluster factor and local

health assessment have the highest weights, this is to strengthen the condition

that patients with highest severity health status in the network will always have

the priority in transmission. This means that patients with acute conditions

will not be dragged down to lower severity health level (i.e., urgent and normal).

Equation 5.2 demonstrates the probability that each patient has to acquire a
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channel based on his/her given influential factors.

Pca/patient = Lassess ∗ 0.4 + Paavatar ∗ 0.2 + Cfactor ∗ 0.4 (5.2)

Scalability results:

Figure 5.2 shows the probability of channel acquisition for 100 patients in terms of patients

local and global severities. The results demonstrate that patients with acute health status

have the highest Pca compared with patients that have urgent and normal health status.

Moreover, the results indicate how patients in the same cluster have different Pca values,

due to the integration of patients avatars in the prioritization process. Furthermore, the

outcomes of the proposed model can guarantee system scalability, whereby the number of

patients can vary from 1 to N and maintains the same performance in terms of prioritizing

transmission among different clusters and within each cluster, as it appears in Figure 5.3.

The figure shows data prioritization among 500 patients regarding their local and global

severities.

The effect of patients’ avatars on the prioritization decision:

These results clarify how the contextual data affects the prioritization decision as it will

be discussed. Figure 5.4 shows the Pca of 10 patients, at three different scenarios, versus

transmission priority:
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Figure 5.2: the probability of channel acquisition for 100 patients in terms of global and
local severities

1. In the first scenario (i.e., the green line), data is prioritized without integrating

any intelligence, locally or globally. As is shown in Figure 5.4, the Pca is equally

distributed among patients, regardless of patients’ health status. Thus, the chances

for patients with acute status will be reduced, due to the inefficient allocation of data

transmission.

2. In the second scenario (i.e., the blue line), intelligence is integrated, locally, to make a

local health assessment for each patient. The data will be prioritized and transmitted
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Acute conditions 
Urgent conditions 

Normal  conditions 

Figure 5.3: the probability of channel acquisition for 500 patients in terms of global and
local severities.

based on the local assessment only, without considering patients contextual data.

3. In the third scenario (i.e., the red line), the intelligence is integrated locally by

making local health assessment, and globally by considering patients avatars in the

prioritization process.

The results show that the priority level of data transmission is adjusted based on the

severity level of patient contextual data (i.e., patients’ avatar). As shown in Figure 5.4,

transmission priority of the patient (i.e., patient colored with blue) is changed from trans-
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Figure 5.4: shows the Pca of 10 patients at three different scenarios in terms of transmission
priority

mission priority=3, see Figure 5.5a, to transmission priority=2, see Figure 5.5b. Moreover,

the results in Figures 5.5 and 5.6 clarify that patients who are clustered within acute level

will maintain the highest priority in transmission. Additionally, the results demonstrate

that transmission priority within the cluster is prioritized, according to patients’ avatars.

Moreover, patients clustered within urgent and normal levels may be dragged up into

a cluster that has a higher severity level, according to their contextual data, as shown

in Figure 5.7. The patient (i.e., colored with red) has an urgent local health assessment;
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(a) transmission priority without contex-
tual data=2

(b) transmission priority with contextual
data=3

Figure 5.5: the effect of the contextual data on the transmission priority

(a) transmission priority without contex-
tual data=4

(b) transmission priority with contextual
data=5

Figure 5.6: the effect of the contextual data on the transmission priority

however, by including the effect of his/her contextual data, the Pca is increased to reach the

acute level. Thus, the system shows high reliability in terms of considering both patient’s

real-time vital signs measurements and patients’ avatars in the prioritization process. On
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the other hand, the model keeps the higher transmission priority for patients with acute

health status.

Transmission priority 

(a) transmission priority without contex-
tual data=6

(b) transmission priority with contextual
data=6

Figure 5.7: the effect of the contextual data on the transmission priority

Average delay:

For more evaluation to the proposed system, the average delay for 10-patients is calculated.

The algorithm is run 100 times, and each time the local health assessment for each patient

is changing between the three severity levels (acute, urgent, and normal). The results in

Figure 5.8 show the average delay, for one patient, versus the three severity levels. The

results clarify that when the patient has an acute health status, the average transmission

delay is the lowest among the three severity levels. Furthermore, the same experiment is

repeated to calculate the average delay for 10-patients. The results in Figure 5.9 show that
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the 10-patients within the same cluster have different average delay value, which clearly

proves the effect of contextual data on the prioritization process inside each cluster.

Figure 5.8: the average delay for single patient versus different severity levels

5.4 Summary

This chapter has proposed an intelligent multi-stage data prioritization model, whereby

patients real-time vital signs measurements and patients’ avatars (i.e., contextual data)

are integrated into the prioritization process. Fuzzy logic is utilized to make a local as-

sessment of patients health status. Prioritization controlling unit is designed to prioritize

transmission among multiple BCUs in the global unit, whereby a cluster-based heuristic

algorithm is utilized to make a prioritization decision.
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Figure 5.9: the average delay forten patients versus different severity levels

The results have shown high scalability, where it maintains its performance (i.e., trans-

mitting data according to the severity of patients’ health) with a different number of

patients within the network. Furthermore, the results have demonstrated high reliability

in prioritizing data transmission among multiple patients, while maintaining the highest

transmission priority for patients with acute conditions. Additionally, the average trans-

mission delay for patients are reduced, and patients with acute status have the lowest

transmission delay.

Thus, in order to acquire a channel among candidates who have data to transmit, a

channel needs to be sensed efficiently and then acquired by a user that has the highest

health severity level.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

This work has proposed an intelligent multi-stage channel acquisition model for multiple

CR-WBANs in a ubiquitous healthcare system, whereby environmental properties, intra-

node characteristics, and patients’ contextual data are utilized in the decision process. The

architecture of the proposed intelligent channel acquisition model has divided into two ap-

proaches: the first approach is an original multi-stage hybrid cooperative spectrum sensing,

which brings together local and global sensing modules. Real-world power measurements

are used to train the neural network. The second approach is an intelligent multi-stage

data prioritization model, which, again, brings together local health assessment and global

data prioritization modules. Real-time vital signs measurements and contextual data for

patients are integrated in the prioritization process. A cluster-based heuristic algorithm is
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utilized to prioritize transmission among patients.

The proposed multi-stage hybrid cooperative spectrum sensing model has shown high

performance in sensing the channel availability, where its accuracy has reached 99%. The

model has compared with intelligent single-stage (no global decision) and multi-stage mod-

els (the intelligence is embedded only in the local unit, and the majority rule is used in the

global unit), it has outperformed both models with 54% and 41%, respectively. Moreover,

the model is also compared with state-of-the-art models, and it has shown its superiority

with 5% better performance.

The proposed multi-stage data prioritization model has guaranteed scalability, whereby

the number of patients can vary from 1 to N and maintains the same performance in terms

of prioritizing transmission. Moreover, the proposed model has compared with a transmis-

sion model without any intelligence (i.e., first come first serve mechanism), and intelligent

single-stage prioritization model (i.e., prioritization decision has not considered patients

avatars). The proposed model has outperformed both other models, by clustering data

transmission according to the severity of patients health status; and within each cluster,

the prioritization of data transmission is adjusted based on patients avatars. Furthermore,

the model has demonstrated that patients with acute conditions have the lowest average

transmission delay compared with patients with urgent and normal conditions.
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6.1.1 Benefits of the proposed intelligent channel acquisition model

The proposed intelligent channel acquisition model has shown high performance in

� Robustness: it maintains a robust performance against unpredictable changes in SU-

mobility levels, whereby the probability of detection improves when the SNR levels

improve, regardless of the changes in SU-speed levels;

� Accuracy: it predicts PU-activities with high accuracy under environmental condi-

tions (i.e., low SNRs);

� Scalability: it meets ubiquitous healthcare requirements, by maintaining the priori-

tization process among multiple patients based on their local health assessments and

contextual data (i.e., patients avatars);

� Reliability: it performs consistently, by clustering transmission based on the severity

of patients health conditions (i.e., acute, urgent, and normal health conditions), and

then prioritizing transmission, within each cluster, according to patients avatars.

6.2 Future work

Although the results of the channel acquisition model have demonstrated the effectiveness

of the proposed approach, each model could further be developed in different ways:
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� The hybrid cooperative spectrum sensing model:

– Additional features can be included to train the NN, such as SU-distance and

path loss, to enhance the sensing performance of the network.

– The proposed model is designed, where only a single PU exists in the environ-

ment. Considering more than one PU in the network allows more than a single

SU to transmit at the same time, which decreases network latency and increases

network scalability. Hence, the enhanced model helps to saves more lives. For

implementing this enhancement, different considerations need to be taken, such

as calculations of the distance between SUs and PUs, to determine the shortest

transmission path for each SU.

– Since the proposed model has achieved very high prediction accuracy and so

to avoid any overfitting, testing the proposed model using another dataset is

considered.

– Since preserving power is fundamental in sensor networks, it is preferable to

investigate the power consumption of the proposed model.

� The Data transmission prioritization model:

– Heterogeneous networks are more effective in real life than homogeneous net-

works. In designing a channel acquisition model, the consideration of different
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users who have different vital signs sensors helps to simulate the real-world

situation.

– Including more contextual data within each patient’s avatar at the patients

profile center, provides more information about the severity of patients health

status.

– In the proposed model, each patient’s avatar in the patient profile center is

regularly updated by the specialists and doctors. However, for more efficient

and reliable performance each patient’s avatar should be updated automatically

when the local health assessment module updates its data.
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