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Abstract

A long-standing open problem in 4-dimensional Spin Foam models of Quantum Gravity
has been the behavior of the amplitudes under coarse graining. In this thesis, we attempt
to study this question by using the recent reformulation of Spin Foam amplitudes in terms
of spinors. We define a new model by imposing the holomorphic simplicity constraints
in an alternative way, which facilitates greatly simplified calculations. We show that the
simplification does not come at the cost of loss of the correct semi-classical limit, as the
model has the same asymptotic behavior as the usual approach. Using the power of the
holomorphic integration techniques, and with the introduction of two new tools: the homo-
geneity map and the loop identity, for the first time we give the analytic expressions for the
behavior of the Spin Foam amplitudes under 4-dimensional Pachner moves. We show that
the coarse-graining 5—1 move generates non-geometrical couplings, but we find a natural
truncation scheme that restricts the flow to the space of 4-simplices. Under this truncation
scheme, the 3-3 Pachner move is only invariant for symmetric configurations, while the
4-2 and 5-1 moves are invariant up to an overall possibly divergent factor depending on
boundary spins. The study of the divergences shows that there is a range of parameter
space for which the 4-2 move is finite while the 5-1 move diverges, which distinguishes the
model from the topological case. We then show that the amplitude after the 5—1 move can-
not be written as a symmetric local product of renormalized edge propagators, but instead
has to be written in terms of a vertex amplitude. The study of the additional nonlocal
function of the boundary spins shows a transition, at which the spin dependence is very
slow, suggesting the existence of an approximate notion of a vertex translation symmetry.
We conclude with a proposal for an amplitude, where iterated 5-1 Pachner moves only
renormalize this nonlocal function at a vertex, and in which all the divergences can be
absorbed by a single coupling constant.
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Chapter 1

Introduction

It appeared that way, Lawrence, but this
raised the question of was mathematics really
true or was it just a game played with
symbols? In other words — are we discovering
Truth, or just wanking?

Neal Stephenson
Cryptonomicon

1.1 Why Quantum Gravity?

The search for a theory of Quantum Gravity is the culmination of the quest that started
when the first intelligent humans looked up at the night sky and wondered where it all
came from and how do we fit in this Universe. Various proposals for answering these
questions have been put forward throughout the ages, but it was only with the advent
of natural philosophy that we started approaching the answers in a systematic manner.
The search for the elusive Truth led eventually to the two great discoveries of early 20th
century — Quantum Mechanics and General Theory of Relativity. We now believe that the
answers about the origin of the Universe and its ultimate fate lie on the intersection of
these two theories. Since we now know that we are really made from stardust, the search
for Quantum Gravity is fundamentally about the Universe trying to understand itself.

As we are faced with the curious situation, where the theoretical considerations have
run ahead of technological progress, the search for Quantum Gravity has become one of



finding a mathematically self-consistent theory. While the recent rise of gravitational wave
astronomy and the studies of the cosmic microwave background give us hope for some
experimental input, we are nonetheless data-starved. The lack of empirical data does not,
thankfully, leave us grasping completely blindly, as we expect such a theory to satisfy
several physical principles, such as general covariance, unitarity and renormalizability.

Naively, we have grounds to expect that combining the two theories would help us heal
the problems in each of them at the same time. Consider for example that by Heisenberg
uncertainty we need more energy to measure effects in small regions of space. However,
when the Compton wavelength becomes smaller than the Schwarzschild radius for the
given mass-energy, we would expect the formation of an event horizon by a gravitational
collapse, thereby giving us a fundamental limit to observability, which in turn would define
an effective “minimal length”. Such a minimal length would at the same time cure the
divergences arising in Quantum Field Theories and remove the spacetime singularities of
GR from the realm of observability.

Looking more closely however, we see that the framework of ordinary QFTs must break
down when we add gravity to it, since a dynamical spacetime metric (which in general has
no symmetries) does not provide the background necessary for the usual construction of
the Fock space. Once could still hope to work with QFT's on arbitrary spacetimes provided
that the backreaction of matter on geometry was negligible. However, the central lesson
of General Relativity is that backreaction of matter is non-negligible and is given by the
Einstein equations

1
R/W — §ng, = SWGNTHZ,. (11)

Since the theory of matter is quantum mechanical, the stress-energy tensor would have to
be considered as an operator in this equation. Trying to fix this by changing the right-hand
side into the expectation value (T,W> however does not work, since quantum fluctuations
would break the covariant conservation of the half-classical-half-quantum Einstein equa-
tions. We thus find ourselves in a need of a completely new framework for a theory of

quantum matter interacting with quantum spacetime.

Historically, the two most active approaches to quantization of gravity have been String
Theory [3, 1] and Loop Quantum Gravity [5, 6]. While String Theory has had truly im-
pressive achievements in unifying gravity with other fundamental forces, they have come
at the price of requiring supersymmetry and higher number of spacetime dimensions, com-
pactification of which has resulted in the landscape problem. We thus do not know if String
Theory can describe the Universe we live in. Additionally, the theory is so far only known
in its perturbative expansion around fixed background spacetimes, and as such we cannot
say that we handle on what the theory really is about. In this thesis, we will focus on the



covariant formulation of Loop Quantum Gravity, known as Spin Foams, which is based on
a more minimalistic set of physical assumptions.

Spin foams are an attempt at a non-perturbative definition of a path integral for Quan-
tum Gravity amplitudes [7, 8]. Similarly to the non-perturbative definition of gauge theo-
ries, Spin Foams are well defined thanks to a discrete regularization of spacetime. Unlike
in lattice gauge theory however, in Quantum Gravity the discretization itself has to be
dynamical, which leads to a completely new class of models. Formally, these models are
usually constructed in analogy with a formulation of General Relativity, due to Plebanski
[9], as a constrained topological BF theory. Each Spin Foam model is a proposal for a
discretized version of these constraints, known as simplicity constraints. The most pop-
ular proposals are due to Engle-Pereira-Rovelli-Livine (EPRL) and Freidel-Krasnov (FK)
[10, 11, 12, 13, 14, 15], though in this thesis we will work with the constraints written in
spinorial language, which were introduced by Dupuis and Livine in [16, 85].

The dynamics of the discrete structure on which Spin Foams are defined is still not
fully understood and is currently under intense investigation [17, 18, 19, 48]. Because of
the symmetries of General Relativity, these dynamics are deeply connected with diffeomor-
phism invariance in the continuum theory, which can be studied through coarse-graining.
Before we venture further, it will be instructive to discuss the problem of renormalizability
in Quantum Gravity.

1.2 Problem of renormalizability

The difficulty in quantization of gravity comes from the fact that we cannot deal with it in
the same way that has been successful in the construction of the Standard Model of particle
physics. Let us sketch out the main reasons for this failure. In a covariant framework, we

would like to define _
[ Py ervn s (1.2)

but we are faced with the problems of both defining a measure over the space of metrics,
and dealing with a non-linear action. The effective field theory approach suggests us to
perform a perturbative expansion of the Einstein-Hilbert action. We can expand the metric
as

G = N + /{h;w, (13)

where 7, is the Minkowski metric, h,, is a perturbation around this flat background and
k = /8mGy. The first problem in this construction arises here, as perturbation theory



requires h,,, to be infinitesimal, but for generic spacetimes in General Relativity it can be
arbitrarily large'. With this we get that the action becomes

1 1
Slinearized = _/ d4l’ (_hlw‘:'h#u + —hlUJh + O(hg)) . (14)
2 2

This now has the form amenable to quantization, when we consider it as a theory of massless
spin-2 fields (gravitons) gauged under linearized diffeomorphisms h,, — hu, + 0.€,). As
in any interacting quantum field theory, the loop corrections lead to divergences, which
we would like to renormalize. Where gravity differs from theories like QED is in the fact
that it turns out to be perturbatively non-renormalizable at two-loop level. More precisely,
while the divergences at one-loop can be hidden away in the coupling constants we already
have, at two loops one produces a divergent term proportional to the cube of Weyl tensor
[21, 22]. This divergence can be only removed by introduction of a counterterm with a new
coupling constant. At higher loop orders we need more and more counterterms to cancel
out the divergences, until we get an infinite number of coupling constants, which kills any
predictivity the theory might have. This result can be seen also from naive power-counting
arguments — GGy has a negative mass dimension, and so each next term in the perturbative
series expansion is more relevant than the previous one, eventually making the original
Einstein-Hilbert term irrelevant.

The splitting of the metric into a background and perturbation as in (1.3) fails also due
to a much more fundamental reason. In the effective field theory described by the action
(1.4), both the notion of what we consider spatial separation for commutation relations
and the notion of causality are defined by the flat metric 7n,,. The radiative graviton
corrections in this theory do not modify these notions, which is just clearly wrong for a
theory describing gravitational interactions.

One might now worry that this result spells doom for the whole program of quantizing
gravity. Fortunately, there seem to be some holes in the argument. One way out is to
introduce a UV-completion of the theory that changes the low-energy physics and deter-
mines the additional parameters. This is actually the path String Theory takes. There is
also the possibility that there exists a non-trivial UV fixed point in the renormalization
group flow of General Relativity, a scenario known as Asymptotic Safety [23]. In this light,
the failure of perturbative approach above can be seen as an expansion around the wrong
set of variables. The Asymptotic Safety program has had some very interesting results
over the years [24, 25, 26, 27, 28], though a definitive proof of the existence of a fixed

IConsider for example the very simple case of Schwarzschild black holes, which are noticeably quite
different from the Minkowski metric



point with only few relevant couplings is still lacking. Alternatively, one might consider
the perturbative split of the metric (1.3) a bad idea and develop non-perturbative methods
for quantization leading to UV-finiteness, which is the path followed by Loop Quantum
Gravity and Spin Foams.

One of the great achievements of the LQG program has been showing the existence of
gaps in the spectra of the area and volume operators [29], which we discuss in Chapter 2.
To see whether these indeed result in UV-finiteness, we would have to study the continuum
limit of this discretized approach.

The natural path towards finding a continuum limit of a discrete theory involves study-
ing coarse graining and applying renormalization methods. Note that already in flat space-
time lattice QCD [30], this is non-trivial, as one needs to study the critical behavior of the
model. In order to obtain a locally covariant continuum theory, it would seem that the
usual global scale transformations might be not appropriate. Some early ideas [31, 32, 33]
in Spin Foam models have instead focused on defining coarse graining via local scale trans-
formations. A notion of refinement scale can be provided by embedding finer triangulations
into coarser ones, while requiring so-called cylindrical consistency [17, 34, 35, 36, 37, 38].
Not much work has been done in this direction however, as the dynamics of Spin Foam
models have not been understood beyond triangulations built out of more than few basic
building blocks [1%, 19]. Recently, a more global approach with the use of Tensor Network
Renormalization scheme [39, 40, 41] has been used to numerically study dimensionally re-
duced analogue Spin Foam models - so-called spin nets [12, 13, 44, 45, 46, 47, 48, 19, 50].
Another approach under investigation is renormalization of Group Field Theories (GFT)
[D1, 52, 53, 54, 55, 50, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, (7], which generate Spin Foam
amplitudes. However, the renormalizable GFTs studied so far have not been of relevance
to 4d gravity. It thus still seems crucial to understand what are the dynamics of Spin
Foams for configurations that can be iteratively coarse grained.

The most basic local coarse graining move on a simplicial decomposition of a manifold
is a specific type of so-called Pachner moves [(8]. Pachner moves are local changes of trian-
gulation that allow to go from some triangulation of a manifold to any other triangulation
in a finite number of steps. In 4 dimensions, there are three different Pachner moves: The
3-3 move, 4-2 move and 5-1 move (and their inverses). An n—(2 + d — n) Pachner move
changes a triangulation composed out of n d-simplices to one with (2 4+ d —n) d-simplices.
Only the n—1 Pachner moves are pure coarse graining moves. The action of classical 4d
Regge Calculus [09] is known to be invariant under 5-1 and the 4-2 moves [70], but it has
been a long standing open problem to make any statement about invariance under these
moves for non-topological Spin Foam models. Only the naive degree of divergence of the
5-1 move has been estimated for the EPRL model [71]. This question is not even obvious

5



in linearized gravity, as the partition function of the quantum linearized Regge Calculus
has recently been found to be not invariant, as it picks up a nonlocal measure factor [72].

1.3 Outline of the thesis

The main goal of the work in this thesis is to set up the groundwork necessary for the
study of coarse graining in a 4-dimensional Spin Foam model with simplicity constraints
and study the behavior of the amplitudes under the 5-1 Pachner move. While this might
not sound as dramatic as what we claimed Quantum Gravity was really about in the
opening sentences of this chapter, the answer to how the continuum limit behaves will
distinguish whether Spin Foams probe the Truth?, or are merely a mathematical game.

The thesis is then organized in the following way. We start with a review of the Spin
Foam approach to quantum gravity in chapter 2. Before jumping into the covariant models,
we begin with an overview of the canonical Loop Quantum Gravity. This discussion takes
us from the classical General Relativity written in terms of tetrads to the Hamiltonian
picture with Ashtekar variables. We show that the gauge-invariant kinematical Hilbert
space is spanned by spin networks. After discussing the geometric observables and their
discrete spectra, we sketch out the difficulties in solving the dynamics of the time evolution
in the canonical approach. We then move onto the study of discretization of GR — the
Regge Calculus, and present the first Spin Foam model in the form of Ponzano-Regge model
[73]. Following this, we discuss the relation between gravity and the topological BF theory.
This connection is relevant, because BF theory can be exactly quantized. 4-dimensional
Spin Foam models are then shown to result from imposing so-called simplicity constraints
onto BF amplitudes. After discussing the most popular Barrett-Crane [74] and EPRL-FK
models, we move on to reviewing the holomorphic representation [75, 76], which simplifies
the construction of SU(2) invariants [77, 78, 79, 80, 81, 82]. This allows us to write the
partition function of BF theory in the holomorphic representation. We then review the
holomorphic simplicity constraints [16, 83, 84].

In chapter 3 we show that these simplicity constraints can be imposed in two different
ways. The usual way is to impose them on the boundary spin network function, resulting
in the Dupuis-Livine model [16, 84], which is very similar to the EPRL-FK model. The
alternative way is to impose the constraints onto a Spin(4) propagator. We then introduce

2 Apologies to the readers deeply disturbed by the carefree use of this loaded term. Indeed, one would be
hard-pressed to define the Truth in our reality, as any such assignment relies on using a system of axioms —
truth is relative. Worse, by Godel’s incompleteness theorems, some statements cannot be provably assigned
a truth or false value. Moreover, is the Universe inherently mathematical?



an important mathematical trick in the form of the homogeneity map, which allows for
simple calculation of amplitudes. Comparing the two approaches of imposing constraints,
which we achieve by rewriting the Dupuis-Livine model also in terms of propagators, we
find that at least superficially the two models look quite different. Surprisingly however,
we find that the two models have the same semi-classical limit for one 4-simplex.

Next, in chapter 4 we review the calculation of Pachner moves in the Ponzano-Regge
model for 3d Quantum Gravity. We start with defining the notion of Pachner moves. We
then discuss the gauge fixing procedure for the internal rotational SU(2) symmetry. Next,
we derive a crucial identity (which we refer to as the loop identity, since it corresponds to
integrating out a loop in a diagram) that allows for the calculation of Pachner moves. We
finish the chapter with calculating the 3-2 and 4-1 Pachner moves and discussing the fate
of diffeomorphism symmetry.

Chapter 5 finds us deriving the loop identities for the constrained models. We start
with a toy case of a loop with a single constrained propagator, which exhibits behavior
quite different from the topological case, with additional mixing of strands in graphs. We
confirm this behavior for the case of a loop that appears in the evaluation of Pachner
moves. Additionally, we evaluate the loop identity for the Dupuis-Livine model, showing
that indeed the alternative imposition of simplicity constraints leads to greatly simplified
calculations. We finish the chapter with making an observation that we can obtain in-
teresting exact results in the case of 2-dimensional SU(2) BF theory with arbitrary face
weights and modifications of the propagators.

In chapter 6 we apply the results of the previous chapter to evaluation of the 4-
dimensional Pachner moves for the constrained propagator model. We find that the model
is not invariant under any of the moves, apart from some special symmetric cases of the 3-3
move. A discussion about the necessity for truncating renormalization flows ensues and
we show that there is a natural truncation scheme of the loop identity, which makes the
4-2 and 5-1 moves invariant up to a possibly divergent factor depending on the boundary
spins. We then go on to calculate and analyze the degrees of divergence of the 4-2 and
5-1 moves, and find that for a range of parameters, the latter can be divergent, while the
former can be convergent. A suggestion for the renormalization of the propagators through
the requirement of 5-1 invariance is presented at the end of the chapter.

Finally, in chapter 7 we discuss some earlier ideas about Spin Foam renormalization
and then go on to show that the hope we expressed at the end of chapter 6 cannot be.
This is because of the impossibility of rewriting the amplitude into the product of five local
propagators. Rather than give up, we try rewriting the amplitude back into the spin basis.
We find that here the result can be expressed neatly in terms of a renormalization of five



15j symbols into a product of 15j symbol and a divergent nonlocal function of boundary
spins. We study this nonlocal function numerically and find it has a transition point at
which it is very slowly varying with the boundary spins, providing an approximated notion
of translation invariance. We then propose a renormalized amplitude written as a product
over propagators on edges and this nonlocal function at a vertex. We then argue that
iteration of the 5-1 Pachner move provides a renormalization of this vertex amplitude and
that only one coupling constant is necessary to absorb the divergences, thereby making the
model renormalizable under the 5-1 move.



Chapter 2

Loopy review

Probably the last sound heard before the
Universe folded up like a paper hat would

be someone saying, 'What happens if I do
this?’

Terry Pratchett
Interesting Times

In this chapter we will review the historical background and the concepts that led to the
Spin Foam approach to quantizing gravity. We will start with canonical Loop Quantum
Gravity entering the scene and teaching us some lessons about quantization. We then dive
back in history to the early results in 3d quantum gravity. Next, we move onto a useful
description of gravity in terms of constrained BF theory, which then segues into the brief
overview of the Spin Foam approach. We finish the chapter with some recent developments
in rewriting the Spin Foam amplitudes in terms of spinorial variables.

2.1 Loop Quantum Gravity

Loop Quantum Gravity is an attempt at canonical quantization of gravity that takes seri-
ously the lessons of General Relativity about background independence. It can be thought
of as a spiritual successor to the Wheeler-DeWitt equation [36] with a more rigorous math-
ematical structure that allows for a definition of a measure on the space of connections.
The concepts we introduce in this section will be of use throughout the thesis.



Before we start the canonical analysis on gravity, let us rewrite the action of General
Relativity by adding additional gauge freedom at each point on the manifold. Rather than
working with the spacetime metric g,,,, we introduce the tetrad (or vierbein)

el(z) = ei(m)dx‘“, (2.1)

which are formally spacetime one-forms on a SO(3,1) (or SO(4) in the Euclidean signature)
principal bundle over the manifold M. The I € {0,...,3} internal index labels the local
flat coordinates. The metric then can be obtained as

(%) = e, (x)ey ()01, (2.2)
where 77, is a flat internal metric. The redundancy we introduced can be seen in that the
metric is left invariant under

el(x) = A (z)e(x), A (z) € SO(3,1) (or SO(4)).

In these variables, the relevant connection is the spin connection w, which is a s0(3, 1)
(or so0(4)) valued spacetime one-from labeled by a pair of antisymmetric internal indices
I JI
W, = —

u wy,". The curvature associated with the spin connection is defined by

Flw)=dw=dw+wAw, (2.3)

where d,, is the exterior covariant derivative. The Palatini action for General Relativity is

then simply
1
SPalatini = % /M Tr [*(6 A 6) A F(W)] . (24)

It is straightforward to show that this is equivalent to the usual Einstein-Hilbert action.
The starting point for LQG lies in realizing that we can add an additional topological
term to this action that does not change equations of motion. This so-called Holst term is
proportional to €,,,, R*"*?, which vanishes on-shell due to the symmetries of the Riemann
tensor. The Holst action in terms of tetrads is then

1 1
SHolst = /Tr{(*e/\e+—e/\e)/\Fw}, 2.5
s = T /. - () 2.5)

where we introduced the so-called Barbero-Immarzi parameter ~ in front of the Holst term.
The introduction of this additional term turns out to give a very nice set of canonical
variables that bring GR closer to gauge theories.
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The canonical decomposition of General Relativity rests on the ability to define Cauchy
evolution, which requires the spacetime manifold to be globally hyperbolic!, i.e. M = ¥ xR
for some fixed 3d compact manifold 3. Introducing the lapse and shift vector (N, N*) and
defining the unit vector n* normal to ¥, we can perform the equivalent of the ADM
decomposition for the tetrads with

el = Nnl + Nl gu = eleldy, (2.6)

where a,b = 1,2, 3 are spatial indices and i, j the corresponding internal indices, and g4
is a 3-dimensional metric. The triad €/ now comes with local SO(3) symmetry, which can
be promoted to the double cover SU(2) (since they have the same Lie algebra). Working
in the time gauge e/ n* = &j, we can define the densitized triad

c*

1 .
Ef = det(e)ef = §€ijkeabceiek (2.7)
We can also define the Ashtekar-Barbero connection as

i i Ly
Al = %+ §ejkwflk. (2.8)
Together, these are known as the Ashtekar variables. They satisfy the rather simple Poisson
brackets ‘ ‘

{E}(z), A(y)} = 87GN0,676 (2, y). (2.9)

In terms of these new variables, the action (2.5) becomes the totally constrained ex-
pression

1 . .
S=—— [a [ & [Al E*— AiD,E — N°H, — NH]| | 2.10
].67TGN’Y / /Z Zz a1 0 7 ( )
where the constraints are more explicitly given by
Gi = DaEZq
1.
H,= —F,E!
b (2.11)
¢/ EeED
H = S==L [Fl, - (1£77)e, K K]

vdet B

IThis means that we have to assume both causality and no topology change at the very beginning.
This means that from the onset we preclude the existence of time travel and wormholes [37]. Interestingly,
this is not a necessary assumption for path integral quantization, so we can see already here that covariant
and canonical quantizations of GR are not necessarily equivalent.

11



where K is the extrinsic curvature, D, is the covariant derivative with respect to A% and
the £ sign depends on the signature: + for Lorentzian and — for Euclidean. We call G; the
Gauss constraint, H, the spatial diffeomorphism constraint and H the scalar Hamiltonian
constraint, which generates both the temporal diffeos and time evolution. Importantly,
these constraints satisfy a closed algebra. The non-triviality in quantization of this theory
can be seen in the difficulty of obtaining an anomaly-free closed constraint algebra.

Before we go on to discuss the quantization, it is necessary to consider the smearing
of the canonical variables. The densitized triad is actually a 2-form, so it is naturally
expressed smeared on a surface:

Ei(S) = /5 d*on,E?, (2.12)

where n, is the normal to the surface S. The Ashtekar-Barbero connection A is still a
1-form, so it is naturally smeared over a path L. We will work with the holonomies defined

) o [ ). 21

In a standard quantum theory, we would now promote both A and E to operators, use
the background metric to define the measure on the space of connections A and impose the
constraints according to the Dirac program of quantization of constrained systems, starting
with G;9[A] = 0. However, in General Relativity the metric is dynamical, so it is not so
simple. One way would be to split the metric into a flat background and a dynamical part,
which is the starting step in traditional perturbative approach. The other option, which
LQG follows is to find a definition of measure on the space of connections. The key to this
definition is the concept of cylindrical functionals, which depend on holonomies of A.

where P is the path-ordering.

Consider a graph I', whose links e C . A cylindrical functional of the Ashetakar-
Barbero connection for a graph I' with L links is the couple (I, f), where f is a smooth
function f: SU(2)F — C , and is defined as

b, = [ (he[A], .. hey) € Cylr. (2.14)

The reason for using these functionals to define the Hilbert space is that while a measure
over the connection A is difficult to obtain, the holonomies are just SU(2) group elements,
and integration over SU(2) is well-defined with the Haar measure. Cylr can be easily

12



turned into a Hilbert space Hr with the inner product

L
<1/}(F7f)|¢(rvf/)> - / H dhef (hel [A]7 ceey heL)f/ <h€1 [A]’ SRR hEL) . (2'15)
SU@R)E L
The Hilbert space of all cylindrical functionals over all graphs is then defined simply as
Hiin = ED Hr. (2.16)
rcs

One now could worry that we have found some Hilbert space, but that it has nothing to
do with the one we were interested in the first place. However, a classic result of Ashtekar
and Lewandowski [38] shows that the Hilbert space over connections is actually

L2 [A7 d,LLAL] = Hkin7 (217)

where dpay, is the Ashtekar-Lewandowski measure defined by Eq. (2.15). Now that we
have the Hilbert space, it is useful to find an orthogonal basis of states for it. Since we
work with functions of SU(2) group elements, we will use the Peter-Weyl theorem, which
expresses functions over group elements in terms of unitary irreducible representations:

o)=Y D> fuDo9), (2.18)

JEZ/2 mn=—]

where D%L(g) are the representation matrices known as Wigner-D functions. The basis

elements are then simply products of D%%(he) for each edge. The quantum states associated
with this basis are spin states |j; m,n), which we can define by

DY).(g) = (glj;m,n), (2.19)

where |g) is the group basis satisfying f(g)|g) = f(9)]g)-

We can now proceed with seeing how the constraints (2.11) act to reduce this Hilbert
space. Traditionally, the LQG program starts with imposition of the Gauss constraint
Gi[A] = 0. This restricts us to SU(2) gauge invariant states within Hy;,. To understand
what kind of states these are, let us see what the action is on a typical link. Since gauge
transformations take h, — gs(e)hegt’(el), where s(e) is the source node of edge e and t¢(e)
the target node, the same is true for the Wigner-D functions, due to linearity of group

13



representations. We can achieve this behavior by group averaging the elements of Hy;, at
each of their N nodes in the following way:

N
finv(he1a R heL) = /SU(Z)N H dgn f <gs(e1)helgt_(ell)a s 7gs(eL)heLgt_(elL)> . (220)
n=1

Working in our orthogonal basis, we can implement this group averaging for arbitrary
states by inserting a Haar projector P at each node, where

P= /dgHDUe>(g). (2.21)

een

Recall from the definition of representations that the product of DY lies in the following

space
[PV (he) € RV, (2.22)

which in general is reducible, @), VUe) = @, VUi). The Haar projector is then the map to
the gauge invariant singlet space Pi*-Ja : DUV @ ... ® DU?) — Invgye) [DU) ® ....@ DU].
We can express this projector in terms of the orthogonal basis of the invariant subspace.
The elements of this basis are the SU(2) invariant tensors known as intertwiners t;:

dim H,,

P = Z LiLZ7 (223)

=1

where H,, is the is the Hilbert space of n-valent intertwiners:

Hn = @Hjl ..... Jn = @ IHVSU(z) [le R VJ"} . (224)

To get some feeling for these intertwiners, let us see the simplest case of 3-valent nodes. In
this case the intertwiner space is 1-dimensional, and the unique 3-valent intertwiner is given
by the so-called Wigner 3j symbol (which is related to the Clebsch-Gordan coefficients for
addition of angular momentum):

uoogr gy \ o (DT oo
—valent — = —_— 3 - . 2.25
L3—valent <m1 My M ) % £ 1 <J1m1 szz\JS( m3)> ( )

In general, the space of intertwiners is higher-dimensional, as we will see later in the thesis.
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The gauge invariant states in Hyg;,, on a graph I' can be obtained from contractions of
Wigner-D functions with intertwiners. These states are known as spin networks and are
given by

Ve [he] = @D (he) @ 1y, (2.26)

n

See Fig. 2.1 for an example of a spin network state.

Figure 2.1: Example spin network state

Before we discuss the remaining two constraints, it is useful to note that at this point
we can something about the geometric observables of the theory. For example, classically
we would define the area of a region by

A(S) = [ d*o\/E¢Ebin,ny, (2.27)
S

so we can obtain the quantum operator just by putting using the quantum operators E ().
The action of E;(S)E"(S) is proportional to the Casimir of SU(2), so we have

Aoy = D Y\ G0l + DU o) (2.28)

peSUl’

where p are punctures of the graph I' through the surface S and Ip = \/hG y is the Planck
length. This expression gives us one of the big results of LGQ, namely that the spectrum
of the area operator is discrete and has a gap. Similarly, the spatial volume operator can
be found to also have a discrete spectrum with a finite volume gap, see [29].
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The next step in the quantization lies in imposing the spatial diffeomorphism constraint.
For details of this procedure, see [5]. Here, we just quote the result, which is that the
states which remain after imposing H “)[A] are spin networks on equivalence classes of
graphs under diffeos, namely knots. Hence, the spatially diffeomorphism invariant states
are knotted spin networks.

The difficulties in the canonical LQG program arise when dealing with the last scalar
Hamiltonian constraint, i.e. with the dynamics of the theory. Technically, the two main
difficulties lie in the terms El“E;’F & and EfEJbK ! K", which have ordering ambiguities,
and more importantly the \/diﬁ term. A solution to this was proposed by Thiemann [39],
who showed that classically these terms can be rewritten as specific Poisson brackets, for

example

EijkEZqEJb 4 abc k
VawE o eV (229)

where V' is the volume of 3. Using the expressions for the volume operator and expressing
the connection in terms of holonomies allows to define the H.

The problem with this Thiemann prescription is that we arrive at a Hamiltonian that
acts in an ultra-local way only at the nodes of the spin networks and that the resulting
constraint algebra vanishes too strongly, i.e. some commutators are explicitly zero, rather
than proportional to the other constraints.

In [90] it has been shown that the Thiemann trick above might be anomalous under
quantization, which might underlie some of these issues. The problems with the dynamics
of the canonical theory have spurred increased interest in studying the covariant quanti-
zation of LQG — the Spin Foams, which we will now turn to. Before we go on however,
it is noteworthy that work on the Hamiltonian constraint continues, with some interesting
recent developments. For example, in [91] an alternative path was considered, in which the
Hamiltonian constraint was imposed on a space of only partially diffeomorphism invariant
states, which is preserved under the action of the constraint.

For a thorough review of LQG, see [7].

2.2 Discretized gravity and Ponzano-Regge model

Here we will briefly review the first Spin Foam model, but before then it is instructive to
discuss the discretization of General Relativity, which is known as Regge Calculus [69].
In Regge Calculus the spacetime differential manifold is approximated by a piecewise flat
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manifold. Besides having use in the topic of this thesis, quantum gravity, it is also often
used in numerical relativity.

The building blocks of the piecewise flat manifolds are simplices: points, lines, trian-
gles, tetrahedra, 4-simplices and so on. The collection of these blocks defines a simplicial
complex. Let us start with the case of discretizing 3-dimensional General Relativity, which
is more intuitive. Here, the main building blocks are tetrahedra and curvature can be ex-
pressed in terms of deficit angles associated with edges in the triangulation around which
different tetrahedra meet. The Regge action in 3 dimensions is then given by

o _ 1
SRegge - 87TGN Z leem (230)

where [, is the length of the edge e in the triangulation and 6. is the deficit angle associated
with it. Varying this action with respect to edge lengths gives us the equation of motion

% > lbe=> 6ife=0 = 0,=0, (2.31)

which implies that the only solutions are flat manifolds. Indeed, this is what 3-dimensional
Einstein equations give as well.

The generalization to 4-dimensions is straightforward, with the curvature being given
by the deficit angles associated with triangles around which 4-simplices are glued. The
action is simply given by

1
S > A6, (2.32)

Regge 871 GN

where A; is the area of the i-th triangle and ©; the associated deficit angle. In this action,
the equations of motion with respect to edge lengths are no longer trivial.

We are now ready to discuss the first Spin Foam model, which arose when Ponzano
and Regge [73] studied the asymptotics of the 6j symbol

{jl ]:2 j:s }: Z (_1)Zi(ji_mi)( o J2 J3 )( s Js >><
Ja Js5 Je mp Mg —M3 —mp M5 —Mg

ml,....mg
Ol 7R LR J4 J2 Jo
my —Mms M3 —my —Mmy —Mmg }°
(2.33)

This object was originally defined for the description of recoupling three angular momenta
in quantum mechanics. What Ponzano and Regge conjectured? was that if you consider

2Which was later proved in [92]
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the limit where all the spins are scaled uniformly as Aj. with A — oo, the 6j symbol
asymptotes to

, A—3/2 , 0, m
{65} ~ Ty O (A;(Je+1)§+z). (2.34)

Defining I, = j. + % and interpreting [, as edge lengths and 6. as the dihedral angles
between triangles sharing edge e, this gives us that the 6j symbol behaves as the cosine
of the Regge action of 3d gravity. We can think of this way because the 3j symbols do
define a closed triangle due to SU(2) invariance. The 6j symbol hence corresponds to the
quantum geometry of a tetrahedron.

This result allows to write down the partition function for the Ponzano-Regge model.
With additional weights on the edges of the triangulated manifold, we get

ZPonzanofRegge = Z H (_1)2je<2je + 1) H (_1)Zemje H {6je}T7 (235)

Je edges e triangles ¢ tetrahedra T'

which actually gives us the full partition function for discrete 3d quantum gravity without
a cosmological constant. Since 3d gravity is actually a topological theory, the correlation
functions and observables in the continuum theory are the same as in the discretized case.

The generalization to the case with a cosmological constant is known as the Turaev-Viro
model [93] and is achieved by using the quantum group SU(2),, rather than SU(2).

2.3 Gravity and BF theory

Before we go onto the construction of more modern Spin Foam models, it is imperative
that we review the deep connection between General Relativity and the topological BF
theory.

Similarly as in the case of the Plebanski action, we will consider BF theory defined on a
principal G-bundle over a d-dimensional manifold M, with a g-valued connection w. The
F in BF thoery stands for the curvature 2-form F'(w) = dw + w A w, which is the same as
in the case of gravity. The B stands for an additional g-valued d — 2 form, which acts as
a Lagrange multiplier imposing flatness. The action of BF theory is then simply

1
Spr =5 o [BAF(w)], (2.36)
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where k? = 87Gy. As implied above, the BF equations of motion are trivial®:

Flw)=0, d,B=0. (2.37)

We say that BF theory is topological (i.e. has no local degrees of freedom), because
the action is invariant under the gauge symmetry

B — B+dg, (2.38)

where ¢ is a g-valued d — 3 form. This, together with the equation of motion, implies that
all solutions of B are locally gauge equivalent.

It is important to note that in 3 dimensions, the BF theory is equivalent to 3-dimensional
General Relativity, as the B field is a one-form — exactly the same as a triad. In the 4-
dimensional case, we can see that restricting B = xe A e would reduce BF theory to gravity
again. This restriction is known as simplicity constraint and can be achieved by adding an
additional term to the action:

L [B" A Fry(w) + Ay B A BEE] (2.39)
252 a4
where Arjip is a Lagrange multiplier symmetric under the exchange of the (I.J) and (K L)
pairs of indices that also satisfies €//5F\; k. = 0. The additional equation of motion for
this multiplier gives us that

B=+xeAe, or B==xeAe (2.40)

Using both of these sectors with a proportionality constant v, we recover the Holst action
(2.5).

2.4 Quantized BF theory

The reason for discussing BF theory above is that the theory can be quantized exactly due
to its topological nature. The partition function for quantum BF theory is formally

Zpr = | DBDw 557 — [ D §(F(w). (2.41)
/ /

3The equation for B field can be obtained by integrating by parts and using covariance, which implies
that [wAdB = [wAd,B.

19



To make this expression rigorous, we will introduce a discretization. However, since BF
theory is topological, the discrete theory is equivalent to the continuum theory as far as
any observables are concerned. Here we will restrict our attention to the case of BF theory
for the group SU(2), for reasons we will elaborate on later.

We start by discretizing the d-dimensional manifold M into a simplicial complex A.
Let A* then be its dual 2-complex: each d-simplex in A corresponds to a vertex v, each
(d-1)-simplex to an edge e and each (d-2)-simplex to a face f. With these established,
we now need to discretize the curvature F(w). Recall from Eq. (2.13) that an SU(2)
element can be considered a holonomy (or parallel transport) of the connection along a
path (which can be made out of edges). Since to leading order a holonomy around a closed
loop is equal to identity plus curvature, we have that the partition function of SU(2) BF
theory is defined in terms of the edges e and faces f of A* by

Zpr(M) :/ H dge H Y (ﬁ%) . (2.42)

e€A* feEA* ecf

The imposition of H:e 19 = 1 here is equivalent to the requirement that F'(w) = 0. Note
that some choices of the 2-complex can lead to redundant ¢ functions. This however turns
out to be related to diffeomorphism invariance, as we will discuss in Chapter 4.

The ¢ functions for each face can be expanded in representations j; using the Peter-
Weyl theorem as
3(9) =Y (24 + Dx’ (9), (2.43)
it
where x7f(g) = Tr;, (g) is the character of the representation j;. If we insert the resolution

of identity on the representation space V71 ® --- ® V74 between each group element in
the trace, we can write

Zppr(M) = Z H (2j; +1) H Pisveita (2.44)

j; feAx eEA*

where P’fi-fa is the Haar projector onto the SU(2) invariant subspace of Vifn ®---®@ Vs
we have introduced in Eq. (2.21). For more details, see for example [3].

Now that we have written down the full partition function for BF theory, it is use-
ful to introduce the cable diagram graphical notation, which is especially handy for the
computations of Spin Foam partition functions (a good review of these techniques can be
found in [32]). Here it is used to represent the structure of partition function on the dual
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2-complex A*. Cable diagrams are basically composed of strands passing through boxes:
a strand denotes a group representation living on the edge e of A*, and a box denotes the
group averaging of a set of representations in the Haar projector.

Jn I
DY —__J and Pt =~ i (2.45)
J4 J4

Faces f in the dual 2-complex A* correspond to closed loops of strands in this notation.
A strand loop without any boxes in that case should correspond to a divergent factor of

5(1) = ¥, (27 + )2,

The fact that the Haar projector P7t-J¢ can be expressed as a sum over intertwiners,
as we have shown in Eq. (2.23), can be graphically represented as:

P =y 32> < (2.46)

where ¢ labels a basis of normalized intertwiners. We see that the Haar projector factorizes
on the edges, while the intertwiners contract at the vertices of A*. This allows expressing
the partition function in terms of so called vertex amplitudes. For example, in the 3-
dimensional BF theory, the partition function can be written as

=>_ [T+ ]l 166, Tl Ndes (2:47)

Jjr feEA* vEA* Jeo Jes

Jea

This way of writing the 3d BF theory immediately gives us the graphical representation
Ponzano-Regge model, which we introduced in Eq. (2.35), where the tetrahedral vertex
is just the 6j symbol. In the case of 4-dimensional BF theory, the vertex amplitudes are
given by a suitable generalization of the 6j symbol — the 15j symbol labelled by 10 spins
and 5 intertwiner labels, which can also be parametrized by spins. We will encounter these
in the next section, where we will look at Spin Foam models for 4d gravity.
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2.5 The Spin Foam program

We will now review the basics of the Spin Foam approach, including some early attempts
and more recent work. The general idea behind Spin Foam models is to first quantize BF
theory and only then impose simplicity constraints at the quantum level. The choice of the
underlying group gives us the signature — SL(2,C) leads to the Lorentzian theory (since
this is the double cover of SO(3,1)), while Spin(4)=SU(2)xSU(2) gives the Riemannian
model. In most of this thesis we will work in the Riemannian case, but we will make several
comments about the Lorentzian signature.

Because the Spin(4) group representations factorize into a product of two SU(2) rep-
resentations, the Spin(4) BF partition function is a simple product of two SU(2) partition
functions. We will label the two groups as SU(2), and SU(2), to distinguish them®.

Before we go on to discuss any specific model, it is worth noting that we can abstractly
write an arbitrary Spin Foam model as a product over vertex, edge and face amplitudes:

ZSpin Foam — ZZ H -Af jf H A jf;Le H A ]f;be (248>

Lt feEA* eEA* vEA*

The edge weight is usually taken to be trivial, the face weight is usually chosen to be
proportional to dim; = (25 + 1), and the vertex amplitude in 4d is usually some version of
a 15j symbol.

One of the early popular attempts at Spin Foam quantization is known as the Barrett-
Crane model. We will shortly review the construction and why it fails as a model of 4d
quantum gravity. We start with noticing that the quadratic simplicity constraints in Eq.
(2.39) imply that

EIJKLBIJ VAN BKL =0. (249)
Since the B field is an element of the Lie algebra of Spin(4), it can be split into B = B+ Bg.
The representation theory of the subspace of this Lie algebra that satisfies Eq. (2.49) is

given by representations with vanishing Casimir. Since representations of Spin(4) are
labeled by a pair of spins (jr,, jr), this translates into the equation

ersxBY BEE =[50 + 1) — jr(jr + 1)) 1. (2.50)

The Barrett-Crane model is then given by a partition function over Spin(4) representations
with j;, = jg. However, the Eq. (2.49) does not necessarily imply that B = xe A e. To

4In literature a common notation is also + and -.
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enforce this, an additional cross-simplicity constraint is necessary:
1 P
GIJKLB[LZB[I,ZL = $€MVPUGQBWSEMNPQBO%NBV§Q. (251)

This additional set of constraints has the effect of reducing the space of 4-intertwiners to
a single unique one, known as the Barrett-Crane intertwiner, given by

L(écg/)(ll’)(mm’)(nn’) _ Z(QJ + 1)Lklfl/fmnbk/l/f/bf/m/n/’ (252>
J

where ("% is just the 3-valent SU(2) intertwiner from Eq. (2.25). This allows us to write

the partition function of the BC model as

LBC

LBC, LBC

Zpe=_ [ @i+ [] : (2.53)

j]I; feA* vEA*
LBC LBC

where the vertex amplitude is a 10j symbol with the fixed BC intertwiners. Unfortunately,
this model suffer from two crippling flaws — it is ultra-local and the semi-classical limit
corresponds to the Area Regge Calculus. While the first is self-explanatory, the latter looks
naively like a good thing, but the problem lies in the fact that in Area Regge Calculus, the
deficit angles are also functions of area, which results in a model with too few degrees of
freedom [94].

It would seem then that the imposition of simplicity constraints leads to the wrong
model. The workaround to this issue was discovered the newer EPRL-FK models however,
by imposing the constraints in a weaker sense, a la Gupta-Bleuler. The construction starts
with the choice of an SU(2) subgroup of Spin(4), which will play the role of spatial slicing,
like in the canonical theory. This is useful, because unitary representations of Spin(4) can
be expressed in terms of those of SU(2) by

JjLtir
Miin= P M (2.54)

J=liL—irl
Before we introduce the weaker constraints, it is necessary to discuss a bit of Spin(4) Lie
algebra, which can be described in terms of six generators Jg r such that

[in J1R] = €4 TL R (2.55)
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This can be split into the rotation subalgebra L* and a‘“boost” generators K*. For details
of this algebra, see for example [¢]. In terms of these generators, in [15] it was shown that
the quadratic simplicity constraints are equivalent to the linear constraint on each face of
a tetrahedron: .
i i

where the subgroup SU(2) C Spin(4) is chosen independently at each tetrahedron (or
e € A*). Imposing these constraints in the basis |j, jr, j, m) labeling H; C H,;, j,., we get
a restriction on Spin(4) representations:

jor=|l% 'y]%. (2.57)

We will call this restricted set of representations R.. Notice that this constraint restricts
also the value of the Barbero-Immirzi parameter to natural numbers. This strange re-
striction is only present in the Riemannian case, as in the Lorentzian model the SL(2,C)
representations have continuous labels.

Formally, the linearized simplicity constraints are then imposed weakly on states |1)

in a Spin(4) representation subspace satisfying Eq. (2.57) as
(K} —Ly) [v) = 0y, (2.58)
where O; vanishes in the large spin limit j — oco. This weaker requirement is exactly what
allows the newer models to avoid the problems of the Barrett-Crane construction. Using
these constraints, we could again write the partition function of EPRL model in terms of

the 15j symbol, but it actually is more illustrative to discuss it in terms of the projectors
P. Let us denote the projection onto simplicity constraints by

Vit Hyyisai—lisz = Hj. (2.59)

4 -4
If we label the Spin(4) projector as Péi)fr;if)) (]L’]R), then the object that is replaced by it

in the EPRL-FK model is given by

PEPRLfFK(jla . 7]'4) — PS(f)fI;]R (I19%) [@ y]Z] S(IJ)];I;Z% .YLJR). (260)

It is important to note that Prprr_prx is no longer strictly a projector, since we clearly
have (PEpRL_FK)2 %+ Peprr_rr. With this definition, the partition function of this model
can be written as

ZEPRL-FK = Z H d1m|1 -4 dim (147) H Pppri—pi (e - -5 Jes)- (2.61)

JL.JRERy fEA* eeA*
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This proposal for the 4d quantum gravity amplitudes does not suffer from the problems
that plagued the Barrett-Crane model. In [95, 96] it was shown that the semi-classical limit
of the EPRL-FK model is given by area-angle Regge Calculus [97], in which the angles are
independent of the areas, and which is equivalent to the Regge Calculus in terms of edge
lengths.

The EPRL-FK model can be rewritten in an interesting way using SU(2) coherent
states instead of the spin states. Consider the overcomplete basis |j,g) € H, labeled by
SU(2) group elements defined by

g = 3 DOl (2.62)

m=—1

These overcomplete states form a resolution of identity on H;:

1= dim; [ dg lj.9)Ggl (2.63)
SU(2)

Since we have that the two-sphere S* = SU(2)/U(1) and the phase cancels out in the
resolution of identity, the resolution of identity can be written as an integral

ﬂj:dimj/ d*n |j,7)(j, 7], (2.64)
SZ

where 7 is a 3-dimensional unit vector on the sphere. The|j, 77) form again an overcomplete
basis for #,; and are referred to as SU(2) coherent states, since (j,7|.Ji|j, ) = ji and
AJ? = j, which minimizes the fluctuations. Importantly, the coherent states also have the
property that

17, 7) = | )% = |) <. (2.65)

Using these coherent states and rewriting the Spin(4) projectors in terms of integrals
over group elements using Eq. (2.21), we can rewrite the EPRL-FK partition function in
the case 7 < 1 as

ZEPRL FK = Z H dim (1—~ ]f dim (14+7) ]f / H dlm] fdnefdgevdgev JLRn[gL R]’ (2 66)
Jr feAx e€A*

where the action is

Sy nald™ = 3 (S” g1+ 5"

(1=

") 267)



with the two terms given by
5
Salgl = > 2ju In(naslgy  golnea). (2.68)
a<b=1
where the indices a, b label edges belonging to a vertex. For more details of this construc-
tion, see for example [3].

2.6 The Holomorphic Representation of SU(2)

In the rest of the thesis, rather than working in the spin or coherent state representations
we introduced above, we will switch to a completely different basis that uses the recent
developments in rewriting Spin Foams in terms of spinors.

We choose to use a spinor representation of SU(2) in the Bargmann-Fock space L2 ,(C?, du)
of holomorphic polynomials of a spinor [75, 76, 81]. One of the features of this representa-
tion that will facilitate our calculations is that the Hermitian inner product is Gaussian:

o) = [ TEia(an(2), (2.69)

where du(z) = 772e~#/d*z and d*z is the Lebesgue measure on C2.

Given z € C? we denote its conjugate by Z. We use a bra-ket notation for z and square

brackets Z as in B
2 -z

That is |Z) = |z]. Notice that while (z| is anti-holomorphic, [z| is holomorphic and or-
thogonal to |z), i.e. [z]z) = 0. This non-standard notation for spinors will turn out to be
useful, as we will always work with contractions of spinors, without the need for writing
out the indices. Our notation is related to the usual one as follows: z4 = |2), Za = (2|,
and the spinor invariants are [z|w) = zgw e and (z|w) = Zyw,644. The bracket [z|w)
associated with the € tensor is skew-symmetric, holomorphic and SL(2, C) invariant. The
bracket (z|w) associated with the identity tensor is Hermitian, and only SU(2) invariant.

Let us now study the identity on the Bargmann-Fock space L2 ,(C? du). The delta
distribution on this space is given by d,(2) = e%#"), since for any holomorphic function
[du(z)f(2)e*®) = f(w). Let us use a line to represent the delta graphically by

(elw)” = (2] # w) - (2.71)

(z|w)

e = (o) ———fwy  end
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Therefore the Gaussian integral [ dp(w)elw+wlz) = o812 implies the contraction

J J’ J
/du<w) (2] ————— |wfw| ——— |¢) =05 (2] ——— |2/ - (2.72)

For a function of four spinors (with obvious generalization to n spinors) we can thus
define the trivial projector, which we will denote as

, [21] |wi)

1(z; w;) = eXimilFilwid — [22] |wa) . (2.73)
(23] |ws)
(24 |wa)

Next, we will study how SU(2) acts on the elements of the Bargmann-Fock space. For
a generic holomorphic function f € L _,(C? du), the group action is given by

g-f(2)=flg™'2). (2.74)

The group SU(2) acts irreducibly on the subspaces of holomorphic polynomials homoge-
neous of degree 25. Holomorphic polynomials with different degrees of homogeneity are
orthogonal with each other. Indeed, Lj,(C? du) = ey, V7 and an orthonormal basis

of V7 is given by
Jjt+m _j—m
0~

em(2) . .
Vi +m)l(g —m)!
and it is of dimension 25 + 1. This orthonormal basis allows us to relate the spinor
representation and the previously introduced spin basis. If we define

(2.75)

DY (g) = (2]g]2)¥, (2.76)

then we have the simple change of basis relation
DZ(g)= Y @)l e(x)el(2)DY)(9). (2.77)

m,n=—j

In the study of gauge-invariant Spin Foam models, we will be interested in the SU(2)
invariant functions on n spinors

flgz1,922, ..., g2n) = f(21, 22, ..., 2n), Vg € SU(2). (2.78)
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We will denote the invariant elements of L*(C?, du)®" to be in H,, which is the Hilbert
space of n-valent intertwiners we defined in Eq. (2.24). We will follow the procedure we
introduced earlier and construct elements of H,, by averaging a function of n spinors over
the group using the Haar measure. In this way the Haar projector P : L?(C?, du)®" — H,,
can be written as

P(f)(w;) = /Hdu(zi)P(,éi;wi)f(zl,zz,...,zn) = /su(2) dgf(gwy, gws, ..., gw,) (2.79)

where the kernel is given by®

[21] |w1)

P(Zi;wi):/ dg eSillohu) — [z |w2) (2.80)
SU(2) |23 |ws)
[24] |wa)

where we use a box to represent group averaging with respect to the Haar measure over
SU(2). Hence the projector onto the invariant subspace is simply the group average of
1(z;;w;). From the above, we see that a contraction of two spinors on the same strand but
belonging to two different projectors is obtained by setting z! = w?. This implies that the
kernel of the projector satisfies the projection property

/Hd,u(wi)P(Zﬁwi)P(Uv}i;Z;) = P(z;;2)). (2.81)

We will also refer from now on to the kernel P(z;;w;) as a projector for convenience. As
shown in [79, 98], we can perform the integration over g in Eq. (2.80) explicitly, which
gives a power series in the holomorphic spinor invariants:

) ([zi]25) fwilw;))*s
P(zi,wi)—z J+ |H o , (2.82)

where the sum is over a set of n(n — 1)/2 non-negative integers [k] = (kij)izj=1,... » With
1 <i<j<nandk; = kj. A short proof of this statement is given in the Appendix A.3
for the reader’s convenience. Thus a basis of n-valent intertwiners is given by

(ki) = ] [sz]? (2.83)

1<J

5For a review of Guassian integration techniques see Appendix A.1.

28



The non-negative integers (k;;)izj=1,.. » are satisfying the n homogeneity conditions

> ki = 2ji. (2.84)

JF

The sum of spins at the vertex is defined by J = >, ;i = >, ; ki and is required to
be a positive integer. We also see from Eq. (2.82) that the identity on H;, is resolved as
follows

[Feig) (K| (/+1)!
= d e S L1 i (2.85)
[k]EK || 'L]H HZ<]

with the set K defined by integers k;; satisfying Eq.(2.84). For more details on these inter-
twiners and the coherent states defined by them, see [99] where this basis was introduced
for the first time.

Before we go on to the discussion of simplicity constraints, let us notice that using a
multinomial expansion Eq.(2.82) can be written in terms of total spin:

o (Suo ez o))
P(zi;w;) = Z < T+ 1) ) ; (2.86)

J=0

which will turn out to be a quite useful expression for the projector for computation
purposes. Note that this is an expansion in U(N) coherent intertwiners of total area J.

2.7 Holomorphic Simplicity Constraints

Holomorphic simplicity constraints for spinorial Spin Foam models were first introduced
in [16] for Riemannian gravity. Here we give a short summary, but refer the reader to the
original paper for their full derivation.

For the Riemannian 4d Spin Foam models, we use the gauge group Spin(4) = SU(2),
x SU(2)g, as before. The holomorphic simplicity constraints are isomorphisms between
the two representation spaces of SU(2): for any two edges i, j that are a part of the same
vertex a, they are defined by

[2?L’Z§LL> = PQ[Z?R‘Z?R% (2.87)
where p is a function of the Barbero-Immirzi parameter v given by
2 (1=7/A+7), <1
_ 2.88
A={ G0N bisH 259
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The holomorphic simplicity constraints Eq.(2.87) essentially tell us that there exists a
unique group element g, € SL(2,C) for each vertex a, such that

Vi, alzip) = p |2iR)- (2.89)

A general element of SL(2, C) can be decomposed into the product of a Hermitian matrix
times an element of SU(2), so that g, = h,u, with hl = h,. It is only when h, = 1 that
the holomorphic simplicity constraints imply the usual geometrical simplicity constraints.
In the FK formulation of the spin foam model which is only partially holomorphic this
is implied since the norm of the spinors is fixed. The fully holomorphic formulation of
DL therefore relaxes at the quantum level the simplicity constraints. Fortunately, one can

check following [99] that in the semi-classical limit of Holomorphic amplitudes the Gauss
constraints due to the gauge invariance of the amplitude can be realized in the form
Z |20 (zi | = ALL, Z |2r) (2ir| = ARl (2.90)

This imposes that in the classical limit h, = 1 and the geometrical simplicity constraints
Uq|28y) = p |285) with u, € SU(2) are satisfied.

Geometrically, each spinor defines a three vector 17(2) € R? through the equation,

1 1

2)(2] = 5 (]l(z|z> T V() 5) el = 5 (]1[Z|z] V(2 a) . (2.91)

where & is the vector made by Pauli matrices. Thus, around a node in a spin-network,
each link dual to a triangle in the simplicial manifold is associated with two 3-vectors VL(;:)
and VR(Z) given by the left and right spinors. Classically, these vectors correspond to the
selfdual b, and anti-selfdual b_ components of the B field respectively:

) . ) 1 . ) ) ) 1 .
Vi(z) =b, = B% + §e;dBkl, Vi(z) =b == —B" + §e;dBkl. (2.92)
Note here that the time norm is chosen to be N; = (1,0,0,0)”. For the Hodge dual of the
B field, we find (xb); = by = Vi(2), and (xb)_ = —b_ = —Vg(2).

For the vectors V;,(z) and Vg(z) defined by the spinors of the two copies of SU(2) this
means that the holomorphic simplicity constraints imply

9a > Vi(20) = pPVa(2%), Viea (2.93)

30



which leads to the constraint that the norm of the selfdual and anti-selfdual components
of the bivector (g,, 1) > (B + v * B) have to be equal to each other:

(14 )ga by| = |(1 =) > b_]. (2.94)

Thus B and *B are simple bivectors, and for the spin network vertex a, there exists a
common time norm to all the bivectors:

Na = (g4, 1)1 > (1,0,0,0). (2.95)

The existence of this shared time norm implies the linear simplicity constraints introduced
by the EPRL and FK models [12, 13, 14, 15].

It is interesting to note that g, can be expressed purely in terms of spinors as

a

_ |26R) (Zi] + |2{R] [ Vi € a. (2.96)

VAz8 28 ) (228

It is easy to check that this satisfies Eq. (2.89). Note here that g, is a unique group element
for all strands belonging to the same vertex.
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Chapter 3

Two spinorial models

There is a theory which states that if ever anyone
discovers exactly what the Universe is for and why it
1s here, it will instantly disappear and be replaced by
something even more bizarre and inexplicable.

There is another theory which states that this has
already happened.

Douglas Adams
The Restaurant at the End of the Universe

In this chapter, we will start from reviewing the holomorphic Spin Foam model, which
was proposed by Dupuis and Livine in [16, 81], after which we will introduce an alternative
model through imposing the holomorphic simplicity constraints on the Haar projectors. We
then introduce the homogeneity map, which is a key mathematical tool that will facilitate
the exact calculations in this thesis. We then close the chapter by comparing the two
models — first by rewriting the DL model in terms of propagators, and then by evaluating
the semi-classical limit of both of the models, which in both cases turns out to be the same
as that of the EPRL-FK model.

3.1 Imposing constraints

We will now impose the holomorphic simplicity constraints on the Spin(4) BF theory in
order to obtain a model of 4d Riemannian Quantum Gravity. There are two natural ways
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of imposing these constraints - either on the boundary spin network defined by contraction
of coherent states [10], or on the whole projector (2.80). We will first summarize the usual
approach, which we will refer to as the DL prescription. We then introduce an alternative
model in which the constraint is imposed on the whole projector. Surprisingly, we will
see later that the alternative model actually has the same asymptotic behavior as the DL
prescription and EPRL-FK model (with |y| < 1)[95, 96, 100], i.e. the amplitude is weighted
by a cosine of the Regge [09] action. It however leads to greatly simpler evaluations of
amplitudes, as compared to the DL model.

3.1.1 DL prescription

In [16, 84] Dupuis and Livine introduced a Spin Foam model similar to the EPRL/FK
models, but written in terms of spinorial coherent states with the holomorphic simplicity
constraints. Since BF amplitudes can be seen as evaluations of spin network functions, the
simplicity constraints in this model are imposed in the usual way — on the evaluation of
the boundary spin network of a 4-simplex given by the amplitude. The amplitude for a
single 4-simplex o is given by a product of contraction of coherent states for left and right
sectors, with the simplicity constraints imposed on the boundary spinors as follows

A, ({z3)) = / [dgﬂ5 [dgf’]B o aver PR 190 gl 128) + g lga  gft1=h) (3.1)

where 7 is the set of tetrahedra labeled by a,b. Graphically this is presented in Fig. 3.1.
This amplitude corresponds to two copies of 20j symbols from BF theory constrained by

Figure 3.1: Graph for the 4-simplex amplitude in the DL model. The contractions inside
correspond to two copies of BF 20j symbols, constrained on the boundary.

(25 218)y = 22543y on the boundary.
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3.1.2 Constrained projector

Since spin foam amplitudes for BF theory are constructed by gluing together projectors
(2.86) into graphs corresponding to 4d quantum geometries, we find it natural to instead
impose the constraints on the arguments of the projectors themselves. Let us consider the
Spin(4) projector obtained by taking a product of two SU(2) projectors

- YDINCAER TIPS S M O M EUEA A
P(fzz’;wz‘)P(Zi;wi) = ; < J!(J—l— 1)! > ; < J’!(J’+ 1>! > ) (3'2>

where we use a prime to distinguish the left and right SU(2) sectors. We will now impose the
holomorphic simplicity constraints on both incoming and outgoing strands in the Spin(4)
projector

[2il25) = p*[ailzy)  [wilw]) = p*[wilw;).
This will make the two products of spinors in the two projectors proportional to each
other, with the proportionality constant being p*. Note that the imposition of simplicity
constraints on all of the spinors also forces the measure of integration on C? to change to

1 2)\2
dpp(z) == “;T—f)e(1+p2)<z|z>d22. (3.3)

The factor of (1 + p?)? is added for normalization. It insures that

/dup(z) = 1. (3.4)

Moreover this choice of normalization is confirmed by the study of asymptotics of both
this and the DL model later in this chapter. It is exactly this choice that insures that both
models have the same semi-classical limit. We are now ready to define a new constrained
propagator P, by applying the simplicity constraints on the Spin(4) projector

i<j

(3.5)
The two sums over integers J and J’ are independent, so we can simplify this expression
for the constrained propagator into a single sum by letting J + J' — J. This allows us to
arrive at a more compact form of the constrained propagator, given by

J
(Sicslailzn) il
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where we have recognized that the numerical factor in front of the spinors is actually the
power series expansion of the hypergeometric function

J /
T + D)ipt
e oL 4\
Bp(J) =2 ha(=d = L= J32:07) = JZ T — sty 80
—0

Notice that the constrained Spin(4) propagator is just an SU(2) projector with non-
trivial weights (greater than 1) for each term that depend on the Barbero-Immirzi param-
eter. In general, this hypergeometric function is a complicated function of p and J, as can
be seen in Fig.3.2

500

10 F, (J) at ,o:i

50 2 F,(J) at J=10

1000

Figure 3.2: Left: behavior of F),(J) at fixed p as a function of spin J. Right: at fixed spin,
F,(J) is rapidly increasing as p — 1.

There are however two interesting limiting cases. For p = 0, which corresponds to
v — 1, we have

so we end up with pure SU(2) BF theory. This is obvious, as p = 0 forces all the left spinors
to be 0. Another limit often considered is p = 1, which in this construction surprisingly
corresponds to both of the limits v — 0 and v — oco. In this limit we get also a relatively
simple expression
(2J +2)!

(J+2)(J+ 1)
This limit does not have an obvious interpretation apart from its simplicity. For all other
values of p we can either calculate F,(.J) explicitly, or we can try to approximate it by its
power series expansion for large spins, which was shown by Chen in [101] to be given to
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the leading order by

et (1 — pt)2ts { L+pt 2
F(J) = — |43 +2J) [8p*(3+2J) —3(1 +p*)] -3 +6= +0(J Y|,
o(J) 16vZa(3 1 2)1 ( ) [80°( ) —=3(1+pY)] 2 a (J77)
(3.10)

where (, = cosh™* [%;Li] Note that this expression is only valid for 0 < p < 1, and

the limits are quite discontinuous. In Fig. 3.3 we see that truncating at this order is an
excellent approximation even at small spins.

22+

200 — R (-d-1,-42;0%)
18l (1+p2)3+2J

Vor B @232

‘ ‘ ‘ ‘ Loy

1 2 3 4 5

Figure 3.3: The expression (3.10) is an excellent approximation to F,(.J) even at small
spins. Plotted at p = %

It is also interesting to note that we have
76 (1 — pt)”

R (3.11)

which due to the change in measure (3.3) will pop up all over the place. This factor might
look a bit arbitrary, but becomes a lot more understandable, when we rewrite it in terms
of the Barbero-Immirzi parameter: (1 — p*)7(1 + p*)=2/ = /. This implies that y = e~%.
Using Eq. (3.11) we then have that to the leading order in the large spin limit J — oo,
the hypergeomteric function is given by

(3.12)

We do not expect his compact form to be such a great approximation as (3.10) at small
spins, but for large J it does capture the behavior. We show this in Fig. 3.4.
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5.0x1012
e
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Figure 3.4: Left: for small spins (3.12) is a rather poor approximation. Right: as we

increase spin however, we rapidly converge. Plotted at p = %

We can now define the partition function for the Spin Foam model made up from these
constrained propagators. Since the propagators are just BF projectors with non-trivial
weight, we can write the partition function on a 2-complex A* as

78 =S 11 Af(jf)/{Hdﬂp(z)dup(w)} S TIE7 G, (3.13)

Jjr feA* all f,EKj e

where Af(jf) is a face weight, the set K; was defined previously in Eq. (2.84) to be the
set of integers k;; satisfying ). 4jkij = 2j; and contraction of spinors according to the
2-complex A* on different edges is implied. The constrained propagator at fixed spins is
given by

‘ ) [wg|ws))*s

() vy (2
Py (28 wf) = =228 L ) 14
4 (szwz) (Je + 1>‘ ];][ kf]' (3 )

Each constrained propagator comes with an orientation, with spinors 2z incoming into
the box and spinors w outgoing in the convention of this thesis. A change of this edge
orientation results in overall minus sign for the amplitude. Additionally, we also put
an orientation on each strand, which dictates how spinors on different propagators are
contracted. An example is shown in Fig. 3.5. When we glue 4-simplices, we have two
propagators contracted on the dual edge along which they are glued.

It is interesting to note here that, unlike in the usual Spin Foam models, this definition
in terms of propagators does not necessarily constrain the partition function to be a product
of vertex amplitudes, thus allowing for more general non-geometrical structures.
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Figure 3.5: Graph for the amplitude of contraction of two 4-simplices. Propagators P;} and
Pg belong to the same edge but two different 4-simplices. The spinors belonging on the
same strand but belonging to different propagators are contracted according to the strand
orientation. For example, spinors w) = 2.

3.2 The Homogeneity Map

In this section we will introduce a very useful tool that will allow us to make calculations
of Pachner moves more tractable. Notice that the propagator P, is a polynomial obtained
from products of monomials [z;]2;)[w;|w;)*i which possess a degree of homogeneity of
4k;;. These products of monomials of different homogeneity degrees are orthogonal in
the Bargmann-Fock space. The homogeneity property allows us to always separate out
and track terms of given homogeneity in a power series expansion. This means that we
can perform transformations term by term in the series expansion of the propagator and
independently integrate each term.

Let us hence define a more general propagator GG, that can be exponentiated

J
(e itz il
Gz w;) = ZTJ <Jj - — o Zicylzilz) [wilw;) (3.15)
d |

and denote it graphically by

Gr(zi;w;) = (3.16)
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We can see that 77 tracks homogeneity of the polynomial in spinors. If we transform each
of these 77/ into a function of J, the integrals of the polynomials stay the same. In this way
we can perform complicated calculations with G, and in the end we can use the following
map, defined by a functional H; mapping G, to the desired function f:

F
H,: G, — P, with H,: 7" — % (Simplicity Constraints) (3.17)
1
HP . GT — P with HP . TJ — m (BF Theory) (318)

in order to recover the propagators of the BF theory or the one of the gravity model with
simplicity constraints imposed. Not that Py = P so the BF model is included in our
more general description. We are of course not limited to only these choices and could in
principle study a much wider class of spin foam models built by non-trivial propagators.

By considering how BF projectors compose in Eq. (2.81), it is quite easy to find the
homogeneity map for composing the propagator P, n times: P,o---o P,. To do this, we
just realize that if one reintroduces back the factor of 1/(J+1)! into the definition of G, it
then defines just the BF projector P with the spinors z rescaled to \/7z. The homogeneity
map for the composition is therefore given by!

E,(J)"
J p
T T DI )

for G, — P} (n Propagators). (3.19)

For the purpose of calculating Pachner moves, we will need to consider contracted loops
of spinors. In BF theory, such a loop should correspond to an SU(2) delta function. Using
the spinorial language however, we get

@ _ / dn(2)e =3 / du(z)

whereas a delta function is dsy()(1) = »2;(2j + 1)*. One way of going around this is to
change measure of integration for this loop to dji(z) = ((z]|z) — 1)du(z), as was suggested
in [84]. This provides the additional factor of (25 4+ 1). An alternative way is to follow in

J

J

<»(Z£Z>)'J _ ij(:ﬂ_) — Z(Qj +1), (3.20)

'Note that the factor of (1 + p?)2” in (3.17) comes from the fact that the measure has changed under

the simplicity constraints to du,(z) = (1+ p2)2r—2e~(1+2")(z12) Hence every contraction produces a factor
(1+p?)~% where j is the representation of the line. There is one such contraction for each j where J = >_ j
for each 7.

39



the spirit of the homogeneity map and introduce a 7 that tracks the homogeneity in this
loop. For clarity, we add a symbol for this face weight into the graph:

@ /du Gl =N " 72 (25 + 1). (3.21)

The replacement of 7% — (25 + 1) now defines a homogeneity map for a BF loop. Of
course, we now do not have to restrlct ourselves to this simple face weight and can choose
an arbitrary function of spin. A popular choice is the face weight regulated by a heat kernel
(25 + 1)e=U+Y for o > 0, but in this work we will actually mostly work with (25 + 1)7
for n € R.

The homogeneity map we have developed in this section will be very useful in computing
the 4-dimensional Pachner moves. In later sections, we will define additional homogeneity
maps as we go on, to simplify the calculations.

3.3 Comparing the two models

Let us now try to compare our two ways of imposing the simplicity constraints. To do so,
we will rewrite the DL vertex amplitude (3.1) in a form more similar to the constrained
projector model. To do this, notice that the DL model can be written as a contraction of a
product of propagators PL(pzAl, wA )Pr(pza, ,wA ). We can now integrate out the group
elements, same as in the BF theory. This means that inside a 4- simplex graph we have left
and right copies of spinors, but on the boundary just one copy. We find that a propagator
constrained in such a way is given by

Jr

(Tilelzdletwh)) ™ (S ez o)
Jol(Jp +1)! Jr!(Jr+1)!

Pconstr(zu wL R) - Z

Jr,Jr

PR, (3.22)

This obviously is not a projector, as number of incoming strands is half that of outgoing
ones. To construct a propagator that allows gluing of two 4-simplices, we have to contract
two such objects (as can be seen in Fig. 3.6)

PDL( LR’ zLR /{H d:uﬂ Zj }Pconstr(zm )PconStT(éi;UiL’R> (323>
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Figure 3.6: DL projector. Red strands correspond to SU(2)r, blue strands to SU(2)g.
Simplicity constraints are imposed on spinors |z;), which are integrated over.

To perform this integral, let us track homogeneity of the left and right spinors, and rewrite
it as

4
/{H Aty (z2) yert sl b whpPrl S el ) bt f) =k Sl el 10F) =P Szl o)
=1
(3.24)

where each 77 keeps track of a factor 1/(J + 1)!. We can simplify this by defining the
following quantities:

B o L B e iy R LA R et G S
Wij = 11 5 s Vij = 1 5 . ( . )
P +p
Notice that these are antisymmetric, w;; = —wj;. These definitions allow us now to perform

the relatively simple Gaussian integrals over spinors |z;) in Eq. (3.24), the result of which

simplifies to
1

(1= 37, wijvij + 15 2 €Tkl eqvijv)?
Note that the last term is really just a sum of 9 terms, due to antisymmetries of w;; and
v;;. Let us expand this in power series:

A B
) A+ B+1) 1 e
Pp =S S ey (Z wm-vzj> (E DD e J’“’wabwcdvzjvkz>
AB T i<j a,b,c,d i,5,k,l
(3.27)

We can now reexponentiate this by using two more 7’s to track the homogeneity of the A
and B terms, to get

A
PDL_

(3.26)

T bed 15kl
PL, = A Xi<i wijvij =3¢ L et wapweavigin (3.28)

where 7477 keeps track of a factor (J+.J’+1)! and the other 7's inside w;;’s and v;;’s keep
track of factors of 1/(J 4+ 1)!. To get the Pp;, propagator from P}, we just have to expand
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the latter in powers series expansion and reintroduce all the factorials by homogeneity. This
calculation is not however very illuminating, so we will not discuss it here. Additionally, for
the sake of calculating amplitudes, it is easier to keep these factors in and only apply the
homogeneity maps at the end of the calculation. As is now obvious, this way of imposing
constraints makes calculations possible, but at the price of greater complexity.

3.4 Asymptotics

In this section we will calculate the asymptotics of the two models with different imposition
of simplicity constraints. First we show that the Dupuis-Livine model indeed has the same
asymptotic behavior as the EPRL-FK models. We then show that there are nontrivial
cancellations in the asymptotic expansion of the constrained propagator model that lead
to the same semiclassical limit as the DL model.

3.4.1 The dihedral angle

Before we calculate the asymptotic expansion of the spin foam amplitudes, we have to
understand how to reconstruct from our data the angle appearing in the classical area-
angle Regge action [97]:

SRegge = Z Aabfaba (329)

a<b
where A, is the area of face shared by tetrahedra a and b, which share a common face with

each other, and &, is the 4D dihedral angle, which is the angle between the two 4-vectors
N,, Ny, normal to the two tetrahedra a, b.

We can find the expression for the 4D dihedral angle using Eq. (2.95) from the section
on simplicity constraints:

COS(Eab) - Na . -/\[b
1

1
= 5tr [9." 9] = St (95" )

(3.30)

Using the expression of Eq. (2.96), we can write the cosine of dihedral angle in terms of
spinors,
[ZgR|Z§R><Z?L‘ZgL] + <zqu’z?L><Z?R|ZgR> +c.c.

2 |z |l2fRll2 |23l

cos(&gp) = (3.31)
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From the above two expressions, we can see that to decide the cosine of the dihedral angle
€, we need the data of two group elements associated with two nodes (tetrahedra), or the
data of both left and right spinors of any one strand from each of the two tetrahedra. In
summary,

{Ga, gp} — cos(&w), or {2, 2, z?R, z?L} — cos(&gp) Vi€ a,VjED

Let us recall additionally, that the models we consider have Spin(4) symmetry, so we
can rotate these results by a Spin(4) transformation G = (gr, gr)-

3.4.2 The asymptotics of DL model

An apparent difference between the holomorphic simplicity constraints and the ones in
Euclidean EPRL/FK models is that they are constraints on spinors. However, they lead
to the same constraint between spins,

(zi|z1) = ji = p*jr = p*(2r|2R) (3.32)

for the coherent intertwiners in the large |z| limit [16]. In this section, we briefly show that
for the amplitude of a 4-simplex, the DL model has the same action at critical points as
EPRL/FK models for Barbero-Immirzi parameter v < 1.

We can rewrite the amplitude (3.1) of a 4-simplex ¢ by expanding it in power series as

L -1 R -1
A, /HdgLR e’ [2519a " gy |20)+Hzp g’ gy'128)

a<b

/HdngRZ ablortgblea) ™ (ool affo0)™
¢ (2jab) (2jab)

a<b

(3.33)

ab

Now that we have made the summation over spins explicit, we can reexponentiate this ex-
.L,R
pression to get the effective action of a 4-simplex amplitude A, = ZjL,R [ 11, dg&® eessUas™)
ab
with

SerrGa™) =D 2 [z lgh gy 120) + 24a Infzp |98 g5t 20) + N. (3.34)

a,bec

where the numerical factor N is given by

N =) 4jhnp—In(2j5)! - In(255)! (3.35)

a,beoc
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It is important to note that this action is complex valued. To study the asymptotic behavior
of the amplitude, we have to separate the real and imaginary parts. The real part of the
action is

; : 1 a Fa ¥
ReS.;;(a) = D jaln U281 2a” = (g0 > Vi) - (g5 > V))+
a,bec (336)
- 1 a _'a 7
tdap 5 (1251 12 = (90> V') - (95> Vo)) + .
In the asymptotic analysis of complex functions the main contribution to the integral comes

from critical points, which are stationary points of the action for which the real part is
maximized. The critical point equations we get from variation of spinors |z) are the closure

constraints
>l = inl (3.37)

b#a b#a

and the orientation condition requiring certain vectors to be antiparallel, which we get
from the maximization of the real part of the action:

gFe ot = —gko b, ¢gfvof = —gfie o, where o =V/|V]. (3.38)

Using the relation (2.91) between vectors and spinors, we find that these conditions imply
that the action of group elements on a spinor z? rotates it up to a phase into 2

— id2 | _a - 0% _a
ge 'y lze) = €], gr gz = e |2, (3.39)
This implies that the following identity holds:

_ _ i ab__ 1ab
Gy 9290 gy 1za) = €L TR |zg). (3.40)
The reconstruction theorem from [96] tells us now that given nondegenerate boundary
data satisfying the closure constraint (3.37) and a set of group elements g--# € SU(2),a =

1,...,5 solving the orientation condition (3.38), we can reconstruct a geometric 4-simplex
with the B field given by

Bap = +(jai, + Jab) (90 90") & (05, 05), (341)
with the outward-pointing normal A, obtained by acting with the Spin(4) element (g%, g®)

on the vector N, = (1,0,0,0).
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At this point, it is clear that the critical action of DL model is exactly the same as the

one calculated in the asymptotic analysis of the EPRL model in [96], and the imaginary
part of the action reads
ImSess (o) = Y 20508 + 2ok = Y ka(0f + 0F) + vka(0F — 7)), (342)
a,bec a,bec

where ko = j5 + jE. To relate this to the area-angle Regge action, we have to relate
the ¢’s to the dihedral angle. We cannot directly use our expression in Eq. (3.31) for
the dihedral angle, since we no longer have the information about both the left and right
spinors. We can however use the result of the reconstruction theorem from the Eq.(3.41)

to construct the dihedral angle by the data {gfg~ !, gfg. '} as follows

Cos(fab) = Na : -/\/’b

= 5T [af'gt ™t gbalt

(3.43)

Notice however that we can obtain the same trace from the Eq. (3.40), which tells us that
we can identify the cosine between the phase (¢%° — ¢%) and the dihedral angle &,

cos(¢P° — ¢%) = cos(€qp). (3.44)

In [96] it has been shown explicitly that the phase difference (¢% — ¢$°) and the dihedral
angle &, can be identified up to a + 81gn which is due to the relatlve orientation of the
bivector and 4-simplex. The angle (¢%° + ¢%) can be shown to be proportional to 27 [90].

Hence the semiclassical limit of the Dupuis-Livine model is the same as the EPRL-FK
models and is given by the action

S = Z 'Vk’abgab- (345)

a,beo

Since in loop quantum gravity the spectrum of the area operator is given by A; =
v4v/j(j + 1), in the large spin limit we have obtained exactly the area-angle Regge action

[69, 97].

3.4.3 The asymptotics of constrained propagator model

Let us now finally show that the constrained propagator model also leads to the same
semi-classical limit as the EPRL-FK models. We first have to rewrite the amplitude in
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terms of group variables. Recall that we can write an SU(2) propagator as
P(zj;w;) = / dg eXilzlglvn (3.46)
SU(2)

Thus taking two copies of such projectors and constraining them both in the |w) and in
the |z) spinors, we get that the constrained propagator (3.6) can be written as

By(ziw;) = / dghdghe oot v, (3.47)
SU(Q)L XSU(Q)R

The 4-simplex amplitude is now just a simple contraction of 5 such propagators. To
compare it however to the amplitude in the DL model, we have to integrate out the |w;)
spinors in order to have the same number of variables. After the |w;) integration, the
amplitude becomes

A, = /Hdgﬁ’R (1) 2 (ga" ~ 0208 T (9 +029)I2h) (3.48)

We can see that there is a mixing between left and right sectors — while in the DL model
the left and right group elements g~, ¢g¥ are multiplied separately, as in Eq. (3.33), here
the relevant group elements become a combination (g + p?g*). Expanding this in a power
series would seem to give us four independent terms. However, since in the large z limit
the holomorphic simplicity constraints imply that we have j¥ = p%j%, one can show that
only three summations are independent, so the amplitude can be written as

a| R—1,R|.,b\\2jE —2J, A1 a| L —1 ,L|.b\\25L —2J,
1 | | L,R § ([Zb |ga 9p |Za>) Jab o (p [Zb |ga 9p |Za>) Jab o
Ao’ _/ dga X
a L,R

Ly (255 —2Ja)! (255 — 2J,)! 519
ab Jab .
O it A Al ) PN e

(2Ja)! (2J0)! )

with the spins satisfying
jﬁ; > Jabv j(fb > Jab- (350)

This means that the mixed left-right terms never overtake the pure left and right sectors.
For the details of this calculation, see the Appendix.

We thus get that the effective action of the constrained propagator model for a single
4-simplex is simply

SerrGas's Jav) = Y 20jay — Ja) W[z |97~ 957120) + 2(jay — Jan) W25 195 g [22)

a,beo (3 51)
+2J0 Iz |98 gl 28) + 20 In[2 g T gi|2b) +N, '
mi:;d
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where the numerical factor N carries all the normalization factors and is a function of the
different spins and p given by

N =" 8jnInp—2(j5 + i) In(1+ p*) — In(24};, — 2Ja)! — In(255 — 2Ja)! — 21n(2])!
a,bec
(3.52)
We can see that compared with the DL model, the effective action of the constrained
propagator model has two additional terms which are underbraced and an additional spin
Jap- Nonetheless, we again obtain the closure equation from the variation of spinor |z),

PIENCHIED DA (3.53)
b#a b#a

To see how these additional terms change the asymptotics, let us examine the terms in the
real part of this action

. 1 a 7a 7 . 1 a 7a 7
(G = Ja) 5 (120212002 = (9F & Vi) (9 o V) + (58 — Jun) n 5 (152100 — (9o Vi) (> V1))
1 , , 1 . , -
+ JapIn 5 (IZSI2 |2al” = (g2 > V') - (g5 © Vab)) + JapIn 5 (\22!2 |22l = (g2 > V") - (g5 > Vab)) +N.
(3.54)

At the critical points, we also require the real part of the effective action to be maximized.
Since the real part of the action can be written as ReScss = Spr +Sgr+ Sk + Spr and all
the coefficients in front of the logarithms are positive, the maximization condition implies
that all the four terms have to be maximized independently. Thus, the following critical
equations substitute the Eq. (3.38) in DL model:

gEoop = —glo b = gl o ip = —gfio 2, where o =V/|V]. (3.55)
When written in terms of spinors |z) and |z], this means that apart from the spinorial
orientation condition in Eq.(3.39),

_ - 1ab _ - 1ab
gz oy lze) = VL), g gyl = €R |2,

relating |2?) to |2Z] up to a phase, we also have two additional phases ¢ and 6 appearing
between the mixed left-right terms

gE TRty = e 2], gR T gk = €020, (3.56)
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Let us now plug in the critical point equations (3.39) and (3.56) into the the effective action
to find the semiclassical behavior of the amplitude. The imaginary part of the effective
action becomes a function of three spins and four angles, given by

IS, (o™ Tan) = D 20j% = Ja) &P + 20585 — Jan) ¥y + 2T (0 +6°)  (3.57)

a,bec

At first sight this is quite different from the effective action of the DL model, with two
extra angles and an additional spin label to sum over. Let us notice however, that using
the critical point equations (3.39) and (3.56), we can get the relation

gy gl = WO 2p] = ORI ). (3.58)

This condition implies that the additional angles v» and 6 we had to introduce are actually
related to the angles ¢, and ¢ by

Y 4 0% = ¢% + ¢% mod 27. (3.59)

This is exactly the combination of angles that allows us to drop the terms proportional to
Jap in the action. Hence, we have that the imaginary part of the effective action is exactly
the same as the one in DL model,

IS, (™ Tu) = Y 25087 + 25505 = TmSep (™) (3.60)

a,bec

The rest of the asymptotic analysis of this action carries over in exactly the same way, as
in the EPRL-FK models. Thus, we have proved that the constrained propagator model
has in the asymptotic expansion the same effective action as the DL model, which in turn
has the same semiclassical limit as the EPRL-FK models.

It is important to note here that in the case of both of the models we have not performed
the full asymptotic analysis, which would require the calculation of the Hessian, as it is
not necessary for establishing that the models are described by Regge Calculus in the
semiclassical limit. We expect that where the two models show differences is exactly in the
Hessian and the overall normalization as well as possibly in the higher order terms in the
asymptotic expansion.
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Chapter 4

Lessons from 3d quantum gravity

Wisdom comes from experience. Experience
1s often a result of lack of wisdom.

Terry Pratchett

In this chapter we review the notion of Pachner moves and their calculation in 3d SU(2)
BF theory, to set up the stage for comparison to the 4-dimensional models. A crucial tool
that allows the calculation is a so called loop identity, which we derive both in the spin as
well as the holomorphic representations.

4.1 Definition of Pachner Moves

To show that a theory defined on a triangulated manifold is topologically invariant, we need
a way to relate different triangulations. This is provided by the Pachner moves, which are
local replacements of a set of connected simplices by another set of connected simplices.

Theorem 4.1.1. Any simplicial piecewise linear manifold M can be transformed into any
other simplicial piecewise linear manifold M’ homeomorphic to M by a finite sequence of
Pachner moves.

For proof, see [05].

Pachner moves are constructed by adding (or removing) vertices, edges, triangles etc.
to (from) the existing triangulation. They can be also obtained in d dimensions by gluing
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a (d41)-simplex onto the d-dimensional triangulation. There are several Pachner moves
in each dimension and they correspond to changing a configuration of n basic building
blocks (d-simplices) into a configuration of m building blocks - we call them n—m Pachner
moves. In two dimensions we hence have the moves 2—2, 1-3 moves and their reverse. The

ANYANRS S

Figure 4.1: Two dimensional Pachner moves: a) 3-1 move, in which three triangles are
merged into one by removing a vertex inside; b) 2-2 move, in which two triangles exchange
the edge, along which they are glued.

2-2 move corresponds to changing the edge along which two triangles are glued, while the
1-3 move corresponds to adding a vertex inside a triangle and connecting it to the other
vertices by three edges, arriving in a configuration with three triangles. Fig. 4.1 shows
the inverse. In three dimensions we have 3-2, 4-1 moves and their reverse, see Fig. 4.2.
The 3-2 move corresponds to removing an edge, along which three tetrahedra were glued

' VANRIA

(b)

Figure 4.2: Three dimensional Pachner moves: a) 3-2 move, in which three tetrahedra
are changed into two tetrahedra by removing a common edge; b) 4-1 move, in which four
tetrahedra are combined into one by removing a common vertex.

and changing it into a configuration of two tetrahedra. The 4-1 move is combining four
tetrahedra into one tetrahedron through removing a common vertex.
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4.2 Fixing the gauge

Recall that 3d Quantum Gravity described by BF theory has two important gauge sym-
metries — internal rotational “Lorentz” SU(2) gauge symmetry and the translational sym-
metry following from the Bianchi identity d,F = 0. In [102] it was shown that on-shell
the translational symmetry together with the SU(2) invariance give rise to diffeomorphism
invariance of 3d gravity.

Let us now understand how to fix the “Lorentz” gauge on a spin network. Since the
volume of the group SU(2) is finite, the gauge fixing amounts to only a change of variables
along a maximal tree. We follow [103] in defining the gauge fixing procedure. Consider a
graph I' with E edges and V vertices. Each edge is oriented so that it starts at a source
vertex s(e) and ends at target t(e). Consider now a spin network function such that

7vbr<g€17 s 79615) = wr(h;(il)gel ht(€1)7 tet h;(}BE)geEht(eE)>' (4'1)

Now choose a maximal tree T in I', i.e. a collection of V' — 1 edges which passes through
every vertex, without forming loops. Choose a vertex A to be the root! of the tree T and
label g7, the product of group elements g., along T that connect vertex v and A. Next we
will use Eq. (4.1) with h, = gJy, so that " = ¢'(GT,...,GE) with G] = g} 9e9] 1) a-

Now, for any edge e € T, there is a unique path along the tree connecting A and s(e)
or t(e). Let us choose this to be t(e), since the other case works in the same way. It follows
that gﬁe) 4= gegge) 4 and so GI' =1 for e € T. Hence the procedure for gauge fixing is to
set all the group elements on the maximum tree to 1 and change all the other to g., = GeTi.
Since |, SU2) dg = 1, ending up with empty integrations does not lead to any divergences. In
the language of amplitudes written in terms of projectors, this corresponds to replacing the
projectors P(z;;w;) = fSU(2) dg eXilzil9lwi) on the maximal tree by the trivial propagators
1(2;; w;) = eXilz#wi) . This procedure carries over to the 4-dimensional case trivially, since
Spin(4) is just a product SU(2) x SU(2).

We will postpone the discussion of the translational symmetry to until after we have
calculated the 4-1 Pachner move, as we will see that it is directly related to the divergence
coming from that calculation. It can thus be fixed simply by dividing by this divergent
factor. One should now ask how this generalizes to the higher dimensional case we are
interested in. It turns out that while the “Lorentz” symmetry is present in 4-dimensional
Spin Foam models and can be dealt with in the same fashion, the relation between di-
vergences and translational symmetry is unknown — we will discuss this in later in the
thesis.

1One can show that the gauge fixing procedure is independent of this choice.
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4.3 The Loop Identity

The BF theory partition function is independent of the triangulation A. This can be
shown by demonstrating its invariance (up to an overall factor) with respect to a finite
set of coarse graining moves, constructed out of Pachner moves. The Pachner moves can
all be derived from one identity which we will call the loop identity. This identity follows
from the coherent state representation of the SU(2) delta function

5(g) = / dji(z)etl912), (4.2)

where dji(z) = du(2)({z|z) — 1). Therefore

[ dne) Pz z) = [ g [ g, el

dgeXi=i lalwi 5 )

— eZ 11 [2i|wi)
= ]].(21, y Bn— 17w1,...,wn_1), (43)
which is represented graphically by
S - Wy _ oz [w
2> w =z jw (4.4)

Since each closed loop of the BF partition function (2.47) has a factor of 2j5 + 1 we
will use the convention that two lines are contracted with du(z) as in (2.72), however, the
contraction of a line with itself, i.e. a loop, is contracted with the measure dji(z) as in
(4.4). An alternative way would be to use the homogeneity map to keep track of this face
weight.

4.4 Alternative method

The expression for the loop identity we have just derived, while compact, does not gener-
alize straightforwardly to the case of 4-dimensional QG models with simplicity constraints
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(due to the presence of the group integrals). We will thus redo the above calculation with
the projector written in terms of only spinors without group integration.

We expect that the loop identity (4.3) applied to the projector (2.86) implies that

Zi<j[zi|zj>[wi|wj> ’ . zi|w;) ¥
Z(2jn+1)/du(zn)< EES ) :H% (4.5)

Jn i=1

where the integration is performed with w, = Z,. Below we will directly show this. Let us
perform the integration on the LHS explicitly by using the homogeneity map to keep track
of the 1/(J + 1)! and the face weight (27, + 1) and then summing over j;. Namely, let us
use the homogeneity maps 77/ — 1/(J + 1)! and 7/%» — (2j,, + 1). The result is then

T i< j<nl?ilzg) [wilws)
, . e <j<n
/dﬂ(zn) exp (T Z (23] 2) [wilwy) — 77 Z(zn|Z@>[w2|zn>) = det (]l 'y, |wl>[zl|)
1<g<n 1<n <<n
(4.6)

To continue, we have to be able to evaluate the determinant in the denominator. This
is thankfully not too difficult, as the matrix in question is just a 2 x 2 matrix made up by
spinors. Indeed, the following lemma comes in handy

Lemma 4.4.1. Let M =1 — ). C;|A;)[B;| then
det M =1-Y Ci[Bi|A) + > CiC5Ai|A))[Bi| By).
i i<j
The proof is given in Appendiz A.4.
Using this result, we can immediately find the determinant in (4.6). In our case, all
C; = 77', hence we get that the loop identity for the homogenized projector P, becomes
621§i<j<n 77 [2i]25) [wilw;)

L =370, T [zilw) + 30 cicjan T2 20l 25) [wilwy)

(4.7)

Now we can expand both the numerator and the denominator in a power series and then
use the homogeneity map to restore the 1/(J + 1)! terms and the face weight. This allows
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us to get the loop identity for the projector (2.86)

1z [wp 4 g
> W> = 3" Cpp(d, ) (Z[Z'i‘wi>> <Z[Zz'|zj>[wi|wj>> :

— J,J! <n 1<j<n

(4.8)
where we have defined the coefficient Cpr(J, J') to be given by

gk J+JT —K)(J+2J —2K +1)
JI(T — K)K!(J+2J — K+ 1)

Cor(J,J") = (-1) (4.9)

K

At first glance, this is a worrisome result, as we do not only get the trivial projection (raised
to power J), but also an unwanted mizing term (raised to power J’). Notice though, that
we have an additional free sum over the variable K in the definition of the coefficient. We
can actually explicitly evaluate this sum over K to find the expected result

O
Cpr(J,J') = % (4.10)
Hence only the J" = 0 term is non-vanishing, so the mixing terms always drop out in BF
theory. We thus recover the result (4.5) that we set out to prove. This calculation readily
is generalized in the following section to the case with simplicity constraints. The major
difference in this case is the lack of the cancellation of the mixing terms.

4.5 Invariance under Pachner moves and symmetry

We will now proceed to show the invariance of the 3-dimensional SU(2) BF theory under
3-2 and 4-1 Pachner moves using the language of spinors. In the case of 4-1 move we find
a divergence directly related to the translational symmetry.

3—2 move
As can be seen in the Fig. 4.2 a), the configuration of three tetrahedra in the 3—2 move is

glued along one edge. This corresponds to a loop of a single strand in the cable diagram,
see Fig.4.3.
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Figure 4.3: a) Cable diagram for the 3-2 move. The internal loop is colored. b) After
gauge-fixing projectors 7 and 9 and performing loop identity on projector 8, the diagram
reduces to gluing of two tetrahedral graphs.

By choosing a maximum tree (with a root at the projector 1) in the diagram, we can
gauge fix the projectors number 7 and 9. This allows us to apply the loop identity (4.3) to
integrate out the strand number 10 by performing the group integral in projector number 8.
We can identify now that the resulting cable diagram is exactly that of the two tetrahedra
glued together, see Fig. 4.2 b). Hence it is immediate that the SU(2) BF theory is invariant
under the 3-2 Pachner move, as the two configurations are gauge equivalent.

4—1 move

The configuration of four tetrahedra in the 4-1 move shares in total four edges, which
corresponds to four loops in a cable diagram, see Fig. 4.4 a).

We choose a maximum tree with a root at vertex 1, which allows us to gauge fix the
projectors number 5, 6 and 9. We can now apply the loop identity (4.3) to the projector
10 to remove the blue loop. Similarly we can apply the loop identities to projectors 7 and
8 to remove the yellow and green loops respectively. This leaves us with the last loop and
no projectors left inside the graph, as in Fig. 4.4 b). This final loop corresponds to the
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Figure 4.4: a) Cable diagram for the 4-1 move. The 4 different loops are colored. b) After
applying three loop identities we are left with a tetrahedral cable graph with an insertion
of one loop.

J

=>4 [aun C2)

following integral
(25)!

o= o 5
j P (4.11)
B Z(Qj +1)x/(1) = dsv(1).

Hence, we have shown that the BF partition function is invariant under the 4-1 move up
to an overall divergent factor. The divergence we obtain in SU(2) BF theory is exactly a
SU(2) delta function dgp(2)(1) = Y- (2 +1)* In [102] it was shown that this is the same as
the volume of the su(2) Lie algebra. If we put on a cut-off A on spins, then the divergence
scales as (27 + 1)2 ~ A3. Since in 3d spin is proportional to length, we get a divergence
that corresponds to the translation symmetry of placing the extra vertex anywhere in
the 3-dimensional space. In [104] it was shown that the dominant contribution to this
divergence comes from “spikes”, where the vertex is placed far out of the tetrahedron.
A correct Fadeev-Popov procedure introduced in [102] divides the amplitude by exactly
this divergence, so the Ponzano-Regge model is invariant after gauge fixing under both
the 3-2 and 4-1 Pachner moves. This gauge fixing procedure was subsequently refined in
[105, 106, 107, 108] to lead to a complete definition of 3 dimensional manifold invariant.
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Chapter 5

Loop identity with constraints

It is a mistake to think you can solve any
major problem just with potatoes.

Douglas Adams
Life, the Universe and Everything

In this chapter, we evaluate the simplicity constrained version of the loop identity for
both of the holomorphic models we introduced previously. In the case of the constrained
propagator model, the difference from the topological result is the presence of mixing of
strands that exchanges the trivial propagators and delta functions with more complicated
operators. In the case of the DL model we obtain a rather complicated expression, which
motivates us to focus on the other model. We finish with discussing some interesting results
in a 2 dimensions.

5.1 Toy Loop

To capture the essence of the computation without too much complexity, let us start with
repeating the calculation of the BF loop identity, but with the constrained propagator
P,(2;;w;) (3.6) rather than the SU(2) projector. We will follow the treatment of the loop
identity from Section 4.4. We will thus find the loop identity for the generating functional

G (2 w;) = e Zi<sFilzillwiles)
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and at the end of the calculation use the homogeneity map to get the loop identity for
P,(z;;w;) by changing 77/ — F,(J)/(J + 1)I. We also want to be able to insert a face
weight, which is a function of the spin we will sum over. This face weight could be a priori
arbitrary, but for the sake of definiteness, let us choose it to be (25 4+ 1)7 with n € R being
a free parameter, which keeps track of divergence properties of the Spin Foam model. The
method we use allows us of course to modify the face weight to an arbitrary function of
spin. To insert the face weight, we follow the calculation in BF theory and rescale the
spinor in the loop by an additional factor of 7/, which will keep track of homogeneity
of that specific spinor. At the end of the calculation we can restore the face weight by
replacing 7% — (25 + 1)7 in the series expansion. Let us now calculate the constrained
loop identity:

GT Zi<j<4[2i|zj>[wi‘wj>
det (1= 27 Sicq i)

Unsurprisingly, we get nearly the same result as in Section 4.4, the difference being the
additional factor of 1/(1+ p?), which arises from the modified integration measure dy,(2).
Of course, the 7 also carries a hypergeometric function of p. We can again use the lemma
4.4.1 to evaluate the determinant. We arrive thus at the result

/ Ay (z)e” Sicicalzis o) —r Ty aleiuilea) (5.1)

BT Zi<j<4[zi‘zj>[wi|wj>

2,12
L 0 Y a0+ Sy en ot i) i)

, N\ N+2M N M
_ 6T2i<j<4[zz‘|zj>[wiwj>Z<NN_;_]\2—\{>! (17—:'p2> (Z[Zz’wl>> <_ Z [zl‘z]>[wl‘w]>) (5-2)

N,M i<d i<j<4

/dﬂp(24)Gr(21, T 2w, E) =

We can now expand the exponential, combine the mixing terms and use the homogeneity
map to reintroduce the face weight and the hypergeometric function of p. We hence find
that the constrained loop identity for P,(z;w;) is given by

|Z1> |W1> J J’
Iz wy = ) C,(JT) (Z[%IM)) <Z[Zi|2j>[w1"wj>> , (5:3)

— J,J! i<n i<j<n

with the coefficient C,(J, J') given by

o (JHT =KW J+2J —2K+1)" F,(J 4 2J' — 2K)

Op(Ja J) = ;(_1) J!(J’—K)!K!(J+2J’—K+1)! (1 +p2)J+2J’—2K ’

(5.4)
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where F,(J) = oFy(—J —1,—J;2; p*). We have hence arrived at an expression very similar
to the one in BF theory — we again got the trivial propagation terms ., [#;|w;) together
with additional mixing terms like >, . _,[zi|z;)[wilw;). Unlike in the BF loop identity
however, there is no miraculous cancellation of the J’ # 0 terms, unless we choose p = 0
and n = 1, i.e. we reduce this to SU(2) BF theory. Hence the way in which simplicity
constraints break the topological symmetry is by introducing additional mixing terms in
the loop identity. We can represent this graphically as

2> B
£ W D W (5.5)

5.2 The Constrained Loop Identity

We are now going to see that the loop identity we need for Pachner moves is somewhat
different with the one we considered in the previous section. When we glue together 4-
simplices, we need to glue them along their boundaries, necessitating the gluing of two
propagators, i.e. we should work with P, o P,, rather than a single P,. The reason for
this being that in our model the propagator P, is inserted around each vertex and we
get the composition of them along an edge. Since P, is not a projector unless p = 0
we have P, o P, # P, . Additionally, the loops arising in all the Pachner moves always
are composed of three groups of propagators P, o P,, rather than the single one we have
considered. Fortunately, two of these can be always gauge fixed by a proper choice of a
maximal tree, so that we have to consider the loop identity shown in Fig.5.1. In BF theory
the gauge-fixing reduces the projectors to trivial propagators 1(z;; w;), so we did not have
to worry about this issue.

We thus have to first find the equivalent of the trivial propagator in the constrained
case, i.e. the analog of setting ¢ = 1 in (2.80) to get (2.73) but for the propagator (3.6).
We thus have to restore the group integration. Fortunately, by tracking homogeneity for
each term, we know that

.71

Z/ H'Z’m'w’ (5.6)

Z]z

(S laedlulu))”
J(J+1)!
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Figure 5.1: Loop identity with for the constrained projector with two extra gauge fixed
projectors

Setting this SU(2) group element to identity and summing over all J allows us to get the
partially gauge fixed propagator, which we denote 1,

TN

Lp(Z10;) = ZJ:zFl (—% -1, —g; 2;/)4) M (5.7)

Note that for the convenience of notation later, we will always add a tilde on the spinors

which belong to the partially gauge fixed propagator. As in the case of the propagator, we

find that setting p = 0 we recover the BF trivial propagator 1(z;;w;), as we would expect.
We can now use the homogeneity map to define a homogenized trivial propagator 1; as

1; = " 2lE)  with 7 F(J/2)  for  1; — 1, (5.8)

We thus have arrived at the expression for the gauge fixed propagators that are necessary for
the loop identity. We will have to consider however P, o P, and 1,0 1,, rather than single
propagators, as we have mentioned above. We will thus use the following homogeneity
maps: for the pair of gauge-fixed propagators we will have

e F,(J/2)?
1: 0 1; = " ZilE%0 with 77 — £plJ/2) for 1;0l; > 1,01, (5.9)
(1+p2)’ o
while for the pair of propagators P, we get
F,(J)?

G,o0G, = eT Licglzilzwilv) - with 7

for GroG,— P,0P,.

(14 p2)2/(J 4+ 1)!
(5.10)
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With this, we are ready to perform the calculation of this loop identity. The addition of
the extra two pairs of gauge-fixed propagators leads to very simple contractions, using our
results of spinor Gaussian integrals in the Appendix. Integrating over the three strands
inside the loop leads to nearly the same calculation as in the previous section, with the
difference being the addition of the trivial propagation in the extra strands connected to the
gauge-fixed propagators. Using the homogeneity map, we finally find that the constrained
loop identity is given by

-2 -2
Noak —~ N(A,B,J,J,p)
i e = > BT~
A,B,J,J'=0
||y s = || >
bl — (5.11)
5 A 3 B 3 J J
<(Sh) (o) (Seten) ( Slalsitatnn).
R =1 PN =1 PN =1 1<j<4
G‘}?’l G‘},?Q Trival p‘r,ojection Mixinzterms
with the coefficient N (A, B, J,J', p) given by
J/
JNW I+ K (J+2K+1)" —1)E
N(Aan],J,»P)EZ (/+ i +/ i) 2 A(B)12K BETYDRS
= KN(J' —EK)NJ+J'+ K+1)! (1 + p?)(ArBH2ker/27)

><Fj(J+J’+K)Fj((A+J)/2+K)F§((B+J)/2+K),

where we have defined F,(J) = 2Fy(—J — 1,—J;2; p*). The variables |z}), |&w}) appear in
the strands attached to the first gauge fixing term, similarly |22), [1?) appear in the second
gauge fixing, while |z;), |w;) are are labelled for the strands we haven’t gauge fixed. The
face weight coupling constant 1 should be fixed by requirements of divergence, which we
will discuss in a later section. A more detailed calculation of this loop identity can be
found in the Appendix.

Even though the expression in Eq.(5.11) has a few layers of summations like a Rus-
sian nesting doll and the coefficients look complicated, the physical meaning behind the
expression is quite clean — up to a weight, we get the trivial propagation, like in BF theory,
but we also get additional mixing terms for J’ # 0. We will study the properties of this
identity in section 6.3.

For the purpose of calculating the 4-dimensional Pachner moves, it will be convenient
to again define an exponentiated expression for this loop identity, which can then be trans-
formed into the proper expression by the homogeneity map. Before using the homogeneity
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map in Eq. (5.11), we would have an expression purely in terms of 7’s that can be ex-
ponentiated. We hence define the exponentiated loop identity to have the following very
simple form:

3
Lo (2, wy; 2,075 22007 —eXP<ZT1 gy + o[22 |7 >—|—TN[ZZ|U)Z>+TMZ zz|z]>[wz|w])>.

=1 1<j<4
(5.12)
The full loop identity can then be recovered through the following homogeneity map:
’ J+ K)'J/' ’_ 7:17:27 JH2K
J_J J-K
TNTM — Z K' J/ ) (J ‘|— 2K + 1)”7’ (m (513)

and the 7’s and 7 keep track of the F}, factors according to the rules given in Eq. (5.9) and
Eq. (5.10).

5.3 The Loop Identity for the DL model

For comparison, let us now calculate the loop identity for the exponentiated DL propagator
(3.28). We will perform the calculation first without any face weight for clarity and then
modify it to accommodate arbitrary face weights. As in the previous section, we need to
begin by obtaining the gauge-fixed propagators.

To study the gauge-fixed propagator, we need to reintroduce the group elements to the
propagator Ppy, as

4
/{H du (=)} / dgh2 T toF okl +otoRlohiz) +loE b o loblef) (5.14)
=1

Gauge fixing by choosing a maximum tree in the cable graph allows for setting all g}, gk, 9%, g%
to identity. We find thus that the gauge-fixed constrained projector in the DL model is
given by

P, — eiver Si(lt iy tplwl il tolufflof ) +o%efof) (5.15)
It is worthwhile to notice that, both in the full DL propagator and its gauge-fixed variant,
there is a mixing between left and right strands. This mixing doesn’t just occur for the
spinors, but for spins as well. We show this in the Appendix.
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Figure 5.2: Loop identity for the DL propagator with two extra gauge fixed ones.

Since the gauge-fixed DL propagators (5.15) are nontrivial, let us calculate the loop
identity with two of them, as in Fig. 5.2.

Recall from Eq. (3.28) that the exponentiated DL projector can be written as

abed eiih g wedvij vkl
Y

PEL — eTA Zi<j wijvijfg—]g >e

where the w;;,v;; are antisymmetric and are combinations of left and right spinors also
carrying additional homogeneity factors. The only spinors that we need to integrate over
in the loop identity are w4 and vy plus the ones coming from gauge-fixed propagators. Let
us track what happens when we contract the strand between the full DL propagator and
the gauge-fixed propagator number 1. The gluing constraints are going to be vy, = 9§

so the integral of that strand will result in

1
08) = =5 (o ) =+ plufl 1)
(5.16)
o) = (pluf O™ + Pl 1)
The minus sign is due to the antisymmetry [w;|v;) = —[v;|w;). Let us now contract the

strand between the first and second gauge-fixed propagators. For this integral, we have a
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GF1
4

contraction w F2_This integral results in

u OF1) o> 1 (1o )+ loff )
(5.17)
jwff ) (ol ©72) + 2 loft 7).

1+ p?

i = T Lyl 4 2T [ Ry R
Now recall that v;; in the DL propagator are given by v;; = 1727 [v;|vy) + T [v;*lv;*). The
above contractions lead to the following change for v;4:

L 2. R
Ty Ly,.L GF2 L|,.R GF2 P Ty R|, L GF2 21, .R|,. R GF2
Vig = ————— ([v;’|v + plvy|v +———= (plv;*|v + p*lv;*|v :

(5.18)
The last gluing constraint is v$¥? = 1, which will bring us one last factor of (1 + p?)~L.
Let us check what happens to Ppy, under the above substitution and this gluing constraint.
The term proportional to 74 in the propagator (3.28) that we ultimately have to integrate

can be now written as
A
[wy Aplwi] + [wif|Arlwil] + [wy|pALlwi] + [wf|7R|w£], (5.19)

where we have introduced the matrices mixing left and right sectors given by

L 3

T’Ll)
Ap = m Z |w]) ([%’L’TUL + [UZR|/72T§P)
o (5.20)

2R

P Tw R L L Ry 2 _R 2
Ap = =5 ) Wl (Wilpry + Witlp*r%) -
R (1+p2>3;|1>([1‘pv [z|p vp)

While the term proportional to 75 looks a lot more fearsome, it still has only one instance
of vy in each of its terms. The main difference lies in the slightly worrisome fact that
unlike in the case of terms proportional to 74, here every single term has an instance of
V4, s0 all of them will enter the loop identity! A little bit of perseverance makes us realize
that the main difference actually lies in changing > . — > . €jk€mnW;kt, and proper
normalization. It is then not too difficult to see that the term proportional to 7z is also
going to be

[wy | Buhwy] + [wi'| Brlwi] + [w|pBr [wi] + [wy|—|wy], (5.21)
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where the matrices mixing the left and right sectors for this term are given by the slightly
more complicated expressions:

By = +p 3 Z Z szkelmnwjk mn|w ><|:UiL|7—UL+ ["UlR|p27'fp)

]k 1l,m,n=1

Bp = 1+p 3 Z Z €z]k€lmnwjkvmn|w ><[UlL|p7_UL+[ |p2 R 2)

i,5,k=11l,mmn=1

(5.22)

Hence with the combinations M = 74A;, — 78 B, and M = T4Ar — T Br that naturally
present themselves, we can finally write down the loop identity for the DL model without
any face weight as

W L L R R L R R MR, L s
W = /du(wva)e[w4|MLw4]+[w4 |MR|wiil+[wy [pML [wiil+[wg' | 7wy ]+74 325« j g Wi Vi

eTA Licj<a Wijvij

1 — Tr(My + Mg) + det(My, + Mg)’

(5.23)

The final loop identity can be obtained by expanding this expression in a power series and
using the homogeneity maps to restore all the factorials, which might seem a bit daunting,
but is clearly doable. To calculate the loop identity with an arbitrary face weight, we
would have to track the homogeneity of the left and right sectors separately. We show in
the Appendix that this is possible, but results in a rather monstrous expression. However,
if we satisfy ourselves with face weights that depend only on the sum j* 4 j%, we can get
away with a simple expression — we only need to rescale both My and Mg in Eq. (5.23)
by a single factor of 7, which allows us to track a face weight of A;(j* + j%) by it ",

As we can see, the technique of the homogeneity map applies also to the DL model.
While we could in principle continue to use it, the calculations with our model using the
fully constrained propagator are greatly simplified. As such, we will only follow with the
simpler model, but leave these results here in case some brave individuals decide to use
the model that is more similar to the standard EPRL framework.

5.4 Exact results in 2d

It is interesting to notice that in the case of the constrained propagator, the loop identity
would be so much simpler if there was no mixing of strands. As we have seen, this happens
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[z

naturally when we restrict the face weights and work in p = 0 limit, i.e. for BF theory.
There is also another case where things simplify, though one that is of less physical interest
— consider only two strands per propagator. In this 2-dimensional case, the loop identity
simply cannot have any mixed strands. While this case is in some ways trivial, as the group
integration of [z;]g|w)?![2;|g|ws)?2 sets j1 = j2, we can nonetheless consider arbitrary
modifications of the propagator, face weight and the measure (at least Gaussian ones) in
this 2d SU(2) propagator model.

Let us consider the propagator with an arbitrary function of spin

P, — Zf 21|ZQ U}1’U)2>)J (5 24)
- JT+D0 7 '

together with an arbitrary face weight A¢(J) and the measure of integration modified to
dpa(z) = j—ze_o‘<z|z>d22. If this is still to conservative for one’s tastes, one can at the end of
the calculation substitute o’/ into another arbitrary function of spin, using the homogeneity
map technique. We will use the generalized propagators GG, we have introduced in Eq.
(3.15) and then restore our arbitrary functions with a homogeneity map. We will restore
the face weights in the same way as in the previous sections.

For the equivalent of the toy loop identity, integrating |wy) = |25, we trivially get

[wp ]_ 7_7_/ ;
- ' = . (5.25
det(L — 7 fwr)[]) Z(a Zl’““) ZoﬂJ+1 afen)”. (5:25)

Interestingly enough, we can perform this loop identity for an arbitrary number of
propagators around the loop, without any need for gauge fixing. Even more, each of these
propagators can carry a different function of spin. To see this, let us look at the example
of three propagators around the loop, with the identifications |ws') = [2$], |wS) = |27]
and |w?) = |z4']. Note that these identifications each introduce a minus sign, so we get

1
d[l,a(’wa) ad = TATBTCT'
/ aG{g,C} 2/M2 (]L — TaTnze w28 [w f|le>|Zi4>[wlB|)
TAT, 7‘07 p
( . ) ([ =0) [ )2 [wP]4) (5.26)

%
> fa( ()Af()([

oz3J J+1)

I=

J
wi' |27 [wf [20) [wy’] 1))
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Defining the matrix M, = —a™!2{)[w{|, we thus get that a loop identity in this theory
for N propagators is given by

al I A(DTL, falT
/(gdﬂa@”z) 2d> :; f((}l;ll{'( )

These results now allow the exact evaluation of arbitrary amplitudes in the theory
defined with these near-trivial propagators. While probably not very useful in physical
models, these results are at least cleaner than what follows, as we move onto the evaluation
of Pachner moves in 4 dimensions.

Tr (1;[ Mn)] J. (5.27)
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Chapter 6

Evaluating 4d Pachner moves

The only way of discovering the limits of the
possible is to venture a little way past them
into the impossible.

Arthur C. Clarke

In this chapter, we will finally collect all that we have learned and attempt the eval-
uation of the 4-dimensional Pachner moves. We will see that while the 3-3 move can be
invariant in a symmetric case, the other two moves are not invariant due to the mixing of
strands introduced by the loop identities. In the case of the 5-1 move we will compare this
to a Renormalization Group step, where additional couplings are introduced. This will
motivate a truncation scheme for the loop identity that removes the mixing and restricts
the flow to the space of 4-simplices. With this, we get invariance up to a factor depending
on boundary spins. We finish the chapter with the study of divergences and propose a
renormalization of the propagators.

6.1 Computing Pachner Moves with Simplicity Con-
straints

In this section we compute all the Pachner moves in the 4-d holomorphic Spin Foam model
based on the techniques we have developed in the previous chapters. All these moves
are based on the configurations of 6 vertices (ABCDEF). In the following we adopt the

68



following notation: a simplex A indicates the 4-simplex opposite to the vertex A, i.e. it
is composed by [BCDEF]. AE indicates the tetrahedron AN E composed of the vertices
[BCDF|, with vertex A and E removed from the triangulation. Triangle ABD indicates
the one composed by [CEF]. Also in order to keep track of which vertex is “active”, i-e
dual to a 4-simplex and which vertex is “inactive”, i-e not dual to a 4-simplex, we introduce
a distinction in our notation: an upper case letter A, B --- denotes an active vertex, while
a lower case letter ¢, d--- denotes an inactive vertex.

6.1.1 3-3 move

According to these conventions the move 3-3 corresponds to
ABCdef — abcDEF.

The 3-3 move is shown as Fig.6.1. In the first figure the 4-simplices A, B, C' are sharing the
blue triangle. After the move the configuration is changed into three 4-simplices D, E, F'
which share the green triangle.

C c

d (a) b (b

Figure 6.1: Triangulations for the 3-3 move.

The corresponding cable diagram is shown in Fig.6.2. The various colors of strands
in the graph are used to indicate the different positions of triangles. The blue loop to be
integrated out corresponds to the triangle ABC. The purple strands in (a) for example
are dual to the triangles Adf C A, Bde C B, Cef C C and they run from the tetrahedra
Af — Ad, Bd — Be, Ce — Cf. After performing the 3-3 Pachner move, the same
triangles (still indicated by the purple strands) are no longer shared by two tetrahedra
within a given 4-simplex. They become commonly shared by tetrahedra belonging to the
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three different 4-simplices: aDF C (D(\F), bDE C (D E), ¢cEF C (E(F). The
same happens to the black strands, whereas the opposite happens for the red and light
blue strands. In summary, on one hand, due to the 3-3 move from (a) to (b), the red
and light blue strands, shared between different simplices in (a) become unshared strands
which belong to one simplex in (b). On the other hand, the unshared strands (the black
and purple strands) in a become the commonly shared ones in (b). The dark blue loop
and the green loop correspond to faces which are dual to the internal triangles ABC' and
DFEF respectively.

Figure 6.2: Cable diagram for the 3-3 move ABCdef — abcDEF .

To compare the partition function/amplitudes between the configurations (a) and (b),
we need to integrate out the shared loop on both sides. Based on the discussion in section
4.2, we can gauge fix two out of three pairs of the constrained propagators around the
loop by a choice of a maximal tree in a way that leaves the amplitude invariant. We
then need to apply only once the constrained loop identity which we obtained in the
previous section to complete the 3-3 Pachner move. In order to do so, it is important
to introduce some notation for the spinors. Let us describe the parametrization of (a) =
(ABCdef). For each 4-simplex o € {A, B,C} we need to introduce a collection of spinors
associated with each strand within that 4-simplex. Each strand carries a label which
corresponds to a pair of tetrahedra af sharing a face. Within A we have two types of
tetrahedra: three external ones Ad, Ae, Af and two internal ones AB, AC'. The strands
run either between two internal tetrahedra or from one internal to one external tetrahedron.
Accordingly, we label the external strands by boundary spinors 235 where o € {A, B,C},
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g e{de, f}, ve{A B,C,de,f} for (a) in Fig.6.2 , and « € {D,E,F}, B € {a,b,c},
.7 € {a,b,e, D, E, F} for (b). af are the indices labeling boundary tetrahedra, and zfy‘ﬁ

indicate boundary spinors. The boundary propagators are then labeled as Pp(z‘jﬁ; wg‘ﬁ ).

i) =we]

Wiy = |v 2] AC &

[VED = |vie]

Figure 6.3: Zoomed in part of the cable diagram for the 3-3 move with some of the labels
and contractions of spinors explicitly written down.

Let us label the internal pairs of propagators by P, o Pp(vg‘a/,w;‘/a), where a, o’ €
{A,B,C} for (a) and a,a’ € {D, E, F} for (b). We need to contract these spinors with
the spinors w;‘f’ of the external propagators. An example of this is shown in Fig. 6.3 with
all the labels and orientations written explicitly of a part of (a). The contractions are
done according to the orientations of strands, and for example we have |wg?) = [v4F]. In

summary, the amplitude is constructed from 23‘5 and wg‘ﬁ for the external propagators and
g
the internal spinors after imposing the contractions, thus becomes a function of zg‘ﬂ only.

on wg“’", ve* for the internal ones. The amplitude is obtained then after integration over

We thus find that the amplitude for three 4-simplices combined as in Fig.6.2 can be
written as

@7l -

Aa(5) = [ T dnatordug(o) [T Pates?s05?) - =38 e (6
ap

all

The spinors of the three internal propagators which share a loop are labeled by v and w
and each of them is contracted with different boundary constrained propagators, with the
gluing depending on the orientation of the graph.
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The crucial difference between amplitude (a) and (b) is that the non-trivial coefficient
N(J,J', A, B, p) of Eq.(5.11) encodes the spin information of different strands. In (a), the
coefficient N encodes the spin information of the blue and red strands in one configuration,
while in (b) it encodes the spin of the black and purple strands. Unless the corresponding
boundary spins are chosen to be the same, the 3-3 move cannot be invariant.

It is thus very easy to see where the topological invariance of BF theory is broken.
Let us come back to BF theory and look at the 3-3 move. The BF loop identity (4.4)
does not have any factor depending on spins and hence gives a trivial equality, as the
diagrams in Fig. 6.4 are combinatorically equivalent. Thus for BF theory, the partition
function/amplitudes are invariant under 3-3 move.

cD

(b)

Figure 6.4: For 4-d BF theory, after integrating out the middle loops in the 3-3 move, the
rest of the strands are combinatorially equivalent.

6.1.2 4-2 move

The 4-2 move ABC Def +— abcdEF is shown in Fig.6.5. In (a), four 4-simplices A, B, C, D
are sharing 6 tetrahedra. After removing four triangles (or four loops in the dual cable
graph) and changing the combinatorial structure, the four 4-simplices are rearranged in
two 4-simplices F, F' glued by one tetrahedron. The corresponding cable diagram of the
four 4-simplices is shown in Fig.6.6.
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f C F c

Figure 6.5: Triangulations for the 4-2 move.

We can perform gauge fixing of this graph by choosing vertex C' as the root of the max-
imal tree in such a way that we can gauge fix 3 couples of propagators BC, AC, C'D. This
allows us to apply the constrained loop identities Eq.(5.11) to three of the four loops. More
specifically, we can apply the constrained loop identity to the propagators (AB, BC,CA)
to drop the blue loop, then apply it to the propagators (AC,CD, DA) to integrate the
green loop and propagators (BC,CD, DB) to remove the big yellow loop. This results in
integrating out all couples of constrained propagators, and hence we are left with one last
(red) loop, which is mixed with the external strands, as can be seen in Fig.6.7.

Note, that we have applied the three loop identities, but the last loop is left without
any extra group averaging. Similar to the case of the loop identity, we have to add in
a face weight for this last loop. We will do so again by inserting a factor of 7 on one
of the strands of the left-over loop (say the red strand for edge AD), so that we can use
homogeneity map 7/ — (25 + 1)".

Similar as in the previous section, we will denote the spinors on the boundary as z, and
spinors in the bulk as w and v with indices labeling the propagator and the strand they
belong to. Each spinor carries three indices: zj’;ﬁ with indices « labeling the 4-simplex, af
labelling the tetrahedron they belong to, « labelling which strands they represent. With
assuming a specific orientation of the graph as C — A,C —- B,C — D,A — B, D —
A, D — B!, the amplitude in terms of the exponentiated loop identity Eq.(5.12) is given

'When one reverses the orientation of one propagator, the corresponding [v|w) — [w|v) = —[v|w)
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Figure 6.6: Cable diagram for the 4-2 move with gauge fixing along BC, AC,CD.

then by

Ta(20) = / {H dﬂp(v)dﬂp(w)} 1257 us?) e[S 7oclofling)]

all af (62)
xep [ TS el T ) + Y el ) o)

For the external propagators @ € {A,B,C,D} and § € {e, f} label the tetrahedron,
while v € {A,B,C, D,e, f} labels the strands in each tetrahedron. For internal gauge
fixed propagators, o € {A, B, D}, i € {e, f}, and for the non-gauge fixed propagators,
uv € {AB,AD,BD}, j, k € {e, f,r}, where r indicates the red strand of the left-over
loop. We define o))" as
o =14 8407 (' —1) (6.3)
for keeping track of the homogeneity factor for the face weight of the last loop.
The equation (6.2) gives a compact and explicit expression for the amplitude associated
with the 4-2. Tt is obtained by using the exponentiated loop identity Eq.(5.12), which then
can be transformed using the homogeneity map to obtain the full expression after perform-

ing all of the contractions of spinors and all the Gaussian integrals. The homogeneity maps
we need to apply to this expression to get the full result were defined in Eq. (5.9) for the
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Figure 6.7: Performing the calculation we get a configuration of two 4-simplices with a
nonlocal gluing.

7, in Eq.(5.13) for 75 and 7j; and the homogeneity map for 7" is 7% — (25 + 1)7. The
calculation can be straightforwardly done, but the resulting expression itself is a compli-
cated, one with lots of mixed strands that is difficult to manipulate. The integrals also
contain potential divergences that have to be taken care of. We will delay the discussion
of the resulting expression and the significance of the mixing terms until the next section,
as we first encounter a similar behavior for the 5-1 Pachner move as well. Here in the
expression Eq.(6.2), we intentionally leave the last red loop unintegrated to pave the way
for truncation in section 6.3.

6.1.3 5—1 move

We now calculate the 5-1 Pachner move. The 5-1 move corresponds to a change of a con-
figuration of five 4-simplices sharing an internal vertex into a single 4-simplex by removing
the common vertex, see Fig. 6.8.

The cable diagram for this move can be seen in Fig. 6.9. We have a total of 10 loops
and 10 pairs of constrained propagators inside the bulk of the graph. Even though there is
an increase in complexity, compared to the 4-2 move, the calculation will go over in nearly
the same way. We start by choosing a maximal tree in the diagram, which allows us to
gauge fix 4 of the pairs of propagators. A careful choice of this tree corresponds to a root
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() (b)

Figure 6.8: Triangulations for the 5-1 Pachner move.

at one of the 4-simplices and allows us to apply loop identities to 6 of the loops, leaving
us with 4, as can be seen in Fig. 6.10.

We can write the amplitude for the 5-1 move using the exponentiated loop identity
Eq.(5.12) as in the case of the 4-2 move. We will again have to add the face weights for
the last four loops by adding factors of 7/. The expression for the full Pachner move then
would be obtained by applying the homogeneity map to the resulting power series. We
keep to the notation of inside spinors being w and v labeled by the strands and propagators
they belonged to. With assuming the orientation of the graph as ¥ - AJF — B, F —
C,E — D, the amplitude in terms of boundary spinors z is formally given then as

5 / {Hdﬂp (v)dp,(w } H P,( - €Xp [ZB%EU[ﬁEgleEﬂ

all
xexp Y2 (7Y A ) + i ZM@“” [ ) ot [0£))]

where the indices run over the following ranges: o € {A,B,C,D}, uv € {AB, AC, AD,
BD,BC,CD}, i,5 € {f,b,r,y,9}, where b,r,y, g indicates the blue (ABD), red (BCD),
yellow (ACD), green (ABC) strands of the left-over loops respectively, and f indicates
the black strands which compose the simplex F after the move. The external propagators
Pp(zﬁf ; wg‘f ) are defined the same way as in previous sections, namely o € {A, B,C, D, E'}
labels the simplices in which the boundary tetrahedra belong to, and ~ labels the strands
in each tetrahedra. The coefficients 8! that keep track of homogeneity of the face weights

are defined this time as

BIY =1+ 80007 (1, — 1) + 846 (1) — 1) + 84567 (1) — 1) + 0567 (17— 1) (6.5)

(6.4)
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Figure 6.9: Cable diagram for the 5-1 move. The loops inside are colored.

The formal expression of 5-1 is of similar structure as the 4-2 move, with the difference
being the range of the indices due to bigger number of loops and propagators. The ex-
pression (6.4) is relatively compact for such a complicated calculation and it contains all
the information necessary to evaluate the amplitude after the Gaussian integrations are
performed. In order to do so we just need to specify is the homogeneity map

Hs 1 [AT_,] = As_y. (6.6)

The 5-1 homogeneity map Hs_; is given by the composition of :

pod pwd! Z (—1)J/_K(J+ J —K)\J' o B T )J+2J’2K
M
K

(J+2J —2K+1)"7), (

™o KI(J—K) 1+ p2)3 67
E(J)? - Ey(J/2)* 2 : |
J 4 J N ASE SavEs & 9 1)7
TI,I,V (1 +02)2J(J+ 1)'7 TEo (1 +p2)J7 T; ( J + ) )

with F,(J) previously defined as the hypergeometric function F,(J) = o Fy(—J—1, —J; 2; p*).
The same map can be used to find the full expression for the 4-2 Pachner move as well.
The Gaussian integrals for the last four loops can be performed explicitly. Using the results
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Figure 6.10: Gauge-fixing 4 strands allows to apply loop identities 6 times, leaving the 4
colored loops.

from [98], we can write this as an inverse of a determinant of a large matrix. We leave
these integrals undone however to make the truncation procedure in the next section more
clear.

Let us now try to understand our result. In SU(2) BF theory the 5-1 Pachner move
would lead to 4 decoupled loops, each giving a factor of a SU(2) delta function evaluated
at identity. This would correspond to setting all the 73,8 to 0 and all the other 7s to 1 in
our expression. For the constrained propagator, as in the previous case of the 4-2 move,
the loops inside are coupled to each other and to the strands of the boundary spinors. This
means that as expected the spin foam model we consider is not invariant under both the
4-2 and 5-1 Pachner moves. It is natural to conjecture here, that this would be the case
for the other spin foam models as well.

The new feature of the model is the mixing between internal loops and external edges
that creates a coupling between all the different strands not present in the original form of
the vertex amplitude.

Let us try to study this mixing in some more detail. By splitting the 6-valent vertices
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in the loops, as in Fig. 6.11, it is obvious that we can try to interpret these coupled loops
as an insertion of an operator. The connections between loops and the boundary spinors

TIARY

Tl
U/

Figure 6.11: Performing the calculation we get a 4-simplex with an insertion of a nonlocal
operator.

corresponds to gauge invariant operators inserted inside the 4-simplex amplitude. It is
well known that such operators can be expressed as a sum of grasping operators [109]. In
the holomorphic context, these operators are due to the insertions of the SU(N) operators
[79], from which all geometrical operators are made. The insertion of Wilson loops and
the action of SU(N) operators are two sides of the same coin [90] — they are constructed
from the same type of gauge-invariant observables, which in our language are the products
[z|w) and (z|w). The operators we get for the 4-2 and 5-1 moves can be thus thought as
an exponentiated combination of SU(N) grasping operators and Wilson loops. Iteration
of 5-1 moves leads to a new kind of loop expansion, reminiscent of higher order diagrams
in perturbative quantum field theory. Graphically, this would seem to define a sort of
geometric series of operators made out of the “diamonds” in Fig. 6.11. Putting five of
these together, and dealing with the loops again would give us a large diamond with smaller
ones on the vertices, leading to some sort of fractal geometry.

We leave the analysis of this geometric expansion for future work and will instead try
a different approach to understanding these operators.
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6.2 Necessity for truncation

In the previous section we have seen that the mixing of strands could be understood as
the insertion of a SU(N) grasping operator. In this section we mainly focus on the 5-
1 move. This Pachner move alone can be understood as a coarse graining move which
maps one choice of the vertex amplitude to another one obtained after coarse graining.
All the other course graining moves have to be built out of non-trivial combinations of
3-3, 4-2 and 5-1 moves. As we have shown that 5-1 move generates non-local couplings
via the mixing terms, similarly to what happens in Real Space Renormalization Group
calculations. Remarkably it will turn out that the mixing terms are clearly subdominant.
This motivates a truncation scheme in which we keep only the non-mixing terms in the
5-1 move leading to a specific renormalization flow for the vertex amplitude, which we will
show in the next chapter to be indeed restricted to the space of 4-simplices.

A truncation scheme in the study of RG flows is usually associated with a choice of
the relevant and irrelevant couplings. In the usual setting this choice is tied up with the
assumptions of locality but also has to be compatible with the symmetries like Lorentz
invariance and eventually should be compatible with unitarity. These concepts needs to
be replaced by others in the case of Spin Foam renormalization. The current Spin Foam
models, including the holomorphic one we study here, are defined in such a way that they
possess the correct leading semi-classical behavior at the level of a single 4-simplex. In
hopes of defining a continuum theory down the line, the requirement of correct asymptotics
should be kept unchanged at each step of truncation in the coarse graining procedure.
Apart from this requirement, the only other one that is obvious is the preservation of
gauge symmetries. In the next subsection, we will see that a natural truncation scheme
does seem to exist for the Pachner moves already at the level of the constrained loop
identity and it preserves the above requirements.

In order to successfully coarse grain the non-local operators in the Pachner moves, we
need to understand and deal with their divergences, which we study in section 6.4. It
is important to appreciate that the divergences in the 5-1 move are welcomed in Spin
Foam models, since ultimately we would like to understand them as coming from a vertex
translation symmetry, which is expected to be related to diffeomorphism invariance. This
the would have to be removed by some appropriately defined Fadeev-Popov gauge-fixing
procedure, similarly to what has been achieved in 3d [102]. It is natural in our context, to
control the presence of potential divergences by introducing parameters like 7 determining
the strength of the face weights, or a coupling constant for each vertex, and try to absorb
the divergence into them (and perhaps into the other coupling constants already present,
like p, the Newton constant Gy together with a cosmological constant A, or even the 7
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parameters that we treated so far as book-keeping parameters).

Once we have understood the truncation and divergences, we can perform the renor-
malization step. We will suggest at the end of this chapter that this could be done by
absorbing the relevant part of the operator into the definition of the constrained propaga-
tor. This would define for us a flow P, — ]5,) in the space of constrained propagators. We
will see however in the next chapter that things are a bit more complicated than that.

It is interesting to note that besides the truncation we perform, we could also study
the effect of the insertion of the mixing terms which are subleading contributions. For the
5-1 Pachner move, we could in principle integrate out the non-local operator. Once the
divergence is removed the effect of the mixing terms leaves us with an amplitude that is
more involved than a simple 4-simplex. It corresponds to a more general structure of all
strands being mixed in the middle of the vertex, giving rise to higher-valent intertwiners.
This suggests that the additional contributions would lead to flow towards a theory of
higher-valent vertex amplitudes.

6.3 Truncation of the loop identity

In this section we introduce a truncation scheme for the Pachner moves, that will ultimately
allow us to define the renormalization flow. The expression for the 5-1 Pachner move in
Eq.(6.4) is very compact, but requires us to perform many extra integrations over spinors,
each of which in itself is straightforward, but the resulting answer is rather long. To simplify
the discussion, let us drop the dependence on the external spinors, which corresponds to
setting the boundary spins to zero. As we will discuss in the next section, this selects out
the most divergent part of the Pachner move. With this simplification, we can use the
techniques introduced in [98] and perform all of the spinor integrals immediately, with the
result being again the inverse of a determinant. The power series expansion is however very
large, depending on the order of O(150) sums over integers. Nonetheless, its structure is
simple — it is a large summation of a product of six functions N(J, A, B, J’, p) defined in the
constrained loop identity in Eq.(5.11). Thus, instead of trying to truncate the whole 5-1
Pachner move, which is a daunting task, first we can simplify the problem by just studying
the properties of a single constrained loop identity — a much more tractable problem.

Let us then take a look at the constrained loop identity. Recall that in section 5.2 , after
we integrated out the loop, additional mixing terms appeared, which were not there in BF
theory and which seem to be non-geometrical. We can analyze Eq.(5.11) to see how much
these extra terms contribute to the amplitude. The mixing terms are characterized by their
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total spin J' in Eq.(5.11). The larger J’ is, the higher order polynomials of complicated
mixings appear. The mixed strands disappear only when J' = 0.

Let us look at the large spin behavior first. As an illustration, the Fig. 6.12 presents
logarithmic plots for the coefficient function N(J, A, B, J', p) when J, A, B are universally
large (as an example, we set them to 100, but it can be any large enough number), while J’
picks small values J' € {0,1,2}. We can observe that for any p € [0, 1], N(J' = 0) is at least

N(100,100,100,3, ) N(100,100,100,3 )

1000F

1 10%2

0.001f 10%

106 1036

10%F 1023

10712} 10

005 010 015 020 025 030 035" 04 05 06 07 08 09 107

Figure 6.12: Logarithmic plots for the coefficient N when J = A = B = 100 and face
weight scaling is 7 = 1. The blue, red, yellow lines correspond to J' = 0, 1, 2 respectively.

more than J times larger than the next order N(J’ = 1), which is also approximately more
than J times larger than the next order N(J' = 2). Actually, we can plot the ratio between
the coefficient of the first term N(J' = 0) and the sum of a few subleading coefficients
}79:1N (J') in Fig.6.13 as a function of p. When p = 0, the expression converges to the
behavior of BF theory, N(J, A, B,0,0) = 1 and N(J,A,B,J’,0) = 0 for any J' # 0, as
desired. For p # 0, we get a smooth deformation of the BF result, with a similar behavior,
in the sense that the constrained loop identity is dominated by the J' = 0 term. The
smaller the p, the more dominating the unmixed term is. The same behavior holds when
spins are large but not uniformly large — the constrained loop identity is always dominated
by the terms of J' = 0.

What about the case when the spins are not large? The plots in Fig.6.14 illustrate
that actually the J' = 0 terms are still dominating even when the spins J, A, B are small.
This means that the dominance of J = 0 terms surprisingly holds not only for large spins,
but also for the small ones, even though the suppression is less pronounced compared with
large spins cases. For small spins with the value of p — 1, the dominance of J' = 0 term
is the least pronounced but still valid. To prove that we this term dominates, it suffices
to see that the sum over the remaining J’ # 0 converges quickly to a value much smaller
than the J’ = 0 term. This is indeed true and can be seen in Fig. 6.15.
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Figure 6.13: Plots of the ratio between N(J' = 0) and the sum of subleading coefficients

W _N(J") with J = A = B = 100 and face weight scaling n = 1.

All of these results so far have been for the choice of face weight corresponding to n = 1.
One could worry that perhaps the dominance of J' = 0 fails for bigger face weights. We
find however that the increasing of the face weight 1 makes the effect stronger, as it is
illustrated for small spins in the Fig.6.16.

In general, for a fixed choice of J, A and B, the leading term is given by J' = 0.

We thus propose a natural truncation of keeping just the J' = 0 terms and throwing
away all the mixing terms J' # 0:

N (J,A,B,J' p)~ N (J,A B,0,p)

e (+J;)1£31+7JF3(J) Fy (%) F? (?) 63

This truncation dramatically simplifies the expression of NV, making all the mixing and non-
geometrical terms disappear. The reason why this is sensible is because after integrating
out all the spinors, the amplitudes are a summation of a product of Ns from different
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Figure 6.14: Logrithmic plots for the coefficient N when J = 7,A = 6,B = 5, and
J =30,A =17, B = 10. The blue, red, yellow lines correspond to J' = 0, 1, 2 respectively.
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Figure 6.15: Partial sum of Z§/=1 N for J = A= B =50and p=1. The J' =0 term is
dominant with N(J' = 0) ~ 7.1 x 103!. The subdominant terms converge very rapidly.

loops, and as such the dominant contribution is from the J' = 0 terms. The truncation
scheme can be graphically expressed as
’M

(6.9)

Note that the left over strands will have to be integrated over in a calculation of a Spin
Foam amplitude. The contractions of these spinors give additional factors of 1/(1 + p?),
see the Appendix A.1. These factors will lead to additional suppression of amplitude for
bigger p, making it more convergent. This however does not spoil the truncation. We will
see the effect of this suppression in calculating the degree of divergence of Pachner moves

+ > N(J #0)

J 5 ABJJ W i
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Figure 6.16: Plots of the dependence of the ratio between N(J' = 0) and the sum of
subleading coefficients with face weight n when J =7, A =6, B =5 and p is close to 1.

in the coming section.

6.4 Counting the degree of divergence

Before we write out the truncated Pachner moves, let us first calculate how divergent the
5-1 move is as a function of face weight. The question of divergence is closely related to
the one of symmetries. Indeed it is expected that in a physical model divergences of the
partition function should be related to symmetries. This has been only shown exactly in
3 dimensions [102] so far.

In a model describing 4d gravity we would expect the 5-1 move to be invariant up to a
divergence coming from the freedom of translation of the added vertex inside the 4-simplex.
Hence we would expect that for gravity the divergence should scale as (length)*. Of course
at this stage this is a naive guess but it would be harder to argue for a diffeomorphism
symmetry otherwise. In the case of translational symmetry this divergence is due to the
possibility of moving the internal vertex outside the geometrical simplex. It can be tamed
by incorporating orientation dependent factors as shown in 3 dimensions [101]. The Spin
Foam models at our disposal do not yet incorporate orientation dependence so it is unlikely
that this phenomenon can be used in our context.

The easiest way to count the degree of divergence is to set the external spins to 0, so that
only the internal loops contribute. The calculation for the mixed 4 loops in the 5-1 move is
rather involved, but thanks to the natural truncation discussed in the previous section we
can do the calculation. Let us however first try to estimate the degree of divergence arising
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from a single loop in the 4-2 move. It is important to stress here that in this case we do
not need to do the truncation, as setting the external spins to 0 corresponds to dropping
all the products of spinors that contain the external ones in Eq. (6.2), and hence naturally
makes all the mixing terms drop out?. This allows us to write the amplitude for the single
loop in 4-2 move as

AB_AD_BD _/ AB_AD_BD,__1\2j
4- A (wlw) 1 : NN TN T
A; Q(O)Z/dﬂp@})e (o7 - LAB_AD_BD 2:Z<2j+1>< (1+ p2)3 ) ’
N N

(1-FEAE) T
(6.10)

where, recall we have labeled the three loops, on which we applied the loop identity, by
{AB,AD,BD}. Using the homogeneity map defined in Eq. (6.7), we can reintroduce
the factors of face weight and the functions of p from loop identities. Regularizing the
expression by putting a cut-off of A on spins, we get that a single loop in the 4-2 move is
given by

A .

(2] + 1)t : :
Dyo(N,p,n) = Z; W[ZE(_ZJ —1,-25;2; p")]". (6.11)

]:
It is easy to see that, since o F}(—2j — 1,—24;2;0) = 1, for p = 0 and = 1 we recover the
SU(2) BF theory’s divergence of a delta function dgy(2)(1). It may seem surprising that
the exact result is this simple. For the purpose of analyzing the divergence let us write

D472(A7 P, 77) = Z;'\:O X4*2(2j7 P, 77)

1
Xa_2(100, % ) D4_2(100, > i)l
1000 108
104 ]
10
101
10-18 104
105 100
1 2 3 4 57 1 2 3 4 57

Figure 6.17: X, 5 has an obvious dependence on 1 on a logarithmic plot. The sum diverges
a lot faster with increasing 7.

Let us start with analyzing the behavior of X, 5 and D, 5 as a function of n. This
is shown in Fig. 6.17. Quite obviously, at fixed spin, both X4 o and D4_, are diverging

2This is another reason for seeing that the mixing terms might not be important.
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with increasing n. We get the opposite behavior for increasing p — both X, 5 and D4 5 are
heavily suppressed for increasing p, as can be seen in Fig. 6.18. This is the effect of the
additional suppression by factors of 1/(1 + p?) that we mentioned in the previous section.
We can thus expect interesting competition between p and 7 in concerning divergences.
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Figure 6.18: X, 5 gets suppressed with increasing p, with p = 0 being the limit of SU(2)
BF divergence. The sum is even more suppressed with increasing p.

Fixing p to a specific value, we can analyze now the divergence of X, 5 for different val-
ues of n, as a function of spin. We numerically find that X, 5 is suppressed with increasing
spin, but around n = 5 there is a transition to divergence, see Fig. 6.19. This seems to
be independent of the value of p, and indeed in [I01] Chen used the asymptotic expan-
sion of the hypergeometric functions (3.12) to show that the exact degree of divergence is
D4_2 — A4n—19.
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Figure 6.19: For small values of n, X, 5 gets suppressed with increasing spin. There seems
to be a transition in the behavior around 7 = 5.

Let us now move onto the calculation of the degree of divergence for the 5-1 Pachner
move. Truncating the loop identities in the 5-1 move allows us to perform the Gaussian
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integrals easily and write the four remaining loops as

1
T truncated(()): TIGCTJGDTEDT 2 T]’\?BTADT]}\B,DT/ 2 TJGBTJGCT]]\B;CTq 2 TECT]]\BI'DTSDTT 29
(HW) (HW) (HT)‘) (HW)
(6.12)

where, similarly as in the 4-2 move, the six loops that we have integrated out were la-
beled by the set {AB, AC, AD, BC, BD,CD} and the left over four loops are labeled by
{y, g,b,7}. Comparing this to the 4-2 move expression (6.10), we see that clearly we have 4
loops, that are not connected by any strands, but which are nonetheless coupled by sharing
the 7s, and hence functions of spin and p. We can now expand this in a power series for
the fours spins jy, jg, Js, Jr and reintroduce the factors of the hypergeometric functions and
face weights by using the homogeneity map from Eq. (6.7). Letting a,b,c € {y,g,b,r} we
can write the full expression for the degree of divergence as

5— 1_2 1+p 242 274 H p( Jat ]b) ( Jat2J6 + ) H p( Ja T2+ jc) 5

]y’]PnﬂN]T a<b a<b<c

A

(6.13)

where, recall, we have previously defined F,(J) = o Fy(—J — 1, —J;2; p*) for simplification.
Let us define D5_1 = Z{]} X5_1(j).

This general expression is rather long when expanded, but numerically it turns out that

it is peaked around all the spins being equal. Hence for all spins equal to j, we have a nice
simplification

(25 + 1)4(n+1)(4j + 1)6(77—1)

X511 ({5}) = (1 + p?)%6x2

F,(45)"F,(65)®. (6.14)

Again, it is easy to see that for p = 0 and n = 1 we recover the result of 55U(2)(]l)4 for
the SU(2) BF theory. We can now analyze the behavior of X5 ; as a function of p. The
results are qualitatively similar to those of 4-2 move, in the sense that the expression is
suppressed for increasing p, see Fig. 6.20.

Quite obviously X5_; has similar behavior to X, 5 as a function of 7, so we will not
present plots for this. The interesting difference is in the transition from convergence to
divergence of each X;5_; term in the summation. The point of transition numerically seems
to be around n = 3.2, see Fig. 6.21. Note, that the expression of D5 _; includes four
summations, so it actually becomes divergent even before n = 3.2. Again, Chen showed in
[101] that the exact degree of divergence is given by D5 _; = A'®7=2%_ This means that the
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Figure 6.20: X5_; is suppressed with increasing p for all values of n and spin. This plot is
evaluated at 25 = 100 and n = 1.
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Figure 6.21: For small values of n, X5_; gets suppressed with increasing spin. There seems
to be a transition in the behavior for n = 3.2, but the overall the summation is divergent
for n > 2.8.

5-1 Pachner move is divergent for n > 2.8, while it has the possibly desired divergence of
A?% at n = 3. Interestingly, we thus find that there is a range of the parameters 1 for which
4-2 Pachner move is finite and 5-1 move is divergent.

Somewhat disappointingly however, the face weight of (27 + 1)% is not one that is
naturally motivated. One could just accept this and move forward, which is actually what
we will do. There is however a pretty natural explanation for this value — our imposition
of constraints on the inside of the 4-simplices quite naturally might have resulted in more
suppressed amplitudes. Indeed, if at each edge we multiplied the factor of %
by a simple factor of J, then the ten internal edges in the 5-1 move would conspire to
give us a divergence of A1, Combining this with our result, we would get that this simple
modification would give us the correct divergence at n = 2! This inclusion of the factor
of J for each edge would also increase the divergence of the 4-2 move, but it would still

be convergent at 7 = 2. We should be also careful to not spoil the truncation scheme we
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introduced in the previous section. One could justify this additional factor by suggesting a
non-trivial edge weight A.(j.) in the model, but unfortunately there is no guiding principle
for choosing it to be anything else than 1 naturally, apart from the artificial fine-tuning
of divergences. This however lets us keep in mind that the exact value of the coupling
constants might not be that relevant, if we allow arbitrary edge weights.

6.5 Truncated Pachner moves

Now that we have already studied their divergence properties, we can write down the full
expression for the 4-dimensional Pachner moves after truncation of the loop identities. As
we will see, even though the loops in the moves are no longer mixed, there is still non-local
coupling by spins.

Let us start with the simple observation, that the truncation does not change the non-
invariance of the 3-3 Pachner move. The loop inside does decouple, but the truncation of
the constrained loop identity does not change the fact that the hypergeometric functions
of p depend on different boundary spins in the two configurations. Thus even after the
truncation, the 3-3 Pachner move is obviously not invariant, unless one considers very
fine-tuned boundary spins.

Since the amplitude for the 4-2 and 5-1 moves look formally very similar, let us focus
on the most interesting case of the 5-1 Pachner move. After truncation, the amplitude in
Eq. (6.4) becomes

AT truncated /Hdlup v, w H P Za %Eo[ﬁEa‘wE(’)—"zum TN BHV[,UHV‘U]V#)
all
/ H d/’Lp (Y HP Z TEU[UEU'“’EU>+ZMV 7—N V VH AT truncated(o)
left over
(6.15)

where recall that indices run over o € {A, B,C, D}, pv € {AB, AC,AD, BD, BC,CD},i €
{f,b,r,y,9}, a,v € {A,B,C,D,E}. We have also defined the amplitude with boundary
spins set to zero, A5 (0), in the previous section in Eq. (6.12) to be given by

T truncated

0)= L

e I s ’ 14 ROTRP T ’ 14 RO ’ 14 TRETRPTR &
(1+p%)3 (1+p%)3 (1+p%)3 (1+p2)3

AP
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It is imperative now to notice that this does not trivially factorize, as we still have to apply
the homogeneity map to obtain the final expression. The map defined in Eq. (6.7) tells us
that the 7ys are actually functions of the 7s from the partially gauge-fixed propagators.
The homogeneity map for the truncated 5-1 Pachner move is Hy_;[A° A
and is given by

T truncated] truncated

L J 2
v _ TELTEY . F,(J/2 - _
Hs oy o7 =By () (T 1) (ﬁ) , Tiho (1,;:_ 22)>J’ 7 (24 1)
(6.16)

Before applying this homogeneity map, we need to first integrate out the extra spinors on
the internal strands — because of the previously inserted propagators, each strand now has
two spinors, instead of one. This is a simple Gaussian integration that we have performed
many times before. This however requires us to contract the boundary propagators P, with
functions of 7y and 7. If these integrations could be performed in a symmetric manner,
we then could define new boundary propagators Pp after applying the homogeneity map
(6.16) . The amplitude (6.15) in that case would become

‘Atruncated( D5 1/Hd//¢p Wo HP (617)

This is the form of an amplitude for a 4-simplex with the modified propagators I5p weighted
by an overall, possibly divergent, factor Ds_; which we would expect to have the same
degree of divergence as the function D5_; we studied in the previous section. The exchange
P, — ]5p would then be proposal for a renormalization flow in the space of propagators.
We will however show in the next chapter that the situation is not this simple.
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Chapter 7

Towards vertex renormalization

The story so far:

In the beginning the Universe was created.
This has made a lot of people very angry and
been widely regarded as a bad mowve.

Douglas Adams
The Restaurant at the End of the Universe

At the end of the last chapter, we came to the expectation that the amplitude after the
5-1 move could be rewritten as a product of five new propagators. We will however show
in the second section of this chapter that this is impossible, due to the non-local structure
of the result. It turns out however that it is possible to write this expression in terms
of a renormalized 15j symbol. To see this, we will first rewrite the amplitude back from
spinorial basis into the more usual spin basis. It turns out that in this basis, the result
of the 5-1 Pachner move factorizes. We will then study the result in a symmetric case to
reduce the parameter space.

7.1 Current state of Spin Foam renormalization

Before we dive in to studying what the 5-1 move tells us about renormalization, let us
quickly review some of the previous work towards renormalization in Spin Foams. While
the Spin Foam approach has naive similarity to lattice gauge theories, since both are de-
fined on a discretization, there are very important differences that make renormalization
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in our case non-trivial. The main difference is that Spin Foams are background indepen-
dent. What this means in pratice is that the discretization does not have a global spacing
parameter. Moreover, the simplicial decomposition of spacetime is higly irregular, so the
usual techniques do not apply.

In one of the earliest stabs at the problem, Markopoulou [31] suggested that a single
block transformation could increase the Planck length [p to a multiple of it as a definition
of a scale transformation. She then proposed an interesting renormalization procedure
based on local block transformations based on a Hopf group construction ala Kreimer.
The crucial idea that would allow this was a notion of the possibility to nest more fine
sub-foams in more coarser foams. Foams that have no such sub-foams are then called
primitive, and in our notation would correspond to various types of loops. An interesting
point raised in Markopuolou’s work was that there was no natural notion of an inverse of
a Spin Foam, but that one could define an antipode, which is the equivalent of the inverse
for the coproduct, which can be defined as the unfolding of the nesting structure. The
antipode then can be seen as an iteration over the sub-foams until one reaches a primitive
foam.

The work of Oeckl [32, 33] provided another local framework, which changed the Renor-
malization Group to a cellular groupoid. The interesting point of the proposal was that one
could dispense with the notion of a lattice spacing in favor of a more local notion of arrows
defined by changing of cellular decomposition, with a fixed initial and final decomposition.
The collection of arrows, which allow the definition of an inverse define the renormalization
groupoid. The big difference of Oeckl’s construction to our work lies in his use of cellular
moves, which are all coarse-graining, unlike the Pachner moves. As we are however mostly
interested in the 5-1 Pachner move, some of the ideas in his work are relevant.

The notion of using the embedding of Spin Foams to define scale has been crystallized
in the notion of cylindrical consistency and embedding maps [17, 34, 35, 36, 37, 38]. As
in the above constructions, one starts with the notion of embedding finer 2-complexes
within more coarse ones. Since general 2-complexes form only a partially ordered, but
directed, hierarchy, the Renormalization flow runs not over a linear sequence, but along a
partially ordered filter. To define this embedding, we consider the Spin Foam amplitudes
as transitions between boundary spin network states ¢ in a Hilbert space Hr, where I is
the graph on the boundary of the 2-complex. If a boundary graph I'” can be embedded in
a finer graph I', then we can define a partial ordering IV < T". The embedding map is then
an isometry

trre - Hre — Hr (71)

that satisfies the compositions trrieprrr = tpre. The cylindrical consistency condition for
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the amplitudes is then defined by requiring that the amplitudes satisfy
Ar = Arurrp. (7.2)

In this framework one then would study the flow of coupling constants ¢ — ¢/, and consider
a theory to be renormalizable if the amplitudes can be parametrized by a finite number of
these coupling constants, same as in perturbative QFT.

This scheme has been implemented in the series of works by Dittrich et al. on using
Tensor Network Renormalization [39, 40, 41] applied to simplified analogues of Spin Foam
models, known as Spin Nets [12, 13, 44, 45, 16, 47, 18]. These models are dimensionally
reduced in the sense of being defined on a regular lattice of an arbitrary dimension, rather
than a 2-complex. The partition function of these models can be expressed as a contraction
of a tensor network, which allow local changes into a coarser network — in this sense one
defines an RG flow of tensors. The numerical studies of these models in case of finite groups
(including SU(2), which is related to imposition of a cosmological constant in LQG) have
discovered very rich phase structures. Recently, these methods have been also applied to
4d Spin Net analogues of the EPRL-FK model with the finite SU(2),xSU(2); group and
revealed complex dynamics resulting from the imposition of the simplicity constraints [19].
It is however unclear how these results on regular lattices with finite groups (with the
cutoff on spins set to the rather small value of £ = 12 to make the numerical computations
feasible) exactly relate to the full 4d Spin Foam models. The first such attempts have been
made in [50]

Interestingly, the framework of cylindrical consistency and embedding maps has been
recently applied to the EPRL-FK model restricted to hypercuboidal configurations by
Bahr and Steinhaus [1 10, , |. While the restriction to summing only over the hyper-
cuboidal foams is quite restrictive one, as these configurations do not capture any curvature
(the Regge action always vanishes for hypercuboids [ 10], because all the dihedral angles
are /2 with four hypercuboids meeting at each square), it does nonetheless describe some
of the configurations of the full theory. In this regime, the RG flow truncated to the space
of hypercuboids was studied and showed the existence of a phase transition in the power
of face weight n related to hypercuboid vertex translation symmetry (in the context of
subdividing a hypercuboid into two parts). These results however are not applicable to
our study of the simplicial case for several reasons. The first one is that the notion of
vertex translation symmetry in the simplicial case is much more complicated, as one has to
sum over many spins rather than one. More importantly, while the amplitude of a single
hypercuboid depends on the face weight, while a single 4-simplex does not. As such, we
come to the conclusion that a single 5-1 Pachner move cannot define a flow in the power
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of the face weight 1. The results in the hypercuboidal case are nonetheless an important
step forward in understanding renormalization of 4d Spin Foams.

Finally, no discussion of Spin Foam renormalization would be complete without men-
tioning Group Field Theories [52]. GFTs are a generalization of matrix models very similar
to ordinary QFTs, with the difference that one integrates over group manifolds GG, rather
than R%. The partition function of a general GFT for GP-valued fields ¢(g1, ..., gp) = ¢(g:)
can be written as

Zarr = /Dqﬁe_% J dgidhi@(g)K (gih; ) (hi) =X [ TLi; d9isV (91585 ) #(91) (9D +15) (7.3)

where K and V are arbitrary kinetic and potential kernels respectively and A is a vertex
coupling constant. The evaluations of the Feynman diagrams of GFTs are Spin Foam
amplitudes. For example, the choice of

K(z:) —/Gdgné(l’ig)a V(zij) —/GHdgiH5(gﬂz’j9jl) (7.4)

1<)

results in a GFT whose Feynman diagrams correspond to BF amplitudes. With recent
progress in large N limit and colored Group Field Theories [113, , ], the renormal-
ization of these models can be finally studied. Technicalities aside, the renormalization
of GFTs is very similar to that of standard perturbative QFT. The models studied so far
[53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67] however have not been of direct
relevance to 4d Quantum Gravity. As such, the lessons of GFT renormalization will not
be directly applicable to our situation, though we will borrow the notion of a coupling
constant \ for a vertex.

7.2 Non-locality with spinors

We will now show that the expectation that the amplitude after the 5-1 Pachner move could
be written as a product of renormalized propagators is actually false. This actually could
have been simply predicted already before the truncation, where we made the observation
that the effect of the move could be seen as an insertion of an operator that mixed strands.
The truncation of loop identity removed the additional mixing in spinors, but did not
completely take away mixing of spins.

The technical reason for why we can make this statement is that the overall product
of 7s in the amplitude (6.15) restores hypergeometric functions, which depend on sums of
spins belonging to different propagators.
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While the above statement is conceptually rather clear, proving it in the case of the
5-1 move is quite lengthy. We will thus show why it cannot work in a simpler case that
nonetheless captures the main difficulty. Namely, we will consider the 4-1 Pachner move
in a theory constructed from the same constrained propagators P, as in the 4-dimensional
model, but with one strand less. The loop identity and all the other methods follow in
exactly the same way, with the only difference being the smaller number of spinors.

First of all, recall from Chapter 4 the 4-1 move results in a single loop. There are
also six strands, each carrying a factor of exp (7[0|w)) or the corresponding one for 7.
These factors can be easily integrated, and their effect is to rescale the spinors at the end
of the strands. For each strand we can symmetrically split each 7 into two factors of /7
and absorb these into the spinors on the boundary propagators. We will label the strands
1,...,6 and the propagators as A, B,C, D as in Fig. 7.1.
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%A %D *C
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b‘\).—’g\lé\?.u
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@
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D D D
ZA ZB *C
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Figure 7.1: Moving the 7s onto edges after the 4-1 Pachner move. The open circles denote
gauge-fixed contributions to the nonlocal factor, while dots denote the un-gauge-fixed ones.

To show what the amplitude looks like as a product of spinors, we will use the methods
developed by Hnybida and Freidel in [95] for exact evaluation of SU(2) spin networks. It
was shown in that work that an arbitrary SU(2) amplitude is given by

1
(1+ 20 Ac(z))*
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where C' = {cy, ..., ¢} is a cycle union in the graph I' where a cycle is a collection of edges
¢ = (e1,...,e,). The cycle union amplitude is then Ac(ze) = A., (ze) - - - A, (2e), where A,
is a product of spinors for each cycle given by

Ac(ze) = (_1>‘e|[ze;1 |Zez>[ze;1 |Ze5) -+ [2ez1|2e ) (7.6)
where |e| is the number of edges with orientation same as I

What this means is that in the specific case of the tetrahedron, we have

1
ABS = 29
(1 —Aupc — Aapp — Aacp — Asep + Aapep — Aappe — Aacep)

(7.7)

where for example Aapc = [28]25)[25128)[25|29) and so on. Note that this result only
holds true for SU(2) BF theory. However, since we can use the homogeneity map, we
can hide the F,(J) for each propagator in a 7, for a € {A, B,C,D} and absorb these
factors into the external spinors |z). We thus can write the amplitude for the constrained
tetrahedron in terms of 7s as

(n 4 -+ +n.+1)!
Tg = Z ' Z' so ANegp X frargrers (N1, - .o, 07) (7.8)
S Nyt Nyt

with

__ nitn2+ng, _nit+nz+ng, _ni+nz+ng __nz+ng+ng ns+neg+ny
Jrarprorp (M, ..o n7) =Ty T T T (TaTTCTD)™ , (7.9)

where each 7/ carries a factor of F,(.J). We can also write this for the amplitude of the
4-1 move by absorbing the additional 7s into the spinors as discussed above and shown in
Fig. 7.1. Before we do this, note that each 7V depends on some 7s. We can factor these
out by defining

Tiv :%17:374, 7'5N :7~'17~'27'5, TGN :7:27:37—& (710)
where now the homogeneity maps are given by 77 — F,(J)*(J + 1)"*(1 + p?)~5/ and
72— F,(J)*(1 + p*)~2/. Since the single loop in the 4-1 move gives an additional factor

of
(1 - M) o > (L+1m (M)L (7.11)
(1+p%)? - 1+p23 )
we find that the amplitude for the constrained 4-1 move can be written as
T = Z (u+-+n.+1t 0 (L (mas )
) ni,.n,L ml---ng! Ape ACBD (1 4 p2)3 JTampremo il 7
(R (2 (28
x ppetratnetnrtl poitnatnstng bl pnstnatnstne L

(7.12)
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Comparing the coefficients in f;, 7o, (1, - . ., n7) and those of the additional factor above,
we can readily see that the different nonlinear functions carried by 7 and 7 cannot be
absorbed in any symmetric way into the 74,...,7p. The main reason for this failure are
the properties of the hypergeometric functions in that they do not factorize nicely and
that a product of two different hypergeometric functions is no longer the same type of
a hypergeometric function. For some more justification, see the Appendix. This rather
anti-climactic remark proves the statement that we cannot write the 4-1 amplitude as a
product of a same type of propagators. Similar reasoning can be carried out for the case
of 5—1 move, though with quite a bit more parameters floating about.

The fact that the amplitude cannot be written as a local product of propagators seems
to be a Spin Foam realization of the result in quantum linearized Regge Calculus, where
Dittrich et al. [70, 72] showed that while the Regge action was invariant under the 5-1
move, the measure attained a non-local factor.

7.3 4-simplex amplitude in terms of spins

Let us now try the alternative approach of rewriting the amplitude in the spin basis. This
goes against the spirit of using the spinor basis to simplify calculations, but as we will see,
it makes the structure of the result more clear in this case.

We can start by remembering that we can rewrite a propagator as a summation over
intertwiners

ji ji
J2 J2

7s 7s —Z Jz (7.13)
J4 J4 L

Recall, that the intertwiner basis we use in this thesis is labeled by integers £;; and was
introduced in [99]. From our definition of the propagator in Eq. (3.14), we have that the
propagator written in terms of k;;s is given by

ZZ|Z] wz|w]>)k
o Z J+1 lZH

k] i<y

A natural splitting of this expression presents itself, since it is already a neat product of
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[2i|2;) and [w;|w;). We find that a 4-valent intertwiner can be simply expressed as

| () oy (zlz)™
§;> B (J+1ﬂ£l NG (7:14)

In a 4-simplex amplitude, we have in total 20 integers k. This naturally leads to a
definition of a 20j symbol. To see the structure, let us first explore this in the case of BF
theory, where it is given by

A2+ ny o
{205} pr = 1 H éeziq[zj\szza i ke Inzg ‘Zj>7 (7.15)
\/H“(Ja +1)! Ha¢i<j kil i m

where ]z;) is a spinor from vertex i to vertex j. To connect this to the usual definition in
terms of 15j symbols, we need a parametrization of the integers k.

In [99] a useful parametrization of the basis of 4-valent intertwiners labeled by integers
k;; was introduced in terms of Mandelstam variables S, T and U. Recall that

> kij = 2ji.
J#i
We then can express the Mandelstam variables in terms of the 4 spins and k;;s as
S=j1+j2—ke, T=j+J3—ka, U=j+Js—ku (7.16)

They can be expressed also in terms of other spins due to the overcompleteness. Overall
the Mandelstam variables satisfy the constraint

S+T+U=J. (7.17)

The usual 15 j symbol is expressed in terms of 10 spins j and a single intertwiner label.
In [99] it was shown that for example in terms of the labels S, we have simply

{155}s, = > _{205}s,.7, (7.18)

We are now ready to express the 20j symbol in the constrained case. The only two
differences are the extra weights F,(J) in the 4-valent intertwiner and the different mea-
sure of integration d,(z). Looking at the expression in BF theory, we see that clearly
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the hypergeometric functions are going to factorize, so the only non-triviality lies in the
integration measure. However, a simple change of variables and the property of logarithms
makes the additional factors of (1 + p?) also factorize. We thus find that the contraction
of five constrained intertwiners is given by

d2 7 o
1= e2ici (1P 51240 Xy by Inl2f25)
{QOj}p—\/H( 'Hk: /Hﬂ'Ql—}—p <J J <j™vij J
R

\/ﬁzzi /H & /Z L QZ‘Z?HZ iy ki 2+p§)
s 'Hk
= <H \/Fp(Ja)) e {20/} r
5
= 073 TTyE00 )%
a=1

Just as we expected above, the additional functions of the Barbero-Immirzi parameter
factorized.

(7.19)

Since the additional factors only depend on total spins on each of the vertices, we can
again sum over the 7" labels to get finally

{155}, = ﬁ Fy(Ja) x {155} (7.20)

o a=1 (1+ p?)7 e .
This result is perhaps surprising in its simplicity, but as we have shown in Chapter 3, it
seems to lead to the correct semi-classical limit. Having already integrated out the group
elements and identified the left and right spinors with the simplicity constraints, it is no
easy task to get intuition for the asymptotics.

7.4 Renormalizing the 15j symbol

Now that we have rewritten the 4-simplex amplitude in our model in terms of a 15j symbol,
let us rewrite the 5—1 amplitude in terms of the spins as well. Before we jump into the
details of the calculation, let us try to schematically see what the calculation will look like.
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For each strand in the diagram we have effectively an additional factor of du, (w)e7wilws)
after the 5-1 move, as well as the factor A7 . (0). We can split this additional fac-
tor by inserting a trivial SU(2) projector in the middle and changing the variables to
|wi) = 7;Jw;). This split allows us to pull the two factors into the opposing ends of the
strands, and hence into two different boundary propagators. What this effectively means
is that the boundary propagators change as P,(z, w) — P,(z, 7w). For the whole Pachner
move we would then have something along the lines of

20 o1 / Z(ler Mws|w;)+>° kij In 775 [wiw;) A 0
{ ]} \/H +1 'kaj :Zl_‘[ 7T2 1—|—p Ttruncated( )

w / H F {ZOJ}BFQ (1+p2) A5 truncated(o)

= {20]}P H(TiT]> Z]AT truncated<0>

Assuming that such a product of 7s does not depend on the S, T intertwiner labels, we
could then transform this into an equation for 15j symbols. Let us see now explore the 5-1

(Se.Ts)

(SE I-I-E) (SDTD)
Figure 7.2: Spin labels in a 20j symbol, together with ordering of strands for each vertex.

amplitude in more detail. Comparing the above to the Eq. (6.15), we see that each internal
strand carries either a factor of 7y or 7. Each vertex would then get half a contribution
from the given strand, for example a /7n. To get these factors correct, let us first label
the 4-simplex carefully. See Fig. 7.2 for the choices we make here.
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For concreteness, let us see how the k{} depend on spins at the vertex A, and what the
7s associated with them are. From the condition ., ki; = 2j; and Egs. (7.16) and (7.17)
we have

ki = jag + jap — Sa, kiy = jap + jac —Ta, ki =Sa+Ta— jap — jac,

kys = Sa+Ta — jag — jap, kyy = Jap +Jap —Ta, kiy = jap + jac — Sa.

Similar relations can be obtained for all five tetrahedra. Notice that this defines 30 integers
k, only 20 of which are independent.

Let us now look at the product of 7 on each vertex. We will only do this again explicitly
for vertex A. Following the labelling in Fig. 7.2, these are simply

A_ /= A_ | Aap _A_ | ac _A_ /_aB
TV = A/TAE, Ty =A/TN" s T3 =A/TN s Ta =A\/Th"- (7.22)

Putting these two above results together means that the overall product of 7s for the vertex
A is given simply by

A A(kfy+ ks 4k,
H(Tz‘ATA)k” =7 (Fip ki +kiy

(kib+hgyhsy) Alkis+hsy+hsy) Alk{yths+egy
J 4

) A
Ty T3
i<j

(7.23)

This can be repeated for all the vertices. As we see, the careful analysis indeed shows that
each 7 is only raised to the spin of the strand it is attached to. Since each strand appears
in two vertices, we arrive at the pretty obvious, in hindsight, result that the overall product
of 7s is

HH(Tiaqu)kfj _ (T],\{}B)2jAB (T]éc)QjAc (7_],\47D)2jAD (7~'AE>2jAE (Tﬁc)QjBC (TJJ\?D)%BD y
a i<j (7.24)

X (Fpp) 7" (157) 77 (Fop) " (7pp)"*

It’s pretty important to note here that this does not depend on any S or 1" labels, but only
on the spins. This means that we can safely sum over the S or T" labels to work with the
15j symbol, rather than the more unusual 20j.

Before we assemble all the pieces, we cannot forget that these 7s have been absorbed
into propagators through integration, which will give us additional factors of (14 p?). For
example, we have

Tv|w T
/d,up(v)Pp(z,w)e bl = p, (z, rpQw) (7.25)
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Hence, we have to divide every 7 by a factor of (1 + p?), which gives us an overall factor of
(1+p?)~2%a’a. To obtain our desired result, we now only have to expand the A°~! . (0)
factor into a power series and use the homogeneity maps from Eq. (6.16). Notice that this
factor depends on the same 7s as the [, [],; (TiaTj@)kfj we just calculated. Recall that,

crucially, the 7n depend on 7s. In the homogeneity map (6.16) we have
T\’
vJ — v
N = F(J)*(J + 1) ((14ﬁ—p2)5) ;
so it seems quite natural and useful to redefine it as

E,(J)*(J + 1)1
T]L\L[VJ = T;LJV ~éy7~—éw with sz/ — P( (1) _f_ p;;SJ) ’ (726)

Now that we have dealt with the 7 factors on the strands, we need to deal with the
terms coming from the remaining loops. To express A‘:’_tiuncated(O) in terms of spins, we

will use the power expansion of the square of the geometric series

T = @+ e (727)

J

Expanding all the 7 into the 7 and 7s, we can finally write down the extra series expansion
of 7 after the 5—1 Pachner move. For sake of brevity, let us define the function of 7s that
we need to evaluate as

N (7], [K) = (L4 p%) " 2 TT T ) 5 A7 L ncarea(0) (7.28)

a 1<j

Using the expansion above together with the Eq. (7.24), we find that N is given by the
not too lengthy expression:

; n+1 ; o
N([ } []) _(1 + 2)7Za Ja (2]l + 1) 2jAB+27p+2]g x
T J1) = P (1 _|_p2)6jl TAB
jbngajTajy l:bzg»r’y
2jac+25y+27g _2jap+2jy+25p _2iBc+25r+25g _2ip+25u+24r _2icD+25y+27r

X TaC TAD Tpc TBD Tep X
% ~2J A+4(Jp+ig+iy) ~2Tp+4(y+igtir) ~2Jc+4(r+igtiy) ~2Jp+4(Gp+ir+iy)

TEA TEB TEC TED :

(7.29)

As is often the case with gauge theories, the truncation we have chosen is clearly visible
in this expression, but hopefully the dominant contribution is independent of this choice.
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This was actually shown to be true in [101] at least when the external spins vanish — the
choice of the gauge-fixing tree does not impact the degree of divergence.

All that is now left is to apply the homogeneity map (6.16) to A to get the renormal-
ization factor after the 5-1 Pachner move. We define

Ns—1 ([J]) = Hs—1 [N ([7], [])] (7.30)

The full expression for N5_; ([j]) is a rather lengthy, but still manageable, monstrosity.
To simplify the expression, we will label the loops not by their colors, but by the edges
they originally touched before the loop identities. As such, we let

Jb =JABDs Jg = JABC, Jr =JBCDs; Jy = JACD (7.31)

With this notation, we can get also get rather clearer understanding of each of the terms.
We obtain

; +1
Ns—1([J]) = Z < H M) (1+ ,02)’3211 Jat2J5=103, oy (a,B.c.D} Juv

s 1+ p?)'si
JbsJgsdrsdy  \l=b,g,m,y ( P )

2 n—1
x I =& <2jw+2 > j,m> (sz+2 > juw+1) (7.32)

u<ve{A,B,C,D} o>p,r o> v

2
< |1 Fp(22juw+JH)

.U‘E{AaB’CyD} V<0'76'U,

We can see immediately that this is a minor modification of the expression (6.13) for degree
of divergence of the 5-1 move, with additional external spins inserted in the hypergeometric
functions and some additional factors of (1 + p?).

Introducing a coupling constant A, for each 4-simplex, the above calculation allows us
to write down the equation for the flow of the vertex amplitude under the 5-1 Pachner

> {15530 = {157}, x Mooy (1) A) = A {155, (7.33)

internal j

This shows that our truncation scheme has successfully truncated the flow to the space of
4-simplices.

The ten external spins are all independent, which complicates the analysis of the general
case of this flow equation. We will consider the simpler case where all the spins are set
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equal to the same j. This is well motivated, since the symmetric configurations have the
highest contribution in the large spin limit'. The non-trivial function Ns_; ([j]) in this
limit becomes

2
. Hl:bg'ry(zjl + 1)77+1 ’ . .
Ns-1(j) = Z (11 p2)Briitiiz) H Ep QZ]li +4)
i=1

jb,jg:jrvjy ll<12<l3€{byg’T7y}

2 2 2 n—1
X 11 Fp<2j+22jli) <2j+22jli+1>
=1

li<lae{b,g,ry} =1

where we went back to the shorter notation for the loops. We expect this to diverge as
Ds_4, but note that the external spins are now mixed up with the internal loops through
the hypergeometric functions. To understand this structure better, let us study it in the
large spin limit approximation. Since we are interested in Ns_; as a function of both p
and 7, we can use the asymptotic expression for F,(J) in Eq. (3.12), which is valid for
0 < p < 1 strictly. Note that the contribution from the internal summed over loops is
purely divergent, so we can also approximate them to be large. Thus letting all spins be
large, we have to leading order

. 2 . _
Ns_1(j) ~ N, Z [L,(2j + 1" Hl <lz(2] +230 gy 1) (7.35)
. 3 . ) .
JbsJgsdrsy Hl1<12(QJ +2 Zz 191 ) Hll<lz<l3 (4] + 221':1 ]li)g
where the normalization factor is given by
1 2160
N, = e (7.36)

P (47T)10p60 :

If we impose a cutoff A on spins, rescale the external spins to Aj and the summed over
ones to Aj;, with A — oo, and approximate the summations by integrations, we get

. H 25/ Ty, (25 + 2200 )
N5—1( N D5 1/ H l l<;:~. 9 3 ~.1 3 ) (737)
€ I=bg,ry Hl1<lz<l3< J + Zi:l jlz)

where we introduced a small regulating cutoff € due to our expressions for F,(.J) being
only valid for large spins, and recall the divergence of 5-1 move is Ds_; = A97728. This

!'Note critically though that neglecting the off-diagonal terms results in greatly underestimated value
of the amplitude.
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integral is now a finite function of j = j/A, which we can study numerically. Before we
do so, notice that we have roughly Ns_; (j) ~ 779 so we expect some phase transition
from a decreasing to an increasing function of j.

Numerically integrating the above expression gives us the behavior of N5_; () as both
a function of spin and face weight power 7. Let us first see what happens when the 5-1
move has the divergence of A?, which is the one we would expect it naively to have if it
corresponded purely to the freedom of translating a vertex in 3d space. The results in this
case can be seen in Fig. 7.3. As we can see, in this case N5_; (j) is a rapidly decreasing
function of the boundary spins.

L
A

at n = 3, where the 5-1 move has A? divergence.

Figure 7.3: Plot of 42=10)

Let us now investigate the "phase transition” when boundary spins start contributing
towards the divergence of the amplitude. It turns out that our naive expectation was not
exactly right, as at n = 6 we still have the same behavior, though a much slower decrease
with j. However, we find that around n = 6.5 we do indeed get a transition from a rapidly
decreasing to an increasing function of spin. Interestingly, around the transition point there
seems to be a range of n for which the function is first decreasing and then increasing, but
extremely slowly - to the extent that it is approximately flat. In this regime we have nearly
no spin dependence and one could wonder whether this could be a good candidate for a
fixed point for the renormalization of the vertex. Note however that here the 5-1 move is
very divergent, namely it scales like A37. It is thus not clear what to make of this point.
See Fig. 7.4 for the behavior of NV5_; (j) around this transition.

If we follow the discussion at the end of Section 6.4, then the above results change
slightly by introducing an edge weight. If we would introduce a factor of A.(J) = (J+1),
then the divergence of the 5-1 move becomes A0+ =28 while the scaling of N;_; as

106



Ns-1 (0)

35[

3.0 — n=5
25 n=6.5

J
A

Figure 7.4: Plot of AN/E:—%; for 3 different values of 1 around the transition point.

a function of spin becomes something along the lines of j6=6)+10a  Since these scale

differently, we could in principle have the transition point coincide with the A? divergence
of the 5-1 move. A rough estimate in which we exchange n — n + %004, gives us that this
would happen around the point (n = —%, a= 24—1) The negative power of the face weight
makes this however an even more bizarre suggestion then the above.

It is now very important to note that each of the hypergeometric functions in N5_ ([j])
depends in part on spins in the 4 loops that we sum over. This means that whenever
the 5-1 move is divergent (i.e. for n > 2.8 without the inclusion of the arbitrary edge
weights), we do not need the external spins to be necessarily large for the validity of
asymptotic expansion of F,(.J) — even for small external spins Eq. (7.35) is an excellent
approximation! Moreover, we can even allow the external spins to be all different and still
not worry about butchering the final answer. This means that as far as the renormalization
factor N5_1 ([j]) is concerned, we can effectively work with the greatly simplified expression
in terms of simple ratios of polynomials of spin, rather than the gnarly hypergeometric
functions!

7.5 Proposal for a new amplitude

The factorization of the result of the 5-1 move into a 15j symbol and a nonlocal function
of spins suggests that while we cannot write the amplitude in terms of renormalized prop-
agators, we could nonetheless proceed by embracing this nonlocality. The factor N5_; ([7])
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depends only on the 10 boundary spins (and 4 summed over spins), but not on the in-
tertwiner labels. This would suggest that we could try to rescale each strand separately,
but recall that the hypergeometric functions and the face weight factors do not factorize
in any neat way. The only option then is to include this nonlocal function into the vertex
amplitude itself. Recall that in Eq. (3.13) we defined the partition function of our model
as a product of face weights for each face and propagators at fixed spins for each edge of
the Spin Foam 2-complex. Our results in this chapter suggest that while there is no clear
rewriting of the model in terms of new propagators after the RG step, what is naturally
generated is a non-trivial operator for each vertex. After the 5—1 Pachner move then, we
suggest that the amplitude can be written in terms of non-trivial edge, face and also vertex
amplitudes. We would have then

2= 3 1A T ATt #555) TTA A G
ir kS, €K, fenr eeA* all veEA*

(7.38)
where we have normalized each vertex by a factor of \,, which is absorbs the divergence
D51 of the 5-1 Pachner move. Based on the previous discussion, one might also want
to include an arbitrary edge weight Ac(je,,...,Je,) for each pair of propagators. For
calculation purposes, one might find it useful to re-express this additional vertex term in
terms of spinors. We can do so by inserting trivial connections to all the spinors. Inserting
a factor of ,

(1+p%)%
(2))!
for each spin in the expression for N;5_; ([j]) and contracting with the spinors from the
boundary propagators does not change the expression. Note that the additional factor
of (1 + p?)¥ cancels the contribution from the measure of integration. We can then re-
exponentiate the whole expression using the homogeneity map technique.

[2]w)®

The continued iteration of 5"-5"~! Pachner moves then generates a flow in the N([j])
only, without modifying any of the edge or face amplitudes. While we could in principle
try modifying the edge propagators at each step there is still always the nonlocal vertex
factor. As for the face amplitude, as we have discussed earlier in the chapter, there is no
well-defined flow for 7, since the original configuration of a single 4-simplex does not have
any faces to sum over.

To see what kind of divergences we generate at each RG step, let us investigate what
happens in the 25-1 move. In [101] it was shown that the degree of divergence of an
arbitrary amplitude is AMT2IFIZ6IEIE3IVI=3 where | E|, |F| and |V| are the number of edges,

108



faces and vertices in the 2-complex respectively. The symmetric configuration of 25 4-
simplices has |E| = |F| = 60 and obviously |V| = 25. We thus find that the 25-1 Pachner
move has divergence of (Ds_;)%. This means that at each RG step we get exactly the same
type of divergences, all of which can be absorbed into the single parameter \,. The model
is thus renormalizable under the iterated Pachner moves, as we do not need to add any
further coupling constants.

Following the suggestion in the previous chapter, we could consider N ([j]) as a geo-
metrical operator. The flow under the iterated RG steps could then be expressed in terms
of the interesting graphical series, which as we suggested before introducing the truncation
scheme. Namely, if we represent N5_;([j]) by a diamond with six vertices, then after a
25-5 Pachner move we get a larger diamond, at the vertices of which there are the smaller
diamonds representing the divergences of the original 5-1 moves, which seems to converge
to some sort of fractal geometry.

The main open question now is how to obtain a model that is invariant under the
vertex translation symmetry. If the above graphical series for N converges for the 5"-1
Pachner move in the n — oo limit, then we are done. This sounds like a daunting task,
but with the methods of this thesis should in principle be doable. Due to the unforgiving
nature of the hypergeometrical functions, we might however arrive at expressions that are
difficult to deal with. This can be avoided by either working with p = 1, where F,(J) is
simplified into a ratio of factorials, or using the large spin limit. However, as we noticed
at the end of the last section, whenever the 5-1 move is divergent, then working with
the asymptotic expression for N5_1([j]) is valid even for small external spins. While the
analysis of the general case is somewhat complicated due to the ten arbitrary external
spins, the numerical results of the previous section suggest that in the symmetric case,
there is a phase transition of N5_1([j]) as a function of j around n = 6.5 (if we do not
include the edge weights). At the transition point N5_1(j) is a very slowly varying function
of spin, so in some sense we could speak of having an approximate translation invariance.
If this fixed point persists after iterated Pachner moves, then we could have invariance at
least for the symmetric vertex.
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Chapter 8

Summary & Concluding remarks

There is no real ending. It’s just the place
where you stop the story.

Frank Herbert

Reaching the end of this thesis, let us look back at what was achieved and where the
paths onward lead. The starting point we took was choosing to work with the newly
developed spinor representation for Spin Foams, rather than working with the tradition-
ally challenging spin representation. This rewriting allowed us to consider an alternative
imposition of the holomorphic simplicity constraints, resulting in a definition of a new
Riemannian Spin Foam model. Instead of constraining the boundary spin networks, we
imposed the constraints directly on the topological BF propagators. We then compared this
new model to the more traditional imposition of the simplicity constraints by expressing
the Dupuis-Livine model (which is a rewriting of the EPRL-FK models in terms of spinors)
also in terms of propagators. This comparison clearly showed that the alternative model
results in greatly simplified expressions. One could worry that we have over-constrained
the dynamics, but we showed that surprisingly both models are given by Regge Calculus
in the semi-classical limit.

The power of the holomorphic representation lies in the fact that difficult integrals of
SU(2) Wigner D-matrices can be recast into much simpler spinor Gaussian integrals. We
have used this fact to define a homogeneity map, which allows us to recast all integrations of
interest into Gaussians, thus making it possible to perform integrations that were previously
deemed too difficult to evaluate exactly. Hoping that these results would allow us to study
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coarse graining in our 4-dimensional model, we then turned to studying the lessons of 3d
quantum gravity. The coarse graining procedure in the 3d case depends on two Pachner
moves: the 3-2 move and the 4-1 move. The results for these have been long known: the
3-2 move is exactly invariant, while 4-1 move is invariant up to a factor of an SU(2) delta
function, which results from not fixing the vertex translation symmetry. The calculation
of the 3d Pachner moves relies on a single identity for summation of spins in a closed loop.

In order to study the coarse graining, we thus had to evaluate this loop identity for
the constrained models. We showed that in the case of our alternative model we obtained
additional mixing of spinors that is not present in the topological case. We then attempted
to derive this for the DL model. While this was still in principle possible, we found the
resulting expression to be quite difficult to manage, and decided to only proceed with the
simpler model. Using the techniques we developed, we then proceeded to evaluate the
4-dimensional Pacher moves: the 3-3, 4-2 and 5-1 moves. We found that the 3-3 move
was invariant only in the very symmetric case of all spins being equal. While the naive
expectation, at least at the level of the classical action, was that the model should be
invariant under the 4-2 and 5-1 Pachner moves, we found it to not be true for the exact
evaluation. For both the 4-2 and 5-1 moves, we obtained an additional insertion of a
non-local combination of SU(N) grasping operators in the final coarse grained simplices,
with a mixing of strands leading to a non-geometrical and non-local configuration.

Recalling however that in real-space renormalization group flows it is natural to generate
additional couplings at each RG step, we found a natural truncation scheme for each loop
identity that removes the mixing of strands and seems to restrict the flow to the space of
4-simplices. This removal of mixing allowed us to show that both 4-2 and 5-1 moves are
invariant up to a weight depending on the boundary spins. We then studied the degree of
divergence of both of these moves and found that it depends on the choice of the power
of the face weight . The 5-1 move turns out to be much more divergent than the 4-2
move. Indeed, when the 5-1 move has the divergence of A% that was in the past suggested
as relating to diffeomorphism invariance, the 4-2 move is finite. We then conjectured
that the divergent factor of the 5-1 move that also depends on boundary spins could be
absorbed into a renormalized definition of new edge propagators.

In our last chapter however, we showed that this rewriting is impossible — in fact there
is no way of writing the amplitude after the 5—1 move as a symmetric local product of
propagators. This seems to be a Spin Foam realization of the result in linearized quantum
Regge Calculus, where the measure of integration picks up a non-local factor after the 5-1
move [72]. In order to understand what we can extract out of our result, we decided to
rewrite the result in terms of the more traditional 15j symbols. Expanding our result in a
power series, we showed that we do have a renormalization equation that relates five 15j
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symbols with a single 15j multiplied by the divergent function N5_1(j1, ..., ji0) depending
on boundary spins. Interestingly, this function coupled the external spins with the summed
over spins from the remaining divergent loops in the 5-1 move. This allowed us to use the
asymptotic expansions for the hypergeometric functions even for small boundary spins.
We then showed that in the symmetric case the factor N5_1(j) had a transition from a
decreasing function of j to an increasing one around 7 = 6.5, at which point the function
is very slowly varying with spin. It is now important to note that in our RG step given by
the 5—1 move there can be no flow in either p or n. This is because the dependence on the
Barbero-Immirzi paratemer simply drops out in the large spin limit, so it does not appear
in conjunction with divergences. The reason why there can be no flow in 7 is simple — a
single 4-simplex does not depend on a face weight, so the renormalized vertex should not
either. For this reason we introduced the coupling A, for a vertex.

These results suggest that we can perhaps have to redefine the amplitude to not only
have a product of propagators at each edge, but also this non-local factor at each vertex.
We argue that iterated 5-1 Pachner moves only change this factor, and do not generate
any more complicated couplings. Since there is already a range of parameters for which
N5_1(j) is nearly constant, we have hopes that the iterated application of 55"~ moves
can converge to an expression that has exact vertex translation symmetry. The reason we
say that this would constitute a vertex translation symmetry is that embedding the vertex
amplitude after the 5-1 move or before in a bigger graph that would require us to sum over
the spins, would only result in a difference up to an overall divergent factor. The question
of whether the iterated Pachner moves lead to such an expression is one we leave for future
research.

On a related note, it is interesting to consider whether our requirement for symmetry
might not be too strong. Rather than requiring that the RG flow makes N (j) spin-
independent, maybe it is enough to enforce the weaker condition that only after the sum-
mation over the spins do we get something that is easy to deal with. Technically, we could
try to evaluate the 5"-5"~1 move, express N'(j) as a function of n, close up the boundary
by contracting all the strands and see whether we can obtain an expression that does not
finally depend on n. For such closed diagrams, the methods developed by Chen in [101]
would be immediately applicable.

Apart from the iteration of the Pachner moves, the work in this thesis suggests several
interesting avenues of continued research. First of all, it would be interesting to study the
validity of adding the additional edge weights that we suggested during the study of the
divergences, as they seem to allow the more natural choice of face weight n. It would be
crucial to see whether the truncation of the loop identity is still valid with this modification
however. Another interesting path forward lies in seeing whether we could obtain similar

112



results without the necessity for gauge fixing, which would give us a more symmetric
expression for N5_1(j). This would require us to recalculate the loop identity with three
full propagators. The results in the 2d case suggest that the result might not be too
unwieldy. The non-trivial question then is whether the truncation scheme we found would
still work, or whether an alternative truncation would be necessary. Of slightly higher
difficulty would be the attempt at calculating the Pachner moves with the DL model.
The greatly increased number of variables would make the evaluation more tiresome, but
possible in principle. Again, some truncation would be probably needed in this case as
well. We leave this project for some brave individuals who really dislike the construction
of our simplified model.

The big open problem here is whether we could generalize these results to the Lorentzian
case. The biggest obstacle is the non-existence of the holomorphic representation with the
nice Gaussian measure of integration for the SL(2, C) group. While our construction relied
quite heavily on the Gaussian integrations, the main trick of the homogeneity map was not
crucially reliant on that — we could use it with some other basis functions that integrate
nicely. Of special interest are the results of Speziale in [I16], where it was shown that
SL(2, C) results can be obtained by boosting SU(2) expressions. It would be interesting to
see if these techniques could be applied to our results to make some statements about the
Lorentzian theory.

113



Bibliography

1]

A. Banburski, L. Q. Chen, L. Freidel and J. Hnybida, “Pachner moves in a 4d
Riemannian holomorphic Spin Foam model,” Phys. Rev. D 92, no. 12, 124014 (2015)
d0i:10.1103/PhysRevD.92.124014 [arXiv:1412.8247 [gr-qc]].

A. Banburski and L. Q. Chen, “Simpler way of imposing simplicity con-
straints,” Phys. Rev. D 94, no. 10, 104003 (2016) doi:10.1103/PhysRevD.94.104003
[arXiv:1512.05331 [gr-qcl].

M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 1: Intro-
duction,” Cambridge, Uk: Univ. Pr. ( 1987) 469 P. ( Cambridge Monographs On
Mathematical Physics)

M. B. Green, J. H. Schwarz and E. Witten, “Superstring Theory. Vol. 2: Loop
Amplitudes, Anomalies And Phenomenology,” Cambridge, Uk: Univ. Pr. ( 1987)
596 P. ( Cambridge Monographs On Mathematical Physics)

T. Thiemann, “Modern canonical quantum general relativity,” gr-qc/0110034.
C. Rovelli, “Quantum gravity,” Cambridge University Press (2007)

C. Rovelli, “Zakopane lectures on loop gravity,” PoS QGQGS 2011, 003 (2011)
[arXiv:1102.3660 [gr-qc]].

A. Perez, “The Spin Foam Approach to Quantum Gravity,” Living Rev. Rel. 16, 3
(2013) [arXiv:1205.2019 [gr-qc]].

J. F. Plebanski, “On the separation of Einsteinian substructures,” J. Math. Phys.
18, 2511 (1977).

E.R. Livine and S. Speziale, “A new spinfoam vertex for quantum gravity”,
Phys.Rev.D76 (2007) 084028 [arXiv:0705.0674]

114



[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]
[24]

E. R. Livine and S. Speziale, “Consistently Solving the Simplicity Constraints for
Spinfoam Quantum Gravity,” Europhys. Lett. 81, 50004 (2008) [arXiv:0708.1915

[gr-qc]].

J. Engle, E. Livine, R. Pereira and C. Rovelli, “LQG vertex with finite Immirzi
parameter,” Nucl. Phys. B 799, 136 (2008) [arXiv:0711.0146 [gr-qc]].

J. Engle, R. Pereira and C. Rovelli, “The Loop-quantum-gravity vertex-amplitude,”
Phys. Rev. Lett. 99, 161301 (2007) [arXiv:0705.2388 [gr-qc]].

J. Engle, R. Pereira and C. Rovelli, “Flipped spinfoam vertex and loop gravity,”
Nucl. Phys. B 798, 251 (2008) [arXiv:0708.1236 [gr-qc]].

L. Freidel and K. Krasnov, “A New Spin Foam Model for 4d Gravity,” Class. Quant.
Grav. 25, 125018 (2008) [arXiv:0708.1595 [gr-qc]|.

M. Dupuis and E. R. Livine, “Holomorphic Simplicity Constraints for 4d Spinfoam
Models,” Class. Quant. Grav. 28, 215022 (2011) [arXiv:1104.3683 [gr-qc]].

B. Bahr, “On background-independent renormalization of spin foam models,”
arXiv:1407.7746 [gr-qc].

D. Mamone and C. Rovelli, “Second-order amplitudes in loop quantum gravity,”
Class. Quant. Grav. 26, 245013 (2009) [arXiv:0904.3730 [gr-qc]].

A. Riello, “Self-energy of the Lorentzian Engle-Pereira-Rovelli-Livine and Freidel-
Krasnov model of quantum gravity,” Phys. Rev. D 88, no. 2, 024011 (2013)
[arXiv:1302.1781 [gr-qc]].

B. Dittrich, S. Mizera and S. Steinhaus, “Decorated tensor network renormalization
for lattice gauge theories and spin foam models,” arXiv:1409.2407 [gr-qc].

M. H. Goroff and A. Sagnotti, “The Ultraviolet Behavior of Einstein Gravity,” Nucl.
Phys. B 266, 709 (1986). doi:10.1016,/0550-3213(86)90193-8

H. Nicolai, “Quantum Gravity: the view from particle physics,” Fundam. Theor.
Phys. 177, 369 (2014) doi:10.1007/978-3-319-06349-2-18 [arXiv:1301.5481 [gr-qc]].

S. Weinberg, “Critical Phenomena for Field Theorists,” HUTP-76-160.

D. Dou and R. Percacci, “The running gravitational couplings,” Class. Quant. Grav.
15, 3449 (1998) doi:10.1088/0264-9381/15/11/011 [hep-th/9707239].

115



[25]

[26]

[27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

[36]

M. Reuter and F. Saueressig, “Renormalization group flow of quantum grav-
ity in the Einstein-Hilbert truncation,” Phys. Rev. D 65, 065016 (2002)
d0i:10.1103/PhysRevD.65.065016 [hep-th/0110054].

O. Lauscher and M. Reuter, “Fractal spacetime structure in asymptotically safe grav-
ity,” JHEP 0510, 050 (2005) doi:10.1088/1126-6708,/2005/10/050 [hep-th/0508202].

I. Donkin and J. M. Pawlowski, “The phase diagram of quantum gravity from
diffeomorphism-invariant RG-flows,” arXiv:1203.4207 [hep-th].

P. Don, A. Eichhorn and R. Percacci, “Matter matters in asymptoti-
cally safe quantum gravity,” Phys. Rev. D 89, mno. 8, 084035 (2014)
d0i:10.1103/PhysRevD.89.084035 [arXiv:1311.2898 [hep-th]].

C. Rovelli and L. Smolin, “Discreteness of area and volume in quantum grav-
ity,” Nucl. Phys. B 442 593 (1995) Erratum: [Nucl. Phys. B 456, 753 (1995)]
d0i:10.1016/0550-3213(95)00150-Q, 10.1016,/0550-3213(95)00550-5 [gr-qc/9411005].

I. Montvay and G. Miinster, “Quantum fields on a lattice,” Cambridge, UK: Univ.
Pr. (1994) 491 p. (Cambridge monographs on mathematical physics)

F. Markopoulou, “Coarse graining in spin foam models,” Class. Quant. Grav. 20,
777 (2003) [gr-qc/0203036].

R. Oeckl, “Renormalization of discrete models without background,” Nucl. Phys. B
657, 107 (2003) [gr-qc/0212047].

R. Oeckl, “Renormalization for spin foam models of quantum gravity,” In *Rio de
Janeiro 2003, Recent developments in theoretical and experimental general relativity,
gravitation, and relativistic field theories, pt. C* 2296-2300 [gr-qc/0401087].

A. Ashtekar and J. Lewandowski, “Projective techniques and functional integration
for gauge theories,” J. Math. Phys. 36, 2170 (1995) [gr-qc/9411046].

A. Ashtekar and J. Lewandowski, “Differential geometry on the space of connections
via graphs and projective limits,” J. Geom. Phys. 17, 191 (1995) [hep-th/9412073].

A. Baratin, B. Dittrich, D. Oriti and J. Tambornino, “Non-commutative flux rep-
resentation for loop quantum gravity,” Class. Quant. Grav. 28, 175011 (2011)
[arXiv:1004.3450 [hep-th]].

116



[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

B. Dittrich, “From the discrete to the continuous: Towards a cylindrically consistent
dynamics,” New J. Phys. 14, 123004 (2012) [arXiv:1205.6127 [gr-qc]].

B. Dittrich, “The continuum limit of loop quantum gravity - a framework for solving
the theory,” arXiv:1409.1450 [gr-qc].

M. Levin, C. P. Nave, “Tensor renormalization group approach to 2D classical lattice
models,” Phys. Rev. Lett. 99 (2007) 120601.

S. Singh and G. Vidal, “Tensor network states and algorithms in the presence of a
global SU(2) symmetry,” Phys. Rev. B 86, 195114 (2012) [arXiv:1208.3919 [cond-
mat.str-el]].

Z. C. Gu and X. G. Wen, “Tensor-Entanglement-Filtering Renormalization Ap-
proach and Symmetry Protected Topological Order,” Phys. Rev. B 80, 155131 (2009)
[arXiv:0903.1069 [cond-mat.str-el]].

B. Dittrich, F. C. Eckert and M. Martin-Benito, “Coarse graining methods for spin
net and spin foam models,” New J. Phys. 14, 035008 (2012) [arXiv:1109.4927 [gr-qc]].

B. Dittrich and F. C. Eckert, “Towards computational insights into the large-scale
structure of spin foams,” J. Phys. Conf. Ser. 360, 012004 (2012) [arXiv:1111.0967

[gr-qc]].
B. Bahr, B. Dittrich, F. Hellmann and W. Kaminski, “Holonomy Spin Foam Models:
Definition and Coarse Graining,” Phys. Rev. D 87, 044048 (2013) [arXiv:1208.3388
[gr-qc]].

B. Dittrich, M. Martin-Benito and E. Schnetter, “Coarse graining of spin net models:
dynamics of intertwiners,” New J. Phys. 15, 103004 (2013) [arXiv:1306.2987 [gr-qc]].

B. Dittrich and W. Kaminski, “Topological lattice field theories from intertwiner
dynamics,” arXiv:1311.1798 [gr-qc].

B. Dittrich, M. Martin-Benito and S. Steinhaus, “Quantum group spin nets: re-
finement limit and relation to spin foams,” Phys. Rev. D 90, 024058 (2014)
[arXiv:1312.0905 [gr-qc]].

B. Dittrich, S. Mizera and S. Steinhaus, “Decorated tensor network renormalization
for lattice gauge theories and spin foam models,” New J. Phys. 18, no. 5, 053009
(2016) doi:10.1088/1367-2630/18/5/053009 [arXiv:1409.2407 [gr-qc]].

117



[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

B. Dittrich, E. Schnetter, C. J. Seth and S. Steinhaus, “Coarse graining
flow of spin foam intertwiners,” Phys. Rev. D 94, no. 12, 124050 (2016)
d0i:10.1103/PhysRevD.94.124050 [arXiv:1609.02429 [gr-qc]].

C. Delcamp and B. Dittrich, “Towards a phase diagram for spin foams,”
arXiv:1612.04506 [gr-qc|.

E. R. Livine and D. Oriti, “Coupling of spacetime atoms and spin foam renormali-
sation from group field theory,” JHEP 0702, 092 (2007) [gr-qc/0512002].

L. Freidel, R. Gurau and D. Oriti, “Group field theory renormalization - the 3d case:
Power counting of divergences,” Phys. Rev. D 80, 044007 (2009) [arXiv:0905.3772
[hep-th]].

J. Ben Geloun and V. Rivasseau, “A Renormalizable 4-Dimensional Tensor Field
Theory,” Commun. Math. Phys. 318, 69 (2013) [arXiv:1111.4997 [hep-th]].

V. Rivasseau, “Quantum Gravity and Renormalization: The Tensor Track,” AIP
Conf. Proc. 1444, 18 (2011) [arXiv:1112.5104 [hep-th]].

J. Ben Geloun and D. O. Samary, “3D Tensor Field Theory: Renormalization and
One-loop S-functions,” Annales Henri Poincare 14, 1599 (2013) [arXiv:1201.0176
[hep-th]].

J. Ben Geloun and E. R. Livine, “Some classes of renormalizable tensor models,” J.
Math. Phys. 54, 082303 (2013) [arXiv:1207.0416 [hep-th]].

S. Carrozza, D. Oriti and V. Rivasseau, “Renormalization of Tensorial Group Field
Theories: Abelian U(1) Models in Four Dimensions,” Commun. Math. Phys. 327,
603 (2014) [arXiv:1207.6734 [hep-th]].

D. O. Samary and F. Vignes-Tourneret, “Just Renormalizable TGFT’s on U(1)?
with Gauge Invariance,” Commun. Math. Phys. 329, 545 (2014) [arXiv:1211.2618
[hep-th]].

S. Carrozza, D. Oriti and V. Rivasseau, “Renormalization of a SU(2) Tensorial
Group Field Theory in Three Dimensions,” Commun. Math. Phys. 330, 581 (2014)
[arXiv:1303.6772 [hep-th]].

J. Ben Geloun, “Renormalizable Models in Rank d > 2 Tensorial Group Field The-
ory,” arXiv:1306.1201 [hep-th].

118



[61]

[62]

[63]

[64]

[65]

[69]
[70]

[71]

[72]

S. Carrozza, “Discrete Renormalization Group for SU(2) Tensorial Group Field The-
ory,” arXiv:1407.4615 [hep-th].

V. Lahoche, D. Oriti and V. Rivasseau, “Renormalization of an Abelian Ten-
sor Group Field Theory: Solution at Leading Order,” JHEP 1504, 095 (2015)
doi:10.1007 /JHEP04(2015)095 [arXiv:1501.02086 [hep-th]].

V. Lahoche and D. Oriti, “Renormalization of a tensorial field theory on the homo-
geneous space SU(2)/U(1),” J. Phys. A 50, no. 2, 025201 (2017) doi:10.1088/1751-
8113/50/2/025201 [arXiv:1506.08393 [hep-th]].

V. Rivasseau, “Why are tensor field theories asymptotically free?,” Europhys. Lett.
111, no. 6, 60011 (2015) doi:10.1209/0295-5075/111/60011 [arXiv:1507.04190 |[hep-
th]].

D. Benedetti and V. Lahoche, “Functional Renormalization Group Approach
for Tensorial Group Field Theory: A Rank-6 Model with Closure Constraint,”
Class. Quant. Grav. 33, no. 9, 095003 (2016) doi:10.1088,/0264-9381/33/9,/095003
[arXiv:1508.06384 [hep-th]].

J. Ben Geloun, R. Martini and D. Oriti, “Functional Renormalisation Group analysis
of Tensorial Group Field Theories on R%” Phys. Rev. D 94, no. 2, 024017 (2016)
d0i:10.1103/PhysRevD.94.024017 [arXiv:1601.08211 [hep-th]].

S. Carrozza, “Flowing in Group Field Theory Space: a Review,” SIGMA 12, 070
(2016) doi:10.3842/SIGMA.2016.070 [arXiv:1603.01902 [gr-qc]].

U. Pachner, “P.L. homeomorphic manifolds are equivalent by elementary shellings,”
European Journal of Combinatorics 12 (2), 129145 (1991)

T. Regge, “General Relativity Without Coordinates,” Nuovo Cim. 19, 558 (1961).

B. Dittrich and S. Steinhaus, “Path integral measure and triangulation independence
in discrete gravity,” Phys. Rev. D 85, 044032 (2012) [arXiv:1110.6866 [gr-qc]].

C. Perini, C. Rovelli and S. Speziale, “Self-energy and vertex radiative corrections in
LQG,” Phys. Lett. B 682, 78 (2009) [arXiv:0810.1714 [gr-qc]].

B. Dittrich, W. Kaminski and S. Steinhaus, “Discretization independence implies
non-locality in 4D discrete quantum gravity,” arXiv:1404.5288 [gr-qc].

119



73]

[74]

[75]

[76]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

G Ponzano and T Regge, “Semiclassical limit of racah coefficients,” Spectroscopic
and group theoretical methods in physics, ed. F. Bloch, North-Holland Publ. Co.,
Amsterdam, 1968

J. W. Barrett and L. Crane, “Relativistic spin networks and quantum gravity,” J.
Math. Phys. 39, 3296 (1998) doi:10.1063/1.532254 [gr-qc/9709028].

V. Bargmann, “On the Representations of the Rotation Group,” Rev. Mod. Phys.
34, 829 (1962).

J. Schwinger, “On Angular Momentum,” U.S. Atomic Energy Commission. (un-
published) NYO-3071, (1952).

L. Freidel, K. Krasnov and E. R. Livine, “Holomorphic Factorization for a Quantum
Tetrahedron,” Commun. Math. Phys. 297, 45 (2010) [arXiv:0905.3627 [hep-th]].

L. Freidel and E. R. Livine, “The Fine Structure of SU(2) Intertwiners from U(N)
Representations,” J. Math. Phys. 51, 082502 (2010) [arXiv:0911.3553 [gr-qc]].

L. Freidel and E. R. Livine, “U(N) Coherent States for Loop Quantum Gravity,” J.
Math. Phys. 52, 052502 (2011) [arXiv:1005.2090 [gr-qc]].

E. F. Borja, L. Freidel, I. Garay and E. R. Livine, “U(N) tools for Loop Quan-
tum Gravity: The Return of the Spinor,” Class. Quant. Grav. 28, 055005 (2011)
[arXiv:1010.5451 [gr-qc]].

E. R. Livine and J. Tambornino, “Spinor Representation for Loop Quantum Gravity,”
J. Math. Phys. 53, 012503 (2012) [arXiv:1105.3385 [gr-qc]].

M. Dupuis, S. Speziale and J. Tambornino, “Spinors and Twistors in Loop Gravity
and Spin Foams,” PoS QGQGS 2011, 021 (2011) [arXiv:1201.2120 [gr-qc]].

M. Dupuis and E. R. Livine, “Revisiting the Simplicity Constraints and Coherent
Intertwiners,” Class. Quant. Grav. 28, 085001 (2011) [arXiv:1006.5666 [gr-qc]].

M. Dupuis and E. R. Livine, “Holomorphic Simplicity Constraints for 4d Riemannian
Spinfoam Models,” J. Phys. Conf. Ser. 360, 012046 (2012) [arXiv:1111.1125 [gr-qc]].

M. Dupuis, L. Freidel, E. R. Livine and S. Speziale, “Holomorphic Lorentzian Sim-
plicity Constraints,” J. Math. Phys. 53, 032502 (2012) [arXiv:1107.5274 [gr-qc]].

120



[36]

[87]

[38]

[89]

[90]

[91]

[92]

93]

[94]
[95]

[96]

[97]

(98]

B. S. DeWitt, Quantum Theory of Gravity. I. The Canonical Theory, Phys. Rev.,
Vol. 160, No. 5, 1967, pp. 1113-1148

M. Visser, “Lorentzian wormholes: From FKEinstein to Hawking,” Woodbury, USA:
AIP (1995) 412 p

A. Ashtekar and J. Lewandowski, “Representation theory of analytic holonomy C
-algebras”, Knots and quantum gravity (Riverside, CA, 1993), Oxford Lecture Ser.
Math. Appl., vol. 1, Oxford Univ. Press, New York, 1994, pp. 21-61. MR1309913
(95j:58021).

T. Thiemann, “Quantum spin dynamics (QSD),” Class. Quant. Grav. 15, 839 (1998)
doi:10.1088/0264-9381/15/4/011 [gr-qc/9606089].

E. R. Livine and J. Tambornino, “Holonomy Operator and Quantization Ambiguities
on Spinor Space,” Phys. Rev. D 87, no. 10, 104014 (2013) [arXiv:1302.7142 [gr-qc]].

M. Assanioussi, J. Lewandowski and I. Mkinen, “New scalar constraint op-
erator for loop quantum gravity,” Phys. Rev. D 92, no. 4, 044042 (2015)
doi:10.1103/PhysRevD.92.044042 [arXiv:1506.00299 [gr-qc]].

J. Roberts, “Classical 6j-symbols and the tetrahedron,” Geom. Topol. 3, 21 (1999)
d0i:10.2140/gt.1999.3.21 [math-ph/9812013].

V. G. Turaev and O. Y. Viro, “State sum invariants of 3 manifolds and quantum 6j
symbols,” Topology 31, 865 (1992). doi:10.1016/0040-9383(92)90015-A

Y. Neiman, “A look at area Regge calculus,” arXiv:1308.1012 [gr-qc].

F. Conrady and L. Freidel, “On the semiclassical limit of 4d spin foam models,”
Phys. Rev. D 78, 104023 (2008) [arXiv:0809.2280 [gr-qc]].

J. W. Barrett, R. J. Dowdall, W. J. Fairbairn, H. Gomes and F. Hellmann, “Asymp-
totic analysis of the EPRL four-simplex amplitude,” J. Math. Phys. 50, 112504
(2009) [arXiv:0902.1170 [gr-qc]].

B. Dittrich and S. Speziale, “Area-angle variables for general relativity,” New J. Phys.
10, 083006 (2008) doi:10.1088/1367-2630,/10/8/083006 [arXiv:0802.0864 [gr-qc]].

L. Freidel and J. Hnybida, “On the exact evaluation of spin networks,”
arXiv:1201.3613 [gr-qc].

121



[99]

[100]

[101]

[102]

[103]

[104]

105

[106]

107]

[108]

[109]

[110]

L. Freidel and J. Hnybida, “A Discrete and Coherent Basis of Intertwiners,”
arXiv:1305.3326 [math-ph].

M. X. Han and M. Zhang, “Asymptotics of Spinfoam Amplitude on Simplicial Man-
ifold: Euclidean Theory,” Class. Quant. Grav. 29, 165004 (2012) [arXiv:1109.0500

[gr-qc]].

L. Q. Chen, “Bulk amplitude and degree of divergence in 4d spin foams,” Phys. Rev.
D 94, no. 10, 104025 (2016) doi:10.1103/PhysRevD.94.104025 [arXiv:1602.01825 [gr-
qc]].

L. Freidel and D. Louapre, “Diffeomorphisms and spin foam models,” Nucl. Phys. B
662, 279 (2003) [gr-qc/0212001].

L. Freidel and E. R. Livine, “Spin networks for noncompact groups,” J. Math. Phys.
44, 1322 (2003) [hep-th/0205268|.

M. Christodoulou, M. Langvik, A. Riello, C. Roken and C. Rovelli, “Diver-
gences and Orientation in Spinfoams,” Class. Quantum Grav. 30, 055009 (2013)
[arXiv:1207.5156 [gr-qc]].

L. Freidel and D. Louapre, “Ponzano-Regge model revisited II: Equivalence with
Chern-Simons,” gr-qc/0410141.

J. W. Barrett and I. Naish-Guzman, “The Ponzano-Regge model and Reidemeister
torsion,” gr-qc/0612170.

V. Bonzom and M. Smerlak, “Bubble divergences from cellular cohomology,” Lett.
Math. Phys. 93, 295 (2010) [arXiv:1004.5196 [gr-qc]].

V. Bonzom and M. Smerlak, “Bubble divergences: sorting out topology from cell
structure,” Annales Henri Poincare 13, 185 (2012) [arXiv:1103.3961 [gr-qc]].

L. Freidel and K. Krasnov, “Spin foam models and the classical action principle,”
Adv. Theor. Math. Phys. 2, 1183 (1999) [hep-th/9807092].

B. Bahr and S. Steinhaus, “Investigation of the Spinfoam Path integral with
Quantum Cuboid Intertwiners,” Phys. Rev. D 93, no. 10, 104029 (2016)
d0i:10.1103/PhysRevD.93.104029 [arXiv:1508.07961 [gr-qc]].

122



[111]

[112]

[113]

[114]

[115]

[116]

B. Bahr and S. Steinhaus, “Numerical evidence for a phase transition in 4d
spin foam quantum gravity,” Phys. Rev. Lett. 117, no. 14, 141302 (2016)
d0i:10.1103/PhysRevLett.117.141302 [arXiv:1605.07649 [gr-qc]].

B. Bahr and S. Steinhaus, “Hypercuboidal renormalization in spin foam quantum
gravity,” arXiv:1701.02311 [gr-qc].

R. Gurau, “The 1/N expansion of colored tensor models,” Annales Henri Poincare
12, 829 (2011) doi:10.1007/s00023-011-0101-8 [arXiv:1011.2726 [gr-qc]].

R. Gurau and V. Rivasseau, “The 1/N expansion of colored tensor models in arbi-
trary dimension,” Europhys. Lett. 95, 50004 (2011) doi:10.1209/0295-5075/95 /50004
[arXiv:1101.4182 [gr-qc]].

R. Gurau, “The complete 1/N expansion of colored tensor models in arbitrary di-
mension,” Annales Henri Poincare 13, 399 (2012) doi:10.1007/s00023-011-0118-z
[arXiv:1102.5759 [gr-qc]].

S. Speziale, “Boosting Wigner’s nj-symbols,” J. Math. Phys 58, no. 3, 032501 (2017)
d0i:10.1063/1.4977752 [arXiv:1609.01632 [gr-qc]].

123



APPENDICES

124



Appendix A

A.1 Gaussian Integration Techniques

In this appendix we compile a list of useful Gaussian spinor integrals. Consider first a
standard Gaussian integral over the complex line C

2
/ d_2ae—\a|2+5ca+y5c T (A1)
C T

This easily generalizes to a Gaussian integration over spinors on C? with the Bargmann
measure du(z) = 72e~¢?12)d*2 giving us the integral that allows us to contract strands on
cable graphs

/CQ dp(z)ele e — el (A.2)

It is interesting to note that this contraction also works with anti-holomorphic spinors |z],
since [z|y] = (y|x). We have thus

/«: du(z)e ) — ol (A.3)

As with usual Gaussian integrations, we can calculate Gaussian spinor integrals of
arbitrary polynomials. The special case worth mentioning is of course how delta function
acts on holomorphic functions

/C () S () = fuw) (A4)
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Let us now consider the integrals that are crucial to the computations in this thesis —
integrals with a matrix A. First consider the more familiar case of integrals over vectors

of n complex numbers
d? al _ Ao 1
@i-Aij @ — A5
/ n H det(A) (A-5)

This again trivially extends to the integrals over spinors. The expression useful for our
thesis is

n

1
du(z; 2iglElAgly) — - A6
/Czn Iizll Hize det(1 — A) (A-6)

Recall that for the constrained model we had to change the measure of integration over
spinors to du,(z) = (1 4 p?)2r~2e~ (420442, Tt is easy to check that this is normalized

properly as

212 14

/ (1 + pz) d Ze—(1+p2)<z|z> -1 (A?)
C2 s

This change of measure leads to very simple changes to the above integrals. In particular,
for a contraction we have

/C dpp()el ) = ) (A.8)

Hence for every contraction of spinors we pick up a factor of 1/(1 + p?). Thus for a loop
on which we have three spinors we get the factor of (1 + p*)~3 — this appears all the time
in loop identity and Pachner moves calculations.

A.2 Mapping SU(2) to spinors

Lemma A.2.1. Let f € L*(SU(2)) be homogeneous of degree 2J, i.e. f(Ag) = N f(g).
Given a spinor by |z) define g(z) = (]0)(0] + |0][0])g(2) = |0)(z| + |0][z] where |0) = (1,0)".
Then

LLasnreen =t +2) [ ags60) (4.9)

Proof. We can relate the inner product (2.69) to the standard L?(SU(2)) inner product by

parameterizing the spinor as
7 cos fe'?
12) = (r sin 06“") ’ (A.10)
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where 7 € (0,00), 0 € [0,7/2), ¢ € [0,27), ¥ € [0,2m). The Lebesgue measure in
these coordinates is d*z = r3sinf cos @dr d¢ df dip. Now using the homogeneity property

f(g(2) =r* f(g(z)) we have

/CQ du(z)f(g(z))z/ooodrr3+2je7’2 /Oﬂ/zdesmecose/Ozﬂdgb/o%dwf(’g“(z)), (A.11)

where g(z) € SU(2). Performing the intgral over r we get
1
/ drr?t2 e = S +2) (A.12)

and so

L) =t +2) [ ags60) (A13)

where dg is the normalized Haar measure on SU(2). In our case J is an integer so I'(J+2) =
(J+1)L O

A.3 Group averaging the SU(2) projector

In this appendix we recall the calculation in [98] which shows that we can perform the
integration over g explicitly for the BF projector (2.80), which we prove in the following
theorem.

Theorem A.3.1. The projector (2.80) can be expressed as a power series in the holomor-
phic spinor invariants as

) ([2i]25) [wilw;) )k
Pz w;) = Z J+1'H o . (A.14)

where the sum is over sets of n(n — 1)/2 non-negative integers k;; with 1 <i < j <n.

Proof. Expanding (2.80) in a power series

. 253
dgelzilolwi) — /dg [22|9|@z> 7 A5
/SU<2) ; H (243)! (A.15)
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we see that each term in the sum is homogeneous of degree 2J = > (2j;). This fact
allows us to use Lemma A.2.1 detailed in Appendix A.2 which says that we can replace
the integral over SU(2 ) with a Gaussian integral paying a factor of 1/(J + 1) as in

Now resum over j; to get
2j;
S+t / dgH Mw)z?] / dp(@)eZ 10K atw+al0afws) — o300l fwilw;)
- ]@ :
Ji
(A.17)

where we've performed the Gaussian integration in the second equality. Using the anti-
symmetry [w;|w;) = —[w;|w;) and recognizing the identity 1 = |0)(0] + |0][0] in

Z[Zi|0][012j>[wi\wj> = Z[zi (10)CO[ + [0J[0]) |25} [wi[w;) = Z[Zj!ziﬂwi\wj% (A.18)
Finall’y we have

2+ / d9H Z"g‘wl T Sl ) ZH lz) o l;|wj V™ (a9)
ij:

]'L Z<j

and since J = } ;. kij is just the total homogeneity of each term we can move the (J+1)!
to the RHS and complete the proof. m

A.4 Proof of Lemma (4.4.1)

Proof. For a 2 x 2 matrix 2det M = T’I‘(M)2 _ TT(M2>, If one consider M — 1 —
Zi Oi|Az'>[Bi|, we have

Tr(MQ)_2—QZC [BilAj) + > CiCy[Bi|A;)[B;] Ai)

i
and
Tr(M)? =4— 420 [BilAs) + > CiC5[Bi| A B A)),
i.j
therefore
2det(M) =2 — QZC [B;|A;) +ZCC ([Bi|Ai)[Bj|Aj) — [Bi|A;)[Bj|A:))
i,
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A.5 The 4-simplex amplitude for the constrained prop-
agator model

This appendix shows that in the constrained propagator model, the amplitude for a 4-
simplex can be indeed written as (3.49). Starting from the constrained propagators (3.47),
we can straightforwardly get that the spin foam amplitude for a single 4-simplex in the
constrained propagator model is given by

A, = / [T e () dgEeR - @il lof g eintuglofehcns P uglok ) o2y uflaf 1) (A 20)
L .
a

where we have added a collection of 7’s which all have trivial values 1. However, under
Taylor expansion, the power of 7 gives the homogeneity of the corresponding term. For
example, the first term in the exponent becomes
URCAAE
> (2501 . (A.21)
r 740!

a

We get similar expressions for all the different 7’s, which are raised to the appropriate
powers in their series expansions,

(T;R>2j57 (TI?L)2J£7 (TCIL)L)ijLa (TfR)%’?- <A~22)

The reason for temporarily introducing these factors of 7 is that before we continue with
the asymptotics, we have to reduce the action to the same number of variables, as in the
DL model’s one. To do this we have to integrate out the auxiliary contracting spinors w?.
We will see however, that this produces a mixing between the different spins, so the factors
of 7 keep track of the spin information. After the |w) integration, the amplitude becomes

A, = /Hdgf’R e(1H0?) T = (ripga 0290 ) (T pai 0 T L gt )12 (A.23)
a

Expanding this expression in a power series we get again four terms, but with different
expansion coefficients:

A, = / [T dol™> ([zlmnringl " g5t |20 (o' 25 e morgs ~ gy 120)) %
a Ji ' ' (A24)
< (p* [z |mommengn g 1200 (0° [z | memmingn " artl2o0) ) ) T [(290)!(1 + )™,
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By comparing the coefficients of the power expansion of the different 7’s in Eqs. (A.22)
and (A.24), we find that j; and j, .z r are related by the following set of equations:

g1+ 73 =3jE
Jo + ja = jk (4.25)
j2+j3:jz,L-

Note now that in the large 2z limit the holomorphic simplicity constraints imply that we
have (jL,jF) = p?(5E, i), which allows us to eliminate one of the spins and leads to an
important relation for the asymptotic analysis:

gs =ja, jE=jlt=4h. jL=jf =ik (A.26)

In the main text we define J,, = j3. After the 7’s have completed their mission, we can
discard them by setting their values back to 1. Thus we have proved that the amplitude
is indeed (3.49).

A.6 Explicit calculation of the Constrained Loop Iden-
tity

In this appendix we explicitly show how to calculate the constrained loop identity (5.11).
Let us consider the loop composed of two pairs of partially gauge-fixed propagators 1,01,
and one pair of propagators P,o0 P,. To calculate this loop, let us use the homogenized prop-
agators 17 o 1> and G, o GG, instead and at the end of the calculation use the homogeneity
maps (5.9) and (5.10), which we recall are given by

Fy(J/2)?

l:01;:= 67:22-[51\151'> with 7~'J — m for l:01; — I]_p e} ]1p

for a pair of gauge-fixed propagators and by

Fy(J)?
(14 p2)2/(J +1)!

G, oG, = " i) with 77 for GroG,— P,0P,.
for the pair of propagators P,. We will also insert a face weight by tracking the homogeneity
of spin in the loop by a factor of 7. The contractions of the spinors around the loop are
as follows: |w,) = |w?], |22) = |Z}] and |w}) = |z4]. The cable diagram with all the labels
is shown in Fig. A.1.
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Figure A.1: Cable diagram with all the labels for the constrained loop identity.

| > |2y

We can thus finally calculate the loop identity:

/dup(z4,w4, EGA(z, . T g w, ,@2)131(211, A, 2) 12 (B 2hw?

e"' Zi<j<4[zi|Zj>[wi|wj>+z7;<4 71 [21'1|7Di1>+7~'2 [2?‘15%

71 To1! TT1ToT’ 2
1— B85 3 lalw) + (B3 ) Siyealailz) i)

= exp (T > il wilwy) + > AlE @) +%2[51‘2|U7i2>> X

i<j<d i<d

N+ M) [ 7777 \V M ! :

<4 1<j<4

The factor of 1/(1 + p?)® arises from the three spinor integrations. Compared to the toy

loop, the result is thus an exchange of 17:;2 — (Tl?r;%;; and the addition of the trivial

propagation of the gauge-fixed strands. Before we can use the homogeneity maps we have
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to expand the exponentials in a power series. Doing this we arrive at

3 (—D)M(N + M)! ((T%ﬁﬂ' >N+2M AB_C

7—1 7—27_ X
ABCMN A'BIC'M!IN! 1+ p2)3
’ ’ N M+C
X(Z[zﬂwb) (Z[zﬂw%) (Z[alwﬁ) (Z[zi\zj>[wi|wj>> |
<4 <4 i< 52

Relabeling N — J and M + C — J’ and using the above homogeneity maps for 7,7, 7
and 7% — (25 + 1)", we recover the result for the constrained loop identity (5.11).

A.7 Mixing of spins in DL model

Here we prove the statement that in the DL propagator left and right spins mix. To see
this, let us take the gauge fixed DL propagator (5.15) and write it as

I CrE) VI gj [whz) PR g (woF) Y gy (zi|uf) ¥R
{ dl’b Zi } Tw r —wTw,R W0 To. F 0. T, B Ty (A27)
/H ’ H (27t 2gE) @i T (20R)!

We have inserted 7’s in front of every term to keep track of the all the spins. Now,
performing the integrals over the |z;) spinors, we get the following (rather easy to guess)
exponentiated expression for the gauge-fixed propagator

1), Tug Lo, LIWE[0F)+p(Tw; L0 RIWE [0F) +7, rTo, L [WE0F) )40 T, RTo, R V) (A.28)

To see the relations between spins, let us now yet again expand this in a power series. Each
of the terms in the expansion can be written as

H(TwiLTviL[wiL‘sz»jSl (pTwiLTviR[wﬂviR»%? (pTwiRTUiL[wiRlviL>)2jg (pQTwiRTviR[wz‘R’UzR»%?
; (25i)! (257)! (257)! (25!

(A.29)
Comparing now the powers of 7’s from Eq. (A.27) and Eq. (A.29), we get the following

relations between the spins

ﬁ’=@+€
it :]zl"'Jf ( )

in =ji+gt
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It is easy to see that we cannot solve for (51,52 72, j}) in terms of (577, jr' 37, dn)-
Also obviously we have j;i'n # jj'p. It is true however that j;* + jp' = ji' + j is always
satisfied.

A.8 Arbitrary face weight in DL model

In order to have a face weight in the DL model that depends on arbitrary combinations of
g& and j%, we need to introduce four 7s into the Eq. (5.23) as follows:

M
/ d“(wf)du(wf)eﬁ [wi |Mp|wil+ra[wif | Mg lwif+7s[wf|pMy |wif]+ra[wi| = F lwf]

= {1 -7 (TT(ML) -7 det(ML)> — Ty (TT(MR) — T det(MR)> + 7577 det(My) det(Mp)
+ Ty <T7’(ML) -7 det(ML)> (TT(MR) — Ty det(MR)> — T3y <TT(MLMR>—

—T1 det(ML)TT(MR) — Ta det(MR)Tr(ML) + 27’17’2 det(ML) det(MR)> }_1.
(A.31)

This is rather complicated, but allows for insertions of arbitrary face weights.

A.9 Justification for the nonlocality

Here we explain a bit more the reason why the amplitude after the 4-1 Pachner move (and
by extension the 5-1 move) cannot be written as a local product of propagators. Let us
compare the powers of 7s in the expression for f;, yrorp(n1,...,n7) in Eq. (7.9) to the
additional factor for the amplitude after the Pachner move in Eq. (7.12). To simplify this,
let us perform some relabelling. Let

n1—|—n2—|—n3:A
ny+no+ns =08
ny+ng+ng = C (A32)
TL2+N3+7L4ID
n5+n6—|—n7:X
We then have that

fTATBTCTD (nl, ce ,n’?) = T£+X7—BB+XTg+X7_DD+X. <A33)
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The additional factor from the Pachner move is on the other hand given by

2B42D-A-C |y, 2B42C-A-D_x .. 2042D-A-B_ y_ ..
3

L
(P @)X (E)PXr o Ty e T (A

If the amplitude could be rewritten into a product of four propagators, we would have to
absorb these additional three 7s and three 7s into the 74,...,7p. While the the 7s look
promising, the 74, 75, 76 each depend on an additional parameter ns, ng and n; respectively.
If these Ts carried nice multiplicative functions, like an exponential, then we could absorb
their combination, since ns+ng+n; = X. Alas, we have 77— F,(J)2(J 4+ 1)1 (1+p?)~5/
and both the (J + 1)7~! and the hypergeometric function do not factorize nicely. This is
even true in the large spin limit.

There are simply not enough free parameters in the propagators to absorb this addi-
tional factor in a symmetric way. The only alternative could be to allow each strand carry
its own 7 and allow for asymmetric results.
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