
Securing Cloud Computations with
Oblivious Primitives from Intel SGX

by

Sajin Sasy

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Sajin Sasy 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

We are witnessing a confluence between applied cryptography and secure hardware
systems in enabling secure cloud computing. On one hand, work in applied cryptography
has enabled efficient, oblivious data-structures and memory primitives. On the other,
secure hardware and the emergence of Intel SGX has enabled a low-overhead and mass
market mechanism for isolated execution. By themselves these technologies have their
disadvantages. Oblivious memory primitives carry high performance overheads, especially
when run non-interactively. Intel SGX, while more efficient, suffers from numerous
software-based side-channel attacks, high context switching costs, and bounded memory
size.

In this work we build a new library of oblivious memory primitives, which we
call ZeroTrace. ZeroTrace is designed to carefully combine state-of-art oblivious RAM
techniques and SGX, while mitigating individual disadvantages of these technologies. To
the best of our knowledge, ZeroTrace represents the first oblivious memory primitives
running on a real secure hardware platform. ZeroTrace simultaneously enables a dramatic
speedup over pure cryptography and protection from software-based side-channel attacks.
The core of our design is an efficient and flexible block-level memory controller that provides
oblivious execution against any active software adversary, and across asynchronous SGX
enclave terminations. Performance-wise, the memory controller can service requests for
4 Byte blocks in 1.2 ms and 1 KB blocks in 3.4 ms (given a 10 GB dataset). On top of our
memory controller, we evaluate Set/Dictionary/List interfaces which can all perform basic
operations (e.g., get/put/insert) in 1-5 ms for a 4-8 Byte block size. ZeroTrace enables
secure remote computations at substantially lower overheads than other comparable state-
of-the-art techniques.

iii

Acknowledgements

I wish to thank my supervisor, Dr. Sergey Gorbunov who patiently taught and guided
me through graduate school and enabled me to be an effective security researcher. He has
been an incredible mentor, who constantly motivates me to dream bigger and work towards
it. I have to thank Dr. Ian Goldberg, for single handedly shifting my attention and interest
towards Computer Security and Privacy, in his CS658 course in Fall 2015. I would also
like to thank my thesis readers, Prof. Tamer Ozsu and Dr. Florian Kerschbaum, for their
valuable feedbacks on my thesis.

I have to thank my lab group, both fellow and former “CrySPers” for all their help and
guidance and also for all the little idiosyncrasies like “vortexing”, that we enjoy together
while more often than not learning something useful from it. Lastly, I’d like to thank my
friends “the UWat Crew” for all the good times I’ve had and shared with them.

iv

Dedication

To the ones I love.

v

Table of Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Motivation . 1

1.2 Related Works . 5

1.3 Our Contributions . 7

1.4 Overview of the Thesis . 8

2 Computation Model 9

2.1 Usage Model . 9

2.2 Threat Model . 11

3 Preliminaries 14

3.1 Oblivious Enclave Execution . 14

3.2 Intel SGX . 15

3.3 Background for ORAM . 19

4 ZeroTrace 27

4.1 Design Summary . 27

4.2 Client/Server Interface . 29

vi

4.3 Memory Controller Enclave Program . 30

4.4 Persistant Integrity . 34

4.5 Optimizing Fetch/Store Path . 36

4.6 Security Analysis . 37

5 Implementation and Evaluation 41

5.1 Experiment Setup . 41

5.2 Evaluation of Core Memory Controller . 41

5.3 Evaluation of Controller Flexibility . 44

5.4 Improving the Controller Time . 45

5.5 Evaluation of Data-Structure Modules . 47

6 Towards Secure Remote Computation 50

6.1 Intel TPM + TXT . 50

6.2 Fully Homomorphic Encryption (FHE) . 52

6.3 Concluding remarks . 53

vii

List of Tables

3.1 Asymptotic performance of different ORAM Constructions 23

3.2 PathORAM Notations . 24

viii

List of Figures

2.1 Plug-and-play memory controller model . 10

2.2 Remote Data Storage model . 11

3.1 Normalized overhead of memory accesses with SGX enclaves. (Figure 3 from
Scone by Arnautov et al.[3].) . 17

4.1 System components on the server. 28

4.2 Execution of an access request . 39

5.1 Representative result. 42

5.2 Detailed performance breakdown. 43

5.3 Performance as a function of data ORAM block size for datasets with varying

number of blocks N . 44

5.4 Evaluation of our oblivious memory controller library for different security
levels with PathORAM as the underlying ORAM scheme. 45

5.5 Evaluation of ZeroTrace comparing PathORAM and CircuitORAM as the
underlying ORAM schema for data block sizes of 8 bytes. 46

5.6 Evaluation of ZeroTrace comparing PathORAM and CircuitORAM as the
underlying ORAM schema for varying data block sizes with N = 107 . . . 47

5.7 Evaluation of our oblivious memory controller library for Sets, Dictionaries,
List and Arrays. 48

ix

Chapter 1

Introduction

1.1 Motivation

Cloud computing is a paradigm, ever growing in popularity, that offers on-demand compute
and storage resources for users. A myriad of applications today are migrating towards the
cloud, few examples include machine learning, AI, data analytics, web and mobile services.
Ever since its conception, cloud computing has been plagued with the tug-of-war between
two contrasting pillars of functionality and security. In order to facilitate computations
over data, maintaining data unencrypted and in data structures optimized for functionality
on cloud servers has been the typical approach. This naturally leads to poor security
guarantees. Whereas on the flip side, naively encrypting data before storing it on the
cloud, strips it of any hope for efficient computation over the data. Thus ensuring both
efficient functionality and strong security for applications have become a very elusive goal.

Up until recently, secure cloud computing could only be achieved through the “the
holy grail” of cryptography, Fully Homomorphic Encryption – FHE [24]. FHE allows
one to perform arbitrarily-complex, dynamically-chosen computations on encrypted data.
As wonderful as this sounds, unfortunately FHE has severe performance and usability
limitations as it introduces many orders of magnitude overheads.

An alternative path for achieving the promise of secure cloud-computing is through
course-grained hardware isolation techniques (e.g., Intel TPM+TXT [33, 43, 71]). Intel
TPM+TXT runs code on bare hardware, yet incurs very high switching cost in/out of
TXT and low hardware utilization since the secure application owns the entire machine.

In wake of this interest in secure cloud computing, Intel recently released an instruction
set extension called Software Guard Extensions (SGX) [15, 44, 45, 46] for their 6th

1

generation of processors (Skylake Lake) onwards which addresses some of the above
challenges. In SGX, user-level sensitive portions of ring-3 applications can be run in
one or more application containers called enclaves. To bootstrap security, attestation
techniques provide the user with a proof that code and data were correctly loaded into
a fresh enclave. While running, SGX uses a set of hardware mechanisms to preserve the
privacy and integrity of enclave memory. Being an application container, enclaves run
concurrently with other user applications and privileged code. At first glance, SGX may
seem like the panacea to the secure cloud computation problem. However SGX has several
of it’s own shortcomings and challenges.

Challenges. An open challenge in using SGX is determining how best to map applica-
tions to enclave(s), that gives the best trade-off in trusted computing base (TCB) size,
performance and code isolation. A common approach, natively supported by the Intel
SGX, is to partition an application into trusted and untrusted code [63, 89]. A developer
would manually define which parts of an application should run in one (or multiple)
enclaves and define a communication method between them. In a good design, bugs in
one component may be isolated from the rest of the system, limiting their affects. While
theoretically this approach may lead to a very fine-grained application isolation, it raises
the question of where to partition a complex application. Alternatively, a number of
works study how to load unmodified applications into enclaves [3, 6, 32, 72]. To run full
applications, these approaches load parts of an OS (e.g., libc, pthreads, container code) into
the enclave alongside the application. This removes the need to decide how to re-architect
the application, but introduces a large TCB: a bug in the library OS or the application
can cause corruption anywhere else in the application.

Second, as it time-shares the CPU with other applications and privileged code, SGX can
leak sensitive data over covert channels (e.g., cache/branch predictor sharing, page fault
pattern). Researchers have shown how these indirect leakages can be devastating – from
leaking key material [57] to the outlines of sensitive images [82]. Prior work proposed to
transform the whole program to an oblivious form [51, 47]. The downside to obliviousness
is performance overhead: conceptually, the program is converted to straight-line code. To
exacerbate the overhead, prior work has only studied obliviousness as applied to the whole
program – analogous to porting the entire application to a single enclave as described
above.

Our Approach. We address these challenges by designing and implementing ZeroTrace
– a library enabling applications to be built out of fine-grained, building-blocks at the

2

application’s data-structure interface boundary. As part of this research, we implement and
evaluate the first oblivious memory controller running on a real secure hardware platform.

Partitioning applications at the oblivious data-structure boundary hits a sweet spot
for several reasons. First, the data-structure interface is narrow. This makes it easier
to sanitize requests and responses from application to data-structure, improving intra-
application security. Second, the data-structure interface is re-usable across many
applications. A service provider can pre-package data-structure backends as pre-certified
blocks with a common interface, enabling application developers to build complex
applications from known-good pieces. Further, there is a rich literature in the security
community on how to efficiently achieve various security properties when working with
various data-structures [9, 26, 75, 87]. These works can be dropped into our system as
different backend implementations, which gives clients the ability to hot-swap between
implementations, depending on the application’s security requirements.

Our system’s core component is a fully-implemented SGX-based secure memory
controller that exposes a block read(addr) and write(addr, data) interface to applications.
This memory controller runs in software, partly in an SGX enclave and partly in outside
ring-3 support logic. The controller’s primary design consideration is flexibility : we wish
for the core controller to be usable across a variety of threat and usage models. At the
highest level of security, the controller hides which operations are issued by the user and
the arguments issued to those commands. That is, it runs obliviously [51, 49, 47, 26].
The module can be parameterized to defend against several types of adversaries, where
the highest level of security provides obliviousness (privacy) and integrity (authenticity
and freshness) guarantees against arbitrary software-based adversaries. The core can be
parameterized to defend against a subset of these threats, depending on the context. To
maximize usability, our controller exposes a low-level and generic ‘frontend’ secure channel-
like interface to applications. The controller’s backend interacts directly with untrusted,
available DRAM and/or HDD/SSD storage, in a fashion transparent to the application.

Building an efficient memory controller in SGX is non-trivial, presenting security and
performance challenges, due to the nature of SGX.

• Despite isolating enclave virtual memory from direct inspection, SGX can leak
sensitive data over covert channels (e.g., cache/branch predictor sharing, page fault
pattern). We employ additional mechanisms (e.g., [47, 49, 51]) to prevent these
leakages.

• SGX enclaves do not support direct I/O to disk. To support disk backend storage,
we partition the controller between trusted and un-trusted zones in a secure fashion.

3

• SGX does not support persistant integrity across boots, and risks memory controller
data corruption on sudden/un-expected shutdowns. We develop a novel protocol to
make the core memory controller fault tolerant: allowing the controller to quickly
and securely recover from such a shutdown or failure (even in the event of partial
data loss).

• On the performance front, the whole system design requires a careful balance of
resources between enclave memory, untrusted DRAM and untrusted disk(s). We
propose optimizations to efficiently make use of these different resources in a way
that preserves the module’s security guarantee.

Using our core memory controller as a building-block, we implement a library of data-
structures that can interface directly with applications. We evaluate several common data-
structures including arrays, sets, dictionary and lists. Building on top of enclaves that have
flexible client-facing interfaces brings new advantages. Multiple clients can seamlessly
share the same data-structure, with software-controlled access policies depending on the
trust between those applications. Clients can also attach remotely to the data-structure,
creating novel distributed systems that create interesting improvements to related research
directions. For example, by extending the TCB to Intel SGX, we reduce the client-server
bandwidth of a traditional oblivious file server by over an order of magnitude.

4

1.2 Related Works

Oblivious RAMs and Secure Hardware. Research in ORAM began with the seminal
work by Goldreich and Ostrovsky [26], and has culminated in practical constructions with
logarithmic bandwidth overhead [52, 68, 74] as we discuss in Section 3.3.

In the context of ORAM, our work moves the ORAM controller close to storage,
exploiting the fact that ORAM bandwidth overhead occurs between ORAM controller
and storage and not between client and ORAM controller. This idea has been explored
previously by combining homomorphic encryption with ORAM by Onion ORAM [17], and
by the ORAM-based systems Oblivistore [65] and ObliviAd [4] (which assume hypothetical
secure hardware). The latter two works have a weaker threat model than our model, since
our goal is to protect against all remote software attacks, whereas the latter two focus only
on hiding ORAM protocol-level access patterns.

Another similar direction of research is secure hardware projects such as Phantom [41],
Aegis [69] and Ascend [23]. Phantom is a secure processor that obfuscates it’s memory
access patterns by using PathORAM intrinsically for all its memory accesses. Aegis is
aimed at incorporating privacy and integrity guarantees for physical attacks (in addition
to software attacks) against the processor. (It makes use of PUF - Physically Unclonable
Functions to create Physical Random Functions) Ascend is a secure coprocessor1 that
aims at achieving secure computations for a cloud server against semi-honest adversary. It
is designed to perform oblivious computations to which end it obfuscates its instruction
execution such that it appears to spend the same time/energy/effort for the execution of
each instruction independent of the underlying instruction.

Phantom achieves similar security goals as that of ZeroTrace, however there are several
differences between our project and such secure hardware projects. First, since these
projects rely on custom hardware that are uncommon (typically unavailable) commercially,
deployability of these projects are dubious at best. Intel SGX (and therefore ZeroTrace)
is commercially available and already present on all Intel processors from Skylake series
onwards. Secondly, these secure processors are innately tied to providing oblivious accesses
to just the memory/DRAM, however ZeroTrace is extremely flexible with respect to the
underlying storage support. Additionally, not every piece of data needs to have the same
security properties. Exploiting this security flexibility, allows applications to trade their
higher level of security for performance efficiency through ZeroTrace.

1An additional processor that sits alongside the main server, for performing secure computation.

5

Systems. A number of systems investigate the question of protecting applications
running in enclaves. Raccoon [51] provides oblivious program execution via an integration
with an ORAM and control-flow obfuscation techniques. In particular, they obfuscate
programs by ensuring that all possible branches are executed, regardless of the input data.
This approach is conceptually differs from ours since we provide oblivious building blocks
for sensitive data with strict underlying security guarantees. Also, because of how the
control-flow techniques are enforced in Racoon, it assumes a trusted operating system
(Section 3, [51]). In our design, obliviousness is guaranteed even when an adversary
compromises the entire software stack including the OS. Finally, while Raccoon is designed
to run on an Intel SGX-enabled processor, the architectural limitations of SGX are not
taken into consideration in their design. Their results are based on emulations of Intel SGX,
and hence have results that our work disproves, since we implement an actual system on
real SGX enabled hardware.

GhostRider [39] proposed a software-hardware hybrid approach to achieve program
obliviousness. It is a set of compiler and hardware modifications that enables execution
of an ORAM controller inside an FPGA card used for sensitive data accesses. Their work
offers only a “conceptual” approach to the problem. In particular, they assume “unbounded
resources, and no caching” and do not target any modern processor. In contrast, the focus
of this work is to design a real-world system capable of running on a widely available Intel
CPU architecture.

Opaque [89] is a secure Spark database system where components of the database
server are run in SGX enclaves. Opaque is complementary to ZeroTrace: their focus is to
support oblivious queries for a database system; our focus is to support arbitrary oblivious
read/write operations. Each system is superior in supporting its chosen task.

Attacks and Defenses. The primary attack vectors against SGX in the literature stem
from the fact that enclaves share physical resources with other applications and interact
with the OS to perform syscalls and paging. Using a shared resource, typically cache usage
[29, 50, 70, 84, 88, 34, 40, 73] can be exploited by an adversary to reveal fine-grain details
about program execution. Similarly, a malicious OS can monitor application page fault
behavior to learn program memory access patterns [82, 62]. Recently, we have even seen
attacks that infer fine-grained control flow from code executing in an SGX enclave via
branch shadowing [38].

Most cache attacks against Intel SGX follows a generic blue print. The setup typically
constitutes a malicious attacker process and a victim enclave process that are executed on
the same CPU. The attacker process sets the cache into a “clean” state by filling it up

6

with it’s contents, it then allows the victim enclave to execute causing it to replace cache
contents or “dirty” cache locations. For the attack, one periodically swaps out the victim
enclave for the attacker process, infers the cache usage pattern of the victim enclave and
refreshes the cache state.

T-SGX is a system that helps to protect against controlled-channel attacks within en-
claves [61]. However, T-SGX is based on identifying if an enclave is being swapped/interrupted
more frequently than expected and forcefully shutting itself down in such an event to
prevent leaking sensitive information. However, Brasser et al.[11], demonstrated how one
can perform these cache attacks with minimal enclave exits/swaps, bypassing defense
mechanisms such as T-SGX. Hence in SGX-based systems, there is currently an arms
race underway between defenses (e.g., T-SGX[61], SGXbounds[37], Deja Vu[14]) and new
attacks (e.g., Brasser et al.[11], Lee et al.[38]) related to shared resource usage.

ZeroTrace protects against all such shared resource and page fault-related attacks by
converting the program to an oblivious representation.

1.3 Our Contributions

This thesis makes the following contributions

1. We design and build an oblivious memory controller from Intel SGX. To the best
of our knowledge, the core memory controller (the bulk of our system) is the first
oblivious memory controller implemented on a real secure hardware platform.

2. We design and implement ZeroTrace, an application library for serving data-
structures obliviously in an SGX environment that runs on top of our memory
controller.

3. We evaluate system performance in two settings: as a remote file server and as a
plug-and-play for data-structures. It can also make oblivious read and write calls to
4 B/1 KB memory locations on a 10 GB dataset in 1.2/3.4 ms. In the plug-and-play
setting, ZeroTrace can make oblivious read and write calls at 8 B granularity on an
80 MB array in 1.2 ms.

4. We model how we envision secure cloud computation using ZeroTrace and compare
and contrast it with existential models.

7

1.4 Overview of the Thesis

• In Chapter 2, we describe our usage model and security model.

• Chapter 3 covers all the background knowledge required for explaining ZeroTrace.
Here, we explain Intel SGX, focusing on the aspects most relevant to ZeroTrace. We
also give a brief introduction to Oblivious RAM(ORAM) schemas, emphasizing on
PathORAM and CircuitORAM.

• In Chapter 4, we give details on our architecture for ZeroTrace; including the in-
stantiation process, client and server components, optimizations, persistant integrity
technique and security analysis.

• Chapter 5 describes our prototype implementation and evaluation.

• Finally, Chapter 6 concludes by discussing existential secure computation models and
how ZeroTrace compares with them for secure computation.

8

Chapter 2

Computation Model

2.1 Usage Model

We consider a setting where a computationally weak client wishes to outsource storage or
computation to an untrusted remote server that supports Intel’s Software Guard Extension
(SGX). As secure hardware extensions such as SGX reach the market, we anticipate this
setting will become a common way to implement many real world applications such as
image/movie/document storage and computation outsourcing. The cloud can be any
standard public cloud such as Amazon AWS, Microsoft Azure or Google cloud, and the
client can be any mobile or local device. In fact, Microsoft Azure recently announced
support for “confidential computing” by making SGX-enabled servers available via their
cloud service [1].

As introduced in Chapter 1, our proposal consists of stand-alone enclaves that
implement secure memory services. We envision future applications being constructed
from these (and similar) plug-and-play services. We now describe this general scenario in
more detail. Afterwards, we show how a special case of this scenario improves performance
in a related branch of research.

Plug-and-play memory protection for outsourced computation. We envision an
emerging scenario where client applications (e.g., a database server), which run in an
SGX enclave(s), connect to other enclaves to implement secure memory and data-structure
services. In an example deployment, calling a memory service enclave is hidden behind
a function call, which is dynamically linked (connected to another enclave via a secure

9

Figure 2.1: Plug-and-play memory controller model

channel) at runtime. What “backend” memory service our system supports can be changed
depending on the application’s needs. For example, our core memory controller currently
supports an ORAM backend. Without changing the application-side interface, this backend
can be transparently changed to support a different ORAM, different security level for
memory protection (e.g., plain encryption) or different security primitive entirely (e.g., a
proof of retrievability [9]). A similar argument goes for memory services exposing a data-
structure interface. For example, Wang et al. [75] proposed a linked-list optimized for use
as an iterator, while another implementation can be optimized for insertion.

A reasonable question is: why break these services into separate enclaves, as opposed
to statically linking them into the main application? Our design has several advantages.
First, breaking an application into modules eases verification. SGX provides enclave
memory isolation. Thus, verifying correct operation reduces to sanitizing the module
interface (a similar philosophy is used in Google’s NaCl [85]). Data structures and memory
controllers naturally have narrow interfaces (compared to more general interfaces, such as
POSIX [63]), easing this verification. Second, breaking applications into modules eases
patching. Upgraded memory services can be re-certified and re-attached piecemeal, without
requiring the vendor to re-compile and the client to re-attest the entire application. Third,
inter-communicating between enclaves gives flexibility in deployment, as shown in the next
paragraph.

Remote block data storage. Suppose a client device wishes to store blocks of data
(e.g., files) on the remote server (e.g., Amazon S3). To achieve obliviousness, the standard

10

Figure 2.2: Remote Data Storage model

approach is for the client to use an Oblivious RAM protocol where the client runs the
ORAM controller locally [66, 77]. The ORAM controller interacts over the network with
the server, which acts as a disk. While benefitting from not trusting the server, these
solutions immediately incur an at-least logarithmic bandwidth blowup over the network
(e.g., WAN) due to the protocol between ORAM controller and server. As a special case of
the first setting (above), the core memory controller can serve as the ORAM controller, from
the oblivious remote file server setting, now hosted on the server side. As our architecture
can protect side-channel leakages introduced from the SGX architecture, the only change
to security is we now trust the SGX mechanism. The advantage is bandwidth savings:
this deployment improves client communication over the network by over an order of
magnitude. Our scheme still incurs logarithmic bandwidth blowup between the enclave
code and server disks, but this is dwarfed by the cost to send data over the network.

2.2 Threat Model

In our setting, memory controller logic (e.g., the ORAM controller) and higher-level
interfaces are implemented in software run on the server. The server hosts SGX and a
regular software stack outside of SGX. The client and SGX mechanism are trusted; memory
controller logic is assumed to be implemented correctly. We do not trust any component
on the server beyond SGX (e.g., the software stack, disks, the connection between client

11

and server, other hardware components besides the processor hosting SGX). Per the usual
SGX threat model, we assume the OS is compromised and may run concurrently on the
same hardware as the memory controller. By trusting the SGX mechanism, we trust the
processor manufacturer (e.g., Intel).

Security goals. Our highest supported level of security, and our focus in this thesis, is
for the SGX enclave running the memory controller to operate obliviously in the presence of
any active (malicious), software-based adversary. In this case, the memory controller must
run an ORAM protocol over untrusted storage. We default to this level of security because
a known limitation of SGX is its software-based side-channel leakages (Section 3.2.1), which
are dealt with via oblivious execution. (Related work calls these digital side-channels [51].)
Obliviousness means the adversary only learns the number of requests made between client
and memory controller; i.e., not any information contained in those requests. We are
interested in preserving privacy and integrity of requests. The server may deviate from the
protocol, in an attempt to learn about the client’s requests or to tamper with the result.
Our system’s threat surface is broken into several parts:

Security of memory. First, the memory accesses made by the SGX enclave to external
memory. These are completely exposed to the server and must preserve privacy and
integrity of the underlying data. These accesses inherit the security of the underlying
memory protection (e.g., ORAM), which we detail in Section 3.3.1.

Security of enclave execution. Second, the SGX enclave’s execution as it is orches-
trating accesses to external memory. At a high level, SGX only provides privacy/integrity
guarantees for enclave virtual memory. Running ORAM controller code in an enclave
does not, by itself, ensure obliviousness. External server software (which shares the
hardware with the enclave) can still monitor any interactions the enclave makes with
the outside world (e.g., syscalls, etc.), how the enclave uses shared processor resources
such as cache [11, 57] and how/when the enclave suffers page faults [82]. Our system
has mechanisms to preserve privacy and integrity despite the above vulnerabilities. We
formalize this security guarantee in Section 3.1 and map SGX to these definitions in
Section 3.2.

Security across enclave termination. Third, recovery and security given enclave
termination. An important caveat of SGX is that the OS can terminate enclave execution
at any time. This has been shown to create avenues for replay attacks [42], and

12

risks irreverable data-loss. We develop novel protocols in Section 4.4 to make the
ORAM+enclave system fault tolerant and secure against arbitrary enclave terminations.

Security non-goals. We do not defend against hardware attacks (e.g., power analysis[35]
or EM emissions [58]), compromised manufacturing (e.g., hardware trojans [83]) or denial
of service attacks.

13

Chapter 3

Preliminaries

In this chapter, we first formalize this notion of oblivious enclave execution that we desire,
we then establish some basic understanding of Intel SGX, the security properties it offers
and its limitations .

3.1 Oblivious Enclave Execution

We now formalize oblivious execution for enclaves that we set out to achieve in our system.
We first give a general definition for enclave-based trusted/oblivious execution, that defines
the client API, security guarantees, and where privacy leakages can occur. In the next
section, we describe exactly what privacy and integrity threats are present in Intel SGX in
particular, and the challenges in protecting them.

To help us formalize the definition, we define a pair of algorithms Load and Execute,
that are required by a client to load a program into an enclave, and execute it with a given
input.

Load(P) → (EP, φ). The load function takes a program P, and produces an enclave EP,
loaded with P along with a proof φ, which the client can use to verify that the enclave did
load the program P.

Execute(EP, in)→ (out, ψ). The execute function, given an enclave loaded with a program
P, feeds the enclave with an input in, to produce a tuple constituting of the output out,

14

and ψ which the client can use to verify that the output out was produced by the enclave
EP executing with input in.

Execution also produces trace(EP,in), which captures the execution trace induced by
running the enclave EP with the input in which is visible to the server. This trace(EP,in)

contains all the powerful side channel artifacts that the adversarial server can view, such
as cache usage, etc. These are discussed in detail in the case of Intel SGX in Section 3.2.1,
below.

Security. When a program P is loaded in an enclave, and a set of inputs −→y :=
(inM, ..., in1) are executed by this enclave, it results in an adversarial view V(−→y) :=
(trace(EP,inM), ..., trace(EP,in1)). We say that an enclave execution is oblivious, if given two
sets of inputs −→y and −→z , their adversarial views V(−→y) and V(−→z) are computationally
indistinguishable to anyone but the client.

3.2 Intel SGX

In this section we give a brief introduction to Intel Software Guard Extensions (SGX)
and highlight aspects relevant to ZeroTrace. (See [2, 15] for more details on SGX.) Intel
SGX is a set of new x86 instructions that enable code isolation within virtual containers
called enclaves. In the SGX architecture, developers are responsible for partitioning
the application into enclave code and untrusted code, and to define an appropriate I/O
communications interface between them.

In SGX, security is bootstrapped from an underlying trusted processor, not trust in
a remote software stack. To this end, the processor is fused with cryptographic keys in
its manufacturing phase. These keys can only be accessed by the processor, and is used
to encrypt the contents of a subsets of DRAM, referred as Processor Reserved Memory
(PRM) which gets set aside securely at boot time. The PRM, is commonly referred to as
Enclave Page Cache (EPC) in SGX literature. All pages in the EPC are encrypted with
the processor owned keys. A subset of these EPC pages called as Version Array(VA) pages
are set aside to maintain freshness and integrity guarantees of these EPC pages. These VA
pages stores a merkle tree of hashes for the EPC pages. Hence every EPC access undergoes
a decryption as well as an integrity check against the merkle tree, to ensure that EPC pages
are confidential and not tampered with.

We now describe how Intel SGX implements the Load(P) and Execute(EP, in) functions
from the previous section.

15

Load(P) → (EP, φ). A client receives a proof φ that its intended program P (and initial
data) has been loaded into an enclave via an attestation procedure. Code loaded into
enclaves is measured by SGX during initialization (using SHA-256) and signed with respect
to public parameters. The client can verify the measurement/signature pair to attest that
the intended program was loaded via the Intel Attestation Service.

Execute(EP, in) → (out, ψ). SGX protects enclave program execution by isolating en-
clave code and data in the EPC. Cache lines read into the processor cache from the
EPC are isolated from non-enclave read/writes via hardware paging mechanisms, and
encrypted/integrity-checked at the processor boundary as mentioned above. Thus, data in
the EPC is protected (privacy and integrity-wise) against certain physical attacks (e.g., bus
snooping), the operating system (direct inspection of pages, DMA), and the hypervisor.

Paging. In Intel SGX, the EPC has limited capacity. To support applications with
large working sets, the OS performs paging to move pages in and out of the EPC on
demand. Hardware mechanisms in SGX ensure that all pages swapped in/out of the
EPC are integrity checked and encrypted before being handed to the OS. Thus, the OS
learns only that a page with a public address needed to be swapped, not the data in the
page. Special pages controlled by SGX (called VA pages) implement an integrity tree over
swapped pages. In the event the system is shutdown, the VA pages and (consequently)
enclave data pages are lost.

Enclave I/O. It is the developer’s responsibility to partition applications into trusted
and untrusted parts and to define a communication interface between them. The literature
has made several proposals for a standard interface, e.g., a POSIX interface [63].

3.2.1 Security Challenges in Intel SGX

We now detail aspects of Intel SGX that present security challenges for and motivate the
design of ZeroTrace.

Software side channels. Although SGX prevents an adversary from directly inspect-
ing/tampering with the contents of the EPC, it does not protect against multiple software-
based side channels. In particular, SGX enclaves share hardware resources with untrusted
applications and delegate EPC paging to the OS. Correspondingly, the literature has

16

Figure 3.1: Normalized overhead of memory accesses with SGX enclaves. (Figure 3 from
Scone by Arnautov et al.[3].)

demonstrated attacks that extract sensitive data through hardware resource pressure (e.g.,
cache [11, 57] and branch predictor [38]) and the application’s page-level access pattern [82].

EPC scope. Since the integrity verification tree for EPC pages is located in the EPC
itself (in VA pages), SGX does not support integrity (with freshness) guarantees in the event
of a system shutdown [42]. More generally, SGX provides no privacy/integrity guarantees
for any memory beyond the EPC (e.g., non-volitile disk). Ensuring persistent integrity for
data and privacy/integrity for non-volitile data is delegated to the user/application level.

No direct IO/syscalls. Code executing within an enclave operates in ring-3 user space
and is not allowed to perform direct IO (e.g., disk, network) and system calls. If an enclave
has to make use of either, then it must delegate it to untrusted code running outside of
the enclave.

17

3.2.2 Additional Challenges In Enclave Design

We now summarize additional properties of Intel SGX (1.0) that make designing prevention
methods against the above issues challenging.

EPC limit. Currently, the size of EPC is physically upper bounded by 128 MB by the
processor. Around 30 MB of EPC is used for bookkeeping, leaving around 95 MB of usable
memory. As mentioned above, EPC paging alleviates this problem but reveals page-level
access patterns. However EPC paging is expensive and can cost between 3x and 1000x
depending on the underlying page access pattern as shown in Fig 3.1.

Context switching. At any time, the OS controls when enclave code starts and
stops running. Each switch incurs a large performance overhead – the processor must
save the state needed to resume execution and clear registers to prevent information
leakages. Further, it is difficult to achieve persistant system integrity if the enclave can be
terminated/swapped at any point in its execution.

18

3.3 Background for ORAM

ORAM or Oblivious RAM (Random Access Memory) was introduced by Goldreich and
Ostrovsky[26] in 1996 in their theoretical treatment of software protection. Their work
considers an adversary that can make non-trivial inferences from the memory access
patterns of an encrypted program. To this end, they emphasize that memory access
patterns should be independent of the executed program. In their seminal work, Goldreich
and Ostrovsky showed that every model of computation can be transformed into an
equivalent oblivious computation at the cost of a slowdown in the running time of the
oblivious machine and they provided a lower bound for this transformation.

This problem of memory access patterns of a program are analogous to that of file
access patterns in a file storage system. Hence ORAM’s extend it’s utility in oblivious file
storage systems as well [8, 66, 76]. Obliviousness is more important than ever today, since
over the last few years, there are several privacy and security breaches that stem from
access pattern leakages [13, 34, 40, 48, 73, 82, 84, 88].

Informally the goals of an ORAM schema are to not leak any information about

• Which data is being accessed

• How old is the data accessed (last access)

• Whether the same data is being accessed (linkability)

• Whether the access is a read or a write

Over the past two decades, we have seen several innovative constructions for ORAM’s.
In this chapter, we first state the security model for ORAMs from literature, followed by
a brief literature of ORAM schemas highlighting their differences, and then proceed to
explain the construction for Path RAM [68] and Circuit ORAM [74] which are the ORAM
schemas underlying ZeroTrace.

3.3.1 Security model

Correctness. We say that an ORAM construction is correct if it returns, on input −→y ,
data that is consistent with −→y with probability ≥ 1 - negl(|−→y |), i.e. the ORAM may fail
with probability negl(|−→y |).

19

Security. Let
−→y := ((opM, aM, dataM), ..., (op1, a1, data1))

denote a data request sequence of length M where each opi denotes a read(ai) or a write(ai)
operation. Specifically, ai denotes the identifier of the block being read or written, and datai
represents the data being written. In this notation, index 1 corresponds to the most recent
load/store and index M corresponds to the oldest load/store operation. Let ORAM(−→y)
denote the (possibly randomized) sequence of accesses to the remote storage given the
sequence of data requests −→y . An ORAM construction is said to be secure if for any two
data request sequences −→y and −→z of the same length, their access patterns ORAM(−→y) and
ORAM(−→z) are computationally indistinguishable to anyone but the client.

3.3.2 Choices of ORAM

The efficiency of Oblivious RAM is measured by three main parameters, the amount of local
(client) storage, the amount of server (remote) storage and the overhead of reading/writing
an element. Over the last two decades there have been several refinements and innovative
constructions for ORAMs. The constructions can be broadly classified into two types,
namely hierarchical and tree-based.

Hierarchial Constructions. Goldreich and Ostrovsky’s work [26] (popularly known
as GO-RAM) provided the first hierarchical construction. These constructions involve
a hierarchy of buffers, each buffer contains a number of buckets that are geometrically
increasing as you go down the hierarchy. A bucket contains slots for logN blocks, where
N is the total input blocks. The construction treats each of these buffers as a hash table,
and allots a hash function to it to determine which bucket to place an incoming block to.
In order to place a block in a buffer, the hash function for that buffer is computed for the
block in question, and it is inserted into the corresponding bucket. At the beginning, all
blocks are inserted into the deepest level buffer.

In order to access a block, one searches for the block in each of the buffers by scanning1

the bucket dictated by the hash function for the requested block. Once the block is found
in a buffer, the algorithm proceeds to make dummy accesses for the block in the rest of the
buffers. At the end of a search the requested block is inserted back into the first buffer.

Eventually, to avoid overflow of blocks in the first buffer, all blocks from it are moved
to the next buffer. Thus, after number of accesses corresponding to the buffer size of the

1By scanning, we mean accessing all the actual blocks in the bucket

20

level i , the contents of the buffer i gets moved to the next buffer i+ 1. This move involves
”obliviously sorting” 2 the contents of the two buffers and inserting them into the buffer
i+ 1 with a new hash function. The original GO-RAM construction featured a sequence of
buffers which grew in an unbounded fashion with access requests, i.e. once the deepest level
buffer was full a new buffer is allocated as the deepest level buffer. We make a quick note
here that all blocks are always encrypted and authenticated using a randomized encryption
and authentication schema, and that this is an orthogonal problem for any ORAM scheme.

Williams and Sion [76] improved upon GO-RAM by introducing a method to perform
oblivious sorting by using O

√
N local memory to reduce the access overhead to O(log2(N)).

Williams et al. [78] followed up their work in 2008, with a construction that reduced the
access overhead to O(logN log logN) with use of Bloom filters. However Kushilevitz et
al. [36] showed that this construction allowed an adversary to distinguish access patterns
based on hash overflows. In their work, Kushilevitz et al. [36] produced the state
of the art hierarchical construction which extended the construction by Goodrich and
Mitzendmacher [27] with a shared stash to handle the hash overflows. Their construction
splits the server storage into two, the upper half of buffers are filled using bucket hashing
identical to that of GO-RAM [26], and the lower half of buffers are filled with cuckoo
hashing. Their work is optimized for bandwidth, while still maintaining minimal client
storage.

Tree based constructions. Damgard et al. [16] in 2011 introduced an interesting
ORAM construction that removed the need for random oracles from the GO-RAM
construction by using binary trees. Following that Shi et al. [59] introduced the
first tree based ORAM construction. It was followed up with several other notable
constructions [22, 52, 68, 74] that made use of the tree framework. These schemas typically
have the server-side ORAM storage organized into a binary tree of nodes that are called
buckets. Most notable among them being Path ORAM [68], which we elaborate upon
in Section 3.3.3. In these tree based constructions, the client is associated with a small
storage which holds two local data structures, a position map which maps every block to
a leaf label on the storage tree and a stash for overflown blocks that are to be held at the
client side. Fetching a block corresponds to selecting a path from the root of this binary
tree to the leaf node that it is mapped to in the position map.

These tree based constructions typically differ only in their eviction strategies. In Path
ORAM the eviction strategy is to refill the read path that was accessed, with blocks from

2GO-RAM construction uses the Batcher Sorting network [5] with a complexity of O(N log2 N)

21

the stash, pushing blocks as closer to the leaf as possible. However in Ring ORAM [52]
and Circuit ORAM [74] the eviction paths are independent of the read path.

In Ring ORAM the focus is to reduce the online amortized bandwidth. To this end,
instead of reading all blocks in a path, for an access Ring ORAM reads a block per bucket
on the path to the leaf label. In order to facilitate this single block read per bucket, it
maintains metadata within a bucket for the permutation of blocks in it. This also implies
that Ring ORAM can use the XOR trick3 from Burst ORAM [64], further reducing the
bandwidth.

Bucket ORAM [22] tries to merge the best of both worlds (tree and hierarchical).
Although it features level-rebuild shuffling like hierarchical ORAM’s, it avoids the oblivious
sort of all blocks within a level, instead the client works on a subset of the buckets in the
level. By maintaining the level-rebuild shuffling, Bucket ORAM can take advantage of an
additively homomorphic encryption technique from Onion ORAM [17] to achieve constant
bandwidth blowup.

CircuitORAM [74] was designed with the intent of optimizing circuit complexity for
efficient instantiations of Multi-Party Computation (MPC) protocols. It does so by
simplifying the eviction circuit. Circuit ORAM reads two eviction paths for each access,
and makes two metadata scans of the eviction paths. It uses this foresight from the
metadata scans to push blocks deeper into the eviction paths in a single scan.

Table 3.3.2, gives breakdown of efficiencies of relevant ORAM constructions from
literature. Among the plethora of ORAM constructions, we note that hierarchical
constructions are inefficient for our purpose. There are several reasons for this claim.

• All hierarchical schemas involve periodical reshuffling of large buffers (for large values
of N). In our setting this would involve using up a large number of EPC pages, and
the additional overheads that stem from that.

• For every access, hierarchical schemas typically involve accessing a buffer from a
bucket based on the evaluation of a PRF. Within the SGX setting, this evaluation
of PRF can lead to side channel attacks, and hence it become crucial to use PRF’s
with an oblivious implementation.

• Tree based schemas offer better security than hierarchical since the security guarantee
arises from statistical security (distribution of data over paths to randomly sampled

3The XOR trick - instead of sending O(logN) blocks on the block, one can simply XOR the dummy
blocks on the path with the real block. The client can then generate the dummy blocks locally and XOR
them with the obtained block to retrieve the underlying real block.

22

ORAM Scheme Client Storage
(# of blocks)

Server Storage
(# of blocks)

Read/Write Bandwidth
(# of blocks of size B)

GO-RAM [26] O(1) O(N logN) O(log3N)

Kushilevitz et al. [36] O(1) O(N) O(log2N/ log logN)

SSS ORAM [67] O(
√
N) O(N) O(logN)

Path ORAM [68] O(logN) O(N) O(log2N)

Bucket ORAM [22] O(logN) O(N) O(log2N)

Ring ORAM [52] O(logN) O(N) O(log2N)

Circuit ORAM [74] O(1) O(N) O(log2N)

Table 3.1: Asymptotic performance of different ORAM Constructions, for simplicity of
representation the table uses a small block size B = Ω log2N . The complexities of Path
ORAM, Ring ORAM, Bucket ORAM and Circuit ORAM are discussed for their recursive
versions.

leafs) as opposed to the computational security guarantee of PRF evaluations in
hierarchical constructions 4

• Hierarchical schemas also have a worst case complexity that is significantly worse
than their amortised response time. This stems from the fact that they have to
periodically reshuffle buffers, which is often a drawback of using hierarchical schemas
in application settings.

We are still faced with a selection of tree based ORAM schemas. One thing to note
is that ORAM bandwidth to untrusted storage and ORAM controller trusted storage are
inversely proportional [67, 68, 74].

Among the aforementioned constructions, BucketORAM and RingORAM face the same
problem of evaluating PRF’s within the enclave (as mentioned earlier) for permuting and
fetching the blocks within a bucket. In our setting, the SGX and obliviousness requirements
take a performance penalty when using larger controller storage (due to EPC evictions [42]
and the cost of running oblivious programs; see Section 3.2.2). Hence, recursive variants of
these constructions are a better match for our setting. Additionally, passing data in and

4This is without accounting for the computational security of encryption and authentication schemas.

23

out of an enclave introduces delays due to the underlying context switch (Section 3.2.2),
hence Circuit ORAM would introduce more delays as it is more I/O intensive since eviction
paths are different from the read path.

Path ORAM provides a middle ground here, better bandwidth/larger storage than
Circuit ORAM[74]. Although worse bandwidth/smaller storage than SSS ORAM[67].
Hence, initially we used PathORAM as the underlying ORAM schema for ZeroTrace, but
we also added CircuitORAM support for ZeroTrace and describe more in detail about the
performance of these ORAM schemas for ZeroTrace in Chapter 5.

3.3.3 PathORAM

We now give a summary of Path ORAM [68], the ORAM used in our current implemen-
tation. Path ORAM is a tree based ORAM schema, arguably one of the simplest and
efficient ORAM schemas so far.

N Number of blocks
B Block size in bits

L = dlog(N)e Height of tree
Z Capacity of each bucket (in blocks)

Table 3.2: PathORAM Notations

Server Storage. Path ORAM stores N data blocks, where B is the block size in bits,
and treats untrusted storage as a binary tree of height L (with 2L leaves). Each node in
the tree is a bucket that contains ≤ Z blocks. In the case of a bucket having < Z blocks,
remaining slots are padded with dummy blocks.

Controller Storage. The Path ORAM controller storage consists of a stash and position
map. The stash is a set of blocks that Path ORAM can hold onto at any given time (see
below). To keep the stash small (negligible probability of overflow), experiments show
Z ≥ 4 is required for the stash size to be bound to ω(logN) [68]. The position map is a
dictionary that maps each block in Path ORAM to a leaf in the server’s binary tree. Thus,
the position map size is O(LN) bits.

24

Main Invariant. At any given point of time, a block in the system resides either on the
path to the leaf label that it is mapped to in the position map, or in the local stash of the
PathORAM controller.

Memory Access. As stated above, each block in Path ORAM is mapped to a leaf
bucket in the server’s binary tree via the position map. For a block a mapped to leaf l,
Path ORAM guarantees that block a is currently stored in (i) some bucket on the path
from the tree’s root to leaf l, or (ii) the stash. Then, in order to perform a read/write
request to block a (mapped to leaf l), we perform the following steps:

• Read the leaf label l for the block a from the position map.

• Re-assign this block to a freshly sampled leaf label l′, chosen uniformly at random.

• Fetch the entire path from the root to leaf bucket in server storage.

• Retrieve the block from the combination of the fetched path and the local stash.

• Write back the path to the server storage. In this step the client must push blocks
in the stash as far down the path as possible, while keeping with the main invariant.
This strategy minimizes the number of blocks in the stash after each access and is
needed to achieve a small (logarithmic) stash size.

Security intuition. The adversary’s view during each access is limited to the path
read/written (summarized by the leaf in the position map) during each access. This leaf
is re-assigned to a uniform random new leaf on each access to the block of interest. Thus,
the adversary sees a sequence of uniform random-sampled leaves that are independent of
the actual access pattern.

Extension: Recursion. The Path ORAM position map is O(LN) bits, which is too
large to fit in trusted storage for large N . To reduce the client side storage to O(1), Path
ORAM can borrow the standard recursion trick from the ORAM constructions of Stefenov
et al. [67] and Shi et al. [60].

The idea is to store the position map itself as a smaller ORAM on the server side
and then recurse on it. Each smaller “position map” ORAM must be accessed in turn,
to retrieve the leaf label for the original ORAM. Hence on the server side we store
ORAM0, ORAM1, ..., ORAMx, where ORAM0 is the actual data ORAM that we set out

25

to store. Then only the position map corresponding to ORAMx is stored at the client
side. Making a recursive ORAM access corresponds to making an ORAM request for each
of there recursive ORAM levels, where at each level the data fetched corresponds to the
postion map entry for the next level.

Extension: Integrity. Path ORAM assumes a passive adversary by default. To provide
an integrity guarantee with freshness, one can construct a Merkle tree mirrored [68] onto
the Path ORAM tree, which adds a constant factor to the bandwidth cost. We remark
that when ORAM recursion is used, an integrity mechanism is also required to guarantee
ORAM privacy [54].

Both integrity verification and ORAM recursion will be needed in our final design to
achieve a performant system against active attacks.

3.3.4 Circuit ORAM

We now briefly highlight the differences between Circuit ORAM [74] and Path ORAM. In
the interest of space, we describe our work using PathORAM as the memory controller
since it is the conceptually simpler ORAM schema. Circuit ORAM was designed with
the intent of having the smallest circuit complexity.5 Both of these construction operate
identically upto the fetch path step. The difference lies in their eviction strategy.

Circuit ORAM uses two additional eviction paths unlike Path ORAM which evicts
blocks from the local stash onto the fetched path itself. The strategy is to perform eviction
on a path in a single pass over (the stash and) the path, by picking up blocks that can
be pushed deeper down the path and dropping it into vacant slots that are deeper in the
path. This however requires some amount of “foresight” for which blocks can be moved to
a deeper location in the path and if there are vacant slots that could accommodate them.
To achieve this foresight, Circuit ORAM makes two meta data scans over each eviction
path, to construct helper arrays that assist in performing eviction in a single (stash +)
path scan.

There are two differences between these eviction strategies in the context of ZeroTrace

• Circuit ORAM introduces more I/O bandwidth than Path ORAM, since it has to
fetch and evict two additional paths per access.

• The stash required by Circuit ORAM is much lesser than that of PathORAM.

5In the interest of optimizing ORAMs for use in the multi-party computation (MPC) context

26

Chapter 4

ZeroTrace

We now describe the design of our core memory controller which is implemented on the
server. We focus on the details of supporting our strongest level of security: obliviousness
against an active adversary (Section 2.2). The entire system is shown in Fig. 4.1. The
design’s main component is a secure Intel SGX enclave which we henceforth call the ORAM
Controller Enclave. This ORAM Controller Enclave acts as the intermediary between client
and the server. The client and controller enclave engage in logical data block requests and
responses. Behind the scenes, the ORAM Controller Enclave interacts with the server to
handle the backend storage for each of these requests.

4.1 Design Summary

Security challenges and solutions. Since ZeroTrace’s ORAM controller runs inside an
enclave, and is therefore vulnerable to software-level side channel attacks (Section 3.2.1),
we design the ORAM controller to run as an oblivious program. (A similar approach is used
to guard against software side channels by Ohrimenko et al. [49] and Rane et al. [51].) For
instance, if the ORAM controller were to access an index in the position map directly, it
would fetch a processor cache line whose address depended on the program access pattern.
To prevent revealing this address, our oblivious program scans through the position map
and uses oblivious select operations to extract the index as it is streamed through.

A second security challenge is how to map the controller logic itself to SGX enclaves.
In a naive design, the entire ORAM controller and memory can be stored in the EPC.
The enclave makes accesses to its own virtual address space to perform ORAM accesses

27

Memory (Cache & DRAM) Disk,
Network,

etc

Server Stack
(OS, drivers, etc)

Fetch/Store
Path

SGX PRM

Stash

Position Map

Page cache

Client

ORAM Controller
Enclave CodeSecure

channel
ORAM Controller

Secure Channel
Interface

ORAM
Tree

ORAM
Tree

Software

Figure 4.1: System components on the server. Trusted components (software and regions
of memory) are shaded. Depending on the setting, the client may be connecting from a
remote device (not on the server) or from another enclave on the same machine.

and run controller logic, and the OS uses EPC paging as needed. This design seems
reasonable because it re-uses existing integrity/privacy mechanisms for protecting the
EPC. Unfortunately, it makes supporting persistant storage difficult because the EPC
is volitile (Section 3.2), moreover it incurs large EPC paging overheads (Section 3.2.2) and
bloats the TCB (the entire controller runs in the enclave). To address this challenge, we
make an observation that once Path ORAM (and other tree-based ORAMs [74, 19, 53])
reveals the leaf it is accessing, the actual fetch logic can performed by an untrusted party.
Correspondingly, we split the ORAM controller into trusted (runs inside enclave) and
untrusted (runs in Ring-3 outside of enclave) parts, which communicate between each
other at the path fetch/store boundary. This approach has un-expected TCB benefits: we
propose optimizations in Section 4.5 which bloat the path fetch/store code. By delegating
these parts to untrusted code, they can be implemented with no change to the TCB.

Performance challenges and solutions. Running an oblivious ORAM controller
inside of SGX efficiently requires a careful partitioning of the work/data-structures between
the enclave (which controls the EPC pages ∼ 95 MB), untrusted in-memory code (which
has access to DRAM) and untrusted code managing disk. For instance, the cost to access

28

ORAM data structures obliviously increases as their size increases. Further, as mentioned
above, when the enclave memory footprint exceeds the EPC page limit, software paging
introduces an additional overhead between 3× and 1000× – depending on the access
pattern [3]. To improve performance, we will carefully set parameters to match the
hardware and use techniques such as ORAM recursion to further reduce client storage.

Additionally, the ORAM storage itself should be split between DRAM and disk to
maximize performance. For instance, we design the protocol to keep the top-portion of
the ORAM tree in non-EPC DRAM when possible. In some cases, disk accesses can be
avoided entirely. When the ORAM spills to disk, we layout the ORAM tree in disk to take
advantage of parallel networks of disks (e.g., RAID0).

4.2 Client/Server Interface

4.2.1 Client Interface

The ORAM Controller Enclave exposes two API calls to the user, namely read(addr) and
write(addr, data). Under the hood, both the API functions perform an ORAM access
(Section 3.3.3).

4.2.2 Server Processes

The server acts as an intermediary between the trusted enclave and the data (either memory
or disk). It performs the following two functions on behalf of the trusted enclave (e.g., in
a Ring-3 application that runs alongside the enclave):

• FetchPath(leaf): Given a leaf label, the server transfers all the buckets on that path
in the tree to the enclave.

• StorePath(tpath, leaf): Given a tpath, the server overwrites that existing path to the
addresses deduced from the leaf label, leaf.

Passing data in/out of enclave. The standard mechanism of data passing between
enclave and untrusted application is through a sequence of input/output routines defined
for that specific enclave. The Intel SGX SDK comes with the Intel Edger8r tool that
generates edge routines as a part of enclave build process. Edger8r produces a pair of

29

edge routines for each function that crosses the enclave boundary, one routine sits in the
untrusted domain, and the other within the trusted enclave domain. Data is transferred
across these boundaries by physically copying it across each routine, while checking that
the original address range does not cross the enclave boundary.

TCB implications. Fetch/store path are traditionally the performance bottleneck in
ORAM design. Given the above interface, these functions make no assumptions on the
untrusted storage or how the server manages it to support ORAM. Thus, the server is free
to perform performance optimizations on Fetch/Store path (e.g., split the ORAM between
fast DRAM and slow disk, parallelize accesses to disk; see Section 4.5). Since Fetch/Store
path are not in the TCB, these optimizations do not effect security.

4.3 Memory Controller Enclave Program

In this section we outline the core memory controller’s enclave program which we refer to
from now on as P.

4.3.1 Initialization

For initialization, the server performs the function Load(P) → (EP, φ), where P is the
ZeroTrace Controller Enclave. The client can then verify the proof φ produced by this
function to ensure that ZeroTrace has been honestly initialized by the server. We note
that the proof also embeds within it a public key Ke from an asymmetric key pair (Ke,Kd)
sampled within the enclave. The client encrypts a secret key K under this public key
Ke for the enclave. The user and enclave henceforth communicate using this K for an
authenticated encrypted channel.

4.3.2 System Calls

Our enclave logic does not make any syscalls. All enclave memory is statically allocated in
the EPC based on initialization parameters. Server processes (i.e., Fetch/Store path) may
perform arbitrary syscalls without impacting the TCB.

30

4.3.3 Building Block: Oblivious Functions

To remain data oblivious, we built the ORAM controller out of a library of assembly-level
functions that perform oblivious comparisons, arithmetic and other basic functions. The
only code executed in the enclave is specified precisely by the assembly instructions in our
library (all compiler optimizations on our library are disabled).

Our library is composed of several assembly level instructions, most notably the CMOV
x86 instruction [49, 51]. CMOV is a conditional move instruction that takes a source
and destination register as input and moves the source to destination if a condition
(calculated via the CMP instruction) is true. CMOV has several variants that can be
used in conjunction with different comparison operators, we specifically use the CMOVZ
instruction for equality comparisons. The decision to use CMOV was not fundamental:
we could have also used bitwise instructions (e.g., AND, OR) to implement multiplexers
in software to achieve the obliviousness guarantee.

CMOV safely implements oblivious stores because it does the same work regardless
of the input. Regardless of the input, all operands involved are brought into registers
inside the processor, the conditional move is performed on those registers, and the result
is written back.

Throughout the rest of the section, we will describe the ORAM controller operations in
terms of a wrapper function around cmov called oupdate, which has the following signature:

oupdate<srcT, dstT>(bool cond, srcT src, dstT dst, sizeT sz)

oupdate uses CMOV to obliviously and conditionally copy sz bytes from src to dst,
depending on the value of a bit cond which is calculated outside the function. src and
dst can refer to either registers or memory locations based on the types srcT and dstT.
We use template parameters srcT and dstT to simplify the writing, but note that CMOV
doesn’t support setting src to a memory location by default. Additional instructions (not
shown) are needed to move the result of a register dst CMOV to memory.

4.3.4 Building Block: Encryption & Cryptographic Hashing

Our implementation relies on encryption and integrity checking via cryptographic hashing
in two places.

• First, when the client sends an ORAM request to the ORAM Controller Enclave, that
request must be decrypted and integrity checked (if integrity checking is enabled).

31

• Second, during each ORAM access, the path returned and received by Fetch/Store
Path (Section 4.2.2) need to be decrypted/re-encrypted and integrity verified.

These routines must also be oblivious, hence for encryption, we use the Intel instruction
set extensions AES-NI, which were designed by Intel to be side channel resistant (i.e., the
AES SBOX is built directly into hardware). Unless otherwise stated, all encryption is AES-
CTR mode, which can easily be achieved by wrapping AES-NI instructions in oblivious
instructions which manage the counter. For hashing we use SHA-256, which is available
through the Intel tcrypto library.

To avoid confusion, we note that SGX has separate encryption/hashing mechanisms
to ensure privacy/integrity of pages evicted from the EPC [15]. But since our design
accesses ORAM through a Fetch/Store Path interface, we cannot use these SGX built-in
mechanisms for ORAM privacy/integrity.

4.3.5 ORAM Controller

The ORAM Controller handles client queries of the form (op, id, data∗), where op is the
mode of operation, i.e. read or write, id corresponds to an identifier of the data element and
data∗ is a dummy block in case of read and the actual data contents to be written in case it
is a write operation. These queries are encrypted under K, the secret key established in the
Initialization (Section 4.3.1) phase. The incoming client queries are first decrypted within
the enclave program. From this point, the ORAM controller enclave runs the ORAM
protocol. Given that the adversary may monitor any pressure the enclave places on shared
hardware resources, the entire ORAM protocol is re-written in an oblivious form. The
Raccoon system performed a similar exercise to convert ORAM to oblivious form, in a
different setting [51].

We discuss in detail this process for Path ORAM scheme, we similarly designed and
implemented an oblivious variant of Circuit ORAM as well. For simplicity, we focus on
explaining this process of converting an ORAM schema to an oblivious form using our
Path ORAM scheme. Path ORAM can be broken into two main data-structures (position
map and stash) and three main parts. We now explain how these parts are made oblivious.

Oblivious Leaf-label Retrieval. When the enclave receives a request (op, id, data∗), it
must read and update a location in the position map (Section 3.3.3) using oupdate calls,
as shown in the pseudocode below.

32

newleaf = random(N)

for i in range(0, N):

cond = (i == x)

oupdate(cond, position_map[i], leaf, size)

oupdate(cond, newleaf, position_map[i], size)

newleaf = random(N)

leaf = position_map[x]

position_map[x] = newleaf

We note that P samples a new leaf label through a call to AES-CTR with a fresh
counter. Due to a requirement in Section 4.4, where execution must be deterministic, we
will assume leaf generation is seeded by the client when the ORAM is initialized (and
not by a TRNG such as Intel’s RDRAND instruction). The entire position map must be
scanned to achieve obliviousness, as will be the case for the other parts of the algorithm,
regardless of when cond is true. At the end of this step, the enclave has read the leaf label,
leaf, for this access.

Oblivious Block Retrieval. P must now fetch the path for leaf (Section 3.3.3) using a
Fetch Path call (Section 4.2.2). When the server returns the path, now loaded into enclave
memory, P does the following:

path = FetchPath(leaf)

for p in path:

for s in stash:

cond = (p != Dummy) && (s != occupied)

oupdate(cond, s, p, BlockSize)

result = new Block

for s in stash:

cond = (s.id == id)

oupdate(cond, s, result, BlockSize)

The output of this step is result, which is encrypted and returned to the client application.

In the above steps, iterating over the stash must take a data-independent amount of
time. First, regardless of when oupdate succeeds in moving a block, the inner loop runs to
completion. When the update succeeds, a bit is obliviously set to prevent the CMOV from

33

succeeding again (to avoid duplicates). Second, the stash size (the inner loop bound) must
be data-independent. This will not be the case with Path ORAM: the stash occupancy
depends on the access pattern [68]. To cope, we use a stash with a static size at all times,
and process empty slots in the same way as full slots. Prior work [41, 68] showed that a
stash size of 89 to 147 is sufficient to achieve failure probability of 2−λ with the security
parameter values from λ = 80 to λ = 128. In our implementation, we use a static stash
size of 90.

Oblivious Path Rebuilding. Finally, P must rebuild and write back the path for leaf
(Section 3.3.3) using internal logic and a Store Path call (Section 4.2.2). P rebuilds this
path by making a pass over the stash for each bucket in the path as shown here:

for bu in new_path:

for b in bu:

for s in stash:

cond = FitInPath(s.id,leaf)

oupdate(cond, b, s, BlockSize)

StorePath(leaf,new_path)

For each bucket location bu on path to leaf in reverse order (i.e. from leaf to root),
iterates over the block locations b (in the available Z locations) and perform oupdate calls
to obliviously move compatible blocks from the stash to that bucket (using an oblivious
subroutine called FitInPath). This greedy approach of filling buckets in a bottom to top
fashion is equivalent to the eviction routine in Section 3.3.3. At the end, P then calls
Store Path on the rebuilt path, causing the server to overwrite the existing path in server
storage.

Encryption and Integrity. As data is processed in the block retrieval and path re-
building steps, it is decrypted/re-encrypted using the primitives in Section 4.3.4. At the
same time, an oblivious implementation of the Merkle tree checks and re-build is done to
verify and maintain integrity with freshness.

4.4 Persistant Integrity

An important attribute in storage systems is to be persistant and recoverable across
protocol disruptions. This is particularly important for ORAM, and similar memory

34

controller backends, where corrupting any state (in the ORAM Controller Enclave itself
or in the ORAM trees) can lead to partial or complete loss of data. SGX exacerbates this
issue, as enclave state is wiped on disruptions such as reboots and power failures.

We now discuss an extension to ZeroTrace that allows untrusted storage and the ORAM
Controller Enclave to recover from data corruptions and achieve persistant integrity. First,
we state a sufficient condition to achieve fault tolerance. We model an enclave program
as a function P which performs St+1 ← P(It, St), where It is the t-th request made by the
client and St is the enclave state after requests 0, . . . , t−1 are made. When we say enclave
protocol, we refer to the multi-interactive protocol between the client and P from system
initialization onwards.

Definition 4.4.1 (Fault tolerance) Suppose an enclave protocol has completed t′ re-
quests. If the enclave protocol is designed such that the server can efficiently re-compute
St+1 ← P(It, St) for any t < t′, then the enclave protocol is fault tolerant.

This provides fault tolerance as follows: if the current state St′ is corrupted, St′ can be
iteratively re-constructed by replaying past (not corrupted) states and inputs to P. We
remark that the above definition is similar to RDD fault tolerance in Apache Spark [86, 89].
Finally, the above definition isn’t specific to ORAM controllers, however we will assume
an ORAM controller for concreteness.

Functionality. In our setting, S includes the ORAM Controller Enclave state (the stash,
position map, ORAM key, merkle root hash) and the ORAM tree. In practice, the server
can snapshot S at some time t (or at some periodic schedule), and save future client requests
It, . . . , It′ to recover St′ . Thus, we must add a server-controllable operation to the ORAM
Controller Enclave that writes out the enclave state to untrusted storage on-command.

Security. To maintain the same security level as described in Section 2.2, the above
scheme needs to defeat all mix-and-match and replay attacks.

A mix-and-match attack succeeds if the server is able to compute P(Ia, Sb) for a 6= b,
which creates a state inconsistent with the client’s requests. These attacks can be prevented
by encrypting state in S and each client request I with an authenticated encryption scheme,
that uses the current request count t as a nonce. The client generates each request I and
thus controls the nonce on I. For S: the enclave controls the nonce on its private state
and integrity verifies external storage with a merkle tree (whose root hash is protected as

35

a part of the private state). On re-execution, P can integrity-verify Ia and Sb under the
constraint that a = b.

A replay attack succeeds if the server is able to learn something about the client’s
access pattern by re-computing on consistant data – e.g., P(It, St). Replay attacks are
prevented if replaying P(It, St) always results in a statistically indistinguishable trace trace
(Section 3.1). In our setting, we must analyze two places in the protocol. First, the path
written back to untrusted storage after each request (Section 4.3.5) is always re-encrypted
using a randomized encryption scheme that is independent of underlying data. Second, the
leaf label output as an argument to Fetch/Store Path (Section 4.2.2) must be deterministic
with respect to previous requests. This property is achieved by re-assigning leaf labels
using a pseudo-random number generator.

4.5 Optimizing Fetch/Store Path

We now discuss several performance optimizations/extensions for the Fetch/Store Path
subroutines, to take advantage of the server’s storage hierarchy (which consists of DRAM
and disk). Since these operations run in untrusted code, they do not impact the TCB.

Scaling bandwidth with multiple disks. Ideally, if the server supports multiple
disks which can be accessed in parallel (e.g., in a RAID0), the time it takes to perform
Fetch/Store Path calls should drop proportionally. We now present a scheme to perfectly
load-balance a Tree ORAM in a RAID0-like configuration.

RAID0 combines W disks (e.g., SSDs, HDDs, etc) into a larger logical disk. A RAID0
‘logical disk’ is accessed at stripe granularity (S bytes). S is configurable and S = 4 KB is
reasonable. When disk stripe address i is accessed, the request is sent to disk i%W under
the hood.

The problem with RAID0 (and similar organizations) combined with Tree ORAM is
that when the tree is laid out flat in memory, the buckets touched on a random path will not
hit each of the W disks the same number of times (if S∗W > B∗Z for ORAM parameters B
and Z). In that case, potential disk parallelism is lost. We desire a block address mapping
from (ORAM tree address, at stripe granularity) to (RAID0 stripe address) that equalizes
the number of accesses to each of the W disks, while ensuring that each disk stores an
equal (ORAM tree size) / W Byte share. Call this mapping Map(tree addr)→ RAID addr,
which may be implemented as a pre-disk lookup table in untrusted Fetch/Store Path code.

36

We now describe how to implement Map. First, define a new parameter subtree height
H. A subtree is a bucket j, and all of the descendant buckets of j in the tree, that are
< H levels from bucket j. For ORAM tree height L, choose H < L (ideally, H divides L).
Break the ORAM tree into disjoint subtrees. Second, consider the list of all the subtrees
ALoST. We will map each stripe-sized data chunk in each subtree to a disk in the RAID0.
The notation Disk[k] += [stripeA, stripeB] means we use an indirection table to map
stripeA and stripeB to disk k. We generate Disk as:

for subtree_index in length(ALoST):

for level in subtree: // levels run from 0...H-1

// break data in subtree level into stripe-sized chunks

stripes_in_level = ALoST[subtree_index][level]

Disk[(subtree_index + level) % W] += stripes_in_level

When W = H, mapping each subtree level to a single disk means any path in the ORAM
tree will access each disk O(L/H) times. Changing the subtree level → disk map in a
round-robin fashion via subtree index ensures that each disk will hold the same number
of stripes, counting all the subtrees. Finally, from Disk, it is trivial to derive Map.

Caching the ORAM tree. A popular Tree ORAM optimization is to cache the top
portion of the ORAM tree in a fast memory [53, 41]. This works because each access goes
from root to leaf: caching the top l′ levels is guaranteed to improve access time for those
top l′ levels. Because the shape is a tree, the top levels occupy relatively small storage
(e.g., caching the top half requires O(

√
N) blocks of storage).

This optimization is very effective in our system (as seen in Figure 5.2) because the
server (who controls Fetch/Store Path) can use any spare DRAM (e.g., GigaBytes) to
store the top portion of the tree. In that case, Fetch/Store Path allocates regular process
memory to store the top portion, and explicitly stores the lower portion behind disk I/O
calls.

4.6 Security Analysis

We now give a security analysis for the core memory controller running ORAM. Since we
support ORAM, we wish to show the following theorem:

37

Theorem 4.6.1 Assuming the security of the Path ORAM protocol, and the isolated
execution and attestation properties of Intel SGX, the core memory controller is secure
according to the security definition in Section 3.1.

In this section, we’ll prove the above theorem informally, by tracing the execution of a
query in ZeroTrace, step by step as shown in Figure 4.2.

Claim 4.6.1.1 Initialization is secure

For initialization, the enclave first samples a public key pair, then includes this public
key in the clear with the enclave measurement, in the attestation (Section 3.2) that it
produces. No malicious adversary can tamper with this step, as it would have to produce
a signature that is verifiable by the Intel Attestation Service.

Claim 4.6.1.2 Decrypting and encrypting requests leak no information

We use AES-NI, the side-channel resilient hardware instruction by Intel for performing
encryption and decryption.

Claim 4.6.1.3 Oblivious Leaf-Label Retrieval leaks no information

Retrieving a leaf label from the EPC-based position map performs a data-independent
traversal of the entire position map via oupdate (Section 4.3.3) operations. oupdate
performs work independent of its arguments within the register space of the processor
chip, which is hidden from adversarial view. Thus, the adversary learns no information
from observing leaf-label retrieval.

Claim 4.6.1.4 FetchPath leaks no information

FetchPath retrieves the path to a given leaf label. The randomness of this reduces to the
security of the underlying Path ORAM protocol (Section 3.3.3).

Claim 4.6.1.5 Verifying fetched path leaks no information

38

Figure 4.2: Execution of an access request

39

To verify the integrity of a fetched path, the enclave re-computes the Merkle root using
SHA-256 over the path it fetched and subling hashes [68]. We note that our current
implementation uses SHA-256 from the Intel tcrypto library, which is not innately side-
channel resistant. Despite this, our scheme still achieves side-channel resistance because
all SHA-256 operations are over encrypted buckets. The same argument applies when
rebuilding the path on the way out to storage.

Claim 4.6.1.6 Oblivious Block Retrieval leaks no information

Once FetchPath completes, the only code that processes the path, to load that path into
the stash and return the requested block to the user, is decryption logic plus the oblivious
subroutine given in Section 4.3.5. Since the length of path and stash are data-dependent,
obliviousness reduces to the security of oupdate (see Claim 4.6.1.3).

Claim 4.6.1.7 Oblivious Rebuild leaks no information

Same argument as Claim 4.6.1.6, since new path, bu and stash have data independent
size.

Claim 4.6.1.8 StorePath leaks no information

StorePath returns the new path to a leaf label that was fetched by an ORAM controller
enclave. From the adversary’s perspective, the stored path itself is an encrypted payload
of a known size, independent of underlying data.

40

Chapter 5

Implementation and Evaluation

5.1 Experiment Setup

We implemented and evaluated the performance of ZeroTrace on a Dell Optiflex 7040, with
a 4 core Intel i5 6500 Skylake processor with SGX enabled and 64 GB of DRAM.

Beyond DRAM, our system utilizes a Western Digital WD5001AALS 500 GB 7200 RPM
HDD as backing untrusted storage. ZeroTrace is implemented purely in C/C++ for both
performance and easier compatibility with Intel SGX as enclave code is limited to purely
C/C++ code. Our implementation consists of 4000 lines of code in total, with 1800 lines of
code within the enclave, which counts towards the TCB. We measure the time it takes our
memory service enclaves to complete user requests. In all experiments, our core memory
controller and data-structure APIs are implemented as application libraries in stand-alone
enclaves – to best model their performance as plug-and-play memory protection primitives
(Section 2.1). Thus, request time includes the time to send/receive the request to/from
the enclave, as well as the time to process the request (e.g., do an ORAM access).

5.2 Evaluation of Core Memory Controller

We first evaluate performance of ZeroTrace for the core memory controller component, con-
figured to resist software-based side channel attacks from an active adversary (Section 2.2).
Figure 5.1 shows the time taken by a single access request in contrast with the number
of data blocks N in the system, for DRAM and HDD untrusted storage systems. For the

41

Figure 5.1: Representative result. Shows the number of data blocks vs. time per request, with
data blocks of size 1 KB. We use ZeroTrace with a PathORAM schema and the storage is HDD.
We use a tree top caching mechanism which caches all the recursion and integrity trees and all
but the last level of the data tree.

points using the ORAM recursion technique, we use a position map of size 1 KB within
the EPC and always set the recursion ORAM block size to 64 Bytes (a cacheline). When
recursion is not used, the position map is streamed through the EPC, paging as necessary.

In Figure 5.1, we see recursive ORAM pays off for large datasets, we note that in the
non-recursive settings the overhead comes from scanning the large position map to maintain
obliviousness. This matches the theory [68] and our system uses whichever configuration
achieves the best performance, depending on public parameters.

Performance breakdown. We further analyze the time taken to run oblivious enclave
code in the memory controller, vs. the time spent servicing untrusted memory requests, in
Figure 5.2. The main results are that the oblivious controller is the bottleneck given fast

42

Figure 5.2: Detailed performance breakdown. Shows the number of data blocks vs. time
spent in different parts of the request, with different storage backends, with a block size of 1
KB. Total time per request is the sum of controller and storage (DRAM or HDD) times. Naive
caching delegates caching completely to the OS, while tree top caching caches all the recursion
and integrity trees and all but one level of the data tree until 107 blocks. Beyond that point it
caches as many levels of the data tree as it can within the DRAM limit of 64GB. DRAM is shown
until 107 blocks, which is our DRAM capacity.

untrusted storage devices (e.g., DRAM). Our system caches the top portion of the ORAM
tree in DRAM until half of the DRAM (32 GB) is used, after which the system incurs a
large latency for disk seeks. This issue isn’t fundamental; our system can use an SSD to
improve disk latency.

For completeness, Figure 5.3 shows the controller request time varying the data ORAM
block size. For data ORAM block sizes, the curve is flat since the cost of recursion
dominates.

43

Figure 5.3: Performance as a function of data ORAM block size for datasets with varying
number of blocks N .

5.3 Evaluation of Controller Flexibility

We envision that applications could choose to trade stronger levels of security in exchange
for query efficiency depending on its requirements. ZeroTrace was hence designed to be
extremely flexible in switching between these levels. In figure 5.4, we contrast the time
taken per query in contrast with the number of blocks N , for four different levels of security.
At the strongest security setting, we present an oblivious memory controller resistant to
active adversaries. In this setting we protect against all the side channels introduced by
Intel SGX along with integrity verification through a Merkle tree (Section 3.3.3). If the
application setting envisions a passive (honest but curious) adversary then one can forego
the integrity verification module to obtain slightly better performance.

Alternatively one can chose to forego the controller obliviousness, while this mode
provides obliviousness to accesses at data level from the underlying PathORAM schema,

44

Figure 5.4: Evaluation of our oblivious memory controller library for different security
levels with PathORAM as the underlying ORAM scheme.

it becomes susceptible to side channel leakages of Intel SGX (Section 3.2).

5.4 Improving the Controller Time

ZeroTrace is aimed at providing secure memory abstractions when using SGX for secure
computations. Keeping this in mind, looking at Figure 5.4, we note that when we use
memory as the backend, ZeroTrace is throttled by it’s controller time. In order to improve
upon this, we added support for an oblivious CircuitORAM schema as the underlying
ORAM for ZeroTrace. In Figures 5.5 and 5.6, we compare the performances of ZeroTrace
with the different underlying schemas.

In Figure 5.5, we see that CircuitORAM does not improve the performance of ZeroTrace
when the underlying data block size is small (8 bytes in this figure). Although the circuit

45

Figure 5.5: Evaluation of ZeroTrace comparing PathORAM and CircuitORAM as the
underlying ORAM schema for data block sizes of 8 bytes.

complexity of Circuit ORAM is better than that of PathORAM, the discrepancy arises
due to the additional I/O required in CircuitORAM. As we mention in Section 3.3.4,
CircuitORAM uses 2 eviction paths chosen independently of the read path. As seen in
Figure 5.5 itself, if we were to switch to a passive adversarial model, CircuitORAM becomes
slightly more efficient than PathORAM just from the time saved in not performing the
multiple path integrity verification routines. Figure 5.6 we compare the performances
of the two underlying ORAM schemas of ZeroTrace, under varying data block sizes. It
is clear from the figure that CircuitORAM outperforms PathORAM in ZeroTrace under
larger block sizes. This reflects expected behaviour, as CircuitORAM requires only a much
smaller stash size than PathORAM and also has a one pass eviction circuit as mentioned
in Section 3.3.4, thus reducing the cost for oblivious evictions with increase in block size
from the time saved in scanning stash and eviction path.

46

Figure 5.6: Evaluation of ZeroTrace comparing PathORAM and CircuitORAM as the
underlying ORAM schema for varying data block sizes with N = 107

5.5 Evaluation of Data-Structure Modules

We now evaluate a library of oblivious data-structures, which use our core memory
controller as a primitive. Data-structures expose two function calls to client applications:

Initialize(N, size) Informs the ZeroTrace memory controller enclave to provision storage
for N size-Byte blocks.

Access(op, req) Performs the operation op, given arguments as a tuple req, whose format
changes based on the data-structure. Enclaves are required to sanitize this input to ensure
proper formatting.

47

Figure 5.7: Evaluation of our oblivious memory controller library for
Set/Dictionary/List/Array. Array is a direct call to our core memory controller,
which uses ORAM recursion to be asymptotically efficient.

Data-structures supported. Our current implementation supports oblivious arrays,
sets, dictionaries and lists. Array is a passthrough interface to our oblivious core memory
controller, suppporting the same interface read(addr) and write(addr, data). Sets support the
operations insert(data), delete(data) and contains(data). Dictionaries support put(tag, data)
and get(tag). Lists support insert(index, data) and remove(index). These options are
implemented obliviously in the enclave followed by the necessary ORAM lookups.

Implementation and results. In our current implementation, each data-structure
maintains a primitive array which stores information used to lookup the data block stored
by the memory controller. For example, sets and dictionaries use the array to store
cryptographic hashes of data blocks, which map array indices to addresses in the memory
controller. (Given our interface for set, above, the data storage is simply the array of

48

hashes. Thus, set does not have a datasize.) The data-structure logic obliviously scans the
array in O(N) time, to find the block, and then makes a single memory controller access
to fetch the block. Figure 5.7 shows the performance for these data structures. While
our design is efficient for reasonably sized data-structures (≤ 105 elements), the O(N)
time scan dominates for larger datasets. The O(N) effect can be improved with optimized
data-structures from Wang et al. [75], which makes use of ORAMs and can use our core
memory controller as a primitive as well.

49

Chapter 6

Towards Secure Remote
Computation

As we mentioned in the start of the thesis, the problem that interests us is how can we
improve upon existential secure computation models by leveraging secure hardware tools.
In this chapter, we discuss different mechanisms of secure computation that exist today,
and how and where our work fits in this spectrum.

6.1 Intel TPM + TXT

Intel TPM (Trusted Platform Module) is a hardware based security device that secures boot
process integrity. It protects the system start-up process and ensures that it is tamper-free
before releasing control to the operating system. It does so by ensuring that measurements
of the boot process matches previously known “trusted” values or Static Root of Trust
Measurements (SRTM).

Intel Trusted Execution Technology (TXT) is Intel’s implementation of the Trusted
Computing Group’s specification for trusted computing hardware, designed to ensure that
cloud infrastructure as a service (IaaS) has not been tampered with. Maintaining a chain
of trust while operating in an environment that is constantly exposed to unknown software
entities is non trivial. Hence Intel TXT provides instructions to establish another RTM,
named Dynamic Root of Trust for Measurement (DRTM), which allows the launch of a
measured trusted program without resorting to a platform reset.

50

TXT makes use of TPM and reduces the software inside the secure container to a
virtual machine hosted by the CPU’s hardware virtualization features. TXT isolates the
software inside the container from untrusted software by ensuring exclusive control over
the entire computer while it is active. This is accomplished by a secure initialization
authenticated code module (SINIT ACM) that performs a warm system reset before
starting the container’s VM. In short, this module stops and blocks all ongoing processes,
interrupts and I/O and disables all but one processor, and this is what is referred to as the
Measured Launched Environment (MLE). Dynamic RTM begins upon user or program
request at any time during or after boot. The TXT enabled computer will measure
the about-to-start program(s) in a similar fashion to the static RTM ensuring that the
started programs have not been altered since a previously identified trusted configuration.
Furthermore, because of the MLE, the resulting program can be run with secure input and
output, and memory curtaining / protected execution. By measuring all programs that are
launched into a secure I/O and memory/execution protected partition, TXT guarantees
that none of the programs in the trusted partition have been altered and protects their
data and execution from corruption while running.

The primary goal of using Intel TXT is to validate that there have been no unauthorized
changes to critical parts of the code that provides the secure environment. This check is
performed each time the environment launches, whether it is a cold boot, warm boot,
or exiting one hypervisor and launching a new one. These components are measured by
creating an SHA-1 hash of the component and validating that hash against a set of securely
stored values.

However Intel TPM+TXT has several shortcomings. First, using a system for secure
computing via Intel TPM+TXT implies that this system cannot be used for any other
purposes, i.e. it yields poor hardware utilization. TXT does not implement DRAM
encryption or HMACs, and therefore is vulnerable to physical DRAM attacks. Wojtczuk
et al. [79, 81] have demonstrated several attacks against Intel TXT. In their work, they
point out that TXT inherently relies on a trusted System Management Mode (SMM).
However, there have been attacks on SMM handler’s [18, 56, 80, 20], and using these
they demonstrate how to attack memory used by the TXT container. To summarize, Intel
TPM+TXT’s fundamental flaw is the inherent trust required on the SMM of the remote
server. This design flaw was resolved in Intel SGX, by ensuring that the PRM set aside
by SGX, is not accessible to even SMM. Although on the flip side, an advantage of using
Intel TPM+TXT is that it requires no reprogramming or tailoring at an application level
as opposed to other solutions.

51

6.2 Fully Homomorphic Encryption (FHE)

Somewhat homomorphic encryption constructions have been around for a while, but it
wasn’t until 2009, when Gentry introduced “bootstrapping” [24] did we have a full-
fledged FHE scheme that was semantically secure and compact1. Over the last few
years there have been several constructions for FHE [25, 10, 21] that made use of
this bootstrapping technique, which lead to recent efforts to standardize FHE [55].
Fundamentally, bootstrapping enabled one to convert a levelled homomorphic encryption
schema that could homomorphically compute it’s own decryption circuit and slightly more,
to a fully homomorphic encryption scheme that can compute arbitrary depth circuits
homomorphically.

However, FHE is an extremely expensive tool, that introduces orders of magnitude of
overhead on a computation. For instance computing the AES-128 circuit today through
FHE using HElib [30] takes over 18 minutes for 180 blocks, i.e. an amortized 6 seconds per
block [31] . Native AES-NI on the other hand has a throughput of about 2607 MB/sec [12].
We note that all of this is without bootstrapping. Bootstrapping aggravates this problem
all the more, if our desired goal was to make large computations, such as running machine
learning algorithms on a large dataset, then having to periodically bootstrap becomes an
extremely inefficient process that scale with size of the underlying ciphertext. Another
concern with computing through FHE is the lack of integrity guarantees. In order to
attain authenticity guarantees on the computation, one has to additionally use a proof
system (such as SNARKS [7] or homomorphic signature schemes [28]) in conjunction with
it.

Hence, we see that there are several efficiency throttles for FHE as we know it today.
The most efficient levelled FHE scheme today induces a per-gate asymptotic overhead
of Õ(λ2). As we mentioned earlier, the plaintext spaces are confined to short integer
vectors, and hence adapting large datasets to make use of FHE, is itself a challenging
task. This problem of handling input data, is aggravated by the innate data size blowup,
each individual data element gets expanded into matrices of much larger dimensions
depending on the required security. Moreover, this is without accounting for the practical
constraint of unrolling one’s desired program into an FHE compatible circuit which involves
reprogramming the entire computation. All of these practical constraints would make it
seem that today FHE isn’t practically feasible today and is unlikely to be so in the recent
future.

1Compactness is a property expected of FHE schemes today, which states that ciphertext size must be
independent of the circuit depth

52

6.3 Concluding remarks

Secure computation is an ever growing area of interest. Over the last decade, we have
envisioned and seen the rise of several interesting applications for it. However, the
techniques we see today are limited either computational capabilities, or are not efficient
enough to be practical. Intel SGX offers a new hope of efficient secure computation,
however it has security gaps that need to be patched.

In this work, we designed and implemented ZeroTrace, a secure memory controller that
can assure security guarantees for sensitive data while working with Intel SGX for secure
computation. ZeroTrace is a stepping stone to achieving practically viable, scalable and
secure computation via Intel SGX.

53

Bibliography

[1] Introducing Azure confidential computing. https://azure.microsoft.com/en-us/

blog/introducing-azure-confidential-computing/.

[2] I. Anati, S. Gueron, S. Johnson, and V. Scarlata. Innovative technology for CPU
based attestation and sealing.

[3] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. L. Stillwell, D. Goltzsche, D. Eyers, R. Kapitza,
P. Pietzuch, and C. Fetzer. SCONE: Secure Linux Containers with Intel SGX. In
12th USENIX Symposium on Operating Systems Design and Implementation (OSDI
16), pages 689–703, 2016.

[4] M. Backes, A. Kate, M. Maffei, and K. Pecina. Obliviad: Provably Secure and
Practical Online Behavioral Advertising. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 257–271, 2012.

[5] K. E. Batcher. Sorting networks and their applications. In Proceedings of the April
30–May 2, 1968, Spring Joint Computer Conference, pages 307–314. ACM, 1968.

[6] A. Baumann, M. Peinado, and G. Hunt. Shielding Applications from an Untrusted
Cloud with Haven. ACM Transactions on Computer Systems (TOCS), page 8, 2015.

[7] N. Bitansky, R. Canetti, A. Chiesa, and E. Tromer. From Extractable Collision
Resistance to Succinct Non-Interactive Arguments of Knowledge, and Back Again.
In Proceedings of the 3rd Innovations in Theoretical Computer Science Conference,
pages 326–349. ACM, 2012.

[8] D. Boneh, D. Mazieres, and R. A. Popa. Remote oblivious storage: Making oblivious
RAM practical. 2011.

54

https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/

[9] K. D. Bowers, A. Juels, and A. Oprea. Proofs of Retrievability: Theory and
Implementation. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, pages 43–54, 2009.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (Leveled) Fully Homomorphic
Encryption without Bootstrapping. ACM Transactions on Computation Theory
(TOCT), 6(3):13, 2014.

[11] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A. Sadeghi.
Software Grand Exposure: SGX Cache Attacks Are Practical. CoRR, 2017.

[12] Calomel.org. AES-NI SSL Performance.

[13] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-Abuse Attacks Against
Searchable Encryption. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 668–679, 2015.

[14] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang. Detecting Privileged Side-Channel
Attacks in Shielded Execution with Déjá Vu. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, pages 7–18, 2017.

[15] V. Costan and S. Devadas. Intel SGX Explained, 2016.

[16] I. Damg̊ard, S. Meldgaard, and J. Nielsen. Perfectly Secure Oblivious RAM Without
Random Oracles. Theory of Cryptography, pages 144–163, 2011.

[17] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and D. Wichs. Onion
ORAM: A Constant Bandwidth Blowup Oblivious RAM. In Theory of Cryptography
Conference, pages 145–174, 2016.

[18] L. Duflot, D. Etiemble, and O. Grumelard. Using CPU System Management Mode
to Circumvent Operating System Security Functions.

[19] E. S. M. L. Elaine Shi, Hubert Chan. Oblivious RAM with O((log N)3) Worst-Case
Cost. Cryptology ePrint Archive, Report 2011/407, 2011. http://eprint.iacr.org/
2011/407.

[20] S. Embleton, S. Sparks, and C. C. Zou. SMM Rootkit: A New Breed of OS
Independent Malware. Security and Communication Networks, 6(12):1590–1605, 2013.

[21] J. Fan and F. Vercauteren. Somewhat Practical Fully Homomorphic Encryption.

55

http://eprint.iacr.org/2011/407
http://eprint.iacr.org/2011/407

[22] C. Fletcher, M. Naveed, L. Ren, E. Shi, and E. Stefanov. Bucket ORAM: Single
Online Roundtrip, Constant Bandwidth Oblivious RAM. Technical report.

[23] C. W. Fletcher, M. v. Dijk, and S. Devadas. A Secure Processor Architecture for
Encrypted Computation on Untrusted Programs. In Proceedings of the Seventh ACM
Workshop on Scalable Trusted Computing, STC ’12, pages 3–8, New York, NY, USA,
2012. ACM.

[24] C. Gentry. Fully Homomorphic Encryption using Ideal Lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[25] C. Gentry, A. Sahai, and B. Waters. Homomorphic Encryption from Learning with
Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based. In Advances
in Cryptology–CRYPTO 2013, pages 75–92. Springer, 2013.

[26] O. Goldreich and R. Ostrovsky. Software Protection and Simulation on Oblivious
RAMs. Journal of the ACM (JACM), pages 431–473, 1996.

[27] M. T. Goodrich and M. Mitzenmacher. Privacy-Preserving Access of Outsourced Data
via Oblivious RAM Simulation. In International Colloquium on Automata, Languages,
and Programming, pages 576–587. Springer, 2011.

[28] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. Leveled Fully Homomorphic
Signatures from Standard Lattices. In Proceedings of the forty-seventh annual ACM
symposium on Theory of computing, pages 469–477. ACM, 2015.

[29] D. Gullasch, E. Bangerter, and S. Krenn. Cache games–bringing access-based cache
attacks on aes to practice. In Security and Privacy (SP), 2011 IEEE Symposium on,
pages 490–505, 2011.

[30] S. Halevi. HElib.

[31] S. Halevi and V. Shoup. Algorithms in HElib. In International Cryptology Conference,
pages 554–571. Springer, 2014.

[32] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel. Ryoan: A Distributed Sandbox for
Untrusted Computation on Secret Data. In 12th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 16), pages 533–549, 2016.

[33] Intel. Intel Trusted Execution Technology. http://www.intel.com/technology/security/,
2007.

56

[34] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar. Wait a minute! A Fast, Cross-
VM Attack on AES. In International Workshop on Recent Advances in Intrusion
Detection, pages 299–319, 2014.

[35] P. Kocher, J. Jaffe, and B. Jun. Differential Power Analysis. In Advances in
cryptologyCRYPTO99, pages 789–789, 1999.

[36] E. Kushilevitz, S. Lu, and R. Ostrovsky. On the (In) security of Hash-Based Oblivious
RAM and a New Balancing Scheme. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms, pages 143–156. Society for Industrial and
Applied Mathematics, 2012.

[37] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and
C. Fetzer. SGXBOUNDS: Memory Safety for Shielded Execution. In Proceedings
of the Twelfth European Conference on Computer Systems, EuroSys ’17, pages 205–
221, New York, NY, USA, 2017. ACM.

[38] S. Lee, M.-W. Shih, P. Gera, T. Kim, H. Kim, and M. Peinado. Inferring Fine-
Grained Control Flow Inside SGX enclaves with Branch Shadowing. arXiv preprint
arXiv:1611.06952, 2016.

[39] C. Liu, A. Harris, M. Maas, M. Hicks, M. Tiwari, and E. Shi. Ghostrider:
A Hardware-Software System for Memory Trace Oblivious Computation. ACM
SIGARCH Computer Architecture News, pages 87–101, 2015.

[40] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee. Last-Level Cache Side-Channel
Attacks are Practical. In Security and Privacy (SP), 2015 IEEE Symposium on, pages
605–622, 2015.

[41] M. Maas, E. Love, E. Stefanov, M. Tiwari, E. Shi, K. Asanovic, J. Kubiatowicz,
and D. Song. PHANTOM: Practical Oblivious Computation in a Secure Processor.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer &
Communications Security, CCS ’13, pages 311–324, New York, NY, USA, 2013. ACM.

[42] S. Matetic, M. Ahmed, K. Kostiainen, A. Dhar, D. Sommer, A. Gervais, A. Juels, and
S. Capkun. ROTE: Rollback Protection for Trusted Execution, 2017.

[43] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An
Execution Infrastructure for Tcb Minimization. SIGOPS Oper. Syst. Rev., 42(4):315–
328, Apr. 2008.

57

[44] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, and
C. Rozas. Intel&Reg; Software Guard Extensions (Intel&Reg; SGX) Support for
Dynamic Memory Management Inside an Enclave. In Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016, pages 10:1–10:9, 2016.

[45] F. McKeen, I. Alexandrovich, I. Anati, D. Caspi, S. Johnson, R. Leslie-Hurd, and
C. Rozas. Intel&Reg; Software Guard Extensions (Intel&Reg; SGX) Support for
Dynamic Memory Management Inside an Enclave. In Proceedings of the Hardware
and Architectural Support for Security and Privacy 2016, pages 10:1–10:9, 2016.

[46] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and
U. R. Savagaonkar. Innovative Instructions and Software Model for Isolated Execution.
In Proceedings of the 2Nd International Workshop on Hardware and Architectural
Support for Security and Privacy, pages 10:1–10:1, 2013.

[47] D. Molnar, M. Piotrowski, D. Schultz, and D. Wagner. The Program Counter Security
Model: Automatic Detection and Removal of Control-Flow Side Channel Attacks.
In International Conference on Information Security and Cryptology, pages 156–168,
2005.

[48] M. Naveed, S. Kamara, and C. V. Wright. Inference Attacks on Property-Preserving
Encrypted Databases. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 644–655. ACM, 2015.

[49] O. Ohrimenko, F. Schuster, C. Fournet, A. Mehta, S. Nowozin, K. Vaswani, and
M. Costa. Oblivious Multi-Party Machine Learning on Trusted Processors.

[50] D. A. Osvik, A. Shamir, and E. Tromer. Cache Attacks and Countermeasures: the
Case of AES. In Cryptographers Track at the RSA Conference, pages 1–20, 2006.

[51] A. Rane, C. Lin, and M. Tiwari. Raccoon: Closing Digital Side-channels Through
Obfuscated Execution. In Proceedings of the 24th USENIX Conference on Security
Symposium, pages 431–446, 2015.

[52] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, and S. Devadas.
Constants count: Practical Improvements to Oblivious RAM. In 24th USENIX
Security Symposium (USENIX Security 15), pages 415–430, 2015.

[53] L. Ren, C. Fletcher, A. Kwon, E. Stefanov, E. Shi, M. Van Dijk, and S. Devadas.
Constants Count: Practical Improvements to Oblivious RAM. In Proceedings of the

58

24th USENIX Conference on Security Symposium, SEC’15, pages 415–430, Berkeley,
CA, USA, 2015. USENIX Association.

[54] L. Ren, C. W. Fletcher, X. Yu, M. Van Dijk, and S. Devadas. Integrity verification for
path oblivious-ram. In High Performance Extreme Computing Conference (HPEC),
2013 IEEE, pages 1–6, 2013.

[55] M. Russinovich. Homomorphic Encryption Standardizaton Workshop.

[56] J. Rutkowska and A. Tereshkin. Bluepilling the Xen Hypervisor.

[57] M. Schwarz, S. Weiser, D. Gruss, C. Maurice, and S. Mangard. Malware guard
extension: Using SGX to conceal cache attacks. 2017.

[58] N. Sehatbakhsh, A. Nazari, A. Zajic, and M. Prvulovic. Spectral profiling: Observer-
effect-free profiling by monitoring EM emanations. In Microarchitecture (MICRO),
2016 49th Annual IEEE/ACM International Symposium on, pages 1–11, 2016.

[59] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious RAM with O ((logN) 3)
Worst-Case Cost. In Asiacrypt, volume 7073, pages 197–214. Springer.

[60] E. Shi, T.-H. H. Chan, E. Stefanov, and M. Li. Oblivious ram with o ((logn) 3) worst-
case cost. In International Conference on The Theory and Application of Cryptology
and Information Security, pages 197–214, 2011.

[61] M.-W. Shih, S. Lee, T. Kim, and M. Peinado. T-SGX: Eradicating Controlled-Channel
Attacks Against Enclave Programs. In Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), 2017.

[62] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena. Preventing Page Faults from
Telling Your Secrets. In Proceedings of the 11th ACM on Asia Conference on Computer
and Communications Security, pages 317–328, 2016.

[63] S. Shinde, D. L. Tien, S. Tople, , and P. Saxena. PANOPLY: Low-TCB linux
applications with sgx enclaves. In NDSS, 2017.

[64] E. Stefanov. Burst ORAM: Minimizing ORAM Response Times for Bursty Access
Patterns.

[65] E. Stefanov and E. Shi. Oblivistore: High Performance Oblivious Cloud Storage. In
Security and Privacy (SP), 2013 IEEE Symposium on, pages 253–267, 2013.

59

[66] E. Stefanov and E. Shi. ObliviStore: High Performance Oblivious Cloud Storage.
In Proceedings of the 2013 IEEE Symposium on Security and Privacy, SP ’13, pages
253–267, Washington, DC, USA, 2013. IEEE Computer Society.

[67] E. Stefanov, E. Shi, and D. Song. Towards Practical Oblivious RAM. arXiv preprint
arXiv:1106.3652, 2011.

[68] E. Stefanov, M. Van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. Devadas. Path
ORAM: an extremely simple oblivious RAM protocol. In Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security, pages 299–310,
2013.

[69] G. E. Suh, C. W. O’Donnell, and S. Devadas. AEGIS: A single-chip secure processor.
Information Security Technical Report, 10(2):63–73, 2005.

[70] E. Tromer, D. A. Osvik, and A. Shamir. Efficient Cache Attacks on AES and
Countermeasures. Journal of Cryptology, pages 37–71, 2010.

[71] Trusted Computing Group. Trusted Computing Platform Alliance (TCPA) Main
Specification Version 1.1b. https://www.trustedcomputinggroup.org/specs/TPM/
TCPA Main TCG Architecture v1 1b.pdf, 2003.

[72] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen, J. John, H. A. Kalodner,
V. Kulkarni, D. Oliveira, and D. E. Porter. Cooperation and Security Isolation of
Library OSes for Multi-process Applications. In Proceedings of the Ninth European
Conference on Computer Systems, pages 9:1–9:14, 2014.

[73] J. van de Pol, N. P. Smart, and Y. Yarom. Just a Little Bit More. In Cryptographers
Track at the RSA Conference, pages 3–21, 2015.

[74] X. Wang, H. Chan, and E. Shi. Circuit ORAM: On Tightness of the Goldreich-
Ostrovsky Lower Bound. In Proceedings of the 22Nd ACM SIGSAC Conference on
Computer and Communications Security, pages 850–861, 2015.

[75] X. S. Wang, K. Nayak, C. Liu, T.-H. H. Chan, E. Shi, E. Stefanov, and Y. Huang.
Oblivious Data Structures. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 215–226, 2014.

[76] P. Williams and R. Sion. Usable PIR. In NDSS, 2008.

60

[77] P. Williams and R. Sion. Single Round Access Privacy on Outsourced Storage. In
Proceedings of the 2012 ACM Conference on Computer and Communications Security,
pages 293–304, 2012.

[78] P. Williams, R. Sion, and B. Carbunar. Building Castles Out of Mud: Practical
Access Pattern Privacy and Correctness on Untrusted Storage. In Proceedings of
the 15th ACM conference on Computer and communications security, pages 139–148.
ACM, 2008.

[79] R. Wojtczuk and J. Rutkowska. Attacking Intel Trusted Execution Technology.

[80] R. Wojtczuk and J. Rutkowska. Attacking SMM Memory via Intel CPU Cache
Poisoning.

[81] R. Wojtczuk and A. Tereshkin. Attacking Intel Bios.

[82] Y. Xu, W. Cui, and M. Peinado. Controlled-Channel Attacks: Deterministic Side
channels for Untrusted Operating Systems. In 2015 IEEE Symposium on Security
and Privacy, pages 640–656, 2015.

[83] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester. A2: Analog Malicious
Hardware. In Security and Privacy (SP), 2016 IEEE Symposium on, pages 18–37,
2016.

[84] Y. Yarom and K. Falkner. FLUSH+ RELOAD: A High Resolution, Low Noise,
L3 Cache Side-Channel Attack. In Proceedings of the 23rd USENIX conference on
Security Symposium, pages 719–732, 2014.

[85] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native Client: A Sandbox for Portable, Untrusted x86 Native Code.
In Proceedings of the 2009 30th IEEE Symposium on Security and Privacy, SP ’09,
pages 79–93, Washington, DC, USA, 2009. IEEE Computer Society.

[86] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica. Resilient Distributed Datasets: A Fault-Tolerant
Abstraction for In-memory Cluster Computing. In Proceedings of the 9th USENIX
conference on Networked Systems Design and Implementation, pages 2–2, 2012.

[87] S. Zahur and D. Evans. Circuit Structures for Improving Efficiency of Security and
Privacy Tools. In Proceedings of the 2013 IEEE Symposium on Security and Privacy,
SP ’13, pages 493–507, Washington, DC, USA, 2013. IEEE Computer Society.

61

[88] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart. Cross-Tenant Side-Channel
Attacks in PaaS Clouds. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, pages 990–1003, 2014.

[89] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica.
Opaque: An Oblivious and Encrypted Distributed Analytics Platform. In 14th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 17),
pages 283–298, 2017.

62

	List of Tables
	List of Figures
	Introduction
	Motivation
	Related Works
	Our Contributions
	Overview of the Thesis

	Computation Model
	Usage Model
	Threat Model

	Preliminaries
	Oblivious Enclave Execution
	Intel SGX
	Background for ORAM

	ZeroTrace
	Design Summary
	Client/Server Interface
	Memory Controller Enclave Program
	Persistant Integrity
	Optimizing Fetch/Store Path
	Security Analysis

	Implementation and Evaluation
	Experiment Setup
	Evaluation of Core Memory Controller
	Evaluation of Controller Flexibility
	Improving the Controller Time
	Evaluation of Data-Structure Modules

	Towards Secure Remote Computation
	Intel TPM + TXT
	Fully Homomorphic Encryption (FHE)
	Concluding remarks

