
On a General Mixed Priority Queue with Server
Discretion

Val Andrei Fajardo,1∗ Steve Drekic1

1Department of Statistics and Actuarial Science, University of Waterloo,
200 University Avenue West, Waterloo, ON N2L 3G1, Canada

∗To whom correspondence should be addressed; E-mail: andrei.fajardo@uwaterloo.ca

We consider a single-server queueing system which attends to N priority classes

that are classified into two distinct types: (i) urgent: classes which have preemptive

resume priority over at least one lower priority class, and (ii) non-urgent: classes

which only have non-preemptive priority amongst lower priority classes. While

urgent customers have preemptive priority, the ultimate decision on whether to in-

terrupt a current service is based on certain discretionary rules. An accumulating

prioritization is also incorporated. The marginal waiting time distributions are ob-

tained and numerical examples comparing the new model to other similar priority

queueing systems are provided.
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1 Introduction

Service rules which dictate the order of service through the priority (or urgency) of the

customers in the system are known as priority disciplines. Systems that employ a priority

discipline give preferential treatment to customers of greater urgency in the sense that at a

service selection instant, the customer of (or with) the greatest priority is usually selected. To

remove the ambiguity in this notion of the “customer with the greatest priority”, a mechanism

for assigning priorities to the customers is required.

Oftentimes, the customers of a priority queueing system are categorized into a fixed number

of distinct priority classes labelled with class indices 1, 2, . . . , N . Throughout this paper, we

use the symbol Ci which is to be read as “class-i customer”. In general, we say that Cis are

prioritized over Cjs whenever i < j. With this setup, one can assign priorities to customers

quantitatively by using the so-called priority functions, which are generally class-dependent.

We denote the priority function for the Cks by qk(t), where the argument t represents time.

Much of the existing literature has been focused on the study of priority disciplines for

which priority is assigned to each class in a static (or fixed) manner. Specifically, under a static

priority discipline, the priority functions are of the form

qk(t) = ak, k = 1, 2, . . . , N, (1)

where the set of constants {ai}Ni=1 are arranged so that a1 > a2 > · · · > aN . Furthermore,

amongst all of the customers belonging to the same class, it is assumed that the oldest such

customer is the one with the greatest priority. Hence, within classes, customers are served on a

first-come-first-serve (FCFS) basis.

Alternatively, the priority of a customer can be assigned in a non-static or dynamic fashion,

so that the priority of the customer accumulates (or possibly dissipates) throughout its time in

the system. Let ψk be the arrival time of a Ck. One such example of a dynamic priority discipline
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uses priority functions of the form

qk(t) = bk(t− ψk), t ≥ ψk, k = 1, 2, . . . , N, (2)

where the priority accumulation rates {bi}Ni=1 are arranged so that b1 ≥ b2 ≥ · · · ≥ bN ≥ 0.

Kleinrock [17] was the first to consider a priority queue that assigns priority to customers via

Eq. (2). His main contribution was a set of recursive equations for the means of the steady-state

waiting times for each class. Note that {bi}Ni=1 represents a set of parameters for the system,

enabling a systems manager to control the mean waiting times of each class by simply fine-

tuning these rates. As pointed out by Kleinrock [17], it is precisely this flexibility which makes

priority functions like the ones given in Eq. (2) so useful.

Several other researchers have considered various dynamic priority functions, and success-

fully obtained expressions (or bounds) for the mean waiting times of each class (to name a few,

see the papers by Hsu [14], Kanet [16], Netterman and Adiri [18], and Trivedi et al. [22]). How-

ever, it is only recently that the paper by Stanford et al. [20] has provided a distributional result

for the steady-state waiting times of a dynamic priority queue. In their paper, they considered

the same dynamic priority discipline as in Kleinrock [17], which they referred to as the accu-

mulating priority queue (APQ) discipline. In order to derive the Laplace-Stieltjes transform

(LST) of the steady-state class-k waiting time distribution, the authors utilized a new stochastic

process which they called the maximal priority process. Later in this paper, we too use the max-

imal priority process to obtain the LSTs of steady-state waiting time distributions for a certain

collection of customer classes in our new priority queue.

Another very important distinction of priority queues is based on the decision of whether or

not to interrupt the servicing of a customer for another higher priority customer present in the

system. In this regard, there are three types of priority queues:

(i) Non-preemptive: service of customers proceeds to completion without any interruptions,
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(ii) Preemptive: service of lower priority customers is interrupted for higher priority cus-

tomers,

(iii) Mixed: subject to some discretionary rules, the service of lower priority customers may

or may not be interrupted for higher priority customers.

The literature on all three types of priority queues for which the assignment of priority to

customers is static is vast. For a detailed analysis on both static non-preemptive and preemptive

priority queues, we refer the reader to the texts by Conway et al. [9], Jaiswal [15], and Takagi

[21]. With regards to mixed priority queues, several researchers have previously considered

various guidelines and discretion rules to dictate the interruptions of service. A well-known

guideline for prescribing interruptions based solely on the class indices is the so-called pre-

emption distance (PD) rule. The PD rule allows for preemption only if the difference in the

class indices of the two customers under consideration exceeds a specified value. Adiri and

Domb [3, 4] and Paterok and Ettl [19] have analyzed static priority queues implementing the

PD rule. Mixed priority queues for which the discretion rules are based on the service time of

the customer currently in service have also been previously considered. For example, three such

discretion rules are:

1. Proportion-based (PB) policy: Once a certain proportion α, 0 ≤ α ≤ 1, of the service time

has been successfully rendered, further preemptions are prevented;

2. Front-end time-based (FETB) policy: Once T time units of service have been successfully

rendered, further preemptions are prevented;

3. Tail-end time-based (TETB) policy: Once the time remaining to successfully complete ser-

vice is less than τ time units, further preemptions are prevented.
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The above threshold-based discretion rules were first studied by Cho and Un [7]. Later, Dre-

kic and Stanford [10] considered a generalized version of these discretion rules by allowing

the threshold parameters to be class-dependent. In this paper, we consider a mixed priority

model using a further generalization of the above threshold-based discretion rules to dictate the

interruptions of service.

Due to their complex nature, the existing literature for dynamic priority queues is predom-

inantly of the non-preemptive type. For example, the priority queues explored by Hsu [14],

Kanet [16], Netterman and Adiri [18], and also the model considered by Stanford et al. [20],

are all of the non-preemptive type. However, as evidenced in Fajardo and Drekic [13], one

can apply similar techniques to those of Stanford et al. [20] to characterize the waiting time

distributions for the preemptive variant of the APQ. In regards to other research papers investi-

gating preemptive dynamic priority queues, there are (to our knowledge) only two other papers

appearing in the priority queueing literature (i.e., Kleinrock [17] and Trivedi et al. [22]), both

of which analyze the preemptive resume case.

In this paper, we consider an M/G/1 mixed priority queue where the N distinct priority

classes of customers are further classified into two distinct types. Specifically, we refer to those

classes which have preemptive resume priority over at least one lower priority class as urgent

classes, and those which only have non-preemptive priority amongst lower priority classes as

non-urgent. Also, the assignment of priorities to these two types of classes is different; ur-

gent classes are assigned static priority as in Eq. (1), while non-urgent classes are assigned

priority dynamically as in Eq. (2). We provide a detailed description of the model and other

preliminaries in the next section.

The resulting priority queueing system is quite general and can be used to model several

real world situations. For example, the main motivation of Stanford et al. [20] was to study

the effectiveness of triage policies in an emergency room of a hospital. Their model was uni-

5



versally non-preemptive; however, it is quite reasonable to assume that some arriving patients

will be more urgent than others and should require a doctor’s attention immediately. Our new

priority model allows for the consideration of such types of patients with preemptive priority

over those which are less urgent. Moreover, in some instances, a doctor may decide to continue

the servicing of a lower priority patient even in the midst of an arrival of an urgent-type patient.

The new model can also have potential use in computer job scheduling applications, as well as

other areas (such as those discussed in Drekic and Stanford [10, 11] and Paterok and Ettl [19]).

The rest of the paper is organized as follows. In Section 2, we introduce the model and

the notation used throughout the paper. Section 3 describes the general methodology which is

employed for deriving the LSTs of the marginal waiting time distributions. In Section 4, we es-

tablish the LSTs for the auxiliary random variables used to obtain the waiting time distributions.

Two numerical examples, comparing our new priority system to similar previously-analyzed

priority models, are given in Section 5. Lastly, in Section 6, we offer some concluding remarks

and directions for future work.

2 Model description and preliminaries

2.1 Setup of the model

We consider a single-server queueing system which attends to N distinct priority classes of

customers. The arrival processes for each class of customers form individual and independent

Poisson processes, where λi denotes the arrival rate for class i, i = 1, 2, . . . , N . We also let

Λi =
∑i

j=1 λj for i = 1, 2, . . . , N . The service requirements for each customer are assumed to

be class-dependent and independent of the arrival streams. Let X(i) represent the class-i service

time random variable whose distribution function (df) and LST are denoted by

B(i)(x) = P(X(i) ≤ x) and B̃(i)(s) = E(e−sX
(i)

),
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respectively. In general, unless otherwise specified, we let Y (x) = 1− Y (x) = P(Y ≤ x) and

Ỹ (s) = E(e−sY ) represent the df and LST, respectively, of a random variable Y .

We assume that Cis have priority over Cjs whenever i < j. Moreover, the N classes of

customers are further classified into two distinct types:

(i) urgent: classes which have preemptive resume priority over at least one lower priority

class;

(ii) non-urgent: classes which only have non-preemptive priority amongst lower priority classes.

In general, we say that there are 0 ≤ m ≤ N urgent classes so that the set U ≡ {i : 1 ≤ i ≤ m}

represents the collection of all urgent classes of customers. Conversely, N ≡ {i : m < i ≤ N}

denotes the aggregated set of non-urgent classes. For convenience, we refer to urgent and non-

urgent customers as class-U and class-N customers, to be represented by the symbols CU and

CN , respectively.

The assignment of priority to a CU differs from that for a CN . In particular, we use the

following class-k priority functions:

• For k ∈ U :

qk(t) = ak, (3)

where a1 > a2 > · · · > am > 0.

• For k ∈ N :

qk(t) = bk(t− ψk), t ≥ ψk, (4)

where bm+1 ≥ bm+2 ≥ · · · ≥ bN ≥ 0.

It is further assumed that

am >> bm+1, (5)
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which guarantees that at no point in time could a CN ever have greater priority than a CU .

Moreover, we assume that a Ci has preemptive resume priority over a Cj whenever i < j and

only if i ∈ U ; otherwise, if i ∈ N , then the Ci has only non-preemptive priority over the Cj .

2.2 The service discipline

In this subsection, we describe, in careful detail, the service discipline of the new priority

queue. Note that when we speak of a service selection instant, we are referring to an instant in

time when a customer departs the system (i.e., after being completely serviced) and the server

must subsequently select, from all the remaining customers in the system, the next customer

to be serviced. It is important to realize that we do not consider a preemption instant to be a

service selection instant.

For priority queueing systems, it is customary to use the following general service guideline:

Priority Service Guideline: At a service selection instant, the customer with the greatest pri-

ority enters into service.

We remark that the classical preemptive and classical non-preemptive priority queueing models

both employ the Priority Service Guideline. Mixed priority queues, such as the one considered

in this paper, also employ the Priority Service Guideline; however, certain policies may further

be put into place so as to override the Priority Service Guideline at a specific type of service

selection instant. We provide the details to these exceptions later on in this section.

For simplicity, in what follows next, we describe the service discipline from the perspective

of a Ck. Note that for each k ∈ {1, 2, . . . , N}, a convenient partition of the remaining N − 1

classes can be constructed on the basis of the priority relationship between those classes and

class k, namely:

8



b ≡ The set of classes which class k has priority over,

anp ≡ The set of classes which have non-preemptive priority over class k,

ap ≡ The set of classes which have preemptive priority over class k,

a = anp ∪ ap ≡ The set of classes which have priority over class k.

To begin, suppose that a Ck enters into service for the first time. For systems with at least

one urgent class (i.e., m > 0), ap must be a non-empty set if k > 1, and hence, it is possible

for the service of this Ck to be interrupted by a Cap . An interruption may take place if there

exists a Cap with greater priority than the Ck currently in service. Since ap ⊂ U , it follows as a

consequence of Eqs. (3) and (5) that any interruption period must commence immediately upon

the arrival of the interrupting Cap to the system.

Although it is true that the set of classes in ap have preemptive priority over class k, the

ultimate decision on whether to interrupt the current servicing of the Ck is made according

to the three threshold-based discretion rules: PB, FETB, and TETB. As stated earlier, Drekic

and Stanford [10] investigated the class-dependent case by letting αk, Tk, and τk represent the

corresponding class-k threshold parameters. We extend this idea one step further by allowing

these threshold parameters to also depend on the class of the customer causing the interruption.

Thus, we introduce αi,k ∈ (0, 1), Ti,k ≥ 0, and τi,k ≥ 0 as the corresponding class-k threshold

parameters pertaining to a newly-arriving high priority Ci, i ∈ ap. For any k > 1 and i < j ∈ ap,

we further assume that

αi,k ≥ αj,k, Ti,k ≥ Tj,k, and τi,k ≤ τj,k. (6)

We say that a class-k service becomes class-i protected the moment that the service of the Ck

can no longer be preempted by a Ci, i ∈ ap. Hence, the consequences of Eq. (6) are that a

class-k service becomes class-j protected before it becomes class-i protected for i < j ∈ ap.
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Now, if the Ck is preempted out of service, then we refer to the interval of time starting

from the preemption instant up until the moment that the interrupted Ck finally re-enters into

service as an interruption period. In this paper, we define an interruption period to consist

of the following two components: (i) the time required to completely service the interrupting

customer, and (ii) the additional time required to clear the system of all those remaining Caps

whom, if they had arrived to the system at the time of the preemption, would have also caused

an interruption. Hence, at the end of an interruption period, the Ck re-enters service despite

the fact that there may be customers of higher priority in the system (i.e., these are the higher

priority customers who either never could, or can no longer cause an interruption to the Ck).

Let {δi}∞i=1 represent the sequence of service selection instants. Furthermore, we denote a

type-2 service selection instant to refer to a service selection instant which is also the instant in

time that an interruption period ends. All other types of service selection instants are referred

to as being of type 1. The service discipline for the new priority queue now follows:

• For type-1 service selection instants, the Priority Service Guideline is used to select the

next customer for service.

• For type-2 service selection instants, the most recently interrupted customer re-enters into

service.

• Preemption instants within the service of a Ck (k > 1) occur at the arrivals of Caps in

accordance with the threshold-based discretion rules of PB, FETB, and TETB.

2.3 Service-structure elements and auxiliary random variables

In this subsection, we define several random variables of interest. First of all, we defineW (k)

as the steady-state class-k waiting time representing the total elapsed time from a Ck’s arrival

to the system until the first time it enters service. In addition, the steady-state class-k flow time
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F (k) represents the total time the Ck spends in the system. The main objective of this paper is

to derive the LSTs of W (k) and F (k) for each k = 1, 2, . . . , N . To do so, the following random

variables, for which we collectively refer to as the service-structure elements, are needed:

Residence period (R(k)) ≡ The time elapsed between first entry into service of
the Ck and its departure,

Completion period (C(k)) ≡ The total elapsed time between the initial entry of a
Ck into service and the first instant that the server is
ready to select the next Ck for service.

The utilization factor associated with our priority queueing model is given by

ρ =
N∑
i=1

λiE(X(i)),

which we assume satisfies the stability condition ρ < 1. In the next section, we derive the LST

of W (k), which itself depends on the LSTs of the following two auxiliary random variables:

Υ
(k)
i ≡ The interval of time starting with the service of a Ci (i ∈ a) and ending at the first moment

that the server is ready to select the next Ck for service,

Φ
(k)
i ≡ The interval of time starting with the class-k protected portion of service of a Ci (i ∈ b)

and ending at the first moment that the server is ready to select the next Ck for service.

Remark 2.1 For k ∈ U , the first time that the server is ready to select a Ck after any one of

these time intervals have started represents the first time that the system is clear of all Cas.

However, for the case of k ∈ N , the first time that the server is ready to select a Ck represents

the first time that the system is clear of all those Cas which are only of a certain kind (to be

introduced in the next section).

In what follows, we extend the definition of Υ
(k)
i to incorporate the case when i = k, with the

understanding that Υ
(k)
k = C(k). To find the LST of the class-k flow time F (k), we use the
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relation

F̃ (k)(s) = W̃ (k)(s)R̃(k)(s),

which readily follows from the independence of W (k) and R(k). The derivations of the LSTs of

C(k), R(k), and the two auxiliary random variables are carried out in Section 4.

Lastly, a classical result which we use repeatedly throughout the paper is the well-known

functional for the LST of the duration of an M/G/1 busy period. In particular, the LST of a

busy period in an M/G/1 queue with customer arrival rate λ and service time X having df

B(x) is given by (e.g., see Conway et al. [9, p. 150]),

Γ̃(s) ≡ Γ̃(s;λ,X) = B̃(s+ λ− λΓ̃(s)). (7)

We also require the delay version of this result. Specifically, if the initial service time of the

busy period is now X0 having df B0(x), then the LST of the duration of this delay busy period

is (e.g., see Conway et al. [9, p. 151])

Γ̃0(s) ≡ Γ̃0(s;λ,X,X0) = B̃0(s+ λ− λΓ̃(s)). (8)

3 Derivation of the waiting time LST

To derive an expression for W̃ (k)(s), we employ two analytical approaches; one for each of

the cases k ∈ U and k ∈ N . The reason for the two separate approaches is the fact that the

assignment of priority for a CU (which is via Eq. (3)) differs from that for a CN (which is via

Eq. (4)). For the case k ∈ U , we apply a similar level-crossing argument to the one used in

Paterok and Ettl [19]. As evidenced in their work, the level-crossing method provides a simple

approach to obtain the integral equation for the probability density function (pdf) of the steady-

state class-k virtual wait. For dynamic priority queues, it is quite difficult to define the class-k

virtual wait. However, Stanford et al. [20] developed a general approach to obtain the LSTs of
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waiting time distributions in a dynamic priority queue which uses the priority functions of Eq.

(2). This approach, which takes inspiration from the traditional busy cycle approach used in

Conway et al. [9], is what we use to establish W̃ (k)(s) for k ∈ N .

3.1 Waiting time LST for k ∈ U

Let {Vk(t), t ≥ 0} denote the class-k virtual wait process whose steady-state distribution

we characterize as follows:

F (x) = lim
t→∞

P(Vk(t) ≤ x), f(x) = lim
t→∞

∂
∂x
P(Vk(t) ≤ x), and P0 = lim

t→∞
P(Vk(t) = 0),

subject to the normalizing condition

P0 +

∫ ∞
0

f(x)dx = 1. (9)

Note that {Vk(t), t ≥ 0} is at level 0 only during times that the server is either idle or is attending

to a Cb in its class-k preemptible portion of service. During such times, we say that the system

is in a virtually idle state. Hence, P0 represents the long-run fraction of time that the system

is virtually idle. Moreover, since the arrivals of the Cks form a Poisson process, it then follows

that

W̃ (k)(s) =

∫ ∞
x=0

e−sxdF (x) = P0 +

∫ ∞
0

e−sxf(x)dx. (10)

To obtain the desired LST, we apply a level-crossing approach to establish an integral equa-

tion for f(x). Let Ut(x) and Dt(x) denote the number of up- and down-crossings of level x of

the class-k virtual wait process, respectively, during the time interval (0, t). The principle of set

balance (e.g., see Brill [6, Section 2.4.6]) states that

lim
t→∞

E(Dt(x))

t
= lim

t→∞

E(Ut(x))

t
.

This fundamental relation between the up- and down-crossing rates of level x is precisely all

we need to establish an integral equation for f(x).
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To find the up-crossing rate of level x of {Vk(t), t ≥ 0}, we observe that a sample path of

{Vk(t), t ≥ 0} up-jumps in three instances of time: (i) whenever a Ck arrives to the system, (ii)

when a newly-arriving Ca finds the system in the virtually idle state, and (iii) the moment when

a Cb’s service becomes class-k protected. A typical sample path of {Vk(t), t ≥ 0} is illustrated

in Figure 1. It is important to note that depending on the specification of the threshold-based

discretion parameters, the service of a Cb may either be entirely, partially, or not at all class-k

protected. In Figure 1, both the first and third waiting Cbs have service times which are entirely

class-k protected, whereas the second waiting Cb has a service time that is only partially class-k

protected.

type of up- jump

Ui
HkL

Uk
HkL

Fi
HkL
Uk
HkL

Uk
HkL

Fi
HkL
Uk
HkL

Fi
HkL

Ca arrives

to a virtually

idle system

a waiting Cb

enters into

service

a waiting Cb

enters into

service

service of Cb

becomes class-k

protected

a waiting Cb

enters into

service

ì ì ì ì

level x

t

VkHtL

Figure 1: A typical sample path of {Vk(t), t ≥ 0}

Let κk,i denote the probability that the service of a Ci (i ∈ b) ever becomes class-k protected.

Under the PB rule, κk,i = 1 as long as αk,i < 1 and is zero otherwise. Similarly, under

the TETB rule, κk,i = 1 if τk,i > 0 and is zero otherwise. However, for the FETB rule, a

class-i service becomes class-k protected only if the service time is greater than Tk,i, and so

κk,i = 1 − B(i)(Tk,i) under this rule. The next theorem establishes the up- and down-crossing

rates of level x.
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Theorem 3.1 The up- and down-crossing rates of level x are given by

lim
t→∞

E(Ut(x))

t
= P0

k∑
i=1

λiΥ
(k)

i (x) +
N∑

i=k+1

κk,iλiΦ
(k)

i (x) + λk

∫ x

y=0

Υ
(k)

k (x− y)f(y) dy, x > 0

(11)

and

lim
t→∞

E(Dt(x))

t
= f(x), x > 0. (12)

Proof. We present intuitive explanations for each term of Eq. (11). For i ∈ a or i = k, the

rate of up-jumps caused by a Ci arriving to a virtually idle system is simply λiP0. Furthermore,

only the proportion Υ
(k)

i (x) of these up-jumps lead to an up-crossing of level x. The rate at

which a Ci (i ∈ b) arrives to the system that eventually induces a delay to the Cks is λiκk,i. Such

arrivals eventually result in up-jumps of {Vk(t), t ≥ 0} which cross level x with probability

Φ
(k)

i (x). Finally, the long-run probability of an up-jump occurring from level y is f(y)dy, and

the probability that an up-crossing of level x occurs from level y is Υ
(k)

k (x−y). The justification

of Eq. (12) is similar to that for the down-crossing rate of the virtual wait process in an M/G/1

queue (e.g., see Brill [6, Theorem 3.3 and Corollary 3.2]). �

From the principle of set balance, we equate Eqs. (11) and (12) to yield an integral equation

for f(x), namely,

f(x) = P0

k∑
i=1

λiΥ
(k)

i (x) +
N∑

i=k+1

λiκk,iΦ
(k)

i (x) + λk

∫ x

y=0

Υ
(k)

k (x− y)f(y) dy, x > 0. (13)

By multiplying Eq. (13) by e−sx and integrating x over (0,∞), we obtain∫ ∞
x=0

e−sxf(x) dx =
P0

(∑k
i=1 λi(1− Υ̃

(k)
i (s))

)
+
∑N

i=k+1 λiκk,i(1− Φ̃
(k)
i (s))

s− λk + λkC̃(k)(s)
.

It follows from Eq. (10) that for k ∈ U ,

W̃ (k)(s) =
P0

(
s+

∑k−1
i=1 λi(1− Υ̃

(k)
i (s))

)
+
∑N

i=k+1 λiκk,i(1− Φ̃
(k)
i (s))

s− λk + λkC̃(k)(s)
. (14)
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Alternatively, by defining W (k)
BP as the waiting time of a Ck who arrives to the system during a

busy period and incurs a positive wait time, we have that

W̃ (k)(s) = P0 + (1− P0)W̃
(k)
BP (s).

From Eq. (10), it must be that W̃ (k)
BP (s) =

∫∞
x=0

e−sxf(x)dx/(1− P0). Moreover, an expression

for E(W (k)) can be obtained by multiplying Eq. (13) by x and integrating x over (0,∞), leading

to

E(W (k)) =
P0

∑k−1
i=1 λiE

(
(Υ

(k)
i )2

)
+ λkE

(
(C(k))2

)
+
∑N

i=k+1 λiκk,iE
(
(Φ

(k)
i )2

)
2
(
1− λkE(C(k))

) . (15)

We next proceed to establish a formula for P0. Observe that∫ ∞
0

f(x) dx =
P0

∑k
i=1 λiE(Υ

(k)
i ) +

∑N
i=k+1 λiκk,iE(Φ

(k)
i )

1− λkE(C(k))
.

It readily follows, using the normalizing condition Eq. (9), that

P0 =
1− λkE(C(k))−

∑N
i=k+1 λiκk,iE(Φ

(k)
i )

1 +
∑k−1

i=1 λiE(Υ
(k)
i )

. (16)

We end the current subsection with a remark on the level-crossing approach used here and

the one employed by Paterok and Ettl [19].

Remark 3.2 The level-crossing analysis of {Vk(t), t ≥ 0} carried out by Paterok and Ettl [19]

differs slightly from the one we use here. While their approach compares the expected number

of up- and down-crossings of level x of {Vk(t), t ≥ 0} within a single regeneration cycle, our

level-crossing analysis compares the long-run up- and down-crossing rates of level x. The

latter level-crossing approach was first introduced by Brill [5], whereas the former approach

was independently developed by Cohen [8].
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3.2 Waiting time LST for k ∈ N

By definition, a CN can never preempt another customer out of service. Therefore, any CN

who arrives to the system during a busy period must necessarily wait a positive amount of time

before entering into service. Moreover, only those CN s who arrive to the system during idle

periods enter into service immediately upon arrival, without experiencing any wait. From these

observations, an expression for the class-k waiting time LST is given by

W̃ (k)(s) = (1− ρ) + ρW̃
(k)
BP (s), k ∈ N . (17)

Let P (k)
BP be the accumulated priority (immediately prior to entering into service for the first

time) of a Ck arriving to the system during a busy period. Since priority is assigned to a Ck via

Eq. (4), the following simple relation holds:

P
(k)
BP = bk ×W (k)

BP ,

from which it follows that

W̃
(k)
BP (s) = P̃

(k)
BP (s/bk). (18)

Hence, to obtain the waiting time LST, we seek to derive P̃ (k)
BP (s). To do so, we make use of the

so-called maximal priority process, which was first introduced by Stanford et al. [20, Section

3]. This stochastic process provides a useful structuralization of the general busy period and the

customers serviced within it. We devote the next few subsections to its definition and some of

its useful properties and results.

3.2.1 The maximal priority process

Upon arrival to the system, a Ck (k ∈ N ) begins to accumulate priority linearly at rate

bk. In this subsection, we define a specific upper bound for the accumulated priority of any

Ck potentially present in the system at any time t > 0. We say “potentially present” since for
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bk > 0, this upper bound has the property of being positive during every busy period, even if

none of the customers present in the system belong to class k. The collection of these upper

bounds (i.e., N −m in total, one for each k ∈ N ) is what Stanford et al. [20] referred to as the

maximal priority process.

Stanford et al. [20] defined the maximal priority process in terms of the service commence-

ment times and departure instants of the system. Since the current priority model allows for a

CN to be preempted out of service, we require a slightly more general definition of the maximal

priority process. Our definition of the maximal priority process follows below.

Definition 3.1 The maximal priority process is an (N − m)-dimensional stochastic process

M(t) = {(Mm+1(t),Mm+2(t), . . . ,MN(t)), t ≥ 0}, satisfying the following conditions:

1. The sample path of Mk(t) for each k ∈ N is continuous with respect to t, except possibly

when t corresponds to a service selection instant.

2. M(t) = (0, 0, . . . , 0) for all t corresponding to idle periods.

3. For all t during the service of any customer,

dMk(t)

dt
= bk, k ∈ N .

4. At the sequence of service selection instants {δi}∞i=1,

Mk(δ
+
i ) =

{
min{Mk(δ

−
i ), q∨(δ

+
i )} if δi is of type 1

Mk(δ
−
i ) if δi is of type 2 , (19)

where q∨(t) represents the greatest (accumulated) priority amongst all the customers present

at time t, which is zero during idle periods. In Eq. (19), note that

Mk(δ
−
i ) = lim

ε→0
Mk(δi − ε), Mk(δ

+
i ) = lim

ε→0
Mk(δi + ε), and q∨(δ

+
i ) = lim

ε→0
q∨(δi + ε).
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In what follows, we (artificially) set bN+1 = 0 (which correspondingly implies thatMN+1(t) =

0 for all t > 0). Definition 3.1 simply implies that during busy periods, Mk(t) increases linearly

at rate bk and down-jumps at some of the service selection instants. Figure 2 illustrates a typical

sample path of the maximal priority process for a 5-class mixed priority queue with m = 2. In

Figure 2, the actual accumulated priorities of the customers present in the system are given by

the thin lines.

Suppose that δ represents a type-1 service selection instant for which at least one component

of M(t) down-jumps (or, equivalently, δ represents an instant for which a down-jump in the

first component Mm+1(t) occurs). It then follows (from the Priority Service Guideline) that if

there are any customers present at time δ, the CN with the greatest accumulated priority enters

into service. Thus, the following two statements about the system at time δ must necessarily be

true: (i) the system is clear of all CUs, and (ii) the system is clear of all previously-interrupted

customers.

M3HtL, b3=1.0 M4HtL, b4=0.5 M5HtL, b5=0.2

u1
u2

u3

u4

u5

u6 u7

u8=0

Τ1 S1 S2 S3 S4 S5 S6 S7 S8

t

MHtL

Figure 2: A typical sample path of {M(t), t ≥ 0} for a 5-class mixed priority queue with
m = 2 (i.e., N = {3, 4, 5})

Let Si denote the i-th instant in time such that Mm+1(t) down-jumps. In other words,

Si represents the i-th type-1 service selection instant satisfying the same two requirements as
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δ above, namely (i) and (ii). We refer to Si as the i-th service selection instant for a CN .

Furthermore, let S = {Si}∞i=1 be the sequence of service selection instants for the CN s. It is

important to note that Si represents the service commencement of a CN only if there are still

customers who remain in the system at Si. Otherwise, Si represents the end of a busy period,

which is signalled by a down-jump of Mm+1(t) to level 0 (e.g., see S8 in Figure 2).

The main reason for defining S, however, is stated in the next observation. The maximal

priority process defined for the non-urgent classes in our new priority queue behaves identically

to the maximal priority process for the non-preemptive priority queue considered by Stanford et

al. [20]. In other words, we can similarly analyze the waiting times for a CN of the new priority

queue as we would for a customer in the non-preemptive dynamic priority queue considered by

Stanford et al. [20]. In this equivalent non-preemptive priority queue, S would play the role of

the sequence of departure instants of the customers, while C(k), Υ
(k)
i , and Φ

(k)
i would serve as

the effective service times.

Essential to our analysis are four important properties of the maximal priority process, which

we describe below. We remark that these properties were first derived by Stanford et al. [20].

We do not provide the proofs of these properties but instead direct interested readers to Stanford

et al. [20, Theorems 3.1 and 7.2] for their proofs. The four properties are as follows:

(P.1) The accumulated priorities of the CN s still present in the queue at time t are distributed as

independent Poisson processes, each with rate λi/bi on the intervals [0,Mi(t)) for i ∈ N .

(P.2) The accumulated priorities of the CN s still present in the queue at time t are distributed

as independent Poisson processes, each with piecewise constant rate zero on the interval

[Mm+1,∞) and rate
∑k

j=m+1 λj/bj on the interval [Mk+1(t),Mk(t)) for k ∈ N .

(P.3) A waiting CN whose priority, at time t, lies in the interval [Mk+1(t),Mk(t)) belongs to

class i with probability (λi/bi)/(
∑k

j=m+1 λj/bj), independently of the class of all other

20



customers present in the queue.

(P.4) The statements (P.1)–(P.3) above also hold at any random time δ that is a stopping time

for the raw filtration ofM(t).

We end this introduction to the maximal priority process by giving an interpretation of the

type of upper bounds thatM(t) provides. First of all, for each k ∈ N , Mk(t) is the least upper

bound of class-k accumulated priorities which would not result in a violation of the service

discipline. Secondly, one can think ofM(t) as the collection of these least upper bounds for

accumulated priorities that one would sketch when given only the following three pieces of

information:

(a) the sequence of busy period commencement times {τi}∞i=1,

(b) the sequence S of service selection instants for the CN s, and

(c) for each i = 1, 2, . . ., the value ui = q∨(S
+
i ) corresponding to the greatest accumulated

priority at each service selection instant Si.

To sketch M(t), one must also bear in mind some of the fundamental characteristics of the

priority system, namely that Cks accumulate priority via Eq. (4), CN s arrive to the system

with zero initial priority, and CN s cannot preempt service. For example, one can reproduce the

sample path ofM(t) in Figure 2 given only τ1 and the pairs (Si, ui) for i = 1, 2, . . . , 8.

3.2.2 Classification of the CN s

Following the convention of Stanford et al. [20], we introduce some fundamental terminol-

ogy pertaining to the CN s arriving during busy periods. First of all, we say that a waiting Cj (for

j = m+ 1,m+ 2, , . . . , k) is at level-k accreditation at time t if its accumulated priority lies in

the interval [Mk+1(t),Mk(t)). Since priority is earned linearly throughout time, it is clear that
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the accumulated priority of customers at level-k accreditation must have intersected Mk+1(·) at

time epochs which we refer to as level-k accreditation instants. Similarly, we say that a Cj be-

comes level-k accredited once its accumulated priority moves into the interval [Mk+1(·),Mk(·))

(i.e., at the corresponding accreditation instant).

Since Mj(t) represents an upper bound for class-j accumulated priorities, it is obvious that

the greatest accreditation a waiting Cj may attain is level-j accreditation. In other words, if

we suppose that δ represents the first time that a Cj is admitted into service, then q∨(δ+) (i.e.,

the priority of this customer upon entering into service) may only lie in one of the following

intervals (assuming j ≤ k):

[0,MN(δ−)), [MN(δ−),MN−1(δ
−)), . . . , [Mk+1(δ

−),Mk(δ
−)), . . . , [Mj+1(δ

−),Mj(δ
−)).

In addition, we say that this Cj is served at level-k accreditation if

q∨(δ
+) ∈ [Mk+1(δ

−),Mk(δ
−)).

We use the symbol C(acc:k)j to refer to a Cj who is served at level-k accreditation. Whenever

the knowledge of the specific class of customer is not required, we omit the subscript j and

simply use C(acc:k). An important result pertaining to the proportion of Cks who arrive during

busy periods and are C(acc:k)s is provided in the next lemma.

Lemma 3.3 The steady-state probability that a Ck who arrives during a busy period and is

serviced at level-k accreditation (i.e., is also a C(acc:k)) is given by 1− bk+1/bk for any k ∈ N .

Proof. Within every busy period, there are intervals of time during which if a Ck arrives within

them, then it eventually would be serviced at level-k accreditation. It is not difficult to see that

for every busy period, the ratio of the sum of the lengths of these intervals over the length of the

busy period is always 1 − bk+1/bk. The result then follows from the fact that Cks arrive to the

system according to a Poisson process. �
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A related notion to the general busy period has to do with level-specific accreditation inter-

vals. A level-k accreditation interval is a period of time that either starts at the beginning of

a busy period, or when a C(acc:`) for ` > k enters into service for the first time. Regardless of

how it starts, a level-k accreditation interval always ends once the system becomes clear of both

the initial customer and all C(acc:i)s for i = m + 1,m + 2, . . . , k (i.e., all customers that have

become at least level-k accredited).

Note that if δ represents the service selection instant for a C(acc:`) (` > k), then this implies

that Mk+1(t) must have down-jumped at time δ (i.e., q∨(δ+) < Mk+1(δ
−)). In addition, if there

are still customers present at the end of the ensuing level-k accreditation interval, then clearly, at

this same instant, another C(acc:`) for ` > k will commence service. Therefore, we observe that

during busy periods, the commencement/termination instants of level-k accreditation intervals

coincide with the service selection instants S for which Mk+1(t) down-jumps. In other words,

during busy periods, the level-k accreditation intervals are the time periods between successive

down-jumps of Mk+1(t). It is also obvious that a termination instant of a level-k accreditation

interval which clears the system of all customers does not also represent a commencement

instant of the next level-k accreditation interval, but rather signals the end of the busy period.

Figure 3 illustrates the general structure of a level-4 accreditation interval for a 6-class mixed

priority queue with m = 2.

Within a level-k accreditation interval, we note further that Mk(t) down-jumps at instants

corresponding to the service selection instants of all the C(acc:k)s. However, a down-jump of

Mk(t) also marks the commencement/termination of a level-(k − 1) accreditation interval.

Therefore, a level-k accreditation interval is partitioned by a sequence of level-(k − 1) accred-

itation intervals. This suggests that it may be possible to view a level-k accreditation interval

as a delay busy period of C(acc:k)s, whose effective service times are level-(k − 1) accreditation

intervals. We show that this is precisely the case in Section 4.
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level-4 accreditation interval starting

at the beginning of busy period

level-4 acc. interval starting when a CHacc:5L

enters into service for first time

initial delay V initial delay Vdelay busy period of CHacc:4Ls delay busy period of CHacc:4Ls

M3HtL, b3=1.25 M4HtL, b4=0.75 M5HtL, b5=0.40 M6HtL, b6=0.25

a CHacc:5L

enters into

service

a CHacc:6L

enters into

service

t

MHtL

Figure 3: Level-4 accreditation intervals in a 6-class mixed priority queue with m = 2 (i.e.,
N = {3, 4, 5, 6})

24



We next proceed to establish the relation between level-k accreditation intervals and the

previously-introduced auxiliary variables (including the completion periods). First of all, ob-

serve that of the service selection instants S, only those resulting in a down-jump of Mk+1(t)

represent the possible selection instants for a Ck+1. As a result, the end of a level-k accreditation

interval also represents the instant in time that the server is ready to select a Ck+1 for service.

Hence, the distribution of the level-k accreditation interval depends on the class of the initial

customer and is given by the corresponding auxiliary random variable. Table 1 summarizes

the distributions of the types of level-k accreditation intervals, including the distribution of the

initiating level-(k − 1) accreditation interval, which we denote by V and refer to as the initial

delay of the interval.

Table 1: Distributions of the level-k accreditation intervals
Initial customer of level-k accreditation interval Initial Delay V Entire Interval

Ci for i = 1, 2, . . . , k Υ
(k)
i Υ

(k+1)
i

Ck+1 Φ
(k)
k+1 C(k+1)

Ci for i = k + 2, k + 3, . . . , N Φ
(k)
i Φ

(k+1)
i

Finally, we end this subsection with the most vital distributional result for our overall ex-

pression of W̃ (k)(s). First of all, we define uint to be the initial priority level of the level-k

accreditation interval. Clearly, uint = 0 if the level-k accreditation interval starts at the be-

ginning of a busy period, and uint > 0 if the initial customer is a C(acc:`) for ` > k. It is

obvious that any customer who is serviced during a level-k accreditation interval must have

had an accumulated priority that was greater than uint immediately prior to entering service.

Furthermore, the accumulated priority of a C(acc:k) may be decomposed into two independent

components – namely, the initiating priority level uint and the additional priority accumulated

during the accreditation interval after having accumulated priority uint. Figure 4 illustrates such

a decomposition of the accumulated priority for a C(acc:4) in a 5-class mixed priority queue with
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m = 2.

level-4 accreditation interval
initial delay V

a CHacc:5L enters

into service with

priority level uint

additional accumulated

priorities of two

CHacc:4Ls after having

accumulated uint

M3HtL, b3=1.25 M4HtL, b4=0.75 M5HtL, b5=0.50

t

uint

MHtL

Figure 4: Decomposition of the accumulated priority for a C(acc:4) in a 5-class mixed priority
queue with m = 2 (i.e., N = {3, 4, 5})

Let P(acc:k) denote the random variable representing the additional priority that a C(acc:k)

accumulates in a level-k accreditation interval after having accumulated the initial priority level.

The LST of P(acc:k), associated with an initial delay V , is given by

P̃(acc:k)(s) ≡ P̃(acc:k)(s;V ) =

(
1− γ(k+1)

k µk,1
)(
Ã(bk+1s)− Ṽ (bks)

)
E(V )

(
1− bk+1

bk

)(
bks− γk

(
1− β̃(k)(bks)

) , (20)

where Ã(s) = Γ̃0(s; γ
(k+1)
k , β(k), V ) from Eq. (8),

β(k)(x) =
k∑

i=m+1

λi(bk/bi)

γk
Υ

(k)
i (x), γk =

k∑
i=m+1

λi(bk/bi), γ
(k+1)
k = γk(1− bk+1/bk),

and µk,i represents the i-th moment of the random variable (to be denoted by β(k)) whose df is

β(k)(x). Eq. (20) was first presented and proven by Stanford et al. [20]. Fajardo and Drekic

[12] later provided an alternate derivation of the result using level-crossing methodology for
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a related M/G/1 queue working under a particular blocking policy known as the q-policy. To

explain Eq. (20), we observe that from properties (P.2) and (P.4), it must be that the down-jumps

of Mk(t) during the level-k accreditation interval are exponentially distributed with parameter∑k
j=m+1 λj/bj . This ultimately leads to the key observation that the distribution of P(acc:k)/bk

(i.e., the additional wait after having accumulated priority level uint) is equivalent to that of the

wait experienced by customers arriving during delay busy periods in an M/G/1 queue under

the q-policy with the following parameters (e.g., see Fajardo and Drekic [12, Section 5]):

(i) arrival rate: γk,

(ii) service time df: β(k)(x),

(iii) initial delay df: V (x),

(iv) blocking proportion: q = bk+1/bk.

 (21)

The first moment of P(acc:k) works out to be

E(P(acc:k)) = bk

(
E(V 2)

2E(V )
·

[
1 +

bk+1/bk

1− γ(k+1)
k µk,1

]

+
γkµk,2

2(1− γkµk,1)
·

1−

(
bk+1/bk

1− γ(k+1)
k µk,1

)2
). (22)

We close this subsection with the following remark.

Remark 3.4 Note the fact that a C(acc:k) must belong to one of the classes in {m + 1,m +

2, . . . , k}. This of course implies that one C(acc:k) may accumulate priority linearly at a different

rate from another C(acc:k) (i.e., if they each belong to two different classes). Nonetheless, the

distribution of P(acc:k) remains the same regardless of the specific class to which the C(acc:k)

belongs.

3.2.3 A recursion for the waiting time LST

Let P (k)
acc be the accumulated priority of a C(acc:k)k . Similarly, we define P (k)

unacc as the accu-

mulated priority of a C(acc:`)k for some ` > k. For convenience, let C(acc:>k)k denote a C(acc:`)k for
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some ` > k. It therefore follows from Lemma 3.3 that

P̃
(k)
BP (s) =

bk − bk+1

bk
P̃ (k)
acc (s) +

bk+1

bk
P̃ (k)
unacc(s). (23)

To obtain a recursion for (23), it follows from Remark 3.4 that C(acc:>k)k s have an accumu-

lated priority that is identically distributed to that of a Ck+1 who arrives during a busy period, so

that P̃ (k)
unacc(s) = P̃

(k+1)
BP (s). This result is an intuitive one as both types of customers have the

property that their accumulated priorities are always bounded byMk+1(t). We may now rewrite

Eq. (23) as

P̃
(k)
BP (s) =

bk − bk+1

bk
P̃ (k)
acc (s) +

bk+1

bk
P̃

(k+1)
BP (s), (24)

thereby achieving a recursive relation.

To obtain P̃ (k)
acc (s), we must consider whether the level-k accreditation interval in which the

C(acc:k)k is serviced starts at the beginning of a busy period or at the service commencement of

a C(acc:`) for some ` > k. We define P (k)
acc,0 to be the accumulated priority of a C(acc:k)k serviced

within a level-k accreditation interval that starts at the beginning of the busy period. We obtain

the LST of P (k)
acc,0 using the relation

P̃
(k)
acc,0(s) = P̃(acc:k)(s;V

(k)
0 ), (25)

where V (k)
0 is the random variable whose distribution is defined via its LST

Ṽ
(k)
0 (s) =

k∑
i=1

λi
ΛN

Υ̃
(k)
i (s) +

N∑
i=k+1

λi
ΛN

Φ̃
(k)
i (s).

To understand Eq. (25), note that the initial priority level of a level-k accreditation interval is

zero. Therefore, the accumulated priority of a C(acc:k)k serviced within these kinds of level-k

accreditation intervals is simply equal to the priority accumulated during the interval. Further-

more, the initial delay V0 is a level-(k − 1) accreditation interval which can be initiated by any

customer arriving to an empty system.
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Similarly, let P (k)
acc,1 represent the accumulated priority of a C(acc:k)k serviced within a level-k

accreditation interval initiated by a C(acc:`) for some ` > k. An expression for the LST of P (k)
acc,1

is given by

P̃
(k)
acc,1(s) =

∑k
j=m+1 π

(k)
j P̃

(k+1)
BP (s)P̃(acc:k)(s; Υ

(k)
j ) +

∑N
j=k+1 π

(k)
j P̃

(j)
BP (s)P̃(acc:k)(s; Φ

(k)
j )∑N

j=m+1 π
(k)
j

,

(26)

where π(k)
j is the long-run fraction of time that the system processes a level-k accreditation

interval initiated by a Cj (j ∈ N ) arriving to the system during a busy period. To understand

Eq. (26), recall that the priority of a C(acc:k)k serviced within a level-k accreditation interval

starting at the service commencement of a C(acc:`) for some ` > k can be decomposed into two

independent components: uint, the accumulated priority of the initiating C(acc:`), andP(acc:k), the

additional priority accumulated after having accumulated the initial priority level uint. Hence,

the accumulated priority of such a C(acc:k)k has LST which takes on the general form

P̃
(k)
acc,1(s;V ) = ũint(s)P̃(acc:k)(s;V ),

where V is the initial delay of the level-k accreditation interval.

The distributions of both uint and V depend solely on the class of the initial customer. In

particular, if the initial customer is of class j for m < j ≤ k, then ũint(s) = P̃
(k+1)
BP (s) and

Ṽ (s) = Υ̃
(k)
j (s). Otherwise, for j > k, ũint(s) = P̃

(j)
BP (s) and Ṽ (s) = Φ̃

(k)
j (s). If we define

π
(k)
0 as the long-run fraction of time that the system spends processing a level-k accreditation

interval initiated by a customer who arrived to an empty queue, then it must be that

P̃ (k)
acc (s) =

1

ρ

(
π
(k)
0 P̃

(k)
acc,0(s) + (ρ− π(k)

0 )P̃
(k)
acc,1(s)

)
. (27)

Eqs. (24)–(27) together provide a recursive method to obtain P̃ (k)
BP (s).

We end this section with the derivation of the steady-state probabilities π(k)
j for j ∈ {0,m+

1,m + 2, . . . , N}. First of all, it is clear that any Cj (j > k) arriving during a busy period will
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eventually initiate a level-k accreditation interval with an initial delay of Φ
(k)
j . Hence, we have

π
(k)
j = ρ

λjE(Φ
(k)
j )

1− γ(k+1)
k µk,1

, j > k. (28)

Next, for a Cj (m < j ≤ k) to initiate a level-k accreditation interval, this customer must be

served at level-` accreditation for some ` > k. The probability of such a Cj arriving to the

system is ρ(bk+1/bj). Furthermore, since the initial delay of the resulting level-k accreditation

interval is Υ
(k)
j , we have that

π
(k)
j = ρ

λj(bk+1/bj)E(Υ
(k)
j )

1− γ(k+1)
k µk,1

, m < j ≤ k. (29)

Finally, a Cj arriving to an empty system initiates a level-k accreditation interval whose initial

delay is either Υ
(k)
j if j ≤ k or Φ

(k)
j if j > k. Thus,

π
(k)
0 =

1− ρ
1− γ(k+1)

k µk,1

[ k∑
j=1

λjE(Υ
(k)
j ) +

N∑
j=k+1

λjE(Φ
(k)
j )

]
. (30)

Since level-k accreditation intervals partition the general busy period, it is clear that π(k)
0 +∑N

j=m+1 π
(k)
j = ρ.

4 Characterization of the service-structure elements and aux-
iliary random variables

In this section, we derive expressions for the LSTs of class-k completion periods, residence

periods, and the auxiliary random variables introduced earlier in the paper. Since the preemptive

resume service discipline is a work-conserving one, it is straightforward to show that the LSTs

of the class-k (k ∈ U) auxiliary random variables are given by

Υ̃
(k)
i (s) = B̃(i)

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
, i ∈ a (31)

and

Φ̃
(k)
i (s) = Z̃

(i)
k

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
, i ∈ b, (32)
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where Υ̃
(k)
1:k−1 = Γ̃

(
s; Λk−1,

∑k−1
i=1 (λi/Λk−1)X

(i)
)

from Eq. (7) is the busy period LST of Cas

and Z(i)
k represents the class-k protected portion of a class-i service. Table 2 reports the various

forms of Z(i)
k and Z̃(i)

k (s) under each of the three threshold-based discretion rules. Moreover,

the class-k completion period LST is simply given by

C̃(k)(s) = Υ̃
(k)
k (s) = B̃(k)

(
s+ Λk−1(1− Υ̃

(k)
1:k−1(s))

)
. (33)

Table 2: Various forms of Z(i)
k and its corresponding LST

Threshold Rule Z
(i)
k Z̃

(i)
k

PB (1− αk,i)X(i) B̃(i)
(
(1− αk,i)s

)
FETB (X(i) − Tk,i)|(X(i) > Tk,i)

( ∫∞
x=Tk,i

e−s(x−Tk,i)dB(i)(x)
)
/
(
1−B(i)(Tk,i)

)
TETB min{X(i), τk,i} e−sτk,i(1−B(i)(τk,i)) +

∫ τk,i
x=0

e−sxdB(i)(x)

For the case k ∈ N , both Υ̃
(k)
i (s) and Φ̃

(k)
i (s) are obtained recursively. Specifically, we have

the following recursive schemes for each k ≥ m+ 1:

Υ̃
(k+1)
i (s) = Υ̃

(k)
i

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
, i ≤ k (34)

and

Φ̃
(k+1)
i (s) = Φ̃

(k)
i

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
, i > k + 1, (35)

where Υ̃
(k+1)
m+1:k(s) = Γ̃(s; γ

(k+1)
k , β(k)) from Eq. (7). Furthermore, the class-(k + 1) completion

period LST is given by

C̃(k+1)(s) = Υ̃
(k+1)
k+1 (s) = Φ̃

(k)
k+1

(
s+ γ

(k+1)
k (1− Υ̃

(k+1)
m+1:k(s))

)
. (36)

The respective starting points for the recursive expressions given in Eqs. (34)–(36) are Υ̃
(m+1)
i (s)

for all i ≤ m+1, Φ̃
(m+1)
i (s) for all i > m+2, and Φ̃

(m+1)
m+2 (s). Since U also represents the set of

classes which have priority over class m + 1, it turns out that the formulas of Υ̃
(k)
i (s), Φ̃

(k)
i (s),

and C̃(k)(s) given by Eqs. (31)–(33) also hold true when k = m + 1. Note that in using Eq.
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(32) with k = m+ 1, it is necessary to define the threshold parameters αm+1,i = 0, Tm+1,i = 0,

and τm+1,i =∞ for all i > m+ 1.

The above formulas illustrate the fact that a level-k accreditation interval is merely a delay

busy period of C(acc:k)s whose service times are level-(k−1) accreditation intervals, correspond-

ing to Υ
(k)
i for i = m + 1,m+ 2, . . . , k. This result follows from the observation that during a

level-k accreditation interval, the k-th and (k + 1)-th components of the maximal priority pro-

cess (Mk+1(t),Mk(t)) behave like the maximal priority process of that for an M/G/1 queue

under the q-policy whose parameters are given by Eq. (21).

To obtain R̃(k)(s), we require the joint transform of the preemptible and non-preemptible

periods of a class-k service time. In particular, similar to the analysis conducted by Drekic and

Stanford [10], we segment the class-k service time X(k) into its preemptible portion X(k)
p and

its non-preemptible (or protected) portion X(k)
p0 . For our new model, however, we must further

partition the preemptible portion X(k)
p as follows:

X(k)
p = X(k)

pk−1
+X(k)

pk−2
+ · · ·+X(k)

p1
,

where X(k)
pi , i ∈ a, represents the portion of the class-k service time which is preemptible only

by a Cj with j ∈ {1, 2, . . . , i}. It is important to note that X(k)
pi = 0 for i ∈ anp. Furthermore,

for the purpose of formulating a single expression for R̃(k)(s) that holds true for both k ∈ U

and k ∈ N , we define αi,k = 0, Ti,k = 0, and τi,k =∞ if i = k or if i < k and i ∈ N .

If we let s = [s1, s2, . . . , sk−1, s0] be a k−dimensional row vector, then the joint transform

of all the portions of X(k) is given by

Θ(k)(s) = E(e−s1X
(k)
p1
−s2X(k)

p2
−···−sk−1X

(k)
pk−1

−s0X(k)
p0 ).

We remark that the above transform depends on the specific threshold-based discretion rule in

effect for the Cks. Hence, we have three expressions for Θ(k)(s), each of which is readily ob-

tained by conditioning onX(k) = x and subsequently characterizingX(k)
pi via the corresponding
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threshold parameters αi,k, Ti,k, and τi,k for each i ∈ a. The expressions for Θ(k)(s) are as fol-

lows:

(PB) Θ(k)(s) =

∫ ∞
x=0

e−(
∑k−1

i=1 si(αi,k−αi+1,k)+s0(1−α1,k))xdB(k)(x)

= B̃(k)
(∑k−1

i=1 si(αi,k − αi+1,k) + s0(1− α1,k)
)
, (37)

(FETB) Θ(k)(s) =
k−1∑
i=1

e−
∑k−1

j=i+1(sj−sj−1)Tj,k

∫ Ti,k

x=Ti+1,k

e−sixdB(k)(x)

+ e−(
∑k−1

j=2 (sj−sj−1)Tj,k+(s1−s0)T1,k)
∫ ∞
x=T1,k

e−s0xdB(k)(x), (38)

and

(TETB) Θ(k)(s) =
k−1∑
i=1

e−(
∑i

j=2(sj−1−sj)τj,k+(s0−s1)τ1,k)
∫ τi+1,k

x=τi,k

e−sixdB(k)(x)

+

∫ τ1,k

x=0

e−s0xdB(k)(x). (39)

During a class-k residence period, only those Cas participating in the interruption periods

extend the overall residence period. Therefore, we obtain

R̃(k)(s) = Θ(k)
(∑k−1

i=1 1i(s+ Λi(1− Ã(k)
pi (s))) + s1k

)
, (40)

where 1i denotes a k-dimensional row vector whose i-th entry is one and all other entries are

zero, and A(k)
pi represents an interruption period occurring within the X(k)

pi portion of the class-k

service time (i.e., an interruption period in which only Cjs for j ≤ i can participate). From Eq.

(7), we ultimately have

Ã(k)
pi

(s) = Γ̃
(
s; Λi,

∑i
j=1(λj/Λi)X

(j)
)
. (41)

5 Numerical examples

We now present two numerical examples which illustrate the potential use of our mixed

priority queueing model. Our first example takes inspiration from the example found in Stanford
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et al. [20]. The Canadian Triage and Acuity Scale (CTAS) provides five priority classifications

for the triage assessment of patients arriving to a hospital emergency room. Furthermore, each

class is given a “time to assessment” standard and an accompanying compliance target, which

specifies the desired proportion of that class’s patients to meet the standard. Table 3 reports

these time to assessment standards along with their compliance targets, as indicated in Stanford

et al. [20, p. 299].

Table 3: CTAS key performance indicators
Category Class Time to Assessment Compliance Target (%)

1 Resuscitation Immediate 98
2 Emergent 15 minutes 95
3 Urgent 30 minutes 90
4 Less Urgent 60 minutes 85
5 Not Urgent 120 minutes 80

As an attempt to meet these standards, we model an emergency room whose 5 classes of

patients are defined by the CTAS by invoking a mixed priority queueing scheme with m = 3

(i.e., U = {1, 2, 3} and N = {4, 5}). The service times corresponding to each patient class are

assumed to be exponentially distributed with mean times of 30 minutes for class 1, 20 minutes

for classes 2 and 3, and 10 minutes for classes 4 and 5. We assume further that the server

(or doctor) implements a PB rule to govern how preemptions to patients take place. For the

Resuscitation class, we assume that α1,i = 1 for i = 2, 3, 4, 5 (i.e., C1s always preempt lower

priority customers). We consider several different values for the other threshold parameters such

as α2,i for i = 3, 4, 5 and α3,i for i = 4, 5. The remaining parameters of the system correspond

to the accumulating priority rates of the CN s for which we assume b4 = 1 and 0 ≤ b5 ≤ 1.

For each k = 1, 2, . . . , 5, we are interested in calculating P (W (k) ≤ tk), where tk denotes

the class-k time to assessment standard given in Table 3. To do this, we numerically invert

W̃ (k)(s) by employing the EULER and POST-WIDDER algorithms of Abate and Whitt [2]
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with their suggested parameter settings (and found that the two methods produced equivalent

results). We remark that in conducting the numerical inversions, there were several instances

for which implicit functionals of LSTs (resembling those of an M/G/1 busy period) had to be

evaluated at complex arguments. This was performed following the iterative procedure outlined

in Abate and Whitt [1]. In addition to reporting the desired probabilities, we provide the mean

class-k waiting times and flow times for k = 1, 2, . . . , 5. The results under three separate

settings are tabulated to 4 decimal places of accuracy in Table 4. Note also that the reported

values are given in scaled multiples of 10 minutes.

In their example, Stanford et al. [20] analyzed a 2-class APQ, modelling only CTAS classes

4 and 5. In our treatment, we utilized the same arrival rates and service rates for the two lowest

priority classes as in their example. Moreover, they determined that without the presence of

the three highest priority classes, the CTAS 4 and 5 compliance targets were both met as long

as the accumulating priority rate of the lowest class did not exceed 0.5. As evidenced by the

results in Table 4, this is not the case for our 5-class priority model. In fact, of the three settings

considered, only in Setting 3, where the arrival rates of the 3 highest priority classes are the

smallest, were all the CTAS compliance targets satisfied. It is also interesting to observe the

changes in the mean flow times under the various settings.

In our second example, we consider the 9-class mixed priority queue studied by Paterok

and Ettl [19, pp. 1157–1159]. The arrival rates and service time distributions, including the

priority group of each class, are given in Table 5. Priority groups are used to specify the type

of priority that the higher priority customers have over lower priority ones. In particular, a Ci

has preemptive priority over a Cj (i < j) if they belong to different priority groups; otherwise,

the Ci has only non-preemptive priority over the Cj . It is straightforward to obtain these specific

priority relations using our mixed priority model. For example, if we define α(r,s), T(r,s), and

τ(r,s) for all 1 ≤ r < s ≤ 3 as the threshold-based discretion parameters between priority groups
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Table 4: Performance measures in Example 1 under various settings
Setting 1 (ρ = 0.863)

α2,3 = 0.9, α2,4 = 1, α2,5 = 1, α3,4 = 0.5, α3,5 = 0.75, and b5 = 0.10
Class k λk P (W (k) ≤ tk) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090
2 0.01 0.9885 0.0511 2.0571
3 0.02 0.9815 0.2775 2.3204
4 0.4 0.8873 2.7217 3.7671
5 0.4 0.6590 11.7522 12.8085

Setting 2 (ρ = 0.833)

α2,3 = 0.75, α2,4 = 0.9, α2,5 = 1, α3,4 = 0.25, α3,5 = 0.5, and b5 = 0.30
Class k λk P (W (k) ≤ tk) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090
2 0.005 0.9931 0.0361 2.0421
3 0.01 0.9832 0.4128 2.4341
4 0.4 0.8308 3.1880 4.2054
5 0.4 0.7781 7.5744 8.5980

Setting 3 (ρ = 0.815)

α2,3 = 0.5, α2,4 = 0.75, α2,5 = 1, α3,4 = 0.25, α3,5 = 0.5, and b5 = 0.275
Class k λk P (W (k) ≤ tk) E(W (k)) E(F (k))

1 0.001 0.9970 0.0090 3.0090
2 0.001 0.9958 0.0433 2.0494
3 0.005 0.9891 0.3652 2.3733
4 0.4 0.8795 2.6638 3.6709
5 0.4 0.8175 6.4787 7.4888
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(e.g., τi,j = τ(r,s) whenever a Ci belongs to priority group r and a Cj belongs to priority group

s), then the desired priority relations are achieved by considering a 9-class mixed priority model

with m = 6 and the following threshold parameters: α(r,s) = 1, T(r,s) = ∞, and τ(r,s) = 0 for

all r < s. We note that in their analysis, Paterok and Ettl [19] used a 15-class priority queue for

which the arrival rates of six of the classes were set equal to zero in order to obtain the desired

priority relations.

Table 5: Parameters of the Paterok and Ettl [19] example
Class k Priority Group λk E(X(k)) Service Time Distribution

1 1 0.062 0.5 Exponential
2 1 0.040 1.0 Erlang-2
3 2 0.020 4.0 Erlang-2
4 2 0.010 3.0 Erlang-3
5 2 0.030 5.0 Exponential
6 2 0.020 4.0 Erlang-2
7 3 0.003 3.0 Exponential
8 3 0.005 6.0 Erlang-3
9 3 0.010 5.0 Erlang-2

We define the weighted average flow time as F =
∑9

i=1(λi/Λ9)E(F (i)), and similarly let

F i represent the weighted average flow time of classes belonging to priority group i, i = 1, 2, 3.

In our numerical study, we report the expected flow times of each class, as well as the weighted

average flow times under various settings for each of the threshold-based discretion rules. The

results for the original Paterok and Ettl [19] setting (referred to as the resume-IPF case, where

IPF denotes “interrupted processing first”) are tabulated to 3 decimal places of accuracy in Table

6. The results for the PB, FETB, and TETB rules are provided in Tables 7, 8, and 9, respectively.

For the CN s, we implement accumulating priority rates of the form b7 = 1, b8 = e−x, and

b9 = e−2x for some x ≥ 0. We note that as x → ∞, the resulting accumulating prioritization

becomes equivalent to that of the static non-preemptive priority service discipline. Conversely,

with x = 0, the CN s are serviced according to their order of arrival (i.e., regardless of the
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specific class to which they belong). As a consequence of having x = 0, the mean waiting

times for each class belonging to the lowest priority group would all be identical – a potentially

desirable setting. In Tables 6–9, we compute mean flow times for each of the non-urgent classes

using x = 0.1, 1, 10. We emphasize that by fine-tuning the parameter x, a systems manager is

able to achieve a desired balance between the two extremes of FCFS and static non-preemptive

priority between the CN s. We also note that the mean flow times of the CUs are unaffected by

the choice of x.

It is evident from the results in Tables 7–9 that the new priority model is quite flexible. In

testing several different parameter values for each of the threshold-based discretion rules, we

are, in some instances, able to achieve a lower overall weighted average flow time F . Further-

more, if instead a systems manager is more concerned with reducing the average flow time of

the lowest priority group F 3, and is less concerned with minimizing F , then it is clear that our

priority model can achieve this objective while still maintaining reasonable weighted average

flow times for both F 1 and F 2.

6 Concluding remarks

In this paper, we introduced a new general mixed priority queueing model for which we

obtained the LST of the steady-state distribution of the class-k waiting time. This model is

quite flexible in supplying a systems manager the ability to control both the waiting time dis-

tributions and the flow time distributions of each class. This control is administered through

the fine-tuning of the threshold-based discretion parameters and the accumulating priority rates

{bi}Ni=m+1.

Furthermore, under various parameter settings, our mixed priority queueing model includes

a number of previously-analyzed priority queueing models as special cases. For example, by

setting m = 0, our priority model exactly becomes the one considered by Stanford et al. [20].
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Table 6: Mean flow times in Example 2 under the original Paterok and Ettl [19] setting
Paterok and Ettl (resume-IPF case)

Class k E(F (k))
1 0.547
2 1.051
3 5.999
4 5.150
5 7.820
6 7.695

x = 10 x = 1 x = 0.1

7 9.982 10.154 10.649
8 15.422 15.591 15.819
9 14.562 14.429 14.203

F 4.443 4.443 4.445
F 3 14.037 14.039 14.060

F 1 = 0.744 F 2 = 7.000

Table 7: Mean flow times in Example 2 under PB rule
PB rule

α(1,2) = α(2,3) = 0.70, α(1,3) = 0.85 α(1,2) = α(2,3) = 0.50, α(1,3) = 0.75

Class k E(F (k)) E(F (k))
1 0.675 0.901
2 1.188 1.432
3 5.945 5.952
4 5.124 5.156
5 7.760 7.781
6 7.680 7.754

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.388 9.560 10.055 8.992 9.165 9.659
8 14.235 14.404 14.632 13.443 13.612 13.841
9 13.572 13.440 13.214 12.913 12.780 12.554

F 4.405 4.405 4.407 4.478 4.478 4.480
F 3 13.059 13.061 13.081 12.407 12.409 12.429

F 1 = 0.876 F 2 = 6.957 F 1 = 1.109 F 2 = 6.989
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Table 8: Mean flow times in Example 2 under FETB rule
FETB rule

T(1,2) = T(2,3) = 5, T(1,3) = 10 T(1,2) = T(2,3) = 2, T(1,3) = 4

Class k E(F (k)) E(F (k))
1 0.922 1.435
2 1.455 2.006
3 6.037 6.072
4 5.244 5.331
5 7.815 7.911
6 7.828 8.010

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.622 9.794 10.289 8.964 9.136 9.631
8 14.261 14.430 14.658 12.721 12.890 13.119
9 13.700 13.567 13.341 12.468 12.336 12.110

F 4.584 4.584 4.586 4.783 4.783 4.785
F 3 13.176 13.178 13.198 11.955 11.957 11.977

F 1 = 1.131 F 2 = 7.053 F 1 = 1.659 F 2 = 7.153

Table 9: Mean flow times in Example 2 under TETB rule
TETB rule

τ(1,2) = τ(2,3) = 1.0, τ(1,3) = 0.50 τ(1,2) = τ(2,3) = 2.0, τ(1,3) = 0.15

Class k E(F (k)) E(F (k))
1 0.587 0.682
2 1.094 1.196
3 5.936 5.902
4 5.088 5.059
5 7.766 7.751
6 7.643 7.638

x = 10 x = 1 x = 0.1 x = 10 x = 1 x = 0.1

7 9.418 9.590 10.085 9.063 9.236 9.731
8 14.765 14.934 15.162 14.197 14.366 14.594
9 13.916 13.784 13.557 13.398 13.265 13.039

F 4.384 4.384 4.386 4.381 4.381 4.383
F 3 13.402 13.404 13.424 12.897 12.899 12.920

F 1 = 0.786 F 2 = 6.943 F 1 = 0.884 F 2 = 6.924
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By setting m = N and assigning threshold parameters to be αi,k = αk, Ti,k = Tk, and τi,k = τk,

our priority model is equivalent to the one considered by Drekic and Stanford [10]. Moreover,

by setting m = N and using threshold parameters of the form

αi,k =

{
1 if k − i ≥ d
0 otherwise , Ti,k =

{
∞ if k − i ≥ d
0 otherwise , and τi,k =

{
0 if k − i ≥ d
∞ otherwise ,

our priority model is equivalent to the one using the PD rule (resume-IPF case) as analyzed

by Paterok and Ettl [19], where d is the so-called preemption distance parameter. Finally, it

is also evident that the classical non-preemptive and preemptive priority queues, as well as the∑N
i=1Mi/Gi/1 FCFS queue, are all special cases of our general model.

In terms of future work, a possible extension to this model involves the case where the

urgent class of customers also accumulates priority via Eq. (2). Furthermore, a variation of

our mixed priority queueing model which employs a preemptive repeat (identical or different)

service discipline may also be considered. Due to the non-work-conserving nature of the repeat

service rule, however, such a model would likely necessitate more involved recursive schemes

to obtain the class-k waiting time LST.
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Appendix. Moments of the service-structure elements and auxiliary ran-
dom variables

The first two moments of the auxiliary random variables introduced in Section 2.3 can be ob-

tained in a straightforward fashion by either differentiating their corresponding LSTs, or by ap-

plying the well-known formulas for the first two moments of anM/G/1 delay busy period (e.g.,

see Conway et al. [9, p. 151]) with the appropriate parameters. Letting Uk =
∑k

i=1 λiE(X(i)),
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we obtain for k = 1, 2, . . . ,m+ 1:

E(Υ
(k)
i ) =

E(X(i))

1− Uk−1
, i ≤ k,

E
(
(Υ

(k)
i )2

)
=

∑k−1
j=1 λjE

(
(X(j))2

)
(1− Uk−1)3

E(X(i)) +
E
(
(X(i))2

)
(1− Uk−1)2

, i ≤ k,

E(Φ
(k)
i ) =

E(Z
(i)
k )

1− Uk−1
, i > k,

E
(
(Φ

(k)
i )2

)
=

∑k−1
j=1 λjE

(
(X(j))2

)
(1− Uk−1)3

E(Z
(i)
k ) +

E
(
(Z

(i)
k )2

)
(1− Uk−1)2

, i > k.

For the case k > m+ 1, the first two moments are computed recursively. In particular, we have

for k = m+ 1,m+ 2, . . . , N :

E(Υ
(k+1)
i ) =

E(Υ
(k)
i )

1− γ(k+1)
k µk,1

, i ≤ k,

E
(
(Υ

(k+1)
i )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Υ
(k)
i ) +

E
(
(Υ

(k)
i )2

)
(1− γ(k+1)

k µk,1)2
, i ≤ k,

E(Φ
(k+1)
i ) =

E(Φ
(k)
i )

1− γ(k+1)
k µk,1

, i > k + 1,

E
(
(Φ

(k+1)
i )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Φ
(k)
i ) +

E
(
(Φ

(k)
i )2

)
(1− γ(k+1)

k µk,1)2
, i > k + 1,

E(Υ
(k+1)
k+1 ) =

E(Φ
(k)
k+1)

1− γ(k+1)
k µk,1

,

E
(
(Υ

(k+1)
k+1 )2

)
=

γ
(k+1)
k µk,2

(1− γ(k+1)
k µk,1)3

E(Φ
(k)
k+1) +

E
(
(Φ

(k)
k+1)

2
)

(1− γ(k+1)
k µk,1)2

.

Similarly, the following expression for the first moment of A(k)
pi is obtained:

E(A(k)
pi

) =
U i

Λi(1− U i)
, i < k.

For k = 1, 2, . . . , N , expressions for the first two moments of Z(i)
k and the mean of R(k) under

each threshold-based discretion rule are as follows:
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PB rule

E(Z
(i)
k ) = (1− αk,i)E(X(i)), i > k,

E
(
(Z

(i)
k )2

)
= (1− αk,i)2E

(
(X(i))2

)
, i > k,

E(R(k)) = E(X(k))

[ k−1∑
i=1

(
1 + ΛiE(A(k)

pi
)
)
· (αi,k − αi+1,k) + (1− α1,k)

]
.

FETB rule

E(Z
(i)
k ) =

(∫ ∞
x=Tk,i

(x− Tk,i) dB(i)(x)

)
/(1−B(i)(Tk,i)), i > k,

E
(
(Z

(i)
k )2

)
=

(∫ ∞
x=Tk,i

(x− Tk,i)2 dB(i)(x)

)
/(1−B(i)(Tk,i)), i > k,

E(R(k)) = E(X(k)) +
k−1∑
i=1

[(
B(k)(Ti,k)−B(k)(Ti+1,k)

) k−1∑
j=i+1

ΛjE(A(k)
pj

) · (Tj,k − Tj+1,k)

+ ΛiE(A(k)
pi

)

(
(Ti,k − Ti+1,k) · (1−B(k)(T1,k)) +

∫ Ti,k

x=Ti+1,k

(x− Ti+1,k) dB(k)(x)

)]
.

TETB rule

E(Z
(i)
k ) =

∫ τk,i

x=0

x dB(i)(x) + τk,i(1−B(i)(τk,i)), i > k,

E
(
(Z

(i)
k )2

)
=

∫ τk,i

x=0

x2 dB(i)(x) + τ 2k,i(1−B(i)(τk,i)), i > k,

E(R(k)) = E(X(k)) +
k−1∑
i=1

[
ΛiE(A(k)

pi
)

∫ τi+1,k

x=τi,k

(x− τi,k) dB(k)(x)

+
(
B(k)(τi+1,k)−B(k)(τi,k)

) i−1∑
j=1

ΛjE(A(k)
pj

)(τj+1,k − τj,k)
]
.
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