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Abstract

We consider a single-server queueing system with Poisson arrivals and generally distributed service

times. To systematically control the workload of the queue, we define for each busy period an

associated timer process, {R(t), t ≥ 0}, where R(t) represents the time remaining before the system

is closed to potential arrivals. The process {R(t), t ≥ 0} is similar to the well-known workload

process, in that it decreases at unit rate and consists of up-jumps at the arrival instants of admitted

customers. However, if X represents the service requirement of an admitted customer, then the

magnitude of the up-jump for the timer process occurring at the arrival instant of this customer is

(1− q)X for a fixed q ∈ [0, 1]. Consequently, there will be an instant in time within the busy period

when the timer process hits level zero, at which point the system immediately closes and will remain

closed until the end of the current busy period. We refer to this particular blocking policy as the

q-policy. In this paper, we employ a level crossing analysis to derive the Laplace-Stieltjes transform

(LST) of the steady-state waiting time distribution of serviceable customers. We conclude the paper

with a numerical example which shows that controlling arrivals in this fashion can be beneficial.
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1. Introduction

We study an M/G/1-type queueing model in which the arrival process is controlled by a system

manager so as to decrease the lengths of the general busy period. In some applications, for example,

a system manager may be more inclined to regularly decrease the overall length of the busy period
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if it is the case that the server/machine becomes highly susceptible to expensive breakdowns after

operating for extended periods of time. These breakdowns can be costly both in terms of the repair

costs and the opportunity costs due to closures of the system. To alleviate the risk of incurring

an expensive breakdown, a system manager may want to rest the server/machine during closedown

periods on a regular basis. In addition, cost-effective maintenance checks can be performed during

these rest periods to ensure the long-run functionality of the machine.

In this paper, we present one such policy which would allow a system manager to control the

busy period lengths. Specifically, during each busy period, the control is exercised by closing the

system to potential customers over a constant proportion of the overall busy period. The flexibility

to disallow (or to block) customers from entering the system may be desirable if, for instance, a

holding cost for customers during their sojourn in the system exists. The main focus of our research

is to study the effect of the new policy, which we refer to as the q-policy, on various performance

measures of interest such as the length of busy periods and the wait of serviceable customers.

The literature on the optimal design and control of queueing systems is quite extensive. In

regards to the arrival control of queueing systems, the usual goal is to find the optimal policy which

maximizes (or minimizes) a specific objective function. In the seminal paper by Naor [9], anM/M/1-

type queueing system is studied where the arrival process is controlled by the administration of a

toll charge for arriving customers. In particular, customers receive a fixed reward K upon successful

service but also incur a holding cost h per unit time spent in the system. Naor studies the optimal

policies from two perspectives, namely: (i) individual optimization, where the objective function is

the individual expected net benefit rate function, and (ii) social optimization, where the objective

function is the expected overall net benefit rate function. Naor assumes that the optimal policies

for both problems is of the critical number form (i.e., customers are accepted for service if the

number of customers currently occupying the system is less than the critical number), and this

form of optimal policy can be validated through the use of Markov decision processes (see Stidham

[14] and references therein). Under this framework, Naor establishes a key result which states that

an individually optimal policy admits more customers than its counterpart, the socially optimal

policy.

Naor’s work inspired several other researchers to consider various generalizations for both the

model and the net benefit structure. Rosenshine and Rue [11] considered Naor’s model and studied

the effect of the arrival rate on the parameters for both kinds of optimal policies. Yechiali [16]
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extended Naor’s work by relaxing the assumption of the arrival process to be merely a renewal

process. The M/M/s variant was considered by Knudsen [8] where Naor’s main result was shown

to still hold true. Doshi [4] considered the continuous-time arrival control of an M/G/1 queueing

system which operated under a policy that opened and closed the system to potential arrivals

depending on the level of the workload. In Johansen and Stidham [5], the authors showed that

Naor’s main result actually holds true under a set of fairly general conditions (e.g., dependent

arrivals, batch arrivals, and random rewards). For excellent surveys of the literature, we refer the

interested reader to Stidham [13, 14]. To the best of our knowledge, the q-policy presented here

has not been previously studied.

The optimal policies found by these researchers has usually resulted in the formulation of

threshold-form policies (i.e., thresholds for the number of customers in the system or for the residual

workload). We emphasize, however, that our focus is not one that searches for an optimal policy

which maximizes a specific objective function, but instead analyzes the effects of a given policy

which aims to lessen the workload of a system. Nonetheless, we do, in Section 6, formulate an

optimization problem which illustrates that, in certain situations, the reduction of the busy cycle

lengths via the q-policy can result in increased profits.

The rest of the paper is organized as follows. In Section 2, we introduce the queueing model

and the q-policy. Section 3 is devoted to the study of the busy period as well as some fundamental

steady-state probabilities associated with the system. The steady-state distribution of the waiting

time of serviceable customers is analyzed in Section 4 by virtue of the level crossing methodology.

In Section 5, we present a model which enables a system manager to block customers during busy

periods similar to the q-policy, but has the property that it does not require knowledge of the service

times upon arrival. Finally, following the numerical example in Section 6, we offer some concluding

remarks and a discussion regarding potential future work in Section 7.

2. The model and the q-policy

We consider a queueing system which is of M/G/1-type. We assume that the Poisson arrival

rate of customers to the system is λ > 0. If the system is open (i.e., accepting new customers)

when a customer arrives, then this customer joins the queue. Otherwise, the customer is lost and

unrecoverable. In Section 6 of this paper, we present an optimization problem which shows that

in certain situations it may be desirable to block or prevent customers from entering the system.
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Let {Xi, i = 1, 2, . . .} denote the sequence of independent and identically distributed (iid) customer

service times having common mean µ = E(Xi) and common second moment γ = E(X2
i ). Similar

to the model studied by Johansen and Stidham [5], the customer service times are assumed to be

known to the server (or system manager) immediately upon a customer’s entry to the system. We

denote the corresponding distribution function and Laplace-Stieltjes transform (LST) by

B(x) = P(Xi ≤ x) and B̃(s) =

∫ ∞

0

e−sxdB(x), (1)

respectively. Service is conducted by order of arrival (i.e., first-come-first-serve or FCFS for short).

We denote the traffic intensity of the classical (i.e., unblocked) M/G/1 system, as usual, by ρ =

λµ. Note that we reserve the notation B̄(x) = P(Xi > x) for the complementary distribution

function of B(·), and further that this style of notation will also be adopted for other complementary

distribution functions throughout the paper.

Before we formally introduce the q-policy, we recall that for an arbitrary busy period of the

classical (work-conserving) M/G/1 queue, any customer who arrives during this busy period will

always be admitted for service (i.e., they will eventually be served in this busy period). However,

suppose that a system manager would like to restrict (or control) the arrival process during a busy

period, so that the system is not obligated to serve all customers who arrive during the busy period.

In such a situation, a system manager could, for intervals of time within the busy period, close the

system to potential arrivals. A blocking policy provides a set of guidelines which allows a system

manager to administrate the openings and closures of the system. We denote such a policy in

general by π(t), where π(t) = 1 implies that the system is open at time t, and similarly π(t) = 0

implies that the system is closed at time t. An example of such a blocking policy is the q-policy,

denoted by πq(·), which we define next.

Definition 2.1 (The q-policy). Without loss of generality, assume that a customer arrives to an

empty queue at time τ1 = 0, thereby initiating the start of a busy period. For all t ≥ 0 during

this busy period, we define the process {R(t), t ≥ 0}, which is similar to the workload process. In

particular, for 0 ≤ q ≤ 1:

1. R(0) = (1− q)X1, where X1 is initial customer’s service time.

2. R(t) decreases at unit rate unless the process is at level 0.
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3. For the sequence of customer arrival epochs, {τi, i = 2, 3, . . .}, during this busy period,

R(τi) =

 R(τ−i ) + (1− q)Xi if R(τ−i ) > 0,

0 if R(τ−i ) = 0,
(2)

where R(t−) = lim
ϵ→0

R(t− ϵ).

Then, for all t ≥ 0 during this busy period,

πq(t) =

 1 if R(t) > 0,

0 if R(t) = 0.
(3)

Remark 2.1. The process {R(t), t ≥ 0} acts as a timer for the busy period. That is, R(t) represents

the time remaining, at time t, before the system is closed to potential arrivals.

Figure 1 illustrates a busy period under the q-policy. Here, at some time during the servicing

of the third customer, C3, the timer becomes drained (i.e., R(·) hits level 0), at which point the

system becomes closed for potential arrivals. Hence, both customers C5 and C6 are blocked from

entering the system. It is important to note that, although the system is closed at this point, the

server must still complete the servicing of C3 and C4. In other words, the busy period terminates

when all admitted customers have been fully served. Moreover, the end of the busy period signals

the reopening of the system and the commencement of the ensuing idle period which ends at the

next customer arrival instant. The busy period and the subsequent idle period together form a

busy cycle.

Clearly, under the q-policy, the resulting busy periods are stochastically smaller than those

corresponding to a system not implementing any sort of blocking policy. It is also apparent that

if we set q = 0, then {R(t), t ≥ 0} exactly becomes the workload process during a busy period

in the classical M/G/1 queue. In fact, a blocking proportion equal to zero simply implies that

no customers are blocked from service, and thus the resulting model is equivalent to the classical

M/G/1 queue. Moreover, we obtain the M/G/1/1 queue as a special case when q = 1.

3. The busy period and steady-state probabilities

In this section, we first establish a functional equation for the LST corresponding to the dis-

tribution of the busy period duration operating under the q-policy. Let T be the length of such a

busy period, whose distribution function and LST are denoted by G(x) and G̃(s), respectively.
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To derive the LST of T , we note that the order in which serviceable customers are served does

not, in any way, affect the duration of the busy period. As in the classical case, this important

observation leads to the derivation of a functional equation for G̃(s). We now introduce a new

service discipline which we refer to as the q-restricted last-come-first-serve (q-restricted LCFS for

short) discipline. First of all, recall that {R(t), t ≥ 0} consists of up-jumps at the arrival epochs of

each serviceable customer, and further that the magnitude of the jump is equal to the service time

of the customer multiplied by (1−q). Let us refer to these entities simply as the unblocked portions

of the service times. Now, the order of service determined by the q-restricted LCFS discipline is

precisely the order of service obtained by applying the usual LCFS discipline to a system in which

the unblocked portions are effectively considered as the actual service times (i.e., (1− q)Xi instead

of Xi).

Figure 2 demonstrates the q-restricted LCFS discipline in a typical busy period. Again, we de-

termine the order of service under this discipline by effectively considering the unblocked portions

as the actual service times. Specifically, in Figure 2, one can determine the order of service by pro-

jecting the arrival epochs to the axis a∗ and applying the usual LCFS discipline. Moreover, under

the q-restricted LCFS discipline, we see that the interval of time during which R(t) is positive (i.e.,

the system is open to accepting new customers) can be decomposed into smaller, well-understood

sub-intervals of time. Indeed, these sub-intervals are merely the acceptance periods of their cor-

responding sub-busy periods. For example, in Figure 2, C4 generates a sub-busy period in which

C5 and C6 both are serviced; the length of the acceptance period for this sub-busy period is equal

to (1 − q) × (X4 +X5 +X6). It is clear that these sub-busy periods are identically distributed to

the overall busy period (generated by C1). However, we do note that in the intermediate sub-busy

periods (i.e., sub-busy periods generated by C4 and C3 in Figure 2), customers who fail to arrive

in their acceptance periods are not blocked from the system, but instead are serviced in the next

sub-busy period.

Theorem 3.1. If λ(q) = λ(1 − q) and ρ(q) = λ(q)µ < 1, then T has a proper (i.e., non-defective)

distribution and its corresponding LST satisfies the functional equation

G̃(s) = B̃(s+ λ(q)(1− G̃(s))). (4)

Proof. Similar to the LST derivation of the busy period duration in the classicalM/G/1 queue (e.g.,

see Kleinrock [7, Section 5.8]), we invoke the fact that T is independent of the service discipline, so

6



long as it is a work-conserving one. Kleinrock’s derivation involves the usual LCFS discipline, but

here, we employ the q-restricted LCFS discipline. Define N to be the number of customers who

arrive during the unblocked portion of the initial customer’s service time. As discussed above, each

of the N customers generates a sub-busy period of their own which is identically distributed to the

overall busy period and, moreover, is mutually independent from the others.

Conditioning on both N = n and the first service time X1 = x, we obtain

E(e−sT |X1 = x,N = n) = e−sx
(
G̃(s)

)n
. (5)

Given X1 = x, N is Poisson distributed with rate λ(q)x, and this leads to

E(e−sT |X1 = x) = e−sxe−λ(q)x
∞∑

n=0

(
λ(q)xG̃(s)

)n
n!

= e−x(s+λ(q)−λ(q)G̃(s)). (6)

Lastly, removing the condition on X1 immediately yields

G̃(s) = E(e−sT ) = B̃(s+ λ(q)(1− G̃(s))), (7)

and the result is proven.

As in the classical case, we are left with an implicit expression for the LST of T . Nonetheless,

we are still able to obtain the moments of T through successive differentiation. In particular, the

first two moments of T are:

E(T ) =
µ

1− ρ(q)
, (8)

E(T 2) =
γ

(1− ρ(q))3
. (9)

Remark 3.2. Theorem 3.1 implies that the busy period under the q-policy is distributed equivalently

to the busy period of a classical M/G/1 queue with arrival rate λ(q) and service time distribution

B(·). Furthermore, the busy period is also equivalently distributed to the busy period of the following

M/G/1 system with a Bernoulli-type blocking policy:

(i) customers arrive according to a Poisson process with rate λ > 0;

(ii) at each customer arrival epoch, the server conducts a Bernoulli experiment, where with prob-

ability (1 − q) the customer is admitted for service, and with probability q the customer is

blocked.
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A commonality of this model with the system under the q-policy is that during busy periods, the

probability that an arriving customer is blocked from entering the system is precisely q.

We next establish the form of the probability generating function (pgf) for Nbp, the number

of customers served in a busy period. We define m(z) = E(zNbp) to be the pgf of Nbp. Like the

duration of the busy period T , the number served in a busy period is unaffected by the order of

service. Hence, by implementing the q-restricted LCFS discipline, we obtain

E(zNbp |N = n) = E(z1+M1+M2+···+Mn), (10)

where N is the number of customers in the initial queue (i.e., those customers arriving during the

unblocked portion of the initial customer’s service time) and Mi denotes the number of customers

served in the i-th customer’s sub-busy period. By independence, we have

E(zNbp |N = n) = z
(
m(z)

)n
. (11)

It immediately follows, by removing the condition on N , that

m(z) = zB̃
(
λ(q)(1−m(z))

)
, (12)

from which the first moment of Nbp is clearly given by

E(Nbp) =
1

1− ρ(q)
. (13)

To conclude this section, we shift our focus to the derivation of some key steady-state probabil-

ities of the system, namely:

PI ≡ steady-state probability the server is idle;

PB ≡ steady-state probability the server is busy;

PB,0 ≡ steady-state probability the server is busy and the system is closed;

PB,1 ≡ steady-state probability the server is busy and the system is open.

To obtain these probabilities, we apply the theory of regenerative processes (e.g., see Kao [6, Section

3.6]). Define a busy cycle, D, to consist of a busy period T and the ensuing idle period I (i.e.,

D = T + I). Clearly, the set of regeneration points associated with D are the epochs defined by
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busy period commencements. Thus, from elementary renewal theory, we readily obtain:

PI =
E(I)
E(D)

=
1− ρ(q)

1 + ρq
, (14)

PB =
E(T )
E(D)

=
ρ

1 + ρq
, (15)

PB,0 = qPB =
ρq

1 + ρq
, (16)

PB,1 = (1− q)PB =
ρ(q)

1 + ρq
. (17)

4. Steady-state wait of serviceable customers

4.1. The workload and virtual wait processes

The motivation for our study of the virtual wait process stems from the well-known fact that for

M/G/1-type queues, the distributions of virtual wait and actual wait are equivalent in steady-state.

In what follows, we denote the (unfinished) workload process under a q-policy by {Uq(t), t ≥ 0},

whereas the virtual wait process is denoted by {Wq(t), t ≥ 0}.

Obviously, {U0(t), t ≥ 0} and {W0(t), t ≥ 0} are the corresponding workload and virtual wait

processes for the classical M/G/1 system. Now, for times t > 0 when the system is open (i.e.,

πq(t) = 1), one notes that Uq(t) behaves in the same manner as U0(t) in that:

(i) Uq(t) decreases at unit rate, except during times of idleness;

(ii) Uq(t) up-jumps at customer arrival epochs, with the magnitude of the jumps being equal to

the arriving customer’s service time.

On the other hand, for times t > 0 when πq(t) = 0, we have that Uq(t) decreases at unit rate. In

particular, if t∗ > 0 is such that πq(t∗) = 0 and πq(t
−
∗ ) = 1, then starting from time t∗, the workload

depletes at unit rate until it hits level 0. Now, similar to how {U0(t), t ≥ 0} and {W0(t), t ≥ 0}

are equivalent processes, during times t when the system is open, the processes {Wq(t), t ≥ 0} and

{Uq(t), t ≥ 0} are also equivalent. However, the virtual wait process is further complicated by the

fact that during a closure period for the system, the process is essentially undefined (i.e., does not

exist).

Figure 3 depicts the sample paths of both processes for three consecutive busy periods of the

system. The grey-shaded regions correspond to the times during which the system is closed (i.e.,
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πq(t) = 0), and thus, also represents the times when Wq(t) is undefined. Customer arrival epochs

are marked on the time axis with diamond symbols, and observe that both processes up-jump

at arrivals occurring only during times when the system is open. As is also evident from Figure

3, the instant in time at which the system becomes closed during a busy period is exactly the

same instant in time that Wq(t) (or equivalently Uq(t)) hits level qTi, where Ti is the duration

of the i-th busy period. In what follows, we define Gq(x) = P(qT ≤ x) = G(x/q) as well as

G̃q(s) = E(e−s(qT )) = G̃(sq).

In order to study the wait of admitted customers, it is clear that we must analyze the virtual

wait process only during times of its existence. Hence, we introduce the censored virtual wait

process {Wq(t), t ≥ 0}, as illustrated in Figure 4. This process can be considered as {Wq(t), t ≥ 0}

with the censorship (or removal) of the periods of non-existence. Indeed, by simply removing

these periods, the resulting censored process will have a different time clock than the non-censored

version. However, due to the memoryless property of the Poisson arrival process, the analysis of

{Wq(t), t ≥ 0} during its times of existence must be equivalent to the analysis of {Wq(t), t ≥ 0}.

As is evident in Figure 4, the sample path never continuously hits level 0 (unless q = 0), but

instead always down-jumps to level 0. Furthermore, the magnitude of these down-jumps have

distribution Gq(·). This simple observation allows us to derive the steady-state integral equation

for the probability density function (pdf) of the virtual wait (during times of its existence).

4.2. Steady-state integral equation for the pdf of the virtual wait

We characterize the transient distribution of the censored virtual wait by the functions

Ft(x) = P(Wq(t) ≤ x), x ≥ 0, t ≥ 0;

ft(x) =
∂
∂xFt(x), x > 0, t ≥ 0;

P0(t) = P(Wq(t) = 0), t ≥ 0.

 (18)

The steady-state distribution is obtained by letting t → ∞ in the functions of Eq. (18), resulting

in

F (x) = lim
t→∞

Ft(x), f(x) = lim
t→∞

ft(x), and P0 = lim
t→∞

P0(t). (19)

When appropriate, we will use f(x; q) equivalently as f(x) to specify the value of q being used in

the blocking policy. Also, in what follows, we extend the definition of P0(t) by defining P0(t) = 0

for all t < 0.
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If we consider the censored virtual wait process, let Ut(x) and Dt(x) denote the number of sample

path up- and down-crossings of level x, respectively, during the time interval (0, t). Moreover, let

Dc
t (x) (and Dj

t (x)) denote the number of continuous down-crossings (jump down-crossings) of level

x in the time interval (0, t). Clearly,

Dt(x) = Dc
t (x) +Dj

t (x). (20)

Correspondingly, we remark that Uj
t (x) = Ut(x) for all x ≥ 0. The ingenuity of the level crossing

methodology lies in the principle of set balance (e.g., see Brill [2, Section 2.4.6]). That is, in

steady-state, the up-crossing and down-crossing rates of level x are equal:

lim
t→∞

E(Dt(x))

t
= lim

t→∞

E(Ut(x))

t
, (21)

lim
t→∞

Dt(x)

t

a.s.
= lim

t→∞

Ut(x)

t
, (22)

where “a.s.” means almost surely, or with probability 1. Thus, to develop an integral equation for

the steady-state pdf of the virtual wait (provided it exists), we must establish both the up- and

down-crossing rates of level x. The next theorem provides the means to do so.

Theorem 4.1. The up- and down-crossing rates of level x are given by

lim
t→∞

E(Ut(x))

t
= λB̄(x)P0 + λ

∫ x

y=0

B̄(x− y)f(y) dy, x > 0, (23)

lim
t→∞

E(Dc
t (x))

t
= f(x), x > 0, (24)

lim
t→∞

E(Dj
t (x))

t
= λP0Ḡq(x), x > 0. (25)

Proof. The proof for both the up-crossing rate and the continuous down-crossing rate (i.e., Eq. (23)

and Eq. (24)) can be derived in the exact same manner as for the classical M/G/1 virtual wait

process (e.g., see Brill [2, Theorems 3.3 and 3.4]). Thus, we omit their proofs and only prove Eq.

(25).

To establish Eq. (25), we consider E(Dj
t+h(x) − Dj

t (x)) for very small h. Clearly, Dj
t+h(x) −

Dj
t (x) represents the number of jump down-crossings of level x in a small interval of size h. Thus,

Dj
t+h(x)−Dj

t (x) can take values in the set of non-negative integers. Concerning the expectation of

this quantity, we can obviously omit the case of it being equal to 0. In addition, it is not difficult

to see that P(Dj
t+h(x)−Dj

t (x) ≥ 2) = o(h).
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Therefore, the only event we must really consider is when Dj
t+h(x) − Dj

t (x) = 1. This event

implies that a busy period initiates before time t, and also that sometime within the time interval

(t, t+ h), the server finishes processing all but the last q-th proportion of the workload of this busy

period (assume again that the system is empty at time 0). Conditioning on the length of this busy

period leads to

P(Dj
t+h(x)−Dj

t (x) = 1) =

∫ ∞

y=x/q

λhP0(t− (1− q)y) dG(y) + o(h). (26)

The above result is obtained by recalling that the sample path immediately jumps down to level 0

as soon as the censored virtual wait process hits level qy. In particular, a jump down-crossing of

level x will occur only if the busy period duration y is such that qy > x. Thus,

E(Dj
t+h(x)−Dj

t (x)) =

∫ ∞

y=x/q

λhP0(t− (1− q)y) dG(y) + o(h). (27)

Dividing the above equality by h and letting h → 0, we subsequently obtain

∂

∂t
E(Dj

t (x)) = λ

∫ ∞

y=x/q

P0(t− (1− q)y) dG(y). (28)

It then follows (since E(Dj
0(x)) = 0) that

E(Dj
t (x)) = λ

∫ t

s=0

∫ ∞

y=x/q

P0(s− (1− q)y) dG(y)ds. (29)

Finally, Eq. (25) follows because lim
s→∞

∫ ∞

y=x/q

P0(s− (1− q)y) dG(y) = P0Ḡq(x) via the dominated

convergence theorem (e.g., see Parzen [10, Section 6-10]).

Corollary 4.2. If ρ(q) < 1, then

lim
t→∞

Dc
t (x)

t

a.s.
= f(x), x ≥ 0 and lim

t→∞

Dj
t (x)

t

a.s.
= λP0Ḡq(x), x ≥ 0. (30)

Proof. By the memoryless property of Poisson arrivals, both {Dj
t (x), t ≥ 0} and {Dc

t (x), t ≥ 0} are

(delayed) renewal processes. The desired result then follows from a well-known limiting theorem

from renewal theory (e.g., see Parzen [10, Theorem 3A]).

From Theorem 4.1, we can obtain an integral equation for the steady-state pdf of the virtual

wait (provided it exists). Specifically, by using Eq. (23) through Eq. (25) along with the balance

rate equation given by Eq. (21), we end up with

f(x) + λP0Ḡq(x) = λB̄(x)P0 + λ

∫ x

y=0

B̄(x− y)f(y)dy. (31)
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Remark 4.3. An attractive feature of the level crossing technique is that we are able to intuitively

explain each of the individual algebraic components of the resulting integral equation. We note that

Eq. (31) is almost identical to that for the classical M/G/1 virtual wait, with only the addition of

the second term on the left-hand side of the equality sign. This term (the jump down-crossing rate of

level x) can be explained as follows: the rate that a busy period initiates is λP0, where the proportion

of these busy periods that result in a jump down-crossing of level x is Ḡq(x) = P(qT > x). The

other terms are interpreted in the same manner as for the classical M/G/1 virtual wait.

Remark 4.4. Letting x → 0 in Eq. (31) results in f(0+) = 0 where, in general, f(z+) =

limϵ→0 f(z + ϵ). This result is as expected since f(x) represents the continuous down-crossing

rate of level x, and under the q-policy, any sample path of {Wq(t), t ≥ 0} never down-crosses level

0 continuously – it always jumps down to level 0.

To find P0, we use the normalizing condition
∫∞
0

f(x) dx+ P0 = 1. Now,∫ ∞

0

f(x) dx = λP0(µ− E(qT )) + λ

∫ ∞

y=0

∫ ∞

x=y

B̄(x− y)f(y) dx dy, (32)

which implies that
∫∞
0

f(x)dx(1− λµ) = λP0(µ− qE(T )). Using Eq. (8), we get∫ ∞

0

f(x) dx = P0
ρ(1− ρ(q) − q)

(1− ρ)(1− ρ(q))

= P0
ρ(1− q)(1− ρ)

(1− ρ)(1− ρ(q))

= P0
ρ(q)

1− ρ(q)
. (33)

Therefore, P0 = 1−ρ(q). This result too is as expected, since P0 represents the long-run proportion

of time that the server is idle conditional on the system being open for arrivals (i.e., conditional on

the existence of the virtual wait process). From Eq. (14) and Eq. (17), the long-run fraction of

time the system accepts new customers is PI + PB,1 = (1 + ρq)−1. Thus, P0 = PI/(1 + ρq)−1.

From Eq. (31), we can readily obtain the LST of the steady-state actual wait of serviceable

customers.

Theorem 4.5. The LST of the steady-state waiting time of serviceable customers is

W̃ (s) =
(1− ρ(q))(s− λ+ λG̃(qs))

s− λ+ λB̃(s)
. (34)

13



Proof. Clearly, W̃ (s) ≡
∫∞
0

e−sxdF (x) = P0 +
∫∞
0

e−sxf(x)dx. Thus, the desired result is readily

obtained by first multiplying both sides of Eq. (31) by e−sx and then integrating over x ∈ (0,∞).

Alternatively, we can express the above LST as follows:

W̃ (s) = (1− ρ(q)) + ρ(q)W̃+(s), (35)

where W+ represents the stationary waiting time for those customers who are admitted for service

upon their arrival but incur a positive wait time prior to entering service. We refer to W+ as the

delayed waiting time whose LST W̃+(s) is given by

W̃+(s) =
(1− ρ(q))(G̃(qs)− B̃(s))

µ(1− q)(s− λ+ λB̃(s))
. (36)

One can obtain the first moment of waiting time as usual by differentiating W̃ (s) and twice

applying L’Hôpital’s rule. After some algebra, we acquire the following illuminating form of the

mean waiting time:

E(W ) =
λ(q)γ

2(1− ρ(q))
× (1 + σ(q)), (37)

where σ(q) = q/(1−ρ(q)). We observe that the first term is equal to the average waiting time in the

classical M/G/1 queue with arrival rate λ(q) and service time distribution B(·). Clearly, σ(q) ≥ 0

since 0 ≤ q ≤ 1, which implies that a system under the q-policy has a greater average waiting time

than a classical M/G/1 system with the aforementioned parameters.

In addition, the first moment of waiting time can be rewritten as

E(W ) =
λγ

2
× κ(q), 0 ≤ q ≤ 1, (38)

where

κ(q) =
1− q

1− ρ(q)
(1 + σ(q)) =

(1− q)(1− ρ(q) + q)

(1− ρ(q))2
. (39)

Differentiating κ(q) (with respect to q) yields

κ′(q) = − 2q

(1− ρ(q))3
. (40)

Therefore, for ρ(q) < 1, E(W ) is a decreasing function of q. Considering E(W ) at the extreme values

of q, we see that for q = 0, E(W ) = λγ(1 − ρ)−1/2 which is the classical M/G/1 average waiting

time without a blocking policy, and for q = 1, κ(1) = 0 so that E(W ) = 0. The latter result is

14



due to the fact that during busy periods, the system is closed to all potential arrivals, and above

that, only customers who arrive to an idle server will be served (and these customers experience

zero wait).

Finally, we close this analysis by considering the first moment of delayed waiting time, namely:

E(W+) =
E(W )

ρ(q)
=

γ

2µ
× 1− ρ(q) + q

(1− ρ(q))2
, 0 ≤ q ≤ 1. (41)

It is indeed true that for q = 1, there is zero probability that an arbitrary customer will experience

positive wait; however, as q → 1, we see that E(W+) becomes

E(W+)
∣∣
q=1

=
γ

µ
. (42)

We recognize Eq. (42) as the mean of the limiting total-life random variable of a renewal process

with B(·) serving as the interarrival time distribution function (e.g., see Kao [6, Section 3.3]).

4.3. M/G/1 queue under a q-policy with closedown periods

We now consider a slight variant of the M/G/1 queue operating under the q-policy. Specifically,

we incorporate a closedown period, S, after each busy period. It is assumed that the sequence of

successive closedown periods are iid with distribution function A(x) = P(S ≤ x). The facility is

closed to all potential arrivals during a closedown period. Thus, the incorporation of a closedown

period will increase the proportion of customers that are blocked from the system. In addition, it

is obvious that the closedown periods do not affect the waiting time distributions for serviceable

customers, and so our analysis of waiting time in the previous subsections is still applicable.

We view the total idle period as the durations of time when the server is not busy. Hence,

similar to the partitioning of the steady-state probability of the system being busy, we define the

following:

PI,0 ≡ steady-state probability the server is idle and the system is closed;

PI,1 ≡ steady-state probability the server is idle and the system is open.

In this variation, the busy cycle remains D = T + I (note though that the closedown period is
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contained in I). Again, applying elementary renewal theory arguments, we obtain:

PI =
E(I)
E(D)

=
(1− ρ(q))(1 + λE(S))

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (43)

PI,0 =
E(S)
E(I)

PI =
(1− ρ(q))λE(S)

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (44)

PI,1 =
λ−1

E(I)
PI =

1− ρ(q)

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (45)

PB =
E(T )
E(D)

=
ρ

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (46)

PB,0 = qPB =
ρq

(1 + λE(S))(1 + ρq)− λE(S)ρ
, (47)

PB,1 = (1− q)PB =
ρ(q)

(1 + λE(S))(1 + ρq)− λE(S)ρ
. (48)

Thus, the long-run fraction of time the system is accepting of new customers is PI,1 + PB,1 =

[(1 + λE(S))(1 + ρq)− λE(S)ρ]−1.

5. M/G/1 queue with accumulating priority

In order to implement the q-policy, a system manager must know the service times of the

customers upon their arrival to the system. However, such knowledge may not always be available.

In this section, we introduce another M/G/1-type queueing model which enables a system manager

to reduce the length of busy periods, in a similar fashion as the q-policy, without the knowledge

of service times upon arrival. This system is a variant of the M/G/1 queue with accumulating

priority, which was recently studied by Stanford, Taylor, and Ziedins [12].

The first key aspect of the M/G/1 queue with accumulating priority has to do with how priority

is accumulated for customers. Specifically, customers arrive to the system with zero initial priority

and, throughout their sojourn in the system, earn priority linearly at rate ξ1 > 0. At service

completion epochs, the customer with the greatest accumulated priority is serviced next. The

second key feature of this model lies in the concept of an accreditation threshold, which increases

linearly at rate ξ2 where 0 ≤ ξ2 ≤ ξ1. In fact, the accreditation threshold is a stochastic process

which we denote as {Θ(t), t ≥ 0}. It is important to note that the accreditation threshold and

its implementation does not, in any way, affect the order of service for customers. Hence, the

way in which the M/G/1 queue with accumulating priority operates is actually equivalent to the
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classical M/G/1 queue under the FCFS discipline. However, the incorporation of the accreditation

threshold does shed new light on the structuralization of the general busy period, providing a useful

classification of those customers who arrive during busy periods.

The above basic model was introduced by Stanford et al. [12] in their analysis of a particular

multi-class non-preemptive priority system. In order to analyze the M/G/1 queue with accumulat-

ing priority, these authors defined a new stochastic process which they called the maximal priority

process. To incorporate a blocking policy into this system, we require a slight modification to their

definition of the maximal priority process. We then establish the relation between our modified

maximal priority process and the censored virtual wait process of the previous section. We exploit

this relation to obtain the steady-state integral equation of the accumulated priority of serviceable

customers.

5.1. The maximal priority process

Upon arrival to the system, customers begin to accumulate priority at a linear rate. During busy

periods, a customer will be admitted for service only if its priority overtakes (i.e., becomes greater

than) the accreditation threshold, governed by {Θ(t), t ≥ 0}. At a service completion instant, if

there are any admitted customers present in the system, the one with the greatest accumulated

priority is selected next for service. The busy period ends at a service completion instant which

leaves no more admitted customers in the system. Note that the busy period may end while there

are still customers present in the system. In this situation, these customers depart the system

without ever entering into service.

Let τk denote the arrival epoch of customer Ck, so that we may define Φk(t) to be this customer’s

priority function (i.e., the amount of accumulated priority Ck has at time t), namely:

Φk(t) = ξ1(t− τk), t > τk. (49)

Furthermore, let n(k) denote the arrival position of the k-th customer to be serviced. The definition

of the maximal priority process now follows.

Definition 5.1. The maximal priority process is a two-dimensional stochastic process M(t) =

{(M(t),Θ(t)), t ≥ 0}, satisfying the following conditions:

1. M(t) = (0, 0) for all t corresponding to idle periods.
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2. For all t not corresponding to service commencement/completion instants, we have

dM(t)

dt
= ξ1 and

dΘ(t)

dt
= ξ2, (50)

where 0 ≤ ξ2 ≤ ξ1.

3. At the sequence of service completion times {δk, k = 1, 2, . . .},

M(δk) = 1
{
Φ∨(δ−k ) > Θ(δ−k )

}
· Φ∨(δ−k ), (51)

Θ(δ+k ) = min{M(δk),Θ(δ−k )}, (52)

where

Φ∨(δ−k ) = max
m∈{n(k)+1,n(k)+2,...}

Φm(δ−k ) (53)

and 1{A} is the indicator function of the event A.

The above definition shows that {M(t), t ≥ 0} is closely related to the well-known age process

(i.e., when ξ1 = 1, M(t) represents the age of the oldest admitted customer at time t). Furthermore,

the accreditation threshold process increases linearly at rate ξ2 during busy periods. Stanford et

al. [12] referred to those customers who arrive during busy periods and whose priority overtakes

the accreditation threshold as accredited customers.

With this definition in place, we can now introduce the blocking scheme for our modified M/G/1

queue with accumulating priority. In particular, serviceable customers consist of accredited cus-

tomers and customers who arrive during idle times. On the other hand, those customers whose

priority fails to overtake the accreditation threshold during a busy period are blocked, thereby de-

parting the system without ever entering into service. We refer to such customers as non-accredited

customers.

Figure 5 depicts a typical sample path of {M(t), t ≥ 0}. Note that customers C4, C5, and C9

are of the non-accredited type and thus end up being blocked from service. Moreover, a notable

difference between the current model and the one considered in Section 4 is that with the current

system, blocked customers experience some wait before being forced to depart the system.

Suppose now at the end of an arbitrary busy period, we wish to find the latest time by which

a customer would have to arrive in order to be admitted for service. This can be done by simply

dividing the height of the accreditation threshold at time t∗ (i.e., the time at which the busy period

completes) by ξ1 and subsequently subtracting this quantity from t∗. For a sample path such as
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the one shown in Figure 5, this is equivalent to determining the t-intercept of a line with slope ξ1

which crosses the point (t∗,Θ(t−∗ )).

For each busy period, we define the accreditation interval as the duration of time within which

customers must arrive in order to be admitted for service. An important observation is that the

ratio of the accreditation interval to the busy period is always (1 − ξ2/ξ1). Therefore, this model

is similar to the one of Section 4 in that admitted customers must arrive within the first (1− q)-th

proportion of the busy period with q = ξ2/ξ1. In fact, it can be shown that the LST of the busy

period is the solution to Eq. (4) with q = ξ2/ξ1 (see Stanford et al. [12] and their discussion on

accredited busy periods). In addition, using the same argument as in Brill [1], we can show that the

steady-state distribution of {M(t), t ≥ 0} when ξ1 = 1 is equivalent to the steady-state distribution

of the workload process {Uξ2(t), t ≥ 0} of Section 4.

5.2. The distribution of accumulated priority for serviceable customers

Let ξ1ϕn be the accumulated priority, immediately prior to entering service, of the n-th customer

to be serviced where ξ1 is the priority accumulation rate. Trivially, we have

ξ1ϕn = ξ1 ·Wn, (54)

where Wn is the waiting time of the n-th serviceable customer. Furthermore, 1ϕn ≡ ϕn = Wn

represents the age of the customer prior to entering service. Let gξ1(x) denote the steady-state pdf

of the accumulated priority (immediately prior to entering service) for the serviceable customers.

Since waiting times for the serviceable customers in the current model are equivalently charac-

terized by the waiting times for serviceable customers in the model of Section 4 with q = ξ2/ξ1, we

have g1(x) ≡ g(x) = f(x; ξ2) for all x > 0, from which it immediately follows that

gξ1(x) =
g(x/ξ1)

ξ1
, x > 0. (55)

From Eq. (31), we get

gξ1(x) =
λB̄(x/ξ1)P0 − λP0Ḡξ2/ξ1(x/ξ1)

ξ1
+

λ

ξ1

∫ x/ξ1

y=0

B̄(x/ξ1 − y)g(y)dy. (56)

Thus, multiplying both sides of Eq. (56) by e−sx and integrating over x ∈ (0,∞), we obtain

the LSTs of the steady-state accumulated priority for serviceable customers and accredited-type

customers as

ξ1 ϕ̃(s) =
(1− ρ(ξ2/ξ1))(ξ1s− λ+ λG̃(ξ2s))

ξ1s− λ+ λB̃(ξ1s)
, (57)
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and

ξ1 ϕ̃+(s) =
(1− ρ(ξ2/ξ1))(G̃(ξ2s)− B̃(ξ1s))

µ(1− ξ2/ξ1)(ξ1s− λ+ λB̃(ξ1s))
, (58)

respectively. Alternatively, Eq. (57) and Eq. (58) can be obtained by substituting s = ξ1s and

q = ξ2/ξ1 into Eq. (34) and Eq. (36), respectively.

We remark that Eq. (58) was first presented by Stanford et al. [12]. However, their result

was obtained under a different setting, as they studied a particular multi-class non-preemptive

priority system and obtained the steady-state marginal waiting time distributions of each class. We

emphasize that in their model, there is no concept of customer blocking. The authors obtained

their result for a random variable which they called the additional accumulated priority. We direct

readers to their paper for more details. Moreover, the authors’ method of analysis differs from ours

in that their proof of Eq. (58) is inspired by the Conway et al. [3, Chapter 8-4] derivation of the

flow time LST in a classical FCFS M/G/1 system.

In summary, our level crossing analysis provides an alternate proof of Stanford et al.’s [12] main

result (i.e., Eq. (58)) and also yields the steady-state integral equation for the pdf of accumulated

priority in Eq. (56). Furthermore, our model provides an alternate interpretation of the wait of

customers in their non-preemptive priority system. Specifically, the additional wait that high prior-

ity customers serviced in an accredited busy period experience is identical to the wait experienced

by delayed customers in an M/G/1 system under the q-policy.

5.3. The overall distribution of wait

We next establish the distribution of the overall waiting time random variable. Clearly, by design

of the model, customers who are blocked from service will experience a (steady-state) waiting time

(or total time in the system) which follows the limiting distribution of the forward recurrence time

of qT . Defining W0 to be the wait of such non-serviced customers, it readily follows that

W̃0(s) =
1− G̃ξ2/ξ1(s)

E(T )sξ2/ξ1
. (59)

Since priority is accumulated linearly at rate ξ1, the LST of the waiting time for serviceable cus-

tomers is obtained from Eq. (57) as

W̃1(s) =
ξ1 ϕ̃(s/ξ1) =

(1− ρ(ξ2/ξ1))(s− λ+ λG̃(ξ2s/ξ1))

s− λ+ λB̃(s)
. (60)
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Using the steady-state probabilities given by Eq. (14) through Eq. (17), we derive the overall LST

of waiting time as

W̃ (s) =
1

1 + ρξ2/ξ1
W̃1(s) +

ρξ2/ξ1
1 + ρξ2/ξ1

W̃0(s). (61)

After some elementary algebra, we obtain

W̃ (s) =

(
1− ρ(ξ2/ξ1)

1 + ρ(ξ2/ξ1)

)
×

(
s− λ+ λG̃(sξ2/ξ1)

s− λ+ λB̃(s)
+

λ(1− G̃(sξ2/ξ1))

s

)
. (62)

6. An optimization problem

In this section, we formulate a numerical study to demonstrate a potential usage of the q-policy.

We remark that the inspiration for this study originates from a similar study considered by Kao [6,

Example 3.6.4]. In what follows, we consider a queueing system with closedown periods as described

in Section 4.3. For this system, suppose we have the following monetary parameters:

K ≡ the cost of each closedown period;

h ≡ the cost of holding one customer per unit time;

R ≡ the toll fee paid by each serviced customer.

The objective function which we seek to optimize is the long-run expected profit per unit time.

Clearly, the instants of busy period commencements define a set of regeneration points. Thus, our

objective function is

P (q) =
R · E(Nbp)−K − E(Cbp)

E(D)
, (63)

where E(Cbp) is the expected holding cost incurred during a busy period. We remark that E(Nbp)

is given by Eq. (13) and E(D) = E(T )+E(S)+λ−1. Moreover, it can be shown, following a similar

line of reasoning to Kao [6, pp.139-140], that for all work-conserving service disciplines (e.g., both

FCFS and the q-restricted LCFS disciplines),

E(Cbp) = hE(Nbp)(µ+ E(W )). (64)

Note that the quantity µ+ E(W ) represents the long-run average flow time.

By recalling the form of E(W ) in Eq. (37), it is immediately clear that E(Cbp) depends only on

the first two moments of the service time distribution. Consequently, the expected profit function

P (q) is also affected by the variability of the service time distribution. We use the coefficient of

variation of the service time distribution, denoted by CV =
√
γ − µ2/µ, to assess the effect of
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the variability of the service time distribution on the profit function. In particular, we present

five numerical examples of nearly identical models, differing only in their respective coefficients of

variation of the service time distribution. In Examples 1 through 5, we consider five service time

distributions with common mean µ = 1, but with coefficients of variation 0, 0.5, 1, 1.5, and 2,

respectively.

Figure 6 displays the profit functions corresponding to the five examples. With the exception of

the profit functions for Examples 1 and 2, we observe that the expected profit per unit time can be

maximized by implementing the q-policy. Letting q∗ denote the optimal blocking proportion which

maximizes P (q), we find q∗ (to 4 decimal places of accuracy) for Examples 1 through 5 to be 0,

0, 0.1000, 0.1710, and 0.2538, respectively. In Table 1, we calculate the expected profit function

and several other quantities of interest corresponding to various values of the blocking proportion

q for Examples 1 through 5. We note that since µ = 1, Eq. (8) and Eq. (13) together imply that

E(T ) = E(Nbp) for all values of q.

Although it is indeed true that the maximum long-run expected profit per unit time is obtained

without the usage of a q-policy (i.e., q∗ = 0) for both Examples 1 and 2, there are other viable

reasons for the implementation of a q-policy. In regard to Example 2, let us define q∗r to be the

relative maxima of P (q). By using standard calculus-based methods, we find that q∗r = 0.0406.

From Table 1 (and the rows corresponding to Example 2), we see that the resulting expected

profits with q = q∗ = 0 and q = q∗r differ only by a small amount. However, the advantage of

implementing a q-policy still lies in the fact that both the cycle and busy period lengths are smaller

when compared to the system without a q-policy in place. Ultimately, with q = q∗r , the system

is essentially earning the same expected profit as for the case with q = 0, but at the same time

allowing for more frequent maintenance checks on the server/machine. Similar remarks can be

made for Example 1.

In these numerical examples, we showed that by reducing the cycle lengths, a system manager

can significantly decrease the incurred costs and thus capture the potential profit (or, as in both

Examples 1 and 2, obtain nearly maximal expected profit). It is also apparent that as CV increases,

so too does the optimal blocking proportion q∗, as evidenced in Figure 7. It is interesting to note

the presence of a discontinuity point in Figure 7, which occurs for a certain value of CV residing in

the interval (0.6014, 0.6015). This particular value of CV corresponds to the first instance in which

a non-zero blocking proportion yields a higher expected profit.
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7. Concluding Remarks

In conclusion, we have presented a queueing model which enables a system manager, through

choice of which blocking proportion q to use, to effectively reduce the duration of a busy period. We

have studied several performance measures of interest, including the wait of serviceable customers

and the busy period duration. We have also shown that, in certain situations, the reduction of busy

period lengths can be accompanied with an increase in profit. A possible avenue for future research

lies in the area of server vacation models (e.g., see Takagi [15, Chapter 2]). In particular, rather

than closing the system to potential arrivals, one could consider a situation where the server goes

on vacation, during which customers are still allowed to join the queue.
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Figure 1: A typical busy period under the q-policy
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Figure 2: A busy period under the q-restricted LCFS discipline
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Figure 3: Typical sample paths of the processes {Uq(t), t ≥ 0} and {Wq(t), t ≥ 0}
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Figure 6: Expected profit per unit time for Examples 1 through 5

Figure 7: Behaviour of the optimal blocking proportion q∗ as a function of CV
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Table 1: Expected profit per unit time and other quantities of interest against various q-values for
Examples 1 through 5

M/G/1 queue with λ = 0.95; µ = 1; E(S) = 1; h = 1; K = 5; R = 50
Example 1: CV = 0; q∗ = 0.00

Quantity ——— q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) ——— 35.5967 34.5886 33.3634 30.0792 24.2058 20.8748 16.1395
E(D) ——— 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) ——— 210.0000 82.0681 41.2522 16.2616 5.3008 3.0254 1.3591
E(Nbp) ——— 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) ——— 9.5000 7.0016 4.9816 2.9028 1.2793 0.7321 0.1655

Example 2: CV = 0.5; q∗ = 0.00; q∗r = 0.0406
Quantity q = q∗r q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 33.1506 33.4427 33.1301 32.4037 29.5931 24.0359 20.7907 16.1245
E(D) 13.3439 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 117.2050 257.5000 100.0211 49.8411 19.2853 6.0446 3.3451 1.4074
E(Nbp) 11.2912 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 9.3802 11.8750 8.7521 6.2270 3.6285 1.5992 0.9151 0.2068

Example 3: CV = 1; q∗ = 0.1000
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 29.5245 26.9809 28.7545 29.5245 28.1345 23.5263 20.5383 16.0795
E(D) 8.9491 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 75.6071 400.0000 153.8799 75.6079 28.3565 8.276 4.3041 1.5521
E(Nbp) 6.8965 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 9.9631 19.0000 14.0033 9.9631 5.8056 2.5587 1.4641 0.3309

Example 4: CV = 1.5; q∗ = 0.1710
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 25.8100 16.2112 21.4619 24.7257 25.7036 22.6768 20.1176 16.0046
E(D) 6.7606 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 55.9079 637.5000 243.6445 118.5524 43.4751 11.995 5.9025 1.7933
E(Nbp) 4.7080 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 10.8751 30.8750 22.7553 16.1901 9.4340 4.1579 2.3792 0.5377

Example 5: CV = 2; q∗ = 0.2538
Quantity q = q∗ q = 0.00 q = 0.05 q = 0.10 q = 0.20 q = 0.40 q = 0.55 q = 0.85
P (q) 22.6279 1.1337 11.2523 18.0075 22.3003 21.4876 19.5286 15.8997
E(D) 5.4881 22.0526 12.3090 8.9492 6.2193 4.3782 3.7994 3.2188
E(Cbp) 42.5880 970.0000 369.3151 178.6748 64.6412 17.2016 8.1402 2.1309
E(Nbp) 3.4354 20.0000 10.2564 6.8966 4.1667 2.3256 1.7467 1.1662
E(W ) 11.3967 47.5000 35.0082 24.9078 14.5139 6.3967 3.6603 0.8273
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