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ABSTRACT: The impact on U(VI) adsorbed to lepidocrocite (y-FeOOH)
and hematite (a-Fe,0;) was assessed when exposed to aqueous sulfide (S(-
H)aq) at pH 8.0. With both minerals, competition between S(-II) and U(VI)
for surface sites caused instantaneous release of adsorbed U(VI). Compared
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to lepidocrocite, consumption of S(-II),, proceeded slower with hematite, but | — —— ® sulfidization
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yielded maximum dissolved U concentrations that were more than 10 times
higher, representing about one-third of the initially adsorbed U. Prolonged
presence of S(-II),, in experiments with hematite in combination with a larger
release of adsorbed U(VI), enhanced the reduction of U(VI): after 24 h of
reaction about 60—70% of U was in the form of U(IV), much higher than the
25% detected in the lepidocrocite suspensions. X-ray absorption spectra ot 0z
indicated that U(IV) in both hematite and lepidocrocite suspensions was not
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in the form of uraninite (UO,). Upon exposure to oxygen only part of U(IV)

reoxidized, suggesting that monomeric U(IV) might have become incorporated in newly formed iron precipitates. Hence,
sulfidization of Fe oxides can have diverse consequences for U mobility: in short-term, desorption of U(VI) increases U mobility,
while reduction to U(IV) and its possible incorporation in Fe transformation products may lead to long-term U immobilization.

1. INTRODUCTION

Uranium-contaminated sites, a legacy of uranium (U) mining
and processing,' " are an environmental concern because U
poses health risks as a heavy metal and a source of radioactive
radiation.”™® The fate of U in the environment is often linked
to the biogeochemistry of iron (Fe) via sorption and redox
processes. For example, the mobility of U can be determined by
a variety of interactions with iron oxides (here collectively
referring to iron oxides, iron hydroxides, and iron oxy-
hydroxides), including (a) Adsorption of hexavalent uranium
(U(VI)), the most oxidized and soluble form of U, which
occurs at the surfaces of iron oxides at fast rates and may lead to
the formation of strong inner-sphere complexes,” > (b)
Incorporation of U(VI) into iron oxides via coprecipitation'*
or recrystallization of ferrihydrite,''® (c) Reduction of U(VI)
to U(IV), either mediated by iron oxides as catalytic surfaces
where adsorbed Fe?* acts as the reductant,'”'® or through
direct reduction by structural Fe(Il) in mixed redox state iron
oxides (e.g,, green rust, magnetite),w’20 and d) Reoxidation of
U(IV) to U(VI) by iron oxides.”' In the latter case, the
capability of oxidizing U(IV) depends on the Gibbs energies of
formation of the iron oxide and the U(IV) bearing phase.zz_24

In subsurface environments, redox conditions may shift from
oxic to anoxic and trigger microbial sulfate reduction.”>~’
Production of S(-II) causes changes in iron mineralogy, with
Fe(IlI)-bearing minerals transforming into iron sulfides.”®™*
Sulfidization of iron oxides can affect the partitioning of
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previously adsorbed toxic constituents, as in the case of
arsenic,”®> as well as their oxidation state, as in the case of
reduction of arsenate by sulfide.’® Sulfidization of U(VI)-
bearing iron oxides raises the question of whether or not the
released U will remain mobile.””~*" In addition to producing
new phases, such as FeS or pyrite (FeS,),"””™** free sulfide is
capable of reducing U(VI) to U(IV). When reduction to U(IV)
is followed by uraninite (UO,) precipitation, the overall effect
would be U immobilization.

The addition of aqueous sulfide (S(-II),,) to a suspension
containing lepidocrocite (y-FeOOH) with adsorbed U(VI) was
investigated in a previous study.”” The observed immediate
release of U to solution upon S(-II),, addition was interpreted
as a result of S(-II) adsorption onto lepidocrocite, out-
competing U(VI) for available surface sites. However, the
fraction of U(VI) reduced to U(IV) only reached 50% of the
total U, after 24 h of reaction. This was the case even when S(-
H)aq was added in excess. The incomplete extent of U(VI)
reduction was attributed to the rapid oxidation of S(-II),q by
lepidocrocite and the kinetic hindrance of reduction of U(VI)
sorbed to the solids. Thus, partial U mobilization may be a
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possible outcome in environments containing U-bearing iron
oxyhydroxides exposed to sulfide production.

Building on the results of Alexandratos et al,* the aim of this
present study was to compare the fate of U(VI) preadsorbed to
lepidocrocite and hematite upon the introduction of aqueous
sulfide. The two mineral phases were selected because of the
markedly lower reactivity of hematite toward sulfide than
lepidocrocite.***® Thus, we hypothesized that the prolonged
presence of dissolved S(-II) in hematite suspensions could
enhance the initial desorption of U due to competition of S(-II)
with U(VI) for surface sites. However, we further considered
that increased desorption of U(VI) into a S(-II)-rich solution
may facilitate the reduction of U(VI) by sulfide. Reaction with
dissolved S(-II) was previously shown to be the most effective
pathway for U(VI) reduction in experiments with lepidocro-
cite.*® In the experiments presented here, suspensions of
synthetic lepidocrocite and hematite with adsorbed U(VI) were
exposed to different amounts of S(-H)aq. Phase distribution of
U was monitored as a function of time and X-ray absorption
spectroscopy (XAS) was used to determine the redox state and
speciation of solid-bound U. The goal was to assess the role of
iron oxide reactivity toward sulfide in U desorption and
reduction.

2. MATERIALS AND METHODS

2.1. Experimental Conditions and Reagents. With the
exception of the reoxidation experiments, all experiments,
sample collection and preparation of samples for X-ray
absorption spectroscopy (XAS) were performed in a glovebox
under a N, (95%) and H, (5%) atmosphere. The glovebox was
equipped with a Pd catalyst and an O, monitor in order to
maintain oxygen levels below 10 ppm. The temperature in the
glovebox was kept constant at 25 °C. The possibility of
uranium uptake by the glassware used (DURAN ISO
laboratory bottles) was investigated in advance by performing
repeated blank adsorption experiments: it turned out to be
insignificant. Stock solutions of U(VI) and S(-II) were prepared
from uranyl acetate and anhydrous Na,S, respectively. All
chemicals used were of reagent grade and no further
purification was performed.

2.2. Mineral and Suspension Preparation. Synthetic
lepidocrocite (y-FeOOH) and hematite (a-Fe,0;) were
synthesized following the procedures described in Schwert-
mann and Cornell."” Lepidocrocite was produced by oxidation
of a FeCl, solution in a reactor connected to a pH-stat unit that
maintained pH at 6.8 by adding 1 M NaOH. Hematite was
synthesized by forced hydrolysis of Fe(III) by slowly adding 1
M Fe(NO,); solution to boiling water. After synthesis, the
suspensions were dialyzed against deinonized water and stored
as aqueous stock suspensions. Powder X-ray diffraction (XRD)
did not show any mineral phases present other than
lepidocrocite and hematite in the corresponding suspensions.
For lepidocrocite, the N,—BET surface area was determined as
78 m” g, For hematite, the peak width in XRD measurements
corresponded to a particle diameter of 15 nm based on the
Scherrer equation.*® This particle size corresponds to a specific
surface area of about 80 m® g~' when assuming spherical
particles.

Lepidocrocite and hematite suspensions were prepared inside
the glovebox by diluting the aforementioned stock suspensions
in deoxygenated distilled water. Loadings were approximately 1
g/L, corresponding to concentrations of 9.3 mM Fe, for
lepidocrocite and 12.2 mM Fe,, for hematite. To remove
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dissolved CO,, suspensions were purged with Ar prior to use.
Ionic strength was adjusted to 0.1 M by adding the required
amount of NaCl. In order to keep the pH constant during the
reaction, TAPS buffer (0.04 M C,H;,NO¢S) was added and the
pH adjusted to 8.0 with HCl or NaOH as necessary. A pH
value of 8.0 is representative of subsurface environments in
which alkalinity is produced by microbial sulfate reduction.*
Furthermore, as the pK, of H,S is about one unit below pH 8.0,
only about 10% of S(-II)aq was in the form of H,S and
outgassing did not significantly influence the amount of
dissolved sulfide on the time scale of hours. Suspensions
were left overnight to stabilize while stirring to maintain
suspension homogeneity. Following this, U(VI) solution was
added to both iron oxide suspensions, giving total U
concentrations of about 12 uM with lepidocrocite and 13.5
uM with hematite suspensions, and then were left to equilibrate
for 24 h.

2.3. Reduction Experiments and Sample Collection.
Abiotic reduction was initiated by adding aqueous sodium
sulfide (Na,S) to the equilibrated U(VI)-bearing lepidocrocite
and hematite suspensions. Suspensions were divided in three
identical portions, labeled L1, L2, L3 for lepidocrocite and H1,
H2, H3 for hematite, to which aqueous sulfide was added at
concentrations of 10, 5, and 1 mM, respectively (Table 1). All

Table 1. Sulfide and Uranium That Was Added to
Lepidocrocite and Hematite Suspensions

suspension  [U(VI)],, (uM)  [S(-II)] addition (mM) Fe(Il),,, (mM)
L1 12 10 9.3
L2 12 S 9.3
L3 12 9.3
H1 13.5 10 122
H2 13.5 S 12.2
H3 13.5 122

suspensions were in closed vessels and stirred using magnetic
stir bars throughout the experimental duration (72 h). To avoid
sudden pH changes in the suspensions due to sulfide addition,
the pH of each Na,S injection was individually adjusted to pH
8.0 by adding the required amount of 2 N HCl. The amounts of
HCI were predetermined from preliminary titrations in Na,S
solutions and corresponded to the amount of acid required to
convert S into HS™ in the injection solution.

In order to monitor the progress of the reaction, aliquots
were periodically collected by syringe starting about 2 min
before sulfide addition. After filtration through 0.2 ym pore-size
nylon filters, dissolved Fe(Il) was measured by spectropho-
tometry using the ferrozine method,” dissolved S(-II) was
trapped in zinc acetate solution and S(-II) concentration was
determined by spectrophotometry using the methylene blue
method,’’ and dissolved U concentrations were determined on
an Agilent 4500C inductively coupled plasma mass spectro-
meter (ICP-MS). Prior to U measurements, the filtered
solutions were diluted about 100 times with 1 M suprapure
HNO;. Additionally, at each sampling moment, an aliquot of 2
mL of the experimental suspension was taken and added to 2
mL of 12 M HCI for dissolving all solids and determining total
Fe and U concentrations. The coefficients of variation of the
measured total U concentrations for the different series was
between 3.3% and 7.0%. Hence, 7.0% was taken as an upper
limit for the uncertainty of U measurements.
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Figure 1. (a, b) Time evolution of dissolved S(-II) in (a) lepidocrocite suspensions L1, L2, and L3 and (b) hematite suspensions H1, H2, and H3,
(¢, d) Time evolution of dissolved uranium (U, ) in (c) lepidocrocite suspensions L1, L2, and L3 and (d) hematite suspensions H1, H2, and H3,
after S(-IT) addition (Legends for graphs 1c and ld follow the same symbolism as in 1a and 1b, respectively). Inlet graphs show U,, concentrations
for the full extent (72 h) of experimental duration. Total concentration of uranium in lepidocrocite and hematite suspensions were 12 and 13.5 uM,
respectively. The error bars represent the 95% confidence interval for the S(-II) measurements and a 7% coefficient of variation for the uranium

concentrations.

2.4, X-ray Absorption Spectroscopy. Solid material for
XAS analysis was recovered from 100 to 150 mL of the reacting
lepidocrocite and hematite suspensions. Sampling took place
after O (just prior to sulfide addition), 2, 6, 24, 48, and 72 h of
reaction with sulfide. Pore-size filters of 0.2 um (polycarbonate,
Millipore) were used to collect the solids. The wet pastes
obtained from the filters were placed into the cavities of
custom-made sample holders (PTFE). Each cavity was closed
with Kapton tape and the sample holder was then heat-sealed in
an LDPE bag. Samples were kept at —80 °C and transferred to
the beamline in dry ice. X-ray absorption spectra were collected
at the DUBBLE beamline (BM26a) of the ESRF in Grenoble,
France. A description of the beamline and its optics is provided
by Borsboom et al.>” and Nikitenko et al.”’ Samples were
installed in a cryostat (30 K) during measurement. Spectra were
collected in fluorescence mode at the uranium Ly; edge around
17.17 keV. Energy calibration was performed by adjusting the
first maximum of the first derivative of the yttrium foil spectrum
to 17.038 keV.

X-ray spectra were processed with the Athena software.**
ITFA software™ was used for the eigenanalysis of the spectra
and the iterative target test (ITT). Eigenanalysis assisted in
determining the number of factors that are necessary to explain
the variability between the spectra. In the analysis of X-ray
absorption near edge structure (XANES), the energy range for
the normalized X-ray spectra was between 17.10 and 17.25 keV.
For the eigenanalysis of the extended X-ray absorption fine
structure (EXAFS), the k*-weighted spectra were used in a k-
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range between 2 and 10 A™". The ITT analysis was applied to
extract real end-member spectra from the data set and to
calculate the relative concentrations of the different compo-
nents in the various samples. The advantage of using ITT
analysis in comparison to linear combination fitting is that the
endmember spectra do not have to be defined a priori but are
extracted from the data set. However, after sulfide addition, the
suspension most likely contained uranium in different oxidation
states and none of the spectra represents a pure endmember
spectrum of uranium in the form of U(IV). For this reason, the
set of XANES spectra was complemented with the spectrum of
a U(IV) standard. By this, the component, extracted in the ITT
analysis for the reduced uranium species, will integrate features
of the spectra from the experimental sample as well as of the
U(IV) standard. As a consequence, the extracted spectrum will
be similar to the U(IV) standard but not necessarily identical.
The idea is that the component used to calculate the relative
concentration of U(IV) in the samples approximates the
average spectrum of U(IV) in the samples; this provides a more
robust estimation of the extent of U(VI) reduction than that
obtained by linear combination fitting in the case that the
correct endmember spectra are not fully identical with those of
analyzed reference materials. The U(IV) standard was
produced by reducing U(VI) with Ti(IIl) in acidic solution
and precipitating the solid in the presence of silica gel by adding
NaOH. In this standard, U(IV) occurs predominately as a
coprecipitate with titanium oxide. In the ITT of the XANES
spectra, the relative concentration of the second component
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was constrained to one for the U(IV) standard. The
concentration of the first component was set to one for the
spectrum of U(VI) adsorbed onto hematite. The fitting of the
EXAFS spectra was done with the program Artemis.”* Fourier
transformation was performed on the EXAFS spectrum over
the k-range between 2 and 11.5 A with a Hanning window with
a sill width of 1.0 A. The optimization of the fitting parameters
took place by simultaneously fitting EXAFS spectra with k-
weights of 1, 2, and 3. Details about the fitting strategy can be
found in the Supporting Information (SI).

2.5. Reoxidation Experiments. After the 72 h of reaction
with sulfide, lepidocrocite suspensions L1, L2, and L3 were
brought outside the glovebox, in sealed vessels. Reoxidation was
initiated by bubbling air into the vigorously stirred suspensions
using air pumps. Although the air was conveyed through gas
washing bottles filled with demineralized water, some
evaporation was noticed after ~100 h of bubbling. The pH
was monitored throughout the two-week duration of the
reoxidation experiments and was always around pH 8.0. This
implies that dissolution of atmospheric CO, did not change the
pH considerably in the buffered solution. At pH 8, equilibrium
with atmospheric CO, pressure corresponds to a dissolved
inorganic carbon concentration of about 0.8 mM. The same
sample collection procedure was followed as described in
section 2.3. Solid samples for XAS analysis were collected after
2 weeks of reoxidation time. XAS samples were prepared and
analyzed as described in section 2.4. Reoxidation experiments
were not performed for hematite suspensions H1, H2 & H3,
due to the limited amount of available material, which was
dedicated to the preparation of XAS samples.

3. RESULTS AND DISCUSSION

3.1. Sulfide Reaction with Lepidocrocite and Hema-
tite. Trends of S(—H)aq consumption as a function of time are
consistent with those observed in past studies with
lepidocrocite®***>*>%¢ and hematite.”>*® In experiments
with lepidocrocite (L1, L2, L3), the decrease in concentrations
of S(- II) was very rapid, with ~98% of added S(-II),,
consumed within the first 30 min of reaction (Figure la),
beyond which the S(-II),, concentrations gradually dropped to
less than 0.1 mM after 1 h and were undetectable from 6 h to
the end of the experiments (72 h in total). Upon addition of S(-
1), to hematite suspensions (H1, H2, H3), about 50% of S(-
II)aq, was removed from solution within the first 30 min (Figure
1b). In experiments where S(-II),, was added in concentrations
of 1 (H3) and 5 mM (H2), S(- II) values dropped to ~0.5
mM after 3 h but remained above 0. 1 mM even after 24 h. In
the 10 mM S(-II),, experiment with hematite (H1), S(-II),q
concentrations decreased to ~3 mM within the first 3 h and
remained constant at about 2.5 mM until 24 h (data not
shown).

The initial amounts S(- H) were insufficient to cause
complete consumption of hematlte according to the 1deahzed
stoichiometry of FeS(s) formation by hematite sulfidization:**

0.5Fe,0; + L.SHS™ + L.SH'

I o
& FeS(s) + —S; + 1.5H,0
16 ° : 1)
Hence, in all three hematite suspensions, the significantly
higher S(-II)aq observed after 24 h of reaction time reflects
slower reaction kinetics with hematite compared to lepidocro-
cite. Given that the interfacial areas of the two iron minerals are

2143

about the same, the notable difference in S(—II)aq consumption
kinetics is due to the intrinsically lower reactivity of hematite.
This is in agreement with previous studies on sulfide reactlon
with iron oxides.*”*****® For instance, Poulton et al.>* report
surface-normalized rate constants for S(-II) consumption that
are about eight times lower for hematite than for lepidocrocite.
The observed difference in reaction progress after 30 min is in
the same order of magnitude range. The slowdown of reaction
kinetics in the hematite suspensions is presumably due to the
passivation of the surface layer of the hematite grains similar to
that observed during the sulfidization of lepidocrocite.”

3.2. Uranium Mobilization by Sulfide. In all the
suspensions of lepidocrocite and hematite, the introduction of
S(-II),q was followed by an instantaneous release of adsorbed U
into_solution (Figure lc and d). Prior to sulfide addition,
aqueous uranium concentrations (U,g) in the lepidocrocite
suspensions (L1, L2, L3) were about 1 2 nM, as observed in
our previous study.*> After addition of S(- I, Uy
concentrations rose to maximum values of about 0.3, 0.2, and
0.09 uM in suspensions L1, L2 and L3, respectively (Figure 1c).
That is, the release of U,y correlated with the amounts of S(-
II) added. The 1nstantaneous release of uranium can be
explalned by the replacement of =Fe—OH groups at the
lepidocrocite surface by =Fe-SH groups:*

=Fe — O — UO," + SH 4+ 2H" =
+ UO* + H,0

= Fe — SH
(2)

The formation of =Fe-SH surface groups through ligand
exchange between surface bound OH™ and dissolved SH™
represents the first step 1n the reaction mechanism of
sulfidization of iron oxides.”"** Hence, adsorption of S(- II)
removes =Fe—OH groups that act as binding sites for U(VI)
The observed desorption of U(VI) is a consequence of the
lower affinity of U(VI) for =Fe-SH sites than for =Fe—OH
sites, because U(VI), as a hard acid, more strongly binds to O(-
I1) than S(-I).”

After reaching their maxima within the first 10—15 min, the
U,, concentrations in the two lepidocrocite suspensions with
the highest S(- H) additions, L1 and L2, decreased again
(Figure 1c). The largest drop in U,q occurred within the first 30
min, that is, at the same time that most S(- II) was consumed
(Figure 1a). While the removal of U,, may in part be ascribed
to the d1m1n1sh1ng competition of U(VI) by S(-II),, for =
Fe—OH sites,” a more important process was likely the
reduction of U(VI) into U(IV) (see next section). Beyond the
first hour of reaction, and until the end of the experiment (72
h), U,q concentrations stabilized at levels between 0.0 and
~0.1 ﬂM (Figure 1c). These concentrations were higher than
the initial levels of U,  in solution, implying that the release of
uranium upon S(-II),, addition was not completely reversible,
which is expected as oxygen surface sites are depleted during
the sulfidization of lepidocrocite into iron sulfide.”

In the hematite suspensions, U, concentrations were about
1-5 nM prior to S(-II),, addition. Similar to the experiments
with lepidocrocite, instant release of adsorbed U was observed
when sulfide was added, but the response was much more
pronounced. In the first minutes of reaction, U,q reached values
of about 4 M in all three suspensions (H1, H2, H3),
irrespective of the amount of S(—H)aCl added (Figure 1d). The
maximum U,y concentration were equivalent to ~30% of the
total uranium in the suspensions, and surpassed the
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corresponding maximum concentrations in the lepidocrocite
suspensions by more than a factor of 10.

The enhanced release of adsorbed U(VI) from hematite is
most likely caused by slower S(-II) oxidation kinetics. With
lepidocrocite, adsorption of S(-II) is quickly followed by
electron transfer and, subsequently, the creation of new surface
sites.”™” These surface sites become available for readsorption
of U(VI) once S(-II),, is depleted. With hematite, sulfide
oxidation proceeds at a slower pace, which implies that the
regeneration of surface sites is also slower. Consequently,
sulfide occupies surface sites for a longer period, formation of
FeS at the surface is facilitated, and S(-II),q is longer available in
solution to compete with U(VI) for adsorption sites. Together,
these factors explain why S(-II)aq addition released much more
adsorbed U(VI) from hematite than lepidocrocite.

Another difference with the lepidocrocite experiments is that
the maximum value of U, in the hematite suspensions was
independent of the amount of S(-H)aq added (Figure 1b).
Possibly, the released 4 yuM of U(VI) reflect the fraction of
adsorbed U(VI) more weakly bound to the hematite surface.
The existence of weak and strong binding sites for U(VI)
adsorption onto hematite,"”®" and other iron oxides such as
ferrihydrite,10 has been invoked in surface complexation
models. However, to our knowledge, there is no direct
spectroscopic evidence for the coexistence of U(VI) complexes
with distinct coordination at iron oxide surfaces. In most
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EXAFS studies only one type of uranium coordination (inner
sphere complex) is considered in the structural model for
U(VI) adsorbed onto iron oxides in the absence of
carbonate,' 906!

Competition for =Fe—OH sites by S(-II),q alone does not
explain the time evolution of U, concentrations in the hematite
suspensions. Although U, trends (Figure 1d) resemble those
of S(-I),, (Figure 1b), they are not directly correlated. For
example, in the case of H1, U,  concentrations reached ~0.5
MM after 24 h of reaction. At this time, the S(-II),q
concentration was about 2.5 mM, that is, more than twice
the S(-II),, concentration added to experiment H3 which also
caused a maximum U, release of 4 yM. Thus, other processes
contribute to the postmaximum reassociation of U to the solid
phase, in particular the reduction of U(VI) to U(IV). By the
end of the experiments (72 h), U,q concentrations in all three
hematite suspensions had decreased to values of 0.1-0.2 uM,
similar to the levels detected at the end of the experiments with
lepidocrocite. However, as discussed in the next section, the
relative contributions of U(VI) readsorption and U(VI)
reduction differed between the lepidocrocite and hematite
suspensions.

3.3. Uranium Reduction. 3.3.1. XANES Analyses. The
XANES spectra collected at the U Ly; edge showed changes
upon addition of S(—II)aq that are characteristic of U(VI)
reduction to U(IV): (a) a shift of the edge position to lower
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Table 2. Optimized Values for the Different Path Parameters Obtained from EXAFS Modeling for U(VI) Adsorbed onto

Lepidocrocite and Hematite

H1 0h 13 Oh
sample N Rg, [A] *[A?] N Rg, [A] A[A?]
U—0," 2b 1.79 + 0.02 0.003 + 0.001 2b 1.79 + 0.01 0.002 + 0.001
U—0,,1 279 + 0.37 227 + 0.05 0.004" 3.18 + 0.36 228 + 0.02 0.004°
U—0,2 221 + 037 245 + 0.07 0.004” 1.82 + 036 247 + 0.05 0.004”
U-03 0.49 + 0.75 2.81 + 0.11 0.004° 129 + 0.88 2.84 + 0.04 0.004°
U—Fe 1° 3.38 + 0.06 0.010 =+ 0.006 1° 3.33 + 0.09 0.015 + 0.013

“The model included the multiscattering paths: U — O,,1 = U—0,,1 with ¢* = 4¢* (U = O,) and R = 2R(U = 0,); U = O,,1 —» U=0,,2
with 0 = 26 (U —» O,) and R = 2R(U - 0,); U - O,,1— 0,,2 —»U with ¢* = 26 (U —» O,) and R = 2R(U — O,). “Fixed values.

data
fit

L3 Oh

L1 24h

IX(R)I (A™)

5 data
fit

0k H1 Oh
H1 24h

]
(9}

k[AT]

Figure 4. (a—d):k>-weighted EXAFS spectra (c,d) and their Fourier transformation of samples from experiments with (a,c) lepidocrocite (L1 and
L3) and (b,d) hematite (H1 and H3), at 0 (prior to S(-II) addition), 24 and 72 h of reaction time with S(-II). The gray lines are data and the smooth

lines are the fitting results.

energies, (b) an increase of the white line intensity, and (c) the
disappearance of the characteristic “shoulder” of the U(VI)
spectra at the high energy side of the main peak (Figure 2).
Eigenanalysis revealed that more than 98% of the variance
among all XANES spectra can be explained by the use of two
factors. The samples’ scores for the two components can be
interpreted as an indicator for the extent of U(IV) reduction
into U(VI) in the samples. The relative concentrations of
U(IV) and U(VI) in the solids was determined by ITT-analysis
after expanding the data set with the spectrum of the U(IV)

reference material.
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Addition of S(—H)aq caused reduction of U(VI) into U(IV) in
all iron oxide suspensions (Figure 3). The reduction from
U(VI) to U(IV) occurred during the early stages of reaction
with S(-II),4. No further reduction of U(VI) took place beyond
24 h. In the case of lepidocrocite, U(IV) reached a maximum
equivalent to about 25% of U, by the second hour of reaction
with S(-I),,, with very little increase over the next 3 days
(Figure 3a). This was observed in all three lepidocrocite
suspensions despite the different added concentrations of S(-
1), Variable amounts of S(-II),, also had little effect on the
maximum levels of U(IV) produced in the hematite
suspensions (Figure 3b). However, for the same added S(-
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II)aq concentrations and the same experimental time frame, the
suspensions with hematite yielded much higher percentages of
U(IV) than those with lepidocrocite: ~ 70% in H1 and ~60%
in H3.

Comparison of U(IV) production in the experiments with
hematite and lepidocrocite supports the conclusion of our
previous study™ that reduction of U(VI) is most efficient when
S(-I),q was above the detection limit and U(VI),, concen-
trations were elevated. Dissolved sulfide has been shown to
reduce U(VI)aq in homogeneous solutions in a matter of
hours.”’ However, the measured U(VI),, concentrations only
represent less than 2.5% or 30% of the total uranium in the
experiments with lepidocrocite and hematite, respectively.
These percentages are smaller than those of formed U(IV),
implying that homogeneous reduction of dissolved U(VI) by
S(-II) cannot account for U(VI) reduction alone. Reduction of
U(VI) by S(-IT) can be surface catalyzed®® but it is also possible
that the S* radical,” which forms intermediately upon an one
electron transfer from S(-II) to Fe(III), is the most potent
reductant for U(VI) during iron oxide sulfidization. However,
upon reaction with S(-II), the suspensions may contain also a
variety of potential reductants of U(VI) in addition to S(-II),,
including amorphous FeS,** FeSZ,42’43’62’63 adsorbed

e?*,71%%* and mixed valence iron oxides, such as magnet-
ite.*>*> Elemental sulfur is the main product of S(-II) oxidation
by Fe oxides"”** but formation of surface polysulfides has also
been reported. Polysulfides can form complexes with
urany167_69 and therefore, reduction of U(VI) might become
inhibited due the formation of uranyl—polysulfide complexes.

If reactions between U(VI) and S(-II)aq are the primary
pathway generating U(IV), this implies that consumption of S(-
1), should inhibit U(VI) reduction. Therefore, the conditions
favoring U(VI) reduction were only present during the first 2 h
in the experiments with lepidocrocite, while they lasted for
more than 24 h in the hematite suspensions. The greater extent
of U(VI) reduction in the experiments with hematite, can thus
be explained by two reasons: (a) addition of S(—II)aq leads to a
more extensive release of adsorbed U(VI) to solution, and (b)
consumption of S(-II),q proceeds over a longer period of time
due to the slower sulfidization kinetics of hematite. In other
words: hematite is a weaker oxidant of S(-IT) than lepidocrocite
and, consequently, U(VI) initially adsorbed onto hematite is
preferentially reduced over U(VI) initially adsorbed onto
lepidocrocite.

3.3.2. EXAFS Analyses. The EXAFS spectra of the starting
materials, with U(VI) adsorbed onto lepidocrocite and
hematite, can be reproduced by a model of an uranyl ion
forming a mononuclear bidentate complex with Fe. In this
complex, U is bound to two axial (O,,) and five equatorial
(Oeq) oxygen atoms. The binding distance of U with two of the
O,q that connect the uranyl ion to the Fe center is longer than
that with the other O.. The optimized values for the
parameters of the model (Table 2 and SI Table 1), are in
agreement to those reported in other studies on surface
complexes of U(VI) with Fe oxides.”” The quality of the fitting
was improved by adding a fourth O-shell with an optimized
distance of 2.81 and 2.84 A for hematite and lepidocrocite,
respectively. In earlier studies, additional oxygen atoms with a
comparable distance of 2.87 A from U have been included
when fitting EXAFS spectra of U(VI) adsorbed onto Fe oxides;
they have been interpreted as oxygen atoms belonging to the
coordinating FeOy octahedron.”!
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Changes in U redox state and speciation following the
addition of sulfide to the suspensions of lepidocrocite and
hematite are also reflected in the k*-weighted EXAFS spectra
and their corresponding Fourier transformation (Figure 4a—d).
The indicator function, which is obtained from the
eigenanalysis of all k’-weighted EXAFS spectra, has a minimum
for two factors, implying that only two primary factors account
for the variation between all spectra, while the remaining
variance is primarily caused by experimental noise. The two
components extracted by ITT analysis resemble the EXAFS
spectra of U(VI) adsorbed onto Fe oxides and the average of all
EXAFS spectra from the hematite suspensions after sulfide
addition. This suggests that the quality of the EXAFS spectra
only allows us to interpret the most pronounced features, which
are related to the closest neighboring atoms. For this reason,
U-O paths from the optimized model for adsorbed U(VI)
were utilized as the starting point in the applied model; an
additional O-shell was then added to account for the U-O
coordination of reduced uranium. Several attempts were made
to exchange O for S in the model but these did not lead to
satisfactory fitting results, implying that U is not directly
coordinated with S in the samples.

The results obtained from optimizing the model reflect, in
the first instance, the reduction of U(VI) to U(IV). The
decrease in the amplitude of oscillations between 4 and 10 A™
in the EXAFS spectra (Figure 4 c and d) can be attributed to
the decreased contribution of the U—-O,, scattering path, which
is characteristic for the uranyl ion. Taking the number of atom
pairs of U and axial oxygen atoms (O,,) as an indicator for the
extent of U(VI) reduction, the EXAFS results confirm the
general trend of more extensive U reduction in the experiments
with hematite. The EXAFS spectra similarly did not indicate
further U(IV) reduction after 24 h of reaction time. However,
the fractions of U(VI) calculated from the optimized O,
coordination number (CN) tend to be smaller than the
corresponding fractions obtained from XANES. This difference
could be explained by the incorporation of U(VI) or U(V) into
the iron oxide lattice, which is reflected in an U—O shell with
optimized U—-O distances between those for U-O,, and U—
O, of adsorbed U(vI).'*7 Exposure of iron oxides to reducing
conditions can induce recrystallization of iron oxides and the
incorporation of previously adsorbed U(VI)'*'® and its
subsequent reduction to U(V).””

Reduction of U(VI) to U(IV) is generally expected to result
in the precipitation of UO,. Nonetheless, nonuraninite U(IV)
has been identified as a product of microbial*~"” and abiotic
reduction of U(VI)."””® In microbial experiments, the
preferential formation of nonuraninite U(IV) has been
attributed to biological factors,”® differences in U reduction
mechanisms between different bacterial species,’® and the
presence of phosphorus (P) in the form of phosphate”® or P-
bearing ligands’*~ that appear to inhibit UO, formation. The
latter implies that complexation of U(IV) might interfere with
UO, precipitation. Our previous study with lepidocrocite™
showed that repeated additions of S(-II),, enhance the extent
of U(VI) reduction, ultimately leading to the formation of UO,,
but only when S(-II) is added in sufficient excess. Here, the
EXAFS spectra of the lepidocrocite and hematite suspensions
did not reveal any U-U scattering peaks, which are
characteristic of UQO, formation (see SI for details).
Furthermore, with only a single, initial addition of S(-II),,
incomplete U(VI) reduction was achieved and the produced
U(IV) remained in a monomeric state. Even in the case of
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Figure S. (a)b): (a) Concentrations of U,, from sulfide-reduced suspensions of U-bearing lepidocrocite (L1, L2 & L3) during their exposure to
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process; (b) shows the relative concentrations of U(VI) and U(IV) obtained from ITT analysis of XANES spectra collected from solids retrieved

after 14 days of exposure to atmospheric oxygen.

hematite, where more of the U(VI) was reduced to U(IV)
because of the prolonged presence of S(-II),,, there were no
indications for UO, formation.

3.4. Reoxidation. After 72 h of reaction with S(-II), the
lepidocrocite suspensions were exposed to air. Following a lag
time of about 2 h, U release to solution proceeded rapidly
within the first 10 h of aeration and then continued at a slower,
but sustained, pace for the entire 350 h of aeration (Figure Sa).
The highest U release was observed for suspension L3, which
had been exposed to the lowest level of S(—II)aq (1 mM). In L3,
almost all U that had been initially added to the lepidocrocite
suspension was recovered in solution after 3 days of
reoxidation; this included not only the adsorbed U(VI) but
also U(IV), which had formed during sulfidization but was then
reoxidized and desorbed. The latter follows the trend of earlier
results on the oxidation of bacterially produced monomeric
U(IV), which can be brought into solution in the presence of
aqueous carbonate within hours.””*" In contrast, U released to
solution upon aeration only reached approximately 50% of Uy,
for suspensions L1 and L2, which had reacted with higher
amounts of sulfide (10 and S mM, respectively). Hence, U
release was lower in experiments L1 and L2 in comparison to
experiment L3, despite the fraction of U(IV) being comparable
in all three suspensions after sulfidization (Figure 3a).

The ITT analysis of the XANES spectra (Figure Sb)
indicates that the fraction of solid-phase U(IV) in L1 and L2
increased from about 25% at the start of aeration to 37% and
34%, respectively, by then end of the reoxidation experiments.
That is, the solids became relatively enriched in U(IV) during
reoxidation. This U(IV) enrichment can be attributed to the
preferential desorption of U(VI), which is enhanced by the
formation of aqueous U(VI)-carbonate complexes that form
due to the introduction of atmospheric CO,. When accounting
for the loss to solution of solid-bound uranium during
reoxidation, about 75% (L1) and 87% (L2) of solid-bound
U(IV) produced by the end of the sulfidization experiment was
still present after 2 weeks exposure to atmospheric oxygen.
Thus, it would appear that during sulfidization part of the
U(IV) became strongly bound into the Fe mineral trans-
formation products, hence protecting the reduced U from
oxidation and remobilization.

Additionally, U(VI) adsorption seems not to be completely
reversible in suspensions L1 and L2; part of the solid-bound
U(VI) does not undergo desorption and might also become
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incorporated into iron oxides that may form upon iron sulfide
oxidation in a similar way as reported during iron oxide
precipitation'* or induced recrystallization.''® In this case,
iron mineral transformations induced by a cycle of sulfidization
and reoxidation of iron oxides might be accompanied by U
incorporation similarly as reported by microbially driven redox
cycling of iron.'® In suspension L3 the extent of sulfidization
was less due to the smaller amounts of sulfide used; this lead to
a larger fraction of lepidocrocite still remaining unaltered in
suspension. Thus, the effects of mineral transformation in L3
were minimum compared to those in suspensions L1 and L2,
leading to an almost complete recovery of U(VI).

4. ENVIRONMENTAL IMPLICATIONS

This study has focused on a parameter that connects
sulfidization kinetics with iron oxide mineralogy but which
may have gone unnoticed with respect to U behavior: the
reactivity of iron oxide minerals toward sulfide. Specifically,
competition by S(—II)aq for sites on the iron oxide surfaces
mobilized U to solution and the amounts of U released differed
greatly between lepidocrocite and hematite. In addition to that,
the slower kinetics of reaction between hematite and S(-II)
resulted in a much larger conversion of U(VI) into U(IV) than
for lepidocrocite. Thus, the resulting iron mineral trans-
formation greatly influences U mobility.

Our findings are of interest when investigating the behavior
of uranium and iron mineralogy in sulfur-rich reducing
environments, such as coastal marine sediments or flooded
acid sulfate soils where available sulfide is often present and
sulfidization of iron oxides occurs.”’ ™*° Sulfidization of iron
oxides is also a common process in many terrestrial subsurface
environments with high electron donor supply, for example,
within landfill plumes.86 In natural systems, however, the
presence of carbonate must be considered as the formation of
carbonate complexes with U(VI) may hinder the adsorption of
U(VI) onto iron oxide surfaces®” as well as the potential of
U(VI) reduction.*!

Results from this study also have strong implications for U-
contaminated sites where remediation strategies use biostimu-
lation to achieve immobilization of U(VI) by reduction to
U(IV)**~" For example, in a U-contaminated region in
Colorado the Fe(III) reduction and U immobilization that was
promoted by a first addition of acetate was overturned by a
second acetate addition, which enhanced sulfate reduction and
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remobilized U.*® Despite sulfide accumulation, it is possible
that S(-II) production rates did not exceed S(-1I) consumption
rates by Fe(Ill) reduction so that desorption of U(VI) was
enabled; desorption, however, might have also been generated
by an increase in alkalinity associated with the stimulated
anaerobic respiration.”” At this point, our experiments showed
that reduction of released U(VI) is possible when dissolved S(-
II) is present in the system. When iron oxides with low
reactivity dominate the pool of iron oxides, fast increase and
prolonging sulfide production rates might be desired in order to
facilitate direct reduction of released U(VI). That is, sulfide
consumption rates by iron oxides might be relatively low, which
promotes desorption of U(VI) but also allows the built up of
dissolved S(-II) that may be available for reduction of U(VI). In
this case, remediation strategies have to rely on maintaining
reducing conditions for long time scales in order to stabilize the
formed U(IV). In contrast, for soils that are dominated by iron
oxides with a high reactivity toward sulfide, effective reduction
of U(VI), during the onset of sulfide production, might be
unattainable. That is, consumption rates of sulfide by reactions
with these iron oxides might be too high to allow the
establishment of sufficient high levels of dissolved sulfide that
would remain available for the purposes of U(VI) reduction. In
such cases, incorporation of U into iron minerals might be an
alternative strategy for U immobilization. Our results suggest
that alternating between oxic and sulfidic conditions can result
in the incorporation of U, in either or both oxidation states
(U(VI), U(1V)), by the transformation products of the initially
present Fe oxides. However, further research is required to
delineate conditions that would optimize U incorporation of
U(VI) and monomeric U(IV) within iron phases that form
during alternations between oxic and sulfidic conditions.
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