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Abstract

Model uncertainty and the dependence structures of various risk factors are impor-
tant components of measuring and managing financial risk, such as market, credit and
operational risks. In this thesis we provide a systematic investigation into these issues by
studying their impacts on Credit Value Adjustment (CVA), Counterparty Credit Risk
(CCR), and estimating Value-at-Risk for a portfolio of financial instruments. In particular
we address the numerical issues of finding an unknown (worst-case) copula that ties
marginal distributions of risk factors together given partial information about them.
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Chapter 1

Introduction

1.1 Model Uncertainty and Risk Management
In general there are at least three primary sources of risk for a given portfolio of financial
instruments: market risks, credit risks and operational risks. Market risk is defined as the
losses accrued to the portfolio due to the changes in its underlying financial instruments
and parameters (such as interest rates, exchange rates, equity prices and commodity prices
as well as economic indicators such as gross domestic product (GDP) and consumer price
index (CPI)). Credit risk takes into account the risk of not receiving a payment from a
borrower or counterparty due to a default. Finally, operational risk represents the risk
that is attributed to those losses due to insufficient internal processes, ineffective risk
mitigation measures or exogenous events. In this thesis we will focus only on market risk
factors and credit risk factors.

Credit value adjustment (CVA) of a portfolio of derivatives is the difference between
the default-free portfolio value and the portfolio value, when a counterparty is subject
to default. Calculating CVA requires non-trivial simulations. Identifying the underlying
risk factors, conducting simulations of prices using a specific model and combining this
information at the portfolio level are some of the main steps in calculating CVA. Chapter 2
reviews the common practices underlying such calculations and proposes a new framework
for calculating bounds on CVA contributions with given marginals.

Counterparty Credit Risk (CCR), defined as the risk of default before the final settlement
of a transaction’s cash flows, played an important role in the financial crisis of 2008.
Modelling stochastic exposures and the number of relevant risk factors is a challenging
problem for quantitative modelers. In chapters 3 and 4 we provide an overview of this
problem and propose the worst-case copula methodology to calculate an upper bound on the
Conditional Value-at-Risk (CVaR) of a portfolio by optimizing over all joint distributions
of the market risk factors and credit risk factors with given marginals.

Value-at-Risk (VaR) is a commonly used tool in Quantitative Risk Management (QRM)
for measuring the potential loss of a portfolio of risky assets over a defined period and
at a chosen confidence level α. To this end analyzing a one-period ahead vector of losses
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L = (L1, . . . , Ld)> is required. After providing an overview of the existing literature
on estimating the upper bound on VaR, namely VaRα(L1 + . . . + Ld), given prescribed
marginals of (L1, . . . , Ld), we propose several improvements over the existing algorithm,
known as the Rearrangement Algorithm (RA), and discuss the performance of the resulting
Adaptive Rearrangement Algorithm (ARA) for this problem under different test cases.

In summary, the common thread in the above three problems is that we only know the
marginal distributions of risk factors in each case and the (worst-case) copula that binds
them together is unknown to us.

1.2 Overview and Contributions
The remainder of the thesis is structured as follows.

1.2.1 Bounds on CVA Contributions with Given Marginals

In chapter 2 we review numerical schemes for computing bounds on CVA using linear
programming techniques, originally proposed by Glasserman and Yang [1] by means of
a set of numerical examples for both unilateral and bilateral CVAs in sections 2.6.2 and
2.6.4.

We further present the main principles underlying the calculation of CVA and review
an existing framework, known as the Ordered Scenario Copula (OSC) that is used in
practice for such calculations.

Then we present a numerical example on a portfolio comparing the method of the
ordered scenario copula presented in Rosen and Saunders [2] to that of Glasserman and
Yang [1].

The research contribution of this chapter is in section 2.7 in which we extend the
approach of Glasserman and Yang [1] to derive bounds on CVA contributions in the
presence of netting agreements as defined by Pykhtin and Rosen [3].

1.2.2 Counterparty Credit Risk and Bounds on Conditional Value-
at-Risk

The contribution of Chapter 3 lies in the formulation of the problem of computing bounds
on CVaR when the underlying risk factors have given marginals as a linear optimization
problem, and in the case of a discrete probability space as a linear programming problem.
After formalizing this problem in section 3.5 and proposing the worst-case copula method-
ology, we present the linear programming problem for calculating the bounds on CVaR of
a portfolio in section 3.7.

Then we provide an application of the worst-case copula methodology for the coun-
terparty credit risk. In section 4.1, we formalize this problem under the Basel Accord
framework. A real application is provided in section 4.2, in which we use the methodology
proposed in section 4.1 to find the joint distribution of market risk factors and credit risk
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factors, given their prescribed set of marginal distributions to calculate an upper bound
on CVaR for a real-world portfolio of over-the-counter (OTC) derivatives.

The results presented in chapters 3 and 4 have been published in the Journal of Risk
Management in Financial Institutions (Memartoluie et al. [4]).

1.2.3 Rearrangement Algorithm and VaR Analytical Bounds

In chapter 5, we review existing methods for computing an upper bound on VaR, VaRα(L+),
for homogeneous portfolios with L+ = L1 + . . . + Ld where Li ∼ Fi and F1 = · · · = Fd
including the dual bound approach of Embrechts et al. [5], Wang’s approach presented in
Embrechts et al. [6] and the Rearrangement Algorithm (RA) of Puccetti and Rüschendorf
[7].

The research contribution of this chapter is in examining numerical challenges inherent
in the implementation of these algorithms used for computing an upper bound for the
worst VaR in the case of homogenous marginals, and presenting some theoretical results
relevant to these algorithms. In particular, we consider:

• Dual bound approach: We prove properties of the auxiliary functions that are
used in calculating VaRα(L+). Specifically, Proposition 5.4.2 investigates convexity
and monotonicity of the functions D(s, t) and D̃(s) respectively. We show uniqueness
of the minimum for the auxiliary function D̃(s), and in example 5.4.3 we provide
numerical examples of the challenges presented by this function for the Generalized
Pareto distribution.

• Wang’s approach: Our contribution in this section is stated in Propositions 5.4.4
and 5.4.5. Propositions 5.4.4 studies the uniqueness of the root of the auxiliary
function that is used in this approach and Proposition 5.4.5 presents the results of
computing the appropriate lower and upper bounds for the root-finding procedure
for Pareto marginals. We further demonstrate selected properties of the auxiliary
function h. More specifically, Proposition 5.4.6 shows continuity and differentiability
of the auxiliary function h. In addition to that, in Proposition 5.4.13 we prove the
existence of the root for the auxiliary function h. Finally, we compare the dual
bound approach and Wang’s approach using Pareto marginals to illustrate the above
results in examples 5.4.14 and 5.4.15.

In the case of non-homogenous marginals, after describing the RA of Puccetti and
Rüschendorf [7] for approximating the worst VaR in section 5.5, we study the performance
of this algorithm. More specifically in section 5.6, we present numerical examples to
illustrate the inner working of this method. These include:

• Calculating the upper bound on VaR for portfolios with given marginal loss dis-
tributions in 4 different cases using Pareto marginals, more specifically, when the
marginals are driven by a heavy-tailed distribution, a moderately heavy-tailed distri-
bution, marginals varying from a heavy-tailed distribution to a not so heavy-tailed
distribution and a combination of the previous cases.
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• Investigating the impact of the input parameters of the RA (the choice of discretiza-
tion parameter N and absolute error ε).

• Calculating the run time, the VaR bounds, the number of iterations and the number
of oppositely ordered columns (as a proxy for the objective function) at convergence.

This is the first study that attempts to assess the effect of different properties of the input
distributions (number, heaviness of tail and degree of homogeneity) on the performance of
the Rearrangement Algorithm.

1.2.4 Adaptive Rearrangement Algorithm for Non-homogenous
Portfolios

Our contribution in chapter 6 is in presenting an Adaptive Rearrangement Algorithm
(ARA) and an Enhanced Adaptive Rearrangement Algorithm (EARA), to address some of
the issues identified in chapter 5.

In the ARA:

1. New convergence criteria are used to choose N adaptively.

2. Two stopping criteria are introduced based on a given vector of relative errors,
ε = (ε1, ε2). Iteration continues until both the relative change of the input matrix X
used in computing the lower and upper bounds for VaRα(L+) as well as the relative
difference of these bounds to VaRα(L+) are satisfied as specified by ε = (ε1, ε2).

The performance of the ARA is further investigated in sections 6.3.2, 6.3.3 and 6.3.4 for
some of the most commonly used distributions in quantitative risk management, namely
generalized Pareto, Student’s t-distribution and log-normal for the four portfolios with
different marginal tail behaviors, similar to the studies presented in section 5.6.

Finally, we present the EARA. The main advantage of this algorithm is that it converges
faster when the number of risk factors d is large for a given input portfolio. In addition, a
detailed example of the use of the ARA and EARA using Operational Risk data is also
provided in section 6.5.

The results presented in chapters 5 and 6 are forthcoming in Statistics & Risk Modeling
(Hofert et al. [8]).
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Chapter 2

Worst-case Credit Valuation
Adjustment and CVA Contributions

2.1 Overview
Prior to the global financial crisis of 2008, Credit Valuation Adjustment (CVA), which
is defined as the difference between the portfolio value calculated by assuming that the
counterparty can not default, and the portfolio value calculated when counterparty defaults
are taken into account, was overlooked in the derivatives markets, accounting standards
and regulatory frameworks. However, today CVA is one of the main tools that financial
institutions use to price counterparty risk (a detailed example on how we can calculate
CVA for a simple portfolio, consisting of only one instrument, is presented in section A.1
in Appendix A.).

CVA played an important role in the financial crisis. According to the Basel Committee
on Banking Supervision (BCBS) [9] “Mark-to-market losses due to CVA were not directly
capitalized. Roughly two-thirds of CCR losses [counterparty credit risk losses] were due to
CVA losses and only one-third were due to actual defaults”. If the crisis has taught us
anything, it is that, including the creditworthiness of the respective counterparties and
the credit risks faced by them in the pricing process should become an important part of
calculating the market price of over-the-counter derivatives.

There are two main methods to measure CVA, namely the Unilateral and Bilateral
approaches. The main assumption in calculating the unilateral CVA is that the institution
that performs the CVA analysis (the bank) is default-free. Unilateral CVA pricing produces
the current market value of future losses due to the counterparty’s potential default. It
would be difficult to agree upon a fair trade value if both the bank and the counterparty
require a premium for the credit risk they are bearing. Bilateral CVA addresses this issue:
if we perform our analysis under the assumption that both the counterparty and the bank
can default, we can produce an objective fair value for the trade that both of the parties
can agree upon.

Regardless of the approach that we take for calculating CVA, its implementation can
be intricate for the following reasons:
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• Pricing models: Given a large portfolio (of possibly up to several hundred different
types of instruments) a variety of models is used in the pricing process, some of
which can be quite complex.

• Scenario generation: From a computational standpoint, and given the wide
range of models that are used for pricing various instruments, running Monte Carlo
simulations for computing counterparty exposures, defined as the potential positive
future value of the portfolio, at the time of default, is generally the most expensive
step in computing CVA. For example, in order to perform one CVA calculation for
a portfolio of 40,000 positions, over 1,000 scenarios and 250 time steps, 10 billion
valuations are required.

• Model uncertainty: Even if all of the aforementioned problems are resolved
satisfactorily, the inherent model risk issues surrounding CVA calculation can still
subvert the results of the CVA analysis.

Appendix A illustrates various aspects of model uncertainty, misspecification of param-
eters and the impact of such issues on CVA calculation using a numerical example for a
simple portfolio.

2.2 Outline and Contributions
Section 2.3 provides an overview of the existing literature on CVA calculation and shows
how it is related to the contributions of the thesis in this chapter.

The basics of CVA calculation under both the unilateral and bilateral settings are
presented in section 2.4. The inner workings of one of the existing frameworks, namely the
Monte Carlo approach of the Ordered Scenario Copula (OSC) methodology, proposed by
Rosen and Saunders [2] for computing CVA in the presence of wrong-way risk, are shown
in sections 2.5.2 and 2.6.

In sections 2.6.4 and 2.6.2 the Worst-case CVA methodology under both the unilateral
and bilateral settings is illustrated. The methodology presented in sections 2.6.2 and 2.6.4
is from Glasserman and Yang [1]. In sections 2.6.3, 2.6.5 and 2.6.6, we implement and
compare the performance of the worst-case copula methodology to that of the ordered
scenario copula of Rosen and Saunders [2] for calculating the unilateral and bilateral
CVAs.

Section 2.7 outlines the issues surrounding the calculation of CVA with netting agree-
ments. In particular, we outline the methodology of Pykhtin and Rosen [3] for calculating
CVA contributions in the presence of a netting agreement in sections 2.7.1 and 2.7.2.

The main contribution of this chapter is presented in section 2.7.4. By combining
the method of Pykhtin and Rosen [3] with that of Glasserman and Yang [1], presented
in section 2.6.2, we calculate bounds on CVA contributions at the position level when
the counterparty’s credit quality and exposures are correlated. A comparison of the
performance of this methodology with that of Pykhtin and Rosen [3] is presented at the
end of this section.
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2.3 Literature Review
One of the earliest works which attempts to classify issues surrounding model risk in the
valuation of financial assets is found in Derman [10]. In this work the author investigates
various assumptions of the underlying models used for valuing securities in finance and
the ensuing risk. Analyzing various kinds of models used in finance (fundamental, phe-
nomenological and statistical) and the advantages and disadvantages associated with each
of them in practice is an important aspect of this work. Specifically the author investigates
issues such as inapplicability of a model, usage of an incorrect model, incorrect solution
produced by correct model, badly approximated solution, software and hardware bugs and
inappropriate usage of correct model for valuation purposes.

Several authors have investigated the pricing of derivatives under different assumptions
and models, taking into account only the default risk of clients. One of the earliest works
in this regard is by Cooper and Mello [11] in which the authors introduce the concept of an
unilateral counterparty value adjustment of interest rate swaps and derive equilibrium swap
rates. More recent works by Brigo and Masetti [12] and Brigo and Pallavicini [13] take an
in-depth look at pricing interest rate swaps and equity derivatives and the counterparty
credit risk associated with the portfolios of such instruments. In a related work Brigo et al.
[14] investigate the valuation of counterparty risk for commodity derivatives.

Rüschendorf [15] performs a comparison of multivariate risk vectors with respect to
supermodular or related orderings in order to identify some function classes which allow him
to conclude that positive (negative) dependent random vectors are more (less) risky than
independent vectors with respect to these functions. The performance of Fréchet bounds
when multivariate marginal distributions are given is investigated as well. Rüschendorf [16]
adapt some classical tools such as Fréchet bounds for describing the worst case dependence
structures for a portfolio of financial assets.

The approach of Haase et al. [17] does not rely on any specific model for the joint
evolution of the underlying risk factors when a bilateral counterparty value adjustment is
made. In order to cover various types of derivatives (such as interest rate, commodity and
credit default swaps) in their valuation process, they incorporate three main components
in the counterparty valuation: the first part describes the loss given default process that
is assumed to be constant unless random recoveries are made; the second component
corresponds to default indicators of the two counterparties; and the last component consists
of exposure-at-default of the over-the-counter derivative; the latter part describes the
risk-free present value of any outstanding amount if any of the counterparties defaults.
The authors show how any coupling of the aforementioned components leads to a feasible
adjustment. After that a series of linear optimization problems is presented. The solutions
to these problems provide tight bounds on the adjustments. Despite the simplicity of
these methods, it is not clear how close the proposed bounds are to the worst possible
counterparty value adjustment.

Compared to other contracts, an analysis of the counterparty credit risk for credit
default swaps (CDS) has proven to be far more complex. An accurate valuation of
CDS contracts requires that we consider joint defaults of both counterparties and the
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reference entity. In addition, in order to account for the fluctuation of the market value
of CDS contracts, one has to consider stochastic credit spreads. Brigo et al. [14], Brigo
and Chourdakis [18] and Brigo and Pallavicini [13] utilize dynamic stochastic models to
investigate this issue. Leung and Kwok [19] model default intensities as deterministic
constants. Lipton and Sepp [20] take a different approach and utilize a multi-dimensional
jump-diffusion version of a structural default model and use it to compute the credit value
adjustment for a credit default swap. Crépey et al. [21] study the counterparty risk on
a payer CDS using a Markov chain model of two reference credits, one representing the
firm underlying the CDS and the other the protection seller in the CDS. Hull and White
[22] use correlated models for valuing CDS contracts, allowing the payoff to be contingent
on defaults by multiple reference entities. Finally Walker [23] utilizes a continuous-time
Markov approach for pricing CDS.

One of the earliest works that incorporates a bilateral default risk in pricing derivatives
is by Sorensen and Bollier [24] on interest rate swaps contracts. The authors develop a
model of swap default risk that evaluates a joint probability of the swap counterparty
defaulting and the cost of the default for the solvent party. The authors further include
a bilateral default risk into this framework and evaluate a replacement cost that affects
both parties in case of default. In addition to incorporating different default risks, Duffie
and Huang [25] investigate the impact of credit risk asymmetry and netting rules on
pricing interest rate derivatives and currency swaps. Brigo and Capponi [26] model default
dependence by introducing stochastic intensity and a trivariate copula function for default
times. The authors further analyze a portfolio of CDS to illustrate the application of this
methodology. Brigo et al. [27] incorporate the correlation between the default times of
the investor and the counterparty, as well as the correlation of each of these with the
underlying risk factors to analyze a portfolio of interest rate derivatives.

A more detailed treatment of fundamental concepts of counterparty credit risk and
credit value adjustment can be found in Gregory [28], Cesari et al. [29] and Brigo et al.
[30].

Glasserman and Xu [31] take a more mathematical approach to the issue of model
uncertainty in financial risk management. In addition to investigating the impact of
imperfect assumptions and parameter estimates in creating model risk, they develop a
framework for assessing how such model errors can be quantified. Glasserman and Yang
[1] propose a method for bounding wrong-way risk (when there exists an unfavorable
correlation between the value of the underlying portfolio and the default of the counterparty)
when the marginal distributions of market and credit risk factors are known (this method
is reviewed in section 2.5). Similarly, Beiglböck et al. [32] use infinite-dimensional linear
programming techniques to calculate model-independent bounds for exotic options.

Calculating position-level CVA contributions to the counterparty CVA is a fairly new
problem and has been studied in Pykhtin and Rosen [3]. The authors reduce the problem
of calculating position-level CVA contributions to the problem of calculating contributions
of individual trades to the counterparty-level expected exposure.

In section 2.7 we apply the approach of Glasserman and Yang [1] to the problem of
calculating bounds on the position-level contributions to CVA. A brief summary of the
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notation that we use in chapter 2 is shown below:

CVAU : the unilateral CVA
CVAB : the bilateral CVA
CVAU

i : CVA contribution of the i-th trade in the portfolio
of the bank with the counterparty C

τC : the default time of the counterparty C
RC : the recovery rate of the counterparty C
τB : the default time of the bank B
RB : the recovery rate of the bank B

2.4 CVA Basics

In practice, there are two main methods for calculating Credit Value Adjustment: Unilateral
and Bilateral. In the following section, we will define these concepts in detail. Although
netting and collateral agreements are an important part of CVA calculation in practice, we
are more interested in the inner-dynamics of CVA calculation and we refer the reader to
Pallavicini et al. [33], Morini and Prampolini [34] and Burgard and Kjaer [35] for more
details on these issues.

Consider a portfolio of K instruments that the bank has with a given counterparty C.
Let vi(t) denote the value of the i-th instrument in the portfolio at time t from the bank’s
perspective. When there is no netting agrement, the counterparty-level exposure, E(t),
for counterparty C is defined as:

E(t) =
K∑
i=1

max{vi(t), 0} (2.4.1)

Alternatively, if there is a single netting agreement in place, the (netted) exposure is
defined as:

E(t) = max{V (t), 0} (2.4.2)

where
V (t) =

N∑
i=1

vi(t) (2.4.3)

For the sake of simplicity, we assume a single netting agreement to be in place. To this
end let V +(t) represent the bank’s exposure to counterparty C at the default time t, i.e.,

V +(t) = max{V (t), 0} (2.4.4)

Then the bank’s loss when counterparty C defaults at the time of default of the counterparty,
τC, discounted to today is written as:

L = 1{τC6T}(1−RC)D(τC)V +(τC) (2.4.5)
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where RC represents a recovery rate, which is a fraction of the exposure that the bank
recovers if the counterparty defaults, T is the maturity of the longest contract in the
portfolio, D(τC) is the discount factor at τC and 1{τC6T} is the default indicator function,
defined as:

1{τC6T} =

1 if counterpary C defaults
0 otherwise

Note that in calculating L in (2.4.5) we assume that the bank has not defaulted prior to
the counterparty’s default. Similarly, if we are interested in the counterparty’s exposure
to the bank’s default, we should calculate:

V −(t) = max{−V (t), 0} (2.4.6)

where V −(t) represents a positive value of the portfolio from the counterparty’s perspective.

The counterparty exposure V +(t) represents the economic loss due to the counterparty’s
default. Note that the recovery rate is not taken into account in calculating the exposures
and they simply represent the cost of replacing the trades if default occurs. In the presence
of a collateral agreement,

V +(t) = max{V (t)− C(t), 0}

where V (t) and C(t) represent the portfolio value and the available collateral at time t
respectively.

Let the distribution of the counterparty’s default time, τC, be given by FC(t) = P (τC 6
t). Then the unilateral CVA, denoted by CVAU (and assuming a constant recovery rate
RC), is calculated by taking an expectation of equation (2.4.5):

CVAU = E[L] = (1−RC)
∫ T

0
EEU+(t)dFC(t) (2.4.7)

where
EEU+(t) = E[D(t)V +(t)|τC = t] (2.4.8)

represents a risk-neutral discounted expected exposure (EEU+) given that the counterparty
has defaulted at time t. Throughout the following, the discount factors D(t) are computed
by using continuous compounding for a given fixed risk-free rate r0, i.e.,

D(t) = exp(−r0t)

Note that in calculating CVA using equation (2.4.7), we make no assumption on the
dependence of exposures and the counterparty’s credit quality. When the counterparty’s
credit quality and exposure are assumed to be independent of each other, we can replace
EEU+(t) by E[D(t)V +(t)] in equation (2.4.7) to calculate CVA.

Similarly, and by taking into account the possibility of the bank’s default, the bilateral
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CVA, CVAB, can be calculated by using:

CVAB = (1−RC)
∫ T

0
EEB+[t]dF ′C(t)− (1−RB)

∫ T

0
EEB−[t]dF ′B(t) (2.4.9)

where

EEB+[t] = E[D(t)V +(t)|τC = t, τB > t] (2.4.10)
EEB−[t] = E[D(t)V −(t)|τB = t, τC > t] (2.4.11)

and RB denotes the recovery rate that the counterparty receives in case of the bank’s
default, τB is the default time of the bank, and V −(t) is given by (2.4.6).

Note that computing EEB+ and EEB− for the CVAB is slightly different from its
computation in the CVAU . The main assumption in calculating the bilateral CVA by using
equation (2.4.9) is that the counterparty’s expected exposure, defined in equation (2.4.10)
(and similarly that of the bank, defined in equation 2.4.11) is calculated conditional on the
bank not defaulting at or before τC (at or before τB). That is in F

′
C(t) = P [τC 6 t, τB > τC]

(and F
′
B(t) = P [τB 6 t, τC > τB]) in equation (2.4.9) we assume that the bank (the

counterparty) has not defaulted before the counterparty (the bank). For the sake of
simplicity, the probability of both parties defaulting at the same time, P [τB = τC], is
assumed to be zero.

2.5 Wrong-way Risk and CVA
As we have pointed out earlier, to devise a comprehensive CVA pricing scheme, we should
not ignore the correlation between the counterparty’s credit quality and the underlying
market movements. The unfavorable correlation between the value of the underlying
portfolio and the default of the counterparty is known as a wrong-way risk. A wrong-way
risk presents itself in increments of exposures when the counterparty’s credit quality
deteriorates (see Arvanitis and Gregory [36], Cesari et al. [29] and Garcia-Cespedes et al.
[37]). Note that we may also have a right-way risk, a case in which exposures decrease
as their corresponding counterparty’s default probability increases. A wrong-way risk is
classified into two main categories; a general wrong-way risk and a specific wrong-way risk:

• General wrong-way risk: this risk occurs when systematic factors jointly affect
a counterparty’s credit quality and the underlying portfolio’s value. An example
of this can be seen in correlation of some of the counterparties’ default times with
changes in interest rates or an index.

• Specific wrong-way risk: this risk occurs when idiosyncratic factors are correlated
with exposures, leading to a high correlation between the counterparty’s exposure
and its default likelihood. For example, this can happen if a company uses its shares
as a collateral. If the company’s creditworthiness deteriorates due to an idiosyncratic
risk, its share price declines, leading to increased exposure.
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In the next section, we briefly describe the existing literature on calculating the
unilateral and bilateral CVAs based on the frameworks presented in [2]. Afterward, we
present the method of Glasserman and Yang [1] for computing the worst-case CVA in the
presence of the wrong-way risk.

2.5.1 Worst-Case Unilateral CVA: Dependence of Exposures
and Counterparty’s Credit Quality

The dependence of the exposures and the counterparty’s credit quality affects the CVA
calculated in equation (2.4.7).

Assume Y to be the random variable which represents the exposures factors, with the
cumulative distribution function FY (y). Assume further that the distribution of the default
time of the counterparty C is given by FC(t) as before. To formalize the calculation of the
worst-case CVA, assume that we know the distributions of the counterparty’s default time,
FC(t), and that of the exposures factors, FY (y), but do not know their joint distribution,
FCY (t, y), i.e., the distributions FC(t) and FY (y) represent the marginal distributions of
FCY (t, y).

We define portfolio losses L = L(τC, Y ) and calculate the unilateral CVA (typically
done by simulating default events of the respective counterparties across various market
scenarios; see sections 2.5.2 and 2.6.2 for a detailed treatment of this approach). Our goal
is to determine the joint distribution of (τC, Y ) that maximizes the unilateral CVA:

sup
FCY ∈F(FC,FY )

CVAU (L(τC, Y )) (2.5.1)

where F(FC, FY ) is the Fréchet class of all possible joint distributions of (t, Y ) matching
the previously defined marginal distributions FC and FY .

In the next section we discuss the existing CVA calculation methodologies in practice
and how they relate to the worst-case CVA problem.

2.5.2 CVA in Practice

In many practical applications, Monte-Carlo simulation methods are the primary tool for
calculating CVA. Assume that we primarily focus on a single counterparty C. The first
step in calculating CVA is to simulate counterparty exposures over time. The Monte-Carlo
simulation process generates counterparty portfolio values and discount factors for a
given set of time points and market scenarios related to the portfolio. Default events are
then simulated under each market scenario and equations (2.4.7) and (2.4.9) are used to
calculate CVA.

More formally, assume that we are interested in calculating CVA, given a set of M
market scenarios yj, j = 1, . . . ,M , each of which has been discretized over a set of N + 1
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time steps, ti, i = 1, . . . , N + 1. Assume further that the probability of the j-th market
scenario is pj, j = 1, . . . ,M .

Let V (ti, yj) be the value of the portfolio under the j-th market scenario at time ti.
Then the positive and negative parts of the counterparty value (determining the bank’s
exposure to the counterparty’s default and the counterparty’s exposure to the bank’s
default respectively) are:

V +(ti, yj) = max{V (ti, yj), 0}
V −(ti, yj) = max{−V (ti, yj), 0}

i = 1, . . . , N + 1, j = 1, . . . ,M (2.5.2)

Using (2.4.8) and by averaging the equations in (2.5.2) at a given time point ti, i =
1, . . . , N + 1 and over all scenarios we can derive the discounted expected exposures as:

EEU+(ti) = E(D(ti)V +(ti, yj)|τC = ti) =
M∑
j=1

P (Y = yj|τC = ti)D(ti)V +(ti, yj)

i = 1, . . . , N + 1 (2.5.3)

where E(·) denotes an expectation operator. Assuming the independence of counterparty
defaults and exposures, the unilateral CVA is calculated by discretizing the integral in
(2.4.7) and by using the expected exposures given in (2.5.3). The discretized unilateral
CVA is given by:

CVAU = (1−RC)
N∑
i=1

EE
U+(ti) · (FC(ti+1)− FC(ti)) (2.5.4)

where EEU+(ti) is the representative discounted expected exposure over the period (ti, ti+1)
and is defined as:

EE
U+(ti) = EEU+(ti) + EEU+(ti+1)

2 , i = 1, . . . , N (2.5.5)

The discretization scheme used in (2.5.5) is proposed in Basel III (see Basel Committee
on Banking Supervision (BCBS) [38] for more details.). Furthermore (FC(t+ i)− FC(ti))
denotes the probability that the counterparty C defaults at the i-th time interval, i =
1, . . . , N (note that we have N time intervals corresponding to (t1, t2), . . . , (tN , tN+1)).

Similarly, the discretized expression for bilateral CVA is derived based on (2.4.9):

CVAB = (1−RC)
N∑
i=1

EE
B+(ti) · (F

′

C(ti+1)− F ′C(ti))

−(1−RB)
N∑
i=1

EE
B−(ti) · (F

′

B(ti+1)− F ′B(ti)) (2.5.6)
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where EEB+(ti) and EEB−(ti) over the i-th time interval, i = 1, . . . , N are defined by:

EE
B+(ti) = EEB+(ti) + EEB+(ti+1)

2 (2.5.7)

EE
B−(ti) = EEB−(ti) + EEB−(ti+1)

2 (2.5.8)

for which EEB+(ti) and EEB−(ti) for bilateral CVA calculation at each time step ti, i =
1, . . . , N + 1 are given by:

EEB+(ti) = E(D(ti)V +(ti)|τC = ti, τB > ti) =
M∑
j=1

P (Y = yj|τC = ti, τB > ti)D(ti)V +(ti, yj)

EEB−(ti) = E(D(ti)V −(ti)|τB = ti, τC > ti) =
M∑
j=1

P (Y = yj|τB = ti, τC > ti)D(ti)V −(ti, yj)

respectively. In the next sections, we present the ordered scenario copula methodology,
proposed by Rosen and Saunders [2], for stress testing CVA under a wrong-way risk. This
method is designed to capture the wrong-way risk effect when the counterparties credit
quality and exposures are correlated. We then present the worst-case CVA methodology
of Glasserman and Yang [1] for calculating the worst-case unilateral and bilateral CVAs in
sections 2.6.2 and 2.6.4.

2.6 Wrong-way Risk and the Ordered Scenario Cop-
ula Methodology

2.6.1 Joint Market-Credit Model and OSC

As discussed in section (2.6), estimating the joint market-default probabilities is an im-
portant part of capturing the wrong-way risk when calculating CVA. In this section,
we take a closer look at the credit risk model, the market risk model and the resulting
joint market-credit codependence model which is used in the ordered scenario copula
methodology.

Credit Risk Model: Using a single-factor copula model for counterparty default
times and a Gaussian copula (consistent with the Basel II model; see Basel Committee on
Banking Supervision (BCBS) [39] for further details.), we assume that the counterparty’s
default is driven by its Creditworthiness Index (CWI)1,

CWIC 6 Φ−1(FC(t))

that is counterparty C defaults at time t if its creditworthiness index falls below a certain
1This notation is commonly used in Basel Accord documentation on credit risk models.
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threshold and the creditworthiness index is defined as:

CWIC = √ρC · Z +
√

1− ρC · εC

where Z and εC are the systematic and idiosyncratic risk factors respectively, following
an independent standard normal distribution and ρC is the factor loading, giving the
sensitivity of counterparty C to the systematic factor Z.

Market Risk Model: As described in section (2.5.2), assume that using a Monte
Carlo simulation, M market scenarios (with uniform distribution) over N + 1 time steps
have generated the counterparty exposures, i.e.,

P (Y = yj) = pj = 1
M
, j = 1, . . . ,M

This implies a two-dimensional matrix of exposures V +(ti, yj) for all i = 1, . . . , N+1, j =
1, . . . ,M .

Using these simulated exposures, we construct the market risk part of the model as
follows. Let s denote a market factor, used to describe exposures and assume that it
follows a standard normal distribution. The exposure scenario is determined by using the
value of this factor in the following algorithm:

Algorithm 2.6.1: Market Risk Model Algorithm in OSC

1. Let Φ be the standard normal cumulative distribution function. Calculate the thresholds
Hm, defined as:

Hm =


−∞, m = 0
Φ−1(Pm), m = 1, . . . ,M − 1
∞, m = M

(2.6.1)

where for a fixed m, m = 1, . . . ,M − 1

Pm =
m∑
j=1

pj (2.6.2)

2. Given a random s ∼ N(0, 1), determine the exposure scenario yj according to:

Y = yj ⇐⇒ Hj−1 < s 6 Hj , j = 1, . . . ,M (2.6.3)

Note that in the step 1 of algorithm 2.6.1 all thresholds Hm are calculated first for all
m, m = 0, . . . ,M and then used in step 2 to determine a market scenario yj.

It is important to distinguish between market scenarios (each of which is denoted by
yj, j = 1, ...,M in algorithm 2.6.1 ) and the value of the exposures of the bank to the
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counterparty’s default (or that of the counterparty to the bank’s default) under each market
scenario yj and at each time step ti from which we calculate V +(ti, yj) (and respectively
V −(ti, yj)). A market scenario yj, j = 1, ...,M , contains the information 2 that is required
to calculate V +(ti, yj) and V −(ti, yj) at each time step ti, i = 1, . . . , N + 1. An example of
a complete market scenario yi, depicting the exposure of an ongoing trading relationship be-
tween the bank and counterparty for one year, is shown in figure 2.1. A numerical example
for how the exposures are simulated under each market scenario is presented in section 2.6.2.

Joint Market-Credit Codependence Model: In this model we assume that the
market risk factor Y and the credit risk factor Z are random variables which have a bivariate
normal distribution with a given market-credit correlation ρ, i.e., (Y, Z) ∼ N(0,Σ), where:

(Y, Z) ∼ N(0,Σ), 0 = (0, 0), Σ =
(

1 ρ
ρ 1

)
(2.6.4)

In order to specify a particular method that correlates exposures with defaults, we define an
ordering of the exposure scenarios. For example by using a particular method of scenario
ordering we can assume that the counterparty portfolio values are directly correlated with
its credit quality.

We order the exposure scenarios in an increasing order of the time-averaged total
portfolio exposure.3 Moreover, for a given ρ ∈ [−1, 1], the pre-specified correlation for
the systematic credit factor Z and exposure factor Y , we simulate z0 from their standard
bivariate Gaussian distribution (2.6.4), assuming that Y = s is the same as the one that
we generated in the step 2 of algorithm 2.6.1. That is, given Y = s, the distribution of Z
becomes N(ρ, 1− ρ2) and

z0 = s · ρ+
√

1− ρ2 · r

where r is a standard normal random variable. Finally, by generating εC for the idiosyncratic
risk factor we can compute

CWIC = √ρC · z0 +
√

1− ρC · εC

and determine whether or not counterparty C has defaulted. By ordering the exposure
scenarios in an increasing order of the time-averaged total portfolio exposure and choosing
a positive market-credit correlation ρ, we will get higher concurrent default rates and

2Note that depending on the application, Y could be a random variable, a random vector or a stochastic
process.

3Assume that T is the longest maturity of the contracts in the counterparty’s portfolio with the bank.
Then this is simply done by computing 1

T

∑N
i=1[V

+(ti,yj)+V +(ti+1,yj)
2 · (ti+1 − ti)] for all j, j = 1, . . . ,M

and sorting them in an increasing order to determine j(1), j(2), . . . , j(M−1), j(M), the new ordering of the
exposure scenarios for which we have:

N∑
i=1

[
V +(ti, yj(1)) + V +(ti+1, yj(1))

2 · (ti+1 − ti)] 6 . . . 6
N∑
i=1

[
V +(ti, yj(M)) + V +(ti+1, yj(M))

2 · (ti+1 − ti)]
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exposures. Note that Rosen and Saunders [2] suggest alternative methods (such as single
scenario ordering and time-dependent scenario ordering) to correlate the exposures and
defaults.

2.6.2 Worst-Case Unilateral CVA Optimization

To demonstrate the worst-case CVA methodology of Glasserman and Yang [1], we start
this section by describing the exposure dynamics of the portfolio that the bank has with
a single counterparty. In order to simplify the model, we only consider the aggregated
exposure between the counterparty and the bank. Assume that this aggregated exposure
is modelled by using an Ornstein-Uhlenbeck process X(t):

dX(t) = κ(µ−X(t))dt+ σdW (t) (2.6.5)

where µ is the level toward which the aggregated exposure reverts, κ is the rate of the
mean reversion, σ is the instantaneous standard deviation of X(t) and W (t) is a standard
Brownian motion.

As we have shown in figure 2.1, using an O-U process allows us to assume a positive
aggregated exposure for either the bank or the counterparty. The exposure dynamics
remain stationary overall. The mean-reverting coefficient is κ = 1, µ = 0, and σ is set as
20% in (2.6.5), and X(0) = 0, indicating that neither the bank nor the counterparty has
exposure to the other at time zero.

Trading period (in days) 
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Figure 2.1: An instance of the market scenario yj depicting the bank’s exposure to
the counterparty’s default (red path) and the counterparty’s exposure to the bank’s default
(blue path) for a period of 250 trading days.

Assume further that we simulate M market scenarios (each denoted by yj, j =
1, 2, . . . ,M) according to the process (2.6.5). That is, each simulated market scenario
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yj, j = 1, 2, . . . ,M contains the aggregate exposures information for both the bank and
counterparty (as shown in figure 2.1) over a predefined time horizon T , the longest maturity
of the contract in the counterparty’s portfolio with the bank.

Each scenario is equally likely, i.e., they are drawn from a Monte-Carlo simulation and:

P (Y = yj) = pj = 1
M
, j = 1, . . . ,M (2.6.6)

Recall from equation (2.4.5) that the first step in calculating CVA is to determine the
default status of the counterparty:

L = 1{τC6T}(1−RC)D(τC)V +(τC) (2.6.7)

Next we define a credit model. Assume that the counterparty default time follows
an exponential distribution with a prespecified parameter λ. Under this distribution,
counterparty C defaults before time τC where

τC ∼ exp (λ) (2.6.8)

Our goal is to find the worst-case unilateral CVA by solving the following optimization
problem:

max
N+1∑
i=1

M∑
j=1

Eϑ(L) (2.6.9)

N+1∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N + 1

ϑij > 0, i = 1, . . . , N + 1, j = 1, . . . ,M

where
CVAU(L) = Eϑ(L)

and pj = P (Y = yj), j = 1, . . . ,M is defined in (2.6.6) and qi, i = 1, . . . , N + 1 is the
corresponding discretized default time distribution given in (2.6.8), defined as:

qi = FC(ti+1;λ)− FC(ti;λ), i = 1, . . . , N
qi = 1− FC(ti;λ), i = N + 1 (2.6.10)

where FC(t;λ) is the cumulative distribution function of the exponential distribution that
governs the default of counterparty C.

Note that we assume that the defaults can occur at or before time step ti, i 6 N + 1 and
there is no default event after tN+1 = T , the longest maturity of a contract in the portfolio.
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ϑij = P (ti < τC 6 ti+1, Y = yj) denotes the joint probability of market scenario yj and
the default event occurring in the time interval (ti, ti+1].

Moreover, P (τC, Y ) ∈ F(FC, FY ), the Fréchet class of all possible joint distributions
of (τC, Y ) matching the prescribed discretized marginals FC and FY . It is not necessary to
specify the additional constraint that the total sum of the joint distribution is equal to
one as the sum of each marginal distribution is equal to one.

2.6.3 Numerical Algorithm for the Worst-case Unilateral CVA:
Dependence of Exposures and Counterparty’s Credit Qual-
ity

Problem (2.6.9) can be recast as the following linear programming problem:

max
N+1∑
i=1

M∑
j=1

lijϑij (2.6.11)

N+1∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N + 1

ϑij,> 0 i = 1, . . . , N + 1, j = 1, . . . ,M

where

lij = 1
2(1−RC)

(
D(ti)V +(ti, yj) +D(ti+1)V +(ti+1, yj)

)
, i = 1, . . . , N, j = 1, . . . ,M

lij = 1
2(1−RC)

(
D(ti)V +(ti, yj)

)
, i = N + 1, j = 1, . . . ,M (2.6.12)

The first constraint ensures that the paths of the market factors have equal weights and
the second ensures that the default time distribution in the joint model has the correct
marginal distribution. The last equation in (2.6.12) when computing the coefficients of
the linear programming problem (2.6.11) corresponds to the final time step as there are
no defaults for any t > tN+1 (in all market scenarios j = 1, . . . ,M) and V +(t, yj) = 0 as it
is defined in equation (2.5.2). The running example considered by Glasserman and Yang
[1] has a structure of a transportation problem for which efficient algorithms (such as a
strictly polynomial algorithm) can be used.

Algorithm 2.6.3: Worst-case Unilateral CVA Algorithm

1. Simulate M market scenarios to generate aggregated exposures between the counterparty
and the bank according to the process (2.6.5):

dX(t) = κ(µ−X(t))dt+ σdW (t), X(0) = 0
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2. Construct the discretized marginal distributions of the market scenarios, pj , and the default
time qi using:

qi = FC(ti+1;λ)− FC(ti;λ), i = 1, . . . , N
qi = 1− FC(ti;λ), i = N + 1

pj = 1
M
, j = 1, . . . ,M

3. For all market scenarios yj and time steps ti calculate V +(ti, yj) = max{V (ti, yj), 0} and
define lij according to

lij = 1
2(1−RC)

(
D(ti)V +(ti, yj) +D(ti+1)V +(ti+1, yj)

)
, i = 1, . . . , N, j = 1, . . . ,M

lij = 1
2(1−RC)

(
D(ti)V +(ti, yj)

)
, i = N + 1, j = 1, . . . ,M

4. Find the optimal worst-case distribution ϑij , i = N + 1, j = 1, . . . ,M of the market
scenarios and the counterparty’s default time by solving (2.6.11)

5. Calculate the worst-case unilateral CVA as:

CVAU =
N+1∑
i=1

M∑
j=1

lijϑij (2.6.13)

In order to assess the performance of the worst-case unilateral CVA methodology
described above, we start by simulating M = 10,000 market scenarios, generating the
aggregated exposure between the counterparty and the bank over a T = 5 year time
horizon using the Ornstein-Uhlenbeck process in (2.6.5) with the specified configuration
of parameters described in section 2.6.2. Each exposure scenario is simulated by using
daily time steps, i.e., each scenario consists of the aggregated exposures for 1250 trading
days based on an Ornstein-Uhlenbeck process. Then by using a recovery rate of RC = 0.3
and a risk-free rate of r0= 5% (for computing the discount factors at each time step
ti, i = 1, . . . , N + 1, using continuous compounding), we define the coefficients of the linear
programming problem in algorithm 2.6.3. As noted earlier, the marginal distribution of
market scenarios, pj, is defined as 1/M in the linear programming problem (2.6.11).

Next, we discretize the default time distributions. Recall that we have assumed that
the default time of counterparty C follows an exponential distribution. This is achieved by
defining qi in the linear programming problem in (2.6.11) to be:

qi = FC(ti+1;λ)− FC(ti;λ), i = 1, . . . , N (2.6.14)

where N = 1250 and an equally spaced grid is used in equation (2.6.14). Moreover, for
the final time step (i = N + 1), qN+1 reduces to 1− FC(T ;λ).

Having defined the discretized marginal distributions of the exposure scenarios and
the counterparty default time, we use algorithm (2.6.3) to derive the worst-case coupling
of the market scenarios and the counterparty defaults. The worst-case unilateral CVA is
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then found by taking the expectation of the lnm defined in (2.6.12) with respect to this
new joint distribution.

Figure 2.2: Unilateral CVA calculated using the worst-case CVA method.

The results are shown in figure 2.2. To generate figure 2.2, 9 instances of the lin-
ear programming problem (2.6.11) are solved by using different average default rates
(parameterized using equation (2.6.14)) for the counterparty C, i.e.,

τC ∼ exp (λi) λi ∈ {0.5, 1, . . . , 4.5} (2.6.15)

Each instance of the linear programming problems is solved by using IBM ILOG CPLEX
Optimization Studio. Appendix E provides an overview of the CPLEX Optimization
Studio and a description of various optimization methods provided in CPLEX as well as
different solution status codes and their respective meaning. The results shown in table
2.1 were produced on a platform that uses an AMD 3.2 GHz Phenom II X4 955 processor
with 16 GB RAM.

λC T M N+1 run time sum of primal sum of dual duality solution
(in seconds) residuals residuals gap status code

0.5 5 10000 1251 528.9764 1.19e-07 1.071e-07 6.9908e-09 1
1 5 10000 1251 435.4414 4.9836e-07 4.4853e-07 8.909e-09 1
1.5 5 10000 1251 544.6313 9.5974e-07 8.6377e-07 9.5929e-09 1
2 5 10000 1251 550.9365 3.4039e-07 3.0635e-07 5.4722e-09 1
2.5 5 10000 1251 404.5313 5.8527e-07 5.2674e-07 1.3862e-09 1
3 5 10000 1251 452.3975 2.2381e-07 2.0143e-07 1.4929e-09 1
3.5 5 10000 1251 412.0297 7.5127e-07 6.7614e-07 2.5751e-09 1
4 5 10000 1251 545.5098 2.551e-07 2.2959e-07 8.4072e-09 1
4.5 5 10000 1251 463.7388 5.0596e-07 4.5536e-07 2.5428e-09 1

Table 2.1: Run time, sum of primal residuals, sum of dual residuals, duality gap
and solution status code for the 9 linear programming problems (2.6.11) associated with
different average default rates given in (2.6.15).
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As we have shown in table 2.1, we check the quality of the solution by using various
measures. The solution status code of 1 indicates that an optimal solution has been
found. Other solution status codes, listed in Appendix E, are indicative of the algorithm
encountering an issue when solving linear programming problems. We further check the
quality of the solution by using the duality gap and the sum of primal and dual residuals
for each linear programming problem.

Alternatively, we can calculate the unilateral CVA corresponding to each λi in (2.6.15)
by using the ordered scenario copula, discussed in section 2.6. The results are shown
in figure 2.3. In order to compare these results with the performance of the worst-case

Figure 2.3: Unilateral CVA calculated using ordered scenario copula method.

unilateral CVA methodology described above, we use the worst-case copula results as a
benchmark and calculate the ratios of

CVAU
OSCi

CVAU
WCi

, i = 1, . . . , 9 (2.6.16)

for each instance of the corresponding ordered scenario copula and the worst-case CVA
(as proposed by Glasserman and Yang [1]) given a fixed average default rate described in
(2.6.15). The resulting ratios are plotted against the average default rate in years and are
shown in figure 2.4.

As noted earlier in section 2.6.1, the co-dependence of the exposures and the defaults
are determined by the market-credit correlation, ρ, in the ordered scenario copula. The
market-credit correlation of ρ = 1 is chosen in all of the nine instances in (2.6.16). As can
be seen in figure 2.4, the worst-case unilateral CVA values are approximately 5 to 11%
larger than those calculated by the ordered scenario copula.
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Figure 2.4: Ratio of OSC CVA to worst-case CVA.

2.6.4 Worst-Case Bilateral CVA: Dependence of Exposures and
Counterparties’ Credit Quality

An intrinsic aspect of counterparty risk is that it is bilateral, in the sense that either the
bank or the counterparty can default. Furthermore, the bilateral characteristic of the credit
exposure makes the quantification of counterparty risk in the presence of wrong-way risk
more challenging. An important difference between the bilateral CVA and the unilateral
CVA is that bilateral CVA, seen as the risk premium that either counterparty pays to the
other one, changes sign over time due to the changes in the relative riskiness and exposure
of the counterparties. To formalize the problem and calculate the worst-case bilateral CVA
in the presence of dependence between the exposures and the counterparty’s credit quality,
we assume that the marginal distribution of the counterparty’s default time, FC(t), the
marginal distributions of the bank’s default time, FB(t) and that of the market factors,
FY (y), are known but their joint distribution, FBCY (τB, τC, y) is unknown. In this case we
can define portfolio losses L = L(τB, τC, Y ) and calculate the bilateral CVA as described
in sections 2.5.2 and 2.6.5.

To determine the joint distribution of (τB, τC, Y ) that maximizes bilateral CVA, we
solve the following optimization problem:

sup
FBCY ∈F(FB,FC,FY )

CVAB (L(τB, τC, Y )) (2.6.17)

where F(FB, FC, FY ) is the Fréchet class of all possible joint distributions of (tB, tC, Y )
matching the given marginal distributions FB, FC and FY .
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In the next section, we take a closer look at the default dynamics of the bank and the
counterparty when computing the bilateral CVA and present a numerical algorithm for
solving the problem stated in (2.6.17).

2.6.5 Worst-Case Bilateral CVA Optimization

We consider three distinct default scenarios for the bank and the counterparty, shown in
figure 2.5:

tc

Figure 2.5: Bank and Counterparty’s default events decomposition.

• If τC < τB, then the bank experiences losses given that it has a positive exposure to
the counterparty. This corresponds to the region SC in figure 2.5:

SC = {τC 6 T} ∩ {τC < τB}

• If τB < τC, then the counterparty experiences losses given that it has positive
exposure to the bank. This corresponds to the region SB in figure 2.5:

SB = {τB 6 T} ∩ {τB < τC}

• Finally, neither the counterparty nor the bank defaults. This region is denoted S0 in
figure 2.5 and:

S0 = {τB > T} ∩ {τC > T}
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Assume further that concurrent default events do not happen, i.e., under the above
decomposition of default events, we have:

1SB + 1SC + 1S0 = 1 (2.6.18)

where 1{.} is the indicator function of defaults. The exposure dynamics used in this section
are similar to what we have described earlier in (2.6.5), which represents the net aggregated
exposure of the parties to one another in the case of default. Note that as the underlying
market factors vary, the exposure can become negative or positive for either party as is
illustrated in figure 2.1.
If the counterparty defaults at time τC < τB < T , the bank’s loss would be:

LB = 1{τC<τB<T}(1−RC)D(τC)V +(τC) (2.6.19)

and in the case of a bank default at time τB < τC < T , the counterparty’s loss is calculated
as:

LC = 1{τB<τC<T}(1−RB)D(τB)V −(τB) (2.6.20)

where V +(τC) and V −(τB), as defined in (2.5.2), denote the positive exposure of either
party to the other one in the case of default. M simulated market scenarios, each denoted
by yk, k = 1, 2, . . . ,M , which are generated by using an Ornstein-Uhlenbeck process Xt,
and described in (2.6.5), drive the aggregate exposures.

Each market scenario yk, k = 1, 2, . . . ,M contains the exposure information of both
the bank and the counterparty for calculating V +(τC) and V −(τB) at any given set of
points in time (tj, tj). As before ti, i = 1, 2, . . . , N1 + 1 and tj, j = 1, 2, . . . , N2 + 1 corre-
spond to the time steps used for discretizing the distribution of the bank’s default time
and that of the counterparty respectively.

V +(τC) and are V −(τB) are calculated based on this over a given time horizon T , which is
the longest maturity of the contract in the counterparty’s portfolio with the bank.

As before, we assume that the market scenarios have equal probability:

P (Y = yk) = pk = 1
M
, k = 1, . . . ,M (2.6.21)

Assume further that the default events for the bank and the counterparty are exponentially
distributed with given parameters λ1 and λ2, i.e., τB ∼ exp (λ1) and τC ∼ exp (λ2).
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2.6.6 Numerical Algorithm for the Worst-case Bilateral CVA:
Dependence between Exposures and Counterparties’ Credit
Quality

The calculation of worst-case bilateral CVA described in section 2.6.5 can be written in
the form of a linear programming problem as follows:

max
N1+1∑
i=1

N2+1∑
j=1

M∑
k=1

lijkϑijk (2.6.22)

N1+1∑
i=1

N2+1∑
j=1

ϑijk = pk, k = 1, . . . ,M

M∑
k=1

N2+1∑
j=1

ϑijk = ri, i = 1, . . . , N1 + 1

M∑
k=1

N1+1∑
i=1

ϑijk = qj, j = 1, . . . , N2 + 1

ϑijk > 0, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, k = 1, . . . ,M

where pk = P (Y = yk), k = 1, . . . ,M is defined in (2.6.21) and ri, i = 1, . . . , N1 + 1 and
qj, j = 1, . . . , N2 + 1 represent the corresponding discretized default time distributions of
the bank and the counterparty that are exp(λ1) and exp(λ2)-distributed respectively.

While the calculation of the coefficients lij in the unilateral worst-case CVA optimization
problem (2.6.9) is straightforward, the construction of the corresponding coefficients, lijk,
in the bilateral worst-case CVA problem (2.6.22) is slightly different and a little bit
more involved. Recall that the decomposition of default times described in section 2.6.5
implies that concurrent default events do not happen at any time t < T . Based on this
assumption and given the k-th market scenario (k = 1, . . . ,M), the bank’s loss due to the
counterparty’s default in the linear programming problem (2.6.22) is calculated as:

lijk = 1
2(1−RC)

(
D(tj)V +(tj, yk) +D(tj+1)V +(tj+1, yk)

)
∀tj < ti, i = 1, . . . , N1 + 1, j = 1, . . . , N2, k = 1, . . . ,M

lijk = 1
2(1−RC)

(
D(tj)V +(tj, yk)

)
∀tj < ti, i = 1, . . . , N1 + 1, j = N2 + 1, k = 1, . . . ,M (2.6.23)

Similarly, the counterparty’s loss to the bank default becomes:

lijk = −1
2(1−RB)

(
D(ti)V −(ti, yk) +D(ti+1)V −(ti+1, yk)

)
∀ti < tj, i = 1, . . . , N1, j = 1, . . . , N2 + 1, k = 1, . . . ,M

lijk = −1
2(1−RB)

(
D(ti)V −(ti, yk)

)
∀ti < tj, i = N1 + 1, j = 1, . . . , N2 + 1, k = 1, . . . ,M (2.6.24)
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The condition tj < ti in equation (2.6.23) (and ti < tj in equation (2.6.24)) indicates that
the default of the counterparty has occurred prior to that of the bank (or the default of
the bank has occurred prior to that of the counterparty). We summarize these steps in
the following algorithm:

Algorithm 2.6.6: Worst-case Bilateral CVA Algorithm
for Computing Bilateral CVA

1. Simulate M market scenarios to generate aggregated exposures between the counterparty
and the bank according to the process (2.6.5):

dX(t) = κ(µ−X(t))dt+ σdW (t), X(0) = 0,

2. Construct the discretized marginal distributions of market scenarios (pk’s), the bank and
counterparty default times, (ri’s) and (qj ’s) by using:

ri = FB(ti+1;λ1)− FB(ti;λ1), i = 1, . . . , N1

ri = 1− FB(ti;λ1), i = N1 + 1
qj = FC(tj+1;λ2)− FC(tj ;λ2), j = 1, . . . , N2

qj = 1− FC(tj ;λ2), j = N2 + 1

pk = 1
M
, k = 1, . . . ,M (2.6.25)

3. Given a market scenario yk, banks’s default times ti and counterparty’s default times tj ,
calculate lijk by using:

lijk = 1
2(1−RC)

(
D(tj)V +(tj , yk) +D(tj+1)V +(tj+1, yk)

)
∀tj < ti, i = 1, . . . , N1 + 1, j = 1, . . . , N2, k = 1, . . . ,M

lijk = 1
2(1−RC)

(
D(tj)V +(tj , yk)

)
∀tj < ti, i = 1, . . . , N1 + 1, j = N2 + 1, k = 1, . . . ,M

lijk = −1
2(1−RB)

(
D(ti)V −(ti, yk) +D(ti+1)V −(ti+1, yk)

)
∀ti < tj , i = 1, . . . , N1, j = 1, . . . , N2 + 1, k = 1, . . . ,M

lijk = −1
2(1−RB)

(
D(ti)V −(ti, yk)

)
∀ti < tj , i = N1 + 1, j = 1, . . . , N2 + 1, k = 1, . . . ,M

4. Find the optimal worst-case coupling ϑijk, i = 1, . . . , N1 + 1, j = 1, . . . , N2 + 1, k =
1, . . . ,M of default times of the bank, the counterparty and that of the market scenarios by
solving the linear programming problem (2.6.22)

5. Calculate the worst-case bilateral CVA as:

CVAB =
N1+1∑
i=1

N2+1∑
j=1

M∑
k=1

lijkϑijk (2.6.26)
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Simulation of the market scenarios that contain an exposure of the bank and the
counterparty to one another is the first step in implementing the worst-case bilateral
CVA methodology. Although we keep the number of the simulated market scenarios at
M = 10,000 (similar to what was used in the unilateral CVA optimization numerical
example), the time steps used in these simulations are different. Instead of using daily time
steps, we consider the exposure scenarios to be simulated on a monthly basis. The reason
for choosing a monthly time frame is twofold. First, in many practical examples, exposures
are simulated over a longer time horizon T . Choosing a monthly time step enables us to
replicate this condition better. Second, if we were to choose a daily time step for exposure
scenarios for the linear programming problem (2.6.22), the construction of the coefficient
matrix of the linear programming problem would become highly time-intensive and
impractical. The coefficient matrix of the constraints in the linear programming problem
(2.6.22) has M +N1 +N2 + 2 rows and M × (N1 + 1)× (N2 + 1) columns and choosing
daily time steps for generating the market scenarios would be highly time-intensive.

As before, an Ornstein-Uhlenbeck process described in section 2.6.2 is assumed to
be the main driver of the aggregate exposure and the marginal distributions of market
scenarios, (pk’s), is defined as pk = 1/M, k = 1, . . . ,M in the linear programming problem
(2.6.22). Using the discretization scheme in (2.6.25), we define the marginal distributions
ri, i = 1, . . . , N1 + 1 and qj, j = 1, . . . , N2 + 1 for the default time of the bank and the
counterparty in the linear programming problem (2.6.22). The recovery rate of both
the bank and the counterparty is assumed to be 0.3, i.e., RB = 0.3 and RC = 0.3 and
a risk-free rate of r0 = 5% (for computing the discount factors at each time step by
continuous compounding) is used throughout for defining the coefficients of the linear
programming problem in algorithm 2.6.6. Finally, we can solve the linear programming
problem (2.6.22) by using the worst-case bilateral CVA algorithm described above and
calculate the worst-case bilateral CVA.

In this section, we present two sets of results based on contracts maturing at T = 5
and T = 10 years and construct a surface for the ratios of CVABs calculated by the
ordered scenario copula (using market-credit correlation ρ = 1 as in section 2.6.3) and the
worst-case bilateral CVA methodology.

The results are shown in figure 2.6 for which T = 5 and

τB ∼ exp (λi), λi ∈ {0.5, 1, . . . , 4.5}
τC ∼ exp (λi), λi ∈ {0.5, 1, . . . , 4.5} (2.6.27)

and in figure 2.7 for which T = 10 and

τB ∼ exp (λi), λi ∈ {1, 2, . . . , 9}
τC ∼ exp (λi), λi ∈ {1, 2, . . . , 9} (2.6.28)

In generating each of these surfaces, the market scenarios yk, k = 1, . . . ,M have been
kept the same. Moreover, each point on these surfaces is found by the following steps:

1. (a) Fix an average default rate for the bank, τB, and use (2.6.25) to define
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Figure 2.6: Ratio of the bilateral CVA computed with the ordered scenario copula to
the worst-case CVA; T = 5.

ri, i = 1, . . . , N1 + 1;

(b) Fix an average default rate for the counterparty, τC, and use (2.6.25) to define
qj, j = 1, . . . , N2 + 1;

(c) Solve the linear programming problem (2.6.22).

2. Calculate the bilateral CVA using the ordered scenario copula (described in section
2.6) for the above fixed average default rate for the counterparty, τC and the average
default rate for the bank, τB;

3. Calculate the ratios of

CVAB
OSCi

CVAB
WCi

, i = 1, . . . , N0
1 ×N0

2

where N0
1 and N0

2 are the numbers of the points that we have used for discretizing
the τB and τC axis (corresponding to a given average default time rate λB and λC)
respectively.

In generating both figures 2.6 and 2.7, N0
1 = 9 and N0

2 = 9, corresponding to the
equations (2.6.27) and (2.6.28) respectively. As before we have used CPLEX Optimization
Studio for solving each instance of the linear programming problem (2.6.22) and the results
are shown in tables E.3 and E.4 in section E.0.2 in Appendix E.
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Figure 2.7: Ratio of the bilateral CVA computed with the ordered scenario copula to
the worst-case CVA; T = 10.

Figures 2.6 and 2.7 show similar results to what was found in section 2.6.3 for the
unilateral CVA optimization. The worst-case bilateral CVA methodology produces CVA
bounds that are higher than CVA computed with the ordered scenario copula in both
examples (between 13% to 19% higher in the T = 5 case and 14% to 27% higher in the
T = 10 case).

The marginal distributions of the market risk factors and the credit risk factors used in
both the worst-case unilateral and bilateral CVA algorithms described earlier are estimated
in practice. Note that Glasserman and Yang [1] prove the convergence of the solution
of the linear programming problem (2.6.9) to the true worst-case CVA by using the the
results of Villani [40] on the convergence of Wasserstein distance of empirical measures.

2.7 Bounds on CVA Contributions

In sections 2.6.2 and 2.6.5, we demonstrated the application of the worst-case CVA
methodology for bounding unilateral and bilateral CVAs. We are also interested in
determining the individual contributions of the trades comprising the portfolio to the
CVAU .

In this section, we discuss the computation of CVAU at the trade level in sections
2.7.1, 2.7.2 and 2.7.3. We then present a new methodology for computing bounds on CVA
contributions in section 2.7.4, motivated by the methodology of the Glasserman and Yang
[1], and compare the results to those of the ordered scenario copula for computing CVA
contributions in section 2.7.5.
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2.7.1 CVA at Trade Level

As we described in sections 2.6.2 and 2.6.5, we can calculate the unilateral and bilateral
CVAs by using equations (2.5.4) and (2.5.6). It is important to note that the CVA
measured based on these approaches is calculated at the counterparty level and we can
not determine the contributions of each trade to the calculated CVA directly.

In the absence of netting between trades, the portfolio-level CVAU is the sum of the
individual trade’s stand-alone CVAUs where a stand-alone CVA is defined as the CVAU

of each transaction. Let CVAU
k denote the contribution of the k-th trade, k = 1, . . . , K,

in the portfolio. CVA contributions are additive when they can be summed up to the
counterparty-level CVAU , i.e.,

CVAU =
K∑
k=1

CVAU
k (2.7.1)

In practice, under netting and margin agreements, the stand-alone CVA of the individual
trades will no longer add up to the total portfolio CVAU .

Alternatively, one can use the incremental CVA contribution of a trade. Defined as the
difference between the portfolio-level CVAU with and without the trade, it is a commonly
used tool for pricing counterparty risk when new trades with the counterparty are added
to the portfolio. Incremental CVA suffers from non-additivity as well. The sum of the
individual trade’s CVA contributions will not add up to the portfolio’s CVAU .

To address this issue, Pykhtin and Rosen [3] propose the use of marginal CVA con-
tributions with a given counterparty. This notion allows us to determine how much each
trade contributes to the counterparty-level CVA. In the coming sections, we discuss the
calculation of the marginal CVA contributions.

2.7.2 CVA in the Presence of a Netting Agreement and Ex-
pected Exposure Contributions

As discussed earlier, a counterparty credit risk, which is the risk that the counterparty
defaults before the final settlement of a transaction’s cash flows, will result in an economic
loss for the bank if the counterparty portfolio has a positive economic value at the time
of default. At the core of the calculation of the marginal CVA contributions is a new
perspective on how we dissect the exposure of the bank to a counterparty at the time of
the default of the counterparty. In what follows we discuss the counterparty exposure
calculation and show how it relates to the above problem.

Recall that given a portfolio of K trades that a bank has with a counterparty C,
by using equations (2.4.2) and (2.4.3) we defined V +(t), the bank’s netted exposure to
counterparty C at the default time τC = t and V +(t) is written as:

V +(t) = max{V (t), 0} (2.7.2)

where V (t) in equation 2.7.2 represents the sum of the value of the individual trades for a
portfolio consisting of K trades, (namely vk(t), k = 1, . . . , K), from the bank’s perspective.
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If there is no netting among these trades, the bank’s exposure to the counterparty C is
calculated as:

E(t) =
K∑
k=1

max{vi(t), 0} (2.7.3)

Furthermore given a single netting agreement, the netted exposure for a counterparty
portfolio becomes:

E(t) = max{V (t), 0} (2.7.4)

In the following section, we assume that the counterparty C has posted no collateral.

As mentioned earlier, both the stand-alone CVA and the incremental CVA contributions
lack additivity and we are interested in a framework for calculating additive contributions
of each trade to the counterparty-level CVA. To address these issues, Pykhtin and Rosen
[3] proposed an additive CVA contribution framework which is described in the next
section.

2.7.3 CVA Contributions

Let CVAU
k denote the contribution of the k-th trade (k = 1, . . . , K) to the counterparty

level CVA in the portfolio. To calculate each of these CVA contributions we start by
calculating contributions of each trade to the portfolio’s conditional expected exposure,
EEU+(t). Obtaining additive CVA contributions reduces to obtaining conditional expected
exposure contributions that are additive, i.e., conditional expected exposure contributions
that sum up to the portfolio conditional discounted EE+. Recall that:

CVAU = (1−RC)
∫ T

0
EEU+(t)dFC(t)

We can consider CVAU to be written as:

CVAU = (1−RC) E
(
D(τC) max{

K∑
k=1

wivi(τC), 0}1{V +(τC) > 0}
)

(2.7.5)

where w = (w1, . . . , wK) represents the weight of the k-th trade in the bank’s portfolio with
counterparty C, D(t) is the discounting factor at time t and 1{V +(τC) > 0} indicates that
there is a single netting agreement in place in the portfolio of the bank for the counterparty
C. It can be easily seen that if we let CVAU = f(w), then for λ > 0 we have:

f(λw) = (1−RC) E
(
D(τC) max{

K∑
k=1

λwivi(τC), 0}1{V +(τC) > 0}
)

= λ(1−RC) E
(
D(τC) max{

K∑
k=1

wivi(τC), 0}1{V +(τC) > 0}
)

= λf(w)
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implying that f(·) is positively homogenous of degree 1. By applying Euler’s theorem to
(2.7.5) we have:

wk
∂f

∂wk
= wk(1−RC) E

(
D(τC)vk(τC)1{V +(τC) > 0}

)
Let w = 1. Then we have:

CVAU
k = (1−RC) E

(
D(τC)vk(τC)1{V +(τC) > 0}

)
(2.7.6)

or equivalently:

CVAU
k = (1−RC)

∫ T

0
EEU+

k (t)dFC(t), k = 1, . . . , K (2.7.7)

where EEU+
k (t) represents the risk-neutral discounted expected exposure contribution of

the k-th trade at time t

EEU+
k (t) = E[D(t)v+

k (t)1{V +(τC) > 0}|τC = t], k = 1, . . . , K (2.7.8)

and
v+
k (t) = max{vk(t), 0} (2.7.9)

As before and given a market scenario yj, j = 1, . . . ,M , equation (2.7.9) can be further
discretized to calculate the positive exposure at trade level under each market scenario:

v+
k (ti, yj) = max{vk(ti, yj), 0}

i = 1, . . . , N + 1, j = 1, . . . ,M. (2.7.10)

Note that in equation (2.7.6) the indicator function, given in 1{V +(τC) > 0}, states that
there is a single netting agreement in place for the counterparty C.

2.7.4 Bounds on CVA Contributions with Netting

Our goal is to find the upper bound for CVAU
k , the k-th trade CVA contribution (k=1,. . . ,K),

sup
FCY ∈F(FC,FY )

CVAU
k (2.7.11)

and respectively the lower bound for the CVAU
k

inf
FCY ∈F(FC,FY )

CVAU
k (2.7.12)

where CVAU
k is given in equation (2.7.6) and as before in both equations (2.7.11) and

(2.7.12) F(FC, FY ) is the Fréchet class of all possible joint distributions of (τC, Y ) matching
the given marginal distributions of the default time FC, and market factors FY . For
notational simplicity in what follows we will drop the superscript U from CVAU

k .
Note that the main assumption for finding CVA contributions in section 2.7.2 is that
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we have a single netting set. In practice, calculation of EE contributions and allocation of
the portfolio-level EE for collateralized counterparties are more complex and have been
discussed in detail in Pykhtin and Rosen [3].

2.7.5 Numerical Algorithm for Computing Bounds on CVA Con-
tributions

Problems (2.7.11) and (2.7.12) for computing the upper bound CVAk and lower bound
CVAk on CVAk, k = 1, . . . , K can be recast as the following linear programming problems:

max
N+1∑
i=1

M∑
j=1

lijϑij (2.7.13)

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N + 1

ϑij > 0, i = 1, . . . , N + 1, j = 1, . . . ,M

and

min
N+1∑
i=1

M∑
j=1

lijϑij (2.7.14)

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N + 1

ϑij > 0, i = 1, . . . , N + 1, j = 1, . . . ,M

where in both linear programming problems (2.7.13) and (2.7.14), lij is defined as:

lij = 1
2(1−RC)

(
D(ti)v+

k (ti, yj) +D(ti+1)v+
k (ti+1, yj)

)
· 1{V +(ti, yj) + V +(ti+1, yj) > 0}

i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . , K

lij = 1
2(1−RC)

(
D(ti)v+

k (ti, yj)
)
· 1{V +(ti, yj) > 0}

i = N + 1, j = 1, . . . ,M, k = 1, . . . , K (2.7.15)

Note that when solving the linear programming problems (2.7.13) and (2.7.14), lij are
calculated for a fixed trade in the portfolio (corresponding to a fixed k, k = 1, . . . , K
in equation (2.7.5)). Moreover, the indicators are computed by using 1{V +(ti, yj) +
V +(ti+1, yj) > 0} for i = 1, . . . , N, j = 1, . . . ,M, and 1{V +(ti, yj) > 0} for i =
N + 1, j = 1, . . . ,M , stating that there is a single netting agreement in place for
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counterparty C. A numerical example on how these indicators are calculated is provided
shortly.

To demonstrate the above methodology, consider the exposure dynamics within the
portfolio that the bank has with a single counterparty C. Let the position-level exposure
of the k-th trade (k=1,. . . ,K) of counterparty C in the bank’s portfolio be driven by an
Ornstein-Uhlenbeck process Xk(t). The portfolio consists of three trades and the respective
parameters of the O-U process for each trade are listed in table 2.2.

dXk(t) = κ(µk −Xk(t))dt+ σkdWk(t), k = 1, 2, 3 (2.7.16)

where Wk, k = 1, . . . , K are independent Wiener processes.

Parameter Trade 1 Trade 2 Trade 3
κ 1 1.2 0.9
µ 0 0 0
σ 20% 25% 16%

Table 2.2: Ornstein-Uhlenbeck exposure model parameters for the three trades of the
counterparty C in the banks’s portfolio.

For the sake of simplicity, we assume that there is a single netting agrement for the
three trades for this counterparty and that these are the only trades that the bank has
in its portfolio with counterparty C. Assume further that the counterparty C has posted
no collateral. An upper (lower) bound on the CVA contribution is found through the
following algorithm:

Algorithm 2.7.5: Bounds on Unilateral CVA Contributions Algorithm

1. Simulate M market scenarios to generate the exposures between the counterparty
and the bank for the k-th trade in the portfolio according to the process:

dXk(t) = κ(µk −Xk(t))dt+ σkdWk(t), k = 1, . . . ,K

where Wk, k = 1, . . . ,K are independent Wiener processes.

2. Construct discretized marginal distributions of the market scenarios, pj and the
default time, qi using:

qi = FC(ti+1;λ)− FC(ti;λ), i = 1, . . . , N
qi = 1− FC(ti;λ), i = N + 1

pj = 1
M
, j = 1, . . . ,M

35



3. For all market scenarios yj and a time step ti calculate v+
k (ti, yj) = max{vk(ti, yj), 0}

and determine:

lij = 1
2(1−RC)

(
D(ti)v+

k (ti, yj) +D(ti+1)v+
k (ti+1, yj)

)
·1{V +(ti, yj) + V +(ti+1, yj) > 0}

i = 1, . . . , N, j = 1, . . . ,M, k = 1, . . . ,K

lij = 1
2(1−RC)

(
D(ti)v+

k (ti, yj)
)
· 1{V +(ti, yj) > 0}

i = N + 1, j = 1, . . . ,M, k = 1, . . . ,K (2.7.17)

4. Find the optimal coupling ϑij and ϑij (i = 1, . . . , N + 1, j = 1, . . . ,M) of
the exposure scenarios and default times for computing the upper-bound and
lower-bound on CVAk, k = 1, . . . ,K, by solving the linear programming problems
(2.7.13) and (2.7.14) respectively,

5. Calculate the upper bound and lower bound for the CVAk as:

CVAk =
N+1∑
i=1

M∑
j=1

ϑijlij , CVAk =
N+1∑
i=1

M∑
j=1

ϑijlij , k = 1, . . . ,K (2.7.18)

Assume further that T = 5 years is the longest maturity of the contracts in the portfolio
and the counterparty’s default follows an exponential distribution.

To assess the performance of algorithm 2.7.5, we start by simulating M = 10,000
market scenarios, generating the exposures for each of the three trades using the O-U
process described in (2.7.16). The respective parameters of the O-U process for each trade
are listed in table 2.2. A constant RC = 0.3 and risk-free rate of r0 = 5% (for generating
the discount factors by continuous compounding) are used to calculate the coefficients of
the linear programming problems in the algorithm 2.7.5.

The simulation is conducted for a T = 5 year time horizon, the longest maturity of a
trade in the portfolio. Each exposure scenario for each trade is simulated by using daily
time steps, i.e., each scenario consists of the exposures on 1250 trading days based on
an Ornstein-Uhlenbeck process. The marginal distribution of the market scenarios, pj, is
defined as 1/M :

P (Y = yj) = pj = 1
M
, j = 1, . . . ,M (2.7.19)

Similarly, we define qi’s, which discretize the default time distribution, in both linear
programming problems (2.7.13) and (2.7.14) to be:

qi = FC(ti+1;λ)− FC(ti;λ) i = 1, . . . , N (2.7.20)

where FC(t;λ) represents the cumulative distribution function associated with default
times which are exp (λ)-distributed. Note that qN+1, which corresponds to a no default
event becomes 1− FC(T ;λ).
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trade λC T M N+1 run time sum of primal sum of dual duality solution
(k) (in seconds) residuals residuals gap status code

1 0.5 5 10000 1251 544.5535 6.944e-07 6.2496e-07 6.7144e-09 1
1 5 10000 1251 467.678 2.5678e-07 2.3111e-07 8.3717e-09 1
1.5 5 10000 1251 429.5602 9.7586e-09 8.7828e-09 9.715e-09 1
2 5 10000 1251 514.7261 5.3228e-07 4.7905e-07 5.6933e-10 1
2.5 5 10000 1251 489.2148 2.7939e-07 2.5145e-07 4.5032e-09 1
3 5 10000 1251 465.2151 9.4623e-07 8.5161e-07 5.8247e-09 1
3.5 5 10000 1251 460.183 9.0644e-07 8.158e-07 6.8664e-09 1
4 5 10000 1251 547.227 3.9268e-07 3.5342e-07 7.1943e-09 1
4.5 5 10000 1251 436.8489 2.4855e-08 2.237e-08 6.5004e-09 1

2 0.5 5 10000 1251 447.3958 1.1704e-07 1.0533e-07 3.9813e-09 1
1 5 10000 1251 525.6425 8.1468e-07 7.3321e-07 5.1537e-09 1
1.5 5 10000 1251 408.6204 3.2486e-07 2.9237e-07 6.5753e-09 1
2 5 10000 1251 391.5595 2.4623e-07 2.2161e-07 9.5092e-09 1
2.5 5 10000 1251 552.0856 3.4271e-07 3.0844e-07 7.2235e-09 1
3 5 10000 1251 481.8613 3.7569e-07 3.3812e-07 4.0008e-09 1
3.5 5 10000 1251 412.5224 5.4655e-07 4.919e-07 8.3187e-09 1
4 5 10000 1251 436.1491 5.6192e-07 5.0573e-07 1.3434e-09 1
4.5 5 10000 1251 523.782 3.9582e-07 3.5624e-07 6.0467e-10 1

3 0.5 5 10000 1251 424.3305 3.8639e-07 3.4775e-07 3.8993e-09 1
1 5 10000 1251 495.6495 7.7555e-07 6.98e-07 5.909e-09 1
1.5 5 10000 1251 423.7944 7.3427e-07 6.6084e-07 4.5938e-09 1
2 5 10000 1251 549.4803 4.3028e-07 3.8725e-07 5.034e-10 1
2.5 5 10000 1251 437.3544 6.9375e-07 6.2438e-07 2.2869e-09 1
3 5 10000 1251 396.373 9.4521e-07 8.5069e-07 8.3419e-09 1
3.5 5 10000 1251 553.1387 7.8423e-07 7.0581e-07 1.5645e-10 1
4 5 10000 1251 443.9969 7.0557e-07 6.3501e-07 8.6371e-09 1
4.5 5 10000 1251 525.4212 1.0933e-07 9.8401e-08 7.8069e-10 1

Table 2.3: Run time, sum of primal residuals, sum of dual residuals, duality gap
and solution status code for the 9 linear programming problems (2.7.14) associated with
different average default rates given in (2.7.21) for finding the lower bound on CVA
contributions.

A similar approach to solving the linear programming problem (2.6.11) is adopted
here and the algorithm for calculating the bounds on the CVA contributions is described
in algorithm 2.7.5. While in calculating the worst-case CVA by using algorithm 2.6.3,
we focus on the counterparty-level CVA, algorithm 2.7.5 calculates the upper and lower
bounds on CVA contributions of the individual trades of counterparty C (namely CVAk

and CVAk, k = 1, . . . , K) in the bank’s portfolio.

τC ∼ exp (λi), λi ∈ {0.5, 1, . . . , 4.5} (2.7.21)

As before 9 instances of the problems (2.7.13) and (2.7.14), corresponding to average
default rates, given in equation (2.7.21), are solved for each trade to calculate the upper
and lower bound on their respective CVA contributions. That is, for each trade (with
the respective exposure parameters listed in table 2.2), we simulate M = 10,000 market
scenarios and generate the exposures using the O-U process described in (2.7.16); we then
compute the netted exposures at portfolio level, V +(ti, yj), i = 1, . . . , N + 1, j = 1, . . . ,M .
These netted exposures are then used in the indicator functions, given in step 3 of algorithm
2.7.5 to compute the coefficients of the linear programming problems (2.7.13) and (2.7.14)
(using equations (2.7.17)).
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Figure 2.8: Left: upper and lower bounds on CVA contributions calculated using
algorithm 2.7.5. Right: ratio of the ordered scenario copula CVA contributions to upper-
bound of CVAk calculated using algorithm 2.7.5; exposure is modeled by an O-U process
for each trade of counterparty C in the bank’s portfolio; respective parameters are listed
in table 2.2.
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trade λC T M N+1 run time sum of primal sum of dual duality solution
(k) (in seconds) residuals residuals gap status code

1 0.5 5 10000 1251 495.2501 1.0802e-07 9.7215e-08 5.0513e-09 1
1 5 10000 1251 478.0379 5.17e-07 4.653e-07 2.7142e-09 1
1.5 5 10000 1251 436.4824 1.4316e-07 1.2884e-07 1.0075e-09 1
2 5 10000 1251 396.7779 5.5937e-07 5.0343e-07 5.0785e-09 1
2.5 5 10000 1251 541.739 4.5796e-09 4.1217e-09 5.8561e-09 1
3 5 10000 1251 532.0129 7.6668e-07 6.9001e-07 7.6289e-09 1
3.5 5 10000 1251 393.6132 8.4871e-07 7.6384e-07 8.2963e-10 1
4 5 10000 1251 470.2302 9.1682e-07 8.2514e-07 6.616e-09 1
4.5 5 10000 1251 570.8052 9.8697e-07 8.8827e-07 5.1698e-09 1

2 0.5 5 10000 1251 466.1351 6.8357e-08 6.1521e-08 6.8004e-09 1
1 5 10000 1251 420.1114 4.3633e-07 3.9269e-07 7.0595e-09 1
1.5 5 10000 1251 389.8942 1.7385e-07 1.5647e-07 6.4513e-09 1
2 5 10000 1251 386.062 2.6107e-08 2.3496e-08 5.5231e-09 1
2.5 5 10000 1251 457.8816 9.5468e-07 8.5921e-07 2.1811e-09 1
3 5 10000 1251 528.2671 4.306e-07 3.8754e-07 7.7237e-09 1
3.5 5 10000 1251 517.6011 9.6156e-07 8.654e-07 2.2803e-09 1
4 5 10000 1251 532.378 7.6241e-07 6.8617e-07 3.7086e-09 1
4.5 5 10000 1251 506.4873 7.3487e-09 6.6138e-09 8.9093e-09 1

3 0.5 5 10000 1251 435.7602 4.0386e-07 3.6347e-07 9.3566e-09 1
1 5 10000 1251 570.4355 5.4857e-07 4.9371e-07 8.1871e-09 1
1.5 5 10000 1251 483.3179 4.8739e-08 4.3865e-08 7.2826e-09 1
2 5 10000 1251 426.7574 5.5273e-07 4.9746e-07 1.7581e-09 1
2.5 5 10000 1251 551.6497 2.7481e-07 2.4733e-07 3.6037e-09 1
3 5 10000 1251 462.0698 2.415e-07 2.1735e-07 1.8879e-09 1
3.5 5 10000 1251 446.3467 2.4315e-07 2.1883e-07 1.1984e-11 1
4 5 10000 1251 498.7713 1.5416e-07 1.3874e-07 3.1642e-09 1
4.5 5 10000 1251 447.8073 9.5642e-07 8.6077e-07 6.9962e-09 1

Table 2.4: Run time, sum of primal residuals, sum of dual residuals, duality gap
and solution status code for the 9 linear programming problems (2.7.13) associated with
different average default rates given in (2.7.21) for finding the upper bound on CVA
contributions.

These results are used to generate the three figures on the left in figure 2.8 and show
the bounds on the CVA contribution corresponding to each of the three trades of the
counterparty C with parameters listed in table 2.2.

Next we can calculate the CVA contributions corresponding to each λi ∈ {0.5, 1, . . . , 4.5},
using the ordered scenario copula methodology described in section 2.7.2. The conservative
market-credit correlation of ρ = 1 is chosen in the ordered scenario copula and the exposure
scenarios for each trade are sorted in order of the increasing time-averaged total portfolio
exposure as described in section 2.6.1.

The results generated from the ordered scenario copula methodology are then compared
to those that are generated by algorithm 2.7.5 when computing the upper bound on CVAk,
namely CVAk, by solving the linear programming problem (2.7.13). That is, for a fixed
average default rate described in (2.7.21) we calculate the ratios

CVAOSCk

CVAk

, k = 1, . . . , 3

for each of the three trades of the counterparty C with the respective exposure parameters
given in table 2.2. The graph of the resulting ratios, plotted against the average default
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trade λC T M N+1 ρ
(k) 0.05 0.15 0.25 0.35 0.45

1 0.5 5 10000 1251 57.58% 60.95% 64.74% 69.11% 73.77%
1 5 10000 1251 57.15% 60.39% 63.96% 68.20% 72.52%
1.5 5 10000 1251 56.73% 59.84% 63.20% 67.32% 71.29%
2 5 10000 1251 56.45% 59.48% 62.75% 66.73% 70.49%
2.5 5 10000 1251 56.03% 58.94% 61.96% 65.87% 69.29%
3 5 10000 1251 55.69% 58.49% 61.33% 65.13% 68.28%
3.5 5 10000 1251 55.24% 57.91% 60.54% 64.21% 67.05%
4 5 10000 1251 54.82% 57.37% 59.77% 63.32% 65.78%
4.5 5 10000 1251 54.41% 56.83% 59.03% 62.45% 64.58%

2 0.5 5 10000 1251 56.96% 59.66% 62.81% 66.56% 70.56%
1 5 10000 1251 56.48% 59.13% 62.04% 65.66% 69.33%
1.5 5 10000 1251 55.98% 58.46% 61.15% 64.63% 67.89%
2 5 10000 1251 55.51% 57.84% 60.29% 63.62% 66.51%
2.5 5 10000 1251 55.34% 57.63% 60.81% 63.28% 66.03%
3 5 10000 1251 55.17% 57.41% 59.69% 62.93% 65.55%
3.5 5 10000 1251 54.72% 56.81% 58.87% 61.97% 64.22%
4 5 10000 1251 54.27% 56.23% 58.06% 61.02% 62.92%
4.5 5 10000 1251 53.86% 55.71% 57.33% 60.17% 61.74%

3 0.5 5 10000 1251 57.45% 60.71% 64.39% 68.65% 73.19%
1 5 10000 1251 57.08% 60.24% 63.73% 67.89% 72.13%
1.5 5 10000 1251 56.64% 59.66% 62.93% 66.95% 70.85%
2 5 10000 1251 56.24% 59.14% 62.21% 66.11% 69.68%
2.5 5 10000 1251 55.82% 58.59% 61.45% 65.23% 68.46%
3 5 10000 1251 55.39% 58.04% 60.68% 64.33% 67.22%
3.5 5 10000 1251 54.89% 57.39% 59.78% 63.28% 65.77%
4 5 10000 1251 54.81% 57.27% 59.63% 63.16% 65.52%
4.5 5 10000 1251 54.34% 56.68% 58.81% 62.13% 64.19%

Table 2.5: The ratio of the CVA contributions generated by dividing the CVA contri-
butions of the ordered scenario copula methodology, with the market-credit correlation
ρ ∈ {0.05, 0.15, 0.25, 0.35, 0.45}, to the CVAk calculated using algorithm 2.7.5 for the
three trades of the counterparty C with the respective parameters listed in table 2.2.

rate in years, is shown on the right hand side in figure 2.8.
As can be seen in figure 2.8, the upper-bound for the CVA contributions calculated by

algorithm 2.7.5 is consistently higher than the contributions calculated with the ordered
scenario copula methodology by using the market-credit correlation ρ = 1, for various
average default times and across all trades. Furthermore it is important to note that as
the average default times (λC) increase, the difference in the ratios is increasing for all
three trades.

It has been noted in Rosen and Saunders [2] that in many practical applications, the
market-credit correlation ρ is chosen between 0.2 and 0.3. Therefore, while in generating
the results shown in figure 2.8 the market-credit correlation of ρ = 1 is chosen to account
for the highest level of the correlation of the exposures and defaults, we conduct an
additional analysis by allowing ρ ∈ {0.05, 0.15, 0.25, 0.35, 0.45}.

For each market-credit correlation ρ ∈ {0.05, 0.15, 0.25, 0.35, 0.45} and for each of the
three trades of the counterparty C, we have calculated the ratio of the ordered scenario
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copula CVAOSCk to the upper bound on CVA contribution, namely CVAk, generated by
algorithm 2.7.5. The results are shown across various levels of market-credit correlation in
table 2.5.

Moreover, the ratios of the CVA contributions (shown in table 2.5) calculated by
dividing the CVA contributions generated by the ordered scenario copula methodology
to the upper bound of the CVA contributions calculated by using algorithm 2.7.5 when
the market-credit correlation ρ ∈ {0.05, 0.15, 0.25, 0.35, 0.45} indicate that there is a
significant difference between the CVA contributions computed using these methodologies.
For example this difference for the first trade in the portfolio varies between 45.59%
(corresponding to λC = 4.5 and ρ = 0.05) and 26.23% (corresponding to λC = 0.5 and
ρ = 0.45) and between 46.14% (corresponding to λC = 4.5 and ρ = 0.05) and 29.44%
(corresponding to λC = 0.5 and ρ = 0.45) for the second trade.

It is important to note that even by choosing ρ = 1, leading to the highest level of the
correlation of the exposures and defaults and thereby largest losses in the ordered scenario
copula, the upper bound of the CVA contributions calculated by using algorithm 2.7.5 is
significantly higher than that of the ordered scenario copula. Moreover, when we choose
the market-credit correlation ρ ∈ {0.05, 0.15, 0.25, 0.35, 0.45}, the difference between the
upper bound of the CVA contributions calculated by using algorithm 2.7.5 and the ordered
scenario copula is larger compared to the ρ = 1.
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Chapter 3

Wrong-Way Risk and Counterparty
Credit Risk

3.1 Overview
An important problem that the global financial crisis of 2008 revealed relates to how well
financial institutions are able to assess counterparty credit risk in their portfolios. In
simple terms, Counterparty Credit Risk (CCR) is defined as the risk of default before the
final settlement of a transaction’s cash flows.

The internal rating-based framework (see Basel Committee on Banking Supervision
(BCBS) [41], Basel Committee on Banking Supervision (BCBS) [42] and Basel Committee
on Banking Supervision (BCBS) [42]) that banks use to determine the minimum capital
requirement for counterparty credit risk of their derivatives portfolios is based on four
major inputs: Probability of Default, Exposure at Default, Loss Given Default and finally
Maturity. The aforementioned parameters are the main drivers of the complexity of
a portfolio’s CCR. In order to accurately manage and measure a portfolio’s CCR and
identify the embedded model risk, we face the challenging task of capturing the stochastic
nature of counterparty exposures driven by market factors. In addition the dependence
structures between exposures, between counterparty defaults and between defaults and
exposures (wrong- or right-way risk) are critical. Hence in addition to both modeling
and computational complexity of evaluating CCR capital requirements, determining and
validating market-credit correlations is an important part of the quantitative modeling
process. Another challenge that the task of estimating market-credit correlations poses
is that since these correlations can vary drastically with the portfolio composition and
market conditions, assessing their probable impact on the final capital estimate can be a
difficult task.

3.2 Outline and Contributions
In chapters 3 and 4 we propose a new approach for computing bounds on Conditional Value
at Risk (CVaR) of a portfolio. The remainder of chapter 3 and chapter 4 are organized as
follows.
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After providing an overview of the existing literature on model uncertainty and
counterparty credit risk in section 3.3, we discuss the existing frameworks for calculating
the capital charge for counterparty credit risk under the Basel Accord in section 3.4.

One of the main issues that quantitative modelers face in this regard is estimating the
joint distribution of credit risk factors and market risk factors. In section 3.5 we formalize
this problem and present the worst-case risk measure problem.

Sections 3.6 and 3.7 illustrate the connection of problem (3.5.1) and our choice of the
risk measure, CVaR, in detail. We further formulate the problem of computing bounds on
CVaR as a linear optimization problem in section 3.7.

In chapter 4 we demonstrate the application of the worst-case copula methodology
under the Basel credit model. More specifically after describing the default dynamics of
the counterparties, the loss functions and their connection to the Basel credit model in
section 4.1, we present the linear programming formulation that is used for finding bounds
on CVaR in this framework.

Section 4.2 demonstrates an application of the worst-case copula methodology in
counterparty credit risk management and provides numerical examples, comparing the
performance of this approach with the ordered scenario copula methodology by using a
real-world portfolio of OTC derivatives.

3.3 Literature Review
Capturing the risk of exotic options is an interesting topic for market practitioners. Given
a set of liquid prices for such options, we can calibrate various parameters that these
models depend upon. An undesirable by-product of such an approach is that one gets a
wide range of prices for a specific exotic option when we use various models for pricing and
calibrate them to the same market data. If the lower and upper bounds that we get from
various calibration processes for these models based on the same market data are tight,
we can determine if there are any arbitrage opportunities in the market. This problem has
been studied for instance in Bertsimas and Popescu [43], Hobson et al. [44], Hobson et al.
[45], Laurence and Wang [46], Laurence and Wang [47] and Chen et al. [48] for an exotic
option written on multiple-assets (S1, . . . , ST ) observed at the same time T . If we focus
only on models with fixed marginals, (Ψ(ST1 ), . . . ,Ψ(STk )), our main tool for searching
lower and upper bounds is an infinite-dimensional linear programming problem. Beiglböck
et al. [32] propose using infinite-dimensional linear programming methods. In comparison
to previously cited literature, the authors argue that since requiring that the asset price St
be a discrete time martingale can be more restrictive, achieving tighter bounds becomes
more feasible.

The approach closest to the one we take in this chapter is that of Beiglböck et al.
[32], in which the marginals (Ψ(ST1 ), . . . ,Ψ(STk )) are assumed to be given, and an infinite-
dimensional linear programming technique is employed to derive price bounds. There is
also a large literature on deriving bounds on VaR for sums of random variables with given
marginals. See Makarov [49], Williamson and Downs [50], Denuit et al. [51], Firpo and
Ridder [52] and Embrechts et al. [53] for the theoretical treatment of this problem and
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Embrechts and Puccetti [54], Puccetti and Rüschendorf [55] and Puccetti and Rüschendorf
[7] for the numerical methods developed in solving this problem. As discussed earlier
Glasserman and Yang [1] have studied the problem of bounding wrong-way risk, given the
marginal distributions of market and credit risk factors in a similar setting.

The problems considered in this chapter can be characterized by three important aspects;
(i) we use an alternative risk measure (CVaR), (ii) we are provided with multivariate
(non-overlapping) marginal distributions, and (iii) we have losses that are a non-linear
function of the underlying risk factors.

Talay and Zhang [56] approach the issue of model uncertainty as a model risk control
problem. They adopt a worst case stochastic game approach and look at this problem in
a trader-versus-market framework. In this framework the trader’s goal is to minimize the
risk of his position, while the market aims at doing the opposite. The authors point out
that while one can never assume that the trader knows the exact model of the market, they
can assume that the correct model of the market belongs to a wide class of models. By
defining a cost function which describes the risk faced by the trader under such conditions,
the trader is able to choose trading strategies from a set of admissible strategies in order
to decrease the risk of his/her position. On the other hand, the market is assumed to
behave systematically against the interest of the trader and maximizes the risk of his/her
position. Hence the model risk control problem can be viewed as a Trader-versus-Market
zero-sum stochastic differential game problem.

Another approach to static risk measures with model uncertainty can be seen in the
work of Kervarec [57]; model uncertainty in this work is specified by a non-dominated
weakly compact set of probability measures. J. and M. [58] studied regular convex risk
measures on Cb(Ω), the set of continuous bounded functions on a Polish space Ω. They
point out that regularity in their work is equivalent to continuity with respect to a certain
capacity c, which, if one considers the completion L1(c) of Cb(Ω) with respect to this
capacity c would be equivalent to studying convex risk measures on the Banach space
L1(c). The main result of such an approach is that for every regular convex risk measure
on Cb(Ω), there is a unique equivalence class of probability measures characterizing the
risk-less non-positive elements of Cb(Ω).

The following provides a brief summary of the notation that we have used in chapters
3 and 4:

PD: Probability of default of a given counterparty
EAD: Exposure at default matrix, that contains all market scenarios
CVaR: Conditional Value at Risk
CWI: Creditworthiness index of a given counterparty

3.4 Wrong-Way Risk and Counterparty Credit Risk
We start this chapter by looking at different aspects of the existing framework under the
Basel Accord for calculating capital requirements of counterparty credit risk on a typical
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derivatives portfolio. Upon entering an Over The Counter (OTC) contract, the entities
signing the contract are exposed to the risk of the default of other parties during the
lifetime of the contract.

Banks use an internal rating-based method for calculating capital requirements for
the CCR of derivatives portfolios. The risk-weight formula that they use for calculating
counterparty capital charges uses four quantitative inputs:

• Probability of Default (PD),

• Exposure at Default (EAD),

• Loss Given Default (LGD) and

• Maturity (MTY).

Potential Future Exposures, or PFEs, are also an important element in the process of
calculating counterparty credit risk capital through their influence on EAD. PFEs tell us
how exposures evolve during the lifetime of the contract. More specifically, since the value
of derivatives can change substantially over time according to the market conditions and
the age of the portfolio, PFEs can act as a good indicator of such future changes in the
value of the contract.

Banks use internal models for determining probabilities of default and losses given
default. Furthermore the Basel accord allows banks to use internal models for determining
EADs and Maturity. In order to calculate EAD and Maturity, we should find the expected
positive exposure (EPE) (defined as the average of the PFE over time and scenarios;
see section 4.1 for more details), the effective EPE, the effective maturity and the alpha
multiplier.

In the Basel II formula, the minimum capital requirement for a given obligor j is
defined as:

Capital(j) = EADj · LGDj ·
[
Φ
(

Φ−1(PDj) +√ρj.Φ−1(0.999)
√1− ρj

)]
· 1 + (MTYj − 2.5)bj

1− 1.5bj

where EADj,LGDj and PDj are calculated by the bank’s internal rating system. The
time horizon for calculating default probabilities is one year. The asset correlation ρj and
maturity adjustment bj are parameters that are specified in Basel accord. The confidence
level that is used in the Accord is 99.9%. Although this confidence level may seem to be
rather high, according to the Basel Committee on Banking Supervision (BCBS) [39], it
aims at protecting against errors introduced in the banks’ internal models for estimation of
probability of default, loss given default and exposure at default, along with other model
uncertainties.

A portfolio’s alpha multiplier is defined as:

α = ECTotal

ECEPE
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where ECTotal denotes the economic capital (defined as the capital that should be invested
in the company in order to limit the probability of default to a given confidence level
over a given time horizon) for CCR based on a joint simulation of market and credit risk
factors and ECEPE is the economic capital when counterparty exposures are deterministic
and equal to the EPE.

In calculating the numerator of alpha a joint simulation of market and credit risk factors
that incorporates the uncertainty of, and correlation between, counterparty exposures, as
well as the correlation between exposures and defaults is required. This in turn captures
the stochastic nature of the exposures and their correlations, the correlations of exposures
and credit events and portfolio granularity. In contrast, in an ideal universe, for a very
large infinitely granular portfolio, in which PFEs are constant and independent of each
other and of default events, one can assume that exposures are deterministic and they are
given by the EPEs. Calculating α tells us how far we are from such an ideal case; in other
words, alpha acts as a tool to condition internal EPE estimates on a “bad state” of the
economy and to adjust internal EPEs for:

• lack of granularity across portfolios,

• correlation between counterparty exposures and defaults,

• and uncertainty of counterparty exposures and correlation between them as well as
the correlation between the counterparty exposures and LGDs.

A closer look at various aspects of the processes that we described for calculating capital
requirements for CCR brings the role of market-credit correlation to prominence as it
determines the co-dependence between exposures and defaults and plays an integral role in
stress testing and sensitivity analysis in many practical applications. The challenge faced
by researchers in this remains in having a conservative estimate of these market-credit
correlations and a dependable process for validating them. Given the importance of
capturing the right co-dependence structure of market risk factors and credit risk factors,
answering the question “What is the worst-case dependence structure?” can provide us
with a solid framework for bounding various risk statistics of a portfolio. The next section
is devoted to formalizing this problem for finding the worst-case joint distribution of market
risk factors and credit risk factors assuming that the respective marginal distributions of
these factors are given. Later on we focus on a nontrivial counterparty credit risk example
under this setting.

3.5 The Worst-Case Risk Measure Problem
Let Y and Z be two vectors of random risk factors respectively. We assume that the
multi-dimensional marginals of Y and Z, denoted by FY (y) and FZ(z) respectively, are
known, but the joint distribution of (Y, Z) is unknown. (Note: in the context of the
counterparty credit risk management discussed in the next section, Y and Z will be vectors
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of market and systematic credit factors respectively). Portfolio losses are defined to be
L = L(Y, Z), where in general this function may be non-linear. We are interested in
determining the joint distribution of (Y, Z) that maximizes a given risk measure ρ:

max
F(FY ,FZ)

ρ (L(Y, Z)) (3.5.1)

where F(FY , FZ) is the Fréchet class of all possible joint distributions of (Y, Z) matching
the previously defined marginal distributions FY and FZ . More explicitly, for any joint
distribution FY Z ∈ F(FY , FZ) we have Πy{FY Z} = FY and Πz{FY Z} = FZ , where Π.{.}
denote the projections that take the joint distribution to its (multi-variate) marginals. 1

3.6 Coherent Risk Measures
Assume Ω to be a pre-determined set of scenarios that we need for calculating the future
loss of our portfolio. Using Ω we can calculate various uncertain future values of our
portfolio; more specifically let V : Ω→ R calculate the future value of our portfolio. Our
goal is to define a number ρ(V ) that quantifies the risk of the portfolio.

The following axioms and definitions are from Artzner et al. [59]. In the following let
χ to be the linear space of all functions V : Ω→ R.

Definition 3.6.1 (Risk Measure). The mapping ρ : χ→ R is called a risk measure if it
satisfies the following properties:

• Finiteness: ρ(0) is finite

• Monotonicity: For all X1, X2 ∈ χ, if X1 6 X2 a.s., then ρ(X1) 6 ρ(X2) and

• Translation invariance: For m ∈ R and X1 ∈ χ, ρ(X1 +m) = ρ(X1) +m

Monotonicity has a clear interpretation: portfolios which always lose more require
more risk capital. Translation invariance, also called Cash invariance ensures that with
adding risk-free amount $m of cash to our portfolio for meeting regulatory obligations,
the capital requirement of our position is adjusted accordingly.

Definition 3.6.2 (Convex Risk Measure.). If a risk measure ρ satisfies

• ρ(λX1 + (1− λ)X2) 6 λρ(X1) + (1− λ)ρ(X2), for 0 6 λ 6 1

then it is called a convex risk measure.
1While we are mainly interested in applications to counterparty credit risk, we note that bounds on

instrument prices can be derived within the above formulation by taking the risk measure to be the
expectation operator. An alternative application of this methodology for calculating worst-case credit
value adjustment, proposed by Glasserman and Yang [1], is presented in chapter 2.
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The intuitive idea underlying the axiom of convexity is based on the benefits of
diversification. Suppose that an investor is given two alternative investment strategies
leading to risk profiles X1 and X2. Then by investing only λ and 1− λ of his wealth in
the strategies X1 and X2 respectively, his total risk should not increase.

Definition 3.6.3 (Coherent Risk Measure.). A convex risk measure is called a coherent
risk measure if it satisfies

• Positive homogeneity: If λ > 0, then ρ(λX1) = λρ(X1)

A direct implication of positive homogeneity for a convex risk measure ρ is that it
becomes sub-additive, that is

• Sub-additive: X1, X2, X1 +X2 ∈ χ⇒ ρ(X1 +X2) 6 ρ(X1) + ρ(X2)

An important application of sub-additivity for practitioners is that it enables them to
decentralize the total risk of a portfolio. More precisely, if we assign different risk limits
for each asset class in our portfolio, then the total risk of this collection does not exceed
the sum of the risks for each class.

3.7 VaR, CVaR and Coherence
It is well known that VaR is not a coherent risk measure, while its averaged value, CVaR
complies with axioms of coherence (see Artzner et al. [59]). In this section we provide a
further discussion on at VaR and CVaR.

Given a portfolio of risky assets and a fixed time horizon δ, let FL(l) = P (L 6 l)
denote the loss distribution function (in simple terms, L is defined as the initial value
of the portfolio minus its final value over the time horizon δ). VaR is a quantile of the
loss distribution L. More formally, we assume that L is a random variable defined on a
probability space (Ω,B, F ).

Definition 3.7.1 (VaR). Given a confidence level α and a loss random variable L, the
VaR at confidence level α is defined as:

VaRα(L) = inf{l ∈ R : P (L > l) 6 1− α} = inf{l ∈ R : FL(l) > α} (3.7.1)

The time horizon of one year and confidence level of α = 0.999 are the most common
parameters used in practice. In spite of it being a popular risk measure in practice, VaR
suffers from the lack of sub-additivity.

Note that while the above definition of VaRα(L) provides us with a probabilistic
statement, controlling the probability of losses, the size of such losses remains unknown.
CVaR, also known as tail VaR or Expected Shortfall addresses sub-additivity issues, by
taking into account what happens beyond a fixed confidence level α of the loss distribution.
By using CVaR we can learn more about extreme behaviours of the loss distribution.
In what follows we give formal definition of this risk measure and connect it with the
worst-case copula problem.
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Definition 3.7.2 (CVaR). For the confidence level α and the loss random variable L, the
CVaR at level α is defined by

CVaRα(L) = 1
1− α

∫ 1

α
VaRξ(L)dξ

The following theorem is from Schied [60] and provides an important characterization
of CVaR.

Theorem 3.7.3. CVaRα(L) can be represented as

CVaRα(L) = sup
G∈Gα

EG[L]

where Gα is the set of all probability measures G � F whose density dG/dF is F -a.s.
bounded by 1/(1− α).

In the above theorem, G � F means G is absolutely continuous with respect to F ,
i.e. for any B ∈ B that F (B) = 0 we have G(B) = 0. Applying the above result, with
ρ = CVaRα, the worst-case joint distribution problem stated in (3.5.1) can be conveniently
reformulated as:

sup
F∈F(FY ,FZ),G�F

EG[L] (3.7.2)

dG

dF
6

1
1− α a.s. (3.7.3)

Note that the final constraint assumes explicitly that the corresponding density exists.
In many practical cases the marginal distributions will be discrete, either due to a

modelling choice, or because they arise from the simulation of separate continuous models
for Y and Z. In this case, the marginal distributions of the credit risk factors and market
risk factors can be represented by FZ(Z = zi) = qi, i = 1, . . . , N and FY (Y = yj) = pj, j =
1, . . . ,M respectively. Any joint distribution of (Y, Z) is then specified by the quantities
FY Z(Y = yj, Z = zi) = ϑij, and the worst-case CVaR optimization problem above can be
further simplified to:

max
ϑ,µ

1
1− α

N∑
i=1

M∑
j=1

lij · µij (3.7.4)

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

N∑
i=1

M∑
j=1

µij = 1− α, (3.7.5)

0 6 µij 6 ϑij, i = 1, . . . , N, j = 1, . . . ,M (3.7.6)
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where lij represents the discretized loss function under the i-th credit scenario, i = 1, . . . , N
and j-th market scenario, j = 1, . . . ,M . Section 4.1 provides a detailed description of how
lij, i = 1, . . . , N, j = 1, . . . ,M is calculated when the linear programming problem (3.7.4)
is solved.

The constraint (3.7.3) in problem (3.7.2) is (roughly) translated into two constraints
(3.7.5) and (3.7.6) in problem (3.7.4); by dividing both sides of the (3.7.5) by 1−α, (3.7.5)
can be written as:

N∑
i=1

M∑
j=1

1
1− αµij = 1

that is 1
1−αµ represents a probability mass function; similarly, (3.7.6) can be written as:

( 1
1− αµij

)( 1
ϑij

)
6

1
1− α as long as ϑij > 0

now it can be easily seen that there is a one-to-one correspondence between the latter
inequality and (3.7.3).

50



Chapter 4

Worst-Case Conditional
Value-at-Risk

4.1 Worst-Case Joint Distribution in the Basel Credit
Model

A nontrivial application of the aforementioned worst-case copula is given in the form
of a Counterparty Credit Risk problem. We start this section by describing the default
behaviour of a single counterparty; we then proceed to incorporate this behaviour into the
portfolio’s loss function.

In order to calculate the total loss incurred by the portfolio, we have to determine
whether the respective counterparties in the portfolio have defaulted or not. In general,
assuming that there are K counterparties in the portfolio, the joint counterparty defaults
would be driven by a set of S systematic factors Zi, i = 1, . . . , S along with K distinct
idiosyncratic factors for the respective counterparties, εk, k = 1, . . . , K. For simplicity we
assume further that Zi and εk are independent standard random normal variables. The
creditworthiness index of each counterparty k is defined as:

CWIk =
S∑
i=1

βikZi + σkεk, k = 1, . . . , K

where βik represents the sensitivity of the k-th counterparty to the i-th systematic factor,
i = 1, . . . , S and:

σk =

√√√√1−
S∑
i=1

β2
ik, k = 1, . . . , K

Given PDk, the default probability of counterparty k, the k-th counterparty defaults if its
creditworthiness index falls below the threshold Φ−1(PDk), where Φ(.) is the cumulative
normal distribution and Φ−1 is its inverse. So the default indicator of counterparty k can
be written as

Dk =
{

1, if CWIk 6 Φ−1(PDk)
0, otherwise
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For the sake of simplicity, in our work we assume that the creditworthiness index of a
counterparty is in agreement with the Basel portfolio model and driven by only a single
factor Gaussian copula1 (i.e. we have assumed S = 1 in equation (4.1.1) and the systematic
risk factor Z1 is simply referred to as Z henceforth):

CWIk = √ρk · Z +
√

1− ρk · εk, k = 1, . . . , K (4.1.1)

where Z and εk are independent standard normal random variables and ρk is the factor
loading giving the sensitivity of counterparty k to the systematic factor Z. The systematic
risk factor, Z, represents macroeconomic or industry level events which influence the
performance of each counterparty while idiosyncratic risk factors (denoted by εk) reflect
the risk that is unique to each counterparty. While we use a single factor model in this
chapter, one can in principle use a multi-factor model to capture more sophisticated
dependence structures. Given PDk, the default probability of counterparty k, then that
counterparty will default if:

CWIk 6 Φ−1(PDk), k = 1, . . . , K

where Φ−1(·) represents the inverse of the cumulative distribution function for the standard
normal random variable. Assume that we are given a finite number of market scenarios
(M <∞), each of which is denoted by yj, j = 1, . . . ,M .

Let ykj be the exposure of the portfolio to counterparty k, k = 1, 2, . . . , K under the
j-th market scenario yj, j = 1, . . . ,M . These exposures are given in an EAD matrix, i.e.,
ykj, the exposure to the k-th counterparty, k = 1, . . . , K under the j-th market scenario
j = 1, . . . ,M , is given in EAD(k, j). Then the total loss under each market scenario is
defined as:

lj =
K∑
k=1

ykj ·Dk (4.1.2)

P (Y = yj) = pj, j = 1, . . . ,M

The random variable Y in (4.1.2) is used to denote market scenarios, each of which contains
the exposure information of all K counterparties. That is each market scenario yj, j =
1, . . . ,M contains all of the respective exposure information for the K counterparties in
the portfolio, namely ykj, k = 1, . . . , K. Moreover the j-th market scenario happens with
probability of pj and:

M∑
j=1

P (Y = yj) =
M∑
j=1

pj = 1

where P (Y = yj) = pj represents the marginal distribution of the market scenarios. Note
that we have assumed there is no correlation between exposures in each market scenario
and the respective idiosyncratic factors, i.e. yj and εk are independent. We will be focusing

1We choose the Gaussian copula solely for illustration. It could be easily replaced by other copulas in
the simulation algorithm, as long as systematic and idiosyncratic risk can be identified, and conditional
probabilities of default given systematic scenarios computed.
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on the systematic risk, Z, and formulate the worst-case copula by using systematic losses.
We do not focus on name concentration and idiosyncratic risks. Given the systematic risk
factor Z, the portfolio’s total loss under the j-th market scenario is:

lj(Z) =
K∑
k=1

ykjΦ
(

Φ−1(PDk)−
√
ρk · Z√

1− ρk

)
(4.1.3)

In order to formulate the worst-case joint distribution problem, we discretize the systematic
risk factor Z by using N points and define the credit space for these N states as (z1, . . . , zN ).
By further discretizing the portfolio losses under each market scenario, lj, j = 1, . . . ,M
and for the i-th credit state, i = 1, . . . , N , we have:

lij =
K∑
k=1

ykjΦ
(

Φ−1(PDk)−
√
ρk · zi√

1− ρk

)
P (Z = zi) = qi, i = 1, . . . , N (4.1.4)

where P (Z = zi) represents the marginal distribution of the credit risk factor Z for which
we have

N∑
i=1

P (Z = zi) =
N∑
i=1

qi = 1

and lij represents the losses under the i-th credit scenario i = 1, . . . , N and the j-th market
scenario j = 1, . . . ,M .

Therefore the worst-case joint distribution of market risk factors and credit risk fac-
tors is found by solving the following optimization problem:

max
P (Y,Z)∈F(FY ,FZ)

CVaRα(L) (4.1.5)

where P (., .) ∈ is a joint distribution of market risk factors and credit risk factors for
which ϑij = P (Y = yj, Z = zi) denotes the joint probability of the j-th market scenario
and the i-th credit scenario (i = 1, . . . , N and j = 1, . . . ,M). F(FY , FZ) is the Fréchet
class of all possible joint distributions of (Y, Z) matching the previously defined marginals
FY and FZ . Note that since the sum of each marginal distribution is equal to one, we do
not have to include the additional constraint for specifying that the total sum of the joint
distribution is equal to one as well.
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4.1.1 LP Formulation for the Worst-case Conditional Value-at-
Risk

Problem (4.1.5) can be recast as:

max
ϑ,µ

(1− α)−1
N∑
i=1

M∑
j=1

lijµij (4.1.6)

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

N∑
i=1

M∑
j=1

µij = 1− α,

0 6 µij 6 ϑij, i = 1, . . . , N, j = 1, . . . ,M

While we will be concerned with the latter representation (problem (4.1.6)) of the worst-
case joint distribution problem and present our numerical example in section 4.2 based on
this, an alternative derivation of problem (4.1.6) is also presented in Appendix B for the
sake of completeness.

4.2 Application to Counterparty Credit Risk
At a given confidence level α, the worst-case joint distribution of market and credit factors,
ϑij, i = 1, . . . , N, j = 1, . . . ,M, can be obtained by solving the linear programming
problem stated in (4.1.6).

Having found the discretized worst-case joint distribution, we can simulate from the
full (not just systematic) credit loss distribution by using the following algorithm in order
to generate portfolio losses:

Algorithm 4.2.1: Total (or Systematic) Portfolio Loss Generation
Using the Worst-case Copula

1. Given a set of M market scenarios (each of which contains the exposure information for all
K counterparties) and an N -point discretization of the systematic risk factors Z ∼ N(0, 1)
as (z1, . . . , zN ), define:

lij =
K∑
k=1

ykjΦ
(

Φ−1(PDk)−
√
ρkzi√

1− ρk

)
qi = Φ(zi)− Φ(zi−1), i = 2, . . . , N − 1
q1 = Φ−1(z1), qN = 1− Φ−1(zN )
pj = 1/M, j = 1, . . . ,M (4.2.1)
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and solve the linear programming problem (4.1.6) to determine the worst-case joint distribu-
tion of market risk factors and credit risk factors, ϑij , i = 1, . . . , N, j = 1, . . . ,M .

2. Repeat the following steps N0 times to simulate the total (or systematic) loss vector L0 as
required:

2.1 Generate a random credit state i0 and a random market scenario j0 by using algorithm
4.2.2,

2.2 Simulate z0, a standard normal random variable conditioned to be in (zi0−1, zi0+1) for
the credit state i0. Generate K i.i.d. random standard normal random variables εk
and define the creditworthiness index of each counterparty using

CWIk = √ρk · z0 +
√

1− ρk · εk, k = 1, . . . ,K

2.3 Determine the default status of all K counterparties by using the creditworthiness
indices defined in step 2.2 and calculate their respective default indicators:

Dk =
{

1, if CWIk 6 Φ−1(PDk) k = 1, . . . ,K
0, otherwise

2.4 For the simulated market scenario j0, given in step 2.1, calculate the total losses by
using

K∑
k=1

ykj0 ·Dk

or the systematic losses for the market scenario j0
K∑
k=1

ykj0Φ
(

Φ−1(PDk)−
√
ρkz0√

1− ρk

)

as given in step 2 where PDk, k = 1, ...,K, is the default probability of the k-th
counterparty.

In solving the linear programming problem (4.1.6), the optimal solution is stored
in a vector of length MN , namely ϑ. In order to generate the random credit scenario
i0, i0 = 1, . . . , N and a random market scenario j0, j0 = 1, . . . ,M in the step 2.1 of
algorithm 4.2.1, we use the following algorithm:

Algorithm 4.2.2: Random Market and Credit Scenario Simulation
in the Worst-case Copula Loss Generation

1. Generate a uniform(0, 1) random variable, u ∼ U(0, 1),

2. If u < ϑ(1) then let c0 = 1. Otherwise find the smallest index c0 in the vector ϑ for which
we have:

c0∑
i=1

ϑ(i) 6 u
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3. Using the c0 found above, calculate the market scenario j0 as:

j0 =
⌈
c0
N

⌉
and the credit state i0, by using the above j0:

i0 = c0 −N · (j0 − 1)

Once we have calculated a vector L0 (with length N0 as described in step 2 of algorithm
4.2.1) for the total (or systematic) losses, we can calculate the worst-case CVaRα(L0).
This is done by sorting the vector L0 in an increasing order and taking an average of the
worst N ′0 of the simulated losses as prescribed by the confidence level α, i.e.,

N ′0 = bN0(1− α)c

For example if N0 = 10,000 in step 2 of algorithm 4.2.1 and we are interested in calculating
the worst-case CVaR for α = 0.95, we will take an average of the largest N ′0 = 500 elements
of the sorted vector L0.

To illustrate application of the worst-case copula problem, we use a real-world portfolio
of a large financial institution. The portfolio consists of over-the-counter derivatives with
a wide range of counterparties, and is sensitive to many risk factors, including interest
rates and exchange rates. Results calculated by using the worst-case joint distribution are
compared to those obtained by using the stress-testing algorithm correlating the systematic
credit factor to total portfolio exposure, as described in Garcia-Cespedes et al. [37] and
Rosen and Saunders [61].

More specifically we begin by solving the worst-case joint distribution (4.1.6) for a
given, pre-computed set of exposure scenarios, and the discretization of the (systematic)
credit factor in the single factor Gaussian copula credit model described above. We then
simulate the full model based on the resulting joint distribution, under the assumption of
no idiosyncratic wrong-way risk (so that the market factors and the idiosyncratic credit
risk factors remain independent). Note that exposures are single-step EPEs based on
a multi-step simulation using a model that assumes mean reversion for the underlying
stochastic factors. A detailed treatment of the EPE is presented in Rosen and Saunders
[61]. The market scenarios are derived from a standard Monte-Carlo simulation of portfolio
exposures, so that we have:

P (Y = yj) = pj = 1
M
, j = 1, . . . ,M (4.2.2)

Algorithm 4.2.3: Total (Systematic) Portfolio Loss Generation
Using Ordered Scenario Copula
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1. For a given EAD matrix, sort the columns of the matrix, each of which defines the exposure
scenarios, in order of the increasing total portfolio exposure, i.e., after sorting we must have:

K∑
i=1

yij(1)
6

K∑
i=1

yij(2)
6 . . . 6

K∑
i=1

ykj(M−1)
6

K∑
i=1

ykj(M)

where j(1), j(2), . . . , j(M−1), j(M) represents the new ordering of the columns.

2. Calculate the thresholds Hm, defined as:

Hm =


−∞ m = 0
Φ−1(Pm) m = 1, . . . ,M − 1
∞ m = M

(4.2.3)

where for a fixed m, m = 1, . . . ,M − 1, Pm =
∑m
j=1 pj

3. Repeat the following steps N0 times to simulate the total (or systematic) loss vector L0 as
required:

3.1 Generate a random s ∼ N(0, 1), determine the exposure scenario yj according to:

Y = yj0 ⇐⇒ Hj0−1 < s 6 Hj0 , j0 = 1, . . . ,M (4.2.4)

and choose the j0-th column of the sorted exposure matrix in step 1 as the respective
market exposure scenario that is used in computing total (or systematic) losses in step
3.5.

3.2 For a given ρ ∈ [−1, 1], the pre-specified correlation for the systematic credit factor Z
and exposure factor Y , simulate from their standard bivariate Gaussian distribution,
i.e., (Y,Z) ∼ N(0,Σ),

(Y, Z) ∼ N(0,Σ), 0 = (0, 0), Σ =
(

1 ρ
ρ 1

)

assuming that Y = s is given in the step 3.1. In this case

z0 = s · ρ+
√

(1− ρ2) · r

where r is a standard normal random variable, i.e., the conditional disribution of the
systematic credit factor Z given Y = s (used to generate z0) becomes N(ρs, 1− ρ2).

3.3 Generate K indepedently and identically distributed standard normal random variables,
εk, k = 1, . . . ,K, for the respective idiosyncratic risk factors of each of the K
counterparties and define the creditworthiness index of each counterparty (using their
respective factor loading ρk) as:

CWIk = √ρk · z0 +
√

1− ρk · εk, k = 1, . . . ,K

3.4 Determine the default status of all K counterparties by using the creditworthiness
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indices defined in step 3.3 and calculate their respective default indicators:

Dk =
{

1, if CWIk 6 Φ−1(PDk) k = 1, . . . ,K
0, otherwise

3.5 For the market scenario j0, determined in step 3.1, calculate the total losses by using

K∑
k=1

ykj0 ·Dk

or the systematic losses for the market scenario j0
K∑
k=1

ykj0Φ
(

Φ−1(PDk)−
√
ρkz0√

1− ρk

)

as given in step 3 where PDk, k = 1, ...,K, is the default probability of the k-th
counterparty.

Similarly, after simulating a vector of the total (or systematic) losses L0 using the
ordered scenario copula algorithm 4.2.3) we calculate the CVaRα(L0) for a given confidence
level α by sorting the vector L0 in an increasing order and taking an average of the worst
N ′0 of the simulated losses as given by the confidence level α. Having done that, we can
compare the results of the CVaRα(L0) generated by the worst-case copula algorithm 4.2.1
to those that are generated by the ordered scenario copula algorithm 4.2.3.

4.2.1 Portfolio Characteristics

The analysis presented in this section is based on a large portfolio of over-the-counter
derivatives including positions in interest rate swaps and credit default swaps with 4794
counterparties. We focus on two cases, the largest 220 and largest 410 counterparties
as ranked by exposure (EPE). Each case accounts for more than 95% and 99% of total
portfolio exposure respectively.

Figures 4.1 and 4.2 present exposure concentration reports, giving the number of
effective counterparties among the largest 220 and 410 counterparties respectively. Let
wn be the nth largest exposure. Then the Herfindahl index of the N largest exposures is
defined as:

HN =
∑N
n=1 w

2
n(∑N

n=1 wn
)2

The effective number of counterparties among the N largest counterparties with respect
to total portfolio exposures is H−1

N . The effective number of counterparties for the entire
portfolio is shown in Figure 4.3. As can be seen in these figures the choice of the largest
220 and 410 counterparties is well justified as the number of effective counterparties for
the entire portfolio is 31 in each case.
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Figure 4.1: Effective number of counterparties for the largest 220 counterparties.
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Figure 4.2: Effective number of counterparties for the largest 410 counterparties.
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Figure 4.3: Effective number of counterparties for the entire portfolio.

The exposure simulation uses M = 1000 and M = 2000 market scenarios, while the
systematic credit risk factor is discretized with N = 1000, N = 2000 and N = 5000 as
described in algorithm 4.2.1. For CVaR calculations and comparing the results of the total
(systematic) losses generated by the worst-case copula algorithm 4.2.1 and the ordered
scenario copula algorithm 4.2.3, we employ the 95% and 99% confidence levels. A summary
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of the above parameters is presented in Table 4.1.

The ranges of individual counterparty exposures are plotted in Figure 4.4. The 95th and
5th percentiles of the exposure distribution are given as a percentage of the mean exposure
for each counterparty. The volatility of the counterparty exposure tends to increase as the
mean exposure of the respective counterparties decreases. In other words, counterparties
with a higher mean exposure tend to be less volatile compared to counterparties with lower
mean exposure. Given the above characteristics, we would expect that the wrong-way
risk could have an important impact on the portfolio risk, and that the contribution of
idiosyncratic risk will also be significant. The distribution of the total portfolio exposures
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Figure 4.4: 5% and 95% percentiles of the exposure distributions of individual
counterparties, expressed as a percentage of counterparty mean exposure (counterparties
are sorted in order of decreasing mean exposure).

from the exposure simulation is given in Figure 4.5. The histogram shows that the portfolio
exposure distribution is both leptokurtic and highly skewed. The excess kurtosis and
the skewness of the exposure are 117.21 and 9.42 respectively, indicating an extreme
leptokurtosis and a highly skewed distribution.
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Figure 4.5: Histogram of total portfolio exposures from the exposure simulation.
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Portfolio characteristics Parameter values
Number of counterparties 4794
Market scenarios 2000
Excess kurtosis 117.21
Skewness 9.42

Table 4.1: Summary of the portfolio characteristics.

4.2.2 Numerical Results

We compare the CVaR calculated for the losses that are generated by the worst-case copula
algorithm 4.2.1 for solving the linear programming problem (4.1.6), to those computed
when the losses are generated by the ordered scenario copula, described in algorithm 4.2.3
of Rosen and Saunders [61]. For each level of the correlation of the systematic risk factor
Z and market risk factors Y , ρ, in algorithm 4.2.3 we calculate the ratio of the CVaR
(measured at the confidence levels α = 95% and α = 99%) generated by the ordered
scenario copula to the one that is generated from the worst-case copula algorithm 4.2.1. In
conducting simulations when both of the algorithms 4.2.1 and 4.2.3 are used, N0 = 100,000
is chosen and the range of ρ that is used for the correlation of the systematic risk factor Z
and market risk factor Y is:

ρ ∈ {−1,−0.8, . . . , 0.8, 1} (4.2.5)

We present the results based on the three sets of discretizations of the worst-case joint
distribution of market risk factors and credit risk factors. Case I employs M = 1,000
market scenarios and N = 1,000 credit scenarios; Case II doubles the number of market
and credit scenarios. Lastly in Case III we use 2,000 market scenarios and 5,000 credit
scenarios. Note that Case I and Case II yield a discretized worst-case distribution that has
106 and 4× 106 elements while Case III’s output has 107 elements. In each of these cases,
we have solved the linear programming problem 4.1.6 at the confidence levels α = 0.95
and α = 0.99 respectively.

We have used CPLEX Optimization Studio to solve various instances of the linear
programming problem described above and the results of the solution quality as well as
the computational performance for each case are shown in table 4.2. All solution status
codes indicate that the optimization has reached its optimal solution. This can be further
confirmed by the reported duality gap and sum of primal residuals and sum of dual residuals.
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Test I
MN = 106 M = 1000 market scenarios N = 1000 credit scenarios
α min(CVaRsys/CVaRwcc) max(CVaRsys/CVaRwcc)
0.95 52.2% 95.1%
0.99 51.8% 95.9%
Test II
MN = 4× 106 M = 2000 market scenarios N = 2000 credit scenarios
α min(CVaRsys/CVaRwcc) max(CVaRsys/CVaRwcc)
0.95 50.3% 96.9%
0.99 49.6% 96.6%
Test III
MN = 107 M = 2000 market scenarios N = 5000 credit scenarios
α min(CVaRsys/CVaRwcc) max(CVaRsys/CVaRwcc)
0.95 44.8% 96.4%
0.99 44.1% 97.1%

Table 4.3: Minimum and maximum of the ratio of the systematic CVaR generated
using the ordered scenario copula algorithm 4.2.3 to the systematic CVaR generated
using the worst-case copula algorithm 4.2.1 for the largest 220 counterparties at the 95%
and 99% confidence level.

α K M N run time sum of primal sum of dual duality solution
(in seconds) residuals residuals gap status code

0.95 220 1000 1000 451.1216 8.0101e-07 7.2091e-07 5.4681e-09 1

0.95 220 2000 2000 712.1227 6.9875e-07 6.2887e-07 8.5944e-09 1

0.95 220 2000 5000 1021.2694 8.1815e-07 7.3633e-07 4.538e-09 1

0.99 410 1000 1000 515.163 9.8305e-07 8.8475e-07 9.9908e-09 1

0.99 410 2000 2000 819.9888 7.1836e-07 6.4652e-07 2.6647e-09 1

0.99 410 2000 5000 1070.9282 6.6201e-07 5.9581e-07 2.6478e-09 1

Table 4.2: Run time, sum of primal residuals, sum of dual residuals, duality gap and
solution status code for the 6 instances of the linear programming problems (4.1.6) at
the confidence levels α = 0.95 and α = 0.99 for the largest 220 and 410 counterparties.

Figure 4.6 shows the graph of the ratio of the systematic CVaR calculated using the
losses generated by the ordered scenario copula algorithm 4.2.3 to the systematic CVaR
calculated using the losses generated by the worst-case copula algorithm 4.2.1 for the largest
220 counterparties at the 95% confidence level. The ratios of the CVaR of the systematic
portfolio loss to the CVaR calculated using the worst-case joint distribution across various
levels of market-credit correlation (given in (4.2.5)) and discretization scenarios indicates
the worst-case joint distribution has a higher CVaR compared to the previous simulation
methods for the largest 220 counterparties by 4.9%, 3.1% and 3.6% at α = 0.95 when the
systematic risk factor and the market risk factor are perfectly correlated (ρ = 1).
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Test I
MN = 106 M = 1000 market scenarios N = 1000 credit scenarios
α min(CVaRtot/CVaRwcc) max(CVaRtot/CVaRwcc)
0.95 52.2% 96.8%
0.99 51.6% 96.5%
Test II
MN = 4× 106 M = 2000 market scenarios N = 2000 credit scenarios
α min(CVaRtot/CVaRwcc) max(CVaRtot/CVaRwcc)
0.95 49.6% 97.2%
0.99 48.9% 97.4%
Test III
MN = 107 M = 2000 market scenarios N = 5000 credit scenarios
α min(CVaRtot/CVaRwcc) max(CVaRtot/CVaRwcc)
0.95 45.8% 98.1%
0.99 44.7% 98.2%

Table 4.4: Minimum and maximum of the ratio of the CVaR for the total losses
generated using the ordered scenario copula algorithm 4.2.3 to the CVaR for the total losses
generated using the worst-case copula algorithm 4.2.1 for the largest 410 counterparties
at the 95% and 99% confidence level.

Test I Test II

Test III

Figure 4.6: Ratio of the systematic CVaR generated using the ordered scenario copula
algorithm 4.2.3 to the systematic CVaR generated using the worst-case copula algorithm
4.2.1 for the largest 220 counterparties at the 95% confidence level.
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Moreover, this difference is larger for the lower levels of market-credit correlation when
losses are generated by algorithm 4.2.3. It is important to note that while by using the
highest level of market-credit correlation (ρ = 1) in algorithm 4.2.3 the relative difference
between the CVaRs generated using the ordered scenario copula algorithm 4.2.3 and the
worst-case copula algorithm 4.2.1 does not exceed 4.9% (see the last column, associated
with ρ = 1, in table 4.5), in many practical applications the market-credit correlation is
chosen in 0.2 6 ρ 6 0.3 (see Rosen and Saunders [61]) which can drastically change this
difference. This relative difference for the top 220 counterparties is shown in table 4.5 (for
example, see the column corresponding to ρ = 0.2). In addition to the results presented in
figure 4.6, table 4.3 shows the minimum and maximum of the systematic CVaR calculated
using algorithm 4.2.3 to the CVaR calculated from the worst-case copula algorithm 4.2.1
at the 99% confidence level.

α K M N ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.95 220 1000 1000 47.8% 43.0% 38.7% 34.5% 30.3% 26.0% 21.8% 17.6% 13.3% 9.1% 4.9%

0.95 220 2000 2000 49.7% 44.5% 39.9% 35.3% 30.7% 26.1% 21.5% 16.9% 12.3% 7.7% 3.1%

0.95 220 2000 5000 55.2% 49.4% 44.3% 39.2% 34.1% 29.0% 23.9% 18.9% 13.8% 8.7% 3.6%

0.99 410 1000 1000 48.2% 43.3% 38.9% 34.6% 30.2% 25.8% 21.5% 17.1% 12.8% 8.4% 4.1%

0.99 410 2000 2000 50.4% 45.2% 40.5% 35.9% 31.2% 26.6% 21.9% 17.3% 12.6% 8.0% 3.4%

0.99 410 2000 5000 55.9% 50.0% 44.8% 39.5% 34.3% 29.0% 23.8% 18.6% 13.3% 8.1% 2.9%

Table 4.5: The relative difference between the systematic CVaR generated using the
ordered scenario copula algorithm 4.2.3 and the systematic CVaR generated using the
worst-case copula algorithm 4.2.1 for the largest 220 counterparties at the 95% and 99%
confidence level.

α K M N ρ
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0.95 220 1000 1000 47.8% 42.8% 38.4% 34.0% 29.6% 25.2% 20.8% 16.4% 12.0% 7.6% 3.2%

0.95 220 2000 2000 50.4% 45.1% 40.4% 35.7% 31.0% 26.3% 21.6% 16.9% 12.2% 7.5% 2.8%

0.95 220 2000 5000 54.2% 48.4% 43.2% 38.0% 32.9% 27.7% 22.5% 17.4% 12.2% 7.0% 1.9%

0.99 410 1000 1000 48.4% 43.4% 38.9% 34.5% 30.1% 25.6% 21.2% 16.8% 12.3% 7.9% 3.5%

0.99 410 2000 2000 51.1% 45.7% 40.9% 36.1% 31.3% 26.5% 21.7% 16.9% 12.2% 7.4% 2.6%

0.99 410 2000 5000 55.3% 49.4% 44.1% 38.8% 33.5% 28.2% 22.9% 17.6% 12.4% 7.1% 1.8%

Table 4.6: The relative difference between the total CVaR generated using the ordered
scenario copula algorithm 4.2.3 and the systematic CVaR generated using the worst-case
copula algorithm 4.2.1 for the largest 410 counterparties at the 95% and 99% confidence
level.

Alternatively we can calculate the CVaR ratios of the total losses when the losses are
generated by algorithms 4.2.1 and 4.2.3 for the largest 410 counterparties (constituting
more than 99.6% of the total portfolio exposure) in the portfolio. Figure 4.7 shows the
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Test I Test II

Test III

Figure 4.7: Ratio of the CVaR for the total losses generated using the ordered scenario
copula algorithm 4.2.3 to the CVaR for total losses generated using the worst-case copula
algorithm 4.2.1 for the largest 410 counterparties at the 99% confidence level.

CVaR ratios, computed at α = 99% for the total losses and table 4.6 provides a summary
of the relative difference between the total CVaR calculated at both α = 0.95 and α = 0.99.
Similar to the results observed earlier, table 4.6 indicates that while the relative difference
between the CVaRs generated using the ordered scenario copula algorithm 4.2.3 and the
worst-case copula algorithm 4.2.1 does not exceed 3.5% when the market-credit correlation
is perfect, this difference is larger when a lower market-credit correlation is used.

65



Chapter 5

Rearrangement Algorithm and VaR
Analytical Bounds

5.1 Overview
An important aspect of Quantitative Risk Management (QRM) is to analyze a one-period
ahead vector of losses L = (L1, . . . , Ld)>, where Lj represents the loss (which is treated as
a random variable) associated with a given business line or risk type j, j ∈ {1, . . . , d} over
a fixed time horizon. Financial institutions often consider aggregated loss

L+ =
d∑
j=1

Lj,

of particular interest. Under Pillar I of the Basel Accord (Basel Committee on Bank-
ing Supervision [62]), financial institutions are required to set capital to manage market,
credit and operational risks. To this end, a risk measure ρ(·) is used to map the aggregate
position L+ to ρ(L+) ∈ R to obtain the amount of capital required to account for the
losses for a predetermined time horizon. Note that, in practice, capital for different risk
types covers different time periods, typically based on VaRα measured over different time
horizons. As a risk measure, VaR has been widely adopted by the financial industry since
the mid-nineties. It is defined as the α-quantile of the distribution function FL+ of L+,
i.e.,

VaRα(L+) = F−L+(α) = inf{x ∈ R : FL+(x) > α},

where F−L+ denotes the quantile function of FL+ ; see Embrechts and Hofert [63] for more
details. A well known drawback of VaRα(L+) as a risk measure is that VaRα(L+) is not
necessarily sub-additive, unless L follows an elliptical distribution; see, e.g., Embrechts
et al. [64], McNeil et al. [65], Embrechts et al. [5] and Hofert and McNeil [66].

There are various methods for estimating the marginal loss distributions F1, . . . , Fd of
L1, . . . , Ld, respectively, but the d-variate dependence structure of L is often more difficult
to capture as typically not much is known about the underlying copula C.
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In this chapter, we focus on the case where C is unknown. The case of partial
information about C is studied by Bernard et al. [67] and Bernard et al. [68]. In our case,
we only know that VaRα(L+) ∈ [VaRα(L+),VaRα(L+)]. Note that an analytical solution
for VaRα(L+) (or the best or worst VaRα) is in general not available if d > 3.

A brief summary of the notation used in chapter 5 is given below:

L : the loss vector associated with a given set of d risk types
L+ : aggregated loss

VaRα(L+) : Value-at-Risk at confidence level α
VaRα(L+) : smallest VaRα(L+) over all distributions of L with marginals F1, . . . , Fd

VaRα(L+) : largest VaRα(L+) over all distributions of L with marginals F1, . . . , Fd

5.2 Outline and Contributions
In section 5.3 we provide an overview of the literature on estimating the upper bound
on Value-at-Risk, VaR(L1 + . . . + Ld), when we are given the marginals of (L1, . . . , Ld).
In chapter 6, we propose improvements over the existing algorithm, the Rearrangement
Algorithm (RA), discuss the performance of a modified Adaptive Rearrangement Algorithm
(ARA) and the Enhanced Adaptive Rearrangement Algorithm (EARA) for this problem
under different test cases.

The remaining parts of chapters 5 and 6 are organized as follows.
Section 5.3 provides a historical overview of the methodologies for computing an upper

bound on VaR, VaRα(L+), for homogeneous portfolios with L+ = L1 + . . . + Ld where
Li ∼ Fi and F1 = · · · = Fd.

In section 5.4, we discuss the methods for computing an upper bound on VaR, VaRα(L+),
for homogeneous portfolios, including the dual bound approach of Embrechts et al. [5],
Wang’s approach presented in Embrechts et al. [6] and the RA of Puccetti and Rüschendorf
[7]. Then we examine numerical challenges inherent in their implementation, and present
theoretical results relevant to each algorithm. More specifically:

In section 5.4.2, we prove properties of the auxiliary functions that are used in calculating
VaRα(L+) in the approach of Embrechts et al. [5]. In Proposition 5.4.2, we investigate
convexity and monotonicity of these functions. We further show uniqueness of the minimum
for one auxiliary function, and provide example 5.4.3 to illustrate challenges presented by
these functions for the case of a Generalized Pareto distribution.

In section 5.4.3, we study the uniqueness of the root of the auxiliary function used in
Wang’s approach, and compute the appropriate lower and upper bounds for the root-finding
procedure for Pareto marginals in Propositions 5.4.4 and 5.4.5.

We prove the existence of the root for the auxiliary function h, used in Wang’s approach
in Proposition 5.4.13. This is done by focusing on selected properties of the auxiliary
function h such as continuity, monotonicity, and differentiability in Proposition 5.4.6 and
Lemmas 5.4.9, 5.4.11 and 5.4.12.
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We compare the dual bound approach and the Wang approach in computing an upper
bound on VaR for homogeneous portfolios using Pareto marginals. This is illustrated by
the results in examples 5.4.14 and 5.4.15.

We present the RA of Puccetti and Rüschendorf [7] for approximating the worst VaR
in section 5.5 and study the performance of this algorithm.

In section 5.6, we assess the effect of different properties of the input distributions
such as number, heaviness of tail and degree of homogeneity on the performance of the
RA and present numerical examples to illustrate the inner working of this method. More
specifically, we calculate the upper bound on VaR for portfolios with given marginal loss
distributions in four different portfolios using Pareto marginals (when all of the marginals
are driven by a heavy-tailed distribution, a moderately heavy-tailed distribution, marginals
varying from a heavy-tailed distribution to a not so heavy-tailed distribution and a mixture
of the previous portfolios). We then investigate the impact of the input parameters of
the RA (the choice of discretization parameter N and absolute error ε) and calculate the
run time, VaR bounds, the number of iterations and the number of oppositely ordered
columns (as a proxy for the objective function) at convergence.

In chapter 6, we present the Adaptive Rearrangement Algorithm (ARA) and the
Enhanced Adaptive Rearrangement Algorithm (EARA), and address some of the issues
identified in chapter 5. These include: (i) an introduction of new convergence criteria
to choose N adaptively and (ii) an introduction of two stopping criteria, based on a
given vector of relative errors, ε = (ε1, ε2). In the newly proposed ARA, the algorithm
adaptively chooses the number of discretization points N by using new stopping criteria
that computes both the relative change of the input matrix X used in computing the
lower and upper bounds for VaRα(L+) as well as the relative difference of these bounds,
for computing the VaRα(L+) bounds, as specified by ε = (ε1, ε2).

We further investigate the performance of the ARA in sections 6.3.2, 6.3.3 and 6.3.4
for generalized Pareto, Student’s t-distribution and log-normal marginals for the same
four portfolios studied in section 5.6 and calculate the run time, VaR bounds, the number
of iterations and the number of oppositely ordered columns.

In section 6.4, we present the EARA which converges faster when the number of risk
factors d is large for a given input portfolio. Finally, we provide a detailed example of the
use of the ARA and the EARA based on Operational Risk data in section 6.5.

5.3 Literature Review
One of the early works on finding analytical bounds on the α-quantile of the distribution
of the sum of random variables can be found in Makarov [49], who solves this problem
for d = 2. Later on, Firpo and Ridder [52] proved these results using copula theory,
introducing dependence structures into the above framework and extending Makarov’s
results to include an arbitrary increasing continuous aggregation function. But the authors
do not prove the sharpness of the bounds. In addition they also point out that the bounds
found in Makarov [49] are not the best bounds that can be attained.
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Williamson and Downs [50] develop new methods for calculating convolutions and
dependency bounds for the distributions of non-decreasing, continuous functions of random
variables. They use lower and upper discrete approximations to the desired distribution,
and provide bounds on the errors when estimating these bounds. An important contribution
of the authors is in obtaining the error of the lower and upper approximations, allowing
the user to know that the true distribution is contained within these bounds. Despite
many interesting features of this framework, we should note that it only works for d = 2.

Denuit et al. [51] extend the above two-dimensional frameworks and show how to
compute analytical bounds on the distribution function of L+ = L1 + . . .+ Ld for d > 3.
Using the notion of “stochastic dominance” (proposed in Lehmann [69]), the authors
provide analytical bounds which do not use any assumption on the dependence of the
underlying random variables. In a related work, Cossette et al. [70] develop results about
(L1, L2) by assuming additional information about the correlation structure of (L1, L2).
They further extend their results to the general multivariate case and propose analytical
bounds for continuous and componentwise monotone functions in L1, . . . , Ld, assuming
that the only available information on Lj is its distribution function Fj, j ∈ {1, . . . , d}.

By relaxing some of the continuity assumptions with respect to the aggregation function,
Embrechts et al. [71] provide a generalization of these results using copula theory. Their
copula-based approach aims at addressing several issues, including the construction of risk
measures for functions of dependent risks. This works aims at clarifying and identifying
some of the basic issues in risk management and the tools that can help to solve these
problems. Embrechts et al. [53] show that without any prior information on the dependence
structure, only some bounds for the distribution function of the sum of the risks can be
found and the problem of the sharpness of these bounds remained an open question when
d > 2.

Embrechts and Puccetti [72] provide better analytical bounds on FL+ based on the
duality result of Rüschendorf [73] and derive the aforementioned bounds for ∑d

j=1 Lj
in the homogeneous case F1 = · · · = Fd = F for a continuous distribution function F .
Furthermore, the authors find the best possible bounds for the d = 2 case. Note that the
homogeneity assumption is rather restrictive, especially for large d.

To address this problem, Embrechts and Puccetti [54] extend the dual bound approach
to general portfolios and describe a numerical procedure to compute these bounds for a
non-homogeneous portfolio of risks. The shortcoming of this method is that it requires
the application of global optimization algorithms for which there is no guarantee for
convergence to a global optimum in a reasonable and predictable amount of time. More
importantly, the quality of performance of many of these optimization procedures is not
well understood and, in general, the performance of such algorithms tends to deteriorate
as d increases. For these reasons, the application of this method for d > 50 becomes
intractable in some cases.

As noted earlier, the complexity of the optimization procedures required for finding the
dual bounds, given arbitrary marginal distributions, along with a high running time, is
the main drawback of using the dual bounds approach for obtaining a lower bound and an
upper bound for VaRα(L+). Puccetti and Rüschendorf [7] propose the RA to tackle these
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issues. The initial idea underlying the RA and the numerical approximation introduced
in Puccetti and Rüschendorf [7] for calculating VaRα(L+) and VaRα(L+) can be traced
back to Rüschendorf [74] and Rüschendorf [75], respectively. The higher accuracy of the
RA (which theoretically is still an open question) along with its simple implementation
compared to the previous methods makes the RA an attractive alternative approach
for obtaining VaRα(L+) and VaRα(L+), when (only) the marginal loss distributions
F1, . . . , Fd are known. In the following section, we look at how the RA works and analyze
its performance using various test cases.

More recently, Jakobsons et al. [76] utilize the concept of a convex order for inhomoge-
neous marginals and calculate the lower VaR bounds in this setting. They also show that
by assuming only a “decreasing density” for all marginals, sharp bounds can be found.
An important finding of the authors is that comonotonicity is not necessarily the worst
dependence structure that one can impose, but a combination of joint mixability and
mutual exclusivity. Alternatively, Bernard and McLeish [77] propose combining MCMC
techniques with the Rearrangement Algorithm in designing an algorithm which converges
to the global optimum. This is done by utilizing a newly defined multivariate dependence
measure which assesses the convergence of the rearrangement algorithm and acts as a
stopping rule.

5.4 Known Optimal Solutions in the Homogenous
Case

In order to assess the quality of algorithms such as the RA, we need to know (at least
some) optimal solutions with which we can compare their results. Embrechts et al. [5,
Proposition 4] and Embrechts et al. [6, Proposition 1] present mathematical formulas
for obtaining the worst VaRα(L+) in the homogeneous case. In this section, we address
numerical aspects and algorithmic improvements for computing VaRα(L+) in the homo-
geneous case. We assume d > 3 throughout this subsection. An explicit solution to this
problem for d = 2 is given in Embrechts et al. [5, Proposition 2].

5.4.1 Crude Bounds for any VaRα(L+)

The following lemma provides (crude) bounds for VaRα(L+). Such bounds are useful for
computing initial intervals and conducting sanity checks. We do not make any (moment
or other) assumptions on the involved marginal loss distributions and the bounds do not
depend on the underlying unknown copula. This lemma is presented in Puccetti and
Rüschendorf [55, Theorem 2.7] as well.

Lemma 5.4.1. Let Lj ∼ Fj, j ∈ {1, . . . , d}. For any α ∈ (0, 1),

dmin
j
F−j (α/d) 6 VaRα(L+) 6 dmax

j
F−j

(
d− 1 + α

d

)
, (5.4.1)

where F−j denotes the quantile function of Fj, i.e., F−j (u) = inf{x ∈ R : Fj(x) > α}.

70



Proof. Consider the lower bound for VaRα(L+). By De Morgan’s Law and Boole’s
inequality, the distribution function FL+ of L+ satisfies

FL+(x) = P
( d∑
j=1

Lj 6 x
)
6 P (min

j
Lj 6 x/d) = P

( d⋃
j=1
{Lj 6 x/d}

)
6

d∑
j=1

P (Lj 6 x/d)

6 dmax
j
Fj(x/d).

Now, dmaxj Fj(x/d) 6 α if and only if x 6 dminj F−j (α/d) and, thus, VaRα(L+) =
F−L+(α) > dminj F−j (α/d).

Similarly, for the upper bound for VaRα(L+), we have that

FL+(x) = P
( d∑
j=1

Lj 6 x
)
> P (max

j
Lj 6 x/d) = P (L1 6 x/d, . . . , Ld 6 x/d)

= 1− P
( d⋃
j=1
{Lj > x/d}

)
> max

{
1−

d∑
j=1

P (Lj > x/d), 0
}

= max
{ d∑
j=1

Fj(x/d)− d+ 1, 0
}
> max{dmin

j
Fj(x/d)− d+ 1, 0}.

So, dminj Fj(x/d)− d+ 1 > α if and only if x > dmaxj F−j ((d− 1 + α)/d) and, therefore
VaRα(L+) = F−L+(α) 6 dmaxj F−j ((d− 1 + α)/d).

5.4.2 The Dual Bound Approach for Computing VaRα(L+)

This approach for computing VaRα(L+) in the homogeneous case with margin(s) F is
presented in Embrechts et al. [5, Proposition 4] and termed the dual bound approach in
what follows. In the remaining part of this section, we assume that F (0) = 0, F (x) < 1 for
all x ∈ [0,∞) and that F is absolutely continuous with ultimately decreasing density. Let

D(s, t) = d

s− dt

∫ s−(d−1)t

t
F̄ (x) dx and D̃(s) = min

t∈[0,s/d]
D(s, t), (5.4.2)

where F̄ (x) = 1− F (x). In comparison to Embrechts et al. [5, Proposition 4], the dual
bound D here uses a compact interval for t (and thus min{·}) by our requirement F (0) = 0
and since limt↑s/dD(s, t) = dF̄ (s/d) by l’Hospital’s Rule. The procedure for computing
VaRα(L+) (for which we have VaRα(L+) 6 VaRα(L+)) according to Embrechts et al. [5,
Proposition 4] can now be given as follows.

Algorithm 5.4.2: Dual Bound Approach
for Computing VaRα(L+)
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1. At a chosen confidence level α, specify initial intervals [sl, su] and [tl, tu] by using:

tl = 0, tu = s

d

sl = dVaRα(L+), su = max
{
sl + 1, dmax

j
F−j

(
1− 1− α

d

)}

2. Inner root-finding in t: For each fixed s ∈ [sl, su], compute D̃(s) by iterating over t ∈ [tl, tu]
until a t∗ is found for which h(s, t∗) = 0 (adjusted by −h(s, 0) as described below for for
finding a root below s/d), where

h(s, t) = D(s, t)− (F̄ (t) + (d− 1)F̄ (s− (d− 1)t)).

Then D̃(s) = F̄ (t∗) + (d− 1)F̄ (s− (d− 1)t∗).

3. Outer root-finding in s: Iterate Step 2 over s ∈ [sl, su] until an s∗ is found for which
D̃(s∗) = 1− α.

4. Return

VaRα(L+) = s∗. (5.4.3)

Note that Algorithm 5.4.2 requires a specification of the two initial intervals [sl, su] and
[tl, tu] and Embrechts et al. [5] give no particular practical advice on how to choose them.

First, consider [tl, tu]. Using the definition of D(s) in equation (5.4.2) and since
F (0) = 0, we choose tl = 0. For tu, one would like to choose s/d. However, care has to
be taken as h(s, s/d) = 0 for any s and, thus, the inner root-finding procedure will stop
immediately when a root is found at tu = s/d. therefore, in order to detect a root below
tu = s/d, the inner root-finding algorithm fixes the upper bound to a small number of an
opposite sign to h(s, 0). Note that this is an adjustment in the function value, and not in
the root-finding interval [tl, tu].

Now, consider [sl, su], in particular, sl. According to Embrechts et al. [5, Proposition 4]
it has to be chosen “sufficiently large”. If sl is chosen too small, the inner root-finding
procedure in Step 2 of Algorithm 5.4.2 will not be able to locate a root; see also the
left-hand side of Figure 5.1. There is currently no (good) solution on how to automatically
determine a sufficiently large sl. Given sl, one can choose su as the maximum of sl + 1
and the upper bound on VaRα as given in (5.4.1), for example.

We now show a few selected properties of D(s, t) and D̃(s).

Proposition 5.4.2..

1. D̃(s) is decreasing.

2. If F̄ is convex, so is D(s, t).

Proof.
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1. Let s > s′ and t′ ∈ [0, s′
d

] such that D(s′, t′) = D̃(s′). Define

t = s− (s′ − t′d)
d

= s− s′

d
+ t′

so that 0 6 t′ 6 t 6 s
d
. Let κ = s′ − t′d = s − td. If κ > 0, noting that F̄ is

decreasing and that t′ 6 t, we obtain

D(s′, t′)−D(s, t) = d

κ

( ∫ t′+κ

t′
F̄ (x)dx−

∫ t+κ

t
F̄ (x)dx

)
> 0,

so that D̃(s) 6 D(s, t) 6 D(s′, t′) = D̃(s′). If κ = 0 then D̃(s′) = D(s′, s′
d

) =
dF̄ ( s′

d
) > dF̄ ( s

d
) > D̃(s).

2. Recall that D(s, t) = d
s−td

∫ t+(s−td)
t F̄ (x) dx. Using the transformation z = (x −

t)/(s− td), we have

D(s, t) = d
∫ 1

0
F̄ (sz + t(1− zd)) dz

Define C = {(s, t) | 0 6 s <∞, 0 6 t 6 s
d
}, and note that C is convex. Furthermore,

if F̄ is convex, then D(s, t) is jointly convex in s and t on C since for λ ∈ (0, 1),

D(λs1 + (1− λ)s2, λt1 + (1− λ)t2)

= d
∫ 1

0
F̄ ((λs1 + (1− λ)s2)z + (λt1 + (1− λ)t2)(1− zd)) dz

= d
∫ 1

0
F̄ (λ(s1z + t1(1− zd)) + (1− λ)(s2z + t2(1− zd))) dz

6
∫ 1

0
λF̄ (((s1 + t1(1− zd))) + (1− λ)F̄ ((s2 + t2(1− zd)))) dz

= λD(s1, t1) + (1− λ)D(s2, t2)

Proposition 5.4.2 part 2 shows that if F̄ is strictly convex, so is D(s, ·) for fixed s. This
gives the uniqueness of the minimum when computing D̃(s) as in (5.4.2). A standard
result on convexity of marginal value functions then implies that D̃(s) is convex; see
Rockafellar and Wets [78, Proposition 2.22].

Example 5.4.3. As an example, consider d = 8 Par(θ) risks, θ > 0. The graph on the
top in Figure 5.1 illustrates t 7→ h(s, t) for θ = 2 and various s. Note that h(s, s/d) is
indeed 0 and for (too) small s, h(s, t) does not have a root for t ∈ [0, s/d) as mentioned
above. The graph on the bottom of Figure 5.1 shows the decreasing dual bound D̃(s) for
various parameters θ.

5.4.3 Wang’s Approach for Computing VaRα(L+)
The approach mentioned in Embrechts et al. [6, Proposition 1] is termed Wang’s approach
here. It originates from Wang et al. [79, Corollary 3.7] and, thus, historically precedes the
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Figure 5.1: t 7→ h(s, t) for various s, d = 8 and F being Par(2) (top graph). The
dual bound D̃(s) for d = 8 and F being Par(θ) for various parameters θ (bottom graph).

dual bound approach of Embrechts et al. [5, Proposition 4]1. It is conceptually simpler and
numerically more stable than the dual bound approach. For notational simplicity, let

ac = α + (d− 1)c, bc = 1− c, (5.4.4)

for c ∈ [0, (1− α)/d] (so that ac ∈ [α, 1− (1− α)/d] and bc ∈ [1− (1− α)/d, 1]). Assume
that F admits a density which is positive and decreasing on [β,∞) for some β 6 F−(α).
Then, for L ∼ F ,

VaRα(L+) = dE[L |L ∈ [F−(ac), F−(bc)]], α ∈ [F (β), 1), (5.4.5)

1Its generalization to inhomogeneous margins for convex order bounds, which implies VaR bounds
is given in Jakobsons et al. [76, Corollaries 4.6 and 4.7]. The connection between the two concepts can
be found in Bernard et al. [80]. This latest result is also collected in Embrechts et al. [6, Proposition 3].
In addition Bernard et al. [80] also investigate VaR bounds using complete mixability by relaxing the
severity of the assumption of a “decreasing density”.
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where c is the smallest number in (0, (1− α)/d]2, such that

Ī(c) := 1
bc − ac

∫ bc

ac
F−(y) dy >

d− 1
d

F−(ac) + 1
d
F−(bc). (5.4.6)

Note that c typically depends on d and α. Furthermore, in the case of a Par(θ) distribution,
Ī is given by

Ī(c) =


1

bc−ac
θ

1−θ ((1− bc)
1−1/θ − (1− ac)1−1/θ)− 1, if θ 6= 1,

1
bc−ac log

(
1−ac
1−bc

)
− 1, if θ = 1.

(5.4.7)

The conditional distribution function FL|L∈[F−(ac),F−(bc)] of L |L ∈ [F−(ac), F−(bc)] is given
by

FL|L∈[F−(ac),F−(bc)](x) = F (x)− ac
bc − ac

x ∈ [F−(ac), F−(bc)] (5.4.8)

Using this fact and by means of a substitution, we obtain that, for α ∈ [F (β), 1), (5.4.5)
becomes

VaRα(L+) = d
∫ F−(bc)

F−(ac)
x dFL|L∈[F−(ac),F−(bc)](x) = d

∫ F−(bc)
F−(ac) x dF (x)

bc − ac
= dĪ(c). (5.4.9)

Equation (5.4.9) has the advantage of having the integration in Ī(c) over a compact
interval. Furthermore, finding the smallest c such that (5.4.6) holds also involves Ī(c).
This procedure, thus, only requires the quantile function F− to compute VaRα(L+). This
leads to the following algorithm.

Algorithm 5.4.3: Wang’s Approach for ComputingVaRα(L+)

1. Specify an initial interval [cl, cu] with 0 6 cl < cu < (1− α)/d.

2. Root-finding in c: Iterate over c ∈ [cl, cu] until a c∗ is found for which h(c∗) = 0, where

h(c) := Ī(c)−
(d− 1

d
F−(ac) + 1

d
F−(bc)

)
. (5.4.10)

3. Return

VaRα(L+) = (d− 1)F−(ac∗) + F−(bc∗). (5.4.11)

The following proposition shows that the root-finding problem in Step 2 of Algorithm 5.4.3
is well-defined in the case of Pareto margins for all θ > 0, including the infinite-mean case

2In contrast to what is given in Embrechts et al. [6], note that this interval has to exclude 0 since
otherwise for Par(θ) margins with θ ∈ (0, 1], c equals 0 and thus leads erroneously to the result that
VaRα(L+) = dĪ(0) =∞.
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(note: other distributions under more restrictive assumptions have been investigated in
Bernard et al. [80]).

Proposition 5.4.4. Let F (x) = 1− (1 + x)−θ, θ > 0, be the distribution function of the
Par(θ) distribution. Then h in Step 2 of Algorithm 5.4.3 has a unique root on (0, (1−α)/d),
for all α ∈ (0, 1) and d > 2.

Proof. First consider θ 6= 1. Using (5.4.7), we can rewrite h(c) as

h(c) =
c−1/θ+1 θ

1−θ (1− (1−α
c
− (d− 1))−1/θ+1)

1− α− dc −
(d− 1)(1−α

c
− (d− 1)−1/θ + 1)
c1/θd

.

Multiplying with c1/θd and rewriting the expression, we can see that h(c) = 0 is equivalent
to h1(xc) = 0, where

xc = 1− α
c
− (d− 1) (5.4.12)

(which is in (1,∞) for c ∈ (0, (1− α)/d)) where

h1(x) = d
θ

1− θ
1− x−1/θ+1

x− 1 − ((d− 1)x−1/θ + 1)

It is easy to see that h1(x) = 0 if and only if h2(x) = 0, where

h2(x) = (d/(1− θ)− 1)x−1/θ+1 − (d− 1)x−1/θ + x− (dθ/(1− θ) + 1), x ∈ (1,∞).
(5.4.13)

The proof is complete for θ 6= 1 if we show that h2 has a unique root on (1,∞). To this
end, note that h2(1) = 0 and limx↑∞ h2(x) =∞. Furthermore,

h′2(x) = (1− 1/θ)(d/(1− θ)− 1)x−1/θ + (d− 1)/θx−1/θ−1 + 1,
h′′2(x) = (d+ θ − 1)/θ2x−1/θ−1 − (1/θ + 1)(d− 1)/θx−1/θ−2

It is not difficult to check that h′′2(x) = 0 if and only if x = (d−1)(1+θ)
d+θ−1 , i.e.,

x = (d− 1)(1 + θ)
d+ θ − 1 = 1 + θ(d− 2)

d+ θ − 1 , d > 2, θ > 0, θ 6= 1

which is greater than 1 for d > 2. Moreover h′′2(1) = (θ(2− 2)/θ2) < 0 and limx↓1 h
′′
2(x) =

−(d− 2)/θ < 0 for d > 2, indicating that h′2(x) is strictly negative on (1, 1 + δ] for some
δ > 0 (as limx↓1 h

′
2(x) = 0 and h′2(x) is strictly decreasing on (1, 1 + δ]). Therefore, since

h2(1) = 0, h2(x) is strictly negative on (1, 1 + δ]. Since limx↑∞ h2(x) =∞, h2 is positive
at some point x > 1. By the intermediate value theorem, it follows that there is at least
one root in (1,∞). Suppose there is more than one root in (1,∞). Then, it follows that
h2 admits at least two inflection points in (1,∞) as it is continuously differentiable, a
contradiction.
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The proof for θ = 1 works similarly. In this case, h2 is given by

h2(x) = x2 + x(−d log(x) + d− 2)− (d− 1), x ∈ (1,∞), (5.4.14)

and

h′2(x) = 2x− d log(x)− 2

h′′2(x) = 2− d

x

implying that h2 has the unique point of inflection at x = d/2.

Let us now focus on the case of Par(θ) margins and, in particular, how to choose
the initial interval [cl, cu] in Algorithm 5.4.3. We first consider cl. Ī satisfies Ī(0) =

1
1−α

∫ 1
α F

−(y) dy = ESα(L), i.e., Ī(0) is the expected shortfall of L ∼ F at confidence
level α. If L has a finite first moment, then Ī(0) is finite. Therefore, h(0) is finite (if
F−(1) <∞) or −∞ (if F−(1) =∞). Either way, one can take cl = 0. However, if L ∼ F
has an infinite first moment (see, e.g., Hofert and Wüthrich [81] or Chavez-Demoulin et al.
[82] for situations in which this can happen), then Ī(0) = ∞ and F−(1) = ∞, so h(0)
is not defined; this happens, e.g., if F is Par(θ) with θ ∈ (0, 1]. In such a case, we are
forced to choose cl ∈ (0, (1− α)/d); see the following proposition for how this can be done
theoretically.

Concerning cu, note that l’Hospital’s Rule implies that Ī(cu) = F−(1− (1− α)/d) and
thus that h((1−α)/d) = 0. We thus have a similar problem (a root at the upper endpoint
of the initial interval) as for computing the dual bound. However, here we can construct a
suitable cu < (1− α)/d. The following proposition summarizes these findings:

Proposition 5.4.5. Let F be the distribution function of a Par(θ) distribution, θ > 0.
Set cl and cu to be:

cl =


(1−θ)(1−α)

d
, if θ ∈ (0, 1),

1−α
(d+1)

e
e−1 +d−1

, if θ = 1,
1−α

(d/(θ−1)+1)θ+d−1 , if θ ∈ (1,∞),
cu =


(1−α)(d−1+θ)
(d−1)(2θ+d) , if θ 6= 1,
1−α

3d/2−1 , if θ = 1.

Then h(c) defined in equation (5.4.10) in Algorithm 5.4.3 has a unique root in [cl, cu].

Proof. First consider cl and θ 6= 1. Instead of h, equations (5.4.12) and (5.4.13) allow us
to study

h2(x) = (d/(1− θ)− 1)x−1/θ+1 − (d− 1)x−1/θ + x− (dθ/(1− θ) + 1), x ∈ [1,∞).

Consider the two cases θ ∈ (0, 1) and θ ∈ (1,∞) separately. If θ ∈ (0, 1), then d/(1−θ)−1 >
d− 1 > 0 and x−1/θ+1 > x−1/θ for all x > 1, so h2(x) > ((d/(1− θ)− 1)− (d− 1))x−1/θ +
x− (dθ/(1− θ) + 1) > x− (dθ/(1− θ) + 1) which is 0 if and only if x = dθ/(1− θ) + 1.
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Using equation (5.4.12) and solving for c we have:

x = dθ/(1− θ) + 1 and xc = 1− α
c
− (d− 1)⇒ c = (1− θ)(1− α)

d
, θ ∈ (0, 1)

If θ ∈ (1,∞), then using x−1/θ 6 1 leads to h2(x) > (d/(1− θ)− 1)x−1/θ+1 + x which is 0
for x > 1 if and only if x = (d/(θ − 1) + 1)θ, i.e.,

x = (d/(θ−1) + 1)θ and xc = 1− α
c
− (d−1)⇒ c = 1− α

(d/(θ − 1) + 1)θ + d− 1 , θ = 1

Now, consider θ = 1. As before, we can consider (5.4.12) and (5.4.14). By using the result
that log x 6 x1/e and x > −x1+1/e for x ∈ [1,∞), we obtain h2(x) > x2 + x(−dx1/e + d−
2)− (d− 1) > x2 − (d+ 1)x1+1/e which is 0 if and only if x = (d+ 1)e/(e−1), and

x = (d+1)e/(e−1) and xc = 1− α
c
−(d−1)⇒ c = 1− α

(d/(θ − 1) + 1)θ + d− 1 , θ ∈ (1,∞).

Next, consider cu. It can be easily seen that the inflection point of h2 provides a lower
bound xc on the root of h2. Using the inflection point xc for θ 6= 1 and solving for c we
have:

x = (d− 1)(1 + θ)
d+ θ − 1 and xc = 1− α

c
− (d− 1)⇒ c = (1− α)(d− 1 + θ)

(d− 1)(2θ + d) , θ 6= 1

and for θ = 1

x = d

2 and xc = 1− α
c
− (d− 1)⇒ c = 1− α

3d/2− 1 , θ = 1

as stated.

While proposition 5.4.5 is concerned with Par(θ) margins, the following proposition
investigates some of the properties of the crucial function h (in (5.4.10)) for Wang’s
approach for computing VaRα(L+) in the homogeneous case.

Proposition 5.4.6. Let d > 3 and F be a distribution function with a positive density on
[β,∞) and α ∈ [F (β), 1). Then

1. F− equals F−1 on [F (β), 1] and F−1 is strictly increasing and continuous there.
Furthermore, h given by (5.4.10) is continuous;

2. If F−1 is continuously differentiable, h has a negative one-sided derivative at the
right endpoint.

Proof.

1. Since F has a positive density on [β,∞), F is strictly increasing and continuous
there and it is well known that F− = F−1 (see Embrechts and Hofert [63], remark
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2.2), i.e., the ordinary inverse of F . Furthermore, F−1 is strictly increasing and
continuous. The latter immediately implies continuity of h.

2. Let a(c) = ac, b(c) = bc for ac, bc as in (5.4.4), cl > 0, cu = (1−α)/d, c ∈ (cl, cu) and
G = F−1, and note that a(cu) = b(cu) = 1− (1−α)/d =: p ∈ [1− (1−F (β))/d, 1) ⊆
(F (β), 1). The use of a change of variables y = r(c, x) := a(c) + (b(c)− a(c))x leads
to

Ī(c) =
∫ b(c)
a(c) G(y) dy
b(c)− a(c) =

∫ 1

0
G(a(c) + (b(c)− a(c))x) dx =

∫ 1

0
G(r(c, x)) dx

and thus h(c) =
∫ 1

0 G(r(c, x)) dx− d−1
d
G(a(c))− 1

d
G(b(c)). It follows from

r(cu, x) = α + (d− 1)cu + (1− α− dcu)x = p (5.4.15)

that h(cu) = G(p)− d−1
d
G(p)− 1

d
G(p) = 0. Furthermore, a′(c) = d− 1, b′(c) = −1

so that, by Leibniz’s rule for differentiation under the integral sign,

h′(c) =
∫ 1

0
G′(r(c, x)) ∂

∂c
r(c, x) dx− d− 1

d
G′(a(c))a′(c)− 1

d
G′(b(c))b′(c)

=
∫ 1

0
G′(r(c, x))(d− 1− xd) dx− (d− 1)2

d
G′(a(c)) + 1

d
G′(b(c)) (5.4.16)

and thus, by Equation (5.4.15),

lim
c↑cu

h′(c) =
∫ 1

0
G′(p)(d− 1− xd) dx− (d− 1)2

d
G′(p) + 1

d
G′(p) = G′(p)(1− d/2).

The claim follows by noting that d > 3 and, by Part 1, G is strictly increasing, so
G′ > 0 on (F (β), 1) and thus G′(p) > 0.

Given that the assumptions stated in Proposition 5.4.6 hold for the particular F under
consideration, h is known to have a unique root on (0, (1−α)/d). In what follows, drawing
heavily on Leoni [83, Chapter 3], we present some of the selected properties of absolutely
continuous functions in Lemma 5.4.9, 5.4.11 and 5.4.12. Later on, Lemmas 5.4.11
and 5.4.12 are used to prove the existence of the root for the function h in proposition
5.4.13.

Definition 5.4.7. Let I ⊂ R be an interval. A function f : I → R is absolutely
continuous on I if for every ε > 0 there exists a δ > 0 such that

n∑
i=1
|f(bi)− f(ai)| 6 ε

for every finite number of nonoverlapping intervals (ai, bi), i = 1, · · · , n, with [ai, bi] ⊂ I
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and
n∑
i=1

(bi − ai) 6 δ

Definition 5.4.8. A function f : I → R is locally absolutely continuous if it is absolutely
continuous in [a, b] for every [a, b] ⊂ I.

The following lemma immediately follows from the definition 5.4.8:

Lemma 5.4.9. Let F : (0, 1−α
d

)→ R be a locally absolutely continuous function, and let
limx↑( 1−α

d
) F (x) =∞. Then lim supx↑( 1−α

d
) F
′(x) =∞.

Proof. Fix an a ∈ (0, 1). By absolute continuity, for almost all x, F (x) = F (a)+
∫ x
a F

′(y) dy.
If F ′ is bounded above by K, then the second term is bounded above by F (a) +K(x− a),
contradicting thereby the hypothesis that F →∞ as x→ (1−α

d
).

The following is a combination of a stated results in Leoni [83] (See Corollary 3.50 and
Exercise 3.51, page 97). ACloc(I) denotes the space of all locally absolutely continuous
functions f : I → R.

Lemma 5.4.10. Let I, J be two intervals, let f ∈ ACloc(J) and let u : I → J be monotone
and ACloc. Then f ◦ u ∈ ACloc(I) and (f ◦ u)′(x) = f ′(u(x))u′(x) almost everywhere.

By combining the results of the lemmas 5.4.9 and 5.4.10 we have the following lemma:

Lemma 5.4.11. Let H : (0, 1−α
d

) → R be increasing and absolutely continuous. If
limx↑( 1−α

d
) H(x) =∞ then lim supx↑( 1−α

d
)
H′(x)
H(x) =∞

Proof. Let F (x) = log(H(x)). By Lemma 5.4.10, F is locally absolutely continuous, and
F ′ = H′(x)

H(x) almost everywhere. The result then follows by Lemma 5.4.9.

Lemma 5.4.12. Let f and g be functions such that limx↑( 1−α
d

) f(x) = ∞ and
lim supx↑( 1−α

d
)
g(x)
f(x) =∞, and let C1 > 0, C2 > 0. Then lim supx↑( 1−α

d
) C1g(x)− C2f(x) =

∞.

Proof. Let M > 0, and let xn ↑ (1−α
d

) be such that lim g(xn)
f(xn) = ∞. There exists N1, N2

such that for n > N1, f(xn) > 1, for n > N2, g(xn)
f(xn) >

M+C2
C1

. Then C1g(xn)− C2f(xn) =
f(xn)

(
C1

g(xn)
f(xn) − C2

)
>M for n > N0 = max(N1, N2).

Proposition 5.4.13. Under the assumptions in Proposition 5.4.6 h(c) has a root in
(0, 1−α

d
).

80



Proof. Using lemma 5.4.9 we can see that the (one-sided) derivative of h at 1−α
d

is negative,
so existence of a root will follow if we can show that lim infc↓0 h(c) = −∞. Using the
definition of h, and the fact that bc − ac → 1− α as c ↓ 0, for any k < 1− α, and c small
enough

h(c) =
(

1
bc − ac

∫ bc

α
G(y) dy − 1

d
G(bc)

)
−
(

1
bc − ac

∫ ac

α
G(y) dy + d− 1

d
G(ac)

)

6

(
1
k

∫ bc

α
G(y) dy − 1

d
G(bc)

)
−
(

1
bc − ac

∫ ac

α
G(y) dy + d− 1

d
G(ac)

)
= T1(c)− T2(c)

Recalling that bc = 1 − c, and the smoothness assumptions on G, the fact that
limc↓0 G(bc) =∞ implies, after applying Lemmas 5.4.11 and 5.4.12 that lim infc↓0 T1(c) =
−∞. Continuity of G implies that limc↓0 T2(c) = d−1

d
G(α).

Example 5.4.14. As an example, consider Par(θ) risks and the confidence level α = 0.99.
Figure 5.2 illustrates the objective function h(c) as a function of c ∈ (0, (1− α)/d] (see
(5.4.10)) for various θ and d = 8 (left-hand side) and d = 100 (right-hand side). Non-
positive values h(c) have been omitted, so that the y-axis could be given in log-scale; note
how steep h can be (we have evaluated h at 213 + 1 points equally spaced between 0 and
(1− α)/d), especially for small θ (and large d). For an even larger number of evaluation
points c, one sees that the first and last positive values of h indeed approach 0. Overall,
the objective function can be evaluated without any numerical problems on (0, (1− α)/d]
for our chosen θ and d.

Figure 5.3 displays VaRα(L+) and VaRα(L+) calculated using Wang’s approach as a
function of 1− α for various θ and d = 8 (left-hand side) and d = 100 (right-hand side).
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Figure 5.2: Objective function h(c) for α = 0.99, F being Par(θ), d = 8 (left-hand
side) and d = 100 (right-hand side).
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Figure 5.3: Upper and lower VaR as functions of 1 − α for F being Par(θ), d = 8
(left-hand side) and d = 100 (right-hand side).

To obtain numerically reliable results (over these wide ranges of parameters, indeed we
tested much higher dimensions as well), one has to be careful when computing the root of h
for c ∈ (0, (1−α)/d). First, choosing a smaller root-finding tolerance is crucial. Figure 5.4
below (see also Example 5.4.15) shows what happens if this is not considered. Second, it
turned out that it is required to adjust the theoretically valid initial interval described in
Proposition 5.4.5 further in order to guarantee that h is numerically of an opposite sign at
the interval end points. In short, one should be very careful when implementing supposedly
“explicit solutions” for computing VaRα(L+) or VaRα(L+) in the homogeneous case with
Par(θ) (and most likely also other) margins.

Example 5.4.15. Again let us consider Par(θ) risks and the confidence level α = 0.99.
Figure 5.4 compares Wang’s approach (using a numerical integration), Wang’s approach
(with an analytical formula for the integral Ī(c)), Wang’s approach (with an analytical
formula for the integral Ī(c) and auxiliary function h), Wang’s approach (with analytical
formula for the integral Ī(c), smaller tolerance and adjusted initial interval) and the lower
and upper bounds obtained from the RA; see Section 5.5. The two plots (for d = 8 and
d = 100, respectively) show that comparable results are obtained by the different approaches
and why it is important to use a smaller tolerance in Wang’s approach. Let us again
stress how important the initial interval [cl, cu] is. One could be tempted to simply choose
cu = (1−α)/d and force the auxiliary function h to be of an opposite sign at cu. Figure 5.5
shows graphs similar to the left-hand sides of Figures 5.3 (but for VaRα(L+) only) and
5.4 (standardized with respect to the upper bound obtained from the RA). In particular,
VaRα(L+) is not monotone in α anymore (see the left-hand side of Figure 5.5) and the
computed VaRα(L+) values are not correct anymore (see the right-hand side of Figure 5.5).

After carefully considering all of the numerical issues, we can now look at VaRα(L+)
and VaRα(L+) from a different perspective. The right-hand side of Figure 5.6 shows
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Figure 5.4: Comparisons of Wang’s approach (using a numerical integration), Wang’s
approach (with an analytical formula for the integral Ī(c)), Wang’s approach (with an
analytical formula for the integral Ī(c) and auxiliary function h transformed to (1,∞)),
Wang’s approach (with an analytical formula for the integral Ī(c), smaller tolerance and
adjusted initial interval), and the lower and upper bounds obtained from the RA; all
of the results are grouped based on the values obtained from the dual bound approach
to facilitate comparison. The left-hand side shows the case d = 8, the right-hand side
d = 100.
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VaRα(L+) and VaRα(L+) as functions of the dimension d. The linearity of VaRα(L+) in
the log-log scale suggests that VaRα(L+) is nearly a power function in d. To the best of
our knowledge, this result has not been well explored so far.
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Figure 5.6: A comparison of the upper VaR bound computed using Wang’s approach
(solid line) with the approach based on transforming the auxiliary function h to a root-
finding problem on (1,∞) (dashed line) as described in the proof of Proposition 5.4.5
(left-hand side); lower VaR bound (dashed line) and VaRα(L+) (solid line) as functions
of d on log-log scale (right-hand side).

5.5 How the Rearrangement Algorithm Works

The RA can be applied to approximate the best VaR, VaRα(L+), or the worst VaR,
VaRα(L+), for any set of marginals Fj, j ∈ {1, . . . , d}. In what follows our focus is on
VaRα(L+). To understand the algorithm, note that two columns a,b ∈ RN are called
oppositely ordered if:

∀i, j ∈ {1, . . . , N} (ai − aj)(bi − bj) 6 0

Given a number N of discretization points of the marginal quantile functions
F−j , j ∈ {1, . . . , d}, the RA constructs two (N, d)-matrices, denoted by Xα and X

α;
the first matrix serves to construct an approximation of VaRα(L+) from below, the second
matrix is used to construct an approximation of VaRα(L+) from above. Separately for
each of these matrices, the RA iterates over its columns and permutes each of them so
that it is oppositely ordered to the sum of all other columns. This iteration is repeated
until the minimal row sum changes by less than a given ε > 0. As Embrechts et al. [5]
state, one then typically ends up with matrices whose minimal row sums are close to each
other and roughly equal to VaRα(L+). Note that if one such iteration over all columns of
one of the matrices does not lead to any change in that matrix, then each column of the
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matrix is oppositely ordered to the sum of all others and thus there is also no change in
the minimal row sum.

An important question that we should address is whether or not the set of all matrices
where columns are permutations of the columns of a given matrix X and any columns
is oppositely ordered to row-sum of the remaining columns is non-empty. More formally,
given an X ∈ Rn×d, we are interested in knowing whether the following set is empty or
not:

O+ =

X ∈ P(X) : ∀ci, cj ∈ COL(X) ci is oppositely ordered to
∑
j 6=i

cj

 (5.5.1)

where P(X) denotes the set of all matrices obtained by permuting the elements of each
column of X and COL(X) represents the column space of X. The following well known
lemma helps us to prove non-emptiness of O+.

Lemma 5.5.1. Suppose a1 < a2, b1 < b2 and f is strictly convex. Then:

f(a1 + b2) + f(a2 + b1) < f(a1 + b1) + f(a2 + b2) (5.5.2)

Proof. a2 + b1 = λ(a2 + b2) + (1− λ)(a1 + b1) with:

λ = a2 − a1

(a2 − a1) + (b2 − b1) 1− λ = b2 − b1

(a2 − a1) + (b2 − b1)

and λ ∈ (0, 1) so:

f(a2 + b1) < a2 − a1

(a2 − a1) + (b2 − b1)f(a2 + b2) + b2 − b1

(a2 − a1) + (b2 − b1)f(a1 + b1)

similarly a1 + b2 = λ̃(a2 + b2) + (1− λ̃)(a1 + b1) with:

λ̃ = b2 − b1

(a2 − a1) + (b2 − b1) 1− λ̃ = a2 − a1

(a2 − a1) + (b2 − b1)

and λ̃ ∈ (0, 1) so:

f(a1 + b2) < b2 − b1

(a2 − a1) + (b2 − b1)f(a2 + b2) + a2 − a1

(a2 − a1) + (b2 − b1)f(a1 + b1)

The result follows immediately from adding the two inequalities.

Lemma 5.5.2. O+ is not empty.

Proof. Consider any strictly convex function f and minimize ∑N
i=1 f

(∑d
j=1 x̃ij

)
over all

matrices X̃ that are derived from X by permuting the elements of each column. Since
there is a finite number of such permuted matrices, the minimum is attained by some
matrix X∗. Such an X∗ is in O+. If this is not the case, then there exists a column
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(without loss of generality we can assume that it is the first column) and a pair of i, i′ such
that x∗i1 > x∗i′1 and ∑d

j=2 x
∗
ij >

∑d
j=2 x

∗
i′j. Using lemma 5.5.1 and switching the positions

of the elements x∗i1 and x∗i′1 we get a new permutation for the first column, resulting in
a matrix with a strictly lower objective value. The proof follows immediately from this
contradiction.

In chapter 6, we provide an adapted version of the RA of Embrechts et al. [5] for
bounding VaRα(L+) from below. To this end, let

s(X) = min
16i6N

∑
16j6d

xij

denote the minimum of the row sums of an (N × d)-matrix X = (xij). The version of the
RA given below contains more practical information than the one presented in Embrechts
et al. [5]; e.g., how infinite quantiles are dealt with and clear termination conditions based
on provided inputs.

Algorithm 5.5: Rearrangement Algorithm for ComputingVaRα(L+)

1. Assume that the chosen confidence level α ∈ (0, 1), marginal quantile functions F−1 , . . . , F−d ,
an integer N ∈ N and the desired convergence tolerance ε > 0 are given.

2. Compute the lower bound for VaRα(L+):

2.1. Define the matrix Xα = (xαij) for xαij = F−j
(
α + (1−α)(i−1)

N

)
, i ∈ {1, . . . , N}, j ∈

{1, . . . , d}.
2.2. Permute randomly the elements in each column of Xα.
2.3. Set Y α = Xα. For 1 6 j 6 d, rearrange the jth column of the matrix Y α so that it

becomes oppositely ordered to the sum of all other columns.
2.4. While s(Y α)− s(Xα) > ε, set Xα to Y α and repeat Step 2.3..
2.5. Set sN = s(Y α).

3. Compute the upper bound for VaRα(L+):

3.1. Define the matrix Xα = (xαij) for xαij = F−j
(
α+ (1−α)i

N

)
, i ∈ {1, . . . , N}, j ∈ {1, . . . , d}.

If (for i = N and) for any j ∈ {1, . . . , d}, F−j (1) =∞, adjust it to F−j
(
α+ (1−α)(N−1/2)

N

)
.

3.2. Permute randomly the elements in each column of Xα.
3.3. Set Y α = X

α. For 1 6 j 6 d, rearrange the jth column of the matrix Y α so that it
becomes oppositely ordered to the sum of all other columns.

3.4. While s(Y α)− s(Xα) > ε, set Xα to Y α and repeat Step 3.3.
3.5. Set sN = s(Y α).

4. Return (sN , sN ).
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The main feature of the RA is the concept of oppositely ordering two vectors (step 2.3.)
against each other, which is designed to reduce the variance of the row sums after each
iteration, i.e., iteratively rearranging the elements of each column, as proposed by 5.5, drives
down the variance among the row sums. The initial idea behind the RA is attributed to
Rüschendorf [75, Theorem 2] which introduced rearrangement-inequalities for the discrete
distribution function.

The randomization of the initial input, performed in the steps 2.2. and 3.2., is in place
to ensure different starting points for each simulation when we calculate VaRα(L+). This
is done because it has been shown that there are certain initial points for which the RA
does not converge (see Haus [84, Lemma 6]). Randomization of the input matrix aims at
reducing the possibility of this happening in practice.

5.5.1 Practical Challenges of Choosing Input Parameters

Some words of warning are in order. Besides the confidence level α and the marginal
quantile functions F−1 , . . . , F−d , the RA relies on two sources of input, namely N ∈ N and
ε > 0, for which Embrechts et al. [5] do not provide any practical guidance on reasonable
defaults, leaving room for interpretation on how to use it.

Concerning N , it obviously needs to be “sufficiently large”, but a practitioner is left
alone with such a choice. Another issue is the use of the absolute error ε in the algorithm.
There are two problems with this. The first problem is that it is more natural to use
a relative error than an absolute error in this context. Without (roughly) knowing the
minimal row sum in Steps 2.4. and 3.4., a pre-specified absolute error does not guarantee
that the change in the minimal row sum from Xα to Y α is of the right order (and such
order depends at least on d and the chosen quantile functions). If ε is chosen to be too
large, the computed bounds sN and sN would carry too much uncertainty, whereas if it
is too small, the RA has an unnecessarily long run time; the latter seems to be the case
for Embrechts et al. [5, Table 3], where the chosen ε = 0.1 is roughly 0.000004% of the
computed VaRα(L+) (for α = 0.99), with a small absolute error.

The second problem is that the absolute error ε is only used individually for checking
“convergence” of sN and of sN . It does not guarantee that sN and sN are sufficiently close
for a reasonable approximation to VaRα(L+). We are aware of the theoretical hurdles
underlying the algorithm which are still open questions at this point (e.g., the probability
of convergence of sN and sN to VaRα(L+) or that VaRα(L+) 6 sN for sufficiently large
N), but from a computational point of view one should still check that sN and sN are
close to each other.

The algorithm should return convergence and other useful information, e.g., the relative
dependence uncertainty spread (i.e., the relative error |(sN − sN)/sN |), and the actual
absolute errors reached for each of the bounds, the number of iterations used, the actual
minimal row sums computed after each iteration or the actual number of oppositely ordered
columns determined from the final matrices.
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5.6 Empirical Performance Under Various Setups
In order to empirically investigate the performance of the RA, we consider 8 scenarios.
Each scenario consists of one out of two studies combined with one of the four portfolios,
which are described in what follows.

We consider the following:

Study 1: N ∈ {27, 28, . . . , 217} and d = 20.

Study 2: N = 28 = 256 and d ∈ {22, 23, . . . , 210}.

These choices allow us to investigate the impact of the upper tail discretization parameter
N (in Study 1) and the impact of the number of risk factors d (within a reasonable span;
(in Study 2)) on the performance of the RA. The case of d = 2 is included for pedagogical
reasons, sorting each column and oppositely ordering them produces the optimal solution.

The different portfolios we consider specify different marginal tail behaviors based on
the Pareto distribution with the following distribution function

Fj(x) = 1− (1 + x)−θj , x > 0,

for a given tail parameter θj > 0.

Portfolio 1: θ1, . . . , θd are uniformly chosen from 0.6 to 0.4, representing a portfolio with
marginals with similar tail behavior (i.e. a heavy-tailed distribution).

Portfolio 2: θ1, . . . , θd are uniformly chosen from 0.5 to 1.5, representing a portfolio
with marginals with different tail behavior (i.e. from a very heavy-tailed
distribution to a not so heavy-tailed distribution).

Portfolio 3: θ1, . . . , θd are uniformly chosen from 1.4 to 1.6, representing a portfolio with
marginals with similar tail behavior (i.e. a not so heavy-tailed distribution).

Portfolio 4: θ2, . . . , θd are chosen as in Portfolio3 and θ1 = 0.5, representing a portfolio
with one heavy-tailed marginal loss distribution.
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Figure 5.7: Study 1, Portfolio 1: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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Figure 5.8: Study 1, Portfolio 2: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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Figure 5.9: Study 1, Portfolio 3: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.

1e+02 5e+02 5e+03 5e+04

3.0
e+

07
3.2

e+
07

3.4
e+

07
3.6

e+
07

3.8
e+

07
4.0

e+
07

N

Va
R 0

.99
(L+ )

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

0 20000 40000 60000 80000 100000 120000

0
20

40
60

80

N

Ela
ps

ed
 ru

n t
im

e i
n s

ec

Mean
Bootstrapped 95% CIs

0 20000 40000 60000 80000 100000 120000

6
8

10
12

14

N

Nu
mb

er 
of 

ite
rat

ion
s

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

1e+02 5e+02 5e+03 5e+04

5
10

15
20

N

Nu
mb

er 
of 

op
po

sit
ely

 or
de

red
 co

lum
ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

Figure 5.10: Study 1, Portfolio 4: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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Figure 5.11: Study 2, Portfolio 1: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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Figure 5.12: Study 2, Portfolio 2: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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Figure 5.13: Study 2, Portfolio 3: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.

5 10 20 50 100 200 500 1000

2e
+0

4
4e

+0
4

6e
+0

4
8e

+0
4

1e
+0

5

d

Va
R 0

.99
(L+ )

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

0 200 400 600 800 1000

0
50

10
0

15
0

d

Ela
ps

ed
 ru

n t
im

e i
n s

ec

Mean
Bootstrapped 95% CIs

0 200 400 600 800 1000

3
4

5
6

7
8

9
10

d

Nu
mb

er 
of 

ite
rat

ion
s

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

5 10 20 50 100 200 500 1000

0
20

0
40

0
60

0
80

0
10

00

d

Nu
mb

er 
of 

op
po

sit
ely

 or
de

red
 co

lum
ns

Mean (upper bound)
Bootstrapped 95% CIs
Mean (lower bound)
Bootstrapped 95% CIs

Figure 5.14: Study 2, Portfolio 4: VaR0.99 bounds, run time, number of iterations at
convergence and number of oppositely ordered columns.
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The results presented for each scenario are based on B = 200 simulations run on an
AMD 3.2 GHz Phenom II X4 955 processor (with 16 GB RAM). The simulation results
for Study 1 can be summarized as follows:

• As can be seen from the first graphs of figures (5.7), (5.8), (5.9) and (5.10), both the
mean upper bound and mean lower bound of VaR0.99 converge as N increases.

• The second graphs in figures (5.7), (5.8), (5.9) and (5.10) indicate that as N increases,
so does the mean elapsed time. The mean run time in figure (5.9) is the smallest
with the least variability compared to all other cases due to the particular choice of
Pareto distribution parameter.

• The third graph in figures (5.7), (5.8), (5.9) and (5.10) show that the maximum
of number of iterations hardly exceeds 10 as N increases; this is an important
observation as it will be used later on to choose the maximum number of iterations
required in the ARA.

• Finally, the last graphs indicate that the rate at which the number of oppositely
ordered columns changes depends on the distribution characteristics of the input
matrix X. The first and last graphs follow the same pattern, as the presence of a
large first column (due to θ1 = 0.5) in the input matrix X in both cases dominates
the variability of the number of oppositely ordered columns.

Figures (5.11), (5.12), (5.13) and (5.14) show the performance of the RA in the second
study; here we are more interested in analyzing the impact of the number of risk factors,
d, on portfolios which exhibit different marginal tail behaviors. Based on 200 simulations
of the performance of the RA in each case:

• The first graphs in figures (5.11), (5.12), (5.13) and (5.14) exhibit the same pattern:
the mean upper bound and mean lower bound for VaR0.99 diverge from one another;
this is due to the fact that we have kept N the same for all cases in Study 2.

• Similar to what we have seen in Study 1, the second graphs in Study 2 indicate
that the mean run time of RA increases as the number of risk factors goes up. The
third portfolio in Study 2 has the lowest run time on average as θ1, . . . , θd uniformly
chosen in [1.4, 1.6] results in smaller elements of the input matrix X with a smaller
relative range of entries compared to other portfolios.

• The mean number of iterations at convergence is consistently below 12 across all
cases. More important is the uniform behaviour of the mean number of iterations at
convergence as d increases. As can be seen from the third graph, in each case this
number remains stable around the mean for large d’s (d > 128). In addition, the
upper and lower confidence bounds in these graphs exhibit the same pattern.

• The number of oppositely ordered columns in each case increases as d (and the
number of columns in the input matrix X) increases. This finding does not contradict
what we have seen in the first study as we have kept N the same here.
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In the next chapter, we will introduce the ARA and show how the observations that we
have made in this chapter help us set meaningful initial values of the parameters that are
used in the proposed algorithm.
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Chapter 6

The Adaptive Rearrangement
Algorithm

6.1 Overview
As we have shown in chapter 5, the RA is approximating worst VaR for portfolios with
arbitrary marginal loss distributions. In section 5.6 we have shown that the convergence
tolerance ε and the tail discretization parameter N have a significant impact on the
algorithm’s performance, the run-time and the accuracy of the VaR bounds calculated by
the RA. Moreover, once we commit to using a particular ε and N , there is no guarantee
that the given convergence tolerance level ε can be achieved using the given N .

In this chapter we present the ARA. The proposed algorithm improves on the Rear-
rangement Algorithm on several points: first it addresses the problem of choosing the tail
discretization parameter N iteratively. Second the convergence tolerance ε is replaced by
two relative convergence tolerances, namely ε1 and ε2. The first relative tolerance, ε1, is
used to determine the individual convergence of each of the lower bound sN and the upper
bound sN , when computing the lower and upper bounds for VaRα(L+), while the second
relative tolerance, ε2, is used to control how far apart sN and sN are in each iteration of
the algorithm. Moreover, the newly introduced convergence tolerance ε2 along with ε1 are
used to define a new stopping criterion for the algorithm when computing the lower bound
sN and the upper bound sN for VaRα(L+).

6.2 VaRα(L+) Bounds, NP-Completeness and Compu-
tational Complexity

Before proceeding to the ARA, we look at the worst VaR problem from another angle.
Minimizing the variance of the sum of random variables with given marginals is a classical
problem in simulation and variance reduction, studied in Fishman [85] and Reiher [86]
extensively. More formally assume that we are given a set of n random variables, Xi, i =
1, . . . , n, each of which has a given marginal distribution F . We are interested in minimizing
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the variance of the sum of these random variables, i.e.,

min
Xi∼F

Var(X1 + . . .+Xn) (6.2.1)

For n = 2 the above problem can be easily solved by using antithetic pairs X1 = F−(U)
and X2 = F−(1− U) where F− represents the inverse cumulative distribution function as
before and U is a unif(0, 1) random variable. However given an n > 3 and an arbitrary
cumulative distribution function F , problem (6.2.1) becomes highly intractable.

An important question that can be asked here is for which cumulative distribution
functions F , when Xi ∼ F , we get a constant ∑n

i=1 Xi, i.e. what is the optimal value
of the problem (6.2.1)? In addressing this question Wang and Wang [87] introduced the
notion of complete mixability for the marginal distributions which can attain constant sum.
More formally:

Definition 6.2.1. Suppose that n is a positive integer. A probability distribution F on R
is called completely mixable with an index n if there exist n random variables X1, . . . , Xn,
each Xi ∼ F, i = 1, . . . , n, such that X1+. . .+Xn is constant. In this case the distribution
of (X1, . . . , Xn) is called an n-complete mix.

Using the above notion, Wang and Wang [87] provide bounds for the worst VaR in the
case of homogenous marginals F1 = . . . = Fn.

Similarly, a matrix is called completely mixable if the entries of its columns can be
permuted such that all the resulting row sums are equal. Considering a collection of
permutations of an N -point discretization of the marginal quantile functions in the RA,
finding a constant row sum is ideal when computing sN and sN defined in algorithm 5.5.

If a matrix is not completely mixable, determining the smallest maximal and largest
minimal row sum that are attainable is of interest. The problem of estimating the α-
quantile of the aggregate of random variables with an unknown dependence structure is
connected to the discrete approximation of the bounds on VaRα(L+). Haus [84] points
out that estimating the bounds on the α-quantile of the aggregate of random variables
with an unknown dependence structure, when we are only given the marginal distributions
of the underlying random variables (seen as estimating bounds on VaRα(L+)), is related
to the multidimensional bottleneck assignment problem and determining whether a given
matrix is completely mixable is in general NP-complete.

In addition to the above, Haus [84] also provides a counterexample for which the RA
simply does not converge:

X =


1 N N
2 N − 1 N − 1
... ... ...
N 1 1

 (6.2.2)

By running the RA on the input matrix (6.2.2), when we oppositely order each column
to the row sums of the remaining columns, we will get the original matrix (6.2.2) after the
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first iteration of the RA algorithm and no changes in the input matrix (6.2.2) will occur
at the end of this process.

One suggestion is to iterate over all possible permutations of the columns of N × d
matrices, derived from discretizing the tail of each of the d risk factors using N points to
calculate sN and sN and obtain an estimate for VaRα(L+). This option is not practical:
enumeration of the total number of possible matrices when we permute all but one column
will result in (N !)d−1 possible matrices. Consider a portfolio of 10 instruments (d = 10)
and choose N = 20; the total number of the resulting matrices becomes (20!)9 u 10165.
Note that the choices of both N = 20 and d = 10 are extremely conservative in this
example since in practice N can easily be as large as 1,000 to 100,000 and many portfolios
have at least 20 instruments. Therefore enumeration of the set of all possible candidate
N × d matrices in both real-world applications and in the simple theoretical example (with
for example d = 10 and N = 20) is nearly impossible.

The aforementioned problems motivate us to enhance the performance of the Rear-
rangement Algorithm.

6.3 How the ARA Works

In this section we present ARA for computing bounds for VaRα(L+). Recall from section
5.6 that the choice of two of the main input parameters in the RA, namely the discretization
parameter N and the relative error ε impacts both the run-time and the accuracy of
the resulting VaRα(L+) bounds. In order to choose initial values for these parameters,
Puccetti and Rüschendorf [7] provide the following information:

• Discretization parameter N : it has been suggested that it should be chosen “large
enough” but no further suggestion is provided.

• Relative error ε: the choice of this input is left to the user of the RA. However the
choice of ε is not straightforward without a priori knowledge of the minimal row
sums.

In addition to the issues mentioned above, an important problem that the RA does not
address is the connection between the discretization parameter N and the relative error ε
and how it impacts the overall run-time and the accuracy of attaining sN and sN when
the VaRα(L+) bounds are estimated.

In what follows we present an algorithmically improved version of the RA, with
more meaningful tuning parameters. Recall that given an input (N, d)-matrix X = (xij)
(alternatively Xα or Xα as defined in algorithm 5.5),

s(X) = min
16i6N

∑
16j6d

xij (6.3.1)

represented the minimum of the row sums of the input matrix. The adaptive rearrangement
algorithm addresses the problems described above through an iterative process for choosing
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the discretization parameter N , coupled with a new bivariate vector of the relative errors.
More specifically,

• Discretization parameter N : it is chosen adaptively. Based on a pre-defined set
of input N ∈ N, the algorithm progresses through this set and chooses the most
relevant N based on the convergence criterion, defined through a bivariate vector of
the relative errors.

• Relative error ε is replaced by a bivariate vector of relative errors ε = (ε1, ε2):

– Individual error ε1 is used to ensure the individual convergence of the lower
bound and upper bound, namely sN and sN , in computing VaRα(L+) bounds.

– Joint relative error ε2 is used to ensure the relative convergence of the lower
bound and upper bound in computing VaRα(L+) bounds.

For notational simplicity and given two N × d matrices X and Y let

erri(X, Y ) =
∣∣∣∣s(X)− s(Y )

s(X)

∣∣∣∣ (6.3.2)

denote the individual error function. Similarly, using the function s(·) defined in equation
(6.3.1) let

errj(sN , sN) =
∣∣∣∣sN − sNsN

∣∣∣∣ (6.3.3)

be the joint relative error, where sN = s(Xα) and s = s(Xα). Using the above notation,
we introduce the following algorithm:

Algorithm 6.3: Adaptive Rearrangement Algorithm
for ComputingVaRα(L+)

1. Assume that the chosen confidence level α ∈ (0, 1), marginal quantile functions F−1 , . . . , F−d ,
an integer vector K ∈ Nl, l ∈ N, (containing the numbers of discretization points which
are adaptively used), a bivariate vector of relative convergence tolerances ε = (ε1, ε2)
(containing the individual relative tolerance ε1 > 0 and the joint relative tolerance ε2>0)
and the maximal number of iterations used for each k ∈ K are given.

2. For N = 2k, k ∈ K, do:

2.1. Compute the lower bound for VaRα(L+):

2.1.1. Define the matrix Xα = (xαij) for xαij = F−j
(
α + (1−α)(i−1)

N

)
, i ∈ {1, . . . , N},

j ∈ {1, . . . , d}.
2.1.2. Permute randomly the elements in each column of Xα.
2.1.3. Set Y α = Xα and for j ∈ {1, 2, . . . , d}, rearrange the jth column of the matrix

Y α so that it becomes oppositely ordered to the sum of all other columns. Call
the resulting matrix Y α.
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2.1.4. While the maximal number of the column rearrangements is not reached and

erri(Xα, Y α) > ε1 (6.3.4)

set Xα = Y α and goto step 2.1.3..
2.1.5. Set sN = s(Y α).

2.2. Compute the upper bound for VaRα(L+):

2.2.1. Define the matrix X
α = (xαij) for xαij = F−j

(
α + (1−α)i

N

)
, i ∈ {1, . . . , N},

j ∈ {1, . . . , d}. If (for i = N and) for any j ∈ {1, . . . , d}, F−j (1) =∞, adjust it
to F−j

(
α+ (1−α)(N−1/2)

N

)
.

2.2.2. Permute randomly the elements in each column of Xα.
2.2.3. Set Y α = X

α. For j ∈ {1, 2, . . . , d}, rearrange the jth column of the matrix Y α

so that it becomes oppositely ordered to the sum of all other columns. Call the
resulting matrix Y α.

2.2.4. While the maximal number of the column rearrangements is not reached and

erri(X
α
, Y

α) > ε1 (6.3.5)

set Xα = Y
α and goto step 2.2.3..

2.2.5. Set sN = s(Y α).
2.3. Determine convergence based on both the individual and joint relative convergence

tolerances:

If (6.3.4) and (6.3.5) hold, and if errj(sN , sN ) 6 ε2 break.

3. Return (sN , sN ).

Concerning the choices of the input parameters in algorithm 6.3, note that if K = {k =
log2 N}, where we have a single number of discretization points, then the ARA reduces
to an improved RA that uses more meaningful relative errors instead of absolute errors
and not only checks what we termed individual errors, i.e., convergence of sN and sN
individually, but also their joint error, i.e., the relative tolerance between sN and sN in
computing the bounds for VaRα(L+).

Based on the simulation studies in section 5.6, useful defaults for the choice of K
and the maximal number of iterations in algorithm 6.3 are K = {8,9, . . . ,19} and 10d
respectively. Given the high model uncertainty and the (often) rather large values of
VaRα(L+) (especially in heavy-tailed test cases), a useful choice for the bivariate vector of
relative errors ε is ε = (0.001, 0.01).

It is important to note that the choice of the powers of 2 for the discretization points
N is purely for investigative purposes and for covering a wide range for this input in the
studies conducted in sections 6.3.2, 6.3.3 and 6.3.4. Moreover, as we will show in sections
6.3.2, 6.3.3 and 6.3.4, the choices of both N and ε2 have a significant impact on the run
time of the ARA, but, using the results in section 6.4 and 6.5, as the number of risk factors
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d increases, the importance of N is less pronounced compared to ε2, i.e., determining
whether or not the convergence criteria for the joint relative error, as specified by ε2, is
met, plays a more important role in meeting the final stopping criteria of the ARA when
computing the lower bound and upper bound for VaRα(L+) and hence in determining the
overall run time of ARA.

6.3.1 Empirical Performance Under Various Setups

One of the main features of the ARA is the dynamic choice of the upper tail discretization
parameter N . Therefore in defining the main studies in which we analyze the performance
of the ARA, the choice of N plays no role. Instead we consider two main studies, the first
one with d = 20 and the second with d = 100 risk factors . We consider the case of Pareto
marginal distributions.

While this setup is similar to the one that we used in section 5.6 in chapter 5, we
have modified it when testing the empirical performance of the ARA by using Student’s
t-distributions and log-normal distributions. More specifically, we consider three portfolios
with d = 20, d = 40 and d = 80 for the Student’s t-distribution and log-normal distribution
studies, in order to analyze the impact of doubling the number of risk factors on the
performance of the ARA. For each of these portfolios a similar setup for the bivariate
vector ε = (ε1, ε2) is used in which ε1 = 0.1% and ε2 = 0.5%, 1% and 2% respectively.

In each of the three studies we present the mean and 95% confidence interval for the
lower and upper bounds of VaR0.99(L+), the mean and 95% confidence interval for the N
used for computing each of the lower and upper bounds, as well as run-time, number of
oppositely ordered columns and number of iterations. In addition to that we have used
the boxplots (also known as the box-and-whiskers plots) of the aforementioned inputs
and outputs in each study to provide a graphical summary of their distributions. For
example figure 6.1 shows the boxplot of the run-time and the N used when computing the
VaR0.99(L+) bounds for d = 100 for Portfolio2 with Pareto marginals described in section
6.3.2.

The graph on the left in figure 6.1 shows the run-time of computing the VaR0.99 bounds
using B = 200 replications of Algorithm 6.3 in which the mean, the first and third quartile
and the whiskers are visible, demonstrating the overall distribution of the 200 run-times
where each iteration has had a different stopping time. On the other hand, in the graph on
the right in figure 6.1, which shows the boxplot of N used for computing the upper bound
sN), since all iterations have used N = 215, there are no visible whiskers and outliers and
the first and third quartiles have collapsed on the mean.

Another advantage of using boxplots is that since the boxplots of a given data set
displays the median, the first and third quartiles (and hence the interquartile range of the
data set), the minimum and maximum as well as the central tendency, range, symmetry,
and presence of outliers, given a fixed number of risk factors (d = 20, 40, 80 or 100), and
by side-by-side presentation of each of these boxplots (for each of the four portfolios in
each study) we provide a visual comparison for the distributions of the parameter that is
analyzed.
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Figure 6.1: Boxplots of the run-time in seconds (left-hand side) and N used (right-
hand side, in computing the upper bound sN) based on B = 200 replications when
computing Pareto distribution VaR0.99 bounds with the ARA for Portfolio2.

Moreover, to compute the confidence interval we have used the percentile bootstrap
(more formally known as percentile bootstrap confidence intervals) methodology. This
methodology uses the percentiles of the bootstrap distribution for a given statistic to
compute the confidence interval (see Davison and Hinkley [88, Equation 5.18]) at the
confidence level α. For example, using B = B0 bootstrapped values for the run-time,
namely t1, t2, . . . , tB0−1, tB0 , define the ordered run-times as:

t∗(1) 6 t∗(2) 6 . . . 6 t∗(B0−1) 6 t∗(B0)

To determine the lower and upper α/2 points for the empirical distribution of the B = B0
bootstrapped run-times, let

il =
⌊
α

2 (B0 + 1)
⌋

and iu = (B0 + 1)− il

then the interval [t∗il , t
∗
iu ] contains the middle (1−α) fraction for the empirical distribution

of the bootstrapped run-times.

6.3.2 Generalized Pareto Distribution Results

Under each study (corresponding to d = 20 and d = 100 respectively) we investigate 12
examples. Each example consists of one the following 4 portfolios, where the Pareto(θj)-
distributed losses are defined by the cumulative distribution function

Fj(x) = 1− (1 + x)−θj , x > 0,

for a given tail parameter θj > 0.
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Portfolio1: θ1, . . . , θd are uniformly chosen from 0.6 to 0.4. This case represents a
portfolio with marginals with a similar tail behavior (i.e., a heavy-tailed
distribution).

Portfolio2: θ1, . . . , θd are uniformly chosen from 0.5 to 1.5. This case represents a
portfolio with marginals with differing tail behavior (i.e., from a very heavy-
tailed distribution to a not so heavy-tailed distribution).

Portfolio3: θ1, . . . , θd are uniformly chosen from 1.4 to 1.6. This case represents a
portfolio with marginals with similar tail behavior (i.e., a not so heavy-tailed
distribution).

Portfolio4: θ2, . . . , θd are chosen as in Portfolio3 and θ1 = 0.5. This case represents a
portfolio with marginals with only one heavy-tailed loss distribution.

Each of the above portfolios represent different marginal tail behaviors based on the Pareto
distribution, coupled with one of the following three choices of the bivariate vector of
relative errors ε = (ε1, ε2) defined as:

Case 1: ε = (0.1%,0.5%), i.e., individual relative error ε1 is chosen as 0.1% and the
joint relative error ε2 is 0.5%.

Case 2: ε = (0.1%,1%), i.e., individual relative error ε1 is the same as before and the
joint relative error ε2 is twice the previous case.

Case 3: ε = (0.1%,2%), i.e., individual relative error ε1 is kept at the same level and
again we have doubled the joint relative error ε2.

Therefore the performance of the ARA is investigated in 24 different examples. As
before, the results shown for each test are based on B = 200 simulations and we report
the mean and 95% confidence interval for the lower and upper bounds of VaR0.99, the N
used in the final iteration of the ARA, mean and confidence interval for each example in
table (6.1) as well as the number of oppositely ordered columns and number of iterations
for each example in table (6.2). Our findings indicate that:

• In table 6.1, we see that although in both studies (d = 20 and d = 100), the length of
the confidence intervals for VaR0.99 increases as the joint relative error, ε2 increases,
the mean and lower and upper confidence bounds for VaR0.99 remain close to each
other and within these bounds. Moreover for a fixed level of individual relative error,
as ε2 increases, we do not observe a drastic shift in both lower and upper bounds for
the mean across different examples.

• The mean and the 95% confidence interval for the N used in the final iteration of the
ARA is shown in table 6.2. An important observation about this parameter is that
in virtually all examples, both the upper and lower bounds for the 95% confidence
interval of N used remain the same. This observation can be used in practice for

102



portfolios which exhibit the same marginal tail behavior to reduce the run-time of
the ARA. For example when the underlying risk factors in the portfolio are similar
to those which we defined earlier in the case of Pareto(θj)-distributed marginals,
and for a fixed bivariate vector of relative errors ε = (ε1, ε2), K = 11, . . . ,17 can be
used in algorithm 6.3.

• The last column in table (6.1) shows the mean run-time of the ARA in each of the
24 examples. Doubling the joint relative error reduces the run-time more than 50%
across all examples.

• The mean number of iterations when computing sN and sN , as well as both the
lower and upper bounds consistently remain below 5.

• Finally figures 6.2, 6.3, 6.4, 6.5, and 6.6 show the impact of the randomization of
the initial input matrix X. As can be seen from our simulations, randomizing the
input has minimal impact on the outputs and parameters such as N-used in the
final iteration of the ARA in each of these 24 examples.
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Figure 6.2: Boxplots of lower (left-hand side) and upper (right-hand side) Pareto
distribution VaR0.99 bounds computed with the ARA based on B = 200 replications.
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Figure 6.3: Boxplots of the actual N used for computing lower (left-hand side) and
upper (right-hand side) Pareto distribution VaR0.99 bounds with the ARA based on
B = 200 replications.
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Figure 6.4: Boxplots of the run-time in seconds for computing Pareto distribution
VaR0.99 bounds with the ARA based on B = 200 replications.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε = 0.005

d = 20

ε = 0.01

d = 20

ε = 0.02

d = 20

ε = 0.005

d = 100

ε = 0.01

d = 100

ε = 0.02

d = 100

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1.
0

1.
2

1.
4

1.
6

1.
8

2.
0

ε = 0.005

d = 20

ε = 0.01

d = 20

ε = 0.02

d = 20

ε = 0.005

d = 100

ε = 0.01

d = 100

ε = 0.02

d = 100

Figure 6.5: Boxplots of the number of oppositely ordered columns for computing lower
(left-hand side) and upper (right-hand side) Pareto distribution VaR0.99 bounds with the
ARA based on B = 200 replications.

6.3.3 Student’s t-distribution Analysis

Besides the Pareto case, we test the performance of the ARA using marginals that are
Student’s t-distributed. Student’s t-distribution is one of the most commonly used fat-tailed
distributions in risk management and its probability density function is given by:

f(x) =
Γ(ν+1

2 )√
νπΓ(ν2 )

[
1 + x2

ν

]− ν+1
2

where ν is the degrees of freedom and Γ(·) represents the gamma function. It is well
known that the degrees of freedom parameter governs the tail behavior of this distribution.
The smaller the value of ν, the heavier the tail becomes. As ν → ∞ Students’s t-
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Figure 6.6: Boxplots of the number of iterations for computing lower (left-hand side)
and upper (right-hand side) Pareto distribution VaR0.99 bounds with the ARA based on
B = 200 replications.

VaR0.99

Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 3.4592e7 (3.4559e7, 3.4560e7) 3.4653e7 (3.4653e7, 3.4654e7)
2 1.7857e5 (1.7857e5, 1.7857e5) 1.7916e5 (1.7916e5, 1.7917e5)
3 1.1446e3 (1.1446e3, 1.1446e3) 1.1484e3 (1.1484e3, 1.1484e3)
4 1.5839e4 (1.5839e4, 1.5840e4) 1.5905e4 (1.5905e4, 1.5905e4)

(0.1, 1) 1 3.4513e7 (3.4513e7, 3.4513e7) 3.4700e7 (3.4700e7, 3.4700e7)
2 1.7827e5 (1.7827e4, 1.7828e4) 1.7938e5 (1.7937e5, 1.7939e5)
3 1.1426e3 (1.1426e3, 1.1427e3) 1.1530e3 (1.1503e3, 1.1503e3)
4 1.5807e4 (1.5807e4, 1.5807e4) 1.5938e4 (1.5938e4, 1.5938e4)

(0.1, 2) 1 3.4420e7 (3.4419e7, 3.4420e7) 3.4793e7 (3.4793e7, 3.4794e7)
2 1.7773e5 (1.7772e5, 1.7774e5) 1.7978e5 (1.7976e5, 1.7979e5)
3 1.1389e3 (1.1388e3, 1.1389e3) 1.1542e3 (1.1541e3, 1.1542e3)
4 1.5739e4 (1.5738e4, 1.5739e4) 1.5991e4 (1.5990e4, 1.5991e4)

100 (0.1, 0.5) 1 1.2054e9 (1.2054e9, 1.2054e9) 1.2095e9 (1.2095e9, 1.2095e9)
2 2.6073e7 (2.6073e7, 2.6074e7) 2.6162e7 (2.6162e7, 2.6163e7)
3 6.1760e3 (6.1759e3, 6.1761e3) 6.2018e3 (6.2018e3, 6.2018e3)
4 2.8035e4 (2.8035e4, 2.8035e4) 2.8156e4 (2.8156e4, 2.8156e4)

(0.1, 1) 1 1.2034e9 (1.2033e9, 1.2034e9) 1.2116e9 (1.2116e9, 1.2116e9)
2 2.6029e7 (2.6028e7, 2.6032e7) 2.6194e7 (2.6194e7, 2.6196e7)
3 6.1631e3 (6.1630e3, 6.1632e3) 6.2148e3 (6.2148e3, 6.2148e3)
4 2.7972e4 (2.7972e4, 2.7972e4) 2.8212e4 (2.8212e4, 2.8212e4)

(0.1, 2) 1 1.1992e9 (1.1992e9, 1.1993e9) 1.2157e9 (1.2157e9, 1.2157e9)
2 2.5950e7 (2.5948e7, 2.5952e7) 2.6252e7 (2.6250e7, 2.6254e7)
3 6.1379e3 (6.1378e3, 6.1380e3) 6.2412e3 (6.2411e3, 6.2412e3)
4 2.7853e4 (2.7853e4, 2.7853e4) 2.8278e4 (2.8278e4, 2.8278e4)

Table 6.1: Pareto distribution VaR0.99 bounds with the ARA based on B = 200
bootstrap replications.

distribution converges to the normal distribution. The following remark (see McNeil
et al. [65, Remark 2.22]) formalizes this connection in the context of quantitative risk
management.

Remark 6.3.1. It is possible to derive results on the asymptotics of the shortfall to
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N used

Lower Upper Time (in s)

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 16384 (16384, 16384) 8192 (8192, 8192) 7.21 (6.79, 7.76)
2 4096 (4096, 4096) 8192 (8192, 8192) 3.12 (3.06, 3.20)
3 16384 (16384, 16384) 8192 (8192, 8192) 1.14 (1.10, 1.17)
4 4096 (4096, 4096) 8192 (8192, 8192) 2.51 (2.45, 2.57)

(0.1, 1) 1 8192 (8192, 8192) 4096 (4096, 4096) 3.06 (3.02, 3.13)
2 2048 (2048, 2048) 4096 (4096, 4096) 1.42 (1.40, 1.46)
3 8192 (8192, 8192) 4096 (4096, 4096) 0.51 (0.49, 0.54)
4 2048 (2048, 2048) 4096 (4096, 4096) 1.14 (1.11, 1.17)

(0.1, 2) 1 4096 (4096, 4096) 2048 (2048, 2048) 1.41 (1.40, 1.45)
2 1024 (1024, 1024) 2048 (2048, 2048) 0.65 (0.64, 0.69)
3 4096 (4096, 4096) 2048 (2048, 2048) 0.24 (0.23, 0.26)
4 1024 (1024, 1024) 2048 (2048, 2048) 0.51 (0.49, 0.55)

100 (0.1, 0.5) 1 65536 (65536, 65536) 32768 (32768, 32768) 647.25 (629.52, 666.05)
2 16384 (16384, 16384) 32768 (32768, 32768) 278.24 (263.75, 295.46)
3 65536 (65536, 65536) 32768 (32768, 32768) 113.72 (104.28, 122.44)
4 16384 (16384, 16384) 32768 (32768, 32768) 268.64 (259.07, 279.24)

(0.1, 1) 1 32768 (32768, 32768) 16384 (16384, 16384) 271.93 (261.79, 292.40)
2 8192 (8192, 8192) 16384 (16384, 16384) 132.27 (125.50, 143.53)
3 32768 (32768, 32768) 16384 (16384, 16384) 53.62 (49.04, 58.60)
4 8192 (8192, 8192) 16384 (16384, 16384) 124.57 (120.94, 129.17)

(0.1, 2) 1 16384 (16384, 16384) 8192 (8192, 8192) 128.66 (121.98, 136.47)
2 4096 (4096, 4096) 8192 (8192, 8192) 65.48 (60.17, 74.24)
3 16384 (16384, 16384) 8192 (8192, 8192) 23.73 (22.16, 25.74)
4 4096 (4096, 4096) 8192 (8192, 8192) 58.15 (56.45, 60.14)

Table 6.2: N -used and run-time in computing VaR0.99 with the ARA based on B = 200
bootstrap replications for the Pareto distribution.

quantile ratio CVaRα(L)/VaRα(L) as α→ 1. For the normal distribution we have:

lim
α→1

CVaRα(L)
VaRα(L) = 1

while for the Student’s t-distribution with ν > 1 degrees of freedom we have

lim
α→1

CVaRα(L)
VaRα(L) = ν

ν − 1

Remark 6.3.1 indicates that, given a more heavy-tailed distribution, the difference
between CVaRα(L) and VaRα(L) becomes more pronounced compared to the normal
distribution.

It is important to note that using realistic estimates of the degrees of freedom parameter
that governs extreme events essential in analyzing the performance of the ARA. Jorion
[89] indicates that values of ν ranging from 4 to 7 for the Student’s t-distribution are a
good representative of the tail behavior of financial data. Besides this study, tail behavior
exhibits further diversity: according to Stoyanov et al. [90] 27% of all stocks have a ν > 7
while 13% of them have ν < 4. In a similar study Rachev et al. [91] show that 21% of the
S&P 500 stocks are very fat-tailed, with a ν < 4, while 35% have ν > 7.
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Number of oppositely ordered columns Number of iterations

Lower Upper Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 1 (1,1) 1 (1,1) 3.975 (3.975,4) 3.98 (4,4)
2 1 (1,1) 1 (1,1) 4 (4,4) 4 (4,4)
3 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
4 1.195 (1,2) 1.12 (1,2) 3 (3,3) 3 (3,3)

(0.1, 1) 1 1 (1,1) 1 (1,1) 4 (4,4) 4 (4,4)
2 1 (1,1) 1 (1,1) 4 (4,4) 4 (4,4)
3 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
4 1.795 (1,2) 1.715 (1,2) 3 (3,3) 3 (3,3)

(0.1, 2) 1 1 (1,1) 1 (1,1) 4 (4,4) 4 (4,4)
2 1 (1,1) 1 (1,1) 4 (4,4) 4 (4,4)
3 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
4 1.995 (2,2) 1.67 (1,2) 3 (3,3) 3 (3,3)

100 (0.1, 0.5) 1 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
2 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
3 1 (1,1) 1 (1,1) 2.585 (2,3) 2.995 (3,3)
4 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)

(0.1, 1) 1 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
2 1 (1,1) 1 (1,1) 3.045 (3,4) 3.05 (3,4)
3 1 (1,1) 1 (1,1) 2.49 (2,3) 3 (3,3)
4 1.01 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)

(0.1, 2) 1 1 (1,1) 1 (1,1) 3 (3,3) 3 (3,3)
2 1 (1,1) 1 (1,1) 3.305 (3,4) 3.265 (3,4)
3 1 (1,1) 1 (1,1) 2.36 (2,3) 3 (3,3)
4 1.45 (1,2) 1.07 (1,2) 3 (3,3) 3 (3,3)

Table 6.3: Number of oppositely ordered columns and number of iterations in computing
VaR0.99 with the ARA based on B = 200 replications for the Pareto distribution.

Based on the above results, we have considered the following ranges for the tail
parameter νj > 0.

Portfolio 1: ν1, . . . , νd are uniformly chosen from 1 to 3. This case represents a portfolio
with marginals with similar tail behavior (i.e., a heavy-tailed distribution).

Portfolio 2: ν1, . . . , νd are uniformly chosen from 1 to 8. This case represents a portfolio
with marginals with differing tail behavior (i.e., from a very heavy-tailed
distribution to a not so heavy-tailed distribution).

Portfolio 3: ν1, . . . , νd are uniformly chosen from 6 to 8. This case represents a port-
folio with marginals with similar tail behavior (i.e., a not so heavy-tailed
distribution).

Portfolio 4: ν2, . . . , νd are chosen as in Portfolio 3 and ν1 = 2; this case represents a
portfolio with only one heavy-tailed marginal loss distribution.

In each of the portfolios described in 6.3.3, three bivariate vectors of relative errors
ε = (ε1, ε2) are used:

Case 1: ε = (0.1%,0.5%), i.e., individual relative error ε1 is chosen as 0.1% and the
joint relative error ε2 is 0.5%.
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Case 2: ε = (0.1%,1%), i.e., individual relative error ε1 is the same as before and the
joint relative error ε2 is twice the previous case.

Case 3: ε = (0.1%,2%), i.e., individual relative error ε1 is kept at the same level and we
have doubled the joint relative error ε2.

VaR0.99

Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 515.806 (515.804, 515.808) 517.335 (517.333, 517.337)
2 218.368 (218.366, 218.370) 219.435 (219.433, 219.436)
3 75.519 (75.518, 75.519) 75.802 (75.802, 75.803)
4 83.640 (83.640, 83.641) 83.966 (83.965, 83.967)

(0.1, 1) 1 515.053 (515.050, 515.056) 517.908 (517.904, 517.911)
2 217.847 (217.844, 217.849) 219.812 (219.808, 219.814)
3 75.383 (75.382, 75.384) 75.869 (75.869, 75.870)
4 83.484 (83.483, 83.485) 84.053 (84.051, 84.054)

(0.1, 2) 1 511.154 (511.146, 511.160) 520.690 (520.671, 520.697)
2 216.924 (216.919, 216.928) 220.453 (220.447, 220.457)
3 75.383 (75.382, 75.384) 75.869 (75.869, 75.870)
4 83.484 (83.483, 83.485) 84.053 (84.051, 84.054)

40 (0.1, 0.5) 1 1086.709 (1086.708, 1086.710) 1091.982 (1091.980, 1091.983)
2 434.532 (434.531, 434.533) 436.159 (436.158, 436.160)
3 151.010 (151.009, 151.010) 151.577 (151.577, 151.577)
4 159.846 (159.846, 159.847) 160.482 (160.481, 160.482)

(0.1, 1) 1 1084.163 (1084.161, 1084.164) 1093.785 (1093.783, 1093.787)
2 433.754 (433.752, 433.755) 436.719 (436.717, 436.720)
3 150.741 (150.740, 150.741) 151.712 (151.712, 151.713)
4 159.544 (159.543, 159.544) 160.653 (160.652, 160.653)

(0.1, 2) 1 1079.571 (1079.568, 1079.573) 1096.877 (1096.867, 1096.881)
2 432.329 (432.327, 432.330) 437.691 (437.689, 437.693)
3 150.741 (150.740, 150.741) 151.712 (151.712, 151.713)
4 159.544 (159.543, 159.544) 160.653 (160.652, 160.653)

80 (0.1, 0.5) 1 2285.346 (2285.345, 2285.346) 2295.125 (2295.124, 2295.125)
2 882.010 (882.010, 882.011) 884.672 (884.672, 884.673)
3 301.992 (301.992, 301.992) 303.126 (303.126, 303.127)
4 311.300 (311.300, 311.300) 312.558 (312.557, 312.558)

(0.1, 1) 1 2280.631 (2280.630, 2280.632) 2298.357 (2298.355, 2298.358)
2 878.40 4 (878.402, 878.404) 887.109 (887.108, 887.110)
3 301.456 (301.456, 301.456) 303.399 (303.399, 303.399)
4 310.701 (310.700, 310.701) 312.895 (312.895, 312.895)

(0.1, 2) 1 2272.161 (2272.160, 2272.163) 2303.854 (2303.853, 2303.855)
2 874.316 (874.313, 874.319) 889.733 (889.731, 889.734)
3 301.456 (301.456, 301.456) 303.399 (303.399, 303.399)
4 310.701 (310.700, 310.701) 312.895 (312.895, 312.895)

Table 6.4: Student′s t−distributionVaR0.99 bounds with the ARA based on B = 200
bootstrap replications.

The above setup for the student’s t-distribution results in 36 different examples, each
of which is created using B = 200 simulations, and as before we report the mean and 95%
confidence interval for the lower and upper bounds of VaR0.99 for each example in table
6.4. The mean and 95% confidence interval for the N used in computing each of the lower
and upper bounds, as well as the total run-time’s mean and 95% confidence interval are
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N used

Lower Upper Time (in s)

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 4096 (4096, 4096) 1024 (1024, 1024) 1.97 (1.94, 2.24)
2 512 (512, 512) 512 (512, 512) 0.44 (0.42, 0.47)
3 4096 (4096, 4096) 1024 (1024, 1024) 0.19 (0.17, 0.21)
4 512 (512, 512) 512 (512, 512) 0.19 (0.17, 0.21)

(0.1, 1) 1 2048 (2048, 2048) 512 (512, 512) 0.96 (0.94, 1)
2 256 (256, 256) 256 (256, 256) 0.20 (0.19, 0.21)
3 2048 (2048, 2048) 512 (512, 512) 0.07 (0.05, 0.08)
4 256 (256, 256) 256 (256, 256) 0.07 (0.05, 0.09)

(0.1, 2) 1 512 (512, 512) 256 (256, 256) 0.21 (0.19, 0.22)
2 256 (256, 256) 256 (256, 256) 0.07 (0.06, 0.09)
3 512 (512, 512) 256 (256, 256) 0.07 (0.05, 0.08)
4 256 (256, 256) 256 (256, 256) 0.07 (0.05, 0.08)

40 (0.1, 0.5) 1 4096 (4096, 4096) 2048 (2048, 2048) 5.40 (5.30, 5.70)
2 512 (512, 512) 512 (512, 512) 2.48 (2.41, 2.78)
3 4096 (4096, 4096) 2048 (2048, 2048) 0.47 (0.44, 0.48)
4 512 (512, 512) 512 (512, 512) 0.46 (0.44, 0.48)

(0.1, 1) 1 2048 (2048, 2048) 1024 (1024, 1024) 2.53 (2.47, 2.81)
2 256 (256, 256) 256 (256, 256) 1.17 (1.13, 1.22)
3 2048 (2048, 2048) 1024 (1024, 1024) 0.16 (0.14, 0.18)
4 256 (256, 256) 256 (256, 256) 0.16 (0.14, 0.18)

(0.1, 2) 1 1024 (1024, 1024) 512 (512, 512) 1.18 (1.16, 1.22)
2 256 (256, 256) 256 (256, 256) 0.52 (0.50, 0.55)
3 1024 (1024, 1024) 512 (512, 512) 0.16 (0.14, 0.18)
4 256 (256, 256) 256 (256, 256) 0.16 (0.14, 0.18)

80 (0.1, 0.5) 1 8192 (8192, 8192) 4096 (4096, 4096) 36.58 (35.78, 37.51)
2 512 (512, 512) 512 (512, 512) 16.86 (16.32, 17.24)
3 8192 (8192, 8192) 4096 (4096, 4096) 1.26 (1.23, 1.31)
4 512 (512, 512) 512 (512, 512) 1.26 (1.23, 1.31)

(0.1, 1) 1 4096 (4096, 4096) 1024 (1024, 1024) 16.91 (16.68, 17.17)
2 256 (256, 256) 256 (256, 256) 3.45 (3.38, 3.79)
3 4096 (4096, 4096) 1024 (1024, 1024) 0.44 (0.42, 0.46)
4 256 (256, 256) 256 (256, 256) 0.44 (0.42, 0.46)

(0.1, 2) 1 2048 (2048, 2048) 512 (512, 512) 7.76 (7.60, 8.07)
2 256 (256, 256) 256 (256, 256) 1.48 (1.44, 1.84)
3 2048 (2048, 2048) 512 (512, 512) 0.44 (0.42, 0.46)
4 256 (256, 256) 256 (256, 256) 0.44 (0.42, 0.45)

Table 6.5: N -used and run-time in computing Student’s t-distribution VaR0.99 with
the ARA based on B = 200 bootstrap replications.

shown in table 6.5. Similar statistics have been reported for the number of oppositely
ordered columns and number of iterations in table 6.6. Based on the simulation results:

• The mean and the 95% confidence interval reported in table 6.4 indicate that across
all studies (d = 20, d = 40 and d = 80), while the length of the confidence intervals
for VaR0.99 increases as the joint relative error, ε2, and d increase, the mean and
lower and upper confidence bounds for VaR0.99 do not deviate from the mean and
remain very close to the observed mean. Moreover table 6.4 shows that as we double
d across examples, the length of the confidence intervals remains relatively stable.

• N used in the final iteration of the ARA is shown in table 6.5. Similar to what
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Number of oppositely ordered columns Number of iterations

Lower Upper Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
3 5.595 (2, 10) 4.425 (1, 9) 2 (2, 2) 2 (2, 2)
4 2.51 (1, 7.02) 2.055 (1, 3.050) 2.19 (2, 3) 2.15 (2, 3)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1.055 (1, 2) 1.005 (1, 1) 3 (3, 3) 3 (3, 3)
3 10.855 (5, 16) 9.745 (4.975, 15) 2 (2, 2) 2 (2, 2)
4 4.01 (2, 15) 4.07 (1.975, 14) 2.215 (2, 3) 2.25 (2, 3)

(0.1, 2) 1 1.025 (1, 1.025) 1.08 (1, 2) 3 (3, 3) 3 (3, 3)
2 2.645 (1, 4) 1.175 (1, 2) 3 (3, 3) 3 (3, 3)
3 10.855 (5, 16) 9.745 (4.975, 15) 2 (2, 2) 2 (2, 2)
4 4.01 (2, 15) 4.07 (1.975, 14) 2.215 (2, 3) 2.25 (2, 3)

40 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
3 29.17 (21, 36) 29.13 (22, 36.025) 2 (2, 2) 2 (2, 2)
4 3.75 (2, 11) 4.045 (2, 12) 2 (2, 2) 2 (2, 2)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
3 34.445 (28.975, 39) 34.585 (29, 39) 2 (2, 2) 2 (2, 2)
4 15.04 (2.975, 30) 14.095 (2, 26) 2 (2, 2) 2 (2, 2)

(0.1, 2) 1 1.025 (1, 1.025) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1.205 (1, 2) 1.155 (1, 2) 3 (3, 3) 3 (3, 3)
3 34.445 (28.975, 39) 34.585 (29, 39) 2 (2, 2) 2 (2, 2)
4 15.04 (2.975, 30) 14.095 (2, 26) 2 (2, 2) 2 (2, 2)

80 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
3 74.57 (69, 79) 74.155 (68, 79) 2 (2, 2) 2 (2, 2)
4 46.825 (12.95, 64.025) 45.735 (15.85, 62) 2 (2, 2) 2 (2, 2)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1.025 (1, 1.025) 1.015 (1, 1) 3 (3, 3) 3 (3, 3)
3 77.15 (71.95, 80) 77.015 (71.975, 80) 2 (2, 2) 2 (2, 2)
4 64.745 (42.95, 76) 63.93 (46, 74) 2 (2, 2) 2 (2, 2)

(0.1, 2) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 1.255 (1, 4.025) 2.235 (1, 7) 3 (3, 3) 3 (3, 3)
3 77.15 (71.95, 80) 77.015 (71.975, 80) 2 (2, 2) 2 (2, 2)
4 64.745 (42.95, 76) 63.93 (46, 74) 2 (2, 2) 2 (2, 2)

Table 6.6: Number of oppositely ordered columns and number of iterations in computing
Student’s t-distribution VaR0.99 with the ARA based on B = 200 replications.

we observed in the case of Pareto marginals, in all examples, the upper and lower
bounds for the 95% confidence interval of N used remain the same. This observation
can be used for portfolios which exhibit the same marginal tail behavior to reduce
the run-time of the ARA. Moreover the N used for computing the upper bound is
smaller than the N used for computing the lower bound on VaR0.99 in 18 out of the
36 examples and it is the same in the remaining 18 examples, indicating that the N
used for computing the upper bound is at least as large as that of the lower bound.

• The last two columns in table 6.5 show the mean run-time and the 95% confidence
interval of the ARA for the Student’s t-distribution. While as before doubling the
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Figure 6.7: Boxplots of lower (left-hand side) and upper (right-hand side) Student’s
t-distribution VaR0.99 bounds computed with the ARA based on B = 200 replications.
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Figure 6.8: Boxplots of the actual N used for computing lower (left-hand side) and
upper (right-hand side) Student’s t-distribution VaR0.99 bounds with the ARA based on
B = 200 replications.
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Figure 6.9: Boxplots of the run time in seconds for computing Student’s t-distribution
VaR0.99 bounds with the ARA based on B = 200 replications.
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Figure 6.10: Boxplots of the number of oppositely ordered columns for computing
lower (left-hand side) and upper (right-hand side) Student’s t-distribution VaR0.99 bounds
with the ARA based on B = 200 replications.
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Figure 6.11: Boxplots of the number of iterations for computing lower (left-hand
side) and upper (right-hand side) Student’s t-distribution VaR0.99 bounds with the ARA
based on B = 200 replications.

joint relative error reduces the run-time more than 50% across all examples, we
observe a different pattern when we double the number of risk factors; this increases
the run-time by at least a factor of 3 (up to 7 in some cases) across examples.

• The mean number of iterations when sN and sN are computed as well as both the
lower and upper bound are at most 3. In addition to that the lower and upper 95%
confidence interval for the mean number of iterations remains the same as the mean
number of iterations in 33 out of 36 examples.

• Figures 6.7, 6.8, 6.9 and 6.11 show minimal impact of the randomization of the initial
input matrix X on the VaR bounds, N used, run-time and number of iterations for
computing these bounds, while the boxplots for the number of oppositely ordered
columns for computing the lower and upper Student’s t-distribution VaR bounds in
figure 6.10 indicate that randomization of the initial input matrix X impacts this
parameter more than the others.

6.3.4 Log-normal Distribution Analysis

The last distribution that we use for analyzing the performance of the ARA is the log-
normal distribution. This distribution is often used to model losses in the areas of risk
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management (such as in credit and operational risk management) in which the observed
losses are highly skewed. Its probability density function is given by:

f(x) = 1
σx
√

2π
e−(lnx−µ)2/(2σ2) µ ∈ R, σ > 0 (6.3.6)

It is a widely used distribution for modelling severity and tail behavior. According to
Embrechts and Hofert [92] the most common choices for modelling the severity distribution
are log-normal (33%) and Weibull (17%), while for the tail, generalized Pareto and log-
normal at (31%) and (14%) constitute the largest two classes of distributions among the
models.

Using µ = 0 in (6.3.6) and across all scenarios, we have considered the following ranges
for the tail parameter σj > 0 in our studies:

Portfolio 1: σ1, . . . , σd are uniformly chosen from 12 to 16. This case represents a portfolio
with marginals with similar tail behavior (i.e., a heavy-tailed distribution).

Portfolio 2: σ1, . . . , σd are uniformly chosen from 16 to 1. This case represents a portfolio
with marginals with differing tail behavior (i.e., from a very heavy-tailed
distribution to a not so heavy-tailed distribution).

Portfolio 3: σ1, . . . , σd are uniformly chosen from 1 to 2. This case represents a port-
folio with marginals with similar tail behavior (i.e., a not so heavy-tailed
distribution).

Portfolio 4: σ2, . . . , σd are chosen as in Portfolio 3 and σ1 = 16. This case represents a
portfolio with only one heavy-tailed marginal loss distribution.

The portfolios used in this section, as well as the bivariate vectors of relative errors are
the same as for the Student’s t-distribution. We have considered three main studies
with d = 20, d = 40 and d = 80, each of which are coupled with one of the bivariate
vectors of relative errors ε = (ε1, ε2) chosen as: ε = (0.1%,0.5%), ε = (0.1%,1%) and
ε = (0.1%,2%) respectively.
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Figure 6.12: Boxplots of lower (left-hand side) and upper (right-hand side) log-normal
distribution VaR0.99 bounds computed with the ARA based on B = 200 replications.
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VaR0.99

Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 1.30502e21 (1.30500e21, 1.30504e21) 1.30848e21 (1.30846e21, 1.30850e21)
2 7.59062e18 (7.58973e18, 7.59075e18) 7.61253e18 (7.61147e18, 7.61273e18)
3 1.75236e3 (1.75236e3, 1.75237e3) 1.75889e3 (1.75888e3, 1.75889e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.46687e16 (1.46687e16, 1.46687e16)

(0.1, 1) 1 1.30330e21 (1.30325e21, 1.30335e21) 1.31020e21 (1.31016e21, 1.31026e21)
2 7.57893e18 (7.57785e18, 7.57923e18) 7.62211e18 (7.62109e18, 7.62243e18)
3 1.74915e3 (1.74914e3, 1.74916e3) 1.76144e3 (1.76143e3, 1.76144e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47118e16 (1.47118e16, 1.47118e16)

(0.1, 2) 1 1.29988e21 (1.29980e21, 1.29990e21) 1.31369e21 (1.31360e21, 1.31372e21)
2 7.55731e18 (7.55615e18, 7.55781e18) 7.63812e18 (7.63703e18, 7.63863e18)
3 1.74317e3 (1.74315e3, 1.74318e3) 1.76607e3 (1.76605e3, 1.76608e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47984e16 (1.47984e16, 1.47984e16)

40 (0.1, 0.5) 1 2.29986e22 (2.29985e22, 2.29987e22) 2.30568e22 (2.30566e22, 2.30569e22)
2 1.24262e20 (1.24262e20, 1.24263e20) 1.24589e20 (1.24588e20, 1.24589e20)
3 3.52970e3 (3.52969e3, 3.52971e3) 3.54085e3 (3.54084e3, 3.54086e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.46687e16 (1.46687e16, 1.46687e16)

(0.1, 1) 1 2.29676e22 (2.29672e22, 2.29694e22) 2.30869e22 (2.30850e22, 2.30873e22)
2 1.23792e20 (1.23789e20, 1.23794e20) 1.25006e20 (1.25002e20, 1.25008e20)
3 3.52425e3 (3.52424e3, 3.52426e3) 3.54496e3 (3.54495e3, 3.54498e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47118e16 (1.47118e16, 1.47118e16)

(0.1, 2) 1 2.28724e22 (2.27945e22, 2.29114e22) 2.31818e22 (2.31426e22, 2.32604e22)
2 1.23180e20 (1.23170e20, 1.23185e20) 1.25522e20 (1.25512e20, 1.25529e20)
3 3.49611e3 (3.49609e3, 3.49612e3) 3.56396e3 (3.56393e3, 3.56399e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47984e16 (1.47984e16, 1.47984e16)

80 (0.1, 0.5) 1 3.67899e23 (3.67896e23, 3.67903e23) 3.69689e23 (3.69685e23, 3.69693e23)
2 2.05190e21 (2.05187e21, 2.05193e21) 2.06138e21 (2.06135e21, 2.06140e21)
3 7.06116e3 (7.06116e3, 7.06116e3) 7.09510e3 (7.09509e3, 7.09510e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.46687e16 (1.46687e16, 1.46687e16)

(0.1, 1) 1 3.66995e23 (3.66984e23, 3.67013e23) 3.70576e23 (3.70564e23, 3.70594e23)
2 2.04719e21 (2.04713e21, 2.04728e21) 2.06542e21 (2.06535e21, 2.06550e21)
3 7.04484e3 (7.04483e3, 7.04484e3) 7.10549e3 (7.10548e3, 7.10549e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47118e16 (1.47118e16, 1.47118e16)

(0.1, 2) 1 3.65222e23 (3.65204e23, 3.65233e23) 3.72380e23 (3.72368e23, 3.72392e23)
2 2.03818e21 (2.03806e21, 2.03824e21) 2.07322e21 (2.07310e21, 2.07327e21)
3 7.01596e3 (7.01595e3, 7.01596e3) 7.12125e3 (7.12124e3, 7.12126e3)
4 1.46258e16 (1.46258e16, 1.46258e16) 1.47984e16 (1.47984e16, 1.47984e16)

Table 6.7: Log-normal distribution VaR0.99 bounds with the ARA based on B = 200
bootstrap replications.

• The VaR0.99 mean, lower and upper confidence bounds, shown in table 6.7 depict
similar results to those for the Student’t t-distribution and Pareto within each study
(corresponding to d = 20, d = 40 and d = 80). Increasing the joint relative error
ε2 does not cause a substantial change in the length of the confidence intervals
compared to the mean that is reported.

• Table 6.8 shows the mean run-time and the 95% confidence interval of the ARA for
the log-normal distribution. A 50% reduction in the run-time across all examples
is seen as before when we double the joint relative error. Similarly doubling the
number of risk factors increases the run-time by at least a factor of 4 (and up to 7
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N used

Lower Upper Time (in s)

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 32768 (32768, 32768) 16384 (16384, 16384) 12.60 (11.53, 13.80)
2 2048 (2048, 2048) 2048 (2048, 2048) 7.89 (7.49, 8.20)
3 32768 (32768, 32768) 16384 (16384, 16384) 0.48 (0.46, 0.59)
4 2048 (2048, 2048) 2048 (2048, 2048) 0.27 (0.25, 0.36)

(0.1, 1) 1 16384 (16384, 16384) 8192 (8192, 8192) 6.31 (5.86, 6.88)
2 1024 (1024, 1024) 1024 (1024, 1024) 3.42 (3.21, 3.58)
3 16384 (16384, 16384) 8192 (8192, 8192) 0.24 (0.22, 0.27)
4 1024 (1024, 1024) 1024 (1024, 1024) 0.13 (0.11, 0.15)

(0.1, 2) 1 8192 (8192, 8192) 4096 (4096, 4096) 2.93 (2.70, 3.11)
2 512 (512, 512) 512 (512, 512) 1.49 (1.38, 1.61)
3 8192 (8192, 8192) 4096 (4096, 4096) 0.11 (0.09, 0.13)
4 512 (512, 512) 512 (512, 512) 0.06 (0.05, 0.07)

40 (0.1, 0.5) 1 65536 (65536, 65536) 32768 (32768, 32768) 73.43 (71.53, 75.76)
2 4096 (4096, 4096) 2048 (2048, 2048) 42.26 (41.09, 44.07)
3 65536 (65536, 65536) 32768 (32768, 32768) 2.54 (2.42, 2.65)
4 4096 (4096, 4096) 2048 (2048, 2048) 0.79 (0.77, 0.91)

(0.1, 1) 1 32276.48 (16384, 32768) 8192 (8192, 8192) 36.16 (34.30, 38.95)
2 2048 (2048, 2048) 1024 (1024, 1024) 8.97 (8.75, 9.37)
3 32440.32 (32768, 32768) 8192 (8192, 8192) 1.15 (1.10, 1.27)
4 2048 (2048, 2048) 1024 (1024, 1024) 0.37 (0.35, 0.40)

(0.1, 2) 1 13107.2 (8192, 16384) 4096 (4096, 4096) 15.15 (8.62, 19.57)
2 512 (512, 512) 512 (512, 512) 4.00 (3.88, 4.11)
3 14254.08 (8192, 16384) 4096 (4096, 4096) 0.26 (0.23, 0.30)
4 512 (512, 512) 512 (512, 512) 0.17 (0.15, 0.19)

80 (0.1, 0.5) 1 65536 (65536, 65536) 32768 (32768, 32768) 317.61 (304.92, 335.92)
2 4096 (4096, 4096) 2048 (2048, 2048) 147.05 (142.70, 153.13)
3 65536 (65536, 65536) 32768 (32768, 32768) 9.61 (9.44, 9.79)
4 4096 (4096, 4096) 2048 (2048, 2048) 2.97 (2.87, 3.09)

(0.1, 1) 1 32768 (32768, 32768) 16384 (16384, 16384) 156.56 (150.52, 171.23)
2 2048 (2048, 2048) 1024 (1024, 1024) 67.01 (63.25, 72.43)
3 32768 (32768, 32768) 16384 (16384, 16384) 4.25 (4.15, 4.40)
4 2048 (2048, 2048) 1024 (1024, 1024) 1.30 (1.27, 1.46)

(0.1, 2) 1 16384 (16384, 16384) 8192 (8192, 8192) 73.77 (71.99, 75.32)
2 1024 (1024, 1024) 512 (512, 512) 33.62 (31.84, 34.46)
3 16384 (16384, 16384) 8192 (8192, 8192) 1.90 (1.86, 2.07)
4 1024 (1024, 1024) 512 (512, 512) 0.56 (0.53, 0.72)

Table 6.8: N -used and run-time in computing VaR0.99 with the ARA based on B = 200
bootstrap replications for the log-normal distribution.

in some cases) across all of the examples considered.

• As can be seen in table 6.8, N used in the final iteration of the ARA, as well as the
upper and lower bounds for the 95% confidence interval of N used remain the same,
a result comparable to what we have observed for the Student’t t-distribution and
Pareto marginals. Similarly, the N used for computing the upper bound is smaller
than the N used for computing the lower bound on VaR0.99 in 28 out of the 36
examples and it is the same in the rest of the 8 examples.

• Table 6.9 shows that the mean number of iterations for both the lower and upper
bounds exceeds 4 in only 2 examples out of 36; note that in these two examples the
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Figure 6.13: Boxplots of the actual N used for computing lower (left-hand side) and
upper (right-hand side) log-normal distribution VaR0.99 bounds with the ARA based on
B = 200 replications.
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Figure 6.14: Boxplots of the run-time in seconds for computing log-normal distribution
VaR0.99 bounds with the ARA based on B = 200 replications.
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Figure 6.15: Boxplots of the number of oppositely ordered columns for computing
lower (left-hand side) and upper (right-hand side) log-normal distribution VaR0.99 bounds
with the ARA based on B = 200 replications.
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Figure 6.16: Boxplots of the number of iterations for computing lower (left-hand
side) and upper (right-hand side) log-normal distribution VaR0.99 bounds with the ARA
based on B = 200 replications.

mean is much closer to the upper 95% confidence bound.

• The impact of the randomization of the initial input matrix X for the log-normally
distributed losses is similar to what we observed for the Student’s t-distribution:
while figures 6.12, 6.13, 6.14 and 6.16 show minimal impact of the randomization
of the initial input matrix X on the VaR bounds, N used, run-time and number of
iterations, the boxplots in figure 6.15 show that randomization of the initial input
matrix X impacts the number of oppositely ordered columns (in computing both
the lower and upper VaR bounds in the final iteration) more than the others.

6.4 Enhanced Adaptive Rearrangement Algorithm
As we have shown in the studies in sections 6.3.2, 6.3.3 and 6.3.4, the mean number of
iterations (at most 4 for Pareto marginals and 3 and 5 for Student’s t-distribution and
log-normal respectively) when computing sN and sN remains relatively small. Therefore, as
can be seen in tables 6.2, 6.5 and 6.8, the N-used for discretizing the marginal distributions
in many studies is less than 10,000 (in 70 out of 96 examples for computing sN and in 84
out of 96 examples for computing sN ), resulting in much less time being spent on sorting in
each iteration of algorithm 6.3. Besides, having a control over the convergence tolerances
is one of the main benefits of using the ARA over the RA and as we have shown in the
studies conducted in sections 6.3.2, 6.3.3 and 6.3.4, the N-used in the ARA on average is
much smaller compared to what has been proposed in Embrechts et al. [5] for the RA.

We now consider the impact of doubling the number of risk factors, d, on the mean run-
time. The studies conducted using the Student’s t-distribution and log-normal marginals
(see the last two columns of tables 6.5 and 6.8) show that doubling the number of risk
factors results in the run-time going up by a factor of at least 3 (and even up to 7 in some
of the examples). Since the ARA aims at solving an NP-complete problem heuristically,
having a faster algorithm which achieves the same level of accuracy can be beneficial when
running simulations.

The Enhanced Adaptive Rearrangement Algorithm (EARA) aims at addressing this
problem. This is done by iterating through the given input matrix XN×d at least once
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Number of oppositely ordered columns Number of iterations

Lower Upper Lower Upper

d ε (in %) Case Mean 95% CI Mean 95% CI Mean 95% CI Mean 95% CI

20 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3.005 (3, 3) 3.005 (3, 3)
2 5.71 (5, 7) 5.585 (5, 6.025) 4.97 (4, 5) 4.915 (4, 5)
3 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
4 20 (20, 20) 20 (20, 20) 1 (1, 1) 1 (1, 1)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3.3 (3, 4) 3.25 (3, 4)
2 6.45 (5, 7) 6.32 (5, 7) 4.905 (4, 5) 4.87 (4, 5)
3 1 (1, 1) 1.095 (1, 2) 3 (3, 3) 3 (3, 3)
4 20 (20, 20) 20 (20, 20) 1 (1, 1) 1 (1, 1)

(0.1, 2) 1 1 (1, 1) 1 (1, 1) 3.895 (3, 4) 3.88 (3, 4)
2 7.205 (6, 8) 7.095 (6, 8) 4.875 (4, 5) 4.855 (4, 5)
3 3.845 (1, 9.05) 2.84 (1, 9) 3 (3, 3) 3 (3, 3)
4 20 (20, 20) 20 (20, 20) 1 (1, 1) 1 (1, 1)

40 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 4.15 (2, 8) 4.225 (2, 7.02) 4 (4, 4) 4 (4, 4)
3 1 (1, 1) 1 (1, 1) 2 (2, 2) 2 (2, 2)
4 40 (40, 40) 40 (40, 40) 1 (1, 1) 1 (1, 1)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3.025 (3, 3.02) 3 (3, 3)
2 8.38 (4, 11) 8.37 (4, 11) 4 (4, 4) 4 (4, 4)
3 1 (1, 1) 1 (1, 1) 2.005 (2, 2) 2 (2, 2)
4 40 (40, 40) 40 (40, 40) 1 (1, 1) 1 (1, 1)

(0.1, 2) 1 1 (1, 1) 1 (1, 1) 3.575 (3, 4) 3.57 (3, 4)
2 10.81 (7.97, 13) 10.435 (5, 13) 4 (4, 4) 4 (4, 4)
3 3.39 (1, 15.05) 11.11 (1, 31) 2.01 (2, 2) 2.38 (2, 3)
4 40 (40, 40) 40 (40, 40) 1 (1, 1) 1 (1, 1)

80 (0.1, 0.5) 1 1 (1, 1) 1 (1, 1) 3 (3, 3) 3 (3, 3)
2 8.965 (6, 12) 9.2 (6, 13.025) 3 (3, 3) 3 (3, 3)
3 1.655 (1, 11.05) 1.135 (1, 3.025) 2 (2, 2) 2 (2, 2)
4 80 (80, 80) 80 (80, 80) 1 (1, 1) 1 (1, 1)

(0.1, 1) 1 1 (1, 1) 1 (1, 1) 3.175 (3, 4) 3.21 (3, 4)
2 12.27 (6, 18) 12.055 (6, 18) 3.21 (3, 4) 3.25 (3, 4)
3 11.09 (1, 41.025) 8.365 (1, 37.05) 2 (2, 2) 2 (2, 2)
4 80 (80, 80) 80 (80, 80) 1 (1, 1) 1 (1, 1)

(0.1, 2) 1 1 (1, 1) 1 (1, 1) 3.98 (4, 4) 4 (4, 4)
2 11.04 (6, 19) 11.19 (7, 19) 3.84 (3, 4) 3.95 (3, 4)
3 45.61 (3, 63) 22.7 (1, 49) 2 (2, 2) 2 (2, 2)
4 80 (80, 80) 80 (80, 80) 1 (1, 1) 1 (1, 1)

Table 6.9: Number of oppositely ordered columns and number of iterations in computing
log-normal distribution VaR0.99 with the ARA based on B = 200 replications for the
log-normal distribution.

and then reducing the number of the required iterations afterward over the entire input
matrix for meeting the convergence criteria that is given by ε = (ε1, ε2). More specifically,
after the first iteration over an input matrix XN×d (and oppositely ordering at least d+ 1
columns of the input matrices Xα and X

α to the sum of all other remaining columns
respectively), EARA proceeds only if the convergence criteria given by ε = (ε1, ε2) is not
met. In that case and from the second iteration onward, after oppositely ordering each
column, EARA checks the convergence criteria given by ε = (ε1, ε2) and stops if they
are both satisfied. As we will show in sections 6.4.1 and 6.5, given a large number of
risk factors, d, stopping in such a scenario while the algorithm has gone through several
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iterations (in which we have used a much larger N in the successive iteration, resulting in
less time being spent on sorting and not oppositely ordering of all of the columns of the
input matrices when using the new stopping criteria) can significantly reduce the overall
run-time.

As before let erri(X, Y ) and errj(X, Y ) be the individual and joint relative functions
defined in 6.3.2 and 6.3.3 respectively.

Algorithm 6.4: Enhanced Adaptive Rearrangement Algorithm
for ComputingVaRα(L+)

1. Fix a confidence level α ∈ (0, 1), marginal quantile functions F−1 , . . . , F−d , an integer vector
K ∈ Nl, l ∈ N, (containing the numbers of discretization points which are adaptively used),
a bivariate vector of relative convergence tolerances ε = (ε1, ε2) (containing the individual
relative tolerance ε1 > 0 and the joint relative tolerance ε2 > 0) and the maximal number
of iterations used for each k ∈ K.

2. For N = 2k, k ∈ K, do:

2.1. Compute the lower bound for VaRα(L+):

2.1.1. Define the matrix Xα = (xαij) for xαij = F−j
(
α + (1−α)(i−1)

N

)
, i ∈ {1, . . . , N},

j ∈ {1, . . . , d}.
2.1.2. Permute randomly the elements in each column of Xα.
2.1.3. Set Y α = Xα. For j ∈ {1, 2, . . . , d, 1, 2, . . . , d, . . . }, rearrange the jth column

of the matrix Y α so that it becomes oppositely ordered to the sum of all other
columns. After having rearranged at least d+ 1 columns, set, after every column
rearrangement, the matrix Xα to the matrix Y α from d rearrangement steps
earlier and stop if the maximal number of column rearrangements is reached or if

erri(Xα, Y α) 6 ε1 (6.4.1)

2.1.4. Set sN = s(Y α).
2.2. Compute the upper bound for VaRα(L+):

2.2.1. Define the matrix X
α = (xαij) for xαij = F−j

(
α + (1−α)i

N

)
, i ∈ {1, . . . , N},

j ∈ {1, . . . , d}. If (for i = N and) for any j ∈ {1, . . . , d}, F−j (1) =∞, adjust it
to F−j

(
α+ (1−α)(N−1/2)

N

)
.

2.2.2. Permute randomly the elements in each column of Xα.
2.2.3. Set Y α = X

α. For j ∈ {1, 2, . . . , d, 1, 2, . . . , d, . . . }, rearrange the jth column
of the matrix Y α so that it becomes oppositely ordered to the sum of all other
columns. After having rearranged at least d+ 1 columns, set, after every column
rearrangement, the matrix Xα to the matrix Y α from d rearrangement steps
earlier and stop if the maximal number of column rearrangements is reached or if

erri(X
α
, Y

α) 6 ε1 (6.4.2)
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2.2.4. Set sN = s(Y α).
2.3. Determine convergence based on both the individual and the joint relative convergence

tolerances:

If (6.4.1) and (6.4.2) hold, and if errj(sN , sN ) 6 ε2 then break.

3. Return (sN , sN ).

The new stopping criterion, described above, is implemented in (6.4.1) and (6.4.2) of
the algorithm 6.4 in which we iteratively evaluate the stipulated conditions only based on
oppositely ordering column-by-column (after at least oppositely ordering d+ 1 columns
at the beginning). The matrices Xα and Y α (and Xα and Y α) store the results from the
previous d and d+ 1 column rearrangements respectively when evaluating the condition
(6.4.1) (and (6.4.2)), given that the maximum number of the column rearrangements is
not reached.

In the following section we compare the performance of the ARA with its enhanced
counterpart in the case of Pareto marginals. We refer to algorithm 6.4 as the EARA.

6.4.1 Enhanced Adaptive Rearrangement Algorithm: Pareto
Marginals

In order to analyze the performance of the EARA, we use the main studies, corresponding
to d = 20 and d = 100 that we considered in section 6.3.2. Recall that under each study,
we investigate 12 examples, each of which consisted of one the following 4 cases

Fj(x) = 1− (1 + x)−θj , x > 0,

for a given tail parameter θj > 0.

Portfolio 1: θ1, . . . , θd are uniformly chosen from 0.6 to 0.4; this case represents a portfolio
with marginals with similar tail behavior (i.e., a heavy-tailed distribution).

Portfolio 2: θ1, . . . , θd are uniformly chosen from 0.5 to 1.5; this case represents a portfolio
with marginals with differing tail behavior (i.e., from a very heavy-tailed
distribution to a not so heavy-tailed distribution).

Portfolio 3: θ1, . . . , θd are uniformly chosen from 1.4 to 1.6; this case represents a
portfolio with marginals with similar tail behavior (i.e., a not so heavy-tailed
distribution).

Portfolio 4: θ2, . . . , θd are chosen as in Portfolio 3 and θ1 = 0.5; this case represents a
portfolio with only one heavy-tailed marginal loss distribution.

Using the above portfolios, coupled with one of the three choices of the bivariate vector of
relative errors ε = (ε1, ε2) given by ε = (0.1%, 0.5%), ε = (0.1%, 1%) and ε = (0.1%, 2%)
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we investigate the performance of the EARA to that of the ARA given Pareto marginals.
The results of comparing the run-times as well as the percentage change in the VaR0.99
calculated using the ARA and the EARA are reported in table 6.10.

Ratio of EARA mean run-time to ARA mean run-time Maximum % change

d ε (in %) Minimum Maximum in mean VaR0.99

20 (0.1,0.5) 28.1% 32.7% 0.48%

(0.1,1) 27.2% 31.2% 0.39%

(0.1,2) 25.9% 30.5% 0.46%

100 (0.1,0.5) 6.9% 9.1% 0.21%

(0.1,1) 5.7% 8.5% 0.18%

(0.1,2) 4.7% 7.4% 0.14%

Table 6.10: Comparison of the mean run-time and % change in computing the mean
VaR0.99 bounds with the EARA and the ARA based on B = 200 bootstrap replications.

To simplify the presentation of the results, we are only reporting the minimum and
maximum of the ratio of the mean run-times calculated based on 200 bootstrap replications
from the EARA to that of the ARA across all of the cases that are described in 6.4.1.
These ratios are shown in table 6.10.
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Figure 6.17: Boxplots of the lower (left-hand side) and upper (right-hand side)
VaR0.99(L+) bounds computed with the EARA for ε1 = 0.001 using B = 200 replications.

The impact that increasing the dimensionality has on the performance and run-time of
these algorithms becomes clear from this analysis: while the EARA decreases the run-time
in both studies, its performance is significantly better with a larger number of risk factors,
namely d = 100.

The last column shows the maximum of the relative change in the mean VaR0.99
calculated through the ARA and the EARA. Note that since both algorithms satisfy the
convergence criteria that are given by the bivariate vector of relative errors, we should
not see a drastic change in this column. As can be seen in this column, the mean VaR0.99
bounds calculated through these algorithms in each example are very close to each other
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Figure 6.18: Boxplots of the run-time (in seconds) for computing the lower and upper
VaR0.99(L+) bounds (on left-hand side and right-hand side respectively) with the EARA
for ε1 = 0.001 based on B = 200 replications.

and only differ by at most 0.48% in the d = 20 study and only by 0.21% in the d = 100
study.

6.5 Operational Risk Data, ARA and EARA
So far we have analyzed the performance of the ARA and EARA by using distributions
that were chosen a priori. In this section we aim at analyzing the performance of these
algorithms on a real-world data set and explore an additional feature of these algorithms
that impacts their run-time significantly.

Measuring and managing operational risk are important in practice. According to the
operational risk guidelines issued by the Basel Committee on Banking Supervision (BCBS)
[93], operational risk is defined as "The risk of a loss resulting from inadequate or failed
internal processes, people and systems or from external events. This definition includes
legal risk, but excludes strategic and reputational risk.".

In the following example we use the operational risk data set of [82]. Using 950 data
points that represent inflation adjusted gross losses, we focus on 10 risk factors (each of
which is associated with a business line) and fit a Generalized Pareto distribution to them.
Skewness among these losses ranges from 1.75 to 8.60, indicating that these losses are
quiet positively skewed. More statistics on these losses (such as mean, standard deviation,
median, etc.) can be found in [82], page 14. We refer to this data set as OpRisk data.
Figure 6.19 shows the Q-Q plot of the residuals for the business lines Trading and Sales
(TS) and Agency Services (AS). The rest of the Q-Q plots are shown in Appendix D.

Using the OpRisk data set we investigate the impact of the order of inputting the
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Figure 6.19: Q-Q plots of fitting the Generalized Pareto Distribution to Trading and
Sales (TS) and Agency Services (AS) losses.

respective marginal distributions into the input matrix XN×d on the run-time of the ARA
and the EARA. Given a fixed bivariate vector of relative errors ε = (ε1, ε2) we compare
the run-time of the EARA and the ARA algorithm in one of the following studies:

• Heavy first: we start by inputting the risk factor with the heaviest marginal (found
through fitting the Generalized Pareto distribution to the losses) in the first column
and subsequently substituting the rest of the discretized marginals in the successive
columns based on decreasing order of the heavy-tailedness of the respective remaining
marginal. We refer to this case as Heavy in our simulation.

• Random order : the order in which each discretized marginal is put in each column
is random in this study. Moreover we make sure that the heaviest margin is not in
the first column. We refer to this case as Random in our simulation.

As can be seen in table 6.11, while the EARA consistently outperforms the ARA across
all studies, the ratio of the mean run times for d = 10 is on average higher than those for
d = 20 and d = 100, presented earlier in section 6.4.1. This finding is comparable to that
of section 6.4.1: when using the EARA the mean run-time decreases as d increases.

The main finding of this section is that the order of inserting marginals into the input
matrix XN×d has a significant impact on the run-time: as can be seen in table 6.11, both
the EARA and the ARA in heavy studies outperform their randomized counterpart and
take much less time to satisfy the given convergence criteria as given by ε = (ε1, ε2).
A similar observation is made for the mean number of iterations when sN and sN are
computed in both studies.
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Ratio of mean run-time Mean number of iterations

EARA ARA EARA ARA

d ε (in %) Heavy Random Heavy Random Heavy Random Heavy Random

10 (0.1, 0.5) 38.7% 47.2% 82.5% 100% 2.25 3.25 4.25 5

(0.1, 1) 24.8% 41.5% 77.2% 100% 2 3 4 5

(0.1, 2) 29.9% 33.2% 74.3% 100% 2 3 4 5

Table 6.11: Ratio of the mean run-time of the EARA and ARA to the run-time of
the ARA with randomized columns and the mean number of iterations of the EARA and
ARA based on 200 replications.

6.6 Conclusion
Chapters 5 and 6 presented two contributions to the problem of computation of the
worst VaR for a sum of losses with given marginals in the context of Quantitative Risk
Management.

In chapter 5 we considered the homogeneous case (i.e., when all margins are equal)
and addressed the dual bound approach based on [5, Proposition 4] and Wang’s approach
based on [6, Proposition 1] for computing worst VaR. Although both of these approaches
are mathematically “explicit”, care has to be exercised when computing worst VaR bounds
with these algorithms in practice. Several numerical and computational hurdles in their
implementation were identified and addressed.

Several numerical steps such as computing initial intervals for the root-finding procedure
involved were covered. A particular example which highlights the numerical challenges
when computing worst VaR in general is the case of equal Pareto margins (for which we
also showed uniqueness of the root even in the infinite-mean case).

Further, we considered the general, i.e., inhomogeneous case. We first investigated the
performance of the Rearrangement Algorithm in various studies and focused on answering
the questions that the original algorithm leaves open concerning the concrete choice of
two of its tuning parameters. These parameters were shown to have a substantial impact
on the algorithm’s performance and thus need to be chosen with care.

In chapter 6 we therefore presented ARA. The latter improves the original RA in that
it addresses the aforementioned two tuning parameters and improves on the underlying
algorithmic design. The number of discretization points is chosen automatically in an
adaptive way (hence the name of the algorithm). The absolute convergence tolerance
is replaced by two relative convergence tolerances. Since they are relative tolerances,
their choice is much more intuitive. The first relative tolerance is used to determine the
individual convergence of each of the lower bound sN and the upper bound sN for worst
VaR and the second relative tolerance is used to control how far apart sN and sN are. The
original version of the Rearrangement Algorithm does not allow for such a control.
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Based on our findings in investigating the performance of the ARA, we proposed an
enhanced version of this algorithm which significantly reduces the run-time compared
to the ARA for portfolios with larger numbers of risk factors. Finally, the impact of
various orders of inserting discretized marginal distributions into the input matrix was
investigated.

There are still several interesting questions left to be investigated. First of all, as for
the RA, the theoretical convergence properties of the algorithm remain an open problem.
Also, as mentioned above, it remains unclear how the rows and columns of the input
matrices for the RA or the ARA can be set up in an initialization such that the run-time
is minimal.

Another interesting question is whether or not we can use the rearranged matrices
from previous iterations (with N = 2k−1 used as the tail discretization parameter) to
construct new input matrices (with N = 2k) for which the convergence criteria, given by
ε = (ε1, ε2) is met faster than when we start with a randomized input matrix X with the
tail discretization parameter N = 2k?
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Appendix A

Model Uncertainty and CVA

In this appendix we highlight important issues surrounding model uncertainty and the
effect of misspecification of parameters on counterparty exposure profile through the
following example based on the work done in Rosen and Saunders [94].
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Figure A.1: Percentiles of the stock index under Heston and Black-Scholes models

Consider a portfolio consisting of a single European call option on an equity index,
assuming that the true data generating process (DGP) for the equity index price is a
Heston’s stochastic volatility model (see Heston [95]):

dSt = rStdt+√νtdWt

dνt = κ(θ − νt)dt+ ξ
√
νtdZt

where Wt and Zt are correlated standard Brownian motions with correlation ρ. Table A.1
provides a summary of the parameters used in our simulations. First consider a scenario
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Parameter Notation Default value
Initial stock index price S0 100
Initial volatility ν0 0.0375
Reversion rate of volatility κ 1
Long-run volatility θ 0.0375
Volatility-of-volatility ξ 0.35
Correlation between Zt and Wt ρ -0.3
Risk-free rate r 4%

Table A.1: Heston model base case parameters

in which the analyst may decide to use a simpler model in which the equity index follows
a geometric Brownian motion and not a Heston model; this is an instance of possible
misspecification of the stochastic model for a given set of underlying parameters.

dSt = rStdt+ σstdWt

Assume an initial stock index value of S = 100 with volatility σ =
√
θ = 0.1936. Using 1,000

simulated scenarios over a 5 year period, we graph the standard deviation and percentiles
of these stock indices. As can be seen in figures A.1 and A.2, the simulations based on
Heston and Black-Scholes generate noteworthy differences; using simpler Black-Scholes
dynamics clearly results in larger volatility; this volatility increases as time increases.
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Figure A.2: Standard deviation of the stock index under Heston and Black-Scholes
models

Next we analyze the impact of parameter estimation error while the model is correctly
specified. To demonstrate this, we use the Heston model with base-case parameters
presented in table A.1 and compare it against the case in which long-run volatility is
mis-specified, assuming the mis-specified parameter values are ν0 = 0.01 and θ = 0.01
respectively.
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Figure A.3: Standard deviation of stock index under base-case and misspecified Heston
models
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Figure A.4: Percentiles of the stock index under base-case and misspecified Heston
model

As can be seen in figures A.4 and A.3, even if the model used by the analyst is the
right one, but incorrect parameters are used, quiet large differences are introduced in
pricing process; further examples and an in-depth discussion of issues surrounding model
uncertainty and CVA calculation are given in Rosen and Saunders [94].
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A.0.1 Implications of Model Uncertainty in Practice

In section A only a few simple implications of model and parameters misspecification
when the portfolio consisted of only one instrument was investigated; In practice a
given portfolio can potentially have thousands of transactions and scenario generation,
instrument valuation and aggregation at portfolio level play an important role in calculating
CVA. Scenario generation, valuation models and computational feasibility of pricing
instruments across future scenarios are among the most important challenges that one
faces in calculating CVA in practice. Since Monte Carlo frameworks are the most commonly
used tools by financial institutions in CVA calculations, we briefly look at some of these
challenges in implementing them; the process usually involves:

• identifying the underlying risk factors and conducting (forward or spot) simulation
of prices, using a specific model and the existing correlations to generate scenarios;

• combining the previous information and utilizing existing pricing functions for
valuation of the instruments;

• calculating CVA charge and other statistical quantities (such as CVA VaR).

Although the steps described above seem fairly straightforward, several issues should be
considered in implementing them:

Scenario Generation: The same underlying model (the family of models accordingly)
should be used to generate consistent scenarios across the portfolio; even if the correlation
between various asset classes is ignored (assuming for example that equities are not
correlated with interest rate products), using the same discount factors as those used for
FX or interest rates can be very difficult to implement across various simulation processes.

Valuation Model: calculating counterparty exposures depends on the entire simulated
scenario history; different formats used in different pricing systems are not designed to
accommodate the integration of counterparty exposure calculations, which are an important
input to the CVA calculation.

Computational Complexity: if there is no analytical solution for pricing a product,
Monte Carlo methods or solving PDEs over grids are typically used for pricing. Computing
exposure in this case would consist of a Monte Carlo simulation for various scenarios and
then using the existing Monte Carlo or PDE pricing method for each instrument; this is
simply not feasible computationally in many cases.

To summarize, computing CVA is among the most complex computational problems
in practice; the uncertainty of future credit exposures due to the sensitivity of various
instruments to market parameters, combined with the fact that both the current value of
the instrument and its future value across different time steps are the main drivers in this.
In the next section we take a closer look at the principles of CVA calculation in practice.
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A.1 CVA: A Simple Example
The following is based on an example in Hull [96]. The credit exposure on a derivatives
transaction with counterparty C from the bank’s perspective falls into one of the following
three cases:

1. The derivatives contract with counterparty C is always a liability for the bank B.
An example of a derivative in this category is a short option position. Derivatives in
this category have no credit risk to the bank B if the counterparty C defaults and
there will be no losses for the bank since the derivative is one of the counterparty’s
assets and it will be either retained, closed out, or sold to a third party.

2. The derivatives contract with counterparty C is always an asset for the bank B. An
example of a derivative in this category is a long option position. Derivatives in this
category bear credit risk for the bank B if the counterparty C defaults and there will
be potential losses for the bank. In this case the bank has to make a claim against
the assets of the counterparty and may receive a certain percentage of the value of
the derivative.

3. The derivatives contract with counterparty C can be either an asset or a liability for
the bank B. A forward contract falls in this category. A derivative in this category
may or may not have credit risk for the bank. If the counterparty C defaults when the
value is negative for the bank, the bank experiences no loss, while if the counterparty
C defaults when the value of the derivative is positive for the bank, it experiences
loss and can claim the remaining assets of the counterparty C.

CVA represents the price adjustment in the value of a derivative instrument when the
counterparty can default. Consider that our portfolio with counterparty C consists of only
one derivative, maturing at time T , and that today’s value of this derivative, assuming no
defaults, is f0. Assume for the sake of simplicity that defaults can only occur at a set of
discrete points in time namely t1, t2, . . . , tn = T and the respective value of the derivative
contract at these time steps, assuming no default, is f1, f2, . . . , fn. Let the risk-neutral
probability of default at each time step ti be qi, (i = 1, . . . , n) and the expected recovery
rate, in case of a default, be RC.

At time ti, the exposure of the bank to the counterparty C is its potential loss, i.e.,
max{fi, 0}. Assume further that the recovery rate and the probability of default of
counterparty C are independent of the derivative’s value. If the counterparty C defaults at
time ti the expected recovery is RC max{fi, 0}. Then the risk-neutral expected loss from
the default of counterparty C at time ti is given by:

L = qi(1−RC) E[max{fi, 0}] (A.1)

where E[.] represents the expected value with respect to the risk-neutral probabilities.
Unilateral CVA (CVAU) is simply found by taking the present values of equation (A.1):

CVAU =
n∑
i=1

qi(1−RC)vi (A.2)
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where vi represents the value of an instrument that pays off the exposure on the derivative
at time ti for which we are computing CVA.

Let us consider the value of the derivative, fi, at the default time ti in each of the
three cases presented earlier: Since in the first case the derivative is a liability for the
bank and the value of fi is always negative, the total expected loss from the default of
counterparty C given by equation (A.2) is zero and no adjustments are made by the bank
for the defaults in this case.

In the second case that the derivative is an asset for the bank and the value of the
derivative, fi, is always positive and in equation (A.1) we have max{fi, 0} = fi. For the
sake of simplicity assume that the only payoff from the derivative is at time T . Then f0
must be equal to the present value of fi such that vi = f0, (i = 1, 2, . . . , n). Therefore
equation (A.2) for the present value of the cost of default of counterparty C becomes:

CVAU = f0

n∑
i=1

qi(1−RC)

Let f ∗0 denote the value of the derivative, allowing for the default of counterparty C,
then:

f ∗0 = f0 − f0

n∑
i=1

qi(1−RC) = f0

(
1−

n∑
i=1

qi(1−RC)
)

(A.3)

An example of an instrument in the second case is an unsecured zero-coupon bond
issued by the counterparty C that pays $1 at the maturity time T. Let B0 be the value of
the bond assuming no possibility of default for the counterparty C and B∗0 be the value of
the bond when the counterparty can default. If we assume that the recovery rate RC on
the bond as a percentage of its no-default value is the same as that on the derivative then
we have:

B∗0 = B0

(
1−

n∑
i=1

qi(1−RC)
)

(A.4)

and using equations (A.3) and (A.4)

f ∗0
f0

= B∗0
B0

(A.5)

Assuming that y is the yield on a risk-free zero-coupon bond that matures at time T and
y∗ is the yield on the zero-coupon bond maturing at T , issued by counterparty C, we have
B0 = exp(−yT ) and B∗0 = exp(−y∗T ). Therefore equation (A.5) becomes:

f ∗0 = f0 exp(−(y∗ − y)T ) (A.6)

Equation (A.6) simply indicates that an increased discount rate of y∗ should be applied
to a derivative that matures at time T compared to the discount rate of y, applied in a
risk-neutral world. For example suppose that an over-the-counter option with maturity of
T = 5 is sold by counterparty C (without possibility of default) for $10. Moreover, a 5-year
zero-coupon bond issued by counterparty C has a yield that is 2% greater than that of a
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risk-free zero-coupon bond maturing in T = 5 years. In this case the value of the option,
assuming the possibility of the default of counterparty C, is $10 exp(−0.02× 5) = $9.05.
Hence in this case CVAU = $10− $9.05 = $0.95.

In the third case, where the derivative contract with counterparty C can be either
an asset or a liability for the bank B, the sign of fi is uncertain and the variable vi in
equation (A.2) is seen as a call option, with a strike price of zero, on fi. While it is possible
to analytically calculate vi for certain derivatives, simulating the underlying market risk
factors over the life of the derivative and estimating vi is the most common method used
in practice.
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Appendix B

Derivation of Worst-Case
Conditional Value at Risk

Recall that by using ρ = CVaRα as our choice of risk measure in 3.5.1 the worst case joint
distribution problem can be recast as:

max
ϑ

CVaRα(L) (B.1)
N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

ϑij > 0, i = 1, . . . , N, j = 1, . . . ,M

in which ϑ ∈ F(FY , FZ), the Fréchet class of all possible joint distributions of the market
risk factors Y and credit risk factors Z, matching the given marginals pj, j = 1, . . . ,M
and qi, i = 1, . . . , N respectively. Using the discretized representation of CVaRα (see
Rockafellar and Uryasev [97]) the above problem can be simplified to:

max
ϑ

min
x

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


N∑
i=1

ϑij = pj j = 1, . . . ,M

M∑
j=1

ϑij = qi i = 1, . . . , N

ϑij > 0, i = 1, . . . , N, j = 1, . . . ,M
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where [lij − x]+ = max{lij − x, 0}, i = 1, . . . , N, j = 1, . . . ,M . By applying a minimax
theorem to (B.1) (See appendix C for details), this is equivalent to solving:

min
x

x+ (1− α)−1 max
ϑ

N∑
i=1

M∑
j=1

ϑij[lij − x]+
 (B.2)

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

ϑij > 0, i = 1, . . . , N, j = 1, . . . ,M

using the notation lxij = [lij − x]+ the inner maximization can be written as:

max
ϑ

N∑
i=1

M∑
j=1

ϑijl
x
ij

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

ϑij > 0, i = 1, . . . , N, j = 1, . . . ,M

Taking the dual of this linear program (and by letting p = (p1, . . . , pM ), ψ = (ψ1, . . . , ψM ), q =
(q1, . . . , qN) and θ = (θ1, . . . , θN)) yields:

min
ψ,θ

(p · ψ + q · θ)

ψm + θn > lxnm, n = 1, ..., N, m = 1, ...,M

The optimal ϑ can be recovered as the optimal dual variables of the above problem.
Denoting the constraint set of the above LP by C̃x, and using the duality theorem for
linear programming, problem B.2 becomes:

min
x

(
x+ (1− α)−1 min

(ψ,θ)∈C̃x
p · ψ + q · θ

)
= min

x,(ψ,θ)∈C̃x

(
x+ (1− α)−1(p · ψ + q · θ)

)

We can rewrite this single optimization problem more explicitly as:

min
x,ψ,θ

(
x+ (1− α)−1(p · ψ + q · θ)

)
ψm + θn > lxnm, n = 1, ..., N, m = 1, ...,M
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To convert this into a linear program we introduce the auxiliary variables εnm:

min
x,ψ,θ,ε

(
x+ (1− α)−1(p · ψ + q · θ)

)
ψm + θn > εmn, n = 1, ..., N, m = 1, ...,M
εnm > lnm − x, n = 1, ..., N, m = 1, ...,M
εnm > 0, n = 1, ..., N, m = 1, ...,M

Thus, the problem is reduced to a single large linear program (with MN +N +M + 1)
variables and 3MN constraints). The optimal ϑ appears as the dual variables of the first
set of the constraints in the optimization problem above.

We can simplify the above problem further. Taking the dual of the above LP yields:

max
z,ν

N∑
i=1

M∑
j=1

lij.νij

N∑
i=1

zij = (1− α)−1pj, j = 1, . . . ,M

M∑
j=1

zij = (1− α)−1qi, i = 1, . . . , N

νij − zij 6 0 i = 1, . . . , N, j = 1, . . . ,M
N∑
i=1

M∑
j=1

νij = 1

zij > 0, νij > 0, i = 1, . . . , N, j = 1, . . . ,M

Making the substitutions ϑij = (1−α)zij and µij = (1−α)νij, i = 1, . . . , N, j = 1, . . . ,M
leads to a much more straightforward and intuitive formulation of the problem of finding
the worst case joint distribution for CVaR for a joint distribution with the given marginals.

max
ϑ,µ

1
1− α

N∑
i=1

M∑
j=1

lij · µij

N∑
i=1

ϑij = pj, j = 1, . . . ,M

M∑
j=1

ϑij = qi, i = 1, . . . , N

N∑
i=1

M∑
j=1

µij = 1− α,

0 6 µij 6 ϑij, i = 1, . . . , N, j = 1, . . . ,M
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Appendix C

Proof of Switching Min-Max in B.1

To show that:

max
ϑ∈P

min
x∈R

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+
 =

min
x∈R

max
ϑ∈P

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+
 (C.1)

where P is

P =

ϑ ∈ RNM

∣∣∣∣ N∑
i=1

ϑij = pj,
M∑
j=1

ϑij = qi, ϑij > 0, j = 1, . . . ,M i = 1, . . . , N


(C.2)

P represents the Fréchet class of all possible joint distributions of market risk factors,
Y , and credit risk factors, Z, matching the given marginal distributions, we apply an
extension of Sion’s minimax theorem, found in [98].

Definition C.0.1. A function f : X → R is called:

• inf-compact if {x|x ∈ X, f(x) 6 a}, is compact for all a ∈ R,

• sup-compact if {x|x ∈ X, f(x) > a}, is compact for all a ∈ R.

A function f : X×Y→ R is called (x, y) sup inf-compact, if for all (x, y) ∈ X×Y, f(x, .)
is inf-compact and f(., y) is sup-compact.

If f : X × Y → R is u.s.c.-l.s.c. (upper semi-continuous-lower semi-continuous), i.e.,
f(x, y) is upper semi-continuous in x for each y ∈ Y and lower semi-continuous in y for
each x ∈ X and X and Y are compact sets, then f(x, y) is (x, y)-sup inf-compact for all
(x, y) ∈ X× Y. We use the following theorem, a generalization of the Sion’s theorem (see
[99]):
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Theorem C.0.1. Let X and Y be convex sets, and let f : X× Y→ R be an u.s.c.-l.s.c.
and quasi-concave-convex function, that is (x, y)-sup inf-compact. Then we have

max
x∈X

min
y∈Y

f(x, y) = min
y∈Y

max
x∈X

f(x, y)

Take X = P :

P = X =

(ϑ1, . . . , ϑMN)
∣∣∣∣ N∑
i=1

ϑij = pj,
M∑
j=1

ϑij = qi, ϑi > 0


To show that P is convex, consider ϑ1, ϑ2 ∈ P and λ ∈ (0, 1). Clearly λϑ1 + (1− λ)ϑ2 > 0
as using (C.2) P can be written as Aϑ = b, ϑ > 0, so it is convex and closed, i.e.,

λϑ1 + (1− λ)ϑ2 > 0

and
A(λϑ1 + (1− λ)ϑ2) = λAϑ1 + (1− λ)Aϑ2 = b

implying that P is convex. Moreover, let

ϑn ∈ P and ϑn → ϑ

ϑn > 0⇒ ϑ > 0 and b = lim
n→∞

Aϑn = A lim
n→∞

ϑn = Aϑ

hence P is clearly bounded and therefore compact and closed. Next we show that

max
ϑ∈P

min
x∈R

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+
 =

max
ϑ∈P

min
x∈Y

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


where

Y =
{
y ∈ R+|min(L) 6 y 6 max(L)

}

and for a fixed x
L = {max(lk − x, 0), k = 1, . . . ,MN}

i.e. in our computational problem, y would be restricted between the minimum and
maximum of the loss vector, because for a fixed ϑ ∈ P (and respectively constant lij),
since ∑N

i=1
∑M
j=1 ϑij = 1, we have:

lim
x→+∞

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+ = +∞
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and since the confidence level 0 < α < 1, we get

lim
x→−∞

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+ = +∞

Furthermore, let f(·, ·) be defined as:

f(ϑ, x) := x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+ (C.3)

and Lmin = min(L) and Lmax = max(L). Then for a fixed ϑ ∈ P ,
If x > Lmax

f(ϑ, x) = x > Lmax = f(ϑ, Lmax)

If x < Lmin

f(ϑ, x) = (1− (1− α)−1)x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+

> (1− (1− α)−1)Lmin + (1− α)−1
N∑
i=1

M∑
j=1

ϑijLmin

implying that
min
x∈R

f(ϑ, x) = min
x∈[Lmin,Lmax]

f(ϑ, x) for all ϑ ∈ P

Let

g(x) = max
ϑ∈P

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


If x > Lmax

g(x) = max
ϑ∈P

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+
 = max

ϑ∈P
x = x

> Lmax = g(Lmax)
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If x < Lmin

g(x) = max
ϑ∈P

x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


= max
ϑ∈P

(1− (1− α)−1)x+ (1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


= (1− (1− α)−1)x+ max
ϑ∈P

(1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


> (1− (1− α)−1)Lmin + max
ϑ∈P

(1− α)−1
N∑
i=1

M∑
j=1

ϑij[lij − x]+


= max
ϑ∈P

Lmin + (1− α)−1
N∑
i=1

M∑
j=1

ϑij(lij − Lmin)
 = g(Lmin)

Therefore Y can be restricted to a compact interval in R and would be convex and compact
as well.

Next we show that f(·, ·) defined in (C.3) is upper semi-continuous with respect to
ϑ for each fixed x and lower semi-continuous with respect to x for each fixed ϑ. This is
easily verified, as for a fixed x we have a linear function with respect to ϑ. Alternatively,
for a fixed ϑ, we obtain a continuous piecewise linear function with respect to x and joint
continuity of f(·, ·) is attained.

Lastly we demonstrate that f(·, ·) is a quasi-concave-convex function, i.e., it is quasi-
concave with respect to ϑ for a fixed x and quasi-convex with respect to x for each fixed ϑ.
For a fixed x, f is linear with respect to ϑij, so it would be quasi-concave. Furthermore,
for a fixed ϑ, since we restricted x to [Lmin, Lmax], f(ϑ, ·) is a sum of nonnegative constants
multiplied by convex function and is therefore convex, hence quasi-convex.
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Appendix D

Q-Q plots for the Fitted Generalized
Pareto Distribution to Op-Risk Data

The 10 business lines that are used as the 10 risk factors in section 6.5 are Agency Services
(AS), Asset Management (AM), Commercial Banking (CB), Corporate Finance (CF),
Insurance (I), Payment and Settlement (PS), Retail Banking (RBa), Retail Brokerage
(RBr), Trading and Sales (TS), or an unallocated business line (UBL).

The Q-Q plots of fitted Generalized Pareto Distribution to each of these risk factors,
as well as the estimated parameters for the estimated GPD are shown below.
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Appendix E

CPLEX Optimizer

In order to solve linear programming problems (2.6.11), (2.6.22), (2.7.13) and (2.7.14)
in chapter 2 and (4.1.6) in chapter 3, we have used IBM ILOG CPLEX Optimization
Studio. CPLEX Optimization Studio solves linearly constrained optimization problems
where the objective is expressed as a linear function. More specifically it solves all linear
programming problems expressed as:

min
x

( or max
x

) c1x1 + c2x2 + . . .+ cnxn (E.1)

subject to

a11x1 + a12x2 + . . .+ a1nxn ' b1

a21x1 + a22x2 + . . .+ a2nxn ' b2
...

am1x1 + am2x2 + . . .+ amnxn ' bm

l1 6 x1 6 u1, l2 6 x2 6 u2, . . . , ln 6 xn 6 un,

in which the relation ' represents greater than or equal to, less than or equal to, or
simply equal to. The lower bounds li and upper bounds ui (i = 1, . . . , n) may be positive
infinity, negative infinity, or any real number. CPLEX allows the user to specify the
variables as either continuous or to constrain them to take only integer values. CPLEX
implements optimizers that are based on the simplex algorithms, both primal and dual
simplex, primal-dual logarithmic barrier algorithms and a sifting algorithm to solve linear
programming problems (see table E.1).

After initiating a problem, we solve it by calling one of the optimizers available in the
CPLEX Component Libraries. The default setting of the LP method (LPMethod = 0)
lets CPLEX decide which algorithm to use for solving the linear programming problems.
It is recommended by the CPLEX Manual (see ILOG Inc. [100]) that users choose this
option unless there is a compelling reason to choose another method for a particular linear
programming problem. The automatic setting will choose the dual simplex optimizer
unless:

151



Setting of LPMethod Meaning

0 Default setting

1 Primal simplex

2 Dual simplex

3 Network simplex

4 Barrier

5 Sifting

6 Concurrent Dual, Barrier, and Primal
in opportunistic parallel mode

Table E.1: Settings of the LPMethod parameter for choosing an optimizer in CPLEX.

• There is an advanced basis present that is ascertained to be primal feasible,

• The specified problem is so small that the overhead costs of setting up concurrent
optimization exceed possible performance gains, or

• The memory emphasis parameter has been enabled.

We provide an overview of the various optimization methods supported by CPLEX below:

• Dual simplex optimizer: In this method CPLEX uses linear programming and
the fact that a linear programming problem can be stated in either primal or dual
form, and an optimal solution (if one exists) of the dual has a direct relationship to
an optimal solution of the primal model. CPLEX reports the solution in terms of
the primal model. The dual simplex method is the first choice for optimizing a linear
programming problem and it is used especially when we solve primal-degenerate
problems (when there is little variability in the righthand side coefficients but signifi-
cant variability in the cost coefficients.). We have used this method for solving the
linear programming problems in chapters 2, 3 and 4.

• Primal simplex optimizer: CPLEX primal simplex optimizer can also effectively
solve a wide variety of linear programming problems, but it is not the recommended
choice for a first try at optimizing a linear programming problem. This method will
at times work better on linear programming problems where the number of variables
exceeds the number of constraints significantly, or on linear programming problems
that exhibit little variability in the cost coefficients.
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• Network simplex optimizer: The CPLEX network optimizer recognizes a special
class of linear programming problems with network structure and is used for solving
this class of problems. The optimizer uses highly efficient network algorithms on
that part of the problem; this solution is then used to construct an advanced basis
for the rest of the linear programming problem. Using this advanced basis, CPLEX
then iterates to find a solution to the full problem.

• Barrier optimizer: The barrier optimizer is an efficient approach for solving large,
sparse linear programming problems when the constraint matrix has a staircase
structures or banded structures. The barrier optimizer utilizes a primal-dual loga-
rithmic barrier algorithm to generate a sequence of strictly positive primal and dual
solutions for the given problem.

• Sifting optimizer: The sifting optimizer exploits the characteristics of models with
large aspect ratios (i.e., when we have a large ratio of the number of columns to
the number of rows). The method starts by solving a subproblem (known as the
working problem) that consists of all rows but only a small subset of the full set
of columns, assuming an arbitrary value (such as its lower bound) for the solution
value of each of the remaining columns. The reduced costs of the remaining columns
are evaluated using this solution. In the next sifting iteration, any columns whose
reduced costs violate the optimality criterion become candidates to be added to the
working problem. The sifting terminates when no candidates are present and the
solution of the working problem is optimal for the full problem.

• Concurrent optimizer: On a computer where CPLEX can use parallel threads,
the concurrent optimizer launches distinct optimizers. Note that if this optimizer is
launched on a single-threaded platform, it only calls the dual simplex optimizer.

E.0.1 Accessing solution status
Once CPLEX optimization is terminated, the solution status codes (available through
cplex.Solution.status in Matlab) describe the status of the solution. Table E.2 provides
a list the first 10 codes and their respective descriptions.

It is a well-known fact of linear programming that if residual vectors are zero then
the current solution is primal and dual feasible (Complementary Slackness Theorem).
Moreover a primal-dual feasible pair that has zero duality gap is an optimal solution
(Strong Duality Theorem). Furthermore, a wide range of optional fields is provided by
CPLEX to assess the quality of the solution. These dynamic properties of the solution are
generated and updated by the cplex.solve. We have used the following three properties
to assess the quality of the solution:

1. quality.objgap: Is used to access the objective value gap between the primal and
dual objective value solution.
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Solution status code Description

1 Optimal solution is available

2 Problem has an unbounded ray

3 Problem has been proven infeasible

4 Problem has been proven either infeasible or unbounded

5 Optimal solution is available, but with infeasibilities after un-
scaling

6 Solution is available, but not proved optimal, due to numeric
difficulties during optimization

10 Stopped due to limit on number of iterations

11 Stopped due to a time limit

12 Stopped due to an objective limit

Table E.2: List of solution status codes in CPLEX.

2. quality.sumprimalresidual Is used to access the sum of the elements of the primal
residual vector.

3. quality.sumdualresidual Is used to access the sum of the values of the dual
residual vector.

All results were produced on a platform that uses an AMD 3.2 GHz Phenom II X4 955
processor with 16 GB RAM.

E.0.2 Run Time and Solution Quality in Solving Linear Pro-
gramming Problem 2.6.22

λB λC T M N1 + 1 N2 + 1 run time sum of primal sum of dual duality solution
(in seconds) residuals residuals gap status code

0.5 0.5 5 10000 61 61 744.4787 2.4169e-07 2.1752e-07 3.5316e-09 1
1 5 10000 61 61 699.0864 4.0391e-07 3.6352e-07 8.2119e-09 1
1.5 5 10000 61 61 698.9253 9.6455e-08 8.6809e-08 1.5403e-10 1
2 5 10000 61 61 616.2281 1.3197e-07 1.1878e-07 4.3024e-10 1
2.5 5 10000 61 61 559.9946 9.4205e-07 8.4785e-07 1.6899e-09 1
3 5 10000 61 61 686.9247 9.5613e-07 8.6052e-07 6.4912e-09 1
3.5 5 10000 61 61 638.8797 5.7521e-07 5.1769e-07 7.3172e-09 1
4 5 10000 61 61 571.9748 5.978e-08 5.3802e-08 6.4775e-09 1
4.5 5 10000 61 61 611.0261 2.3478e-07 2.113e-07 4.5092e-09 1

1 0.5 5 10000 61 61 658.1126 8.1763e-07 7.3586e-07 5.5016e-09 1
1 5 10000 61 61 742.9386 7.9483e-07 7.1535e-07 6.2248e-09 1
1.5 5 10000 61 61 727.5713 6.4432e-07 5.7989e-07 5.8704e-09 1
2 5 10000 61 61 601.3208 3.7861e-07 3.4075e-07 2.0774e-09 1
2.5 5 10000 61 61 606.4141 8.1158e-07 7.3042e-07 3.0125e-09 1
3 5 10000 61 61 694.6784 5.3283e-07 4.7954e-07 4.7092e-09 1
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3.5 5 10000 61 61 619.3651 3.5073e-07 3.1565e-07 2.3049e-09 1
4 5 10000 61 61 599.1491 9.39e-07 8.451e-07 8.4431e-09 1
4.5 5 10000 61 61 598.9228 8.7594e-07 7.8835e-07 1.9476e-09 1

1.5 0.5 5 10000 61 61 747.9748 2.2175e-07 1.9957e-07 2.922e-10 1
1 5 10000 61 61 693.887 1.1742e-07 1.0568e-07 9.2885e-09 1
1.5 5 10000 61 61 638.8881 2.9668e-07 2.6701e-07 7.3033e-09 1
2 5 10000 61 61 624.1935 3.1878e-07 2.869e-07 4.8861e-09 1
2.5 5 10000 61 61 609.128 4.2417e-07 3.8175e-07 5.7853e-09 1
3 5 10000 61 61 590.5104 5.0786e-07 4.5707e-07 2.3728e-09 1
3.5 5 10000 61 61 676.2212 8.5516e-08 7.6964e-08 4.5885e-09 1
4 5 10000 61 61 589.7157 2.6248e-07 2.3623e-07 9.6309e-09 1
4.5 5 10000 61 61 721.1216 8.0101e-07 7.2091e-07 5.4681e-09 1

2 0.5 5 10000 61 61 564.4477 3.8462e-07 3.4616e-07 3.4388e-09 1
1 5 10000 61 61 585.5235 5.8299e-07 5.2469e-07 5.8407e-09 1
1.5 5 10000 61 61 612.3728 2.5181e-07 2.2663e-07 1.0777e-09 1
2 5 10000 61 61 669.0924 2.9044e-07 2.614e-07 9.0631e-09 1
2.5 5 10000 61 61 607.1747 6.1709e-07 5.5538e-07 8.7965e-09 1
3 5 10000 61 61 698.2022 2.6528e-07 2.3875e-07 8.1776e-09 1
3.5 5 10000 61 61 662.0612 8.2438e-07 7.4194e-07 2.6073e-09 1
4 5 10000 61 61 591.0493 9.8266e-07 8.844e-07 5.9436e-09 1
4.5 5 10000 61 61 672.6188 7.3025e-07 6.5722e-07 2.2513e-10 1

2.5 0.5 5 10000 61 61 672.404 9.1599e-07 8.2439e-07 3.5763e-10 1
1 5 10000 61 61 583.2167 1.1511e-09 1.036e-09 1.7587e-09 1
1.5 5 10000 61 61 565.5608 4.6245e-07 4.162e-07 7.2176e-09 1
2 5 10000 61 61 615.5538 4.2435e-07 3.8191e-07 4.7349e-09 1
2.5 5 10000 61 61 571.948 4.6092e-07 4.1482e-07 1.5272e-09 1
3 5 10000 61 61 717.5332 7.7016e-07 6.9314e-07 3.4112e-09 1
3.5 5 10000 61 61 650.6715 3.2247e-07 2.9022e-07 6.0739e-09 1
4 5 10000 61 61 589.783 7.8474e-07 7.0627e-07 1.9175e-09 1
4.5 5 10000 61 61 688.6771 4.7136e-07 4.2422e-07 7.3843e-09 1

3 0.5 5 10000 61 61 680.1306 3.4788e-07 3.1309e-07 5.3998e-09 1
1 5 10000 61 61 620.4466 4.4603e-07 4.0142e-07 7.0692e-09 1
1.5 5 10000 61 61 616.7064 5.4239e-08 4.8816e-08 9.9949e-09 1
2 5 10000 61 61 696.7068 1.7711e-07 1.594e-07 2.8785e-09 1
2.5 5 10000 61 61 714.8198 6.6281e-07 5.9653e-07 4.1452e-09 1
3 5 10000 61 61 647.4772 3.3083e-07 2.9775e-07 4.6484e-09 1
3.5 5 10000 61 61 734.2207 8.9849e-07 8.0864e-07 7.6396e-09 1
4 5 10000 61 61 594.0967 1.1816e-07 1.0634e-07 8.182e-09 1
4.5 5 10000 61 61 564.59 9.8842e-07 8.8958e-07 1.0022e-09 1

3.5 0.5 5 10000 61 61 690.6955 6.7865e-07 6.1079e-07 6.9667e-09 1
1 5 10000 61 61 724.8706 4.9518e-07 4.4566e-07 5.8279e-09 1
1.5 5 10000 61 61 567.4416 1.8971e-07 1.7074e-07 8.154e-09 1
2 5 10000 61 61 571.0037 4.9501e-07 4.4551e-07 8.7901e-09 1
2.5 5 10000 61 61 618.1476 1.4761e-07 1.3285e-07 9.8891e-09 1
3 5 10000 61 61 596.5936 5.4974e-08 4.9477e-08 5.2238e-12 1
3.5 5 10000 61 61 641.0049 8.5071e-07 7.6564e-07 8.6544e-09 1
4 5 10000 61 61 661.1706 5.6056e-07 5.045e-07 6.1257e-09 1
4.5 5 10000 61 61 663.6293 9.2961e-07 8.3665e-07 9.8995e-09 1

4 0.5 5 10000 61 61 708.5987 7.6903e-07 6.9213e-07 2.0941e-09 1
1 5 10000 61 61 674.6735 5.8145e-07 5.233e-07 5.5229e-09 1
1.5 5 10000 61 61 583.3584 9.2831e-07 8.3548e-07 6.2988e-09 1
2 5 10000 61 61 641.6517 5.8009e-07 5.2208e-07 3.1991e-10 1
2.5 5 10000 61 61 587.404 1.6983e-08 1.5285e-08 6.1471e-09 1
3 5 10000 61 61 583.9055 1.2086e-07 1.0877e-07 3.6241e-09 1
3.5 5 10000 61 61 577.0248 8.6271e-07 7.7644e-07 4.9533e-10 1
4 5 10000 61 61 739.0752 4.843e-07 4.3587e-07 4.8957e-09 1
4.5 5 10000 61 61 748.2303 8.4486e-07 7.6037e-07 1.9251e-09 1

4.5 0.5 5 10000 61 61 600.0884 5.6498e-07 5.0848e-07 6.2096e-09 1
1 5 10000 61 61 596.4199 6.4031e-07 5.7628e-07 5.7371e-09 1
1.5 5 10000 61 61 605.4817 4.1703e-07 3.7533e-07 5.2078e-10 1
2 5 10000 61 61 662.3932 2.0598e-07 1.8538e-07 9.312e-09 1
2.5 5 10000 61 61 699.0357 9.4793e-07 8.5314e-07 7.2866e-09 1
3 5 10000 61 61 564.7002 8.2071e-08 7.3864e-08 7.3784e-09 1
3.5 5 10000 61 61 737.3927 1.0571e-07 9.5138e-08 6.3405e-10 1
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4 5 10000 61 61 677.0294 1.4204e-07 1.2784e-07 8.6044e-09 1
4.5 5 10000 61 61 629.1539 1.6646e-07 1.4981e-07 9.3441e-09 1

Table E.3: Run time, sum of primal residuals, sum of dual residuals, duality gap and
solution status code for solving linear programming problems 2.6.22 and generating figure
2.6 with the bank and the counterparties default time parameters given in 2.6.27.

λB λC T M N1 + 1 N2 + 1 run time sum of primal sum of dual duality solution
(in seconds) residuals residuals gap status code

1 1 10 10000 121 121 963.2083 7.4003e-07 6.6603e-07 5.9794e-09 1
2 10 10000 121 121 877.7275 2.3483e-07 2.1134e-07 7.8936e-09 1
3 10 10000 121 121 961.0353 7.3496e-07 6.6146e-07 3.6765e-09 1
4 10 10000 121 121 938.2507 9.706e-07 8.7354e-07 2.0603e-09 1
5 10 10000 121 121 885.9282 8.6693e-07 7.8024e-07 8.6667e-10 1
6 10 10000 121 121 917.1186 8.6235e-08 7.7611e-08 7.7193e-09 1
7 10 10000 121 121 1015.3812 3.6644e-07 3.2979e-07 2.0567e-09 1
8 10 10000 121 121 875.0869 3.692e-07 3.3228e-07 3.8827e-09 1
9 10 10000 121 121 1008.3186 6.8503e-07 6.1653e-07 5.5178e-09 1

2 1 10 10000 121 121 959.1499 6.9475e-07 6.2528e-07 4.876e-09 1
2 10 10000 121 121 990.5315 7.581e-07 6.8229e-07 7.6896e-09 1
3 10 10000 121 121 939.5154 4.3264e-07 3.8938e-07 3.9601e-09 1
4 10 10000 121 121 961.2284 6.555e-07 5.8995e-07 2.7294e-09 1
5 10 10000 121 121 871.5572 1.0976e-07 9.878e-08 3.7235e-10 1
6 10 10000 121 121 920.843 9.3376e-07 8.4038e-07 6.7329e-09 1
7 10 10000 121 121 889.6467 1.8746e-07 1.6871e-07 4.2956e-09 1
8 10 10000 121 121 1046.4423 2.6618e-07 2.3956e-07 4.5174e-09 1
9 10 10000 121 121 906.7515 7.9783e-07 7.1805e-07 6.0986e-09 1

3 1 10 10000 121 121 1015.5573 1.6825e-07 1.5143e-07 1.8443e-09 1
2 10 10000 121 121 877.7077 1.9625e-07 1.7662e-07 2.1203e-09 1
3 10 10000 121 121 896.8791 3.1748e-07 2.8573e-07 7.7347e-10 1
4 10 10000 121 121 939.1182 3.1643e-07 2.8479e-07 9.138e-09 1
5 10 10000 121 121 1013.1766 2.1756e-07 1.9581e-07 7.0672e-09 1
6 10 10000 121 121 962.65 2.5104e-07 2.2594e-07 5.5779e-09 1
7 10 10000 121 121 936.5697 8.9292e-07 8.0363e-07 3.1343e-09 1
8 10 10000 121 121 959.8594 7.0322e-07 6.329e-07 1.662e-09 1
9 10 10000 121 121 935.7973 5.5574e-07 5.0016e-07 6.225e-09 1

4 1 10 10000 121 121 887.9328 5.3063e-07 4.7757e-07 7.4255e-09 1
2 10 10000 121 121 965.437 8.3242e-07 7.4918e-07 4.2433e-09 1
3 10 10000 121 121 911.8655 5.9749e-07 5.3774e-07 4.2936e-09 1
4 10 10000 121 121 966.1134 3.3531e-07 3.0178e-07 1.2487e-09 1
5 10 10000 121 121 874.1888 2.9923e-07 2.693e-07 2.4434e-10 1
6 10 10000 121 121 862.8889 4.5259e-07 4.0733e-07 2.9019e-09 1
7 10 10000 121 121 985.0777 4.2265e-07 3.8038e-07 3.1752e-09 1
8 10 10000 121 121 1018.5536 3.5961e-07 3.2365e-07 6.5369e-09 1
9 10 10000 121 121 920.5851 5.5832e-07 5.0249e-07 9.5694e-09 1

5 1 10 10000 121 121 927.1331 3.1743e-07 2.8569e-07 8.6675e-09 1
2 10 10000 121 121 956.4187 8.1454e-07 7.3309e-07 6.3119e-09 1
3 10 10000 121 121 873.267 7.8907e-07 7.1017e-07 3.5507e-09 1
4 10 10000 121 121 1017.1202 8.5226e-07 7.6704e-07 9.97e-09 1
5 10 10000 121 121 878.4787 5.0564e-07 4.5507e-07 2.2417e-09 1
6 10 10000 121 121 885.7939 6.3566e-07 5.721e-07 6.5245e-09 1
7 10 10000 121 121 908.0952 9.5089e-07 8.558e-07 6.0499e-09 1
8 10 10000 121 121 989.0762 4.4396e-07 3.9957e-07 3.8725e-09 1
9 10 10000 121 121 1031.614 6.0019e-08 5.4017e-08 1.4219e-09 1

6 1 10 10000 121 121 948.1822 1.8214e-07 1.6393e-07 6.7664e-09 1
2 10 10000 121 121 1018.3839 4.182e-08 3.7638e-08 9.883e-09 1
3 10 10000 121 121 871.6264 1.0694e-07 9.6247e-08 7.6683e-09 1
4 10 10000 121 121 1003.4138 6.1644e-07 5.548e-07 3.367e-09 1
5 10 10000 121 121 1038.5359 9.3966e-07 8.4569e-07 6.6238e-09 1
6 10 10000 121 121 860.0995 3.5446e-07 3.1901e-07 2.4417e-09 1
7 10 10000 121 121 887.4062 4.1063e-07 3.6957e-07 2.9551e-09 1
8 10 10000 121 121 963.7869 9.8435e-07 8.8591e-07 6.8018e-09 1
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9 10 10000 121 121 928.2198 9.4558e-07 8.5102e-07 5.2785e-09 1

7 1 10 10000 121 121 860.4108 5.1015e-07 4.5914e-07 8.116e-09 1
2 10 10000 121 121 940.091 9.0636e-07 8.1573e-07 4.8565e-09 1
3 10 10000 121 121 945.5834 6.2892e-07 5.6603e-07 8.9445e-09 1
4 10 10000 121 121 1005.7295 1.0153e-07 9.138e-08 1.3755e-09 1
5 10 10000 121 121 872.7505 3.9085e-07 3.5177e-07 3.9e-09 1
6 10 10000 121 121 981.194 5.4617e-08 4.9155e-08 9.2736e-09 1
7 10 10000 121 121 932.1018 5.0128e-07 4.5115e-07 9.1749e-09 1
8 10 10000 121 121 983.8956 4.3172e-07 3.8855e-07 7.1357e-09 1
9 10 10000 121 121 971.0146 9.9756e-07 8.978e-07 6.1834e-09 1

8 1 10 10000 121 121 891.1791 4.2298e-08 3.8068e-08 1.9257e-10 1
2 10 10000 121 121 913.3843 9.7296e-07 8.7566e-07 8.3874e-10 1
3 10 10000 121 121 1030.676 1.8921e-07 1.7029e-07 9.748e-09 1
4 10 10000 121 121 899.6219 6.6712e-07 6.0041e-07 6.5135e-09 1
5 10 10000 121 121 901.0406 5.8644e-07 5.278e-07 2.3124e-09 1
6 10 10000 121 121 862.2951 6.7511e-07 6.076e-07 4.0349e-09 1
7 10 10000 121 121 985.3142 3.6102e-07 3.2492e-07 1.2202e-09 1
8 10 10000 121 121 994.9444 6.2028e-07 5.5825e-07 2.6844e-09 1
9 10 10000 121 121 1046.353 8.1115e-07 7.3004e-07 2.5785e-09 1

9 1 10 10000 121 121 963.3504 5.9753e-07 5.3777e-07 5.212e-09 1
2 10 10000 121 121 947.8444 8.8402e-07 7.9562e-07 3.7231e-09 1
3 10 10000 121 121 1005.9841 9.4373e-07 8.4936e-07 9.3713e-09 1
4 10 10000 121 121 919.9181 5.4916e-07 4.9424e-07 8.2953e-09 1
5 10 10000 121 121 856.059 7.2839e-07 6.5555e-07 8.4909e-09 1
6 10 10000 121 121 1048.0904 5.7676e-07 5.1908e-07 3.7253e-09 1
7 10 10000 121 121 921.338 2.5857e-08 2.3272e-08 5.9318e-09 1
8 10 10000 121 121 1030.082 4.4653e-07 4.0188e-07 8.7255e-09 1
9 10 10000 121 121 860.3889 6.463e-07 5.8167e-07 9.335e-09 1

Table E.4: Run time, sum of primal residuals, sum of dual residuals, duality gap and
solution status code for solving linear programming problems 2.6.22 and generating figure
2.7 with the bank and the counterparties default time parameters given in 2.6.28.
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Glossary

CVAB Bilateral CVA. 10

CVAU Unilateral CVA. 10

CWI creditworthiness index. 14, 44

EAD Exposure at Default. 44, 45

EPE Expected Positive Exposure. 45

LGD Loss Given Default. 45

MTY Maturity. 45

PD Probability of Default. 44, 45

PFE Potential Future Exposure. 45

ρ Market-credit correlation in the ordered sceenario copula methodology. 16

τC Counterparty’s default time. 10

τB Bank’s default time. 11

EEB+ Discounted expected exposure for the counterparty C when computing CVAB. 11

EEB− Discounted expected exposure for the bank B when computing CVAB. 11

EEU+ Discounted expected exposure for the counterparty C when computing CVAU . 10

r0 Risk-free rate. 10, 20

ARA Adaptive Rearrangement Algorithm. 1, 4, 67, 68

CCR Counterparty Credit Risk. 1

CVA Credit Valuation Adjustment. 1

CVaR Conditional Value-at-Risk. 1, 44
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E(t) Counterparty-level exposure at time t. 9

EARA Enhanced Adaptive Rearrangement Algorithm. 4, 67, 68, 120

OSC Ordered Scenario Copula. 2

QRM Quantitative Risk Management. 1

RA Rearrangement Algorithm. 1, 3, 67

VaR Value-at-Risk. 1
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