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Abstract 

 

The year 2017, marks the 110th anniversary of the discovery of Alzheimer’s disease (AD)- a 

devastating neurodegenerative disease. Regardless of the significant advances made in the past 

century on the pathology of AD, the current pharmacotherapy options for AD remains woefully 

low and provide symptomatic relief only. Inhibitors of cholinesterase enzymes such as donepezil 

(Aricept®), rivastigmine (Exelon®) and galantamine (Razadyne®) which represents the primary 

class of agents used in the management of AD targets one of the many pathological routes of AD. 

Our study aims at discovering novel small hybrid molecules based on 3-phenylpyrazino[1,2-

a]indol-1(2H)-one (PPI) ring system which can potentially exhibit multiple activities toward 

various factors involved in AD pathophysiology  including (i) the inhibition of cholinesterase 

enzymes such as acetyl (AChE) and butyrylcholinesterases (BuChE); (ii) preventing the 

aggregation of the neurotoxic amyloid beta (Aβ) peptide and (iii) antioxidant properties. Initial 

modeling studies suggested that the tricyclic PPI template fits in the catalytic site of AChE and 

the C3 phenyl can orient toward the peripheral anionic subsite (PAS) in the AChE enzyme. In 

addition, C3-position provides opportunities to incorporate Aβ binding pharmacophores.  

With this goal, we synthesized the PPI compound library by coupling ethyl indole-2-carboxylates 

esters with 2-bromoacetophenones to obtain ethyl-1-(2-oxo-2-phenylethyl)-1H-indole-2-

carboxylates which underwent an intramolecular cyclization in the presence of ammonium acetate 

to afford PPI derivatives (5a-n). The compounds were characterized by analytical methods 

including NMR and LCMS. The cholinesterase inhibition was evaluated using Ellman’s protocol 

by UV-Vis spectroscopy. The anti-Aβ-aggregation property was evaluated by fluorescence 

spectroscopy using thioflavin- T (ThT) assays. Antioxidant activity of the PPI derivatives was 
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assessed using DPPH assay method. Transmission electron microscopic imaging (TEM imaging) 

were also performed to support the in vitro data obtained from ThT based fluorescence assays. The 

Discovery Studio (DS) software, Structure-Based-Design program (4.0) from BIOVIA Inc. was 

used to determine the binding interactions of the PPI derivatives for SAR optimization. 

Our results indicate that several compounds in the series exhibit dual cholinesterase inhibition 

properties; one such compound is 5h (3-(2-methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one) with 

IC50 AChE = 7.3 μM , IC50 BuChE = 1.9 μM. Compound 5h was found to be much more potent 

than reference agents donepezil and rivastigmine toward BuChE inhibition. Several other 

compounds such as 5d ( 3-(3,4-dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one) and 5h (- 3-(2-

methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one exhibited excellent of Aβ40/42 inhibition (% 

inhibition of Aβ40 = 83.3% and 67.7% at 25 µM respectively, and % inhibition of Aβ42 = 90% and 

94% at 25 µM respectively).  Compound 5d and 5h were found to be more potent than curcumin 

and resveratrol towards Aβ42 inhibition. The PPI derivatives were also found to exhibit antioxidant 

activities. Unsubstituted PPI compound 5a exhibited good antioxidant activity (~33% DPPH 

radical scavenging at 50 μM), while, compound 5k (3-(4-hydroxy-3-methoxyphenyl)pyrazino[1,2-

a]indol-1(2H)-one) exhibited excellent antioxidant activity (~ 84% DPPH radical scavenging at 

50 μM). This proves the multi-targeted activities of PPI derivatives.   

Our results indicate that the fused tricyclic phenylpyrazino[1,2-a]indo-1(2H)-ones (PPI) represent 

a novel class of compounds which can be modified chemically to design and develop multi-

targeting agents aimed at the cholinergic, amyloid cascade and oxidative stress hypothesis of AD. 
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Chapter 1. Introduction 

1.1 Dementia  

“Dementia” as a medical term is in use to describe the overall decline in the mental, behavioral 

and task completion activities of an individual. Patients with dementia find it tough to perform 

everyday activities such as making meals, traveling, to name a few. Moreover, a sharp decline in 

the behavior of a person along with impairments associated with speech, memory, recognition of 

the language, ability of a person to judge the situation wisely, can be observed easily.1 Dementia 

can be caused by various associated diseases such as Alzheimer’s disease (AD), vascular dementia, 

dementia with Lewy bodies, mixed dementia, frontotemporal lobar degeneration, Parkinson's 

disease, Jacobs’s disease and Normal pressure hydrocephalus.2 

According to a recent survey for 2016, in Canada, there are about 564,000 Canadians who are 

suffering from dementia. These numbers have been estimated to elevate to 937,000 by the year 

2030.3 An evaluation of the statistics reveals that the Canadian government spends about CDN$ 

10.4 billion each year to take care of the patients suffering from various forms of dementia3 
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Medically to determine if a patient has dementia, physicians usually refers to a manual known as 

Diagnostic and Statistical Manual of mental disorder (DSM). According to DSM, dementia is 

categorized as a prime Neurogenerative Disorder (NDD) as it impairs the cognitive functions as 

well as performing everyday activities of the patient.4 Assessing whether a patient has dementia is 

a lengthy and expensive process and usually, involves two different approaches for assessment of 

the dementia prevalence. The first one being the early process of evaluation which includes 

questionnaires based on family history of dementia, change in behavior, mental state examinations 

to name a few.5 Neuropathological lab testing- autopsy, being the another confirmatory and 

classifying test which is used to distinguish between the various types of dementias.6 Proper 

evaluation of a patient who has dementia is critical as for each type of dementia, a different kind 

of treatment is used. In many cases, a patient can be misdiagnosed for dementia for having 

dementia type symptoms. Misdiagnosis is very common in patients suffering from depression, 

delirium, thyroid problem, and alcohol toxicity2 as the symptoms mimic dementia.  In a national 

survey, it has been estimated that misdiagnosis of dementia (Alzheimer’s disease in particular) can 

be as high as 67.1% with 18.2% of the misdiagnosed patients receiving inappropriate medications.6   

Hence, in brief, we can say that dementia is a multifaceted neurodegenerative disorder which 

causes adverse effects on memory, emotions and daily activity. 

1.2 Neurodegenerative Disorder (NDD) 

Neurodegenerative disorder (NDD) is the pathological condition of the brain in which there is an 

extensive dysfunction of the nervous system, leading to the death of the neuronal cells.7,8 The 

reason for such a catastrophic destruction of the neurons can be:  

 sporadic- may be due to infection.  

 Stroke – e.g. vascular dementia.  
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 Protein misfolding and aggregation- the induced defect in the structure and function of the 

neurons caused by misfolded and aggregated proteins leading the cells to disrupt and 

rupture.  

The misfolding, accumulation and aggregation of certain detached surface proteins, such as 

amyloid beta(Aβ) protein and tau protein in Alzheimer’s disease; alpha-synuclein in dementia with 

Lewy bodies and Parkinson’s disease and so forth, are the examples of misfolded and aggregated 

proteins causing neurodegeneration. These proteins, which under normal conditions, are present 

as an integral part of the neurons and whose detachment and aggregation causes the cells to 

undergo neuronal death accelerates the progression of NDD.9 More discussion of the individual 

proteins (amyloid beta and tau protein) and how these proteins cause progression of 

neurodegeneration in presented in appropriate segments of this thesis. 

1.3 Alzheimer’s disease (AD) 

Alzheimer’s disease is considered to be the most prevalent form of NDD and accounts for about 

80% of all the registered cases associated with NDD and the leading cause of death associating 

dementia.2 AD was first identified in 1907 by Alois Alzheimer, a German neurologist, and 

psychiatrist.10 Even after around 110 years of its discovery, little is known about AD’s inception2 

even though, there have been many theories which explain the progression of the disease. We will 

be discussing the individual theories in appropriate sections in this thesis.     

1.3.1 Detection of AD: According to the DSM criteria, the changes in the brain morphology of 

the patient suffering from AD initiates much before the actual symptoms start to appear. Hence, it 

is believed that to prevent, slow or stop the disease, early detection is crucial4 which till now is not 

possible to detect. Currently, for the detection of AD, no single and straightforward test is 
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available. Usually, a doctor along with a neurologist assess the patient using a variety of tools to 

help make a diagnosis. Tools which are often utilized for the determination are as follows:  

 Evaluate the family history of the patient for AD.  

 Psychiatric history and behavioral changes estimation. 

 Evaluation of mental state by conducting cognitive and behavioral tests. 

 Laboratory tests: by performing blood tests and brain imaging.  

Even after using an array of diagnosis, it will take lots of time before a physician can make any 

diagnosis.2 

1.3.2 Diagnosis: Early symptoms of AD varies among individuals, though, difficult to remember 

newer information being the most common among the patients. This is because the neuronal and 

synapses loss starts in the cerebral cortex and subcortical regions of the brain, which is associated 

with processing newer information.11,12 Other initial symptoms of AD are as follows:  

 Confusion with the place, time and face recognition.  

 Understanding in language recognition.  

 Mood swings and initiation of split personality behavior. 

 The decline in situation judgment. 

 Elevation in anxiety and agitation. 

 Poor control over sleep.  

1.3.3 Changes in brain morphology: A healthy brain of an adult contains approx. 100 billion 

neurons connected to each other by more than 100 trillion synapses. This secure interconnection 

between the neurons helps the brain to function properly by allowing the neurotransmitters to pass 

through the neurons efficiently. In the case of AD, due to the progression of neuronal death, a 
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decline in the mental ability occurs which can be compiled by the individual effects of Aβ 

accumulation, reduction in the levels of neurotransmitters in the brain, generation of 

neurofibrillary tangles (NFTs) by dead neurons, and a decrease in the number of synapses (Fig. 1-

1). The overall effect of neuronal death causes an average decline of brain volume by 5.3% (decline 

in gray matter volume only) over a period of at least one year.13  

 

Figure 1-1: Comparison between the microscopy of (a) healthy brain  (b) Brain of an AD patient- 

one can see the accumulation of Aβ plaques and NFTs. 

1.4 Initiation of AD 

Although AD has been categorized as an age-dependent progressing disorder, genetic 

abnormalities have found to play a significant role in determining the susceptibility of a patient to 

develop AD. Based on these observations, AD can be categorized into 
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 Sporadic AD – This type of AD progression is the most common form of AD and accounts 

for almost 99% of the cases. The progression of the disease state is dependent on various 

physical and environment factors.  

 Familial AD – AD progression is based on the genetic factors such as down syndrome, 

genetic mutations, etc.  

1.4.1 Familial AD: Alzheimer’s disease progression due to genetic variations 

 

It has been estimated that less than 1% of all the cases of AD are linked to genetic changes, causing 

the progression of AD.2 Three specific genes have been linked with AD progression. Any 

abnormal mutations in the genes linked to Amyloid precursor protein (APP), presenilin-1 and 

presenilin-2, increase the risk of development of AD by 90-95%. It has been observed that patients 

with such mutations tend to develop the disease at an early age, which can be as early as 30 years.2  

Down syndrome (DS): This syndrome is caused by the presence of an additional copy of 

chromosome no. 21 in the genome of a person. Individuals with DS has been reported to have 

higher chances of developing AD-like pathophysiologies at an early age of around 40 years. 

Statistically, more than 75% of the people with DS suffer from AD. A clear link has yet to be 

identified but, researchers assume that the presence of an additional copy of chromosome 21, 

which also is the locus of the gene encoding for APP, could double the hydrolysis of APP and 

thus, elevates the risk for developing AD.2  

1.4.2 Sporadic factors leading to AD:  

 

Chronic type initiation of AD is considered to be the most common form of AD among patients, 

and experts believe that this can be due to the combined effect of various related/ interrelated 

effects. Sporadic effects can be divided into two different categories:  
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 Controllable factors 

o Cardiovascular disease risk factors 

o Education  

o Social and cognitive engagement  

o Traumatic brain injury 

 Uncontrollable factors  

o Age  

o Family history  

o Activation of APOε4 gene 

1.4.2.1 Controllable Factors: Controllable factors, as the name suggests, can slow down the 

progression of AD. As we know that AD is an age-dependent disease; aging cannot be stopped. 

Thus, it would be much easier to control the health-related factors such as diabetes, obesity, 

cardiovascular diseases, etc. to delay the onset of AD. A recent study aimed to find a link between 

physical activity and cognition/dementia. Not much of a surprise,  it was observed that regular 

physical activity not only helped manage the cardiovascular risk factors such as hypertension, 

obesity, diabetes and smoking, it also significantly contributes to reducing the risk of cognitive 

decline and dementia2.  

Having an active social life have also been linked to a healthy brain function. Isolation of an 

individual not only hinders personal growth, but it can also affect one's brain in a negative way. 

Such people are at higher risk of developing dementia. The exact mechanism and a scientifically 

valid reason are yet to be explained. Similarly, education level of an individual has been 

proportionally linked to the modified risk of dementia. According to the cognitive reserve 

hypothesis, continuous stimulation of the brain through reading and logical thinking- tasks 
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involved in formal education, can compensate for the modifications caused by AD and can trick 

the neurons in making alternate routes for interneuronal communication required for cognitive 

functions. This can lead to a decline in the symptoms of AD as the aging progesses.2  

Uncontrollable factors: Uncontrollable factors such as age, family history, and apolipoprotein E-

ε4 (APOE4) gene activation are some of the uncontrollable factors which possess the greatest risk 

factor for the delayed onset of the AD in more than 95% of the reported cases.  

Age: Even though aging is one of the most significant risk factors for the development of AD, it 

is not the standalone for causing the disease. Also, AD is not a common outcome of aging as well. 

People with sporadic AD lie in the age bracket of 65 and older, and as the age increases, so are the 

chances of developing AD. That is why AD is considered as an age-dependent disease.2  

Family history: It has been observed that first degree relatives with similar heredity conditions, 

similar and shared environmental and lifestyle conditions and whose at least one family member 

is suffering from AD have higher chances of developing AD in the later stages of their life. The 

family history may or may not be linked to the activation of the APOE4 gene as explained by some 

researchers.2  

Inheritance of APOE4 gene: The APOE4 gene,  is located on chromosome 19 and is responsible 

for the production of cholesterol transportation protein APOE. Isoforms of APOE gene are known 

to regulate Aβ aggregation and clearance in the parenchyma of the brain. APOE genes are also 

known to play a role in the regulation of glucose metabolism, lipid transportation in and out of the 

brain, mitochondrial function,  neuron signaling and neuroinflammation.14  Three very common 

forms of APOE genes are ε2, ε3, and ε4 are known and one of them is inherited to the offspring 

by each of the parents. The genetic abundance of each gene is in the order  ε3, ε4, and ε2 and forms 
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six possible APOE forms which are ε2/ ε2, ε2/ ε3, ε2/ ε4, ε3/ ε3, ε3/ ε4, ε4/ ε4. Out of all the 

possible APOE forms, people who inherit ε4/ ε4 allele are at 8 to 12 fold higher risk than the one 

with ε3/ ε3 gene and are more prone to develop AD at early stages of life. While it is noticed that 

people with ε2/ ε2 gene have reduced the risk of developing AD at later stages of life as compared 

to people with ε3/ ε3 gene. Though these speculations are just observation and no precise 

mechanism between  APOE genes and AD risk is not clear.2  

1.5 Biomarkers for AD detection  

As the number of patients suffering from AD is increasing every passing day, and due to the non-

availability of any preventive and curing regime, it is important to delay the progression of the 

disease as soon as the condition is detected. As, the symptoms of AD starts at a very late age, 

sometimes as late as when more than 40% neurons have already been degraded, it is important to 

get a hold on to the disease as early as possible. To do so, biomarker detection for AD at early 

stages can be an excellent option to hinder the progression of the disease.15,16 

Biomarkers, as we know, when present in a concentration higher than the standard concentration 

can be associated with the disease. Diagnosis of such biomarkers helps in monitoring and 

progression of the illness. For a particular condition, there are specific biomarkers which have 

been recognized, detected and biochemically evaluated.17 Similarly, for AD, various imaging 

techniques- used for direct visualization of brain function, and peptide biomarkers- present in 

plasma, cerebrospinal fluid (CSF) and urine, can help in evaluating the disease progression.15,18   

Currently, there are three classes of biomarker detection methods which are available (imaging 

techniques), and some are  still under development (biochemical peptide detection) which can be 

categorized as follows (Fig. 1-2): 
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Figure 1-2:Classification of biomarkers used in AD detection. 

   

1.5.1 Imaging: Imaging techniques such as CT scan, PET scan, PIB-PET scan and MRI scan can 

help in estimating changes in the morphology of any region of the brain .18 A simple visual 

comparison between CT/ PET scan of an AD patient with a healthy brain scan can be used in 

evaluating the stage of AD.19   

Biochemical estimation of a particular peptide or a specific factor (a specific type of peptides) can 

also be used in evaluating the AD progression. For such assessment, plasma and CSF are used, 

and via series of biological laboratory tests, the concentration of such biomarkers can be estimated 

which can be correlated with the imaging biomarkers to make a concrete decision about the stage 

of the disease, and also to determine the type of dementia, the patient is suffering. E.g. one can 

clearly distinguish between a patient suffering from AD and Parkinson disease by comparing the 

imaging and clinical examination.15,19,20 

1.5.2 Plasma: Biomarkers present in plasma which is specific for AD are α-macroglobulin, 

component factor H, α1-antitrypsin, α1-antichymotrypsin  and Aβ species. Even though the 

estimation of such biomarkers can be performed relatively quickly,  the success of such estimates 

Biomarkers for 
AD detection 

Imaging Plasma CSF 
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has limited value as various laboratories use different techniques for determining such markers 

and thus, lacks specificity,  sensitivity, and reproducibility. The Aβ species present in blood plasma 

can readily be determined using ELISA, and clinical correlation of such data cannot be made to an 

actual disease state as Aβ in plasma is derived from peripheral tissues which are not correlated 

with brain Aβ load and no assessment can be done with brain Aβ production.15,18  

1.5.3 CSF biomarkers: CSF or cerebrospinal fluid is a semi-viscous fluid which is present in the 

subarachnoid space and ventricular system and acts as a cushion against mechanical injuries to the 

brain. Because of the direct contact of the CSF to the brain, the presence of any proteins in CSF 

could be directly  related to the brain activity and can thus CSF could be expected to serve as an 

excellent source of biomarkers for AD.15 However, in various studies performed by different 

groups, it was observed that levels of Aβ42  change according to the type of protocol used for assay. 

In most of the reports, a slight decrease in the levels of Aβ42 has been observed, and this can be 

explained by the accumulation of Aβ42 to form plaques (known as amyloid sinks)18, and thus, a 

decline in the Aβ42 concentration in the CSF can be seen. This observation was further supported 

by an increase in the plaque burden as observed by positron emission tomography (PET) imaging. 

In the case of Aβ40, no such change in the concentration was observed. It has also been noticed 

that a decrease in the ratio of Aβ42/ Aβ40 could be more statistically relevant observation than 

studying the reduction of Aβ42 alone. Thus, to conclude, we can say that biomarkers can become a 

source of early detection of AD progression and the methods are yet to be standardized so as to 

provide a reliable and reproducible data which can be clinically correlated with AD.15  

1.6 Currently available treatment for AD 

In the present scenario, AD treatment is challenging as currently approved medications only 

provide symptomatic relief to the patients9.  None of the drugs can prevent the neuronal destruction 
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in the brain2 or cure AD. Presently, there are only four FDA-approved drugs which can be used in 

the management of AD2, and those are (Fig. 1.3): 

                                                           

  
 

                                                                                    

 

Figure 1-3: Molecular structures of (a) Donepezil (b) Galantamine (c) Memantine                     

(d) Rivastigmine. 

All the medications mentioned above, except for memantine, targets cholinesterase enzymes; 

acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) and provide symptomatic relief 

to the patients by maintaining the levels of a neurotransmitter known as acetylcholine (ACh) in 

the brain. These medications are either used alone or in combination with other drugs to provide 

symptomatic relief to the patients.2,9 Some of the treatments currently in use for AD patients are 

as follows:  

1.6.1 Monotherapy by AChE and BuChE inhibitors: Monotherapy by one of the approved FDA 

drugs such as donepezil, galantamine, and rivastigmine are usually used in the management of 

mild to moderate AD. These agents are known to inhibit both AChE and BuChE activity in a dose-

Donepezil Galantamine 

Rivastigmine  
Memantine 
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dependent manner.21 Initiation of treatment with cholinesterase inhibitors (ChE)  inhibitors at early 

stages of AD with drugs such as Aricept® also known as donepezil or Razadyne® also known as 

galantamine prevents rapid onset of symptoms associated with AD. Donepezil, a potent 

benzylpiperidine compound, exhibits high selectivity towards AChE with its IC50 value for AChE  

~9 nM while for BuChE the IC50 value is ~1000 nM. Galantamine, on the other hand, is an alkaloid 

which was first isolated from flowers and bulbs of plant known as Galanthus. Similar to donepezil, 

galantamine also exhibits selectivity towards AChE with an IC50 value of ~0.2 μM. Galantamine 

is 50-times more selective for  AChE compared to BuChE.  The in vivo half-life (t1/2) for both 

donepezil and galantamine are 70 h and ~ 6 h respectively. As half-life for donepezil is around 

three days, this gives an edge over galantamine by reducing the dose frequency and thus, fewer 

side effects and hence, is used in all stages of AD, while, Galantamine is used in mild to moderate 

AD because of higher dosing frequencies.9  

1.6.2 NMDA receptor antagonists: N-methyl-D-aspartate receptors (NMDA) can be categorized 

as ionotropic glutamate receptors and are ligand-gated ion channels present on the surface of 

neurons. Overexcitation of these receptors is known to have calcium ion induced toxic effects 

which lead to the death of the neuron.22  Normal activation of NMDA receptors is essential for 

maintaining the proper activity of the brain. However, overactivation of NMDA receptors, as 

observed in AD, is associated with excess intake of Ca2+ ions in the intracellular region. This 

overburden of calcium ions triggers a cascade of downstream events which results in 

neurodegeneration. NMDA receptor antagonists such as memantine have been reported to be 

useful in the treatment of AD.23,24 

1.6.3 Combination therapy: Namzaric®,  which contains a mixture of donepezil HCl (10 mg) 

and memantine HCl (28 mg) is an approved FDA treatment for moderate to severe AD. 
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Unfortunately, this is the only combination therapy available for AD management . 2,25 The 

superiority of this type of therapy was supported by a randomized, double-blind placebo-controlled 

study which took over a period of  24 weeks. This clinical study concluded that an added advantage 

is achieved over single drug administration of either donepezil or memantine. A definite 

improvement in cognition and behavioral aspects of the patients was observed when donepezil and 

memantine were given as a combination therapy as compared to patients receiving donepezil or 

memantine alone.26   

1.7 AD hypothesis  

AD initiation and progression has been explained by various hypotheses.9,27 Among these, the 

cholinergic hypothesis is the earliest known theory which was put forward in mid-1970’s.28 

Amyloid beta (Aβ) hypothesis, was presented in 199129; Tau hypothesis and mitochondrial 

dysfunction are among others.27,30 Because all these theories help to explain the different 

pathological observations in AD, these hypotheses are considered as a primary hypothesis for AD. 

For example, the cholinergic hypothesis helps account for the role of acetylcholine (ACh); one of 

the neurotransmitters in the brain in learning and memory.The deficits of ACh (frequent 

observations in AD patients) is responsible for memory loss in AD patients28 while the Aβ 

hypothesis explains the accumulation of senile plaques in both extracellular as well as intracellular 

regions of the brain. 31 Tau hypothesis, on the other hand, explains the presence of neurofibrillary 

tangles (NFT’s) in intracellular regions of the brain.30 There are other theories which have been 

put forward and helps account for the correlation of pathological observations as secondary 

hypotheses. The examples of secondary hypotheses are oxidative stress, inflammation, cholesterol 

hypothesis and Aβ pore formation (Fig. 1-4). Relationship between Primary and secondary 

hypothesis can be explained by the following example: Formation of NFT’s (primary hypothesis) 
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can be described by caspase-mediated cell death which can be initiated by oxidative stress 

(secondary hypothesis). 

 

Figure 1-4: Various hypotheses for AD. Hypothesis marked in red (viz. cholinergic, tau, amyloid 

beta and oxidative stress) are considered as a primary hypothesis for AD. While, hypotheses given 

in green (viz. mitochondrial dysfunction, inflammation, cholesterol hypothesis and amyloid beta 

pore formation hypothesis) are considered as a secondary hypothesis. 

1.8 Cholinergic Hypothesis 

As stated earlier, the cholinergic hypothesis is one of the earliest known hypotheses put forward 

for AD which correlates the function of ACh- a neurotransmitter, in learning and memory.28  

According to this hypothesis, cholinergic neuron degeneration in the forebrain, cerebral cortex and 

other associated areas of the brain results in loss of cholinergic neurotransmission and thus, 

significantly contributes to the loss of ACh-dependent cognitive function as observed in AD 

patients.28 Thus, in other words, decreased levels of ACh can be found which is related to the 



 

16 
 

cholinergic neuron degeneration. To make the situation worse, two ACh hydrolyzing enzymes 

AChE) and BuChE further reduces the level of ACh.32,33 Under normal conditions, AChE, which 

is present on the post-synaptic membranes in the neuromuscular junctions, helps in terminating 

the excess signal transmission by hydrolyzing ACh and thus preventing overexcitement of the 

postsynaptic neurons. In the case of cholinergic neuronal degeneration, the ACh levels are already 

marginalized, and further hydrolysis of ACh by AChE significantly reduces the ACh levels which 

compromise the cognitive functions. To eliminate this situation, various small molecules have 

been developed which acts as cholinesterase inhibitors which bind to these enzymes and thus 

prevent the hydrolysis of ACh.9,28,33,34 These small molecules are known as cholinesterase 

inhibitors (ChEIs) and form the first and the only line of therapy currently available for AD 

management.35 E.g. of cholinesterase inhibitors approved by FDA for AD management are 

donepezil (Aricept®), (S)-rivastigmine (Exelon®) and galantamine (Razadyne®).9 

1.8.1 Cholinergic neurotransmission 

 

Neurotransmission in cholinergic neurons depends on ACh as a neurotransmitter to initiate and 

transmit signals between cholinergic neurons. ACh is synthesized in the cholinergic nerve endings 

from acetyl CoA and choline using choline acetyltransferase (ChAT) as the catalytic enzyme. 

Upon synthesis, ACh gets stored in vesicles. Vascular ACh transporter (VAChT) is the carrier 

responsible for entry of ACh into the storage vesicles. Such transportation is facilitated by ATPase 

and H+ gets countertransport (outside the vesicles) keeping the iso-osmotic and electroneutrality 

intact. ACh remains stored within the vesicles till there is no action potential generated by the 

neurons. Once a neuron gets excited (action potential is generated), neuronal membrane 

depolarization takes places by the influx of Ca2+ ions through calcium channels. The elevated 

levels of Ca2+ inside the cytosol help in the infusion of vesicles with vesicle-associated membrane 
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proteins (VAMPs). The fusion of vesicles to the VAMP’s result in the release of ACh by the 

process of exocytosis.36  When ACh enters the synaptic cleft, it can trigger action potential on the 

postsynaptic neuron by interacting with nAChR (nicotinic Acetylcholine receptors) or mAChR 

(Muscarinic Acetylcholine receptors). The nAChR’s are associated with the Peripheral Nervous 

system (PNS), Central Nervous system (CNS) and neuromuscular junctions (NMJs). While 

mAChR’s are specifically for PNS but are also present throughout the body (Fig. 1-5).36  

ACh which was not being able to generate an action potential gets hydrolysed by AChE enzymes 

to choline and acetate. The choline released by the hydrolysis of ACh gets recycled and enters the 

neuron using Na+- choline co-transporter.36  

Various studies indicated that in AD, substantial deficits in ChAT levels (the enzyme responsible 

for the synthesis of ACh). The choline reuptake and ACh release get hindered. The combined 

effects of which results in a presynaptic cholinergic deficit,28 thus marginalizing the levels of ACh 

in the nervous system. The decrease in the levels of ACh results in learning and memory 

impairments which give rise to the first hypothesis of AD: The cholinergic hypothesis.  
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Figure 1-5: Synthesis, storage, and release of ACh in a neuron 

  

1.8.2 AChE 

 

 The AChE enzyme (Fig.1-6) (EC 

3.1.1.7) can be categorized as a serine 

hydrolase. This enzyme is found both in 

the CNS and PNS as an ACh 

hydrolyzing enzyme 34,37 AChE is fully 

capable of working efficiently as a 

monomer; other isoforms of the 

enzyme are also known to be present 

Figure 1-6: AChE enzyme along with its active site (in 

blue) 
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in different areas throughout the body. Eg.  GPI- anchored dimeric structure of AChE is present 

on the surface of erythrocytes, while, in CNS, the enzyme is present in tetrameric form.9 

AChE is the primary target for the anticholinesterase drugs such as donepezil, galantamine, and 

rivastigmine. The gene responsible for the production of this enzyme is localized to human 

chromosome 7 (7q22).38 

1.8.2.1  Molecular structure of AChE  

 

The high catalytic activity of AChE towards various inhibitors can be explained by its unique 

design of the active site. The X-ray crystallographic studies and site-directed mutagenesis are 

among the techniques which have been 

utilized for the characterization of amino 

acid residues, present in the active gorge 

of AChE. The shape of the active site 

gorge is observed to be similar to a 

bottleneck and as a horseshoe. The 

active site is present 20 Å below from 

the entrance (Fig. 1-7).       

Figure 1-7: Subsites for the AChE enzyme. Amino acids in yellow represent the catalytic triad. 

Amino acids in green represent the acyl pocket. Amino acids in red represent the hydrophobic 

subsite, while, the amino acids in orange represents the peripheral anionic site.    
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Various subsites of the active site that play an important role have been reported.9 The subsites for 

the human AChE (hAChE) can be defined as follows (Fig. 1-7).  

 Catalytic triad [Ser203, His 447, Glu334]38  

 Acyl pocket [Phe295 , Phe297]39 

 Hydrophobic subsite [Trp86, Tyr133, Tyr337, Phe338]38 

 Peripheral anionic site [Tyr72, Asp74, Tyr124, Trp286, Tyr341]32 

Catalytic triad represents the three main amino acid residues which are responsible for the 

hydrolysis of ACh. Acyl pocket, on the other hand, helps in stabilization of the acetyl group of the 

ACh.  A subset of 14 amino acids at the entrance of AChE enzymes consisting of aromatic amino 

acids such as Tyr and Trp represent the peripheral anionic site (PAS). Some studies suggest that 

blocking the activity of PAS will help in preventing AChE-induced aggregation of Aβ.9 

1.8.2.2 Hydrolysis of ACh by AChE 

 

In the synaptic cleft, as soon as ACh gets released from the presynaptic cleft, it is subjected to 

hydrolysis by AChE. It has a very high specific catalytic activity.One AChE enzyme molecule is 

known to hydrolyze about 25,000 molecules of ACh per second.40  Hydrolysis of ACh by AChE 

can be considered as a stepwise mechanism which involves the formation of one intermediate and 

two transition states.41,42 In the first step, a proton transferred from Ser 203 to His447 takes place 

which results in the formation of deprotonated Ser203 and protonated His447 species. In the 

second step, a nucleophilic attack by deprotonated Ser203 to the carbonyl carbon of ACh results 

in the formation of a zwitterionic form of acyl-enzyme intermediate. In the final step, the acetylated 

AChE undergoes hydrolysis by releasing acetate molecule as shown in (Fig. 1-8).  
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Figure 1-8: Hydrolysis of ACh by AChE 

   

1.8.3 BuChE  

 

Butyrylcholinesterase (BuChE) also known as acylcholine aceylhydrolase, or 

pseudocholinesterase (EC 3.1.1.8) is a homologous analog of enzyme AChE and belongs to the 

class of α/β fold family, similar to AChE. This means that the structure of BuChE, as well as 

AChE, contains a central β sheet which is surrounded by α-helix.43 This enzyme is known to 

hydrolyze choline substrates such as butyrylcholine (BuCh) specifically and can also hydrolyze 

ACh, but at a lesser efficiency. Moreover, BuChE is also known to hydrolyze non-choline esters 

such as cocaine, aspirin, and heroin.43  BuChE is found primarily in the organs of the body such 

as heart, liver, kidneys, lungs, intestine, as compared to AChE, which is present predominantly in 

the synaptic cleft of the neurons.44 It has been reported that in certain species including humans, 

horse, and mice, higher activity of BuChE has been observed in plasma than AChE. While, in 

some animal species like rats, AChE activity is predominant in plasma.44 This is because, in some 
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species, the enzyme biosynthesis takes place in the liver which can then diffuses in the plasma and 

thus, those animal species show the higher activity of BuChE in blood plasma. The primary 

function of BuChE in plasma is still unclear, but, it has been observed that in the case of ingestion 

of nerve poisons such as organophosphates (OP’s), BuChE is known to scavenge to OP’s and thus 

helps to prevent OP mediated toxicity.43,44 Apart from the role of BuChE as a safety net for 

protecting the cholinergic transmission from various nerve poisons, it has also been a target for the 

activation of some prodrugs into their active forms. Bambuterol is one such example which is 

hydrolyzed by BuChE to give terbutaline, which has substantial antihistaminic activity. Similarly, 

heroin is converted to 6-acetylmorphine by the action of BuChE. The metabolized form of heroin 

is t lipophilic enough to cross the blood-brain barrier (BBB) and gets metabolized further to 

produce morphine in the brain. It is interesting to note that BuChE is the only enzyme present in 

the human blood plasma which can hydrolyze heroin.44   In the brain, BuChE gets synthesized by 

glial cells and accounts for around 10% of the total cholinesterase activity in a healthy brain.45 It 

has been observed that in AD, there is almost 50% reduction in the brain AChE levels at the later 

stages of the disease, while, the predominance of BuChE elevates to 90% and thus, BuChE 

inhibition forms an essential target for the disease, particularly in the later stages of the disease. 

As far as homology is concerned, BuChE and AChE share a structural and functional resemblance. 

The amino acid sequence homology between BuChE and AChE is around 65%, and the gene 

responsible for the production of BuChE was found to be localized on human chromosome 3 

(3q26).46  

1.8.3.1 Active sites in BuChE 

 

The monomeric structure of BuChE contains 574 amino acids with a few asparagine-linked 

carbohydrate chains and three inter-chain disulfide bridges which maintain the three-dimensional 
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globular structure of BuChE. Unlike the structure of AChE, BuChE contains a much larger active 

site with 55 amino acid residues. It is almost 60% larger compared to AChE active site volume 

(~501 Å3 vs. 302 Å3).The amino acid residues from different subsites which can be categorized 

into: 

 Catalytic triad (esteric site) – includes His438, Glu325, and Ser198 

 Acyl Pocket or acyl binding site -  Contains Leu286 and Val288 

 Choline binding site (cation- π site) – contains Trp82, Tyr337 

The catalytic triad in BuChE also contains 

three amino acids namely histidine, serine, 

and glutamic acid. The function of these 

amino acids is known to be similar to 

AChE. (Fig. 1-9) 

 

 

 

Figure 1-9: Key amino acids in the BuChE binding site.  

 

Acyl pocket in BuChE contains two primary amino acids namely leucine and valine. These 

aliphatic amino acid residues allow the entry of larger molecules such as butyrylcholine (BuCh) 

or other large acyl group containing compounds into the active subsite of the BuChE enzyme. This 

observation is different from AChE as the active subsite of AChE contains larger aromatic 

phenylalanine ring systems in the acyl pocket and thus, forms a narrower active site of about 302Å3 
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as compared to 501Å3 volume of the active gorge in BuChE. This larger size of the active gorge 

allows the entry of larger molecules in the active site of BuChE.47  

Comparing the fourteen (14) amino acids present at the entry of the cholinesterase enzymes, 

AChE’s amino acids residues are bulky and aromatic in nature which forms the part of PAS. In 

BuChE, half of these amino acid residues are aliphatic in nature and thus allows BuChE more 

flexibility and less steric hindrance so that even large molecules could reach to the active site of 

the enzyme. When compared to the active site of cholinesterase enzymes,  BuChE’s active site is 

around 200Å3 bigger than active site of AChE44,47 because of the presence of aliphatic amino acid 

chains in the active site of the enzyme. 

1.8.4 Conclusion derived from cholinergic hypothesis 

 

Acetylcholine (ACh) forms an empirical part of the cholinergic neurotransmission, and appropriate 

level of this neurotransmitter is required to maintain homeostasis. Reduced level of ACh in the 

brain due to neuronal loss is linked to the loss of memory and cognition. Two cholinesterase 

enzymes namely AChE and BuChE are capable of hydrolyzing ACh with AChE playing the 

primary role. The BuChE’s contribution to the hydrolysis of ACh is around 10%.  In AD, to 

maintain an acceptable level of ACh, the only current possible way is to inhibit the activity of these 

cholinesterase enzymes. As discussed earlier, the activity of BuChE increases as the disease 

progresses, it is thus essential to target BuChE so as to maintain healthy ACh levels at the later 

stages of the disease. Therefore dual inhibition of AChE and BuChE is desired. Currently, all 

available FDA-approved AD treatments prevent the hydrolysis of ACh by inhibiting both AChE 

and BuChEs. Donepezil, rivastigmine and galantamine are some of the examples of  ChEIs. In 

conclusion, ChE inhibitors provide only symptomatic relief and are effective as a long-term 

treatment option in the AD pharmacotherapy.  
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1.9 Amyloid Beta (Aβ) Hypothesis  

The occurrence of some unusual metabolic substances in the brain, which according to Alois 

Alzheimer, stain differently from healthy neurons, and the pathology which he then described does 

not fit with any of the disease known during that time.48 Based on a series of research findings 

initiated by Alois Alzheimer’s, the amyloid beta hypothesis was then put forward by Hardy and 

Allsop in 1991.31,48 It was based on the fact that a protein like material whose deposits were found 

in the meningeal vessels of the brain of an AD patient, was found to be  identical to the protein 

found in patients with Down syndrome, and the same was also the part of the senile plaques formed 

a link between Down syndrome and AD.31 More details about the correlation between AD and 

Down syndrome is explained in the next section of this thesis.  

  The Aβ hypothesis remains the best scientifically supported theory used to describe AD.31 

According to this hypothesis, the progression of AD can be attributed to the progressive 

accumulation and aggregation of small peptides either extracellularly or intracellularly or both. 

Such aggregates are made up of a peptide with 40 to 42 amino acid chain length, and these peptides 

tangle to form insoluble quasi-crystalline deposits of amyloid fibrils. Further aggregation of these 

fibrils in a circular manner results in the formation of senile plaques or neuritic plaques (Fig.1-10). 

This type of aggregate can be either self-induced or promoted by AChE, as hypothesized by some 

researchers.33,49,50    
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Figure 1-10: Steps in the aggregation of Aβ monomer to oligomers and fibrils. 

Senile plaques contain aggregates of Aβ as the core while, activated microglia, dystrophic neurites, 

and reactive astrocytes form the outer covering, and thus senile plaques form extracellular lesions 

of the brain.12  In 1984, Glanner and Wong became the first researchers to report the purification 

and partial structure of Aβ, which they named amyloid β protein51 and soon after, a complete 

peptide sequence structure of the Aβ was reported. It was in early 2002 that Nussinov group first 

published the 3D model of Aβ16-35 oligomers. The structure of the oligomers was reported to have 

a bent structure: U-shape, due to the presence of an intermolecular salt bridge between Asp23 and 

Lys28.52 This molecular structure was described using molecular modeling studies and then 

confirmed by solid-state NMR analysis in 2006 by Tycko and coworkers. In 2015, the complete 

structure of Aβ42 fibril was solved using solid-state NMR technique by Xiao and coworkers.53  
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1.9.1 AD and Down Syndrome: is there a connection between these two distinct diseases?  

 

As mentioned before, the Aβ protein- whose molecular weight was found to be four kDa, was also 

found in patients suffering from Down Syndrome; along with neurofibrillary tangles, indicating 

that there are a strong connection and common origin of both the diseases.12  Genetic studies on 

patients with AD and Down Syndrome also supported this observation. Beyreuther and coworkers 

in 1987 cloned a gene responsible for the expression of amyloid precursor protein (APP) and found 

it to be localized on the long arm of chromosome 21. Interestingly, in Down Syndrome, an extra 

chromosome 21 (and thus, known as 21 trisomy) is present. Hence, one would expect that due to 

the presence of an additional set of chromosome 21 in Down syndrome patients, APP expression 

would elevate and thus cause an early occurrence of AD type symptoms.12,29  

1.9.2 Production of Aβ 

It is noted that both healthy individuals and patients with AD produce Aβ. It is a matter of fact that 

in healthy individuals, the generated Aβ gets cleared by various hydrolyzing enzymes.31 In AD 

patients, the Aβ clearance mechanism is hindered by various unknown mechanisms which cause 

an imbalance in the generation and removal of this protein.27 It is interesting to know, how Aβ gets 

cleared out of the body. More explanation will be discussed in the next section. 

Aβ is known to be present in extracellular fluids, including plasma and CSF (cerebrospinal fluid).54  

Production of Aβ is an example of regulated intramembrane proteolysis (RIP) of APP.15,55,56 RIP 

is a cascade of events in which the ectodomains of the proteins (present on the surface of the 

membrane—in the case of AD, this surface protein is APP) is first cleaved by protease enzyme; 

which are present on the membrane itself, also known as secretases, keeping the trans-membrane 

and endo-domains intact. Transmembrane domains (TMD’s) and endodomains are then cleaved 
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by another membrane-anchored enzyme to release small hydrophobic peptides into extracellular 

space and endodomains into cytoplasm respectively. (Fig.1-11). 

APP

 secretase cleavage site

secretase cleavage site 
 secretase cleavage site 

A

p3

AICD AICD

A oligomers

senile plagues 

Non amyloidogenic pathwayAmyloidogenic pathway

CT99

neuroprotection 

CT83neuroprotection 

neuroprotection 

 secretase  secretase

 secretase  secretase

sAPP

sAPP

 

Figure 1-11: Production of Aβ from APP 
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Similar to the proteolysis explained above, three proteases, namely α- secretase, β- secretase and 

γ-secretase act on APP (surface protein), resulting in either production of neurotoxic Aβ1-40/42 

peptides or soluble and non-toxic peptides of shorter amino acid sequence (Fig.1-12).57,58 A brief 

summary about these enzymes is given below:  

 

Figure 1-12: Structure of APP along with sites of proteolysis by β and γ secretases 

 

1.9.2.1 α- secretase: This enzyme belongs to A disintegrin and metalloprotease (ADAM) family 

of zinc metalloproteases. There are around 21 different enzymes that belong to the ADAM class. 

The α- secretase can be categorized into ADAM9, ADAM10 or ADAM17/TACE.59 ADAM 

belongs to type-1 transmembrane proteinases. ADAM-9 is known to increase the basal and protein 

kinase c-dependent APPsα release, while ADAM-17 is involved in the cleavage of pro-TNF-α; 

which is a type-1 membrane glycoprotein. The cleavage of APP by α-secretase between amino 

acid 687 and 688 (Fig. 1-13) of APP results in the generation of sAPPα (which is supposed to have 

neuroprotective and neurotrophic properties) and CT83. The CT83 so formed becomes the 
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substrate for γ-secretase which results in the formation of non-toxic p3 (3kDa peptide) and AICD 

(Fig. 1-11). Thus, we can say that the metabolic pathway of α- secretase follows the non-

amyloidogenic pathway. It has also been hypothesized that over-expression/ stimulation of α- 

secretase should prevent the proliferation and aggregation of Aβs to from Aβ oligomers and 

fibrils.57  

1.9.2.2 β-secretase: It is an aspartyl protease enzyme, also known as β-site APP cleaving enzyme 

or BACE.60 It is responsible for cleaving ectodomain part of APP to release sAPPβ, (soluble APP) 

into extracellular fluids, similar to α-secretase but, cleaving sites are different from α-secretase. 

The β secretase cleaves between amino acid 671 and 672 of APP (Fig. 1-13) resulting in the 

formation of sAPPβ, which does not have any neuroprotective or neurotrophic properties. The 

CT99 fragment is generated after the initial processing of APP by β secretase, which then becomes 

a substrate for another cleavage enzyme known as γ-secretase, to produce Aβ fragments and AICD.  

Fragments of the Aβ produced after the final cleavage of CT99 by γ-secretase tends to aggregate 

with other Aβ fragments to form oligomers and then Aβ fibrils. Hence, the cleavage process carried 

out by β secretase is considered as the amyloidogenic pathway.60,61  

1.9.2.3 γ-secretase: This enzyme also belongs to the class of aspartyl protease, and contains four 

different domains: Presenilin-1 (PS1) or (PS-2), nicastrin, APH1, and PEN2, and is known to carry 

out cleavage of its substrates at different sites (γ, ε, and ζ cleavage).62 After the processing of APP 

by the BACE-1 enzyme, γ-secretase can cleave CT99 at various cleaving sites and can produce 

Aβ of different amino acid chains (Fig.1- 13). The γ cleavage can generate Aβ as Aβ1-38, Aβ1-40 or 

Aβ1-42. The ζ- cleavage by γ-secretase produces Aβ1-46, while ε cleavage produces Aβ as Aβ1-49 

(Fig. 1-13). 62–64 
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Figure 1-13: Summary of action of α, β and γ secretase on APP sequence 

 

1.9.3 Clearance mechanism of Aβ 

 

It is essential for the body to disintegrate the Aβ so that normal physiological functions of the brain 

could be preserved. Elevated levels of Aβ in the brain; in synapse mainly, can impact the excitatory 

transmission and can hinder neuronal hyperactivity.27 Certain protease enzyme such as neprilysin, 

insulin degrading enzyme- belonging to the class of thiol metalloendopeptidases, endothelin 

converting enzyme, angiotensin converting enzyme and matrix metalloprotease (MMP9) are all 

capable of breaking Aβ into smaller peptides.65 For example, in the case of MMP9, Aβ can be 

divided into various C-terminal Aβ fragments such as Aβ1-16, Aβ 1-20, Aβ1-23, Aβ1-30, Aβ1-33, Aβ1-

34.
65 The smaller Aβ fragments are known to be less toxic than Aβ1-40  and Aβ1-42 species. 
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1.9.4 Aβ induced toxicity  

 

As discussed previously, Aβ peptide is produced from the cleavage of APP by various secretase 

enzymes. APP or amyloid precursor protein is a surface enzyme expected to be responsible for 

cellular adhesion between neurons and is believed to have neurotrophic as well as neuroprotective 

properties.66,67. After a certain interval of time, this surface protein is subjected to replacement, 

and this is done by using various secretase enzymes. One of the cleaved products of APP is Aβ. 

The Aβ peptide produced usually undergoes clearance, but, in the case of AD, this protein tends 

to aggregate and forms Aβ fibrils, which are the main constituents of senile plaque.56. However, 

before Aβ aggregates to form a stable, non-soluble fibril structure, the soluble forms of Aβ are 

known to be highly toxic to most of the biological processes.31,56. The Aβ monomers, dimers and 

oligomers come under this category of being soluble and extremely toxic to the normal biological 

processes. It has been observed that Aβ oligomers are the most toxic species among other forms49. 

The Aβ mediated toxicity can be classified into five main categories as below (Fig. 1-14):31,68:  

 Aβ mediated mitochondrial dysfunction  

 Aβ mediated oxidative stress 

 Aβ mediated synaptic dysfunction  

 Aβ mediated changes in the membrane permeability 

 Aβ mediated telomerase inhibition 
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Figure 1-14: Aβ induced mitochondrial dysfunction and oxidative stress 

 

1.9.4.1 Aβ mediated Oxidative stress 

 

Aβ is known to have some metal binding properties. Free metal ions such as Cu2+ and Fe3+  are 

known to form  Aβ-metal chelate complexes.69,70 The ability of the Aβ to bind to these metal ions 

can be explained by the presence of histidine (His6, His 13 and His14) and tyrosine (Tyr10) in the 

molecular structure of Aβ. These amino acid residues are known as the metal binding site, 

especially for Cu2+. The nitrogen atom of the indole ring in histidine and oxygen of the hydroxyl 

group in the tyrosine molecule can provide necessary electrons to the metal ions so that metal ion 

can chelate with Aβ. This metal-Aβ chelate constitutes the base for the reduction of metals by the 

amino acid methionine (Met35) present in Aβ. The reduced metal ions can then react with 
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molecular oxygen to generate superoxide anion. These superoxide ions then produce hydrogen 

peroxide by accepting protons (in AD, the pH of brain fluid is slightly acidic). Hydrogen peroxide 

further reacts with reduced metal ions to form hydroxyl radical by Fenton reaction. Superoxide 

ions can also react with hydrogen peroxide to generate hydroxyl ions via Haber-Weiss reaction. It 

should be noted that all these reactions take place due to the generation of reduced form of metal 

chelated to Aβ.  The overall redox reaction by which the metal reduction occurs can be explained 

as follows69–71:  

Aβ Met(S) + Cu2+                                 Aβ Met (S+) + Cu1+ 

Cu1+ + O2                                    Cu2+ + O2
.- 

O2
.- + O2

.- + 2H+                                H2O2  + O2  

Cu1+ + H2O2                                 Cu2+ + OH. + OH-   {Fenton Reaction} 

O2
.- + H2O2                                                  OH. + OH- + O2 {Haber- Weiss reaction} 

The Aβ- metal- radical form is capable of abstracting protons from the neighboring proteins and 

lipids and thus causing lipid peroxidation. Also, metal chelated Aβ is susceptible for accelerated 

aggregation as compared to the metal free Aβ.70  

1.9.4.2 Aβ mediated mitochondrial dysfunction  

 

Aβ mediated mitochondrial dysfunction can be proceeded by two major ways (Fig. 1-14). These 

two major pathways are;  

 Changes in the membrane permeability of cells- this phenomenon is caused by the 

formation of Aβ pores on the surface of the cells. These pores can carry Ca2+ ions freely 

from the extracellular fluid into the cytosol of the cells. This causes an elevation of Ca2+ in 



 

35 
 

the cytosol and thus, mediates the Ca2+ induced mitochondrial dysfunction.  Ca2+ enters the 

mitochondria and causes disruption of electron transport chain (ETC), oxygen 

consumption, the membrane potential of mitochondrial membranes. An interruption in the 

ETC soon causes the release of cytochrome C which will initiate a cascade of reactions and 

causes apoptosis of the cells via caspase mechanism.72–76  

 The presence of interneuronal Aβ: It is evident from various microscopic studies that Aβ 

can penetrate the cell wall and can accumulate within different cell organelles of the 

neurons; mitochondria in particular. Aβ aggregates have been present the mitochondria of 

the AD patients as well as AD mouse models. It has been hypothesized that Aβ when 

present in mitochondria can chelate to the metal ions such as copper and iron. These metal 

ions are required for proper functioning of ETC, and thus, the presence of Aβ can hinder 

ETC efficiency and thus causes cells to die off because of reduced production of ATP in 

the neuronal cells.72–74  

1.9.4.3 Aβ mediated changes in the membrane permeability 

 

As it has already been discussed previously, that Aβ causes the change in the membrane 

permeability. This occurs due to insertion of Aβ peptides inside the cell wall of the neurons and 

causes an increase in the permeability of the cell wall by forming Aβ channel pores. A soluble 

form of Aβ i.e. monomers, dimers and oligomers are known to interact with the cholesterol 

molecules which are present on the surface of the cell walls. This interaction between Aβ and 

cholesterol causes Aβ to get inserted into the cell wall without compromising the elasticity of  the 

cell wall. The cell wall with Aβ channel pores is highly permeable to the Ca2+, and this results in 

elevated Ca2+ levels within the neuronal cells and thus results in various Ca2+ regulated downstream 

processes such as mitochondrial dysfunction and Ca2+ induced synaptic dysfunction.77,78.  
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1.9.4.4 Aβ mediated synaptic dysfunction  

 

AD is considered to be a disorder of synaptic dysfunction. In mild AD, hippocampal synapse 

begins to collapse, and a decrease in synaptophysin (a presynaptic vesicle protein) is observed. All 

these events have been linked to the effect of Aβ’s presence at the synaptic cleft region. Soluble 

forms of Aβ: mostly oligomers, is known to impair synaptic plasticity by disturbing the balance 

between long-term potentiation (LTP) and long-term depression (LTD). Both LTP and LTD are 

related to the activity of AMPA (2-amino-3-(3-hyrdoxy-5-methylisoxazol-4-yl)-propionic acid) 

receptors. LTP is caused by the increased activity of AMPA receptors in the postsynaptic 

membrane, while, AMPARs constant removal and decreased function is related to cause LTD. 

This observation becomes a hypothesis that AMPARs number and function exhibit a significant 

role in AD pathology.12,66,79 It was observed that Aβ oligomers are known to have an endocytotic 

effect when present near AMPARs which leads to LTD. With NMDA (N-methyl-D-aspartate) 

receptors, the effect of Aβ is different. The NMDA receptors, similar to AMPA receptors, belong 

to the category of glutamate receptors, but the mechanism by which Aβ modifies the activity of 

NMDA receptors is completely different. It is believed that Aβ causes excessive activation of the 

NMDA receptors and this leads to excessive accumulation of Ca2+ within the neurons which leads 

to neuronal excitotoxicity. This observation was proved when a solution of Aβ40 was given to 

hippocampal cells causing cell death of the hippocampal cell lines. Neuroprotection was observed 

in the presence of memantine (NMDA receptor antagonist) in the cell cultures. This observation 

supported the idea that NMDA receptor plays a vital role in Aβ induced neurotoxicity.22,80–83 The 

Aβ is also known to impair the activity of acetylcholine receptors (AChRs) by either inhibiting the 

binding of ACh to the receptors or by permanently blocking them.75   
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A summary of the mechanism of the Aβ hypothesis can be represented in a flow diagram as follows 

(Fig. 1-15).   

 

Figure 1-15: Summary of the mechanism of Aβ hypothesis 

1.9.5 Approaches for Targeting Amyloid- β  

 

There are various methods which can be considered while targeting the Aβ cascade as potential 

therapeutics for AD management. The primary target is based on using small molecules as Aβ 

aggregation inhibitors. Though this sounds one of the easiest methods; this might not be entirely 

application to a wide variety of patients. It has been observed that by the time patients are 

diagnosed with AD, the Aβ load is high. As a result, this particular type of approach might not 

apply to patients with advanced AD symptoms. Other targets have been characterized by the Aβ 

production which can be utilized in either preventing the production of Aβ as a whole or by 
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reducing the Aβ load in the brain. Ideally, if potential therapeutic could reduce the Aβ load in the 

brain of the patient and initiate neurogenesis, that drug could be able to reverse the 

pathophysiology of AD. Despite rigorous efforts,   investment in time and s and money,  no new 

anti-AD drug  has reached the market yet. Some AD targets are as follows:   

1.9.5.1 β-secretase inhibitors: BACE-1 inhibitors work on the principle of inhibiting the 

production of Aβ production by inhibiting the activity of the enzyme responsible for the production 

of Aβ from APP. Preventing Aβ production in the brain, though sounds an ideal option, is 

challenging because of the various reasons such as (1) inability of most of the BACE-1 inhibitors 

to penetrate the blood-brain barrier (BBB); (2) Therapeutic considerations for its safety, efficacy, 

and tolerability; (3) Prediction of mechanism-based toxicity/ side effects..84–89 Some small 

molecules have made progress in the discovery ladder:  

 Verubecestat: developed by Merck & Co. is currently in phase-III clinical trials (Fig. 1-

16). 

 

Figure 1-16: Molecular structure of Verubecestat 

Verubecestat is a potent BACE-1 inhibitor with an IC50 of 13nM for BACC-1. This drug 

is known to bind to the aspartate amino acid residues in the active site of BACE-1 and 

prevents the activity of the β-secretase enzyme. This drug, in early clinical studies, is 

known to exhibit excellent safety profile with limited to none immediate side effects. A 
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single administration of this drug via oral route has been observed to reduce the load of Aβ 

in CSF by 92%.89,90 

 AZD3293- developed conjointly by AstraZeneca and Eli Lilly (Fig. 1-17) is currently 

undergoing Phase-III clinical trials and targets BACE-1 for preventing Aβ production.89,90 

Currently in Phase-III clinical trials. 

     

Figure 1-17: Molecular structure of AZD3293 

 CNP520 developed by Novartis and Amgen pharmaceuticals and JNJ-54861911 developed 

by Johnson and Johnson are some of the other drugs which are currently under 

investigation for Phase-II/III trials.89,90  

1.9.5.2 Aβ aggregation inhibitors:  Small molecules are specifically designed to prevent the 

formation of Aβ oligomeric aggregates, which are insoluble and toxic in nature. Some small 

molecules have metal chelating properties which can further enhance their efficacy.91,92.  

According to Atwood and coworkers, Cu2+ and Zn2+ ions are associated with the aggregation of 

Aβ, and administration of metal chelator molecule which can cross the blood-brain barrier can 

drastically reduce the aggregation of Aβ.69,71  

1.9.5.3 Aβ Immunotherapy: Immunotherapy involves the administration of peripheral 

antibodies, for which aggregated Aβ1-42 acts as an antigen and are effective in reducing the 

deposition of Aβ aggregation. It also helps in suppressing the amyloid-associated pathology which 

includes synaptic degeneration, neuritic dystrophy and early tau accumulation by which 
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improvement in synaptic plasticity was observed.93–96 The table (Table 1) below provides a list of 

antibody therapies aimed at scavenging various Aβ aggregates 90:  

S. No.  Antibody Aβ  Target  status company 

1 Crenezumab Oligomers Phase-III Genentech/ 

Roche 

2 Bapineuzumab Monomers, oligomers, and 

plaques 

Failed Phase-

III 

Johnson & 

Johnson/ Pfizer 

3 Solanezumab Soluble monomers Failed Phase-

III 

Eli Lilly 

4 Gentenerumab Plaques Failed Phase-

III 

Roche 

5 Aducanumab Plaques and oligomers Phase-III Biogen 

 

Table 1-1: Various antibodies currently undergoing clinical trials 
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Chapter 2. Hypothesis and Design Rationale 

2.1 Proposal 

 

Figure 2-1: Cholinesterase inhibitors (1–4) with a fused tricyclic ring template 

 

The fused tricyclic ring is a common chemical feature present in a number of cholinesterase 

inhibitors (Fig 2.1). The β-carboline (compound 1) is a known cholinesterase inhibitor whereas 

the 1,2,3,4-tetrahydroacridine containing tacrine (2) was the first drug marketed to treat 

Alzheimer’s disease9. Another natural product mackinazolinone (compound 3, Fig 2.1) based 

derivatives and the phenothiazine (4) derivatives are known to exhibit dual cholinesterase 

inhibition91. These compounds have smaller molecular volumes (range ~ 139.9–153.5 Å3) and 

bind to the catalytic sites of both AChE (monovalent inhibitors) and BuChE enzymes. The 

complexity of AD is highlighted by the fact that addressing only the cholinergic hypothesis using 

cholinesterase inhibitors can provide only symptomatic relief and is not a long-term solution2,12. 

These findings led us to design novel fused tricyclics capable of exhibiting multi-targeting 

potential. The objective was to develop small molecules to inhibit (i) the cholinesterase enzymes; 

(ii) prevent Aβ aggregation and (iii) exhibit antioxidant properties. A literature search led us to a 

novel fused tricyclic ring template pyrazino[1,2-a]indol-1(2H)-one (Fig 2-2). Initial modeling 

studies indicated that this novel tricyclic ring was able to bind in the catalytic site of AChE enzyme 

(Figure 2.3, panel A). Our goal was to modify the structure of this template to provide bivalent 

inhibition. It is known that the PAS of AChE is involved in promoting AChE-mediated Aβ 
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aggregation97,98. Based on this observation, we decided to pursue 3-phenylpyrazino[1,2-a]indol-

1(2H)-one  (abbreviated as PPI in this thesis) derivatives (Fig 2-2) as the molecular docking 

experiment of PPI in AChE shows that the core fused tricyclic pyrazino[1,2-a]indol-1(2H)-one 

ring was interacting with the catalytic site of AChE (Fig 2-3, panel B) whereas the C3 phenyl was 

oriented in the PAS of AChE suggesting its potential exhibit bivalent inhibition. In addition, we 

anticipated that the PPI could stabilize the dimer assembly and prevent Aβ self-assembly and 

aggregation into higher order structures. In this regard, the molecular docking study of PPI in the 

Aβ40 dimer model suggests that the molecular structure of PPI and its derivatives are capable of 

preventing the Aβ aggregation by interacting with the hydrophobic regions of the Aβ protein such 

as KLVFFA region. (Fig 2.4) represents the molecular docking studies of PPI with the dimer model 

of Aβ40. 

 

Figure 2-2: The chemical structure of proposed novel fused tricyclic ring system 3-

phenylpyrazino[1,2-a]indol-1(2H)-one  (PPI). 
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(A)                                                                                            (B) 

                                                                                

                         (C )                                                                                    (D) 

 

Figure 2-3: Binding modes of pyrazino[1,2-a]indol-1(2H)-one (panel A)  and 3-

phenylpyrazino[1,2-a]indol-1(2H)-one (Panel B) in the active site of human AChE enzyme. 
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(A)                                                                                            (B)  

Figure 2-4: Binding mode of 3-phenylpyrazino[1,2-a]indol-1(2H)-one (Panel A and B) in the 

Aβ40 dimer assembly. 

 

2.1.1  3-Phenylpyrazino[1,2-a]indol-1(2H)-one (PPI) 

 

The pyrazino[1,2-a]indole derivatives are known to exhibit a number of biological activities  

ranging from serotonin antagonists, thrombolytic, CNS depressants, anxiolytics, antihistamines, 

anticonvulsants, protein kinase inhibitors, antifungal and as antibacterial agents.99 Various 

substituted Pyrazino[1,2-a] indoles have known biological activities and have been investigated 

for its actions ranging from serotonin antagonists, thrombolytic, CNS depressants and, anxiolytics 

for which the BBB penetration is essential99. 

We aim to incorporate C3 pharmacophores capable of providing anti-Aβ and antioxidant 

properties (Fig. 2-5). For example, a 3,4-dimethoxyphenyl substituent will be incorporated at the 
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C3 position. Previous studies from the Nekkar Rao lab has shown that the presence of a 3,4-

dimethoxybenzyl substituent in tacrine and quinazoline-based derivatives provided dual 

cholinesterase inhibition and anti-Aβ aggregation properties.100 Other proposed C3 substituents 

include adding phenolic groups that possess antioxidant properties such as 3-methoxy-4-

hydroxyphenyl and 4-hydroxy-3-methoxyphenyl substituents at the C3 position. These 

substituents are known to be in the natural antioxidant curcumin.101 

 

Figure 2-5: Proposed PPI derivatives as multi-targeting agents. ClogP value ranges from 2.97 to 

3.69 
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2.2 Conclusion 

 AD is a complex disease. The current pharmacotherapy options based on cholinesterase 

inhibition is inadequate. The amyloid cascade hypothesis shows that aggregation of Aβ is a major 

event known to promote neurotoxicity, mitochondrial dysfunction, oxidative stress, 

neurodegeneration and cognitive decline. Our proposal has identified a novel fused tricyclic 3-

phenylpyrazino[1,2-a]indol-1(2H)-ones (PPI) as a suitable system to incorporate multi-targeting 

activity such as cholinesterase and Aβ aggregation inhibition, and antioxidant activity. A library 

of PPI derivatives will be synthesized and evaluated by structure-activity relationship (SAR) 

studies to understand the structural requirements for multi-targeting activity. The planned 

experiments include compound library synthesis, their characterization, in vitro studies using 

human AChE and BuChE enzymes, Aβ aggregation kinetics, transmission electron microscopy 

(TEM) experiments and molecular docking studies. These results would provide evidence on the 

suitability of PPI derivatives as potential anti-AD agents. 
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Chapter 3. Methodology  

3.1 Introduction  

This chapter describes (i) the synthetic chemistry methods used to prepare PPI derivatives and the 

reaction mechanisms involved; and (ii) the principles of biological assay methods used including 

cholinesterase inhibition, Aβ40/Aβ42 aggregation kinetics studies, transmission electron 

microscopy, molecular docking and antioxidant assays.   

3.2 Preparation of PPI derivatives  

The synthetic summary to prepare the PPIs library is shown in Scheme 3.1. It was commenced by 

using commercially available substituted or unsubstituted indole-2-carboxylic acids (1a-c, Scheme 

3.1). Esterification of these indole carboxylic acids under mild conditions provided ethyl indole-

2-carboxylates (2a-c) in excellent yields (yield 75-80%). Coupling of these indole carboxylates 

with substituted or unsubstituted 2-bromoacetophenones (3a-m) provided ethyl 1-(2-oxo-2-

phenylethyl)-1H-indole-2-carboxylates(4a-n) with yields ranging from 14-45%. Cyclization of 

4a-n coupled product gave us the targeted compounds (5a-n) in excellent yields 65-75% as shown 

in Scheme 3-1. The reaction conditions used and the mechanisms are discussed in the following 

sections. 

 

 

 

 



 

48 
 

 

 

 

 



 

49 
 

 

 

Scheme 3-1: General scheme to synthesize PPI derivatives 5a-o. Reagents and conditions– (a) 

EtOH, Conc. H2SO4, Reflux, 78°C, 24h; (b) Substituted 2-bromoacetophenone (1.2 eq), Cs2CO3 

(2 eq), KI (catalytic qty.), ACN, reflux at 70°C for 24h ; (c) CH3COONH4 (10 eq.), BuOH: 

CH3COOH (4:1), PV, 150°C for 8h.                                        
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3.2.1 Preparation of ethyl indole-2-carboxylates 2a-c 

 

 

Scheme 3-2: Synthesis of ethyl indole-2-carboxylates (2a-c) 

 

Indole-2-carboxylic acids 1a-c were subjected to an esterification using ethanol in the presence of 

catalytic amounts of conc. H2SO4 under reflux. The product was obtained in excellent yields 

(~75%). The reaction mechanism is shown in Figure 3-1. :  
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Figure 3-1: Fisher esterification of indole-2-carboxylic acids. 

3.2.2. Preparation of ethyl 1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylates (4a-n) 

 

 

Scheme  3-3: Synthesis of ethyl 1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylates 4a-n 
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Ethyl-1-(2-oxo-2phenylehyl)-1H-indole-2-carboxylates (4a-n) were synthesized by coupling 

ethyl indole-2-carboxylates (2a-c) with 2-bromoacetophenones (3a-m) in the presence of CS2CO3 

and KI as a catalyst under reflux as shown in Scheme 3-3. This reaction provided moderate to good 

yields (14-45%).   

This coupling reaction follows SN2 type mechanism and can be written as follows: 

 

Figure 3-2: The reaction mechanism of ethyl indole-2-carboxylate and Bromo acetophenone 

coupling 
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3.2.3. Preparation of 3-phenylpyrazino[1,2-a]indo-1-(2H)-ones (PPIs) 5a-n 

 

 

 

Scheme  3-4: Synthesis of 3-phenylpyrazino[1,2-a]indo-1-(2H)-ones 

This is the last step in the preparation of target PPI compounds. We started by adding 

CH3COONH4 to ethyl 1-(2-oxo-2-phenylehyl)-1H-indole-2-carboxylates (4a-n) in n-BuOH and 

AcOH (4:1 ratio) in a pressure vial. The reaction mixture was then subjected to react under high 

temperature (150 0C using an oil bath) to afford the target compounds 5a-n in good yields (65-

75%). The proposed mechanism is given in Figure 3-3. 
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Figure 3-3: The proposed intramolecular cyclization of ethyl-1-(2-oxo-2-phenylehyl)-1H-

indole-2-carboxylate to afford 3-phenylpyrazino[1,2-a]indo-1-(2H)-one 

3.2.3.1 Preparation of substituted 2-bromo acetophenones (3a-m) 

 

 

Scheme  0-5: Synthesis of 2-bromoacetophenones 
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All the 2-bromoacetophenones (3a-m) utilized in the synthesis were prepared in-house by 

brominating substituted acetophenones with CuBr2 as the source of bromine (Scheme 3-5). The 

reaction was initiating by activating CuBr2 in EtOAc under heating after which substituted 

acetophenones was added to the reaction mixture, and the reaction mixture was stirred under reflux 

conditions to afford 2-bromoacetophenones (yield range 70-90%). CuBr2 mediated bromination 

can be explained by the following mechanism102: 

 

Figure 3-4: Reaction mechanism of acetophenone bromination 
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O-Tert-butyldimethylsilyl (O-TBDMS) protection of 2-bromo-hydroxyacetophenones 

 

Scheme  3-6:  OTBDMS protection of hydroxy acetophenone 

 

To prevent the reactivity of hydroxy acetophenone during their coupling with the indole esters (2a-

c, Scheme 3-3), the phenolic groups were protected using the TBDMSCl reagent as shown in 

Scheme 3-1. The reaction of hydroxy acetophenone with TBDMSCl in the presence of base 

triethylamine at r.t. Provided OTBDMS-protected Bromo acetophenones in good yields (~50%).  

The mechanism of which is as given in Fig 3.5.  

  

 

Figure 3-5: Reaction mechanism of OTBDMS protection 
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Deprotection of the OH group was done in the second step itself when the reaction mixture was 

washed with 1M HCl solution before washing it with conc brine solution. Additional washing with 

the HCl solution helped to remove the protecting group, giving the free –OH.   

3.3. Biological assay methods  

3.3.1 Cholinesterase (ChE) enzyme inhibition assays   

 

In 1961, Ellman described an easy and rapid colorimetric method for defining the 

anticholinesterase activity of small organic molecules103,104. In this approach, sulfur analogs of 

ACh (ATCh- thioacetylcholine) and BuCh (BuTCh- thiol butyrylcholine) were used as substrates. 

In the absence of ChE inhibitors, these sulfur analogs were hydrolyzed by ChE to form thiocholine 

and respective acids (i.e. acetic acid and butyric acid). The thio-choline generated reacts with on 

dithiobis-(2-nitrobenzoic acid) (DTNB), to produce 2-nitro-5-thiobenzoic acid (NTB). The NTB 

is a yellow chromophore (Fig.3-6), which can be detected at a wavelength ranging from 405 nm 

to 412 nm. In the presence of an inhibitor, the generation of thiocholine by the hydrolysis of ATCh/ 

BuTCh gets reduced which can be quantified to determine ChE inhibition (IC50 values). Reference 

agents such as donapezil and rivastigmine were included for comparison of inhibitory potency of 

PPI derivatives.  
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Figure 3-6: Principle of Ellman assay to determine ChE inhibition 

 

3.3.2. Aβ aggregation inhibition assay 

 

This method is based on the principle that a change in the intensity of the fluorescence is observed 

when fluorescent dyes such as thioflavin T (ThT) bind to the β-sheet structure of Aβ which can be 

monitored at 450 nm (Excitation wavelength) and 490 nm (emission 

wavelength)respectively105,106. A linear correlation between the relative fluorescence unit (RFU) 

and the aggregation process can be made106. Molecules which can inhibit the aggregation of Aβ in 

solution when ThT is present will result in lower relative fluorescence units (RFU’s) and molecules 

which cannot inhibit the aggregation of Aβ or, which can induce the aggregation of Aβ will have 

a higher RFU. Hence, a linear relationship can be observed by monitoring fluorescence — Higher 

RFU value indicates the inability of the molecule to slow or inhibit the Aβ aggregation. The assay 
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was conducted using Aβ40/42. The known Aβ aggregation inhibitor orange G was used as a 

reference compound.  

 3.3.3. Molecular modeling   

 

Molecular docking studies of PPI derivatives were performed using Discovery Studio (DS) 

Structure-Based-Design, version 4.0 (BIOVIA, San Diego, U.S.A). For performing the docking 

studies, X-ray crystal structure of AChE (PDB:4EY7), BuChE (PDB: 2XQJ), Aβ40 (PDB:2LMN) 

and Aβ42 (2NAO) were obtained from RCSB protein data bank. To the enzyme structure, 

hydrogens were added.  Test compounds were built in 3D using Build Fragment tool, and energy 

minimization were performed for 1000 iterations using steepest descent and conjugate gradient 

minimizations respectively. The CDOCKER algorithm in the receptor-ligand interactions was 

used to dock the molecules with appropriate enzymes after defining a 15 Å sphere radius within 

the enzyme which covers all the active site amino acids. CHARMm force field was used for the 

docking studies. The quality of ligand-enzyme complex was evaluated based on CDOCKER 

Interaction energy and CDOCKER energy in kcal/mol. Also, polar and nonpolar interactions were 

visualized to assess the critical interactions involved in compound binding with the respective 

enzyme/ protein.    

3.3.4. Anti-oxidant activity 

 

The ability of PPI derivatives to scavenge and neutralize free radicals was determined by using a 

stable free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH)107,108. DPPH radical in solution appears 

to be purple in color with strong absorbance at 517nm. The neutralization of this radical by an 

antioxidant source results in the formation of a stable DPPH species which have a very weak 

absorbance at 517 nm (Fig. 3-7).109 Trolox and resveratrol were used as reference agents. 
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Figure 3-7: Scavenging of DPPH radical to form stable DPPH molecule. 

 

3.3.5: Transmission electron microscopy (TEM) 

 

To assess the morphology of amyloid beta protein after the incubation of the protein with or 

without the presence of synthesized compounds, transmission electron microscopy (TEM) is used. 

TEM imaging assay results were used to support the results obtained from the Aβ aggregation 

kinetics assay. Images obtained from TEM can be used to explain the mechanism of Aβ 

aggregation by comparing the images of Aβ alone as well as the morphology of the Aβ observed 

when an aggregation inhibitor is present.110,111  
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Chapter 4. Results and Discussion  

4.1 Introduction 

As discussed in Chapter 2, the primary aim of this research project was to synthesize a compound 

library based on PPI template, acquire SAR data and assess its anti-AD potential.  

In this segment, we will discuss the observed biological activities of the compound library toward 

ChE enzymes, amyloid protein Aβ40/42 aggregation properties and their antioxidant properties. We 

will also support our results with TEM experiments (for supporting anti-Aβ40/42 aggregation 

properties) as well as in silico molecular docking studies to understand the binding interactions 

(for ChE inhibition properties and anti- Aβ40/42 aggregation properties). Best molecular candidates 

will be those compounds which can exhibit ChE inhibition properties, inhibit aggregation of Aβ 

and exhibit antioxidant properties.  

4.1.1: Cholinesterase (ChE) enzyme inhibition assays: The ability of the synthesized PPI 

compound library (5a-q) to exhibit cholinesterase inhibition activity was the first and foremost 

biological evaluation performed. Known ChE inhibitors donepezil and rivastigmine were used as 

reference agents. We expect the compounds based on PPI template to show dual AChE/ BuChE 

inhibition properties. Our modeling studies suggest that PPI derivatives would be more specific to 

inhibit AChE than BuChE due to the difference in the active size of these enzymes. This difference 

has been explained previously in Section: 1.8.3.1 (Chapter 1). 

The anti-AChE/ BuChE data is shown in Table 4-1. The results have been presented as IC50 values 

which define the amount of compound required to inhibit the activity of the compound by 50%112. 

Other parameters such as partition coefficient (clogP), selectivity index, and molecular volume 

have also been included.  
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S.No

.  

Cmpd. 

Name 

R R’ IC50 AChE 

(μM) 

IC50 BuChE 

(μM) 

ClogP MV(Å3) 

1. 5a H H 8.73 ± 0.17 

 

19.81 ± 0.99 3.69 189.67 

2. 5b H 4-OH 7.7 ± 0.74 

 

19.82 ± 1.7 3.14 207.17 

3. 5c H 4-OMe 7.53 ± 0.32 18.40 ± 0.46 3.67 216.08 

4. 5d H 3,4-diOMe 7.47 ± 0.54 15.18 ± 0.62 3.39 243.52 

5. 5e H 3-OMe 7.56 ± 0.79 > 50 3.67 218.49 

6. 5f H 3,4,5-triOMe 7.21 ± 0.53 17.98 ± 0.70 3.01 294.97 

7. 5g H 3-OH 7.01±0.31 19.59± 0.2 3.14 199.28 

8. 5h H 2-OMe 7.30 ± 0.41 1.9 ± 0.03 3.11 220.2 

9. 5i H 2,4-diOMe 7.67 ±0.72 21.42 ± 1.1 3.18 244.21 

10. 5j H 2.5-diOMe 7.91 ± 0.72 17.07 ± 0.07 3.18 243.52 

11. 5k H 4-OH, 3-OMe 8.7 ± 0.42 

 

>50 2.97 231.18 

12. 5l H 3-OH, 4-OMe 7.60 ± 0.97 >50 2.97 232.89 

13. 5m 9-OMe H 7.18±0.61 >50 3.65 216.43 

14. 5n                                    8-OMe H 6.34±0.27 >50 3.67 218.14 

15. Donepezil 

 

  0.003 ± 0.001 3.6 ± 0.7 4.59 321.7 

16. Rivastigmine   8.57 ± 0.014 12.29 ± 0.65 2.62 226.3 

______________________________________________________________________________ 
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Table 4-1: Compiled data for compounds 5a-n (a) IC50 data for against AChE/ BuChE, (b) CLogP 

values (c) Selectivity index of 5a-n towards AChE against BuChE (d) Molecular volume of the 

compounds 5a-n.  

IC50 values of the compounds presented in the table are the mean of three separate experiments (n 

= 3), and the standard deviation is represented as (± values) from its average value. ClogP values 

were calculated using ChemDraw Professional software from CambridgeSoft company. Molecular 

volume (MV) was calculated using Discovery Studio program from BIOVIA Inc (San Diego, CA).  

 

 

Figure 4-1: Bar graph of AChE and BuChE inhibition profile of PPI derivatives 5a-n. Results are 

expressed as average of three independent experiments (n=3) 
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The OMe substituted compounds became the largest subset of the substitutions made at the C3 

phenyl moiety as well as at position C8 and C9 of the indole moiety in the PPI ring system. Under 

this subset, seven compounds were synthesized, and their activity was compared. In the C3 phenyl 

substituted series of compounds, it was interesting to note that almost all of them showed similar  

activity (by comparing the IC50 values) toward AChE. The IC50 range was between 7 to 8 μM 

(Table 4-1, Figure 4-1) which were similar to that of rivastigmine (IC50 ~8.5 μM). This similarity 

in the activities of these compounds towards AChE can be explained by the fact that, the volume 

of AChE active site is narrow and small (~302 Å3), while the molecular volume of the compounds 

lies in the range of (189.69Å3 to 294.97Å3 ). Thus, C3 methoxy-substituted compounds 5c, 5d, 5e, 

5f, 5h, 5i, 5j exhibited a similar range of activity and were not potent inhibitors of AChE compared 

to donepezil (AChE IC50 = 3nM, Table 1). In contrast, much weaker inhibitory activity was   

observed when the compounds were tested against BuChE (Table 4-1, Figure 4-1) and most of the 

compounds were less potent compared to their AChE inhibition profile. In general, the inhibition 

activity ranged from 15-21 μM with few compounds not exhibiting any inhibition at the maximum 

concentration tested (IC50 < 50 μM, Table 1, Fig. 4-1). In the BuChE SAR, it appears that the C3 

phenyl substituents contributed in enhancing BuChE inhibitory potency with the unsubstituted C3 

phenyl containing compound 5a (Table 1) exhibiting weak BuChE inhibition (IC50~ 20 μM) 

whereas increasing the size this ring led to gradual improvements in BuChE inhibitory potency 

with compound 5c (R1 = 4-methoxyphenyl; BuChE IC50 = 18.4 μM) and 5d (R1 = 3,4-

dimethoxyphenyl; BuChE IC50 = 15.1 μM) exhibiting better inhibition (Table 1).   

The addition of a C3 3,4,5-trimethoxyphenyl ring (compound 5f) did not further improve the 

activity toward BuChE (IC50~ 18 μM). Interestingly, compound 5h (3-(2-

methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one) was the most potent BuChE inhibitor in this 
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series (BuChE IC50 = 1.90 μM, Table 4.1) and was almost 1.8-fold more potent compared to the 

reference agent donepezil (BuChE IC50 = 3.60 μM). At this point, we are not able to explain the 

reason for this observation. It is plausible that the intramolecular interaction with the OMe and NH 

of pyrazinone (Fig. 4-2) can potentially lock compound 5h in a favorable conformation within the 

BuChE active site. Molecular docking of 5h in BuChE is discussed later in this chapter.   

 

                         

Figure 4-2: Proposed intramolecular interaction of ortho-OMe substituent with pyrazinone                                     

 

The corresponding regioisomers 5n and 5m which had substituents at either C8 or C9 position (on 

the indole ring) that exhibited similar AChE inhibition properties as C3 phenyl substituted 

compounds with IC50 values of  7.18 μM and 6.34 μM respectively for compounds 5n and 5m.   

Interestingly, both of these compounds were found to be inactive against BuChE (IC50 > 50 μM, 

Table 4.1).  

To incorporate antioxidant properties, we included phenolic groups at the C3 position (compounds 

5b and 5g, Table 4.1).  These compounds were able to exhibit dual ChE exhibition and did not 

show any significant difference compared to the unsubstituted compound 5a (5b: IC50 AChE= 7.7 

μM, IC50 BuChE= 19.82 μM; 5g: IC50 AChE=7.01 μM, IC50 BuChE= 19.59 μM, Table 4.1). In 
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contrast, incorporation of another antioxidant pharmacophore viz: 4-hydroxy-3-methoxyphenyl or 

4-methoxy-3-hydroxyphenyl substituents at the C3 position provided selective inhibition of AChE 

in compounds 5k and 5l (AChE IC50 ~ 7.7 μM; BuChE IC50 < 50 μM). 

 

 

4.1.2: Molecular docking of 5m and 5d using AChE enzyme 

 

The binding interactions of best candidates with ChE inhibition was investigated by molecular 

docking experiments. The most potent AChE inhibitor 5m (IC50 ~ 6.3 μM) was investigated using 

the known x-ray crystal structure of human AChE enzyme (Figure 4-3). It was observed that the 

compound 5m was mostly interacting with the amino acids present in the PAS- Trp286, Tyr124, 

Asp74, andTyr341. Strong hydrogen bonding was found between the C1 carbonyl oxygen and the 

–OH of Tyrosine341 amino acid (distance~ 2Å), as well as between NH at 2nd position and 

carbonyl carbon of the Asp74 (distance ~2.9Å). Even though it was present very close (distance~ 

3.6Å) from to the His447 (part of the catalytic triad), no interactions were observed between the 

5m and the amino acids of the catalytic triad in AChE.    
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Figure 4-3: The binding mode of compound 5m in the active site of human AChE enzyme. 

 

Next, we investigated the binding interactions of the dual ChE inhibitor 5d in the active site of 

AChE (Figure 4-4). It was interesting to note the orientation of compound 5d in the active pocket 

of the hAChE enzyme. The tricyclic ring system was found to be away from the catalytic triad 

(distance from His447~ 3.9Å), and no interactions were found between the tricyclic ring and the 

catalytic triad. Rather, the tricyclic ring system was found closer to the acyl pocket (~ 3Å from 

Phe295), PAS (~ 5.5 Å from Tyr124) and the hydrophobic subsite (~4.8Å and 5.2 Å from Trp86 

and Tyr337 respectively). While the C3 diOMe-phenyl ring was found to interact with the Tyr124 

via pi-pi T-shaped interactions (distance ~ 5.2 Å) in the PAS. This study shows that the 3,4-

dimethoxyphenyl ring orients are closer to the PAS region and exhibit bivalent inhibition of AChE 

enzyme.  
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Figure 4-4: The binding mode of compound 5d in the active site of human AChE enzyme. 

 

Molecular docking of 5h in the active site of BuChE enzyme  

 

Figure 4-5: The binding mode of compound 5h in the active site of human BuChE enzyme. 

 

Mode of interaction of compound 5h with hBuChE (PDB: 1POI) has been depicted in fig. 4-5. It 

was observed that the tricyclic moiety was in proximity (distance ~ 4.4 Å) to the catalytic triad of 
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the BuChE enzyme and was interacting with the His438 (part of the catalytic triad) via pi-pi-T 

stacking interactions. Compound 5h also targeted the choline binding site (Trp82) via pi-pi-T 

stacking interactions (distance ~ 5.6 Å). Due to the ability of 5h to target both catalytic triads as 

well as choline binding site resulted in its capacity to block the activity of BuChE. 

4.1.3: Conclusions: Our results indicate that majority of the PPI derivatives evaluated exhibit dual 

cholinesterase inhibition with some compounds exhibiting selective AChE inhibition.  Among, the 

compounds synthesized, compounds 5e, 5k, and 5l were identified as selective AChE inhibitors 

with IC50 values ranging from ~7-9 μM. Compound 5h was recognized as the most potent BuChE 

inhibitor (IC50 = 1.9 μM) and was 1.8-fold more potent compared to the reference agent donepezil. 

In this PPI library compound 5h (Fig. 4-6) was identified as the best compound with dual AChE/ 

BuChE inhibition profile ( AChE IC50 =7.3 μM;  BuChE IC50 =1.9 μM). Some of the best 

compounds from the series are highlighted in Fig.4-6. These studies show that PPI derivatives do 

have ChE inhibition properties. However, they exhibit weak inhibition profile compared to 

marketed ChE inhibitors (e.g., donepezil). Nevertheless, the study suggests that PPI template is 

amenable to further SAR optimization.  

                                                                                 

                                5h                                                                                5n                            

             IC50 AChE = 7.3 μM                                                          IC50 AChE = 6.3 μM                                   

             IC50 BuChE = 1.9 μM                                                        IC50 BuChE = >50 μM 

 Figure 4-6: Chemical structures of best PPI derivatives with ChE inhibition 
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4.2: Amyloid-beta aggregation inhibition studies 

After estimating the anti-ChE activity of synthesized compounds, PPI derivatives 5a-n were 

further evaluated for their ability to inhibit aggregation of Aβ1-40/42 by using ThT based 

fluorescence. The test compounds were tested at three different concentrations of 1, 5 and 25 μM. 

The results are presented as average % inhibition ± s.d. n = 3 for three independent experiments 

and were compared with the known inhibitor orange G.   

 

4.2.1: Activity of PPI derivatives toward Aβ1-40 aggregation  

 

The % inhibition of compounds 5a-n at 1, 5 and 25 μM have been summarized in Table 4.2.  
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Table 4-2: Aβ1-40 aggregation inhibition activity of PPI derivatives 5a-n. 

 

The results are expressed as average ± SD (n = 3) for three independent experiments. The 

aggregation kinetics assays were carried out using a ThT-based fluorescence assay (excitation = 

440 nm and emission = 490 nm) in the presence of 5 μM of Aβ1-40 in phosphate buffer pH 7.4 at 

37 ºC with shaking over a period of 24 h.  

 

Compounds with OMe substituents at either C3 phenyl or indole ring (5m-o) exhibited good Aβ40 

aggregation inhibition properties (compounds 5c-f, 5h-j, 5m and 5n). Compound 5d with a C3 

3,4-dimethoxyphenyl substituent exhibited superior anti-Aβ40 aggregation property at all the tested 

Compound R R’ % inhibition at 
1 μM 

% inhibition at 
5 μM 

% inhibition at 
25 μM 

5a H H 60.7 62.8 67.4 

5b H 4-OH 41.6 59.3 63.0 

5c H 4-OMe 32.4 42.9 50.9 

5d H 3,4-diOMe 49.9 56.2 83.3 

5e H 3-OMe 41.6 37.5 17.6 

5f H 3,4,5-triOMe 23.2 43.2 52.9 

5g H 3-OH 7.8 29.8 74.4 

5h H 2-OMe 33.0 40.1 67.7 

5i H 2,4-diOMe 48.7 55.5 71.9 

5j H 2.5-diOMe 42.6 29.2 19.2 

5k H 4-OH, 3-OMe 61.7 53.9 58.4 

5l H 3-OH, 4-OMe 41.1 40.0 42.5 

5m 9-OMe H P.A. 14.5 32.7 

5n 8-OMe H 1.6 13.0 43.4 

Orange-G   51.8 57.2 59.0 
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concentrations (~ 50%, 56% and 83% inhibition of aggregation at 1, 5 and 25 μM respectively, 

Table 2). The C3 phenyl unsubstituted compound 5a exhibited good aggregation properties at all 

the concentrations. However, there were no significant changes observed in the concentration 

range tested with 60-67% inhibition seen (Table 4-2). Both compounds 5a and 5d exhibited 

superior inhibition at 25 μM (67% and 83% inhibition respectively, Table 4.2) compared to the 

reference agent Orange G (59% inhibition, Table 4-2). Replacing the  C3 3,4-di-OMe-phenyl 

substituent in 5d with a 2,4-di-OMe-phenyl substituent in 5i reduced the anti-Aβ aggregation 

activity compared to 5d, although the compound 5i did exhibit better activity compared orange G 

at 25 μM (71.9% inhibition). Interestingly, the presence of a 2,5-di-OMe-phenyl substituent in 

compound 5j led to a gradual decline in its anti-aggregation activity as the compound 

concentration was increased from 1 to 25 μM (19.2% at 25 μM; Table 4.2). Addition of a C3 3,4,5-

trimethoxyphenyl substituent (compound 5f) provided anti-Aβ aggregation activity (23-53% 

inhibition, Table 4.2). However, it was not as potent as the di-OMe substituted derivatives 5d and 

5i. Mono OMe substitution at the C3 phenyl (compounds 5c and 5e) showed weaker inhibition of 

Aβ aggregation compared to the 2,4-/3,4-di-OMe and 3,4,5-tri-OMe-phenyl substituted 

derivatives. The presence of phenolic groups in compounds 5b (63% inhibition) and 5g (74% 

inhibition) provided better inhibition compared to the corresponding OMe derivatives 5c and 5e 

(Table 4.2).  The presence of OMe substituent at either the C8 or C9 position (indole ring) in 

compounds 5n and 5m exhibited weaker inhibition of Aβ aggregation (33% and 43% inhibition at 

25 μM) about the OMe substituted derivatives at the C3 phenyl ring (Table 4.2). Incorporation of 

both OH and OMe substituents at the C3 phenyl rings (compounds 5k and 5l) led to retention of 

Aβ aggregation inhibition properties with compound 5k exhibiting similar activity (58% inhibition 

at 25 μM)  as the reference agent orange G (Table 4.2).  The aggregation kinetics profile of the 
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best PPI inhibitor 5d is shown in Figure 4.4(b) and is compared with orange G kinetics (Figure 

4.4(a)). In the absence of test compounds, the Aβ40 aggregation kinetic curve follows a sigmoidal 

pattern (represented as 100% control- yellow line, Figure 4.4). This pattern can be divided into 

various phases representing (a) a lag phase (flat line till ~ 10 h mark), (b) growth phase- 

exponential growth in the aggregation of the peptide,  and (c) saturation phase- corresponding to 

stabilization of Aβ fibril formation. A compound which can decrease the in tensity of the 

fluorescence at these phases can be considered as an inhibitor of Aβ1-40 aggregation. 

Orange G exhibits a concentration-dependent decline in the fluorescence intensity which indicates 

its ability to reduce Aβ1-40 fibril load. At 25 μM, it was able to reduce the growth and saturation 

phase significantly suggesting its ability to interact with various Aβ1-40 aggregates and prevent 

fibril formation (Figure 4.7 (a)).  The aggregation kinetics profile of 5d exhibited a similar trend 

with a concentration-dependent decline in the fluorescence intensity (Figure 4.7 (b)). Compound 

5d was able to prevent the growth phase and reduce Aβ1-40 aggregation similar to orange G.  The 

kinetic aggregation curves suggest that compound 5d is capable of interacting with lower order 

Aβ1-40 aggregates and prevent their self-assembly into higher order structures.  
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Figure 4-7: (a) Aggregation kinetics of orange G at 1, 5 and 25 μM in the presence of Aβ1-40 (5 

μM) over a period of 24 h in phosphate buffer pH 7.4, at 37 ºC; (b) Aggregation kinetics of 

compound 5d at 1, 5 and 25 μM in the presence of Aβ1-40 (5 μM) over a period of 24 h in phosphate 

buffer pH 7.4, at 37 ºC 
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4.2.2: Molecular docking studies of PPI derivatives with Aβ1-40   

 

Compound 5d was found to be the most potent compound in the series with ~85% inhibition at 25 

μM for Aβ40 aggregation. Compound 5d was studied for its interaction with dimer and fibril 

models of the Aβ40 peptide (PDB:2LMN). Molecular docking of 5d with dimer model of the Aβ40 

is given in Fig.4-8 and 4-9. It was observed that 5d was interacting with both the C- and N-terminal 

amino acids of the dimer assembly. Aβ40 forms a “U” shaped conformation which consists of a 

long arm, a short arm and the bend which connects the long and the short arm.  The long arm spans 

the region made up of amino acids Asp1 to Val24 followed by amino acids Gly25 to Lys28 which 

forms the turn region of the peptide. The short arm of the dimer model consists of amino acids 

Gly29 to Val40. 53,113  

 

Figure 4-8: Molecular docking studies of compound 5d with the dimer model of Aβ1-40   
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5d was observed to interact with Ala21 (part of the long arm) via pi-alkyl interactions (distance 

~4.8Å). Ala21 also forms the part of the KLVFFA region in Aβ which is known to be the seeding 

point of the Aβ aggregation. The interaction of 5d with 

Ala21 could be crucial in its ability to prevent Aβ40 

aggregation. At the C-terminal end, pi-alkyl interactions 

were observed with Ile32 (distance ~4.4Å), and strong 

hydrogen bonding was seen between OMe group of 5d and 

the NH and the carbonyl (C=O) groups of Val36 (distance~ 

2.4Å). These interactions might stabilize the dimer 

assembly and prevent further aggregation.  

 

Figure 4-9: A Closer look at the interactions of 5d with amino acids present in Aβ1-40 dimer 

model. 

 

Docking studies of compound 5d with the fibril model of Aβ9-40 (PDB:2LMN) (Fig. 4-10) show 

that the compound can interact at the steric-zipper interface between individual oligomer assembly.  
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Figure 4-10: Molecular docking studies of compound 5d with  (a) Fibril model of Aβ9-40  (b) 

Closer look at the interactions of 5d with amino acids present in Aβ9-40 fibril model.  

 

Compound 5d was found to be primarily interacting with the C-terminal amino acids of the Aβ40 

peptide sequence i.e. Gly33 to Met35. Amide-Pi stacking between the Gly33, and Leu34 with 

compound 5d was found to be the most favorable type of interactions with an average distance of 

~3.8Å. Strong hydrogen bonding (distance~2.9Å) between the carbonyl oxygen at the C1 position 

with the free NH group of the Leu34 made the molecular assembly between 5d- Aβ9-40 fibril 

structure stable. Compound 5d also formed pi-sulfur interactions with Met35 (distance~ 5.6Å), 

which is known to play an important role in the reduction of metal ions such as Cu2+ and Fe3+. This 

reduction of metal ions is known to initiate Aβ induced oxidative stress cascade.31,67,70  These 

observations suggest that the PPI derivative 5d can interact with the Aβ40 fibril assembly 

potentially preventing its conversion to higher order fibrils and plaques 
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4.2.3: Activity of PPI derivatives toward Aβ1-42 aggregation 

 

The Aβ42 aggregation studies for PPI derivatives 5a-n were conducted at four different 

concentrations (1, 5, 10 and 25 μM) and compared with orange G and resveratrol. In general PPI 

derivatives exhibited better inhibition of Aβ42 at all concentrations tested compared to their 

inhibition profile toward Aβ40. The results are summarized in Table 4-3.   
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Table 4-3: Aβ1-42 aggregation inhibition activity of PPI derivatives 5a-n 

 

The results are expressed as average ± SD (n = 3) for three independent experiments. The 

aggregation kinetics assays were carried out using a ThT-based fluorescence assay (excitation = 

440 nm and emission = 490 nm) in the presence of 5 μM of Aβ1-42 in phosphate buffer pH 7.4 at 

37 ºC with shaking over a period of 24 h. N.D – Not determined, P.A.- promotes aggregation.  

 

Compound R R’ % 
inhibition 

at 1 μM 

% 
inhibition 

at 5 μM 

% inhibition 

at 10 μM 

% 
inhibitio
n at 25 

μM 
5a H H 34.7 40.0 64.3 75.8 

5b H 4-OH 36.5 56.7 70.1 76.3 

5c H 4-OMe 40.0 51.9 63.1 70.5 

5d H 3,4-diOMe 41.7 48.9 67.8 90.0 

5e H 3-OMe P.A. 1.5 N.D 10.7 

5f H 3,4,5-
triOMe 

57.4 45.1 56.6 72.9 

5g H 3-OH P.A. 8.4 32.4 54.2 

5h H 2-OMe 52.1 43.9 66.1 93.8 

5i H 2,4-diOMe 61.2 59.9 80.7 N.D 

5j H 2.5-diOMe 55.8 44.2 52.5 71.1 

5k H 4-OH, 3-
OMe 

41.5 48.6 64.4 62.7 

5l H 3-OH, 4-
OMe 

34.3 61.1 73.3 74.5 

5m 9-OMe H P.A. P.A. P.A. P.A. 

5n 8-OMe H P.A. 35.6 N.D. 54.2 

Orange-G   59.0 69.4 79.4 90.0 

Resveratrol   72.3 82.5 87.8 91.3 
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The C3 phenyl substituted compound 5a exhibited a gradual increase in Aβ42 inhibition with the 

maximum inhibition seen at 25 μM (75.8% inhibition, Table 4-3). Incorporating OMe groups at 

either ortho, meta or para-position of the C3 phenyl ring provided contrasting results with 

compound 5c exhibiting a concentration-dependent inhibition whereas 5e  exhibited either none 

or weak inhibition at 25 μM (Table 4.3). Compound 5h showed excellent inhibition (93.8% 

inhibition at 25 μM) and exhibited better inhibition compared to the reference agents orange G and 

resveratrol (Table 4.3). The presence of di-OMe substituents in compounds 5d (Fig. 4-11(b)), 5i 

and 5j provided good to excellent inhibition ranging from 40-90% (Table 4-3). The presence of 

3,4,5-tri-OMe phenyl substituent in 5f provide consistent and good inhibition of Aβ42 aggregation 

at all the compound concentrations tested (45-73% inhibition range, Table 4.3). The presence of 

phenolic groups at the C3 position provided mixed results with the compound 5b (R1 = 4-

hydroxyphenyl) exhibiting similar inhibition profile as the unsubstituted compound 5a (R1 = 

phenyl, Table 4-3), whereas compound 5g (R1 = 3-hydroxyphenyl) was less potent compared to 

5b. The C7 and C8 OMe substituted compounds (indole ring) 5m and 5n showed either no or weak 

inhibition (Table 3). In other SAR modification, the presence of either a C3 4-hydroxy-3-

methoxyphenyl or a 4-methoxy-3-hydroxyphenyl substituent provided good inhibition 

(compounds 5k and 5l, Table 4.3) at 25 μM with ~63% and ~75% inhibition respectively.  
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Figure 4-11: (a) Aggregation kinetics of orange G at 1, 5 and 25 μM in the presence of Aβ42 (5 

μM) over a period of 24 h in phosphate buffer pH 7.4, at 37 ºC; (b) Aggregation kinetics of 

compound 5d at 1, 5 and 25 μM in the presence of Aβ1-42 (5 μM) over a period of 24 h in phosphate 

buffer pH 7.4, at 37 ºC 
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4.2.4: Molecular docking studies of PPI derivatives with Aβ1-42   

 

Figure 4-12: Molecular docking studies of compound 5d with dimer model of Aβ42 (PDB:2NAO)  

 

Compound 5d was found to be the most potent compound in the series with ~90% inhibition at 25 

μM for Aβ42 aggregation. Compound 5d was studied for its interaction with dimer models of the 

Aβ42 peptide (PDB:2NAO). Molecular docking of 5d with dimer model of the Aβ42 is given in 

Fig. 4-12. It was observed that 5d was interacting with the KLVFFA region of the dimer assembly. 

5d was found to interact with Lys16 via hydrogen bonding interactions (distance ~1.85Å). Lys16 

forms the part of the KLVFFA region in Aβ which is known to be the seeding point of the Aβ 

aggregation. The interaction of 5d with Lys16 could be crucial in its ability to prevent Aβ42 

aggregation and might stabilize the dimer assembly.  
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4.2.5: Conclusions 

 

Our studies show that PPI derivatives exhibit anti-Aβ aggregation properties. More significantly, 

they had activity toward both Aβ40 and Aβ42 peptides which is highly desirable as Aβ42 

aggregates are known to be relative more toxic compared to Aβ40 aggregates (Reference). To our 

satisfaction, the core PPI template with a C3 phenyl ring (compound 5a), itself exhibited dual 

inhibition of Aβ40/Aβ42 aggregation ranging from 67-76% inhibition at 25 μM. Furthermore, the 

presence of a C3 3,4-dimethoxyphenyl substituent in 5d (3-(3,4-dimethoxyphenyl)pyrazino[1,2-

a]indol-1(2H)-one, Fig. 4-13) provided excellent inhibition of both Aβ40 and Aβ42 aggregation 

with 83% and 90% respectively at 25 μM. 

  

5d (3-(3,4-dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one) 

% inhibition Aβ40 (at 25 μM) = 83% 

% inhibition Aβ42 (at 25 μM) = 90% 

Figure 4-13: Chemical structure of best PPI derivatives (5d) with best overall Aβ40/42 inhibition 

profile. 
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4.3: Antioxidant activity 

The antioxidant activity of some of the selected compounds was evaluated using DPPH assay 

method, and the results were compared with standard compounds with known antioxidant activity 

such as Trolox, resveratrol, and curcumin.91,92 It was observed that compounds based on PPI 

template exhibit antioxidant activity as shown in Table 4.4. The C3 phenyl substituted compound 

5a itself exhibited antioxidant activity (33-34% DPPH scavenging, Table 4.4, Fig. 4-14) which 

suggests that the core PPI template itself has antioxidant activity. The phenolic compound 5b 

exhibited better antioxidant activity (46% and 55% DPPH scavenging at 25 μM and 50 μM, Table 

4.4) compared to 5a. Compound 5d which exhibited excellent Aβ40/42 inhibition also exhibited 

good antioxidant activity (~48% DPPH scavenging at 50 μM). The best compound in the series 

was compound 5k which possess an antioxidant pharmacophore at the C3 position (R1 = 4-

hydroxy-3-methoxyphenyl) and exhibited ~56% and 83% scavenging at 25 and 50 μM 

concentrations respectively. It was able to exhibit superior antioxidant activity compared to the 

known antioxidant resveratrol (49% and 64% DPPH scavenging at 25 μM and 50 μM, Table 4.4). 

These studies show that PPI templates possess inherent antioxidant activity and are a suitable 

system to design and develop multi-targeting agents to treat AD.  
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Figure 4-14: The antioxidant activity of PPI derivatives 5a, 5b, 5d, 5f, 5h, 5k and 5l as % 

DPPH scavenging. 
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Table 4-4: DPPH radical scavenging activity of PPI derivatives 

 

Results are obtained as average ± s.d. (n = 3) for two independent experiments. The test compounds 

(25 and 50 μM) were incubated with DPPH (56 μM) at r.t for one h, and the absorbance was 

measured at 517 nm.  

4.4: Transmission electron microscopy (TEM) 

 

TEM imaging on Aβ peptides was carried out in the presence of best PPI derivatives based on the 

aggregation kinetics assay results to study Aβ aggregate morphology after 24 h of incubation at 

370C.110 A 1:1 ratio of Aβ (25 μM) to test compound (25 μM) was used to prepare copper mesh 

grids. The grids were analyzed and compared with a control group which did not include any test 

Compound R R’ % DPPH 
Scavenging at 25 

μM 

% DPPH Scavenging 

at 50 μM 

5a H H 33.9 32.8 

5b H 4-OH 46.3 54.7 

5d H 3,4-diOMe 38.8 47.8 

5f H 3,4,5-triOMe 35.8 38.4 

5g H 3-OH 31.9 32.8 

5h H 2-OMe 24.4 26.8 

5k H 4-OH, 3-OMe 55.4 83.2 

5l H 3-OH, 4-OMe 37.7 50.0 

TROLOX   61.4 96.2 

Resveratrol   48.5 64.1 

curcumin   69.6 93.2 
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compound. The images are shown in Figure 4-15. In the absence of test compounds Aβ40 and Aβ42 

aggregates and forms fibrils when incubated at 37 ºC for 24 h (Figure4-15 (a) and (c)). In the 

presence of orange G (25 μM) a significant reduction is fibril content in seen (Figure4-15 (d)). 

Strikingly, in the presence of our best PPI compound 5d and 5h, we observed a drastic reduction 

in Aβ40 Aβ42 aggregation and fibril load (Figure4-15 (b) (e) and (f)) indicating its potent anti-

aggregation effect. These studies show the anti-Aβ potential of PPI derivatives. 

         

  

   

Figure 4-15: TEM images of Aβ40 alone (a); Aβ40 in the presence of 25 μM  compound 5d; (c) 

Aβ42 alone; Aβ42 in the presence of 25 μM orange G and (d);  Aβ42 in the presence of 25 μM of 

compound 5d (e);  Aβ42 in the presence of 25 μM of compound 5h (f) 

a b 

c 

 
f e d 
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Chapter 5. Conclusions and Future Directions 

5.1 Conclusions 

This MSc thesis project embarked on the design and synthesis of small molecule library based on 

a 3-phenylpyrazino[1,2-a]indol-1(2H)-one (PPI) ring template as novel anti-AD agents. PPI 

compounds 5a-n were synthesized using straightforward and efficient chemistry. The biological 

evaluation included the following in vitro assays: Cholinesterase enzyme (AChE/BuChE) 

inhibition assay, amyloid-beta (Aβ40 and Aβ42)  aggregation inhibition assay and assessing their 

antioxidant properties.  

The PPI template was considered based on the previous literature which has shown that fused 

tricyclic ring systems exhibit cholinesterase inhibition and preliminary modeling studies. 

Furthermore, research from Dr. Nekkar’s lab and other groups has demonstrated that fused 

tricyclics rings can be modified by SAR studies to incorporate multi-targeting potential including 

dual cholinesterase inhibition, Aβ aggregation inhibition and antioxidant properties which are 

involved in AD pathophysiology.    To assess the potency of the PPI ring system as a multi-target 

template for the modulation of different aspects of AD, compounds 5a-n were synthesized with 

good yields (65-75%). In vitro biological evaluations for the synthesized compound library was 

carried out using previously developed and optimized protocols. The biological profiles for the 

synthesized compounds (5a-n) wase obtained using human AChE and BuChE enzymes, Aβ40 and 

Aβ42 aggregation inhibition, as well as antioxidant properties for selected compounds. Molecular 

modeling studies were also conducted to better understand the binding patterns of the compounds 

with ChE enzymes and Aβ. The Aβ40/Aβ42 aggregate morphology was evaluated in the presence 
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of PPI derivatives by TEM experiments. A brief summary of the physicochemical properties and 

biological activity data for the synthesized PPI compound library (5a-n) is given below:  

Molecular Weights (MW): 189.69- 294.97 Å3 

Partition coefficient (ClogP): 2.97- 3.69 

AChE Inhibition (IC50): 6.3- 8.7 μM 

BuChE Inhibition (IC50): 1.9- 50 μM 

Aβ40 aggregation inhibition (%inhibition at 25 μM): 17.4- 83.3% 

Aβ42 aggregation inhibition (%inhibition at 25 μM): 10.2- 93% 

Antioxidant capacity (% inhibition at 25 μM): 24- 55.4% 

Antioxidant capacity (% inhibition at 50 μM): 26-83.2% 

 

All the final compounds synthesized based on the novel PPI ring system (5a-n) showed moderate 

activity toward the AChE (IC50 = 6-9 μM). While only ~65% of the compounds (nine out of 

fourteen compounds synthesized) exhibited weak inhibitory properties towards BuChE (IC50 = 

~15-20 μM). It was also observed that thirteen out of fourteen compounds showed some selectivity 

toward AChE inhibition, except for compound 5h [3-(2-methoxyphenyl)pyrazino[1,2-a]indol-

1(2H)-one] - which showed a strong BuChE selectivity with an IC50 value of 1.9 μM and it was 

the most potent BuChE inhibitor identified. Compound 5h exhibited better BuChE inhibition that 

the reference drugs donepezil and rivastigmine. Compounds 5m [9-methoxy-3-

phenylpyrazino[1,2-a]indol-1(2H)-one] with -OMe substitution at C9 of the indole ring was the 
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most potent AChE inhibitor (AChE IC50 ~ 6.3 μM) and had no observed activity towards BuChE 

activity (IC50  > 50 μM). The best compound in the series which exhibited dual AChE/ BuChE 

inhibitory properties was compound 5h (AChE IC50 = 7.3 μM; BuChE IC50 = 1.9 μM).  

The PPI derivatives 5-o were also screened for their potential inhibitory properties toward the 

aggregation of Aβ40 and Aβ42. In the case of Aβ40 aggregation inhibition, most of the compounds 

exhibited very good inhibitory properties (17-84% inhibition). About ~65% of the compounds 

(nine out of fourteen compounds synthesized) exhibited more than 50% inhibition in Aβ40 

aggregation at 25 μM. Compound 5d [3-(3,4-dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one] 

was identified as the best compound in the series with ~84% inhibition of the Aβ40 aggregation at 

25 μM and was better than the reference agent orange G (~59% inhibition at 25 μM).    All the 

synthesized compounds were also tested for inhibition of the Aβ42 aggregation. Interestingly, more 

than 85% of the compounds (twelve out of fourteen compounds) exhibited more than 50% 

inhibition at 25 μM concentration. The average range of inhibition for Aβ42 aggregation was 

observed to lie in the range of ~10 to 94%. Compounds 5d [3-(3,4-dimethoxyphenyl)pyrazino[1,2-

a]indol-1(2H)-one]and 5h [3-(2-methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one] became the 

best compounds in the series with ~90% and 94% inhibition at 25 μM respectively. These results 

were found to be at par with the reference compounds orange G and resveratrol (~90% and 92% 

respectively, at 25 μM).  

Eight out of fourteen synthesized compounds were also evaluated for their antioxidant properties 

using DPPH method. The PPI derivatives exhibit moderate to very good antioxidant properties at 

25 μM (% DPPH scavenging: 24.5 to 55.4%) and 50 μM (% DPPH scavenging: 26.8 to 83%). The 

unsubstituted compound 5a also exhibited ~34% antioxidant property. This can be attributed to 

the presence of the conjugated pyrazinone ring present which can form a stable radical after 
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reacting with the DPPH radical. The presence of a 4-hydroxy-3-methoxyphenyl  pharmacophore 

in curcumin gives rise to its excellent antioxidant properties (% DPPH scavenging = 93.2% at 50 

μM). Adding the same pharmacophore to 5a at the C3 phenyl ring in compound 5k [3-(4-hydroxy-

3-methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one]), drastically improved the antioxidant 

properties (%DPPH scavenging = 83.2% at 50 μM). In conclusion, compounds based on a novel 

3-phenylpyrazino[1,2-a]indol-1(2H)-one ring can be used to design small molecules to target the 

various AD pathologies. Although their cholinesterase inhibition activity is weak, they represent 

a promising class of compounds. Among them, two compounds, namely 5d and 5h exhibit multi-

targeting potential in AD.  

                                                      

 

5h 5d 

IC50 AChE = 7.3 μM IC50 AChE = 7.47 μM 

IC50 BuChE= 1.9 μM IC50 BuChE= 15.18 μM 

% Aβ40 inhibition ~ 65% (at 25 μM) % Aβ40 inhibition ~ 84.7% (at 25 μM) 

% Aβ42 inhibition ~ 94% (at 25 μM) % Aβ42 inhibition ~ 90% (at 25 μM) 

Antioxidant capacity (% inhibition at 50 μM) 

~47.8% 

Antioxidant capacity (% inhibition at 50 μM) 

~47.8% 
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5.2 Future Directions 

 Establish toxicity profile of the best compounds identified such as 5d and 5h by conducting 

in vitro cell death assays.  

 Structural modifications of compound 5h by replacing the ortho-OMe-phenyl with 2,6-di-

ortho-OMe-phenyl, ortho-OH-phenyl and 2,6-di-ortho-OH-phenyl substituents to 

understand the contribution of ortho-OMe toward BuChE selectivity.   

Expansion of the compound library by structural modification of the PPI template. The addition 

of various groups at the C3 position such as substituted pyridine ring system or a five and seven-

membered heterocyclic ring system (Figure 5.1) will provide SAR data on structure requirements 

for multi-targeting activity. Other proposed modifications include changing the steric and 

electronic properties at C4, C6, C7, C8, C9 and C10 positions.  

                                                                 

R = H      

R’ =H, -Me, -Et, n-alkyl  

R’’ = H, OH, Cl, NH2, NHMe  

Figure 5-16: Proposed SAR modification of PPI template (ClogP:  1.60- 3.41) 
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Chapter 6. Experimental  

 

6.1 Chemistry 

All the chemicals were purchased from Sigma-Aldrich® or Acros Organics® and were more than 

95% pure and were used without further purification. Thin layer chromatography (TLC) was 

performed using silica gel 60 F254 (Merck), and spot visualization was done by short (254 nm) or 

long (365 nm) wavelength. Column chromatography was carried out using Merck 230-400 mesh 

silica gel. Melting points were determined using the digital melting point apparatus from REACH 

Devices, USA. 1H and 13C NMR were performed on a Bruker Avance spectrometer (Department 

of Chemistry, University of Waterloo) using CDCl3 or DMSO-d6 as the solvent. Coupling 

constants (J-values) were recorded in Hertz (Hz). Abbreviation used to represent NMR signals 

were s – singlet, d – doublet, t – triplet, m – multiplet, br – broad. Low-resolution mass 

spectrometry (LRMS) data was obtained using Single Quad LC-MS (1260 infinity model), Agilent 

Technologies. The purity of the compound was determined using Agilent 6100 series single quad 

LCMS equipped with an Agilent 1.8 μm Zorbax Eclipse Plus C18 (2.1 x 50 mm) running 30:70 

Water: ACN with 0.1% FA with a flow rate of 0.2mL/min. All the final compounds (5a-n) were 

more than 95% pure. 

General procedure for the synthesis of substituted ethylindole-2-carboxylates (2a-c) 

100 mL round bottom flask was charged with 6.2 mmol of indole-2-carboxylic acids (1a-c). To 

the reaction flask, 40 mL of anhydrous ethanol was added along with 1ml of conc. H2SO4. The 

reaction mixture was refluxed for 24 h at 78 0C. After the reflux, the solvent was removed in vacuo 

to give the crude product which was then re-dissolved in 25 mL of ethyl acetate and then 

transferred into a separatory funnel. The organic layer was firstly neutralized with a saturated 
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NaHCO3 solution, and then the organic layer was washed three times with 25 mL of saturated 

brine solution. The organic layer was then dried over anhydrous MgSO4, and the solvent was 

removed in vacuo to yield the crude product which was then further purified using silica gel flash 

column chromatography using 100% DCM as an eluent.  

Ethyl 1H-indole-2-carboxylate (2a): This compound was synthesized by esterification of 1a as 

per the method given above to give white solid product. (83.8%), mp: 120-122°C. 1H NMR 

(CDCl3, 300 MHz): δ = 1.39 (t, 3H, J = 7.1 Hz), 4.37 (q, 2H, J = 7.1 Hz), 7.12 (t, 1H, J = 7.2 Hz), 

7.24-7.22 (m, 1H), 7.29 ( t, 1H, J = 7.0 Hz), 7.40 (d, 1H, J = 8.2 Hz), 7.69 (d, 1H, J = 8.0 Hz), 

8.92 (br, 1H). LRMS (ESI) m/z calc for C11H11NO2 ([M + H]+);189.1 Found 190.2. 

Ethyl 4-methoxy-1H-indole-2-carboxylate (2b): This product was purchased from Alfa Aesar 

and was used without further purification (purity ~96%).   

Ethyl 5-methoxy-1H-indole-2-carboxylate (2c): This product was purchased from Alfa Aesar 

and was used without further purification (purity ~96%).   

General procedure for the synthesis of substituted 2-bromoacetophenones (3a-m) 

To a 250 ml RB flask, 100 mL of dry EtOAc was added followed by the addition of 2 eq. (2.0 

mmol) of CuBr2 and the mixture was stirred for 15 min. at 70 0C. Then 1 eq. (1.0 mmol) of the 

acetophenone dissolved in 10 mL of dry EtOAc was poured into the reaction flask. The reaction 

mixture was refluxed for 12 h at 70 0C, cooled to room temperature and was poured on top of a 

celite bed to filter off the CuBr2 precipitate. The filtered organic layer was collected, washed with 

brine solution (25 mL x 3). The aqueous layer was discarded and the organic layer was collected 

and dried over MgSO4.  Solvent was evaporated in vacuo and the crude product was further 

purified by column chromatography using EtOAc: MeOH (5:1) as the eluent.  
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2-Bromo-1-(4-hydroxyphenyl)ethan-1-one (3b): The product was obtained by brominating 1-

(4-hydroxyphenyl)ethan-1-one using CuBr2   to afford a yellowish product. Mp 116-118 oC (82%). 

1 H NMR (300 MHz, DMSO-d6): δ = 4.47 (s, 2H), 6.82 (d, 2H, J = 9.0 Hz), 7.84 (d, 2H, J = 9.0 

Hz), 10.48 (s, 1H).   

2-Bromo-1-(4-methoxyphenyl)ethan-1-one (3c):  The product was obtained by brominating 1-

(4-methoxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. Mp 64-66 oC (92.1%). 

1 H NMR (300 MHz, DMSO-d6): δ = 3.83 (s, 3H), 4.80 (s, 2H), 7.02 (d, 2H, J = 9.0 Hz), 7.94 (d, 

2H, J = 7.0 Hz). 

2-Bromo-1-(3,4-dimethoxyphenyl)ethan-1-one (3d): The product was obtained by brominating 

1-(3,4-dimethoxyphenyl)ethan-1-one using CuBr2 to afford a yellowish product. (81.9%). 1 H 

NMR (DMSO-d6, 300 MHz): δ = 3.79 (s, 3H), 3.83 (s, 3H), 4.82 (s, 3H), 7.05 (d, 1H, J = 8.4 Hz), 

7.45 (s, 1H), 7.64 (d, J = 8.4 Hz, 1H). 

2-Bromo-1-(3-methoxyphenyl)ethan-1-one (3e): The product was obtained by brominating 1-

(3-methoxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. Yield: 77.9%. 1H NMR 

(DMSO-d6, 300 MHz): δ = 3.79 (s, 3H) 4.90 (s, 2H), 7.20 (d, 1H, J = 8.3Hz), 7.41 (m, 2H, J = 7.9 

Hz), 7.54 (d, 1H, J = 7.6 Hz). 

2-Bromo-1-(3,4,5-trimethoxyphenyl)ethan-1-one (3f): The product was obtained by 

brominating 1-(3,4,5-trimethoxyxyphenyl)ethan-1-one using CuBr2 to afford a yellowish product. 

(69.5%). 1H NMR (DMSO-d6, 300 MHz): δ = 3.72 (s, 3H), 3.82 (s, 6H), 4.92 (s, 2H), 7.21 (s 2H).  

2-Bromo-1-(3-hydroxyphenyl)ethan-1-one (3g): The product was obtained by brominating 1-

(3-hydroxyxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. ( 79.9%). 1H NMR 

(DMSO-d6, 300 MHz): δ = 4.83 (s, 2H), 7.02 (d, J = 6.8 Hz, 1H), 7.30-7.40 (m , 3H), 9.74 (s, 1H). 
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2-Bromo-1-(2-methoxyphenyl)ethan-1-one (3h): The product was obtained by brominating 1-

(2-methoxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. (75.7%). 1H NMR 

(DMSO-d6, 300 MHz): δ = 3.87 (s, 3H), 4.74 (s, 2H), 7.00 (t, J = 7.3 Hz, 1H), 7.14 (d, 1H, J = 8.3 

Hz), 7.53 (t, 1H, J = 6.9 Hz), 7.63 (d, J = 7.7 Hz, 1H). 

2-Bromo-1-(2,4-dimethoxyphenyl)ethan-1-one (3i): The product was obtained by brominating 

1-(2, 4-dimethoxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. (68%). 1H NMR 

(DMSO-d6, 300 MHz): δ = 3.78 (s, 3H), 3.84 (s, 3H), 4.67 (s, 2H), 6.60-6.64 (m, 2H), 7.68 (d, 1H, 

J = 7.9 Hz). 

2-Bromo-1-(2,5-dimethoxyphenyl)ethan-1-one (3j): The product was obtained by brominating 

1-(2, 5-dimethoxyphenyl)ethan-1-one using CuBr2  to afford a yellowish product. mp?? ( 76.8%). 

1H NMR (DMSO-d6, 300 MHz): δ = 3.70 (s, 3H), 3.82(s, 3H), 4.75 (s, 2H), 7.06- 7.18 (m,  3H). 

2-Bromo-1-(4-hydroxy-3-methoxyphenyl)ethan-1-one (3k):  The product was obtained by 

brominating (4-hydroxy-3-methoxyphenyl)ethan-1-one using CuBr2 to afford a yellowish product. 

(78.2%). 1H NMR (DMSO-d6, 300 MHz): δ = 3.79 (s, 3H), 4.77 (s, 2H), 6.80 (d, 1H, J = 7.2 Hz), 

7.44 (d, J = 7.2 Hz, 1H), 7.61 (d, 1H, J = 7.2 Hz), 10.47 (s, 1H). 

General procedure for the synthesis of OTBDMS protected 2-bromoacetophenones (3b’, g’, 

l’, and m’) 

Hydroxy group containing substituted bromo acetophenones (3.9 mmol; 1eq.) were dissolved in 

20 mL of DCM/ EtOAc (1:1) solution in a 100mL round bottom flask. To this mixture, 7.8 mmol 

(2 eq) of TEA was added dropwise, and the mixture was stirred for five min. at room temperature. 

Then, six mmol (1.5 eq) of TBDMSCl was added directly to the reaction mixture and was stirred 

for 18 h at room temperature. Afterward, the reaction mixture was transferred to a separatory 
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funnel, and the organic layer was washed with ten mL of 1M HCl solution. The aqueous layer was 

discarded, and the organic layer was collected in an EM flask, and the contents were dried over 

MgSO4. The solvent was removed in vacuo to obtain the crude product which was further purified 

by silica gel chromatography using n-hexanes/ EtOAc (5:1) as eluent.   

2-Bromo-1-(4-((tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (3b’):  The product was 

obtained by coupling 3b with TBDMSCl to obtain a yellowish liquid ( 58.3%). 1H NMR (DMSO-

d6, 300 MHz): δ = 0.21 (s, 6H), 0.97 (s, 9H), 4.61 (s, 2H), 6.86 (d, 2H, J = 9.0 Hz), 7.88 (d, 2H, J 

= 9.0 Hz).   

2-Bromo-1-(3-((tert-butyldimethylsilyl)oxy)phenyl)ethan-1-one (3g’): The product was 

obtained by coupling 3g with TBDMSCl to afford a yellowish liquid(79.9%). 1H NMR (300 MHz, 

DMSO-d6): δ= 0.21 (s, 6H), 0.97 (s, 9H), 4.83 (s, 2H), 7.02 (d, 1H, J = 6.8 Hz), 7.26 (m, 3H).  

2-Bromo-1-(4-((tert-butyldimethylsilyl)oxy)-3-methoxyphenyl)ethan-1-one (3k’): The 

product was obtained by coupling 3k with TBDMSCl to afford a yellowish liquid (51%), 1H NMR 

(300 MHz, DMSO-d6): δ = 0.17 (s, 6H), 0.98 (s, 9H), 3.84 (s, 3H), 4.63 (s, 2H), 6.85 (d, 1H, J = 

7.2 Hz), 7.41 (d, 1H, J = 7.2 Hz), 7.50 (s, 1H). 

2-Bromo-1-(3-((tert-butyldimethylsilyl)oxy)-4-methoxyphenyl)ethan-1-one (3l’): The product 

was obtained by coupling 3l with TBDMSCl to afford a yellowish liquid and was used without 

purification.  

General procedure for the synthesis of substituted ethyl-1-(2-oxo-2-phenylethyl)-1H-indole-

2-carboxylates (4a-n) 

One eq. (4.8 mmol) of ethylindole-2-carboxylates (2a-c) was charged in a 250 mL RB flask to 

which 40 mL acetonitrile was added. The reaction mixture was stirred at 70 0C till all the starting 
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material dissolves. To the above reaction mixture, two equivalents (9.6 mmol) of cesium carbonate 

(CS2CO3) was added, and the reaction mixture was kept under stirring at 70 0C for fifteen minutes. 

To the above mixture, KI was added in catalytic quantities (~10-15mg) after which the 1.2 eq. of 

(5.79 mmol) of substituted 2-bromoacetophenones (3a-m) was added, and the reaction mixture 

was refluxed for 24 h at 70 °C, cooled to r.t., the contents were transferred to a separatory funnel, 

and the reaction mixture was diluted with 25 mL of EtOAc. The organic layer was washed with 

brine solution (20 mL x 3 ), and the organic layer was dried over MgSO4. The solvent was removed 

in vacuo and the crude product obtained was further purified by silica gel column chromatography 

using n-hexanes/ EtOAc (5:1) to afford yellowish products.  The analytical data is given below; 

Ethyl 1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylate (4a) 

The product was obtained by coupling 2a with 3a by the method mentioned above to afford a 

yellowish solid product (460 mg, yield: 31.2%). mp: 118-120 0C. 1H NMR (  CDCl3, 300 MHz): 

δ = 1.29 (t, 3H, J = 7.2  Hz), 4.23 (q, 2H, J = 7.2 Hz), 6.03 (s, 2H), 7.12- 7.32 (m, 4H), 7.41 (s, 

1H), 7.49 (t, 1H, J = 7.2 Hz), 7.60 (t, 1H, J = 7.2 Hz), 7.69 ( d, 1H, J = 7.8 Hz), 8.04 (d, 2H, J = 

7.2 Hz,); 13C NMR (CDCl3, 75 MHz): δ = 14.24, 50.93, 60.59, 109.63, 111.14, 120.92, 122.90, 

125.33, 126.24, 127.77, 128.88, 133.71,  135.04, 139.73, 162.29, 193.39.   

Ethyl 1-(2-(4-hydroxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4b):  

The product was obtained by coupling 2a with 3b’ by the method mentioned above to afford a 

yellowish brown solid product (yield: 48.8%). mp: 109-110 0C. 1H NMR (  DMSO-d6, 300 MHz): 

δ = 1.12 (t, 3H, J = 7.1 Hz,), 4.15 (q, 2H, J = 7.1 Hz,), 6.06 (s, 2H), 6.88 (d, 2H, J = 7.4 Hz), 7.26 

(d, 2H, J = 8.1 Hz), 7.31 (d, 1H, J = 8.8 Hz), 7.57 (s, 1H),  7.67 (d, 1H, J = 7.0 Hz),  7.93 (d, 2H, 

J = 8.0 Hz), 8.03 (s, 1H).  
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Ethyl 1-(2-(4-methoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4c):  

The product was obtained by coupling 2a with 3c by the method mentioned above to afford a 

yellowish solid product (yield: 39.9%).mp: 108-109 literature value is different 0C. 1H NMR 

(CDCl3, 300 MHz): δ = 1.29 (t, 3H, J = 7.1 Hz,), 3.88 (s, 3H), 4.23 (q, 2H, J = 7.1 Hz,), 5.98 (s, 

2H), 6.96 (d, 2H, J = 6.9 Hz), 7.14- 7.29 (m, 3H, J = 8.3 Hz), 7.40 (s, 1H),  7.68 (d, 1H, J = 7.9 

Hz),  8.01 (d, 2H, J = 6.9 Hz).  

Ethyl 1-(2-(3,4-dimethoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4d):  

The product was obtained by coupling 2a with 3d by the method mentioned above to afford a 

yellowish solid product. mp: 180-182 0C (25.7%). 1H NMR (300 MHz,  CDCl3): δ = 1.23 (t, 3H, 

J = 7.1 Hz,), 3.89 (s, 3H), 3.96 (s, 3H), 4.23 (q, 2H, J = 7.1 Hz), 6.00 (s, 2H), 6.92 (d, 1H, J = 8.3 

Hz), 7.14- 7.32 (m, 3H), 7.40 (s, 1H), 7.52 (s, 1H), 7.68 (t, 2H, J = 8.5 Hz).  

Ethyl 1-(2-(3-methoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4e)  

The product was obtained by coupling 2a with 3e by the method mentioned above to afford a 

yellowish solid product (yield:14%). This compound was taken to the next step without further 

purification.  

Ethyl 1-(2-(3,4,5-trimethoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4f):  

The product was obtained by coupling 2a with 3f by the method mentioned above to afford a 

yellowish solid product (yield:15.9%). mp: 115-116 0C. 1H NMR (300 MHz, CDCl3): δ = 1.31 (t, 

3H, J = 7.1 Hz,), 3.83 (s, 3H), 3.89 (s, 6H), 4.24 (q, 2H, J = 7.1 Hz,), 5.99 (s, 2H), 7.13-7.33 (m, 

5H), 7.40 (s, 1H),  7.69 (d, 1H, J = 7.8 Hz).  

Ethyl 1-(2-(3-hydroxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4g)  
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The product was obtained by coupling 2a with 3g by the method mentioned above to afford a 

yellowish solid product (yield: 31.2%). This compound was taken to the next step without further 

purification.  

Ethyl 1-(2-(2-methoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4h) 

The product was obtained by coupling 2a with 3h by the method mentioned above to afford a 

yellowish solid product (yield: 14%).  This compound was taken to the next step without further 

purification.  

Ethyl 1-(2-(2,4-dimethoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4i):  

The product was obtained by coupling 2a with 3i by the method mentioned above to afford a 

yellowish solid product (yield: 37.5%). mp: 109-110 0C. 1H NMR (300 MHz,  CDCl3): δ = 1.28 

(t, 3H, J = 7.1 Hz,), 3.86 (s, 3H), 4.00 (s, 3H), 4.22 (q, 2H, J = 7.1 Hz,), 5.90 (s, 2H), 6.54-6.52 

(m, 2H), 7.09 (t, 1H, J = 7.1 Hz), 7.20-7.33 (m, 2H), 7.38 (s, 1H), 7.67 (d, 1H, J = 7.9 Hz), 7.92 

(d, 1H, J = 8.7 Hz). 

Ethyl 1-(2-(2,5-dimethoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4j):  

The product was obtained by coupling 2a with 3j by the method mentioned above to afford a 

yellowish solid product ( yield: 22.0%). mp: 118-120 oC. 1H NMR (300 MHz,  CDCl3): δ = 1.29 

(t, 3H, J = 7.1 Hz,), 3.75 (s, 3H), 3.98 (s, 3H), 4.23 (q, 2H, J = 7.1 Hz), 5.95 (s, 2H), 6.96 (d, 1H, 

J = 9.0 Hz), 7.07- 7.16 (m, 2H), 7.22- 7.40 (m, 3H), 7.38 (s, 1H), 7.68 (d, 1H, J = 7.9 Hz).  

Ethyl 1-(2-(4-hydroxy-3-methoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4k):  
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The product was obtained by coupling 2a with 3k by the method mentioned above to afford a 

yellowish solid product (yield: 75.2%). This compound was taken to the next step without further 

purification.  

Ethyl 1-(2-(3-hydroxy-4-methoxyphenyl)-2-oxoethyl)-1H-indole-2-carboxylate (4l) 

The product was obtained by coupling 2a with 3l by the method mentioned above to afford a 

yellowish product (yield: 42%). mp: 174-175 0C. 1H NMR (300 MHz,  DMSO-d6): δ = 1.11 (t, 

3H, J = 7.1 Hz,), 3.86 (s, 3H), 4.15 (q, 2H, J = 7.1 Hz,), 6.04 (s, 2H), 7.07- 7.11 (m, 2H), 7.31- 

7.40 (m, 2H), 7.40 (s, 1H), 7.55 (d, 1H, J = 7.9 Hz), 7.67- 7.70 (m, 2H), 9.43 (s, 1H). 

Ethyl 4-methoxy-1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylate (4m)  

The product was obtained by coupling 2b with 3a by the method mentioned above to afford a 

yellowish solid product (yield: 45.5%). This compound was taken to the next step without further 

purification.  

Ethyl 5-methoxy-1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylate (4n)  

The product was obtained by coupling 2c with 3a by the method mentioned above to afford a 

yellowish solid product (yield: 42.3%). This compound was taken to the next step without further 

purification.  

 

General procedure for the synthesis of substituted 3-phenylpyrazino[1,2-a]indo-1(2H)-ones 

(5a-n) 

1 eq. (0.64 mmol) of ethyl 1-(2-oxo-2-phenylethyl)-1H-indole-2-carboxylate (4a-o) was loaded in 

a pressure vial (PV) and to it 10 eq. (6.4 mmol) of CH3COONH4was added. Then, n-BuOH (4 ml) 

and glacial acetic acid (1 ml) was added. The sealed PV was heated by placing in an oil bath for 8 
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h at 150 °C.  After which the reaction mixture was cooled and diluted with 15 mL of EtOAc. The 

contents were transferred in a sepratory funnel, treated ith 10 mL of saturated NaHCO3 solution.  

The organic layer was washed successively with brine solution, organic layer was collected, dried 

over MgSO4 and filtered. The solvent was removed in vacuo to give yellow to dark orange product 

which was further purified by either crystallization using n-hexanes- ethyl acetate solution (5:1) 

or by using silica column chromatography (EtOAc: MeOH -9:1)) . The analytical data is given 

below: 

3-Phenylpyrazino[1,2-a]indol-1(2H)-one (5a) 

 This compound was prepared by the cyclization of 4a using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above to yield light yellow solid 

(110 mg, 76%). mp:  208-210 0C. 1H NMR (300 MHz, CDCl3) δ = 7.30 (t, 1H, J = 7.2 Hz), 7.41- 

7.58 (m, 8H), 7.70 (d, 1H, J = 8.4 Hz), 7.83 (d, 1H, J = 8.1 Hz), 8.13 (br, 1H). LRMS (ESI) m/z 

calc for C17H12N2O ([M + H]+); 260.1 Found 261.0  

3-(4-Hydroxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5b)  

This compound was prepared by the cyclization of 4b using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above to yield light yellowish 

orange solid (90 mg, 66.1%). mp:  190-192 0C.  1H NMR (300 MHz, DMSO-d6)  δ 6.83 (d, 2H, J 

= 5.5 Hz), 7.21- 7.28 (m, 2H), 7.37 (d, 1H, J = 7.0 Hz), 7.56 (d, 2H, J = 7.0 Hz), 7.80 (s, 1H) 8.06 

(s, 1H), 8.16 (d, 1H, J = 5.0 Hz), 9.70 (s, 1H), 10.92 (s, 1H).  LRMS (ESI) m/z calc for C17H12N2O2 

([M + H]+); 276.1. Found 277.1..  

3-(4-Methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5c) 
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 This compound was prepared by the cyclization of 4c using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above to yield light yellowish 

orange solid (110 mg, 71.1%). mp  > 2500C.  1H NMR (300 MHz, DMSO-d6)  δ 3.78 (s, 3H), 7.00 

(d, 2H, J = 8.7 Hz), 7.23 (s, 1H), 7.26 (d, 1H, J = 7.6 Hz), 7.35 (t, 1H, J = 7.5 Hz), 7.69 (d, 2H, J 

= 8.7 Hz), 7.78 (d, 1H, J = 7.9 Hz) 8.11 (s, 1H), 8.15 (d, 1H, J = 8.3 Hz), 10.97 (s, 1H).  LRMS 

(ESI) m/z calc for C18H14N2O2 ([M + H]+); 290.1. Found 291.0. 

3-(3,4-Dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5d) 

 This compound was prepared by the cyclization of 4d using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellowish orange 

solid (110 mg, 69.1%). mp:  > 2500 C. 1 H NMR (300 MHz, CDCl3): δ = 3.94 (s, 3H), 4.00 (s, 3H), 

6.96 (d, 1H, J = 8.2 Hz), 7.11- 7.17 (m, 2H), 7.29 (t, 1H, J = 7.0 Hz), 7.40 (t, 3H, J = 7.0 Hz,), 

7.71 (d, 1H, J = 8.4 Hz), 7.82 (d, 1H, J = 8.0 Hz), 8.82 (br, 1H). LRMS (ESI) m/z calc for 

C19H16N2O3 ([M + H]+); 320.1. Found 321.0. 

3-(3-Methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5e) 

 This compound was prepared by the cyclization of 4e using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above to yield light yellowish 

orange solid (100 mg, 70.4%). mp:  >2500C.  1H NMR (300 MHz – CDCl3) δ 3.89 (s, 3H), 6.89 

(d, 2H, J = Hz), 7.09 (s, 1H), 7.14 (d, 1H, J = 7.1 Hz), 7.30- 7.35 (m, 2H), 7.38- 7.45 (m, 3H), 7.53 

(s, 1H), 7.70 (d, 2H, J = 8.2 Hz), 7.83 (d, 1H, J = 7.7 Hz) 8.26 (s, br,1H).  LRMS (ESI) m/z calc 

for C18H14N2O2 ([M + H]+); 290.1. Found 291.0. 

3-(3,4,5-Trimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5f) 
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This compound was prepared by the cyclization of 4f using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield yellow solid (120 mg, 

68.8%). mp:  >2500C. 1 H NMR (300 MHz, CDCl3): δ = 3.91 (s, 3H), 3.98 (s, 6H), 6.83 (s, 2H), 

7.31 (t, 1H, J = 7.0 Hz), 7.41-7.49 (m, 3H), 7.73 (d, 1H, J = 8.4 Hz), 7.83 (d, 1H, J = 8.0 Hz), 9.21 

(br, 1H). LRMS (ESI) m/z calc for C20H18N2O4 ([M + H]+); 350.1 Found 351.0.  

3-(3-Hydroxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5g)  

This compound was prepared by the cyclization of 4g using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellowish solid 

(100 mg, 80.1%) mp:  235-2370C, 1H NMR (300 MHz, DMSO-d6) δ 6.83 (d, 1H, J = 7.1 Hz), 

7.12- 7.28 (m, 5H), 7.36 (d, 1H, J = 7.6Hz), 7.78 (s, 1H), 8.14 (s, 1H), 8.18 (d, 1H, J = 7.1 Hz), 

9.58 (s, 1H), 10.96 (s, 1H).  LRMS (ESI) m/z calc for C17H12N2O2 ([M + H]+); 276.1. Found 277.1 

 

3-(2-Methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5h)  

This compound was prepared by the cyclization of 4h using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellow solid 

(120 mg, 70.5%), mp: 193-194 0C.  1H NMR (300 MHz, DMSO-d6)  δ 3.80 (s, 3H), 7.00 (t, 1H, J 

= 7.4 Hz), 7.10 (d, 1H, J = 8.1 Hz), 7.22 (s, 1H), 7.26 (d, 1H, J = 7.6 Hz), 7.33 (d, 1H, J = 7.4 Hz), 

7.42 (t, 2H, J = 4.3 Hz), 7.78 (d, 1H, J = 7.9 Hz),  7.89 (s, 1H), 8.06 (d, 1H, J = 8.3 Hz), 10.96 (s, 

1H).  LRMS (ESI) m/z calc for C18H14N2O2 ([M + H]+); 290.1. Found 291.0..  

3-(2,4-Dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5i) 
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This compound was prepared by the cyclization of 4i  using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellow solid 

(130 mg, 81.1%). mp:  184-185 0C. 1 H NMR (300 MHz, DMSO-d6): δ = 3.80 (s, 6H), 6.58 (d, 

1H, J = 8.3 Hz), 6.60 (s, 1H), 7.20- 7.34 (m, 4H), 7.78 (d, 2H, J = 8.1 Hz), 8.04 (d, 1H, J = 8.3 

Hz), 10.68 (s, 1H). LRMS (ESI) m/z calc for C19H16N2O3 ([M + H]+); 320.1. Found 321.0. 

3-(2,5-Dimethoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5j) 

 This compound was prepared by the cyclization of 4j using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellow solid 

(120 mg, 75.5%). mp:  178-179 0C. 1 H NMR (300 MHz, CDCl3): δ = 3.83 (s, 3H), 3.87 (s, 3H),  

6.90 (s, 2H), 7.04 (s, 1H), 7.29 (t, 1H, J = 7.2 Hz), 7.39- 7.43 (m, 2H), 7.51 (s, 1H), 7.68 (d, 1H, J 

= 8.7 Hz), 7.82 (d, 1H, J = 7.9 Hz), 8.67 (br, 1H). LRMS (ESI) m/z calc for C19H16N2O3 ([M + 

H]+); 320.1. Found 321.0. 

3-(4-Hydroxy-3-methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5k) 

 This compound was prepared by the cyclization of 4k  using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellow solid 

(120 mg, 78.4%). mp:  > 250 0C. 1H NMR (300 MHz, DMSO-d6): δ = 3.86 (s, 3H), 6.81 (d, 1H, J 

= 7.8 Hz), 7.22-7.40 (m, 4H), 7.80 (d, 1H, J = 7.1 Hz), 8.10 (s, 1H), 8.18 (d, 1H, J = 7.2 Hz), 9.24 

(s, 1H), 10.96 (s, 1H). LRMS (ESI) m/z calc for C18H14N2O3 ([M + H]+); 306.1. Found 307.0. 

3-(3-Hydroxy-4-methoxyphenyl)pyrazino[1,2-a]indol-1(2H)-one (5l)  

This compound was prepared by the cyclization of 4l  using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield yellow solid (120 mg, 

78.4%). mp:  > 250 0C. 1 H NMR (300 MHz, DMSO-d6): δ = 3.80 (s, 3H), 6.97 (d, 1H, J = 8.7 
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Hz), 7.15-7.18 (m, 2H), 7.22 (s, 1H), 7.26 (d, 1H, J = 8.2 Hz), 7.37 (s, 1H), 7.77 (d, 1H, J = 8.2 

Hz), 8.04 (s, 1H), 8.16 (d, 1H, J = 8.4 Hz), 9.08 (s, 1H), 10.90 (s, 1H). LRMS (ESI) m/z calc for 

C18H14N2O3 ([M + H]+); 306.1. Found 307.0..  

9-Methoxy-3-phenylpyrazino[1,2-a]indo-1(2H)-one (5m)  

This compound was prepared by the cyclization of 4m using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield yellow solid (120 mg, 

78.4%). mp:  >250 0C (78.4%). 1H NMR (DMSO-d6, 300 MHz): δ = 3.92 (s, 3H), 6.73 (d, 1H, J 

=7.7 Hz), 7.17 (s, 1H), 7.29-7.48 (m, 4H), 7.74-7.78 (m, 3H), 8.15 (s, 1H), 11.03 (s, 1H). LRMS 

(ESI) m/z calc for C18H14N2O2 ([M + H]+); 290.1. Found 291.0. 

8-Methoxy-3-phenylpyrazino[1,2-a]indo-1(2H)-one (5n)  

This compound was prepared by the cyclization of 4n using CH3COONH4 (10 eq); n-BuOH and 

AcOH (4:1; 5 mL) as the solvent using conditions as mentioned above yield light yellowish solid 

(120 mg ). mp:  188-189 0C (78.4%). 1H NMR (DMSO-d6, 300 MHz): δ = 3.80 (s, 3H), 7.01 (s, 

1H), 7.06 (d, 1H, J = 7.2 Hz), 7.16 (s, 1H), 7.24 (d, 1H), 7.29 (d, 2H, J = 7.2 Hz), 7.43 (d, 2H, J 

=7.4Hz), 7.75 (d, 1H, J = 8.1 Hz), 8.19 (s, 1H), 11.0 (s, 1H). LRMS (ESI) m/z calc for C18H14N2O2 

([M + H]+); 290.1. Found 291.0.  
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6.2 Biological Evaluation 

6.2.1 Cholinesterase assay 

 

The PPI derivatives were tested using a 96-well plate format using tacrine and rivastigmine as 

reference compounds. To each wells, 160 µl of 1.5 mM solution of DTNB was added which was 

prepared using 50 mM Tris-HCl buffer (pH = 8.0; contains 0.1 M NaCl and 0.02 M MgCl2.6H2O). 

To this, 50 µL of the cholinesterase enzyme (human AChE/ BuChE) was added which was 

prepared in a buffer solution of 50 mM Tris-HCl of pH 8.0, containing 0.1% w/v bovine serum 

albumin. Then, different concentrations of the test compound viz. 1, 2.5, 5, 10, 25, 50 µl (1-50 

μM) in DMSO and buffer solution was added to individual wells. The loaded plate was incubated 

at room temperature for 5 min, and then 30 µl of the substrate (ACh/ BuCh) was added. 

Measurements were made by observing the absorbance of each well at 405 nm at 0, 1, 2, and 3 

min time intervals. The blank control well-contained 80 μL of DTNB stock solution, 25μL of 

buffer A solution, 4 μL of DMSO and 15 μL of thiocholine solution (ACSh/ BuSh). While, 100% 

control contained 80 μL of DTNB stock solution, 25 μL of cholinesterase enzymes (AChE/ 

BuChE), 1 μL of DMSO, 4 μL of Buffer A and 15 μL of thiocholine solution (AChT/ BuhT).  

Percent inhibition was calculated using the formula:  

 % 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =  
𝐴𝑏𝑠. 𝑜𝑓 100% 𝑤𝑒𝑙𝑙𝑠 − 𝐴𝑏𝑠. 𝑓𝑟𝑜𝑚 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟 𝑤𝑒𝑙𝑙𝑠

𝐴𝑏𝑠. 𝑜𝑓 100% 𝑤𝑒𝑙𝑙𝑠
 𝑋 100 

IC50 values were calculated plotting the percent inhibition vs. concentration logarithmically, and 

the results were expressed as the mean± standard deviation (SD) of three independent experiments 

(n = 3).  
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6.2.2 Aβ aggregation inhibition assay  

 

The anti-Aβ aggregation activity of PPI derivatives was evaluated using the ThT-based 

fluorescence assay. The Aβ1-40 and Aβ1-42 hexafluoro-2-propanol (HFIP) (rPeptide, USA) stock 

solutions were prepared in 1% ?? NH4OH solution for Aβ1-40 and Aβ1-42 respectively, to obtain a 1 

mg/mL stock solution, followed by dilution in phosphate buffer (pH 7.4) to 500 μM. Stock 

solutions of test compounds were prepared in DMSO and diluted in phosphate buffer (pH 7.4). 

The ThT fluorescent dye stock solution (15 μM) was prepared in 50 mM glycine buffer (pH 7.4). 

The aggregation kinetics assay was carried out using Corning® 386-well flat, clear bottom black 

plates. Each compound containing well was charged with 44 μL of ThT, 20 μl of phosphate buffer 

(pH 7.4), eight μl of test compounds in different concentrations (1, 5, 10 and 50 μM) and eight μl 

of Aβ (5 μM final concentration). The plate was incubated at 37 °C with a plate cover under 

shaking and fluorescence was measured every 5 min. Using a BioTek Multimode 

Microplate Reader (excitation = 440 nm and emission = 490 nm) over a period of 24 h. The known 

Aβ aggregation inhibitor orange G was used as a reference compound. The percentage inhibition 

was calculated using the equation 100% control – [(IFi – IFo)] where 100% control indicates no 

inhibitor, IFi and IFo are the fluorescence intensities in the presence and absence of ThT. The 

results were expressed as percentage inhibition of two separate experiments of triplicate 

measurements. 

6.2.3 Molecular docking  

 

Molecular docking studies were performed using Discovery Studio (DS) Structure-Based-Design, 

version 4.0 (BIOVIA, San Diego, U.S.A). For performing the docking studies, X-ray crystal 
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structures of AChE (PDB: 4EY7), BuChE (PDB: 2XQJ), Aβ40 (PDB:2LMN) and Aβ42 (2NAO)  

were obtained from the RCSB protein data bank. To the enzyme structure, hydrogens were added.  

Test compounds were built in 3D using Build Fragment tool, and energy minimization was 

performed for 1000 iterations using steepest descent and conjugate gradient minimizations 

respectively. The CDOCKER algorithm in the receptor-ligand interactions was used to dock the 

molecules with appropriate enzymes after defining a 15 Å sphere radius within the enzyme which 

covers all the active site amino acids. CHARMm force field was used for the docking studies. The 

quality of ligand-enzyme complex was evaluated based on CDOCKER Interaction energy and 

CDOCKER energy in kcal/mol. Also, polar and nonpolar interactions were visualized to assess 

the critical interactions involved in compound binding with the respective enzyme/ protein.    

 

6.2.4 Antioxidant activity 

 

 For the antioxidant property evaluation of selected PPI derivatives,  the DPPH radical assay 

method was used, and the results were compared with reference agents Trolox, curcumin, and 

resveratrol. Compound stock solutions were prepared using anhydrous MeOH at 250 μM and 500 

μM concentrations, while, 100mL of DPPH radical stock solution was prepared at 56 μM 

concentration using MeOH. 96 well clear, flat bottom plate was used for carrying out the 

experiments. To each of the wells, 90 μL of DPPH solution followed by 10 μL of the compound 

solution, making the final concentration of the compound as 25 μM and 50 μM in each well. 

Compound control wells contained 90 μL of MeOH and 10 μL of the compound, while, the DPPH 

control wells contained 90 μL of DPPH solution and 10μL of MeOH. The readings were taken 



 

110 
 

after 1h of the incubation using a BioTek Synergy H1 microplate reader. The results were 

calculated as % DPPH scavenging using the following formula.  

% 𝐷𝑃𝑃𝐻 𝑠𝑐𝑎𝑣𝑒𝑛𝑔𝑖𝑛𝑔 

=
Absorbance by DPPH control − (absorbance by test compounds − compound control absorbance )

Absorbance by DPPH control
 𝑋 100 

The results were expressed as mean %inhibition ± SD (SD<10%) for two independent experiments 

(n = 3).  

6.2.5 Transmission electron microscopy (TEM) 

 

TEM samples were prepared by incubating the Aβ with appropriate PPI derivatives/ control in a 

Costar® 96 well, black plate with clear bottom. To each of the wells, 80 μL of phosphate buffer 

(215 mM) solution was added, which was followed by 20 μL of  250 μM test compound solution. 

100 μL of a 50 μM solution of Aβ40/42 was then added. Control wells were charged with 18 μL of 

phosphate buffer and 2μL of DMSO. In Aβ40/42 loaded wells, the final Aβ40/42 to test compound 

ratio was 1:1 (at 25 μM). The plate was then incubated on the Fisher plate incubator for 24h, set at 

the temperature of 370C.  

TEM grids were prepared by adding 20 μL of the incubated solution over a Formvar- coated copper 

grids (400 mesh). The grids were subjected to overnight air drying, after which, the grids have 

been submitted to the washing process so as to remove any precipitated buffer salts. This step was 

done by adding ~30 μL of deionized water on top of the grids and quickly blotting the water droplet 

using a small piece of filter paper. The washing step was done twice and a drying period of around 

2h was given between each drying step. After the grids were completely dried, the contents of the 

grids were subjected to the staining process which was done using 2% phosphotungstic acid (PTA). 

PTA stains the grid negatively (i.e. only the aggregates and other undissolved particles get stained 
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and not the entire grid). ~20 μL of PTA was used to stain the grid which was blotted right after the 

addition of the drop of PTA using a small piece of filter paper. After the staining step, the grids 

were air-dried overnight. The TEM screening was done using a Philips CM 10 transmission 

electron microscope at 60 kV (at the Department of Biology, University of Waterloo) and the 

images were obtained using 14- megapixel AMT camera.    
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Appendix  

 

Sample 1H NMR spectra of compounds 

Compound 2a- 1H NMR (in CDCl3)                                                                      
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Compound 4a 1H NMR (in CDCl3) 
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Compound 4c- 1H NMR (in CDCl3)   
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Compound 5a- 1H NMR (in CDCl3) 
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Compound 5d- 1H NMR (in CDCl3) 
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Compound 5e- 1H NMR (in CDCl3)   
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Compound 5f- 1H NMR (in CDCl3) 
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Compound 5h- 1H NMR (in DMSO-d6)      
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Compound 5i- 1H NMR (in CDCl3)  
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LC-MS data  
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