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Figure 1: Left: A 4-Way Dam Break simulation with 1283 grid resolution for both physics and level set surface exhibits limited detail in the
splash (sim time of 41m44s). Middle: The same simulation at 2563 resolution exhibits greater detail, but is 40 times more expensive (sim time
of 1654m13s). Right: Our method is better able to preserve thin features and achieves much higher surface detail using a 1283 simulation grid
with a 10243 narrow band level set; at the same time, it is unconditionally stable, free from artifacts plaguing earlier embedded methods, and
has lower computational cost (sim time of 1191m53s).

Abstract
Combining high-resolution level set surface tracking with lower resolution physics is an inexpensive method for achieving highly
detailed liquid animations. Unfortunately, the inherent resolution mismatch introduces several types of disturbing visual artifacts.
We identify the primary sources of these artifacts and present simple, efficient, and practical solutions to address them. First, we
propose an unconditionally stable filtering method that selectively removes sub-grid surface artifacts not seen by the fluid physics,
while preserving fine detail in dynamic splashing regions. It provides comparable results to recent error-correction techniques at
lower cost, without substepping, and with better scaling behavior. Second, we show how a modified narrow-band scheme can
ensure accurate free surface boundary conditions in the presence of large resolution mismatches. Our scheme preserves the
efficiency of the narrow-band methodology, while eliminating objectionable stairstep artifacts observed in prior work. Third, we
demonstrate that the use of linear interpolation of velocity during advection of the high-resolution level set surface is responsible
for visible grid-aligned kinks; we therefore advocate higher-order velocity interpolation, and show that it dramatically reduces
this artifact. While these three contributions are orthogonal, our results demonstrate that taken together they efficiently address
the dominant sources of visual artifacts arising with high-resolution embedded liquid surfaces; the proposed approach offers
improved visual quality, a straightforward implementation, and substantially greater scalability than competing methods.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation

1. Introduction

Liquid simulations can be computationally costly, and they scale
poorly as their spatial resolution increases. On the other hand, their
visual appearance is dictated entirely by the motion of the surface,
and the expense of surface tracking scales much more efficiently
than the expense of solving the Navier-Stokes equations over a

volume. Many practitioners and researchers therefore choose to
resolve the surface evolution at a significantly higher resolution than
the underlying physics, in order to maximize the apparent detail at
minimal cost. Unfortunately, this embedded surface approach gives
rise to several artifacts; the most objectionable of these is that the
surface tracker has more degrees of freedom than the physics is able
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to control, resulting in unphysical behavior and lingering noise on
the liquid surface. Previous work has identified and proposed one
solution to this issue [BHW13], but leaves additional error sources
unaddressed. Moreover, stability restrictions inherent in previous
work make it inefficient for large resolution differences.

Our paper catalogues the dominant errors that occur when com-
bining a low resolution grid-based fluid simulation with a high-
resolution, narrow-band level set surface tracker. We provide expla-
nations for why these errors occur in the first place, and we introduce
efficient solutions for each of them. In particular, we investigate the
following challenges:

• stable and scalable sub-grid error correction;
• efficient narrow band management for smooth free surfaces; and
• treatment of grid artifacts during level set advection.

Our approach is the first to tackle all three of these problems, cre-
ating an efficient and practical method for animating highly detailed
liquid flows. We demonstrate the effectiveness of our approach on
large-scale fluid animations with surface-to-simulation resolution
ratios of up to 32:1 and surface resolutions up to 20483.

2. Problem Statement

We identify three main types of errors that result from combining a
standard grid-based Eulerian Navier-Stokes solver [EMF02] with a
much higher resolution level set. Broadly speaking, these artifacts
occur because surface tracking algorithms were not originally de-
signed to be driven by low-resolution physics. Below, we single out
each of these problems, discuss the mechanisms that cause them,
and give an overview of our proposed solutions.

2.1. Unresolved High-Frequency Surface Variation

Liquid simulation involves a delicate two-way coupling between the
fluid physics and the surface geometry: the physics dictate how the
surface should move by providing a velocity field through which
the surface is passively advected, and the surface provides boundary
conditions during the pressure projection step of the fluid solver.
(For brevity, we will typically refer to the level set surface tracker as
the surface, and the grid-based Navier-Stokes solver as the simula-
tion.) When the surface is discretized at a higher resolution than the
simulation, surface advection becomes under-constrained.

In a fully-resolved fluid simulation, the pressure is fixed to a
boundary condition at the surface [Bri08]. In effect, the fluid simula-
tion can only extract as much information about the surface as there
are pressure samples in the simulation grid. When surface details
appear at a higher resolution than the fluid simulation, they are ef-
fectively invisible to the simulation and are not naturally eliminated
or evolved (e.g., by gravity waves). Visually, because these high-
frequency surface variations remain locally nearly rigid and do not
obey the proper fluid physics, they can exhibit an overly viscous or
viscoelastic appearance. This artifact is illustrated in Figure 2. The
fluid simulation can also completely miss large gaps in the liquid
surface, as illustrated in Figure 3.

Bojsen-Hansen and Wojtan [BHW13] selectively removed these
unphysical artifacts through a variational surface smoothing routine

based on an error metric that measures the consistency of surface
normals and fluid pressure gradients. Unfortunately, this smoothing
routine has stability constraints imposed on it by the level set grid
size and the vorticity strength. We observed experimentally that their
variational smoothing requires a timestep restriction that is approx-
imately linear in the grid resolution: ∆t <O(∆xhi), for smoothing
time step ∆t and level set grid spacing ∆xhi. We also found that the
timestep was restricted by ∆t <O(

√
α), where α is their vorticity

strength parameter controlling the degree of smoothing. As a result
of these restrictions, finding the appropriate balance between stabil-
ity and the desired smoothing behaviour is a tedious process, and
the method becomes impractical for large surface resolutions.

We describe a new method for judiciously eliminating unresolved
features that is both easy to implement and unconditionally stable.
This key contribution of our work is explained in Section 4.

2.2. Reversion to Low-Order Boundary Conditions

The use of narrow-band data structures (e.g., OpenVDB) and algo-
rithms is crucial for efficient high-resolution level set-based surface
tracking. However, if care is not taken at large surface-to-simulation
ratios, the width of the narrow band can approach or fall below that
of a single simulation grid cell. As a result, the centers of simulation
grid cells on either side of a surface can lie entirely outside the
valid narrow band region of the level set. Evaluating signed distance
values at these locations will typically return highly inaccurate es-
timates with possibly only the sign being correct. Because these
values are used to determine the sub-grid position of the surface
when applying standard ghost fluid free surface boundary conditions,
this can easily drop the accuracy of the boundary conditions back
to first order and reintroduce objectionable stairstep artifacts. This
artifact is illustrated in Figure 5 (top), and can be observed in prior
work (e.g., [BHW13]). In Section 5, we describe a solution that
nevertheless maintains the efficiency of the narrow band approach.

2.3. Non-Smooth Surface Patches

Even in the absence of the above two issues, we may still observe
grid artifacts whose spacing corresponds to that of the low-resolution
simulation grid lines, as illustrated in Figure 8. Because the velocity
field produced by the fluid simulation contains far fewer degrees
of freedom than the surface, the use of standard piecewise linear
interpolation of the velocity field when advecting the surface will
create such kinks or faceting along the grid lines, even when using
higher order level set advection schemes (e.g. WENO5). We can
address this remaining problem by providing the advection scheme
with a velocity field generated using higher order interpolation, as
described in section 6.

2.4. Summary

A summary of the entire simulation loop, including our contributions
and associated sections, is presented in algorithm 1. We alternate
steps of Surface Tracker and Fluid Simulation.

3. Related Work

Embedding Level Sets. We focus on the use of high-resolution
level set methods [OF02] coupled to Eulerian liquid simulations on
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Algorithm 1 Timestep loop
1: procedure SURFACE TRACKER

2: Error correction (§4)
3: Advect surface (§6)
4: Sample surface for boundary conditions (§5)
5: end procedure
6: procedure FLUID SIMULATION

7: Advect velocity
8: Add external forces
9: Pressure projection

10: Extrapolate pressure gradient
11: end procedure

regular grids (e.g. [EMF02]). The first authors to discuss pairing a
double-resolution level set with a regular grid liquid simulation were
Goktekin et al. [GBO04] who argued that it better preserves details
and volume. Bargteil et al. [BGOS06] combined an octree-based
implicit surface with a regular grid fluid simulation to capture thin
splashes, and discussed some artifacts arising from the resolution
mismatch. Kim et al. [KSK09] proposed a “liquid-biased filtering"
scheme to ensure that high-resolution details in the level set are
always identified as active liquid regions even when they fall below
the simulation resolution. In essence, this is done by thickening the
thin liquid region by half of a simulation grid cell width. Although
this changes the surface’s effective location for the fluid simulation,
it largely preserves the attractive results achieved with accurate
ghost-fluid-based liquid simulators [ENGF03]. Heo et al. [HK10]
used a pseudo-spectral level set method with additional sub-grid
quadrature points, in order to capture fine details on a relatively
coarse grid. Most recently, Bojsen-Hansen et al. [BHW13] derived a
technique to identify and resolve certain errors caused by resolution
mismatches, by applying either a direct smoothing operation or by
dynamically evolving surface details as waves. This method relies
on explicit integration of a particular differential equation, which
requires satisfying a fairly stringent, but generally unknown, stability
restriction. We focus on the smoothing problem, and use this work
as our primary point of comparison.

A contributing factor in the ongoing success of high-resolution
level set schemes is the use of narrow-band data structures and
algorithms, whether based on octrees [LGF04,BGOS06], run-length
encoding [HNB∗06], or nested block-grids [Bri03, Mus13]. Our
work makes use of the OpenVDB library [MLJ∗13] to support
narrow-band level sets.

Alternatives to Level Sets. Mismatches between geometry and
physics can also be an issue for Lagrangian surface tracking meth-
ods, whether using triangle meshes [WTGT10, BBB10] or parti-
cles [YWTY12]. Wojtan et al. adjust the surface mesh to match
the fluid grid in complex regions [WTGT10], while Brochu et al.
modify the simulation mesh to match the surface mesh [BBB10].
Yu et al. periodically project the surface mesh to match an implicit
surface defined by the fluid particles [YWTY12].

Adding Sub-Grid Physics. Various authors have proposed to layer
sub-grid physical models on top of the liquid surface. Thuerey et
al. [TWGT10] proposed a wave model to capture high-resolution
surface tension effects on explicit triangle mesh surfaces. Kim et

al. [KTT13] used a closest-point methodology for performing wave
simulation on level sets. Mercier et al. [MBT∗15] recently showed
how a sub-grid wave model can be added atop particle-based liquid
simulations. Since we aim to remove sub-grid errors in the underly-
ing surface, we believe the tools we present could be beneficially
applied alongside a variety of possible sub-grid physical models.

High-Resolution Physics A natural way to avoid the issues posed
by high-resolution surfaces is to simply combine them with a match-
ing high resolution or high order physics discretization, possibly ex-
ploiting adaptivity (e.g., [LGF04,BBB10,ATW13,EB14]). However,
this typically entails substantial additional cost and implementation
complexity, and in general it remains more expensive to scale the
volume than the surface.

4. Stable Filtering of Sub-Grid Noise

The choice to couple a low resolution simulation and a high reso-
lution surface implies that many discrete surface cells map onto a
single cell in the fluid simulation. As a result of this many-to-one
coupling, the simulation cannot correctly respond to surface details
at a higher sampling rate than that of the pressure samples on the
grid. This discrepancy in sampling rates allows high frequency de-
tails on the surface to persist as unphysical, noisy errors. Figure 2
(top right) exemplifies the persistent errors where the expected result
is a flat surface. Additionally, Figure 3 (top right) demonstrates an

Figure 2: A Swiss Cheese setup, a high resolution surface with
small droplets and divots (top left), creates persistent errors that
the fluid simulation cannot correct (top right). Laplacian smoothing
of the surface removes errors (middle left), but causes rounded
corners and severe volume loss (indicated by the black dashed
box). The error correction of Bojsen-Hansen and Wojtan [BHW13]
(middle right) removes the errors and preserves sharp corners. Our
solution (bottom) achieves similar results but with a much simpler
implementation.
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Figure 3: A Standing Dam setup contains a gap smaller than a fluid
simulation grid cell (top left). The fluid simulation does not close
the gap (top right). Laplacian smoothing causes a large degree of
volume loss without actually closing the gap (middle left). The error
correction of Bojsen-Hansen and Wojtan (middle right) removes
the error without severe volume loss. Again our simpler solution
(bottom) achieves comparable results.

extreme case where a long narrow gap between surfaces is not seen
by the simulation and remains stationary.

A naïve approach to remove these errors is simple Laplacian
surface smoothing. Unfortunately, this typically removes desirable
surface features and thin splashes along with the errors. Figure 4
(middle) presents an example where surface smoothing destroys
the scale features on a falling liquid dragon model after just a few
simulation frames. Furthermore, regions where a free surface comes
in contact with the solid boundary are erroneously rounded out due
to smoothing of sharp corners (middle left of Figures 2 and 3).

Bojsen-Hansen and Wojtan [BHW13] recently presented a varia-
tional smoothing technique that minimizes the deviation between
the pressure gradient and the surface normal, observing that align-
ment of these vectors implies that the surface is free from sub-grid
errors. A key feature of this method is that the rate of smoothing
applied at any given point depends on the magnitude of the pressure
gradient, ‖∇p‖. In nearly hydrostatic scenarios, such as a still pool,
large vertical pressure gradients induce stronger smoothing and the
surface settles to the desired flat configuration. In ballistic scenarios,
such as falling liquid bodies and splashes, the pressure gradient
is often near zero; as a result, smoothing is not activated and the
surface details are preserved. This allows their method to selectively
eliminate objectionable errors while maintaining thin sheets and
splashes.

While our smoothing mechanism differs, we borrow the idea
of using the magnitude of the pressure gradient as an indicator
of the need for smoothing. Our error correction solution is able

Figure 4: The high resolution details on a Falling Dragon (top)
are quickly removed by uniform Laplacian smoothing (middle).
Our selective-smoothing approach preserves such detailed features
during ballistic motion (bottom).

to remove surface errors (see Figures 2 and 3 (both bottom)) and
preserve details on ballistic volumes (see Figure 4 (bottom)). Figure
5 demonstrates that our strategic smoothing method maintains the
same dynamic behavior as the original simulation while removing
persistent errors on the surface.

4.1. Method

At each timestep we reduce high frequency errors that the fluid
simulation cannot address. Our basic approach is to smooth the
surface at a spatially-dependent rate proportional to the magnitude
of the pressure gradient. To achieve this smoothing efficiently, we
present an unconditionally stable multi-scale smoothing algorithm
analogous to mip-mapping for anti-aliasing texture maps. We first
generate a low-resolution smoothed version of the surface, and then
we blend between this smooth surface and the original high resolu-
tion surface in a spatially-dependent manner, using the magnitude
of the pressure gradient as our interpolation weight.
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Figure 5: Top: Stair step artifacts occur when erroneous values
outside the level set’s narrow band are used to determine ghost
fluid boundary conditions. Middle: Our narrow-band method (§5)
efficiently ensures a proper ghost fluid treatment. Bottom: We also
remove surface artifacts (highlighted by dashed ellipses) with our
filtering method (§4) while preserving the overall dynamics of the
simulation.

We obtain a low-resolution representation of the surface by low-
pass filtering and downsampling. The filtered surface has the same
effective resolution as the fluid simulation, so features on this sur-
face can always be handled by the underlying physics. By using the
pressure gradient to blend between this low-resolution surface and
the original one, unphysical surface errors will be eliminated gradu-
ally over several frames, and desirable high-resolution features will
be preserved. The user can adjust how rapidly this process occurs
by scaling the blend weight (α in §4.4), which provides a degree of
artistic control.

4.2. Gaussian Pyramid Filtering

We filter the high resolution surface progressively through a Gaus-
sian pyramid approach. We apply a Gaussian filter to the level set
surface with a 27-point stencil that is convolved over the surface to
remove high frequency information. We define the weights at each
stencil point by the 3D Gaussian function

f (xi, j,k) = e−
(i−io)

2+( j− jo)
2+(k−ko)

2

2σ2 (1)

where io, jo,ko components are the integer indices of the center
grid cell and i, j,k are the integer indices of the remaining 26 points
on the stencil. Integer offsets allow us to filter the level set relative
to the sampling rate of the current grid. We found that using σ = 2

π

as our variance for (1) effectively attenuates high frequencies that
could cause aliasing. Finally, we normalize our stencil weights so
they sum to 1 and convolve the filter over the level set grid.

After the filter pass, a new surface is created by downsampling
onto a level set grid one octave lower (i.e., smaller by a factor of
two in each dimension). Similar to decimation in signal processing,
we alternate between filtering and downsampling to progressively
remove aliasing artifacts that would appear from directly downsam-
pling to the lowest resolution.

Since level set data is stored at grid
cell centers, these sample points do not
naturally coincide across adjacent lev-
els of the hierarchy. The downsampling
step therefore interpolates from the sur-
rounding eight higher resolution cell
centers onto the lower resolution cell
center (as illustrated in 2D in the inset
figure). We build this pyramid only up
to one resolution octave higher than the fluid simulation, and per-
form a final filter pass on this surface. (After this final filtering step
the appropriate higher frequencies in the surface have already been
treated; halting at this level simply avoids unnecessary downsam-
pling/interpolation and memory allocation for the last level grid.)

The resulting low resolution surface no longer contains the high
resolution surface errors; any remaining surface features can be
handled directly by the simulation. However, a naïve application
of this filtering method will yield artifacts similar to Laplacian
smoothing: rounding of corners where the free surface meets the
solid boundary and excessive loss of detail in dynamic splashes. We
describe below how to circumvent these issues.

4.3. Boundary Extension

Applying the low-pass filter at fluid-solid-air triple-points will round
out the sharp features present in the high resolution level set, as
illustrated in Figure 6 (top). To remove errors on the high resolution
surface without artificial rounding near solids, we extrude the level
set surface outwards into the solid boundary at the beginning of each
level in the Gaussian pyramid filtering step. After the extrusion, we
apply the Gaussian filter but only on regions of the fluid surface that
are outside the solid boundary, as shown in Figure 6 (bottom). This
method addresses the rounding issue by preventing the filter from
drawing data from the problematic corner features.
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We perform the surface level set extrusion along the solid bound-
ary normal, using a technique loosely analogous to semi-Lagrangian
level set advection. Starting from the position of a given cell center
inside the solid, we find the closest point on the solid boundary by
iteratively stepping in the normal direction until it is a small toler-
ance β just outside of the solid (e.g., as in [LFO05] §2.2.2). We then
interpolate the liquid level set value at that point, and assign it to
the liquid level set sample at our starting point inside the solid. We
used β = ∆xhi for the grid-dependent β parameter in our examples
(where ∆xhi is the high resolution grid spacing). This operation can
be easily performed in parallel.

Once the surface is extended in this fashion, applying the filter to
the surface near the solid boundary will no longer induce rounding
artifacts. The extended information inside the solid boundary is only
created temporarily and then discarded each time step, so we do
not bother filtering this region. Figure 6 demonstrates the difference
between directly applying the filter to the surface and extruding
outwards first.

Filter window

Filter window

Apply filter 

Apply filter 

Figure 6: Filtering without extrusion artificially rounds the interface
near solids (top). With surface extension, the filtered result is noise-
free without rounded corners (bottom).

An advantage of this approach is that we can uniformly apply a
single filtering method that is particularly robust near solid bound-
aries. By contrast, the method of Bojsen-Hansen et al. [BHW13] ex-
hibits discontinuous behavior near solids; they apply separate error-
minimizations near the free surface and the solid boundary, and they
use a (noise-sensitive) distance-based threshold to switch between
them. Furthermore, while their approach drives the surface normals
to conform to the solid boundary normals, the error-correction slows
down as the alignment improves, causing unphysical artifacts near
boundaries to persist longer than desired.

4.4. Level Set Interpolation

The above process filters out all features above the Nyquist fre-
quency of the simulation grid, leaving us with a smooth low-
resolution surface. Unfortunately, uniform filtering will also quickly
remove desirable small details and splashes. In order to remove
the errors but preserve details in interesting dynamic regions, we

strategically blend regions of the filtered and high resolution surface
together in a spatially-dependent manner. We build a final level set
surface at the high resolution by interpolating the signed distance
value of each voxel between the original high resolution surface and
the filtered low resolution surface.

As noted earlier, we will use the magnitude of the pressure gra-
dient to dictate the degree of interpolation, inspired by the energy
minimization method of Bojsen-Hansen et al. [BHW13]. Our task
is to map the domain of the pressure gradient’s magnitude, [0,∞],
to the range [0,1] for linear blending. Many functions can perform
this mapping; we chose the modified sigmoid function

s(‖∇p‖) = 2
1+ e−α‖∇p‖ −1 (2)

where α is a tuning parameter to artistically control the smoothing
strength.
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The inset figure visualizes
this function. A very large α

value would give emphasis to
the filtered surface and remove
the surface errors immediately.
Since our filter is not truly ideal
(in the sense of attenuating
strictly those frequencies above
a given threshold), a patholog-
ically large α value can create
noticeable volume loss. A very
small α value would favour the
original surface, such that sur-
face errors would remain mostly present. We found α = 0.001 to
give visually pleasing results; all our examples use this parameter
choice.

The new error-reduced surface is constructed using linear inter-
polation

φnew = (1− s)φoriginal + sφ f iltered

where φoriginal , φ f iltered , and φnew, are the original, filtered, and
updated level set functions respectively, and s is the interpolation
weight defined in (2).

Because the level set narrow band contains voxels outside of
the fluid, we have to extrapolate the current simulation’s pressure
gradient into the air (as indicated by the last fluid simulation step
in Algorithm 1). We extrapolate the pressure gradient in the low-
resolution simulation with a fast marching method. This is analogous
to extrapolating the velocity field from the fluid into the air. We use
linear interpolation from the newly extrapolated, low-resolution
pressure gradient to provide values for (2) at the high resolution
grid positions. As with the filtering step, the extended surface region
inside the solid boundary is unimportant, so for any φnew voxels lo-
cated inside the boundary we simply assign φnew = φoriginal . Finally,
we redistance the new level set.

4.5. Surface-Boundary Intersection

After blending is performed the resulting level set, φnew, will often
extend into the solid boundary. We trim off this excess liquid surface
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region by applying a CSG difference operation [MBWB02] against
the solid level set, before redistancing one last time. This yields our
final surface with sub-grid errors appropriately reduced.

5. Narrow Band Free Surfaces

5.1. Ghost Fluid

High resolution level sets require an efficient implementation to
reduce memory and computational costs. A narrow band data struc-
ture ensures that only voxels near the surface are stored in memory,
and dramatically reduces the computational cost of filtering, redis-
tancing, and advecting the level set. However, a subtle issue that
can occur in this setting is a failure to properly apply free surface
boundary conditions during the pressure projection, using the ghost
fluid method.

The ghost fluid method enforces the Dirichlet boundary condition
such that pressure is zero on the free surface [ENGF03, CS70],
by accounting for the sub-grid position of the interface. Figure 7a
illustrates the free surface between the two pressure samples on the
grid, where pL is the pressure sample inside the liquid and pG is the
ghost pressure in the ambient air. The zero pressure condition at the
free surface is set implicitly by

pG =
φG
φL

pL, (3)

where φG and φL are the level set signed distance values at the
positions of pG and pL respectively. This amounts to a linear extrap-
olation for pG based on pL inside and p = 0 on the surface. Use of
the simpler first order condition, pG = 0, is well-known to lead to
objectionable stairstep artifacts.

5.2. A Modified Narrow Band Approach

A narrow band level set initializes only voxels that are within a
small distance of the implicit surface. A surface that is at the same
resolution as the fluid simulation will contain enough voxels in
the narrow band to properly assign φL and φG values to the fluid
simulation (note that φL and φG are only used near the free surface).
However, a higher resolution surface might not contain a wide
enough narrow band to ensure that active voxels are present at
the required low resolution φL and φG sample locations. Figure 7b
visualizes this case. The narrow band (small solid gray cells) is
not wide enough to cover both sample locations so (3) relies on
erroneous values. Failure to properly apply this boundary condition
creates dramatic visual artifacts on the surface, as observed in Figure
5 and prior work [BHW13].

An obvious solution is to always use a wide-enough narrow band
to guarantee valid signed distance values for (3). However, this
means that the width of the narrow band is no longer a small fixed
constant, but instead depends on the ratio between surface and simu-
lation resolutions. For large ratios this results in a major performance
penalty during level set operations (i.e., advection, redistancing, fil-
tering) which would otherwise be relatively cheap.

Instead of carrying an expensive wide band throughout, we tem-
porarily dilate the narrow band region outwards (i.e., add extra
layers of voxels) before the pressure projection step and (concep-
tually) erode it back down afterwards. Voxel dilation provides the

fluid simulation with the active voxels necessary to properly sample
the signed distance values in (3). The subsequent erosion removes
the extra cells before any further expensive level set operations are
performed. This is illustrated with the dashed squares in Figure 7b.

While comparably simple to the naïve approach, dilation and
erosion can be performed very efficiently [MLJ∗13]; this allows us
to restrict the use of a widened narrow band to just a handful of
operations, and in particular avoid the expense of advection on a
widened band.

To ensure that the level set covers all the necessary sample lo-
cations in the simulation, we widen the narrow band width by
d∆xlo/∆xhie voxels, where ∆xhi and ∆xlo are the grid spacings of
the level set and fluid simulation, respectively.

pG

pL

p = 0

(a)

pG

pL

(b)

pL’

pG’

(c)

pG’

pL’

p’ = 0

(d)

Figure 7: The ghost fluid method assigns zero pressure at the free
surface (a) by (3), based on the signed distance values extracted
from the liquid level set. If the narrow band is not wide enough (solid
grid in (b)), it must be dilated outwards to provide accurate signed
distance values at the pressure samples (dashed grid). Liquid-biased
filtering shifts the free surface outwards (red offset in (c)), however
the dashed grid does not cover p′G. A second adjustment of the
narrow band ensures accurate signed distance values for both p′L
and p′G sample locations (d).

5.3. Liquid-biased Filtering

Kim et al. [KSK09] noticed that high resolution surfaces might
contain thin regions that lie between pressure sample locations in the
simulation. In this case, both samples are erroneously labelled as air
and the liquid region does not contribute to the physical simulation.
The resulting velocity field can lead to substantial volume loss and
unrealistic motion. The authors handle this problem by (temporarily)
shifting the level set surface outwards into the air region (presented
in Figure 7c), so that all liquid elements are sufficiently large as to
be visible on the coarse grid.

We adopt this same strategy. In our examples, we shift the surface
by half the grid size of the simulation by subtracting ∆xlo/2 from
the signed distance values, φ. However, moving the surface in this
way introduces a further issue in the narrow band setting. Referring
again to Figure 7c, the original ghost pressure sample point, pG, is
now inside the liquid (relabelled as p′L) and the new ghost pressure
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sample point, p′G, is outside of the level set’s narrow band. To
correct this we must adjust the narrow band once again, in the same
manner as §5.2. Figure 7d visualizes this final step, with valid signed
distance values at the new pressure sample locations, p′L and p′G,

To summarize, we first make a copy of the surface, dilate the
narrow band outwards as in Figure 7b, and assign distance values
to any new cells via redistancing. This ensures that liquid-biased
filtering doesn’t cause the surface to shift outside the active narrow
band. We then offset the surface via liquid-biased filtering, and apply
voxel dilation/erosion to balance the narrow band around the new
surface position (again assigning any new cells by redistancing)
while ensuring that the necessary pressure locations are properly
contained within the widened band. At this point, we sample the
level set values to apply ghost fluid. Because we have no need
for this shifted surface after establishing boundary conditions, we
release this level set from memory thus avoiding the need to actually
erode it back down in practice.

6. High Order Velocity Interpolation

Another common artifact induced by resolution mismatches between
surface and simulation grids is the creation of grid-aligned kinks on
the surface, shown in Figure 8. Perhaps counterintuitively, this can
arise even when using certain apparently higher order schemes for
both velocity advection and level set advection steps (e.g. MacCor-
mack advection [SFK∗08], WENO5 advection [OF02], etc.) The
culprit turns out to be the use of piecewise trilinear interpolation on
the low-resolution velocity field to provide sub-grid velocities to the
high-resolution level set advection scheme.

The inset figure gives an illustrative
1D example of a high resolution sur-
face (black) advected to a new posi-
tion (red) under linear (top) and cu-
bic (bottom) interpolation of velocity.
Although the surface has many more
degrees of freedom than the velocity
field in both cases, the lack of smooth-
ness in the piecewise linear interpolant
manifests in the surface as disturb-
ing kinks. Furthermore, simply using
a more advanced level set advection
scheme (while relying on linear ve-
locity interpolation) will only serve to
exacerbate the artifacts by better pre-
serving the kinks. By instead applying
higher order interpolation of velocity,
the surface can fully benefit from its
additional resolution while remaining smooth. (Naturally, this issue
is imperceptible near 1:1 simulation-to-surface ratios, because the
level set resolution is insufficient to exhibit the induced kinks.)

We alleviate this effect in our simulation using a cubic interpo-
lation scheme [FSJ01] whenever we sample the velocity field. In
our implementation, level set advection was performed using Open-
VDB’s WENO5-based advection scheme (which is orthogonal to
the choice of velocity interpolant, as noted above). Figure 8 demon-
strates a simple case with linear and cubic velocity interpolation

during level set advection, where simulation-grid scale artifacts are
very noticeable in the linear case.

Figure 8: A Corner Box setup with linear velocity interpolation
(left) produces “hatching"-like grid artifacts on the surface, which
are especially apparent in the specular highlights. Simulation with
cubic velocity interpolation (right) gives much smoother surfaces.

This issue is also independent of the surface representation, and
therefore cubic interpolation of velocity should be considered for
explicit mesh schemes as well.

7. Results

We ran a range of simulations to examine the effectiveness of our
proposed techniques; many of these animations are included in our
accompanying video. Our simulation is built on top of mantaflow
[PT13] and rendered with Mitsuba [Jak10]. Unless otherwise noted,
all of our examples were computed on a 16-core server with 64 GB
of RAM. Table 1 provides a breakdown of the computation time for
each of the above components. Below we discuss several of these
experiments in detail.

7.1. Filtering

High-Resolution Error Removal. We compare the effectiveness of
our filter-based sub-grid error correction solution under two simple
test conditions used by Bojsen-Hansen and Wojtan [BHW13]: the
Swiss Cheese surface in Figure 2 and the Standing Dam in 3. We are
able to remove persistent surface errors and achieve similar results
to Bojsen-Hansen in both test cases, without the artifacts exhibited
by Laplacian smoothing. Both examples are computed with 323

simulation grid and a 2563 level set grid. At such low resolutions,
the two approaches are comparable in computational cost, averaging
just a few seconds per frame for both test cases. However, as we
discuss below, at larger scales our solution is substantially more
computationally efficient.

Detail Preservation. We demonstrate in Figures 4 and 5 that our
strategic smoothing approach preserves details and thin splashes for
surfaces undergoing ballistic motion. The overall dynamic behaviour
of the original simulation is maintained while our solution removes
persistent surface errors. Figure 4 was computed on a 643 simulation
grid and a 5123 level set with the error correction component averag-
ing 8.3s per frame, amounting to about 15% of the total simulation
cost. Figure 5 was computed on a 1283 simulation grid and a 10243

level set with the error correction component averaging 10% of the
total simulation time. We also applied the error correction method
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by Bojsen-Hansen and Wojtan [BHW13] to the initial condition in
Figure 5. Our experiments indicated that, given the timestep restric-
tion of the method, we would need to cycle through 10 substeps
per frame to maintain stability (compared to a single step for our
unconditionally stable method). They did not present results of their
smoothing solution at resolutions this high, presumably because of
this severe stability restriction. Table 1 demonstrates that our method
remains efficient and effective in the highly energetic Stanford Drop
scenario, averaging 27.3s for filtering and 328s overall per frame.

Figure 9: A Stanford Drop simulation that applies our method using
a 2563 simulation grid with a 20483 narrow band level set.

Scalability and Stability. We also tested our method at an even
higher resolution with a 2563 simulation grid and a 20483 level
set, using a more powerful 44-core server (see Figure 9). We ob-
served that the error correction component averaged just 1m25s per
frame, compared to 6m57s for the pressure projection and 30m2s
for WENO5 level set advection. This illustrates that even as the
resolution increases, the overhead of our filtering approach remains
relatively small. (Note that the high cost of level set advection here
is due to the tremendous resolution of the embedded level set.)

Most of our tests are performed at an 8:1 surface-to-simulation
ratio, though this is not a limitation. We ran two additional 4-way
dam break simulations with a 10243 level set, using 643 and 323 sim-
ulation grids. These represent ratios of 16:1 and 32:1, respectively.
While the motion quality naturally decreases at lower simulation
resolutions, our proposed techniques remain effective.

Qualitatively, we found that the unconditional stability of our
scheme simplified artistic parameter tuning, since we were able to
try different smoothing strengths without also having to empirically
determine a stable time step for each setting.

7.2. Narrow Band Ghost Fluid

Figure 5 (top) visualizes the stair step artifacts that arise when high
resolution surfaces are used without properly accounting for the
information needed by the ghost fluid method. The naïve solution of
consistently using a wide-enough narrow band introduces a dramatic
cost compared to the original simulation, in the range of an addi-
tional 130% computation time for a 1283 simulation with a 10243

level set. This is primarily due to the cost of applying advection on
many more cells of the high-resolution grid than would otherwise
be required. Our approach also correctly applies ghost fluid and
eliminates stair steps, as indicated in Figure 5 (middle). However, it
introduces only a very minor overhead of 7% computation time for
the same 1283 simulation with a 10243 level set.

7.3. High Order Velocity Interpolation

As demonstrated in Figure 8 the use of cubic rather than linear
interpolation when advecting embedded level sets largely alleviates
problems with visible grid lines. The cubic interpolant entails a
relatively small overhead: we observed an approximate 10% increase
in computation time for both a 323 simulation with a 2563 level set
and a 1283 simulation with a 10243 level set.

8. Discussion and Conclusions

We have presented a set of practical solutions for problems that
occur when pairing a high resolution level set with a low resolution
fluid simulation. Our filter-based error correction offers similar
results to previous work but with the added benefits of being more
efficient, unconditionally stable, and easier to implement and tune.
Our narrow band ghost fluid and smooth velocity interpolation
solutions address more subtle problems that were not identified by
previous work, but are nevertheless critical for high-quality results.

Because we are using a standard Gaussian filter approach, our
low pass filter lacks a perfect frequency cutoff. In theory this will
mildly attenuate some low frequencies while preserving some high
frequencies, after a single filter pass. We did not observe this to
be a noticeable issue in our simulations, and therefore defer inves-
tigation of a theoretically ideal 3D level set filter to future work.
Our filtering approach also gives up the guarantee of an analytically
divergence-free velocity field provided by Bojsen-Hansen’s vortex
sheet model; however, we believe the added stability and scalability
of our approach makes it far more viable in practical scenarios.

Our method of extruding the liquid surface into the solid bound-
ary does not work well with thinner obstacles, because it introduces
the possibility of “crosstalk" in which liquid level set surfaces on
opposing sides of the solid erroneously interact. Disabling the filter-
ing near thin solids would prevent this problem, but it would also
allow some surface errors near the solid to remain. In the future, we
would like to investigate a method to implicitly extrude the surface
in a “ghost fluid” sense to prevent crosstalk.

A current limitation of our surface embedding approach is the
appearance of occasional locking-like effects from topologically
disjoint high-resolution surfaces being driven by the same simulation
cell [WTGT10]. A possible solution might be the application of
topology-aware virtual-node schemes common in embedded FEM
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Initial Condition Sim Surface Base Ghost Fluid Fix Cubic Interpolation Filter

Corner Box 323 2563 2.2s 0.46s 0.61s 2.0s
Falling Dragon 643 5123 26.3s 2.1s 2.4s 8.3s
4-Way Dam Break 1283 10243 155s 6.3s 8.0s 21.6s
Stanford Drop 1283 10243 293s 7.7s 36.0s 27.3s

Table 1: Average computation cost per timestep for several simulations presented above. Base refers to the basic embedded simulation; the
remaining three columns give the incremental cost of each of our three proposed features. We use a fixed time-step (and use one time-step per
frame) for our simulation, although OpenVDB’s implementation of level set advection may perform substepping internally.

methods, as recently explored by Edwards and Bridson [EB14] for
their discontinuous Galerkin cut-cell fluid scheme.

We have sought to extend the limits of what can be achieved in
practice with high-resolution embedded level set schemes by identi-
fying and treating a trio of issues arising in this setting. A question
this poses is whether these ideas may be extended to similarly im-
prove triangle mesh-based and particle-based liquid simulators.
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