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Abstract 

Interfacing DNA with two-dimensional (2D) materials has been intensely researched for various 

analytical and biomedical applications. Most of such studies were performed on graphene oxide 

(GO), and two metal dichalcogenides, MoS2 and WS2; all of them can all adsorb single-stranded 

DNA. However, they like use different surface forces for adsorption based on their chemical 

structures. In this work, fluorescently labeled DNA oligonucleotides were used and their 

adsorption capacity and kinetics were studied as a function of ionic strength, DNA length and 

sequence. Desorption of DNA from these surfaces were also measured. DNA is more easily 

desorbed from GO by various denaturing agents, while surfactants yield more desorption from 

MoS2 and WS2. Our results are consistent with that DNA can be adsorbed by GO via π–π stacking 

and hydrogen bonding, MoS2 and WS2 mainly use van der Waals force for adsorption. Finally, 

fluorescent DNA probes were adsorbed by these 2D materials for detecting the complementary 

DNA. For this assay, GO gave the highest sensitivity, while they all showed a similar detection 

limit. This study has enhanced our fundamental understanding of DNA adsorption by two 

important types of 2D materials and is useful for further rational optimization of their analytical 

and biomedical applications. 
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Introduction 

Nanomaterials for DNA adsorption are useful for delivering therapeutic nucleic acids,1 designing 

smart stimuli-responsive materials,2, 3 and developing biosensors.4-6 In particular, two-dimensional 

(2D) materials have recently emerged as a unique platform for interfacing with DNA. Compared 

to traditional nanoparticles, 2D materials often have a larger specific surface area. Developments 

in this field was stimulated by the discovery of graphene.7 To disperse in water and interface with 

biopolymers, graphene oxide (GO) is often used.8-10 The interaction between GO and DNA has 

been extensively studied,11-15 which has inspired the exploration of various other 2D materials. 

Among them, MoS2 and WS2 are two representative examples.16-19 Using these two materials for 

DNA-based sensing was reported with simple DNA oligonucleotides,20-27 as well as aptamers,28, 

29 and DNAzymes.30 Thiolated DNA was also attached to AuNPs to improve sensing based the 

intrinsic photoluminescence property of MoS2.
31 Adsorption of DNA improves the colloidal 

stability of MoS2 nanosheets,32 and DNA can even exfoliate WS2,
33 suggesting a strong interaction. 

 Aside from these applied research, only a few fundamental studies were reported. 

Theoretical work pointed out that van der Waals (vdW) force is mainly responsible for DNA base 

adsorption by MoS2 and WS2.
34, 35 A comparison was made for DNA adsorption on these materials 

using fluorescently labeled magnetic nanoparticle probes.36 MoS2, WS2 and GO can all adsorb 

single-stranded (ss) DNA while repel double-stranded (ds) DNA.37 By examining their chemical 

structures, one can readily see that MoS2 and WS2 are quite different from GO. For example, GO 

can adsorb DNA via pi-pi stacking with DNA bases, while MoS2 and WS2 are non-aromatic.  

 Given the increasing importance of these 2D dichalcogenide materials for DNA 

functionalization, a systematic surface science study and in particular a side-by-side comparison 

with GO is critical, which is the main goal of this study.  
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Materials and Methods 

Chemicals. All the DNA samples were purchased from Integrated DNA Technologies (Coralville, 

IA). The DNA sequences are as follows. T15 refers to TTTTTTTTTTTTTTT; FAM-T15 refers to 

labeling a carboxyfluorescein on the 5-end of T15; FAM-24mer: FAM-

ACGCATCTGTGAAGAGAACCTGGG; and c-24mer: CCCAGGTTCTCTTCACAGATGCGT. 

All the sequences are listed from the 5 to 3. Carboxyl GO, monolayer molybdenum disulfide 

(MoS2) and tungsten disulfide (WS2) were from ACS Material (Medford, MA). Sodium chloride, 

sodium hydroxide, sodium carbonate, sodium bicarbonate, magnesium chloride, adenosine, 4-

morpholineethanesulfonate (MES), tris(hydroxymethyl)aminomethane (Tris), and 4-(2-

hydroxyethyl) piperazine-1-ethanesulfonate (HEPES) were from Mandel Scientific (Guelph, 

Ontario, Canada). Dimethyl sulfoxide (DMSO), sodium dodecyl sulfate (SDS), cetyl 

trimethylammonium bromide (CTAB), Tween 80, and Triton X-100 were from Sigma-Aldrich. 

Milli-Q water was used for all the experiments.  

TEM, UV-vis, and ζ-potential measurement. The MoS2, WS2 or GO nanosheets were directly 

dispersed in Milli-Q water. TEM was performed on a Philips CM10 transmission electron 

microscope. The sample was prepared by pipetting a drop of the aqueous dispersion (200 µg/mL 

for MoS2 and WS2, 100 µg/mL for GO) onto a 230 mesh copper holy carbon grid and then dried 

in air. The electronic absorption of MoS2 and WS2 (100 µg/mL) and GO (25 µg/mL) was obtained 

by a UV-vis spectrometer (Agilent 8453A). The -potential (50 μg/mL materials in 10 mM acetate, 

phosphate or carbonate buffer to cover the full pH range) was measured by dynamic light scattering 
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on a Malvern Zetasizer Nano ZS90 with a He-Ne laser (633 nm) at 90 degree collecting optics at 

25 C.  

DNA adsorption. The kinetics of DNA adsorption was studied by adding different concentrations 

of MoS2, WS2 or GO to 50 μL solution containing 50 nM FAM-labeled DNA in buffer A (20 mM 

Tris, pH 7.0, 100 mM NaCl, 2 mM MgCl2) at 25 C. Several different salt concentrations were 

also tested. The fluorescence was measured on a microplate reader (Infinite F200 Pro, Tecan) with 

490 nm excitation and 520 nm emission. 

Sensor preparation. A solution of 500 μL containing MoS2 (2 mg/mL), WS2 (5 mg/mL) or GO 

(0.1 mg/mL) was respectively incubated with 500 nM FAM-A15 in buffer A in dark at room 

temperature for 1 h. Then these solutions were washed with buffer A by centrifugation at 15,000 

rpm for 10 min. The sensors were finally dispersed in 500 μL buffer A and stored at 4 C (named 

solution I, II and III respectively). 

DNA desorption. To study DNA desorption induced by chemicals, 5 μL solution I, II or III was 

respectively centrifuged. After removing the supernatant, the pellets were respectively dispersed 

in 50 μL of 5 M urea, 10 mM NaOH, 10 mM phosphate, 1 mM adenosine solution, 3 M NaCl, or 

50% DMSO. The fluorescence intensity was measured immediately. The background fluorescence 

was measured by dispersing the same samples in 50 μL buffer A. For surfactant-induced DNA 

desorption, each well contained 45 μL buffer A and 5 μL solution I, II and III. Then different 

concentrations of SDS, Tween 80, Triton X-100, or CTAB were added to induce desorption.  

DNA sensing. For DNA sensing with MoS2, WS2 or GO, each well contained 45 μL buffer A and 

5 μL solution I, II or III. Then different concentrations of the cDNA were added to initiate the 

reaction. Displacement of adsorbed DNA probes was studied using a similar method and a final 
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of 1 μM of A15 or T15 DNA without a fluorophore label was added. The FAM-24mer DNA was 

tested following the same protocol.  

Results and Discussion 

Materials characterization. Single-layered MoS2 and WS2 have a similar structure with the 

transition metal atoms covered on both sides by sulfur (Figure 1A). Therefore, the chance of DNA 

interacting directly with the metal centers is quite low except for the edges. While the sulfur atoms 

are fully exposed, they are not known to interact strongly with DNA. For comparison, GO has a 

diverse range of oxygen-containing moieties such as hydroxyl, epoxy and carboxyl groups (Figure 

1B), allowing hydrogen bonding in addition to pi-pi stacking with DNA.  

 

Figure 1. (A) The structure of a single-layered MoS2 or WS2. The Mo or W atoms are in black 

and the sulfur atoms are in yellow. (B) The structure of GO showing rich oxygenated groups: the 

carbon atoms in black, oxygen in red, and hydrogen in grey. 

 

 When dispersed in water at 0.5 mg/mL, MoS2 is dark green, WS2 is brown, while GO 

appears black (inset of Figure 2A). The UV-vis spectra of these samples are shown in Figure 2A. 

MoS2 has a peak at ~420 nm and another one at >600 nm, explaining the green color. The 

absorption features of the other two are less obvious. To characterize their morphology, we 

performed TEM (Figure 2C-E). Each material appears as large micrometer sized sheets, consistent 
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with their 2D structure. Their similar 2D feature makes it ideal for a side-by-side comparison of 

their DNA adsorption property. 

 

Figure 2. Characterization of these three 2D materials. (A) UV-vis spectra of MoS2 and WS2 (100 

µg/mL) and GO (25 µg/mL) dispersed in water. Inset: a photograph of these materials (0.5 mg/mL 

each). (B) Zeta-potential of each material (0.05 mg/mL) as a function of pH in 10 mM buffer 

(acetate from pH 3.6 to 6; phosphate from pH 6 to 8.5; and carbonate from pH 9 to 10). TEM 

micrographs of (C) MoS2, (D) WS2 and (E) GO.  

 

 Since DNA is a highly negatively charged polymer, electrostatic interaction is likely to be 

important for its adsorption. As such, we measured the zeta-potential of each material as a function 

of pH (Figure 2B). From pH 3.5 to 10, all these materials are negatively charged. GO has surface 

carboxyl groups responsible for the negative charges.14, 38 The negative charges on MoS2 and WS2 

are attributable to the surface sulfur atoms.39 Such negative zeta-potentials afford a reasonable 
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colloidal stability in aqueous dispersion. The zeta-potential of WS2 is much more negative than 

the other two, and we indeed noticed a better colloidal stability of WS2 than that of MoS2.  

DNA adsorption. Since DNA adsorption is the first step of interaction, we studied it first. As both 

DNA and these 2D materials are negatively charged, salt concentration might strongly affect 

adsorption. Using the FAM-A15 DNA, we monitored its background fluorescence for 15 min and 

then respectively added each material (Figure 3A-C). In the absence of salt, no fluorescence 

quenching was observed, suggesting the lack of adsorption. With 100 mM NaCl, quenching 

occurred in all the samples. Further adding 2 mM Mg2+ resulted in even faster and stronger 

quenching in each case. Our results are consistent with that salt is required to overcome 

electrostatic repulsion for DNA adsorption. In addition, all these materials can quench 

fluorescence, which is useful for analytical applications.20, 21, 40 

 We also noticed that at the same materials and salt concentration, GO induced the highest 

amount of quenching. To quantitatively understand this, we fixed the DNA and salt concentration, 

and monitored fluorescence quenching as a function of materials concentration (Figure 3D-F). In 

each case, a higher concentration induced more significant fluorescence quenching. With 20 

µg/mL of GO, full adsorption was achieved, while it takes much more of MoS2 and WS2. We 

plotted the relative fluorescence quenching as a function of materials concentration (Figure 3G). 

At low concentration, a linear fluorescence quenching was observed. We attribute this mainly to 

adsorption, and the amount of fluorescence drop due to light scattering/absorption by these 

materials was neglected. The slopes of these curves represent the adsorption capacity at the 

experimental condition. We calculated that the capacity of GO is 36.6 times higher than that of 

MoS2, and 33.0 times higher of WS2.  
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Figure 3. Kinetics of FAM-labeled A15 (50 nM) adsorption by (A) MoS2 (200 µg/mL), (B) WS2 

(500 µg/mL) and (C) GO (10 µg/mL) at three different salt concentrations. The materials were 

added at 15 min indicated by the arrowhead. (D) Relative fluorescence quenching as a function of 

materials concentration. The initial slope indicates the relative adsorption capacity. Kinetics of the 

DNA (50 nM) adsorption by various concentrations of (E) MoS2, (F) WS2 and (G) GO in buffer 

(100 mM NaCl, 2 mM Mg2+, 20 mM Tris, pH 7.0).  

 

 GO has a much lower molecular weight (made mainly of carbon and oxygen). With the 

same mass concentration, GO has a larger geometric surface area. The theoretical surface area is 

2630 m2/g for a single graphene sheet. With oxygenated groups present, the surface area of GO is 

smaller than the theoretical graphene value. The oxygen content of our GO is about 40%,14 leading 

to a theoretical specific surface area of ~1575 m2/g. The surface area of the dichalcogenides are 

smaller since they contain heavier atoms. MoS2 can reach 210 m2/g,41 and WS2 is around 100 

m2/g.42 This difference in specific surface area can account for a large fraction of the difference in 

DNA adsorption capacity. In addition, GO might have a higher adsorption affinity, allowing more 

javascript:popupOBO('CHEBI:36973','C1CC11159K','http://www.ebi.ac.uk/chebi/searchId.do?chebiId=36973')
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DNA to be adsorbed. For example, only GO can form pi-pi stacking and strong hydrogen bonding, 

while the other two materials cannot. The adsorption affinity might account for the rest of 

difference in adsorption capacity, and this is the topic of the subsequent section. 

DNA desorption. To compare adsorption affinity and to understand the mechanism of DNA 

adsorption, we next studied DNA desorption. For this purpose, a FAM-labeled DNA was pre-

adsorbed to prepare an adsorption complex with a low fluorescence. We monitored its background 

for a few minutes to ensure stable adsorption. Then a DNA denaturing agent was added to induce 

DNA desorption and the kinetics of fluorescence enhancement was followed. For each sample, we 

compared the fluorescence intensity with the free DNA in the buffer but without adding 

nanomaterials to calculate the desorption percentage. Each denaturing agent was used to probe a 

type of intermolecular force. 

It is known that hydrogen bonding plays an important role in DNA adsorption by GO, 

which was supported by urea washing.43 Following this, we exposed these three adsorption 

complexes to 5 M urea (Figure 4A). We observed a significant release of DNA from GO (>50%) 

but much less from the other two materials. This suggests that DNA adsorption by MoS2 and WS2 

is independent of hydrogen bonding. This is reasonable since no hydrogen bond donors are on 

these materials and the ability of sulfur to be a hydrogen bond acceptor is much weaker than 

oxygen due to the low electronegativity of sulfur.  

Next, the effect of pH was studied (Figure 4B). In this case, a final of 10 mM NaOH was 

added to each sample to raise the pH. Fluorescence enhancement was observed in all the samples, 

and GO had the highest fluorescence increase and thus the most DNA desorption. In general, at 

higher pH, the surface of these materials becomes more negative (Figure 2B). This would increase 

the electrostatic repulsion with DNA and weakening adsorption. Hydrogen bonding can also be 



11 
 

disrupted at high pH due to deprotonation of hydrogen bond donors, which may explain the more 

desorption from GO. We did not try acidic pH since low pH would increase the adsorption 

affinity,44 and thus no desorption is expected. 

 

Figure 4. Comparison of DNA desorption from MoS2, WS2 and GO under various denaturing 

conditions. Kinetics of DNA desorption from MoS2, WS2 and GO after adding (A) 5 M urea, (B) 

10 mM NaOH, (C) 3 M NaCl, (D) 50% DMSO, (E) 10 mM phosphate, and (F) 1 mM adenosine, 

The materials were added at 10 min indicated by the arrowhead. 

 

Although electrostatic attraction is unlikely to take place between DNA and these materials, 

we still screened the charge interaction by adding 3 M NaCl. Indeed, we observed enhanced 

adsorption since the fluorescence slightly dropped for all the samples (Figure 4C). We next probed 

hydrophobic interactions by adding an organic solvent, DMSO, which can dissolve hydrophobic 
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molecules (Figure 4D). In this case, we also failed to see fluorescence enhancement for any 

material suggesting that hydrophobic interactions is insignificant for DNA adsorption. 

DNA is made of nucleosides and a phosphate backbone, and DNA is known to use these 

chemical groups to interact with various materials. For example, DNA uses its phosphate to adsorb 

onto many metal oxides,45 while uses its base coordination to bind to gold nanoparticles.46 To 

probe possible chemical interactions, we next challenged the samples with 10 mM free inorganic 

phosphate or 1 mM adenosine. With phosphate, none of them showed much desorption, suggesting 

that the DNA does not use its phosphate backbone for adsorption. This is consistent with that the 

metal centers in the dichalcogenides are shielded. On the other hand, we observed a lot more 

desorption from GO upon adding adenosine. This is consistent with the fact that DNA is adsorbed 

on GO using its nucleobases (hydrogen bonding and pi-pi stacking).47 The two dichalcogenides, 

however, failed to show much response to adenosine either, especially for WS2.  

Taken together, the above studies have ruled out hydrogen bonding, electrostatic attraction, 

hydrophobic interactions, and chemical interactions for MoS2 and WS2 to interact with DNA. As 

such, we reason that they adsorb DNA mainly via vdW force, which is a ubiquitous 

intermolecular/surface force. Using first principle density function theory (DFT), Vovusha and 

Sanyal indicated that all the four nucleobases interact with MoS2 and WS2 via vdW force, which 

is consistent with our conclusion.35 They predicted that for individual nucleobases, the affinity on 

MoS2 and WS2 follows the order of G > A > T > C with atomic level details. For example, the H 

atom of the CH3 group in adenine interacts with the S atom of the surface. For cytosine, the H of 

the CH3 group and the O atom are relatively closer to the substrates. In another theoretical study, 

the vdW force was also deemed critical and order of interaction was determined to be G > A/C > 

T.34 The fact that guanine adsorbs very tightly is also consistent with our observation in this study 
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(vide infra). MoS2 and WS2 sheets stack to form bulk materials via vdW force. The relatively large 

electronegativity between Mo/W and S can resulted in polarized electron distribution, which is 

favorable for vdW interactions (e.g. dipole and induced dipole interactions). Therefore, it is not 

surprising that these two materials mainly use vdW force for adsorbing DNA.  

Our results above also suggest that the vdW force between DNA and GO is weaker than 

that between DNA and the dichalcogenides. For example, when urea was added to disrupt 

hydrogen bonding, much more DNA desorbed from GO. In the presence of urea, GO should still 

be able to interact with DNA via vdW force. As such, GO has much weaker vdW interactions with 

DNA.  

DNA displacement by surfactants. After studying the force responsible for DNA adsorption by 

adding various denaturing agents, we next examined DNA displacement by other molecules. Such 

molecules do not denature DNA but they compete with DNA for the surface adsorption sites, 

which may further increase our fundamental understanding. First, we added various surfactants to 

displace adsorbed DNA. SDS is a small molecule anionic surfactant. While it had no effect on GO, 

~10% DNA desorbed from the other two surfaces (Figure 5A). A slightly different trend was 

observed CTAB, where desorption was observed only from MoS2 (Figure 5B). With ten times 

higher CTAB (i.e. 0.1%), DNA also desorbed from WS2, but still not from GO (Figure S1). 

Therefore, regardless of the charge of these small molecule surfactants, they both induced more 

desorption from the dichalcogenides.  

We further tested two larger surfactant molecules: Tween 80 (Figure 5C) and Triton X-100 

(Figure 5D). In both cases, the highest desorption occurred with MoS2 and the least with GO, 

leaving WS2 in between. This is consistent with that the surfactants interact with the 

dichalcogenides via their hydrophobic tails using vdW force to displace DNA. As such, the charge 
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on the surfactant headgroups is less important.48 This is in direct competition with the adsorbed 

DNA since the same force was involved. On the other hand, GO adsorption is based on other forces 

and is thus less affected. It is also interesting to note that the higher molecular weight Tween 80 

and Triton X-100 desorbed more DNA than the small molecule surfactants SDS and CTAB. This 

is likely due to the higher molecular weight surfactants (both are non-charged) having a stronger 

vdW force with the surfaces. The fact that DNA is adsorbed more tightly on GO when probed by 

surfactants, but less tightly on GO when probed by the denaturing agents also supports the 

importance of the vdW force on the dichalcogenides. 

 

Figure 5. Kinetics of FAM-A15 DNA desorption from MoS2, WS2 and GO after adding 0.01% (A) 

SDS, (B) CTAB, (C) Tween 80, and (D) Triton X-100. The reaction buffer contained 20 mM Tris, 

pH 7.0, 100 mM NaCl, and 2 mM MgCl2. The surfactants were added at 10 min as indicated by 

the arrowheads. 
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Effect of DNA sequence and length. Since DNA adsorption by GO has been extensively 

studied,11-15 this work is focused on MoS2 and WS2. Considering the similarity between MoS2 and 

WS2, we chose the latter to study the effect of DNA sequence and length. The four 15-mer FAM-

labeled DNA homopolymers were respectively adsorbed on WS2, and then Tween 80 was added 

to induce desorption. We observed the most desorption with C15 followed by T15, A15 and G15 

(Figure 6A). Therefore, adsorption of the purines are stronger than the pyrimidines. This is 

consistent with the previous theoretical calculations of vdW force based DNA base adsorption.34, 

35 Similarly, the effect of DNA length was studied using poly-A DNA. Interestingly, while longer 

DNA showed less desorption, the difference was quite small (Figure 6B). It might be that each 

DNA did not use all its bases to adsorb and the advantage of longer DNA is less obvious. For 

example, it has been simulated on graphene that ssDNA has two competing forces on the surface: 

inter-nucleobase stacking and nucleobase stacking with graphene.49 The former force results in 

that only a fraction of the bases are adsorbed. A similar situation is likely to also occur on the 

dichalcogenide surfaces.  

 

Figure 6. Effect of DNA sequence and length on DNA adsorption affinity on WS2. Fluorescence 

measurement of (A) different sequences and (B) different lengths of FAM-labeled DNA 

desorption from WS2 after 20 min incubation with 0.01% Tween 80. The reaction buffer contained 

20 mM Tris, pH 7.0 with 100 mM NaCl and 2 mM MgCl2.  
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DNA displacement by DNA. Since DNA is only physisorbed in this work, they can be displaced 

by other molecules, such as the surfactants demonstrated above. For DNA sensing applications, 

an interesting question is non-specific DNA displacement by DNA. To study this, we adsorbed 

FAM-A15 and then added its cDNA, T15 or the same A15 DNA but without the fluorophore label. 

For MoS2 and WS2, we observed more fluorescence signal when T15 was added, suggesting that 

DNA hybridization plays a key role here. Non-specific displacement by A15 also occurred, but to 

a smaller extent. However, more displacement by A15 occurred on GO than hybridization by T15, 

which is consistent with our previous observation.50 This is an important difference, and suggests 

that A15 adsorption by GO might be more favorable than its hybridization with T15. On the other 

hand, DNA adsorption by the dichalcogenide surfaces is weaker to allow DNA specific 

hybridization to be the dominating interaction. 

 

Figure 7. DNA hybridization and displacement. The FAM-A15 DNA probe was first adsorbed by 

each surface and then a non-labeled T15 or A15 DNA was added to induce probe desorption from 

(A) MoS2, (B) WS2, and (C) GO. The DNA was added at 10 min indicated by the arrowheads.  

 

DNA sensing with a random sequence. After these fundamental surface science studies, we next 

compared the analytical performance of these materials for DNA detection. Our sensing scheme 

is shown in Figure 8A. A fluorescent probe DNA was first adsorbed and its cDNA was added to 
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induced signaling.27 The above studies in Figure 7 used two model DNA homopolymer sequences 

for mechanistic studies. Here we employed a random sequence for testing analytical performance. 

The kinetics of signaling on each surface are shown in Figure 8B-D, respectively. They all showed 

cDNA concentration dependent fluorescence enhancement, thus supporting potential sensing 

applications. We quantified the relative fluorescence enhancement at 10 min after adding the 

cDNA (Figure 8E). The GO sample showed the strongest signal enhancement reaching ~18-fold, 

while the other two had a similar performance of ~4-fold. A similar trend was observed when a 

different probe DNA sequence was used (Figure S2). The slope of the initial linear increase was 

compared (Figure 8F), and the GO sample is 4.3-fold more sensitivity (note this slope is the 

sensitivity of the sensors). We also calculated the detection limits of these sensors based on the 

signal greater than 3 times of background variation, and they turned out to have a similar detection 

limit (Figure 8G). This is likely due to a less fluctuated background to compensate for the lower 

sensitivity of the dichalcogenates. While cDNA-concentration-dependent response has been 

demonstrated, such sensors may suffer from non-specific displacement by other molecules and 

thus produce false positive signals. Therefore, careful controls and internal references are needed 

to ensure correct analytical interpretations. For example, by co-adsorbing a random DNA labeled 

with a different fluorophore as an internal standard, it is possible to identify false positive signals 

due to non-specific probe displacement.51 Covalent linking is another strategy,52 which however 

has yet to be developed for the dichalcogenates. 
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Figure 8. Schematics of DNA sensing using a fluorophore-labeled DNA probe. The probe is 

adsorbed by MoS2, WS2 or GO, resulting in fluorescence quenching. After adding the target cDNA, 

fluorescence is recovered due to DNA hybridization. Kinetics of probe desorption from (B) MoS2, 

(C) WS2 and (D) GO in the presence of various concentrations of cDNA. The arrowheads indicate 

the time point when cDNA was added (10 min). (E) The relative fluorescence enhancements of 

MoS2, WS2 and GO after 10 min reaction. (F) The slope of the initial linear signal increase in (B-

D) indicative of sensor sensitivity. (G) The detection limits of the three sensors from (B-D). 

 

Conclusions 

In summary, we compared DNA adsorption and desorption from three representative 2D materials: 

GO, MoS2 and WS2. In particular, fundamental surface forces were probed by various chemicals, 

and the implication for DNA sensing was emphasized. We measured the zeta-potential of each 

material and they were all negatively charged. As a result, DNA adsorption requires a high ionic 

strength to screen charge repulsion. While GO, MoS2 and WS2 can all adsorb DNA and quench 

the fluorescence of the absorbed fluorophore, the mechanism of DNA adsorption on each material 
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is quite different. DNA is adsorbed on GO mainly via pi-pi stacking and hydrogen bonding, while 

MoS2 and WS2 rely on vdW force as probed by various denaturing conditions. Denaturing agents 

such as urea and strong base induced more DNA desorption from GO, while all the tested 

surfactants are more effective to displace DNA from the two dichacolgenides. Using FAM-A15 as 

a probe, T15 induced more probe desorption than A15 on MoS2 and WS2, suggesting specific DNA 

hybridization. The opposite however was observed on GO, suggesting non-specific displacement. 

When their performance for DNA detection is compared, the GO surface had the highest sensitivity, 

while the detection limit of the three sensors turned out to be similar. These fundamental 

understandings are valuable for designing and optimization of sensors and devices based on DNA 

and 2D materials.  
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