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Abstract 

Globalization has increased the demand for clean water sources and has increased water 

pollution due to increased standards of consumption, urbanization and industrial activities. This 

has necessitated improvements in small-scale and large-scale water treatment processes in terms 

of improved energy efficiency for treatment and protocols and standards for unmonitored 

emerging contaminants.  

One such treatment platform that can be improved is in the area of advanced oxidation 

processes (AOPs). AOPs are used to decompose organic pollutants into smaller constituents. 

However, they often use hazardous chemicals that need to be added on a continual basis. TiO2 

photocatalysis is an AOP that removes the need for consumable chemicals like hydrogen 

peroxide and ozone. This work focused on methods that improved the kinetics of TiO2 

photocatalysis and combined the application of TiO2 photocatalytic AOP with other water 

applications, specifically filtration and corrosion protection, in order to increase its attractiveness 

for use in commercials applications by decreasing the energy required to operate and/or 

combining more than one application into one process. 

 Two methods were studied to improve the reaction kinetics and limit recombination in 

TiO2 photocatalysis: (i) modifying physicochemical properties of TiO2 and (ii) altering 

operational parameters. Physicochemical properties of TiO2 were modified through the synthesis 

of various nanomaterials that limit recombination and/or increase the number reaction sites. One-

dimensional TiO2 (TiO2 nanobelts) were synthesized and increased the electron lifetime 

compared to nanoparticles. Metal-semiconductor junctions (Ag-TiO2) were also made and they 

were able to efficiently separate electron and hole via the Schottky barrier effect and limit 

recombination. This work also investigated the effect of varying operational parameters in order 

to study their effects on the reaction kinetics. Operational parameters such as pH, light intensity, 

temperature and catalyst configuration (slurry or membrane) were explored. 

Of particular interest in this work was altering the light intensity intermittently, which is 

referred to as controlled periodic illumination (CPI). CPI was used as a means to increase 

reaction efficiency of TiO2 photocatalysis. The amount of energy required to remove organic 

contaminants was decreased by lowering the duty cycle and increasing the pulse frequency. In 

addition, CPI was used to compare the performance of slurry reactors and immobilized TiO2 

membrane reactors, in which the latter suffered from mass transport limitations. CPI under mass 

transfer limitations revealed that the duty cycle may be reduced to 10% and this would not alter 

its reaction kinetics compared to continuous illumination. 

Utilization of TiO2 photocatalysis was studied in three other water treatment application 

areas – emerging contaminants, filtration and corrosion protection. Using immobilized TiO2 

under UV irradiation, emerging contaminants, specifically pharmaceuticals and personal care 

products were shown to be degraded based on their pharmaceutical properties (charge, molecular 

weight, and solubility). The compound charge had the greatest effect on the degradation 

performance. Another application that was explored was combining TiO2 AOP with filtration 

using a photocatalytic membrane reactor (PMR). TiO2 coated filters under PMR filtration were 

shown to increase flux under UV illumination and have higher removals than uncoated filters. 

Finally, the concurrent degradation of organic compounds and corrosion protection was 

demonstrated using TiO2 photoanodes coupled with steel. This method reduced the mass loss due 
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to corrosion, while simultaneously degrading organic contaminants. It was shown that TiO2 

photocatalysis and the TiO2 AOP process can be utilized in other pertinent areas in water 

treatment. 

Overall, the research demonstrated that the efficiency of TiO2 AOPs can be improved 

through the synthesis of nanomaterials that limit recombination, increasing material surface area, 

and effectively utilizing light using controlled periodic illumination. Furthermore, TiO2 

photocatalysis can be combined with filtration and corrosion protection processes to increase its 

attractiveness in other water treatment areas. 
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1.0 Introduction 

1.1 Background 

 The growing demand for clean water sources and increasing water pollution, from 

synthetic chemicals and products, requires improvements to conventional water treatment 

processes and maintenance applications in small and large-scale water treatment operations. 

Water treatment processes, such as advanced oxidation processes (AOPs), can be improved by (i) 

reducing energy costs for treatment and (ii) reducing the risk of exposure from contaminants that 

have not been monitored sufficiently, also known as emerging contaminants [1]–[3].  

Maintenance applications can be improved by prolonging the lifetime of infrastructure. 

AOPs are oxidation processes used in tertiary water treatment processes to degrade 

organic contaminants and disinfect water. These processes require an oxidant source, such as 

hydrogen peroxide (H2O2), ozone (O3) and short-wave ultraviolet (UV-C) irradiation, which are 

consumable and need to constantly be inputted into the treatment process [4]. A non-consumable 

oxidant source would lower the energy cost for treatment substantially.  

Photocatalytic materials, such as titanium dioxide (TiO2), can be used as a non-

consumable oxidant source to treat organic contaminants. There has been growing interest in 

titanium dioxide (TiO2)  primarily because of their photocatalytic properties that allows light 

energy to be converted into chemical energy, which is useful in many applications [5]–[7]. The 

chemical energy produced from UV light interacting with TiO2 is the formation of radical species 

that are able to degrade organic compounds into their constituent parts. 

TiO2 photocatalysis has the following advantages compared to consumable chemical 

oxidation processes: 

(1) The process avoids use of hazardous chemicals, such as chlorine, sodium hypochlorite, ozone, 

and hydrogen peroxide. The oxidants generated are hydroxyl radicals, which have short lifetime 

in solution and breaks down organic compounds into less toxic and more hydrophilic forms. 

(2) The process can be more energy efficient than photolysis and sonolysis. Photolysis requires 

UV-C radiation to operate and sonolysis requires high power ultrasonic transducers, which 

requires more energy to operate. TiO2 photocatalysis requires UV-A radiation, reducing the 

energy requirements from UV-C light sources. 

 TiO2, however, is inefficient in the sense that it relies solely on UV radiation to generate 

radical species, it is dependent on the number of reaction sites on its surface, and recombination 

processes limit the efficiency of generating radical species to decompose organic contaminants. 

This presents an opportunity to overcome these disadvantages by using (i) nanomaterials and 

other materials to increase reaction rates and limit recombination processes and/or (ii) changing 
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the physical parameters, such as pH, temperature and light intensity, which contribute to the 

reactions taking place on the surface of TiO2. 

Nanomaterials are materials that are modified or synthesized in the nanoscale (1 – 100 

nm) using a bottom-up (i.e. self-assembly techniques) or top-down (i.e. lithography techniques) 

approach and exhibit properties not observed in the macro-scale.  TiO2 nanomaterials, in 

particular, have high surface areas  that allow for increased reaction rates that can be leveraged in 

TiO2 photocatalysis [4]. 

 TiO2 nanomaterials have the benefit of other functionalities, such as photowetting, 

adsorption, and self-cleaning processes, which can be used in other water treatment and 

maintenance processes such as filtration, fouling control, and corrosion prevention (Table 1.1). 

The implementation of one or more of these functionalities into a conventional treatment process 

or maintenance application along with the optimization of oxidation kinetic reactions pertaining 

to these processes in TiO2 nanomaterials are important areas of research that have not fully been 

explored.  

 

Table 1.1: Water treatment applications using photocatalytic nanomaterials 

FIELD APPLICATION USE OF TiO2 NANOMATERIAL 

Water 

Purification 

Applications 

 

Advanced 

Oxidation Process – 

Semiconductor 

Photocatalysis 

 

The inherent photocatalytic properties of TiO2 are used to 

produce electron-hole pairs that participate in redox reactions 

which produce hydroxyl radicals that oxidize organic 

pollutants such as pharmaceuticals and personal care products. 

 

Adsorption 

 

The high surface area of nanomaterials increases adsorption 

capacity. 

  

Filtration TiO2 nanomaterials are coated, grown, or incorporated into a 

filter demonstrating higher flux capacities under illumination. 

 

Maintenance 

Applications 

 

 

Fouling Control 

 

The photocatalytic properties of TiO2 are used to prevent 

organic pollutants to accumulate on the filter surface of a 

substrate in order to maintain the filter’s functionality. 

 

 

 

Corrosion 

Prevention 

The TiO2 is incorporated onto an anode and acts as a 

photoanode in cathodic protection systems. It is a variant of an 

impressed current system except an external DC power supply 

is not required or required in a limited role. The system can be 

combined with TiO2/UV AOP and other water purification 

applications. 
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1.2 Objectives 

The aim of this research is to use TiO2 nanomaterials to improve water treatment 

applications in filtration, advanced oxidation processes, and corrosion protection as seen in 

Figure 1.1.  In order to improve these water treatment applications, two avenues were used: (i) 

improving the TiO2 efficiency by limiting recombination and using intermittent light and (ii) 

incorporation of two separate water applications into one concurrent process. In addition, 

emerging contaminants were studied partially as a component in a larger collaboration project.  

The effect of perturbation, via applying a continuous/pulsed potential or intermittent light 

using ultraviolet – light emitting diodes (UV-LEDs), on TiO2 nanomaterials (nanoparticles and 

nanobelts) with its aqueous environment was investigated. Four topics were explored: the 

performance of slurry and membrane batch reactors, emerging contaminants, photocatalytic 

membrane filtration and concurrent organic degradation and cathodic corrosion protection 

processes. The main objectives of this research are listed, below: 

1. Investigate the photoelectrochemical characteristics of titanium dioxide nanobelts (TNB). 

2. Study the effects of continuous and controlled periodic illumination of UV light sources. 

3. Test the degradation of emerging contaminants, specifically in membrane and slurry batch 

reactor setups. 

4. Develop a photocatalytic membrane reactor (PMR) to test synthesized TiO2 nano-membranes 

for their efficacy in the removal of dyes and pharmaceuticals. 

5. Develop a galvanic cell for the concurrent degradation of organic contaminants and cathodic 

protection of steels. 

 

Figure 1.1: Research Overview 
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1.3 Thesis Organization 

The thesis is focused on the understanding of the properties, synthesis, and applications 

of TiO2 nanomaterials. The proposal is divided into ten chapters. 

 Chapter 1 is an introduction describing the objectives and motivation behind this work. 

 Chapter 2 contains a comprehensive literature review of semiconductor and TiO2 

properties, TiO2 synthesis and membrane fabrication methods, and water treatment 

applications in advanced oxidation processes, membrane filtration, and corrosion 

protection. 

 Chapter 3 describes a general methodology in the experiments. The methods included 

are materials characterization, photoelectrocehmical testing, and photochemical testing 

methods. 

 Chapter 4 discusses the use of TiO2 nanobelts and their material, photoelectrochemical, 

and photochemical properties. 

 Chapter 5 evaluates TiO2 photocatalysts – P25, TiO2 nanobelts, and Ag-TiO2 nanobelts 

– and their degradation of terephthalic acid under controlled periodic illumination in a 

slurry batch reactor. 

 Chapter 6 evaluates the degradation of a cocktail of pharmaceuticals and personal care 

products using TiO2 substrates and the effect of surface charge and mass transfer in 

determining which pharmaceuticals degrade under UV irradiation. The controlled 

periodic illumination of UV-LEDs was investigated on TiO2 substrates. The duty cycle 

and frequency were changed to see the effect on kinetic decomposition rates.  

 Chapter 7 investigates the use of a photocatalytic membrane reactor combining filtration 

and photocatalytic processes in a dead-end filtration setup using undoped and doped TiO2 

nanomaterials.  

 Chapter 8 investigates the use of photocathodic protection of steels. Coupled TiO2-

composite and steel electrode pairs were investigated for their use in cathodic protection 

in salt solution in the presence and absence of organic or inorganic scavengers. 

 Chapter 9 reports the main conclusions and recommendations. 

 Chapter 10 lists the author’s contributions to research. 
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2.0 Literature Review 

Overview 

The growing demand for clean, potable water sources has necessitated innovations in 

water treatment technologies and management. Current and emerging technologies that are of 

interest for industrial use are based on photocatalysis. Photocatalysis is the process whereby 

redox reactions are accelerated in the presence of a catalyst that is initiated by light of certain 

wavelengths. It relies on the catalyst to generate electron-hole pairs, which undergo a chain of 

redox reactions depending on its environmental conditions. Titanium dioxide (TiO2) materials of 

different types and structures have shown to be effective photocatalysts because of their chemical 

stability, reactivity, and low toxicity [1, 2]. It has been used extensively as white pigments in food, 

personal care products, and coatings. The focus of this chapter is to summarize the properties of 

TiO2 semiconductor (Section 2.1 and Section 2.2), TiO2 synthesis methods for powders (Section 

2.3) and membranes (Section 2.4), photoelectrochemical characterization methods (Section 2.5), 

and TiO2 based applications in water treatment based on literature and the contents of this study 

(Section 2.6). A portion of the literature review is a compilation of work done previously from 

written book chapters [3]. 

 

2.1 Properties of Semiconductors 

2.1.1 General characteristics of semiconductors 

2.1.1.1 Energy band gap 

Semiconductors contain an energy band gap (Eg) between conduction band and the 

valence band and can be classified as either direct or indirect band gaps (Fig. 2.1). In direct band 

gap semiconductors, the energy of the valence band lies below the minimum energy of the 

conduction band without a change in momentum. On the other hand, in an indirect band gap 

semiconductor, the minimum energy in the conduction band is shifted by a change in momentum, 

  . 

 
Figure 2.1: The band gap of (a) a direct semiconductor and (b) an indirect semiconductor. 

Reproduced with permission from [3a] 
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The probability that the energy level of a solid is occupied by electrons is determined by 

the Fermi-Dirac distribution function [4]: 

 

 
 ( )  

 

  
   (    

 )
   

 

 

Eqn. 2.1 

   is the energy (J), 

  
  is the Fermi level (eV) 

   is the Boltzmann constant (J K
-1

), and 

  is the temperature (K). 

 

 

The Fermi level (  
 ), represents the probability of finding 50 % of electrons in this level. For 

intrinsic semiconductors,   
  falls inside the bandgap and depends on the mass of electrons at the 

end of the conduction band (   
 ), on the effective mass of electrons at the beginning of the 

valence band (  
 ), and on the amplitude of the band gap (  ). The equation of the Fermi level is 

as follows: 

 

 
  
  

 

 
   

 

 
    (

  
 

  
 ) 

 

Eqn. 2.2 

where   
  is the effective mass of holes  (kg), and 

  
  is the effective mass of electrons (kg). 

 

 

The value of   
  is equivalent to the electrochemical potential of an electron and is the work 

required to transport and electron from a large distance to the semiconductor. 

 

2.1.1.2 Semiconductor doping 

Some types of impurities and imperfections to the crystal lattice may drastically effect the 

electrical properties of a semiconductor [3, 5]. The conductivity of a semiconductor can be 

increased by doping, a technique that introduces foreign atoms into the lattice. For example, in 

the case of the Si lattice, with each Si atom having four covalent bonds with four nearby Si atoms, 

the addition of atoms – arsenic, phosphorous, or antimony – having one more valence electron 

compared to Si, will lead to an excess positive charge due to the electron transfer from the foreign 

atom to the conduction band. This is called donor doping and creates an n-type semiconductor, 

where the Fermi level will be close to the conduction band. The Fermi level changes for an n-type 

semiconductor are: 
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      (
  
  
) 

 

Eqn. 2.3 

where ND is the concentration of donor atoms (mol L
-1

) and  

 ni is the intrinsic carrier concentration (mol L
-1

).  

 

On the other hand, if the foreign atom is boron, gallium, and indium, which have one 

valence electron less than Si, it can accept one electron from the valence band. This is called 

acceptor doping and creates a p-type semiconductor, where the Fermi level will reside closer to 

the valence band. The Fermi level changes for a p-type semiconductor are: 

 
   
     

      (
  
  
) 

 

Eqn. 2.4 

where NA is the concentration of acceptor atoms (mol L
-1

)  

 

The Fermi levels of intrinsic, n-type, and p-type semiconductors are shown in Fig. 2.2. 

 

(a) 

 

(b) 

 

(c) 

 

Figure 2.2: Three types of semiconductors: (a) intrinsic, (b) n-type, and (c) p-type. Reproduced 

with permission from [3a] 

 

2.1.2 Semiconductor in electrolyte  

The energy levels of electrons in solids can be extended to the case of an electrolyte 

solution containing a redox system [6]. The occupied electronic levels correspond to energetic 

states of reduced species, whereas unoccupied states correspond to energetic states of oxidized 

species. The Fermi level of the redox couple, EF, redox, corresponds to the electrochemical potential 

of electrons in the redox system and is equivalent to the reduction potential Vo. To correlate 

energetic levels of the semiconductor and the redox couple in an electrolyte, two different scales 

are used (in eV and V). There are two scales because in solid-state physics, zero is the level of an 

electronic vacuum and in electrochemistry the reference is the potential of the normal hydrogen 

electron (NHE). The two scales are correlated using the potential of NHE, which is equal to -4.5 

eV and is referred to as that of the electron in a vacuum [7].  
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If a semiconductor is placed in contact with a solution containing a redox couple, 

equilibrium is reached when the Fermi levels of both phases become equal. This occurs by means 

of an electron exchange from solid and electrolyte, which leads to the generation of charge inside 

the semiconductor. This charge is distributed in a spatial charge region near the surface, in which 

the value of holes and electron concentrations also differ considerably from those inside the 

semiconductor. Fig. 2.3a shows schematically the energy levels of an n-type semiconductor and a 

redox electrolyte before contact and after contact. In particular, as the energy of the Fermi level is 

higher than that of the electrolyte, equilibrium is reached by electron transfer from the 

semiconductor to the solution. An electric field is produced by this electron transfer, which is 

represented by upward band bending. Owing to the presence of the field, excess holes generated 

in the space-charge region move toward the semiconductor surface, whereas excess electrons 

migrate from the surface to the bulk of the solid [3]. Fig. 2.3b shows the contact between a redox 

electrolyte and a p-type semiconductor. In this case, electron transfer occurs from the electrolyte 

to the semiconductor and downward band bending occurs. 

 

 

 

Figure 2.3: Formation of a junction between an (a) n-type semiconductor and (b) p-type 

semiconductor in an electrolyte solution before contact and at equilibrium after contact. 

Reproduced with permission from [3a] 

 

Under anodic or cathodic polarization, a Fermi level shift of the n-type semiconductor 

with respect to that of the solution occurs with an opposite curvature of the bands as seen in Fig. 

2.4. Under a certain electrode potential, the excess charge disappears and the bands become flat. 

The corresponding potential is called the flat band potential, VFB [8]. 
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Figure 2.4: Scheme of the energetic levels at the interface semiconductor-electrolyte for an n-

type semiconductor at (a) equilibrium and (b) flat band potential. Reproduced with permission 

from [3a] 

 

When a semiconductor is irradiated by radiation of suitable energy, equal to or higher 

than that of the band gap, Eg, electrons can be promoted from the valence band to the conduction 

band. Fig. 2.5 shows the scheme of electron-hole pair formation due to the adsorption of a photon 

by a semiconductor. 

 

 
Figure 2.5: Generation of an electron-hole pair after irradiation of (a) n-type 

semiconductor and (b) p-type semiconductor. Reproduced with permission from [3a]. 

 

The existence of an electric field in the space-charge region allows for photogenerated electron-

hole separation. In the case of n-type semiconductor, electrons migrate toward the bulk, whereas 

holes move to the surface (and vice-versa for p-type semiconductors). Photo-holes and photo-

electrons, migrate in opposite directions and can either (i) recombine and dissipate their energy as 

radiation (photon emission) or heat, or (ii) react with electron-acceptor or electron-donor species 

present at the semiconductor electrolyte interface, thereby reducing or oxidizing them, 

respectively [3]. 

The energy of the conduction band (Ec), corresponds to the potential of the photo-

electrons, whereas the energy of the valence band gap corresponds to the potential of the holes. If 

Ec is more negative than the potential of a species present in solution, electrons reaching the 

interface can reduce the oxidized form of the redox couple. Conversely, if the potential of Ev is 

more positive than that of the redox couple, photo-holes can oxidize the reduced form of the 

redox couple. Knowledge of the edge positions of the bands and of the energy levels of the redox 
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couples is essential to establish whether the thermodynamics allow for the oxidation/reduction of 

the species in solution [3]. The band gaps and the positions of the valence band and conduction 

band edges for various semiconductors are given in Fig. 2.6. 

 

2.1.2.1 The case of the porous semiconductor in electrolyte 

A porous semiconductor is defined as solid structures and pores that are in the 1 - 500 nm 

range and demonstrate remarkable charge-storage capabilities.  In highly porous electrodes, the 

formation of a space-charge layer is improbable due to the small crystallite size and, if a space-

charge layer exists, it is less than 100 nm [9]. In other words, the small TiO2 crystals do not 

contain enough electrons to create an effective space-charge layer and there is no band bending 

compared to macroporous films. 

 

 
Figure 2.6: Positions of band edges for some semiconductors in contact with aqueous 

electrolyte at pH. Reproduced with permission from [10]. 

 

2.2 Properties of TiO2 

2.2.1 Lattice structure of TiO2 

TiO2 occurs in three natural crystal forms – rutile, anatase, and brookite. The rutile and 

anatase have a tetragonal structure, whereas brookite has an orthorhombic structure; their lattice 

parameters are shown in Table 2.1. In nanostructured samples, the anatase and brookite 

transformed are dependent on the initial particle size, which determines the thermodynamic phase 

stability [3, 11, 12]. 

 



Literature Review 

11 

 

Table 2.1: The common TiO2 crystal phases and their lattice parameters. Reproduced with 

permission from [3b]. 

Crystal Phase Lattice parameter 

 a (Å) b (Å) c (Å) 

Rutile
*
 4.5937 4.5937 2.9581 

Brookite
** 

9.16 5.43 5.13 

Anatase
*** 

3.7842 3.7842 9.5146 

* [13], ** [14], *** [15] 

 

2.2.2 Photocatalytic mechanism of TiO2 

Photocatalysis occurs through the absorption of energy from a photon, hv1, greater than 

or equal to the band gap energy of TiO2 (3.2 eV for the anatase phase), producing an electron-

hole pair on the surface of the TiO2 nanomaterial as seen in Fig. 2.7. For pure TiO2, a UV source 

is required for photoactivity. Under UV illumination, an electron from the valence band (VB) is 

promoted to the conduction band (CB), leaving an electron vacancy, or hole, in the valence band 

(VB). The excited electrons have the probability of the following processes occurring: (i) 

electron-hole recombination and dissipation, (ii) electron and hole trapping in metastable states, 

or (iii) reaction of electrons and holes with electron donors and acceptors adsorbed of the 

nanomaterial surface. Holes on the surface of the TiO2 nanomaterials can cause oxidation 

reactions to occur that product hydroxyl radicals (OH), which are powerful oxidations. 

Depending on the environmental conditions, oxidants produced in this process can play a 

significant role in the photocatalytic mechanism [1], [16]. The following scheme shows events 

that can occur using only a semiconductor-aqueous solution interface when TiO2 is used as a 

photocatalyst [5] : 

 

 TiO2 + hv   TiO2 (   
 +   

 ) 
 Eqn. 2.5 

         
        Eqn. 2.6 

       
      

   Eqn. 2.7 

    
           Eqn. 2.8 

               Eqn. 2.9 

          
                 Eqn. 2.10 

 

The photocatalytic process also allows for the elimination of inorganic ionic compounds present 

in water by reducing them to element form on the surface of the catalysis:  

 

  (  )
             Eqn. 2.11 
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The metal can be also be reduced and then converted to an oxide form with hydroxide.  This 

reaction can also be advantageous to prevent corrosion in metals as will be shown in Chapter 8. 

 

2.2.2.1 Effect of doping on the photocatalytic mechanism 

The visible light photocatalytic activity of metal-doped TiO2 is due to the metal 

nanoparticles deposited into the TiO2 matrix. As shown in Fig. 2.7, electrons are excited from the 

defect state, imparted by the metal doping, to the CB by a photon with energy equals hv2. 

Additionally, transition metal doping improves the trapping of electrons and decreases the 

occurrence of electron-hole recombination during irradiation, which results in enhanced 

photoactivity. 

In non-metal doped TiO2, there are various perspectives regarding the mechanism in 

which doping imparts visible light photoactivity, which include: (i) bandgap narrowing, (ii) 

impurity energy levels, and (iii) oxygen vacancies. Taking nitrogen doping as an example, in 

nitrogen doped anatase TiO2 (N-TiO2), the N 2p state overlaps O 2p state since their energies are 

very close, so the band gap energy of N-TiO2 is narrowed allowing for visible light absorbance 

[17].  By introducing nitrogen atoms into the TiO2 matrix, the oxygen sites in TiO2 are substituted 

with nitrogen atoms in the form of impurity energy levels above the valence band. Under UV 

irradiation, electrons are excited in the VB and impurity energy levels, hv3; but under visible 

irradiation, electrons are only excited from impurity energy levels [18]. Another perspective on 

the mechanism of TiO2 visible light photoactivity is that oxygen vacancies or deficient sites are 

formed at grain boundaries and are important in imparting visible photoactivity in nitrogen doped 

TiO2 as a blocker for re-oxidation [17]. 

 

 
Figure 2.7: TiO2 photocatalytic mechanisms: hv1: pure TiO2; hv2: metal-doped TiO2; hv3: non-

metal-doped TiO2. Reproduced with permission from [3b].  
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2.2.3 Kinetics of photocatalysis 

Heterogeneous catalysis involves systems in which reactants and catalyst are distinct 

physical phases. Photocatalysis in particular is a change in the rate of a chemical reaction or its 

generation when a semiconductor, the photocatalyst, absorbs ultraviolet-visible-infrared radiation. 

Photocatalysis taking place at the boundaries between two phases can be expressed as [3]: 

 
  
           
→         

 

Eqn. 2.12 

where    reactant 

   product 

 

 

Photocatalysis of a heterogeneous system can be thought of as two steps: (i) 

photoadsorption/desorption processes and (ii) photoexcitation. Photosorption can be represented 

as: 

 

 
  
           
→            

 

Eqn. 2.13 

where    reactant 

      photoadsorbed species 

 

 

It occurs at the TiO2 surface that has been reported in earlier studies [19–23]. Photoadsorbed 

species can act as surface-hole trappings and photo-electrons can be trapped in the bulk of the 

solid or as surface electron trappings. It will depend on the chemical nature of the molecule 

adsorbed and on the type of the solid adsorbent. These changes are generally fast and reversible, 

such that once irradiation is stopped the surface recovers its previous features under equal initial 

conditions. 

Photoexcitation of a semiconductor can be separated into four simplified types of 

electronic excitations induced by light adsorption. In a perfect crystal lattice absorption can 

produce only intrinsic photoexcitations with (i) the promotion of electrons from the valence band 

to the conduction band with formation of free electron-hole pairs; (ii) the formation of free bulk 

excitons (the combination of an electron and a positive hole that is free to move through a non-

metallic crystal as a unit). In an imperfect lattice the presence of defects causes extrinsic 

absorption of light, in particular (iii) photon absorption by defects generating electronically 

excited defects and bound and /or self-trapped excitons; (iv) photon absorption generating 

ionization of  defect transitions between localized and delocalized electron states [24, 25]. 

The effect of light absorption on the semiconductor and the adsorption of molecules in 

aqueous solution can be described by two mechanisms (Fig. 2.8): (i) Langmuir-Hinshelwood 

mechanism and (ii) Eley-Rideal mechanism. The Langmuir-Hinshelwood (LH) mechanism is 
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used to explain the interaction of surface charge carriers and excitons with adsorbed molecules 

that can promote surface chemical processes, whereas the Eley-Rideal mechanism is used to 

explain the interaction of molecules with surface active centers that can initiate surface chemical 

processes. 

 
Figure 2.8: Langmuir-Hinshelwood Mechanism (top) and Eley-Rideal Mechanism (bottom). 

Reproduced with permission from [3a] 

 

In the Eley-Rideal mechanism [5] proposed by Eley and Rideal in 1938, only one of the 

reactant molecules adsorbs and the other reacts with it directly from the gas phase, without 

adsorbing: 

 

 Ag + Ss   ASads 

 

Eqn. 2.14 

 ASads + Bg  Product 

 

Eqn. 2.15 

 

In the LH mechanism both molecules adsorb and then undergo a bimolecular reaction: 

 

 A + S   ASads 

 

Eqn. 2.16 

 B + S   BSads 

 

Eqn. 2.17 

 ASads + BSads  Product 

 

Eqn. 2.18 
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The LH is widely applied to liquid and gas phase systems for the degradation of organic 

substrates on TiO2 surfaces in the presence of oxygen [26–29]. It explains the kinetics of 

reactions that occur between two adsorbed species. The two main assumptions of the LH model 

are that (i) the adsorption equilibrium is established at all times and the reaction rate is less than 

the rate of adsorption or desorption and (ii) the reaction is assumed to occur between adsorbed 

species whose coverage, on the catalyst surface, is in equilibrium with the concentration of the 

species in the fluid phase, so that the rate-determining step of the photocatalytic process is a 

surface reaction. 

The decrease in the amount of species in a liquid-solid phase photocatalytic system is the 

combination of photoadsorption and photoconversion processes. To describe this system, a molar 

balance can be applied to the species at any time [28]: 

 

          Eqn. 2.19 

  

where     total number of moles present in a photoreactor (mol) 

    number of moles in the fluid phase (mol) 

    number of moles photoadsorbed by the solid (mol) 

 

 

The molar balance can be rearranged in terms of the total concentration of the species (  ), by 

dividing by the volume of the liquid phase ( ), to obtain: 

 

       
  
 

 
Eqn. 2.20 

 

 

where     concentration in the liquid phase (mol L
-1

)  

 

Both substrate and oxygen must be present for the occurrence of the photoreaction, then it is 

assumed that the total disappearance rate of substrate per unit surface area,   , relies on second-

order kinetics (or a first order model with respect to the substrate coverage and oxygen coverage): 

 

 
     

 

 

   
  

             
Eqn. 2.21 

      
  
   

  
Eqn. 2.22 

     
     
      

  
Eqn. 2.23 

where    catalyst surface area (mg g
-1

) 

   time (s) 

     second order rate constant 

      substrate fractional coverage of the surface 

     oxygen fractional coverage of the surface 

       the number of moles of oxygen photoadsorbed on the solid on the 
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unit mass of irradiated solid (mol) 

  
   maximum capacity of photoadsorbed moles of substrate on the unit 

mass of irradiated solid (mol g
-1

)  

     
   maximum capacity of photoadsorbed moles of oxygen (mol g

-1
) 

   the mass of catalyst (g) 

 

 

If oxygen is continuously bubbled into the dispersion, its concentration in the liquid phase does 

not change and is always in excess. The     term of Eq. 2.21 is then constant so we can define 

         and Eq. 2.21 turns to a pseudo first order rate equation: 

 

   

    
 

 

   
  

  
 

   
 
   
  

       

 

 

Eqn. 2.24 

where     surface area per unit mass of catalyst 

   pseudo-first order rate constant 

 

 

 

The kinetic information on a photoprocess consists of knowledge of substrate concentration 

values in the liquid phase,   , as a function of irradiation time.    and      can be formally 

written as a function of   , where       and     relations can be obtained from an appropriate 

isotherm:  

 

   

    
 

   
 
   (  )

  
      (  ) 

 

 

Eqn. 2.25 

 

In a batch photocatalytic experiment, the substrate concentration values measured in the 

liquid phase represent the substrate concentration in equilibrium with an unknown substrate on 

the catalytic surface. This is apparent to all the measured values of substrate concentration except 

for the initial one. The substrate concentration measured at the start of a photodegradation 

experiment describes a system prior to light irradiation. 

 

2.2.3.1 Physical factors that affect kinetics of photocatalysis  

There are five physical parameters that affect kinetics: (i) mass of catalyst, (ii) 

wavelength, (iii) initial concentration of reactant, (iv) temperature, and (v) radiant flux.  The 

reaction rate profiles as a function of these independent physical parameters are shown in Fig. 2.9.  

Optimizing these parameters is necessary to improve the reaction kinetics, however they come at 
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an additional cost and may not be feasible at large-scale, such as temperature and pH. Increasing 

the mass of catalyst, increases the reaction rate linearly until aggregation of particles and solution 

turbidity dominate.  The wavelength of the photocatalyst can be modified through bandgap 

engineering using various synthesis methods. Increasing the radiant flux will lower photonic 

efficiency due to recombination from excess charge buildup and can be manipulated using 

controlled periodic illumination (CPI). 

 

Figure 2.9: Influence of physical parameters that affect kinetics of photocatalysis: (A) mass of 

catalyst; (B) wavelength  ; (C) initial concentration of the reactant; (D) temperature; (E) radiant 

flux  . Reproduced with permission from [30] 

 

 

Controlled periodic illumination 

 

Fig. 2.9e illustrates the relationship between r = f( ), where   is the radiant flux (W m
-2

) 

of the light source. At moderate radiant fluxes, r is proportional to   below a maximum value; 

above this value, the rate declines from proportionality to follow a square root variation as r   
 

 . 

High radiant fluxes greatly increase concentrations of photoelectrons and holes, which increases 

the recombination rate rR parabolically: 

          Eqn. 2.26 
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      [ 
 ][  ]    [ 

 ]  Eqn. 2.27 

 

The increase in recombination generates losses in photonic efficiency, which can be mitigated 

using controlled periodic illumination (CPI). CPI is a technique that restores catalyst activity 

which is lost due to limitations in diffusion in large catalyst aggregates. In mass transport limited 

regimes, CPI provides a lower energy requirement to decompose organic pollutants. The 

immobilization of a photocatalyst adds a photonic penalty to a photocatalysis reaction. In contrast, 

use of a slurry reactor provides a homogeneous distribution of catalyst  so mass transfer 

influences is negligible. CPI has been applied in other fields besides photocatalysis.  It has been 

used to study photolysis and individual steps and mechanisms of chain reactions. It has also been 

applied to control chemical reaction-diffusion systems [31], photosynthesis [32], bacteria 

disinfection [33], and hydrogen production [34].  

 

Correlation between physical properties and performance 

It is difficult to ascertain how physical properties of the catalyst affect photocatalytic 

activity because controlling one property will change other properties using various synthesis 

methods. Finding a correlation between properties and photocatalytic activity is not 

straightforward due to the interrelatedness of all parameters.  For example, the surface area 

depends on the density of lattice defects.  Statistical analysis of photocatalytic activities of TiO2 

samples with different measured physical and structural properties can be analyzed. Ohtani’s 

group conducted a study of 35 commercial titania powders to find the predominant properties 

determining photocatalytic activity [35]. Some of the physical and structural properties of 

photocatalysis  that can be modelled are as follows: (i) specific surface area (via Brunauer-

Emmett-Teller, BET), (ii) density of lattice defects (DEF),  (iii) primary particle size (PPS), (iv) 

secondary particle size (SPS), and (v) percentage of anatase and rutile phases .  

 

 

2.3 Synthesis Methods of TiO2 Nanomaterials 

  There have been some commercial photocatalytic units for water treatment, but there 

are notable issues that prevent them to be fully utilized and this stems from the low photonic 

efficiency of unmodified TiO2 [35].  There are three categories of controlling parameters of 

photocatalytic materials and reactor modules: (i) physicochemical properties (phase, size, energy 

level structure, surface morphology, etc.), (ii) design of photoreactors (falling film reactors vs. 
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stirred reactor, type of optics, supported vs. nonsupported photocatalysts, etc.) and (iii) 

operational parameters (contact time, pH, photon flux, and contaminant concentration). 

Operational parameters are not enough to overcome some of the problems in performance, and 

economically modifying the physicochemical properties of the TiO2 photocatalyst via facile 

synthesis methods is necessary to commercialize photocatalytic TiO2 into more applications.  

There are several methods to produce TiO2 nanomaterials, but some are more widely 

used than others. The most popular methods are (i) flame pyrolysis, (ii) hydrothermal synthesis, 

and (iii) sol-gel method, and will be discussed in this section. Furthermore, chemical doping 

methods will be discussed as they are often used to enhance the visible photoactivity of TiO2.  

Other synthesis methods are extensions of the previous methods that have been mentioned; these 

include, but are not limited to, laser pyrolysis [36, 37], microwave synthesis [38–40], and 

solvothermal synthesis [41–43].  

 

2.3.1 Flame pyrolysis  

This process is used to prepare the most popular commercial sample used in 

photocatalytic studies, Degussa P25. Other researchers use this method to prepare TiO2 

agglomerates [44, 45]. An organometallic titanium source, such as titanium tetraisopropoxide 

(TTIP), is used as a precursor and diluted in an organic solvent and injected into a reactor through 

a capillary of the flame synthesis pyrolysis nozzle. Oxygen is fed through an annulus, dispersing 

the solution into droplets. The pressure drop at the nozzle is constant and a premixed combustible 

gas (ex. CH4/O2) flame surrounding the dispersion oxygen annulus is ignited, while stabilizing 

the spray flame. The extent of agglomeration or aggregation is dependent on the applied 

dispersion pressure. 

 

2.3.2 Hydrothermal synthesis of 1-D TiO2 nanostructures  

One dimensional (1-D) nanomaterials (nanowires, nanobelts, and nanotubes) produced 

from hydrothermal synthesis [46]–[49] occur due to a phase transformation.  All the 1-D 

nanostructures originate from an alkaline hydrothermal process. Na2Ti3O7 nanobelts and 

nanotubes are synthesized through the following chemical reaction: 

 

 3 TiO2 + 2 NaOH   Na2Ti3O7 + H2O 

 

Eqn. 2.28 

 

The TiO2 precursor of anatase phase is a TiO6 octahedral structure. During the 

hydrothermal process in Eq. 2.28, some of the Ti-O-Ti bonds break from the TiO2 precursor and a 
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six-coordinated monomer, [Ti(OH)6]
2-

, is formed [49]. During the hydrothermal process, the 

alkaline solution is saturated and the [Ti(OH)6]
2-

 monomer is unstable and combines via oxolation 

or olation, forming a nuclei. As these nuclei grow, they become thermodynamically stable as the 

size of the nuclei exceeds the critical nuclei size.  Thin nanosheets, composed of layer unit cells, 

can form during the growth process.  

The growth of these nanosheets is anisotropic, with the growth along the b-axis being the 

fastest, leading to the formation of 1-D Na2Ti3O7 nanostructures. The crystal structure of 

Na2Ti3O7 is a monoclinic structure with layers of [TiO6] octahedral sites with shared edges and 

vertices. The Na
+
 cations of these nanosheets are located between the [TiO6] layers.   

Hydrogen deficiencies exist on the surface of the nanosheets, which increases surface 

tension and the tendency for the surface layer to bend. The surface strain energy becomes larger 

due to increasing hydrogen deficient sites causing layer separation. The morphologies of the 

nanostructures depend on various parameters. The synthesis of Na2Ti3O7 nanotubes occurs at 

lower synthesis temperatures; this is due to the hydrogen deficiency in the surface layer. On the 

other hand, autoclaving at higher (180 
o
C) temperatures leads to an increased growth rate of 

nanosheets, which form long micron length nanobelts. This process may require larger strain 

energy than at lower temperatures, but the strain energy is not sufficient to overcome layer-by-

layer coupling. 

The Na2Ti3O7 conversion to H2Ti3O7, which is a related structure, requires an ion 

exchange process. When Na2Ti3O7 is immersed and washed with dilute hydrochloric acid solution, 

the Na
+
 ions in the TiO2 matrix are replaced by H3O

+
 ions to form H2Ti3O7: 

 

 Na2Ti3O7 + 2 HCl   H2Ti3O7 + 2 NaCl 

 

Eqn. 2.29 

 

Following, the conversion of Na2Ti3O7 to H2Ti3O7 in Eq. 2.29, anatase may be obtained by 

annealing the H2Ti3O7 at 700 
o
C for 2 h [46] through crystal-lattice rearrangement as given by Eq. 

2.30: 

  

 H2Ti3O7   3 TiO2 + H2O 

 

Eqn. 2.30 

 

Despite the heat treatment, anatase retains the 1-D structure of H2Ti3O7.  The lattice distortion 

during heat treatment is due to rotation and rearrangement of the [TiO6] octahedral and occurs 

during the H2Ti3O7 to anatase conversion process. 
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2.3.3 Sol-gel method  

The sol-gel method can be used to create colloidal suspensions called sols, which are 

obtained from solutions of organometallic or inorganic precursors, resulting in highly pure and 

homogeneous materials. The stability of the sol is dependent on van der Waals attraction and 

Coulombic repulsive forces among very small particles. The transformation of a sol into another 

phase (the gel) can be induced under various experimental conditions. The gel is a viscous solid 

that surrounds molecules of the chosen solvent. By drying the gel, it is possible to obtain porous 

solids and films.  

In a typical sol-gel process to produce TiO2, the sol is the result of hydrolysis and 

polymerization reactions of TiO2 precursors, typically an organic titanium alkoxide (tetra-n-

butoxide and TTIP). The precursor is dissolved in an alcohol solvent (ethanol, 2-propanol, 1-

pentanol, etc.) and then added to water, in Eqn. 2.31, to induce hydrolysis to titanium hydroxide:  

 

 Ti(iso-OC3H7)4 + 4H2O   Ti(OH)4 + 4C3H7OH. 

 

Eqn. 2.31 

 

The size for the TiO2 particles depends on the experimental and process parameters used, such as 

the molar ratio between precursor and water, initial pH, reaction time, presence of external ionic 

species, and temperature. The polymerization reaction and the loss of solvent, transforms the 

liquid sol into a solid gel phase culminating in the formation of Ti-O-Ti chains. These chains are 

facilitated by the low content of water, low hydrolysis rate and excess of precursor in the reaction.  

The sol-gel method is a versatile approach to preparing TiO2 with certain morphological 

properties and removal of organics from TiO2 gels play an important role in the preparation of 

TiO2 samples on substrates, as residual organic moieties can affect photocatalytic efficiency [50], 

[51].The gelling process can be carried out by treating the reactant mixtures, including reducing 

pressure or adding various additives, such as chelating agents (HCl or SnCl2) which allow one to 

control hydrolysis and condensation reaction rates [52]. 

 

2.3.4 Chemical doping methods 

To increase the photocatalytic rate in the visible light region, there are many approaches 

proposed to dope impurities into TiO2, including ion implantation, chemical vapour deposition, 

plasma deposition, and dopant incorporation in sol-gel synthesis methods. Table 2.2 gives a list of 

selected publications of metal and non-metal doping into the TiO2 matrix. 

The addition of noble metals via various methods such as solution-based processing and 

sputtering into the TiO2 matrix can change the surface properties, thereby changing the efficiency 
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of photocatalysis. Metals (Ag, Au, Pt, Pd, and Fe) can enhance the rate of the photocatalytic 

reaction [53]–[57]; this was observed for the photo-conversion of H2O to H2 and O2 using the 

Pt/TiO2 system [58]. After excitation of the electron via visible light illumination, the electron 

travels to the metal where it is trapped, and thus electron-hole recombination is supressed [5]. 

When the semiconductor and metal come in contact, the Fermi levels of these two materials align 

causing electrons to flow from the semiconductor to the metal. The decrease in electron 

concentrations in the semiconductor increases the hydroxyl group acidity and affects the 

photocatalytic activity. 

Additionally, TiO2 can also be doped with non-metals to increase visible light 

photoactivity. Non-metals such as boron (B), carbon (C), phosphorus (P), nitrogen (N), and 

sulphur (S) have been shown to enhance the degradation rate compared to pure TiO2 anatase 

under visible light irradiation due to impurity trapping and bandgap narrowing as discussed in 

Section 2.2 [59–63].  These non-metals can be incorporated via solution-based processing, 

mechanical mixing, and chemical vapour deposition. 

 

 

Table 2.2. Chemical doping of TiO2 via non-metal and metal additions. Adapted from [3b] 

Type of 

Dopant 

 

Doped 

Element 

 

Preparation Method Reference 

 

 

Metal 

Ag Solution-based processing (sol-gel) - Silver nitrate was mixed in 

sodium citrate tribasic dehydrate (reducing agent) at 353 K under 

continuous stirring. Titanium(IV) isopropoxide and nitric acid was 

added and the reaction maintained at 323 K for 24h. The prepared 

sol was dried at 378 K for 24 h and calcined at 573 K. 

 

[53] 

Au Solution-based processing (sol-gel) – Titanium (IV) butoxide  in 

ethanol was added to a solution of tetrachloroauric acid, acetic acid, 

and ethanol. The resulting suspension was aged for 2 days and dried, 

ground, and calcined at 923 K. 

 

[54] 

Fe Reactive Magnetiron Sputtering – A titanium target and iron were 

placed in a reaction chamber where argon and oxygen were 

introduced into the chamber during discharge. 

 

[55] 

Pt Photoreduction processing – TiO2 was suspended in methanol 

containing hexachloroplatinic acid. The suspension was irradiated 

with a mercury lamp (125 W) for an hour. Pt-TiO2 was separated via 

filtration, washed with distilled water, and dried at 373 K for 24 h. 

 

[56] 

Pd Reduction reaction – Pd nanoparticles were grown on TiO2 

nanobelts in solution using sodium  tetrachloropalladate  as a Pd 

source and NaBH4 as a reducing agent. 

 

[57] 
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Non 

Metal 

B Mechanical mixing - Anatase TiO2 powder with boric acid triethyl 

ester was grounded and calcined in air at 723 K. 

 

[59] 

C Solution-based processing (sol-gel) – Titanium (IV) isopropoxide 

was dissolved in alcohol and hydrochloric acid solution. The sol gel 

was aged for several days and calcined in air for 3 h at 338 K and 3 

h at 523 K and grounded. 

 

[60] 

P Solution-based processing (sol-gel) – Titanium (IV) isopropoxide 

was hydrolyzed with isopropanol and water. Phosphoric acid was 

added after hydrolysis and the dispersion was stirred for 2 h, 

centrifuged, and dried at 373 K. The powder was calcined at 573 K. 

 

[61] 

N Chemical vapour deposition – Anatase TiO2 powder was treated in 

ammonia (67 %) in argon at a temperature of 873 K for 3 h. 

 

[62] 

S Thermal process – Oxidation annealing of titanium disulphide at 

573 K – 873 K. 

 

[63] 

 

 

2.4 TiO2 Membrane Fabrication Methods  

2.4.1 Self-Standing TiO2 nanowire membranes 

TiO2 nanowire membranes can be fabricated through filtration and hot-press method [64]. 

To obtain these membranes, a H2Ti3O7 nanowire suspension is deposited on filter paper using 

vacuum filtration.   The deposited H2Ti3O7 nanowire cake is sandwiched between alumina disks 

and pressed under uniaxial pressure at a temperature of 200
o
C. The resulting TiO2 filter cakes are 

fired at 700
o
C for 1 h to anneal the H2Ti3O7 monoclinic phase to a TiO2 anatase phase. These 

membranes can only withstand very low pressures and supports are required for high pressure use. 

 

2.4.2 Deposition of TiO2 onto porous substrates 

2.4.2.1 Dip Coating  

Dip-coating is carried out by immersing a support in a liquid in which the precursor of a 

material of interest is present, and then withdrawing the porous or solid support at a controlled 

speed and temperature under atmospheric conditions. The process has generally been developed 

for small surface for lab bench and research purposes. The process has been used to coat  TiO2 

nanomaterials for plate glass, solar energy systems, anti-reflecting coatings on windows, and 

photocatalytic films [5]. 

The process of dip-coating can be used to coat substrates with TiO2 films, which are a 

few nm to 1 µm in thickness. The thickness can be obtained with high precision by selecting a 

suitable viscosity of the coating liquid and withdrawal rate according to the Landau-Levich 

equation [65]: 
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Eqn. 2.32 

where t is the coating thickness ,  

   is the viscosity,   

     is the liquid-vapor surface tension,    

   is the solution density, and 

U is the withdrawal rate 

 

 

Eqn. 2.32 can be applied under the following conditions: (i) The withdrawal rate must be 

greater than 1 mm s
-1

 and (ii) particles cannot repel each other. Additionally, the ambient 

environment controls the evaporation of both the solvent and the subsequent transformation of the 

sol into the film. The thickness of the layer also depends on the dipping angle between the 

support and the liquid surface and different thickness can be produced at the top and bottom sides 

of the surface that is coated. 

2.4.2.2 Electrospinning 

Electrospinning is a production technique to produce continuous ultrafine fibers (with 

diameters of 10  m to 10 nm) based on forcing a polymer melt or organic based solution through 

a spinneret with an electrical driving force. The technique is comprised of three components: a 

high voltage source, a metallic collecting plate, and a capillary tube equipped with a needle of 

small diameter. In this process, an electrically charged jet of the spinning solution is produced out 

of the nozzle or needle when a high voltage is applied between two electrodes connected to the 

outlet.  The spinning solution is ejected from the nozzle forming a charged jet that continually 

deposits onto the collector electrode until no spinning solution, supplied from an infusion pump, 

remains.  

Electrospinning can be used to create TiO2 nanofibers for physical separation 

applications.  It is possible to create nanofibrous membranes using this technique in order to 

generate higher porosities and interconnected porous structures that are more water permeable 

than conventional counterparts [66, 67]. Nanofibers have a much higher surface-to-volume ratio 

than conventional microfibers, providing efficient separation of particulates in a solution. 

Electrospinning also offers opportunities to fine tune surface functionality through polymer 

chemistry.  Electrospun nanofibers can be tailored for many applications where the diameter, 

composition, morphology, and spatial alignment can be changed [67]. Even though this technique 



Literature Review 

25 

 

is a simple method, the design of functional nanofibers for filter membranes requires specific and 

controlled parameters for reproducible and controlled electrospinning.  

Although nanofiber membranes have been previously used for air filtration applications, 

there is potential in using these membranes in water treatment for the removal of micro-sized 

particles from the liquid phase at a high rejection rate without substantial fouling [68]. These 

nanofiber membranes have been proposed to be used as pre-treatment step prior to ultrafiltration 

and reverse osmosis. Functional nanomaterials can be created from spinning solutions with 

dopants to produce impregnated nanofibers or formed in situ. The tunable process allows 

electrospun nanofibers to be an effective research and development platform for constructing 

multifunctional membrane filters by either using multifunctional materials, such as TiO2, or by 

introducing functional materials onto the nanofibers network through a deposition process. For 

instance, by incorporating specific chelating agents on a TiO2 nanofiber matrix, TiO2 nanofiber 

membranes can be designed to selectively remove, or have an affinity towards, heavy metals and 

organic pollutants during filtration. 

 

2.4.2.3 Electrophoretic deposition 

Electrophoretic deposition (EDP) can be used to deposit TiO2 nanomaterials on a porous 

conductive substrate [69]–[72]. The EDP process takes place in two steps: (i) charged particles 

suspended in a liquid migrate towards an electrode under the effect of an electric field and (ii) the 

particles deposit on the electrode form a homogeneous compact or film depending on its 

thickness. The post-EPD processing step includes heat treatment in order to improve the adhesion 

of the coating to the substrate.  

There are several factors that affect the quality of coating and can be optimized by 

optimizing suspension parameters, including suspension stability, particle size, conductivity, 

viscosity, solvent and zeta potential. Furthermore, the physical parameters of the process can also 

be improved by increasing the conductivity of electrodes, voltage, deposition time, and 

concentration of TiO2 particles.  

 

2.4.2.4 Physical vapour deposition 

In physical vapour deposition (PVD), deposition of films or coatings are conducted by 

condensation of a vaporized form of a TiO2 precursor onto porous substrates. There are several 

PVD techniques [5] used. These include vacuum evaporation-deposition [73], electron beam 

vapour deposition [74], sputtering deposition [75], plasma deposition [76], and pulsed-laser 

deposition [77].  
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2.4.2.5 Chemical vapour deposition 

In chemical vapour deposition (CVD), one or more volatile Ti precursors (i.e. TTIP) 

react and/or decompose on the surface of the substrate where a desired TiO2 film or coating is 

formed [5, 78, 79]. Thin layers of TiO2 can be achieve and the volatile by-products of CVD can 

be removed by gas flow. 

 

 

2.4.3 Oxidation of Ti porous substrates 

Ti porous or  non-porous substrates  can be oxidized to form TiO2 porous membranes by 

chemical [80]  or anodic oxidation [81–83].   In chemical oxidation, oxidative chemical species 

such as H2O2,  HF, or NaF are used to oxidize Ti and elevating temperatures increases the rate of 

reaction of the oxidation reaction [80]. In anodic oxidation, similar chemical species are used as 

in chemical oxidation. An anodic potential is applied between Ti substrate serving as the anode 

and a Pt electrode as the cathode. This anodic oxidation can form high aspect-rate TiO2 nanotubes 

on the surface of the Ti substrate [81–83]. 

 

2.5 Photoelectrochemical Characterization of TiO2 Nanomaterials 

For research purposes, the photoelectrode is the working electrode in a three-electrode 

electrochemical cell.  The system can be investigated by perturbing the photoelectrode in various 

ways and recording the system’s response, including include current, voltage, and frequency tests 

in dark and illuminated conditions [9]. 

 

2.5.1 Current density – potential tests 

Most applications of photoelectrochemical systems refer to transfer of electrons across an 

interface and current density-potential techniques are commonly used.   The difference in 

electrochemical potential of electrons across the interface of interest (accessible via the working 

electrode – reference electrode potential difference) and the current density through this interface 

are used as the perturbation and the response (or vice versa) [9]. Under an applied potential, the 

dark current and photocurrent are analyzed for photon-to-current efficiency. Under an applied 

current, the photovoltage is measured. In particular, when the current is zero (open-circuit), the 

flat-band potential and conductivity type of the electrode can be determined.  
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2.5.2 Electrochemical impedance spectroscopy 

An alternative strategy to investigate electrochemical and photoelectrochemical reactions 

at the interface is to work in the frequency domain.  It is useful to study the interfacial properties, 

internal resistances, and charge-transfer characteristics of TiO2 films. In impedance spectroscopy 

a sinusoidal potential with small amplitude is applied to the surface, and the resulting response of 

the current is measured. The signal is given as [84]: 

 

  ( )     
     

 

Eqn. 2.33 

where Vo is the amplitude of the applied potential (V).  

 

When Vo is sufficiently small (Vo<< kT eo
-1

), the response of the interface is linear and the current 

  takes the form: 

 

  ( )     
    

 

Eqn. 2.34 

 

where Io is the amplitude the current that is sufficiently small.  

 

 

 

 

The amplitude Io can be written in phase notation: 

 

    |  | 
    

 

Eqn. 2.35 

where   is the phase shift  

 

The impedance is given as the ratio of the voltage over current: 

 

 
  

  
  
 | |    

 

Eqn. 2.36 

 

The frequency of the modulation is varied over a range and the impedance spectrum Z( ) is 

recorded and various electrode processes make a contribution to the impedance. A Nyqvist plot is 

retrieved from the real and imaginary contributions to the impedance. In many cases, it is useful 

to model the impedance with an equivalent circuit consisting of electrical elements such as 

resistors and capacitors, arranged in parallel and/or in series. Table 2.3 shows a list of circuit 

elements that can be used in an equivalent circuit and their contribution to impedance.  In 
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complex systems more than one equivalent circuit with the same overall impedance may exist 

and interpretation is difficult. 

 

 

Table 2.3: Circuit Elements in Equivalent Circuit Model  

 

Note:     = C = capacitance;      , where     is an ideal capacitor 

 

 

 

 

2.6 Applications in Water Treatment 

Photocatalytic treatment of water is dependent on the arrival of photons at the 

photocatalyst surface. In many waters, the solution absorbance may be high, and preclude 

economic use of photocatalysis. However, the method can be effective in low concentration 

polluted waters such as tertiary treatment options in drinking water treatment plants, 

semiconductor, food and beverage, and pharmaceutical industries, in which uncontaminated 

water is necessary. One particular application of TiO2 photocatalysis is in the decomposition of 

emerging contaminants, compounds which include many small molecules and their interactions 

with other compounds, that have not been regulated and the health risks are unknown. Other 

applications are combining TiO2 photocatalysis in other applications such as membrane filtration 

and corrosion protection.  

 

 

 

 

Circuit Element Symbol Impedance 

Resistance R R 

 

Capacitance C  

   
 

 

Inductor L I   

 

Constant Phase 

Element (CPE) 

Qn(CPE)  

  
(  )  

 

Warburg 

Impedance 

W  

  
√   
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2.6.1 Emerging organic contaminants and the TiO2 AOP 

 

2.6.1.1 Emerging contaminants 

Globalization has led to an increase in production and consumption of material goods. 

These products eventually end up as either solid or liquid wastes in influent streams and must be 

removed before release to the environment. Of concern are emerging contaminants, chemicals or 

microorganisms that are not commonly monitored in the environment, that come from products 

such as pharmaceuticals and personal care products (PPCPs) [47, 85, 86] as they pose adverse 

health effects to humans and the ecosystem. 

Recent research has found evidence of low concentrations of these PPCPs, such as  

endocrine disrupting compounds (EDCs),  in source waters in many developed communities [47, 

85, 86]. PPCPs, including medical products, cosmetics and pesticides, enter the wastewater 

system via human excreta or urine, washing, improper disposal, lawn care, and other means. They 

have potential effects and consequences for human life and water ecosystems. Many of these 

chemicals may disrupt the human endocrine system, which controls metabolic processes.  

Another cause for concern is disinfection by-products (DBPs). These are by-products of 

oxidation processes and natural organic matter (NOM). DBPs have undergone significant 

scrutiny due to their carcinogenetic nature and the fact that these emerging contaminants can be 

difficult to remove or avoid using current infrastructure. Techniques such as 

coagulation/flocculation are commonly used in water treatment plants for the removal of 

particulates found within wastewater. However, these technologies are unable to completely 

remove small molecular weight NOM. These small molecular weight NOMs (i.e. fulvic acids and 

humic acids) have been shown to react with the major disinfectants found in conventional 

oxidation processes – chlorine, chlorine dioxide, chloramines, and ozone – to produce DBPs, 

including trihalomethanes (THMs), haloacetic acids (HAAs), bromoform (CHBr3), dibromoacetic 

acid (DBAA), and dibromophenol (2,4-DBP), and others [87].  

Addressing these current and future problems requires technologies of purifying water at 

lower cost, energy, and environmental impact than current methods. TiO2/UV may offer a 

solution to the problem of emerging contaminants as shown in the research in the next section. 
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2.6.1.2 TiO2 nanomaterials in the removal of pesticides, PPCPs, DBPs, and NOM 

Pesticides 

TiO2 coatings under solar illumination have been used as an advanced oxidation 

processes in commercial water treatment plants in Spain under the SOLARDETOX project. The 

TiO2 was coated on glass using a sol-gel technique. The photocatalytic detoxification of water 

containing pesticides was conducted using compound parabolic solar collectors (CPCs) and TiO2 

photocatalysis.  Photocatalysis and photo-Fenton methods were coupled to ensure 80% 

mineralization of pesticides based on total organic carbon (TOC) [88, 89].  

 

Pharmaceuticals and Personal Care Products 

Hu et al. performed a comprehensive study  on 13 different pharmaceuticals using 1-D 

TiO2 nanowires  and UV illumination sourced from a medium mercury pressure lamp [90]. The 

photodegradation profiles of the PPCPs with an initial concentration of 100  g L
-1

, using first-

order kinetics, are listed in Table 2.4. A low degradation rate was observed for carbamazepine 

and ibuprofen, which are often, passed through wastewater treatment plants near surface waters 

of urban centres [91, 92]. Despite the low performance of carbamazepine and ibuprofens, the 

photocatalytic degradation associated with TiO2 nanowires still effectively removed many other 

PPCP pollutants from water. 

 

Table 2.4: Photocatalytic degradation using TiO2 nanowires analyzed by pseudo-first order 

kinetics for individual pharmaceuticals with an initial concentration of 100 ppb. Reproduced with 

permission from [90]. 

Compound kapp (min
-1

) r
2
 

Norfluoxetine 0.1239 0.999 

Atorvastatin 0.0688 0.999 

Lincomycin 0.043 0.999 

Fluoxetine 0.0408 0.995 

Venlafaxin 0.0319 0.997 

Sulfamethoxazole 0.0422 0.989 

Diclofenac 0.0398 0.999 

Trimethoprim 0.0269 0.997 

Bisphenol A 0.0227 0.988 

Gemfibrozil 0.0159 0.993 

Atrazine 0.0155 0.999 

Carbamazepine 0.0008 0.971 

Ibuprofen 0.0005 0.945 
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Endocrine Disrupting Compounds  

Arlos et al. studied TiO2 immobilized on TiO2 photocatalysis and were able to remove 

both the biological activity (total estrogenicity) of estrogenic mixtures using the yeast estrogen 

assay and decompose parent estrogen compounds, a class of endocrine disrupting compounds [93]. 

Studies have also seen removal using an array of UV sources (mercury lamp, UV-LED, and 

xenon lamp) and TiO2 substrates (titanium, zeolite, glass beads, and polymer) under their 

associated experimental conditions (Table 2.4). 

 

Disinfection Byproducts 

 Different classes of DBP precursors have varying degrees of removal through UV/TiO2 

processes [94]. In a study by Kent et al., trihalomethanes (TMH) were difficult to remove even 

with UV irradiation of TiO2; however haloacetic acid removal from this process is substantial. 

Fig. 2.10 shows the Total Trihalomethanes Formation Potential (TTMHFP) and Total Haloacetic 

Acids Formation Potential (THAA
9
 FP) values for the raw water and the degree of formation 

potential changes after three different UV/TiO2 treatments were applied. The three UV/TiO2 

treatments exhibited less than 20 % removal of the formation potential of THM compounds [94]. 

Studies conducted by other researchers using higher TiO2 doses have shown a higher removal 

rate of THM precursor compounds [95, 96]. In contrast, the THAA
9
FP was reduced by 88 % with 

UV/TiO2 treatment despite the low concentration of TiO2 (1 mg L
-1

). 
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Table 2.5: Removal kinetics by other TiO2 immobilized studies of estrogen compounds under 

varying experimental conditions. Reproduced with permission from [93] 

Compound Use 
Conc. 

(mg L
-1

) 
Substrate UV conditions 

kapp 

(min
-1

) 
Ref. 

EE2 
birth control 

pill 

0.010 Titanium Alloy 

 (Ti-4V-6Al) 

HP mercury lamp,  

125 W 

 

0.086 [97] 

0.004 Porous titanium UV-LED, 

1.67 mW 

0.020 [93] 

10 Zeolite LP mercury, 

8 W 

 

0.045 [98] 

E2 

primary 

female sex 

hormone 

0.010 Titanium Alloy 

 (Ti-4V-6Al) 

HP mercury lamp,  

125 W 

 

0.106 [97] 

272.38 Glass beads Fluorescent lamp,  

4 W 

0.017 [99] 

0.250 PTFE sheet fluorescent lamp  

15 W 

0.15 [100] 

0.004 Porous titanium UV-LED, 

1.67 mW 

 

 [93] 

E1 

 0.010 Titanium alloy HP mercury lamp,  

125 W 

 

0.086 [97] 

female sex 

hormone 

270.36 Glass beads fluorescent lamp,  

4 W 

0.015 [99] 

0.250 PTFE sheet fluorescent lamp,  

15 W 

 

0.12 [100] 

 

0.004 Porous titanium UV-LED, 

1.67 mW 

 

0.015 [93] 

BPA plasticizer 

10 Porous PF foam cube LP mercury lamp,  

25 W 

 

0.0025 [101] 

0.004 Porous titania UV-LED, 

1.67 mW 

 

0.011 [93] 

0.6 Titanium Xenon, 

150 W 

0.36 [102] 

PTFE = polytetrafluorethylene; PF = phenol formaldehyde; LP = low pressure; HP = high pressure 
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Figure 2.10: DBP formation potential of raw and treated wastewaters. Reproduced with 

permission from [94]. 

 

 

2.6.2 Membrane filtration using TiO2 nano-membranes 

2.6.2.1 Basics of membrane filtration 

A membrane is a physical interface which separates two phases, forming a barrier to the 

transport of matter. Membranes have microscopic openings, or pores, that allow water molecules 

to pass, but not compounds that are larger than the pore diameter. Membrane filtration can be 

operated either as dead-end filtration or cross-flow filtration as shown in Fig. 2.11. In dead-end 

filtration, the feed water flows perpendicular to the membrane surface and all solids amass onto 

the membrane surface during filtration and are removed via backwashing processes. The 

accumulation of solids often results in a lower flux compared to cross-flow filtration. In cross-

flow filtration, the feed water is parallel to the membrane surface. The flow velocity parallel to 

the surface of the membrane generates a shear force that reduces the growth of the filter cake. 

Since the majority of solids pass with the retentate, instead of collecting on the membrane surface, 

the system can function at a higher flux [3]. 
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Figure 2.11: Schematic of (a) dead-end and (b) cross-flow filtration. Reproduced from [103] 

 

2.6.2.2 Use of TiO2 nanomaterials in membrane filtration 

TiO2 nanopowders in suspension can be utilized to increase the probability of contact 

between TiO2 particles and target pollutants in water, and hence improve photocatalytic 

efficiency. However, the separation of these powders from treated wastewater prior to discharge 

requires additional time and resources, thus limiting the application of TiO2 photocatalysis in 

water treatment. This drawback can be avoided by immobilizing TiO2 on a substrate. However, 

immobilization can result in decreased photocatalytic ability, as immobilized TiO2 are no longer  

dispersed in water, reducing contact with target pollutants. Immobilized TiO2 also has mass 

transport limitations.  Instead of focusing on the degradation performance of immobilized TiO2, 

one can use immobilized TiO2 as a membrane which can be used as a filtration apparatus, with a 

photocatalytic self-cleaning ability. This self-cleaning property increases the lifespan of the 

membrane that would otherwise be ineffective due to organic and biofouling [3]. The advantages 

and disadvantages of slurry and immobilized systems are listed in Table 2.6. 
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Table 2.6: Summary of main advantages and disadvantages of slurry and immobilized 

photocatalysis. 

 Slurry photocatalyst Immobilized photocatalyst 

Advantages 

 High surface to volume ratio 

 Homogeneous catalyst 

distribution 

 Catalyst separation not required, 

lowering operational costs 

 Polluted water can be treated in 

continuous mode 

Disadvantages 

 Slow and expensive catalyst 

separation processes 

 Aggregation of suspended 

particles at high concentrations 

 Difficulties  in continuous flow 

systems 

 Low catalyst accessibilities to photons 

 Significant external mass transfer 

limitations at low fluid flow rate 

 Increasing role of internal mass 

transfer with catalyst film thickness 

 Possible catalyst detachment from the 

support 

 

 

There are many TiO2 membrane substrates used in filtration applications and are 

classified as (i) non-adsorbent and (ii) adsorbent substrates. Non-adsorbent substrates, such as 

glass [104], have been used in the past.  Additionally, adsorbent substrates with large surface area, 

such as silica [105], zeolite [106], activated carbon [107], and activated carbon fibers [108] are 

increasingly being researched because the adsorption of unwanted contaminants on substrates can 

rectify some of the loss of photocatalytic ability caused by lower surface area to volume caused 

by immobilization. 

In a study by Liu et al. [109], the flux performance of an Ag/TiO2 nanofiber membrane, 

pure TiO2 nanofiber membrane and P25 membrane were investigated using a dead-end 

membrane setup. The permeate flux was calculated by dividing the permeate mass by the 

filtration time and the effective surface area (L m
-2

 min
-1

). As seen in Fig. 2.12, the trends  for 

both the pure TiO2 nanofiber membrane and Ag/TiO2 nanofiber membrane follow a linear 

regression (R
2 
> 0.99), suggesting that TiO2 nanofiber and Ag/TiO2 nanofiber membrane behave 

well in terms of permeate flux. On the other hand, the permeate flux as a function of 

transmembrane pressure (TMP) did not fit a linear regression (R
2 

= 0.77) for commercial P25 

deposited on a glass filter membrane. At the same TMP, the P25 deposited membrane showed a 

decrease in flux compared to the TiO2 nanofiber membrane and Ag/TiO2 nanofiber membrane. 

These results indicate that (i) 1-D TiO2 nanomaterials are favourable to maintain membrane flux 

compared to commercial P25 and (ii) the Ag/TiO2 nanofiber membrane demonstrates a slight 
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decrease of flux compared with pure TiO2 nanofiber membrane due to the addition of Ag 

deposited on the membrane.  

 

 

 
Figure 2.12: Change in permeate flux of P25, TiO2 nanofiber and Ag-TiO2 nanofiber membranes 

under different TMP. Reproduced with permission from [109] 

 

In another study by Zhang et al. [110], the TMP as a function of time was measured for 

their nanowire membranes with and without UV irradiation to evaluate the existence of fouling. 

Fig. 2.13 exhibits the outcome of TMP changes during filtration, monitored via a pressure sensor, 

with UV irradiation and without UV irradiation. The TMP of the TiO2 nanowire membrane as a 

function of filtration time increases rapidly after 7 h without UV irradiation. However, the TMP 

of the TiO2 nanowire membrane under UV irradiation stays constant after 30 h of filtration time, 

after accounting for the initial resistance of the membrane in the initial stage of the experiment. A 

constant TMP throughout the duration experimental filtration time (30 h) implicitly reveals that 

fouling of TiO2 nanowire membrane does not occur in this case because the formation of a 

fouling cake, which would increase the TMP, is inhibited.  
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Figure 2.13: TMP changes of the TiO2 nanowire membrane during filtration (a) with UV 

irradiation (b) without UV irradiation. Reproduced with permission from [110]. 

 

 

2.6.3 Corrosion protection using TiO2 photoanodes 

2.6.3.1 Basics of corrosion  

Corrosion is the degradation of metals due to environmental factors. The direct costs of 

corrosion – the costs of replacing or fixing damaged equipment – are a significant fraction of a 

country’s gross domestic product. The indirect costs of corrosion – the costs associated with 

reduced efficiency of equipment, contamination, leakage, and over-design – are estimated to be 

equivalent to the costs of the direct cost [111, 112]. A significant portion of a country’s GDP can 

be reduced if corrosion reduction measures are taken.  

Most metals will corrode when exposed to water, especially when oxidants are present 

such as chlorine ions or dissolved oxygen. The thermodynamics of a corrosion reaction is based 

on Gibb’s free energy [112]: 

         

 

Eqn. 2.37 

where n is the number of electrons transferred,  

 F is the Faraday constant (C mol
-1

), and  

 E is the electrical potential (V).   

 

If the free energy of the reaction is positive, then corrosion does not occur; and if the free energy 

of the reaction is negative, corrosion may occur. This means that although thermodynamics can 

favour corrosion, kinetics – the rate of reaction – may be too slow for corrosion to occur. The 
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kinetics is influenced not only by thermodynamic conditions, but also by the metal surface quality, 

mass transport, and other factors. 

A corrosion cell contains four key elements: (i) cathode, (ii) anode, (iii) conductor, and 

(iv) conducting electrolyte; this is depicted in a simplified iron corrosion cell containing NaCl as 

shown in Fig. 2.14. At the anode, the following reaction occurs [113]: 

 

             . 

 

Eqn. 2.38 

 

At the cathode, the following reaction occurs: 

 

           . 

 

Eqn. 2.39 

 

 

 
Figure 2.14: A corrosion cell of iron in NaCl conducting solution. Reproduced with permission 

from [113]. 

 

2.6.3.2 Corrosion protection  

Corrosion prevention frequently focuses upon the electrochemical nature of the corrosion 

reaction. If the corrosion cell can be altered or broken, corrosion rates can be eliminated or at 

least reduced to insignificant levels. The simplest way to break the corrosion cell is to apply one 

or more electrically resistant coatings, which can successfully mitigate the corrosion when 

applied correctly. Defects in coatings, however, may occur and cathodic protection is frequently 

used in conjunction with coatings. 

Cathodic protection is a thermodynamic means of corrosion, and there are two methods 

to apply it: (i) electrically coupling the metal to a more reactive metal that corrodes or (ii) 

applying an impressed or rectified direct current [112].   



Literature Review 

39 

 

From a thermodynamic point of view, the cathodic protection process can be illustrated 

in a Pourbaix diagram for iron seen in Fig 2.15. There are two ways cathodic protection can be 

initiated. The first way is via a thermodynamic effect, whereby the iron metal can be shifted into 

the immune region (native iron) of the diagram via a negative potential change. The negative 

potential change (E) makes the Gibb’s free energy increasingly positive, thus suggesting that 

corrosion does not occur.  The second effect is related to the pH of the solution at the surface of 

the iron. Increasing the pH,   results in the imbalance caused by shifting the anodic reaction to 

remotely located anodes, in other words, the protected metal is cathodic. However, the increase in 

pH at the site of the protected metal is highly localized, and the effect on the surrounding water is 

miniscule. The cathodic protection process be applied to other metals as well as long as its 

protection potential can be ascertained using the half-cell Nernst equation of the dissolution 

reaction [113]: 

  

       
  

  

  
  (        )    

 

Eqn. 2.40 

where      
  os the standard half-cell reduction potential (V);  

 R is the universal gas constant (8.314 J K mol
-1

);  

 T is the absolute temperature (K);  

 a is the chemical activity or ion concentration, where aRed is the reductant 

and aOx is the oxidant; and 

 

 F is the Faraday constant (9.648 x10
4
 C mol

-1
).  

 

 

 
Figure 2.15: Pourbaix diagram of iron. Reproduced with permission from [113] 
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2.6.3.3 TiO2 photoanodes and cathodic protection of metals 

A few studies have proposed that using the photo-induced charge-transfer processes at 

the TiO2/electrolyte interface can be applied to corrosion prevention [114–118]. This technique 

was found by chance in an article discussing a pre-oxidized stainless steel plate being reduced 

and bleached by a  UV illumination TiO2 film coated on the surface of the steel [115]; and 

indicated that photogenerated electrons from the conduction band (CB) of the TiO2 migrated to 

the bulk of the pre-oxidized stainless steel and induced a cathodic (reduction) reaction. Various 

other groups have investigated this phenomenon in TiO2-copper and TiO2-coated steel [116], 

[117]. Other types of setups of this same process have been explored, in which the TiO2 

photoanode and a metal cathode are connected to each other physically in a galvanic cell under 

illumination at the TiO2 photoanode side [118]; this eliminates the effects of TiO2 behaving as a 

physical barrier between the metal and electrolyte solution. 

 

2.7 Summary and Areas to Study 

There are many functions of TiO2 that can be exploited in applications in environmental 

applications. Nanostructures of TiO2 have higher surface areas and different electron transport 

mechanisms compared to bulk TiO2; these TiO2 nanomaterials can be synthesized using relatively 

simple methods, including hydro-solvothermal, sol-gel, and pyrolysis. Furthermore, these 

nanomaterials can be applied to membranes or substrates via self-assembled growth on titanium 

(Ti)-based supports or deposited using a top-down approach.  These TiO2 membranes or TiO2 

coated substrates can be used in PMR for to remove particulates and reduce fouling of the 

membrane. Furthermore, TiO2 coated on conductive substrates can serve as a photoanode for the 

corrosion protection. The literature of TiO2 photocatalysis nanomaterials and water applications 

is vast, but there are still areas in emerging in contaminants, membrane filtration, and corrosion 

protection that require to be explored.  The following areas have been identified to be addressed 

in the study: 

1) An in-depth study on the photochemical and photoelectrochemical properties of TiO2 

nanobelts (Chapter 4 and 5). 

2) The effect of CPI on 1-D TiO2 and metal-semiconductor (Ag-TiO2) nanobelts in slurry 

batch reactors (Chapter 5). There has been no prior study on CPI of one-dimensional and 

metal-semiconductor photocatalysts. 

3) There is no literature on the effect of CPI in the photocatalytic degradation of 

pharmaceutical mixtures. Chapter 6 presents the first study on the degradation of a 
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pharmaceutical mixture using CPI-controlled TiO2 photocatalysis in immobilized batch 

reactors. 

4) Chapter 6 explains the effect of pharmaceutical parameters on the degradation kinetics of 

various compounds. There is no prior literature on using a multi linear regression method 

to understand the correlation of individual pharmaceutical degradation profiles with 

parameters (charge, molecular weight, and solubility) of pharmaceutical compounds. 

5) The effect of doping on TiO2 membranes has been investigated, but not many have used 

them in photocatalytic membrane reactors (PMR). Chapter 7 investigates the use of N-

doped and B-doped TiO2 nanomaterials in a PMR dead-end filtration setup. Very few 

studies have been conducted using dead-end PMR. 

6) Photocathodic protection has been studied previously [119–122], however the protection 

of welded metals have not been explored and the coupling of contaminant degradation 

and corrosion protection has not been studied. Chapter 8 investigates the use of hole 

scavengers in conjunction with photocathodic protection of welded and unwelded steel. 
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3.0 General Methodologies 

Overview 

The project is setup to take synthesized TiO2 nanomaterials, analyze their material and 

photoelectrochemical properties, and compare them with other synthesized samples and 

commercial benchmarks. The TiO2 nanomaterials are also used in various applications in water 

treatment such as absorption, photocatalytic advanced oxidation, filtration processes, and 

corrosion protection.  These applications have their own sets of characterization methods. The 

common methods in the proposal and in subsequent chapters are outlined in this chapter in Table 

3.1. Any changes to the methods or chapter-specific information for any individual test or 

analysis are mentioned in subsequent chapters.  

 

Table 3.1: Common characterization and experimental methods  

General  Type of Test Instrument(s) Used 

 

 

 

 

Materials 

characterization 

 

 

 

Crystal Phase XRD, Raman, TEM 

Morphology TEM, SEM 

Surface elemental 

composition 

XPS 

Absorbance measurements 

and bandgap energy 

determination 

 

Isoelectric Point and surface 

charge 

UV-Vis spectroscopy equipped 

with integrating sphere 

  

Zeta Potential Analyzer 

 

 

Photoelectrochemical 

characterization 

Photocurrent density test 

 

Potentiostat-

Chronoamperometry 

Photovoltage test 

 

Potentiostat-

Chronopotentiometry 

Electroimpedance 

spectroscopy 

Potentionstat - EIS 

 

 

 

 

UV-Solar-

Visible/TiO2 

Experiments 

 

Slurry  batch test 

 

TOC, UV-Vis spectroscopy, 

LC-MS/MS  

 

Membrane batch test 

 

UV-Vis spectroscopy, LC-

MS/MS 

 

Photocatalytic filtration test 

 

UV-Vis spectroscopy, LC-

MS/MS, flux measurement 

tools 
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3.1 Materials Characterization 

3.1.1 Crystal phase and morphology 

The crystal phase and morphology of fabricated TiO2 nanomaterials were examined by 

X-ray diffraction (XRD), Raman spectroscopy, Scanning Electron Microscopy (SEM), and High 

Resolution Transmission Electron Microscopy (HRTEM).  Powder XRD measurements were 

performed on a Rigaku SA-HF3 X-ray diffractometer using Cu K  radiation (1.54 Å) X-ray 

source equipped with an 800  m collimator, operating at an excitation voltage of 50 kV. The 

obtained diffraction patterns were collected from 10
o
 to 90

o 
at a scanning rate of 1.5

o
 per minute. 

Raman spectroscopy was conducted using a Raman microscope (Renishaw inVia microscope 

equipped with 488 nm Ar ion laser). The morphology of the as-synthesized TiO2 nanobelts was 

evaluated using a ZEISS LEO 1550 FE-SEM at an accelerating voltage of 10 kV.  HRTEM 

observation was conducted using a JEOL 2010F at the Canadian Centre for Electron Microscopy 

(Hamilton, Ontario, Canada). The TEM samples were prepared by suspending TiO2 

nanomaterials in ethanol and drop casting the solution onto lacey carbon grids. The images were 

processed using Gatan Microscopy Suite: Digital Micrograph
TM

 (Ver. 2.11.1404.0), CrysTBox – 

diffractGUI, and ImageJ.  

 

3.1.2 Surface elemental composition 

X-ray photoelectron spectroscopy (XPS) was conducted to determine the chemical 

composition and chemical bonds. A Thermo ESCALAB 250 instrument configured with an AlKα 

X-ray source (1486.6 eV, 150W), a hemispherical analyzer (150 mm radius), and an analysis 

chamber was used. Data was collected with pass energy of 20 eV for the core-shell spectra and 50 

eV for the survey spectrum. The takeoff angle, defined as the angle between the substrate normal 

and the detector, was fixed at 0
o
. Non-monochromated AlKα twin anode was used to reduce 

charging in some samples.. Regional spectra downs were obtained and their peaks were 

deconvoluted using CasaXPS software. 

 

3.1.3 Diffuse reflectance and bandgap determination 

The band gap energy of a semiconductor can be calculated from Tauc plots [1] of 

         vs photon energy (  ), where   is the absorption coefficient,   is the Planck constant,   

is the light frequency and   depends on the characteristic of the transition in the semiconductor, 

where n = 2 for direct transitions and n = 0.5 for indirect transitions.  The absorption coefficient is 

estimated from Eq. 3.1: 
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Eqn. 3.1 

where    is the reflectance of an infinitely thick sample with respect to a 

reference at each wavelength. 

 

 

TiO2 semiconductors have bandgaps that are indirect (n = 0.5). The bandgap energy (Eg) 

can be estimated from the Tauc plot by determining the intercept of the tangent at the inflection 

point. The band gap energy is obtained from a diffuse reflectance spectrum (DRS) using a 

Shimdazu UV-2501 PC spectrophotometer equipped with an integrating sphere, with BaSO4 as 

reference scatter.  The diffuse reflectance spectrum was scanned from 200 nm – 800 nm and Tauc 

plots were generated to determine bandgap energy. 

 

3.2 Photoelectrochemical Properties of Synthesized TiO2 Nanobelts 

3.2.1 Photoelectrochemical setup 

Photoelectrochemical measurements were performed with a Gamry potentiostat (Series 

300) using a three electrode setup immersed in an electrolyte contained in a quartz vessel as 

shown in Fig. 3.1. A quartz vessel was used so that short-wave UV light is able to maximally 

transmit through the material, unlike with common borosilicate glass vessels. In the three-

electrode setup, the working electrode, counter electrode, and reference electrode are connected 

to the potentiostat. TiO2 nanomaterials on fluoride tin oxide (FTO) glass served as the working 

electrode when testing the photoelectrochemical properties of the material. A Pt mesh was used 

as the counter electrode. Two types of reference electrodes were used in this work: saturated 

calomel electrodes (SCE) and silver-silver chloride (Ag/AgCl) electrodes. A Xenon lamp 

(Newport, Research Solar Simulator) was used to illuminate the TiO2 deposited FTO glass and 

equipped with several filters depending on the tests (i.e. 400 nm cutoff filter and A.M. 1.5G filter). 

Controlling and recording of the tests was done using Gamry Framework v4.35 software. 
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Figure 3.1: Three-electrode setup for photoelectrochemical tests 

 

 

 

3.2.2 Photoelectrochemical measurements  

The photoelectrochemical setup was used to measure the photocurrent density, 

photovoltage, and electroimpedance of TiO2 working electrode samples to determine electrical 

and semiconductor properties of a synthesized or standardized sample.  

 

3.2.2.1 Photocurrent density 

Photocurrent density tests were conducted using chronoamperometry mode in the Gamry 

Framework software. Under this mode, a constant applied potential was applied to the working 

electrode with respect to the reference electrode. Light sources was switched on and off at 

specified intervals. 

 

3.2.2.2 Photovoltage  

Photovoltage tests were conducted using chronopotentiometry at open circuit potential 

(no current) to test the potential changes under illumination and the photovoltage decay over time. 

The dopant type of the semiconductor can be determined from this test based on the direction of 

the potential change upon illumination. If the potential change is positive (negative), then the 

semiconductor is p-type (n-type). Furthermore, the voltage decay rate after the illumination 

source is turned off can be used to determine the electron lifetime. 
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3.2.2.3 Electrochemical imepedance spectroscopy 

Electrochemical impedance spectroscopy was conducted under an AC sinusoidal wave of 

5 mV with and without DC bias.  The frequency examined was 100 kHz to 0.1 Hz at 10 points 

per decade. Nyquist and Bode plots were acquired from the impedance data. The Nyquist plots 

were fitted with an equivalent circuit model to determine the values of elements in the model, 

which are helpful in determining the photoelectrochemical behavior at the material/electrolyte 

interface under various conditions and environments. 

 

3.3 UV/TiO2 AOP Experiments 

3.3.1 Experimental setups 

Three types of experiments were conducted to analyze the absorption and photocatalytic 

degradation performance of TiO2 nanomaterials in powder or membrane forms: (i) slurry, (ii) 

membrane batch test, and (iii) the photocatalytic filtration reactor tests (Fig. 3.2). The TiO2 

powders were analyzed solely using the slurry batch test. TiO2 membranes were characterized 

under the membrane batch photocatalytic filtration reactor test. For the purposes of the 

subsequent chapters, photocatalytic tests were performed with a medium pressure mercury lamp 

with a peak wavelength (100 W, 365 nm peak), UV-LEDs (max: 4.1 W, 365 nm peak), and a 

Xenon arc lamp (max: 150 W, 400 nm cutoff filter). 

 

 
Figure 3.2: A (a) slurry, (b) membrane batch, and (c) photocatalytic filtration test setup 
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3.3.1.1 UV-LED slurry and membrane batch reactor setup 

The setup consisted of multi-position stir plate and a UV-LED setup with a collimating 

column as mentioned in Arlos et al. [2]. The UV-LED was controlled using a microcontroller 

(Arduino) coupled with a LED Current Driver (LEDSEEDUINO) and PWM script was 

programmed into the controller.  The average power output of the UV-LED lamps was measured 

using a Thorlabs power and energy meter (PM100-USB). The pulse frequency and duty cycle 

was calculated as: 

 
                  

 

        
 Eqn. 3.2 

 
             

   
        

 Eqn. 3.3 

 

where ton and toff were the length of time that the UV-LED was on and off, respectively.  

3.3.2 Measurements and analysis 

3.3.2.1 UV-Vis absorbance measurements  

Photocatalytic degradation of compounds was monitored by the extent of parent 

compound degradation using UV-Vis spectroscopy for compounds have distinct absorbance 

peaks in the UV-visible range. A UV-Visible-Near IR spectrometer (Shimadzu UV-2501PC) was 

used to analyze these compounds from a spectral range of 200 nm to 800 nm, with a detector path 

length of 10 cm. Serial dilutions of standards were used to determine integrated peak areas of 

each standard and create calibration curves, which were employed to establish concentrations for 

samples. Peak area integration and analysis was conducted on the UV Probe (Shimadzu 

Corporation, ver. 2.10). 

 

3.3.2.2 Total organic carbon  

The extent of degradation calculated from UV adsorption does not indicate the degree of 

mineralization or total organic carbon content (TOC), only the parent compound degradation. 

Oxidative mineralization of organic compounds was measured by using TOC analyzer. TOC 

measurement was used as a secondary analysis tool for compound degradation analysis. 

Two types of carbon are present in water: organic and inorganic carbon. Organic carbon 

(OC or TOC) contains hydrogen atoms bonded to the carbon backbone. Inorganic carbon (IC or 

TIC) is the fully oxidized form of carbon compounds and is structural basis for inorganic 
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compounds such as carbonates and carbonate ions. Collectively the two forms of carbon are 

referred to as total carbon (TC). The total organic carbon is: 

 

 TOC = TC – IC. Eqn. 3.4 

 

TOC was measured using an Aurora 1030c TOC Analyzer.  The TOC concentration of a 

sample was determined by converting the organically bound carbon into CO2 based on Standard 

Method 531- D: Wet Oxidation method [3]. In short, the sample is acidified to pH 2 or less to 

convert inorganic carbon species to CO2, purged to remove the inorganic carbon, then oxidized 

with persulfate in an autoclave at temperatures from 116 
o
C to 130 

o
C. The CO2 produced from 

the sample is then quantified by non-dispersive infrared spectrometry and converted to TOC. 

 

3.3.2.3 Sample analysis using tandem mass spectroscopy  

The analysis of the compounds were completed using liquid chromatography and tandem 

mass spectroscopy (LC-MS/MS) using the Agilent 1200 HPLC coupled to an Applied 

Biosystems 3200 QTRAP mass spectrometer. The analysis of target pharmaceuticals is described 

elsewhere [4, 5]. 

 

3.3.2.4 Pseudo-first order kinetic equation   

Langmuir-Hinshelwood kinetics  may be simplified to pseudo-first order equation at low 

concentration of pollutants to determined kinetic rate coefficients [6], The equation is as follows:  

 
   

  

  
         

Eqn. 3.5 

and rearranged to its integrated form: 

   (
 

  
)        . 

Eqn. 3.6 

 

 

where kapp (min
-1

) is the apparent first-order reaction rate,  

 C is the concentration (mg L
-1

) at time t, and  

 C0 is the initial concentration (mg L
-1

).  

 

The apparent kinetic constant, kapp, and was obtained by taking the slope of the   ln(C/C0) vs. t 

plot.  
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4.0 TiO2 Nanobelts: Material, Photoelectrochemical, and Photochemical Properties 

 

Overview 

TiO2 nanobelts (TNB) were prepared from a facile hydrothermal synthesis. The crystal 

phase and growth direction were determined by electron microscopy. The photoelectrochemical 

properties (photocurrent density, electron lifetime, and electrical characteristics) of the TiO2 film 

were measured using photoelectrochemical tests. These tests helped determine electron-hole 

separation and redox processes that enable the improvement of photocatalytic processes in 

synthesized TiO2 nanomaterials. TNB was tested under photochemical slurry batch reactors 

exposed to 365 nm UV illumination from a medium pressure mercury lamp and the measured 

photocatalytic degradation rates for single pollutant were explored using kinetic models. The 

degree of degradation as a function of physical parameters, such as temperature, pH, and 

pollutant concentration, was also investigated. The role of active radical species involved in the 

photocatalytic mechanism was explored. 

 

4.1 Introduction 

Early TiO2 photocatalytic research efforts focused on single crystal samples [1, 2] carried 

mostly on easily available rutile phases and some work on anatase phase. After the importance of 

nanoscale morphology was recognized in TiO2-based photocatalysis and dye sensitized solar cells 

[3], research efforts were dedicated to synthesizing different powders of varying size, crystallinity, 

and structures [4–7]. Different approaches were used such as hydrothermal synthesis and sol-gel 

methods (see Section 2.3). Among various nanostructures, one-dimensional (1-D) TiO2 

nanomaterials – nanorods [8], nanowires [9–11], nanobelts [12, 13], and nanotubes [14] – offer 

direct pathways for photogenerated electron transfer, possessing advantages such as increased 

charge transport and reducing electron-hole pair recombination compared to conventional 

nanoparticles of the same phase [15, 16].  

In this study, a facile method of fabricating one type of 1-D TiO2 nanomaterial, TiO2 

nanobelts (TNB), was reported and the material characteristics and photoelectrochemical 

properties were determined. Material characteristics were evaluated using UV-vis spectroscopy, 

XRD, Raman, and BET isotherm.  TNB were electrophoretically deposited onto fluoride tin 

oxide (FTO) glass to perform photoelectrochemical tests, namely photovoltage, photocurrent 

density, and EIS measurements.  The electron lifetime was determined from photovoltage decay 

tests. Electrical characteristics such as resistances and capacitances from electrolyte/TNB and 

TNB/FTO interfaces were modelled using an equivalent circuit based on data from EIS obtained 
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Nyquist plots.   Photochemical studies were conducted using a slurry batch reactor. Single 

pollutant degradation was tested using theophylline as a compound of choice because of its high 

solubility in water and non-sensitization reactions, which are problematic with dye compounds 

such as malachite green and methylene blue. 

 

4.2 Experimental Methods 

4.2.1 Synthesis of TiO2 nanobelts 

TNB were synthesized from a previous study [12, 13]. In  a 125 mL Teflon-lined 

stainless steel autoclave (Parr-Instruments), Na2Ti3O7 nanobelts were grown for 72 h in 60 mL 

NaOH (10 M) alkaline solution at 190 
o
C using 2 g of P25 Aeroxide

TM
 (P25, Evoniks). After 

cooling the reactor, the suspended nanobelts were transferred and centrifuged 5 times using 

Millipore water. Subsequently, the sodium titanate (Na2Ti3O7) nanobelts were immersed in 0.1 M 

HCl solution, and through an ion exchange process, hydrogen titanate (H2Ti3O7) was obtained. 

Afterward, H2Ti3O7 nanobelts were dried in a furnace for 80 
o
C for 8 hours to obtain a powder. 

The fabricated nanobelts were annealed at 700 
o
C for 1 h to form TNB. 

 

4.2.2 Materials and photoelectrochemical characterization 

The crystal phase and morphology of TNB were determined by XRD, Raman, SEM, and 

HRTEM. The specific surface area of TNB was determined by BET and the bandgap energy was 

determined by UV–Vis spectroscopy– Diffuse Reflectance Spectroscopy. The general method for 

the use of the each of the aforementioned instruments is mentioned in Section 3.1. A 

photoelectrochemical setup and its related tests were described in Section 3.2 and used to 

determine the photovoltage, photocurrent density, and EIS characteristics of TNB. A xenon lamp 

was switched on and off at 5 min intervals to determine dark current and photocurrent densities. 

 

4.2.3 Surface adsorption using a slurry batch reactor  

The general method of this test was referred to in Section 3.3.1.1. Surface adsorption 

experiments were carried out by dispersing 40 mg of TiO2 nanomaterial into a Pyrex beaker 

containing 200 mL of naproxen, carbamazpine, and theophylline solutions of varying 

concentrations in the dark, at room temperature, with adsorption accelerated by magnetic stirring 

for 90 min at 300 rpm.  
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4.2.4 Photocatalytic degradation tests using a slurry batch reactor 

Photocatalytic degradation was assessed under the same conditions as surface adsorption 

experiments, but in the presence of UV illumination using a 100 W middle pressure mercury 

lamp (UVP, Blak-Ray


 Model B 100AP) at 365 nm. The distance between the UV lamp surface 

(quartz) and surface of the water matrix was 5 cm with an intensity of 2.1 mW cm
-2

.  To saturate 

the surface sites of TNB before photocatalytic degradation, each solution was first stirred in the 

dark for 30 min. Subsequently, the UV lamp was turned on and the photocatalytic degradation 

experiment was conducted for 90 min. In order to determine the active radical species in the 

TiO2-pharmaceutical solution, potassium iodide (KI) and isopropanol (i-PrOH) were used as 

selective radical scavengers during degradation. The concentration of KI and i-PrOH in the initial 

reaction solution were both 1 mM [13].  

 

4.2.5 Analyte preparation and analysis 

All samples were centrifuged at 3200 rpm for 30 min, after the aforementioned 

experiments, to remove TiO2 for analysis. The procedure in Section 3.3.2.1 was followed. The 

experiments were reproducible with errors less than 5 % (3 trials).  

 

4.2.6 Kinetic modelling  

4.2.6.1 Adsorption model 

A pseudo-second-order equation was used to evaluate the adsorption and is given by [15]:  

  

  
 

 

   
  

 

  
  

 

Eqn. 4.1 

 
   

(     )

  
 

 

Eqn. 4.2 

where    and    are adsorption capacities at time,  , and at equilibrium (g g
-1

),  

   is the time (min),  

   is the initial adsorption rate constant,   

     is the initial concentration  (g L
-1

), and  

     is the concentration at time   (g L
-1

). 

 

 

The values of   and    are obtained from the linear plot of 
 

  
 vs.  , and if the fit of the data is 

linear, it suggests that chemisorption takes places [16], [17]. 
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4.2.6.2 Intraparticle diffusion model 

The Weber-Morris Model was used to evaluate intra-particle diffusion from mass transfer 

processes and is given by [18]: 

 

 
      

 

                 
Eqn. 4.3 

 

where    is the intra-particle diffusion rate constant (min
-1/2

)  

    is the time (min),     and  

   is a constant .  

 

The intra-particle diffusion rate,   , may be separated into diffusion stages based on macro-, 

meso- and micro-pore- structures of the adsorbent [19], [20]. Plotting    vs. t
1/2

 gives two linear 

sections of the curve demonstrating a transition from macro-pore diffusion to micro-pore 

diffusion. The slopes of the two diffusion regions give the intra-particle diffusion rate for that 

region. 

 

4.2.6.3 Photocatalytic degradation model 

The photocatalytic degradation can be described using a pseudo first-order kinetic model 

(Eqn. 3.5) and its integrated form (Eqn. 3.6) in Section 3.3.2.4. 

 

4.3 Results and Discussion 

4.3.1 TiO2 nanobelt material analysis 

Fig. 4.1a shows XRD patterns of TNB and P25. There are several characteristic anatase 

peaks that are seen in both samples, which come from {101}, {004}, {200}, {105}, {211}, {204}, 

{116}, {220}, and {215} planes. However, P25 does contain a minor amount of rutile, indicated 

by the presence of {110}, {101}, and {111} rutile diffraction peaks. Peak broadening of the TNB 

is observed indicating a decrease of crystalline grain sizes. The XRD results are confirmed by 

Raman analysis in Fig. 4.1b. The typical Raman modes of anatase – 395 cm
-1

, 515 cm
-1

, and 637 

cm
-1

 – are clearly observed [16, 17], but the lower modes at 144 cm
-1

 and 197 cm
-1

 are out of the 

range of the device. There is also a small peak at 247 cm
-1

 in TNB , which is possibly due to a 

minor content  of amorphous TiO2 [18, 19].  
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Figure 4.1: (a) X-ray diffraction patterns of synthesized TNB and P25; and (b) Raman spectra of 

TNB. Reproduced with permission from [13] 

 

The field electron scanning electron microscopy (FESEM) images (Fig. 4.2) depict 

hierarchical TNB with widths ranging from 30-100 nm and lengths in the range of tens of μm. In 

addition, the specific surface area of the nanobelts obtained is 21.52 m
2
 g

-1
. It is also apparent that 

these hierarchical structures are not only composed of nanobelts, but also a small amount of 

truncated rods fused on the nanobelt surface (Fig. 4.2b).  

 

 

Figure 4.2: FESEM images of hierarchal TNB: (a) low magnification and (b) high magnification. 

Reproduced with permission from [13] 

 

Using HRTEM, the detailed lattice structure of TNB shown in Fig. 4.3. A nanobelt with 

indexed selected area electron diffraction (SAED) was obtained in the highlighted area using a 

zone axis of [001] (Fig. 4.3b). The indexed SAED pattern indicates that the crystal structure is 

anatase, which is a tetragonal structure, in agreement with XRD and Raman results. Furthermore, 

the growth direction of the nanobelts is in the <100> direction, which is consistent with another 
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study [20]. Fig. 4.3b reveals the crystal lattice structure of the anatase TNB and the dominant 

crystal planes in the observed nanobelts from the d-spacing of the lattice, which is 3.8 Å, 

corresponding to the {100} family of planes.  

 

 

Figure 4.3: HRTEM images of hierarchical TNB: single nanobelt with indexed SAED 

pattern and (b) high resolution of nanobelts with crystal d-spacing of 0.38 nm. Reproduced with 

permission from [21] 

 

The bandgap of TNB was determined by UV-Vis DRS and applying Tauc method (see 

Section 3.1.3). Using the Tauc method, the optical bandgap for TNB and P25 precursor were 

3.23 eV and 3.06 eV, respectively. The P25 has lower bandgap energy than TNB because it is a 

mixture of anatase and rutile phases, whereas TNB are predominantly anatase. The rutile phase 

has a lower bandgap energy than the anatase phase [22]. The wide band gap is of importance to 

yield strong oxidizing hydroxyl radicals through photocatalytic degradation. 

 The TiO2 nanobelt synthesis was typically conducted at 190 
o
C for 72 h in previous 

articles, and the time was reduced to 24 h at 250
o
C.  The synthesis method is capable of 

producing the TiO2(B) phase, which can be transformed to anatase. TiO2(B) attracts increasing 

interest due to its monoclinic structure with low-density crystal framework with larger channels 

and pores as compared to other titania polymorphs. However it is not as photoactive as the 

anatase phase [23]. The BET surface area of hydrothermal synthesized H2Ti3O7 heat treated at 

550 
o
C had a surface area of 88 m

2
 g

-1
 . Increasing the heat treatment to 700 

o
C reduced to surface 

area to 20 m
2
 g

-1
. The sample treated at 550 

o
C is a combination of anatase and TiO2(B), whereas 

the sample treated at 700 
o
C is  anatase.   

In Fig. 4.4a, the SAED image of 550 
o
C is indexed as predominantly anatase, however 

the HRTEM image indicates that TiO2(B) crystalline grains are also present. The HRTEM image 

shows the interface between anatase and TiO2(B). The (101) planes in anatase and (011) planes in 
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TiO2(B) closely match and have similar lattice parameters.  Increasing the calcination 

temperature from 550 
o
C to

 
700 

o
C converts TiO2(B) into anatase. The d-spacings for TNB heat 

treatment at 700 
o
C were 0.35 nm and 0.45 nm, which match the (101) and (002) planes of 

anatase. The higher heat-treatment steps lower the defects and decreases the number of crystalline 

grain boundaries.  Generally, higher surface area samples will have a greater number of lattice 

defects  than low surface area samples [24].  

 

 

Figure 4.4: (1) TEM images with SAED indexed regions (yellow) and (2) HRTEM images 

corresponding to TNB samples heat treated at (a) 550 
o
C and (b) 700 

o
C 

 

4.3.2 Photoelectrochemical properties of TiO2 nanobelts 

4.3.2.1 Intermittent photocurrent density  

 Fig. 4.5 shows that the photocurrent density of TNB under unfiltered and filtered (400 nm 

cutoff filter) xenon lamp irradiation in (a) 1M KOH and (b) 1M KOH + 100 mM glucose. In Fig. 

4.5a, the photocurrent under unfiltered light is 4.0  A cm
-2

, whereas under filtered light (> 400 

nm) it is less than 0.2  A cm
-2

. This demonstrates that photogenerated electrons are mostly 
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produced under UV irradiation of the TiO2 nanomaterial. Adding glucose minimizes the direct 

charge carrier recombination in the film (Fig. 4.5b).  The current density with glucose under 

unfiltered and filtered illumination is around 20  A cm
-2

 and 1.0  A cm
-1

, respectively which is 

a 5-fold increase from the solution without glucose. The reduction of recombination processes 

can be seen during the 5 min interval under illumination where the current density increases 

after the onset of illumination to a threshold value, most probably due to photoadsorption of 

glucose onto the TiO2 surface. 
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Figure 4.5: Photocurrent density of TiO2 NW at - 0.3 VAg/AgCl in 1 M KOH solution under 

unfiltered and filtered (400 nm cutoff) irradiation with (a) no glucose and (b) 100 mM glucose. 

Reproduced with permission from [25] 

 

4.3.2.2 Open-circuit potential decay and electron lifetime  

The TNB were investigated for electron recombination kinetics by monitoring the 

transient open circuit potential, Voc, as a function of time after turning off the illumination source. 

Under open circuit conditions, electrons will accumulate within the semiconductor nanostructure 

film following solar light irradiation and shifting the apparent Fermi level to negative potentials. 

Once illumination has stopped, the accumulated electrons are slowly discharged because they are 

scavenged by redox species in the electrolyte  [25]. The electron density in the conduction band 

decays sharply due to charge recombination, with the Voc decay rate determined by the 

recombination rate. Fig. 4.6a shows the Voc decay as a function of time after illumination has 

stopped based on the base solutions containing 100 mM glucose or no glucose. It is evident that 

the Voc decay rate is slower in when glucose is added because glucose acts a hole scavenger 

thereby reducing electron recombination. From the Voc decay rate, the lifetime of the 
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photogenerated electrons, the average time that the photogenerated electrons exist before they 

recombine, can be calculated using the following expression [26]: 

 

 
   (

   

 
)(
    
  
)
  

 

 

Eqn. 4.4 

where    is  Boltzmann’s constant (J K
-1

), 

  is the temperature (K), and 

  is the elementary charge (C). 

 

 

The calculated   is plotted as a function of Voc as seen in Fig. 4.6b. It is observed that the electron 

lifetime increases when glucose is added to the 1 M KOH base solution over the entire Voc range. 
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Figure 4.6: (a) Open-circuit potential of TNB under 150 W xenon lamp irradiation and (b) the 

corresponding electron lifetime as a function of the open circuit potential with respect to 

Ag/AgCl reference electrode using 1 M KOH and 1 M KOH + 100 mM glucose solutions. 

Reproduced with permission from [25]. 

 

4.3.2.3 Electrical characteristics of TNB/FTO under dark and illumination  

It is well established that EIS Nyquist plots are associated with the charge transfer 

resistance and the separation efficiency of photogenerated electron-hole pairs at the 

semiconductor-electrolyte interface [27]. Fig. 4.7 depicts Nyquist plots of TNB under dark and 

under xenon lamp illumination. An equivalent circuit model was used to model the results from 

the Nyquist plot (Fig. 4.8). Circuit element parameters based on the  electrical response from the 

Nyquist plot can be extracted and is effective in simulating coated samples  [27]. In the circuit, Rs 

is the solution resistance; Rf and CPEf are the resistance and capacitance of the film; Rct is the 

electron charge transfer resistance; and CPEdl is the double-layer capacitance. The elements Cf 
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and Cdl were replaced with constant phase elements (CPE) due to non-ideal capacitance response 

of the porous surface structure. The impedance of CPE is given by:  

 

 
     

 

  (  )
 
  

 

Eqn. 4.5 

where Co is the admittance magnitude of CPE (F) and  

                          (m = 1 represents ideal capacitance behavior).  

 

 

0 10k 20k 30k 40k 50k
0

20k

40k

60k 1 M KOH

Dark

Illumination

1M KOH+100mM glucose

 Dark

 Illumination

Z
real

(ohms)

-Z
im

a
g

 (o
h

m
s
)

0 100 200 300
0.0

50.0

100.0

150.0

200.0

-Z
im

a
g
 (o

h
m

s
)

Z
real

(ohms)

 
Figure 4.7: Nyquist plots of TNB in 1 M KOH (base) and base + 100 mM glucose solution under 

dark and xenon lamp conditions 

 

 

 
Figure 4.8: Equivalent circuit of TiO2 film/FTO substrates. Rs is the electrolyte resistance; Rf and 

CPEf are resistance and capacitance of the film; Rct is the charge transfer resistance; and Cdl is 

double layer capacitance 

 

  The EIS was conducted in the absence and presence of UV illumination using two types 

of electrolytes – 1 M KOH and 1 M KOH + 100 mM glucose.  Table 4.1 lists the parameters 
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obtained from Nyquist plots with the equivalent circuit shown in Fig. 4.8.  The values of Rf under 

solar illumination in both electrolyte are smaller than those in the dark. The difference in Rf in the 

dark and under xenon lamp illumination is a 30-fold difference under 1 M KOH + 100 mM 

glucose and only 1.47-fold difference in 1 M KOH. The 30-fold difference is that glucose is an 

effective hole scavenger [28–30] and the holes produced from photocatalysis undergo an 

oxidation reaction with glucose, resulting in a decrease in the resistance of the film and more 

efficient separation of electrons and holes [27, 31]. The transfer of photogenerated electrons is 

expected to cause non-ideality in the film capacitance during xenon lamp illumination; this is 

evident in the decrease of mf in both electrolyte solutions. In 1 M KOH solution, mf decreased 

from 0.946 to 0.913. The addition of 100 mM glucose in 1 M KOH solution decreased mf from 

0.949 to 0.498.  

 

Table 4.1: TNB EIS models of Nyquist plots under no potential bias conditions in 1 M KOH and 

1 M KOH + 100 mM glucose 

 

EIS model 

parameters 

TNB in 1 M KOH 
TNB in 1 M KOH + 

100 mM glucose 

Dark Illumination Dark Illumination 

Rs (Ω) 34.0 22.1 24.6 22.3 

Rf (kΩ) 12.5 8.47 4.51 0.148 

Cf ( F) 132 91.0 162 111 

mf 0.946 0.913 0.940 0.498 

Rct (kΩ) 11.3 5.40 72.5 0.491 

Cdl (mF) 17.6 1.02 15.9 4.98 

mdl 0.970 0.955 0.990 0.952 

   0.0116 0.00137 0.00709 0.00130 

 

4.3.2.4 Effect of potential bias  

 A potential bias was applied to the TNB/FTO electrode and was swept from 0 to 1.0 VAg/AgCl 

in dark and illuminated conditions as seen in Fig.4.9. The potential is increased to more 

oxidative values. Under dark conditions (Fig. 4.9a), the onset of   glucose oxidation occurs at 

0.28 VAg/AgCl based on the increase in current density due to glucose acting as a hole scavenger. 

Electron-hole pairs are increasingly separated when the anodization potential is increased and 

recombination is decreased [32–34]. The addition of xenon light increases the current density 
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and oxidation reactions occurring as seen in Fig. 4.9b. At sufficiently high anodic potentials, 

larger than band gap of TNB, Schottky barrier breakdown occurs and holes are generated that 

react with the aqueous environment [32]. This anodic radical generation approach may be useful 

in environments where UV light cannot be used. The photocurrent become constant above a 

certain applied potential known as the saturation point, in which interfacial kinetics are fast and  

due to limitations of the hole capture [35]. 
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Figure 4.9: Linear sweep voltammograms of TNB/FTO substrates under (a) dark and (b) 150 W 

xenon lamp illumination in 1 M KOH and 1 M KOH + 100 mM glucose 

 

4.3.3 Photochemical studies - single compound degradation 

  Synthesized TNB were used in a series on known persistent PPCPs and the photocatalytic 

degradation rates of their parent compounds in a slurry batch reactor were evaluated. High 

concentrations of PPCPs, compared to those found in drinking water effluents, were used 

because of detection limitations using UV-Vis spectroscopy. The photocatalytic degradation of 

theophylline was chosen due to conduct temperature, pH, radical generation, and concentration 

dependence studies. Typical dye studies contain contribution from non-catalytic side-reactions 

or artifact. Dye decolorization can occur from UV-irradiate titania, and can be degraded under 

visible light in some instances, such as indigo carmine dye. The decolorization of indigo 

carmine was complete by visible light, but the total organic carbon remained intact via 

photolysis. The loss of colour corresponds to electron transfer, which destroys the regular 

distribution of conjugated bonds within the dye molecule and causes its decolourization. Once 

transferred to TiO2, the electron will participate to an additional ion-sorption of molecular 

oxygen as O2: 

 
        

Eqn. 4.6 
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Eqn. 4.7 

 

Free radicals form from homolytic scission processes and these radicals can react with dissolved 

oxygen generating peroxide radicals. The formation of reactive oxygen species and radicals lead 

to degradation of the parent compound.  

 

4.4.3.1 Adsorption and photocatalytic degradation of single pollutants  

 Although, the BET surface area, and adsorption capacity of the TNB is lower (21.52 m
2
 

g
-1

) than that of commercial P25 nanoparticles (50.69 m
2
 g

-1
), a greater photocatalytic degradation 

rate compared to P25 was reported in our earlier study for some pharmaceuticals, such as 

venlafaxine, fluoxetine, and sulfamethoxazole, but not others  [36]. The photocatalytic 

degradation may be enhanced in some reactions using TNB due to differing charge transfer 

reactions and a decrease of grain boundary defects and size in one dimensional nanostructures  

[37]–[39].   

 The adsorption and photocatalytic degradation of theophylline was evaluated using 

kinetic models – pseudo-first-order, pseudo-second-order, and Weber-Morris – in Table 4.2. The 

pharmaceuticals were subjected to adsorption and photocatalytic degradation experiments using 

an initial concentration of 15 ppm without adjusting the pH. The adsorption for all 

pharmaceuticals follows a pseudo-second-order model and its intraparticle diffusion parameters 

may be found using a Weber-Morris plot; whereas the photocatalytic degradation follows a 

pseudo-first order model. 

 

Table 4.2: Values obtained from pseudo-first-order, pseudo-second-order, and Weber-Morris 

models for dark adsorption and UV illumination. Reproduced with permission from  [21] 

 

Compound 

 

Dark Adsorption UV Illumination 

Pseudo  Second-Order Model Weber-Morris Model Pseudo-first-order Model 

Initial Sorption 

Rate 

(kqe
2, min-1) 

Equilibrium 

Adsorption 

Capacity 

(qe, mg g-1) 

R2 

Intraparticle 

Diffusion Rate 

Constant 1 

(k1, min-1) 

 

Intraparticle 

Diffusion Rate 

Constant 2 

(k2, min-1) 

Apparent 

Photocatalytic 

Degradation 

Rate Constant 

(kap, min-1) 

R2 

NPX 1.56 x 10-1 4.51 0.962 3.10 x 10-3 -2.00 x 10-3 6.16 x 10-2 0.957 

THYP 7.58 x 10-2 21.59 0.997 7.27 x 10-3 -1.49 x 10-4 9.12 x 10-2 0.996 

CBZ 3.66 x 10-2 16.48 0.993 5.34 x 10-3 -1.61 x 10-3 2.91 x 10-2 0.989 

NPX – naproxen, THYP – theophylline, and CBZ - carbmazepine 

  

 The kinetic rates obtained from Table 4.3 indicated that theophylline is easily degraded 

compared to naproxen and carbamazepine using a UV/TiO2 process from their apparent 
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photocatalytic degradation rate constants,      (See Fig. A1 and Fig. A2 in Appendix A for 

fitted curves). This is possibly due to a greater adsorption capacity (21.59 mg g
-1

) than naproxen 

(4.51 mg g
-1

) and carbamazepine (16.48 mg g
-1

). In addition, the macropore diffusion rate,   , of 

theophylline onto the surface of TiO2 is much higher than the other two pharmaceuticals 

suggesting that theophylline molecules are able to occupy available surface sites on TiO2 quicker 

than the other two pharmaceuticals, thereby allowing radicals to oxidize this molecule sooner. 

However, the negative values of the intraparticle rate constant, k2, seems to suggest that 

desorption rate increases in theophylline, carbamazepine, and naproxen after a  certain period of 

time, where all macropore sites are occupied by the pharmaceutical adsorbents.  

 

 Giri et al. conducted a vast analysis of various AOP processes, including UV/TiO2 

anatase nanoparticles and UV/H2O2, with various pharmaceuticals at a concentration of 1 ppm 

[40]. From their data, naproxen has a kapp value of 6.23 x 10
-2

 min
-1

 and 7.51 x 10
-2

 min
-1

 under 

UV/TiO2 nanoparticles and UV/H2O2, respectively. On the other hand, carbamazepine had a rate 

constant of 2.17 x 10
-3

 min
-1

 and 2.17 x 10
-2

 min
-1

 under UV/TiO2 nanoparticles and UV/H2O2, 

respectively. These values are lower than our UV/TNB due to different nanostructures used, 

despite having an initial concentration in the order of magnitude less than the one reported here 

(15 ppm) and using a shorter wavelength UV source that is conducive to producing ∙OH via 

photolysis.    

 When comparing the theophylline degradation under UV/H2O2 and UV/TNB processes 

(Fig. A3 in Appendix A), theophylline slowly degrades under 10 mM H2O2 (standard 

experimental concentration) with UV illumination (kapp = 3.65 x 10
-3

 min
-1

), whereas the 

degradation performance using 0.25 mM TiO2 under UV illumination is an order of magnitude 

greater (kapp = 5.68 x 10
-2

 min
-1

).  Theophylline degrades extremely slowly using only UV 

illumination at wavelengths of 365 nm and 254 nm is consistent with the research conducted by 

Kim et al. [41]. 

 The pH of the TiO2 suspension was altered by either adding dilute HCl or NaOH to 

acidify or alkalinize the solution. The pH of the TiO2 slurry containing theophylline influences 

the surface ionization state of TiO2 because it is amphoteric in nature in the following reactions: 

 

 TiOH + H
+
 ⇌ TiOH2

+
    Eqn. 4.8 

 

 TiOH + OH
-
 ⇌ TiO

-
 

 

Eqn. 4.9 
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The flatband potential of the TNB is a function of pH. When OH
-
 and H

+ 
ions are chemisorbed 

from aqueous solutions, at a certain pH value, the overall charge of the adsorbed ions will be at 

zero, or the isoelectric point (IEP). When the pH in the solution is close to the IEP of TiO2, 

particles and other nanostructures tend to agglomerate. The TNB have positive charges on the 

surface in neutral water, according to another study, where TNB had a positive zeta potential of 

+9.65 mV at pH 7.0 [42].  

 The pH is also influenced by the adsorption and desorption of the reactants and 

intermediates of theophylline on the surface of TiO2 because the increase in adsorption capacities 

in Table 4.3 suggests that the pH increases adsorption of theophylline onto surface sites of TiO2 

[43]–[45]. The adsorption capacity of TiO2 roughly increases 4-fold from pH 4.0 (10.04 mg g
-1

) 

to pH 10.0 (36.79 mg g
-1

). Consequently, the apparent photocatalytic rate constants obtained in 

Table 5.2 indicate that the photocatalytic degradation increases with pH, and this observation has 

also been confirmed in other studies  [46]–[48]. Furthermore, the increase in photocatalytic 

degradation may also be partially attributed to alkaline solutions tending to favour ∙OH  formation 

because they are formed between the reaction between OH
-
 ions, available from dissociated 

NaOH, and hole (h
+
).  HCl was used to acidify the TiO2 solution, and the Cl

-
 ions from HCl are 

∙OH scavengers, thereby reducing the degradation rate of theophylline.  

 

Table 4.3: Pseudo-second-order model values – photocatalytic degradation of theophylline at pH 

values of 4.0, 6.8, and 10.0. Reproduced with permission from [21]  

pH 

Dark Adsorption UV Illumination 

Pseudo-second-order Model Pseudo-first-order Model 

Initial 

Sorption Rate 

(   
 , min

-1
) 

Equilibrium 

Adsorption 

Capacity 

(  , mg g
-1

) 

R
2 

Apparent Photocatalytic 

Degradation Rate Constant 

(kapp, min
-1

) 

 

R
2 

4.0 1.93 x 10
-1

 10.04 0.975 5.44 x 10
-2 

0.953 

6.8 7.60 x 10
-2

 21.59 0.993 5.68 x 10
-2

 0.984 

10.0 4.97 x 10
-2 

36.79 0.999 7.63 x 10
-2 

   0.847 

 

4.3.3.2 Reactive oxygen species in theophylline 

The reactive oxygen species has been studied previously in TiO2 nanoparticles, where 

∙OH , h
+
, and H2O2 are identified as dominant oxygen species [49, 50]. Table 4.4 lists the 

photocatalytic degradation rates when potassium iodide and isopropanol quenchers were added to 

the TiO2-theophylline slurry. Potassium iodide is used to scavenge valence band holes and 

hydroxyl radicals, whereas isopropanol is selective to hydroxyl radials  [50]. From the 

photodegradation rates, the ∙OH contribution to the reaction was 75 % and the h
+
 concentration 

was determined to be 20 %. The contribution of other reactive oxygen species, which include 
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H2O2, HO2∙, and O2
-
 is around 5 %. Surface hydroxyls scavenge valence holes to eventually 

produce ∙OH , which are the primary oxidizing species in photocatalytic reactions [51–53]. 

Although, theophylline’s effect on the results [54] was mitigated by increasing the isopropanol 

concentration to 1 mM, from 0.1 mM, as established in previous studies [50, 55].  

 

Table 4.4: Apparent rate constants of theophylline and composition of reactive oxidative species 

determined using isopropanol (1 mM) and potassium iodide (1 mM) quenchers. Reproduced with 

permission from [21] 

Conditions Rate constant 

(x 10
-2

 min
-1

) 

R
2
 

No quencher 5.69 0.984 

Potassium iodide (1 mM) 0.29 0.958 

Isopropanol (1 mM) 1.42 0.981 

4.3.3.3 Temperature effects 

Photocatalytic systems generally do not require heating and are able to operate at room 

temperature. However, the apparent activation energy is often a small value at a certain 

temperature range [56]. The apparent activation energy, kA, can be measured using the Arrhenius 

equation (Eq. 4.10):  

 

 
     

 (
  
   

)
   

Eqn. 4.10 

 

   

where Ea is the apparent activation energy (J),  

 kb is the Boltzmann constant  (J K
-1

)  

 A is the pre-exponential factor, and  

 T is the temperature (K).  

 

The apparent activation energy,   , is obtained from the slope of the   ( ) vs.     plot (Fig. 

4.10).  The obtained apparent activation energy from the temperature range of 4 
o
C to 60 

o
C is 

0.35 kJ mol
-1

, which is similar to the dye compound degradation using Degussa P25 nanoparticles 

obtained in other studies [57, 58]. The true activation energy depends on other parameters, which 

include light flux and oxygen concentration  [57]. 

The photocatalytic degradation rate increases as a function of temperature at a range of 4 

o
C to 60 

o
C as seen in Table 4.5 (See Fig. A4 in Appendix A for temporal degradation curve).  In 

other words, the diffusion of theophylline onto the TNB surface is temperature dependent. 



TiO2 Nanobelts: Material, Photoelectrochemical, and Photochemical Properties 

65 

 

Increasing the temperature increases the diffusion rate of theophylline onto TNB surface, and 

hence the photocatalytic degradation rate of the adsorbed pharmaceutical. An increase in 

temperature also helps the photocatalytic reaction to complete much more efficiently with 

electron-hole recombination [57]. 

 

Table 4.5: Apparent rate constants of theophylline at temperatures of 4 
o
C, 20 

o
C, 40 

o
C, and 60 

o
C. Reproduce and modified with permission from [21] 

 

Temperature (
o
C) Rate constant 

(x 10
-2

 min
-1

) 

R
2
 

4 1.70 0.974 

20 5.70 0.984 

40 6.70 0.984 

60 10.2 0.983 
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Figure 4.10: Activation energy from temperature range of 4 

o
C – 60

 o
C is 56.2 J mol

-1
. Reproduce 

and modified with permission from [21] 

 

4.3.3.4 Concentration effects 

 The effect of pharmaceutical concentration on UV/TiO2 photocatalytic degradation was 

evaluated in Table 4.6 (See Fig. A5 in Appendix A for temporal degradation curve). At 3.0 ppm, 

30 ppm, and 300 ppm the apparent degradation rates of theophylline were 1.46 x 10
-1

 min
-1

, 5.67 
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x 10
-2

 min
-1

, and 8.20 x 10
-3

 min
-1

, respectively. For every magnitude increase in concentration of 

theophylline, the apparent degradation rate of theophylline would decrease at a rate of 0.0688 per 

ppm per min for concentrations from 3 ppm to 300 ppm. At 30 min, the removal ratio of 

theophylline is 99 %, 68 %, and 11 % for an initial concentration of 3 ppm, 30 ppm, and 300 ppm, 

respectively. Additionally, the total mass degraded over a span of 90 min was 15 mg, 100 mg, 

and 165 mg for an initial concentration of 3.0 ppm, 30 ppm, and 300 ppm.   

 

Table 4.6: Photocatalytic degradation of theophylline at concentrations of 3 ppm, 30 ppm, and 

300 ppm. Reproduced with permission from [21] 

 

Compound 

Concentration  (ppm) 

Rate constant 

(x 10
-2

 min
-1

) 

R
2
 

3 14.56 0.982 

30 5.67 0.991 

300 0.81 0.975 

 

4.4 Summary 

 In this chapter, TNB were characterized and its photoelectrochemical properties using TiO2 

photoanodes were assessed. The photochemical properties under slurry batch reactor using a 

model pollutants. The following major conclusions from this work are listed below: 

(1) A facile hydrothermal method was used to synthesize TNB that were grown in the {100} 

family of planes and of anatase phase and calcination lowered the number of lattice defects. 

(2)  The photocatalytic efficiency of TNB/FTO electrode can be improved, through the 

prevention of electron-hole recombination, with the use of h
+
 scavengers and increasing the 

anodization potential of the electrode with respect to the reference electrode. 

(3) The charge transfer and film resistances of the TiO2/FTO electrode decreases under xenon 

lamp illumination and high anodization potential, therefore increasing efficiencies for redox 

reactions to occur on the electrode. 

(4) TNB suspensions under UV illumination were able to degrade the model compound 

theophylline – through the generation of holes, hydroxyl radicals, and other oxidizing radical 

species - of which the reaction with holes was the major contributor to the degradation rate. 

(5) TNB photochemical experiments show that a high reaction temperature, alkaline (high pH) 

conditions, and low pollutant concentration increase the photodegradation of theophylline.  
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5.0 Photocatalytic Degradation using Ag-TiO2 Nanobelts under UV-

LED Controlled Periodic Illumination  

 

Overview 

In this chapter, three methods were used to investigate and improve the efficiency of 

UV/TiO2 slurry systems: (i) synthesizing one-dimensional TiO2, (ii) forming Schottky junctions, 

and (ii) UV-LED controlled periodic illumination (CPI). These parameters were monitored using 

the formation of 2-hydroxyterephthalic acid (HTPA) as a probe molecule. In order to improve 

charge separation in TiO2, one-dimensional TiO2 nanobelts (TNB) were synthesized using a 

hydrothermal method (Chapter 4) and Ag nanoparticles were deposited on these nanobelts (Ag-

TNB) to form metal-semiconductor junctions. Ag-TNB was found to have HTPA formation rate 

greater than 1.33 and 2.59 times than that of P25 and TNB, respectively, under continuous 

illumination. UV-LED CPI was explored to control low photonic efficiencies so the HTPA 

formation rate was normalized by illumination period and compared at various duty cycles from 

10% to 100%.  At a duty cycle of 10%, normalized HTPA formation rate was 1.75, 1.40, and 0.70 

times the HTPA formation rate at continuous illumination for commercial TiO2 (P25), TNB, and 

Ag-TNB nanomaterials, respectively.  The pulse frequency was increased by orders of magnitude 

from 0.05 Hz to 25 Hz and it was found that generally the HTPA formation rate was greater 

under higher frequencies for Ag-TNB and P25 samples. It was found that Ag-TNB was an 

effective photocatalyst using CPI by demonstrating photon-limiting behaviour when lowering the 

duty cycle.   

 

5.1 Introduction 

 Photocatalysis has applications in environmental remediation such as air pollution control 

and water treatment [1]. The limitations of conventional TiO2 photocatalysis prevents it from 

being fully utilized in advanced oxidation processes in water treatment because it relies solely on 

UV radiation or higher energy wavelengths to generate electron-hole pairs. In addition,  

recombination losses are inherent in semiconductors which subsequently reduces their overall 

efficiency [2].  

There have been attempts to increase the photonic efficiency and visible light absorption 

by optimizing material properties and/or physical operational parameters. The photonic efficiency 

may be improved by changing the material properties of TiO2 . For instance, decreasing the 

bandgap energy of TiO2 via metal [3, 4]and non-metal doping [5–8] have been increasingly used 
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as this allows TiO2 to absorb visible light and generate electron-hole pairs from lower energy 

wavelengths in the visible range. Other studies have attempted to  reduce recombination losses by 

creating metal-semiconductor (Schottky) junctions [9–12] or synthesizing 1-D TiO2 

nanomaterials (nanowires, nanorods, and nanotubes) that have greater electron transport than 

nanoparticles [13–16].   

Operational parameters of TiO2 photocatalytic processes such as catalyst concentration, 

light intensity, pH, temperature, and adding additional oxidant sources  have been explored  to  

optimize photonic efficiencies [17]. Addition of pH adjusting chemicals and adjusting 

temperature adds costs. Advanced oxidation processes combining TiO2 photocatalysis with 

chemical oxidants such as hydrogen peroxide and ozone have been attempted and have shown 

improvement in removal, but also comes at additional cost [18–22].  

Increasing the light irradiance will lower the photonic efficiency [17]. The photocatalytic 

reaction order is dependent on the irradiance and may be described in three regimes: (i) low, (ii) 

intermediate, and (3) high irradiance. At the low irradiance regime, the reaction rate is linearly 

proportional to the irradiance. At intermediate intensity, the reaction rate varies by the square root 

of the irradiance. At high intensity, the reaction rate is independent of the irradiance [23].  

Because of the latter two irradiance regimes, photocatalysis suffers in efficiency at higher 

intensities. UV-LEDs are more favourable at lower power compared to mercury lamps, especially 

under low pollutant concentrations [24]. 

Most photocatalytic studies until recently were conducted using low and medium 

pressure mercury lamps as UV light sources [25, 26]. However, they suffer from warm-up time, 

reliability, durability, and efficiency [27, 28]. Other studies have focused on using solar radiation 

in TiO2 applications [29, 30] but are only feasible in locations where solar radiation is abundant.  

The advent of high power LEDs has increased the widespread adoption of LEDs for general 

lighting and other applications. LEDs are more efficient because the quantum yields are close to 

unity. LEDs also have higher lifetimes than mercury lamps [31]. Furthermore, mercury lamps 

cannot be alternatively turned on and off effectively in the millisecond time-scale. Based on 

previous studies, LEDs under controlled periodic illumination (CPI) was more effective for 

photocatalysis using xenon lamp illumination and a mechanical shuttering system  [28, 32].    

One way to reduce recombination is to introduce noble metals such as gold [33], 

platinum [3], [34], palladium [35], and silver [36, 37] to serve as electron sinks for 

photogenerated electrons, facilitating electron transfer to electron acceptors, such as dioxygen. 

Recombination is controlled by the formation of a Schottky barrier between surface metal 

particles and semiconductor photocatalyst [38]. Besides the reduction of recombination, the use 
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of silver is beneficial due to being a: (i) relatively inexpensive noble metal compared to other 

noble metals, (ii) an effective and known disinfectant [39], and (iii)  thermal catalysis from 

localized surface plasmon resonance (LSPR) effect to prevent deactivation of photocatalysts 

[40] .  

The objective of this study was to explore the effect of CPI on the photonic efficiency of 

UV-LED irradiation TiO2 process in a batch slurry reactor by using the temporal decomposition 

of terepthlatic acid as molecular probe. The decomposition of malachite green was also assessed 

under continuous illumination.  In this study, three procedures were used to decrease 

recombination processes:  (i) conversion of nanoparticles into a one dimensional TiO2 nanobelt, 

(ii) addition of silver nanoparticles onto TiO2, and (iii) the utilization UV-LED controlled CPI 

processes. The effects of UV-LEDs under various duty cycles were explored. Ag-TiO2 nanobelts 

and TiO2 nanobelts were compared with commercial P25 nanoparticles under controlled periodic 

illumination to increase kinetic rates by preventing charge carrier recombination. 

 

5.2 Experimental Methods 

5.2.1 Reagents and chemicals 

Titanium Dioxide (P25 Aeroxide
TM

), silver nitrate (AgNO3), hexamethylenetetramine 

(HMTA), hydrochloric acid (HCl), and sodium hydroxide (NaOH) were used in TiO2 synthesis 

procedures. Terephthalic acid (TPA) and malachite green (MG) were used as model pollutant 

compounds for photocatalytic experiments. All materials were purchased from Sigma-Aldrich.  

Ultrapure water was obtained from a MilliQ water purification system which was operated at 18.2 

MΩ∙cm resistivity and <5 µg/L total organic carbon (TOC) at 25 
o
C (EMD Millipore).  

 

5.2.2 TiO2 synthesis methods 

5.2.2.1 TiO2 nanobelt synthesis 

TiO2 nanobelts (TNB) were synthesized using a modified hydrothermal method  [41] 

developed in Chapter 4. The following changes were made to the method: (i) Na2Ti3O7 

nanobelts were grown for 24h in 60 mL NaOH (10 M) alakaline solution at 250 
o
C and (ii) 

H2Ti3O7 nanobelts were annealed at 700 
o
C for 2h.  

 

5.2.2.2 Ag-TiO2 nanobelt synthesis 

H2Ti3O7 nanobelts from the TNB synthesis were used in the preparation of Ag-TNB.  In a 

solution containing 60 mL of 0.02 M H2SO4, 1 g of the precursor was added in the acid digester 

and kept at 100 
o
C for 12 h.  The products were centrifuged, washed with ultrapure water several 
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times, and dried at 70 
o
C overnight. The hydrogen titanate, H2Ti3O7, obtained by acid treatment 

was heated at 700 
o
C for 2 h to for TiO2 nanobelts. A hydrothermal method was used to create 

nano-heterostructures of Ag nanoparticles on TiO2 nanobelts [37].  1 g of treated TiO2 nanobelts 

were put into a 125 mL acid digested containing 60 mL of 1 mM AgNO3 and 2 mM HMTA. The 

acid digester was heat treated for 4 h at 100
o
C. Silver ions in solution were removed my washing 

with ultrapure water, centrifuging samples, and decanting the supernatant. This process was 

repeated three times. The Ag-TNB was dried in the furnace at 80
o
C for 8h. 

 

5.2.3 Nanomaterial characterization 

The crystal phase and morphology of TNB were determined by XRD, Raman, and SEM. 

The specific surface area of TNB was determined by BET and the bandgap energy was 

determined by UV–Vis spectroscopy–Diffuse Reflectance Spectroscopy. Details on the use of the 

aforementioned instruments are mentioned in Section 3.1.  

The isoelectric point (IEP) of engineered nanomaterials was obtained measuring the zeta 

potential of the nanomaterial at pH values ranging from 3 to 10. Zeta potential measurements 

were conducted with 0.1 g L
-1

 in ultrapure water and adjusted to various pH values using NaOH 

or HCl. No salt, such as NaCl, was added as is the case with methods used by others to measure 

zeta potential in order to simulate experimental conditions [42]. The zeta potential analyzer was 

programmed to six measurements for each sample.  

 

5.2.4 Standardization and setup 

A schematic of the UV-LED/TiO2 process under pulsed-width modulation (PWM) is 

shown in Fig. 5.1. More details on the setup is mentioned in Section 3.3.1.1. A PWM script (See 

Section B1 in Appendix B) was programmed into the controller.  The light pulse frequency, , and 

duty cycle,  , of UV-LEDs was controlled with various illumination and dark periods listed in 

Table 5.1.  
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Figure 5.1: Schematic of UV-LED/TiO2 advanced oxidation under pulsed width modulation 

 

Table 5.1: Light profiles for continuous and periodic illumination showing duty cycle and 

frequency of pulsing 

Duty Cycle 

( ) 

Average UV 

intensity 

(         ) 

ton 

(ms) 

toff 

(ms) 

Period 

(ms) 

Duty cycle experiments at constant frequency  

10% 0.217 100 900 

1000 (1 Hz) 
25% 0.544 250 750 

50% 1.080 500 500 

75% 1.632 750 250 

100% 2.177 Continuous illumination 

Frequency experiments at constant duty cycle  

50% 1.080 10000 10000 20000 (0.05 Hz) 

50% 1.080 1000 1000 2000 (0.5 Hz) 

50% 1.080 100 100 200 (5 Hz) 

50% 1.080 20 20 40 (25 Hz) 

 

 

5.2.5 Photocatalytic degradation  

5.2.5.1 Malachite green degradation and pseudo-first kinetics model 

A stock solution containing 60 ppm MG was prepared by dissolving MG (60 mg) in  1 L 

of ultrapure water. Three replicates of MG solution (300, 10 ppm) were made by mixing 60 ppm 

MG stock (50 mL) and 250 mL of ultrapure water. P25, TNB, and Ag-TNB were TiO2 

nanomaterials that were tested. In each test, TiO2 nanomaterials were added to each replicate for a 
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final concentration of 0.1 g L
-1

. The beakers were placed in the multi-position stir plate and the 

solutions were stirred at 600 rpm for the duration of the experiment. 

A 60 min equilibration period for adsorption of MG solution onto TiO2 nanomaterials 

was allowed prior to UV exposure. Aliquots were sampled throughout the 300 min time span of 

the experiment. The samples were centrifuged at 5000 rpm for 5 minutes to remove TiO2 

nanomaterials from solution. The supernatant was then transferred to a 96 well-plate for MG 

degradation analysis. The endpoint adsorption of  MG was measured at a wavelength of 615 nm 

against a calibration curve. The photocatalytic degradation of MG was evaluated using pseudo-

first order kinetics (Section 3.3.2.4 in Chapter 3) derived from Langmuir-Hinshelwood kinetics  

[43].  The experiments were conducted in triplicates and the standard deviation was calculated. 

 

5.2.5.2 TPA degradation and HTPA formation kinetic model 

A similar TPA degradation  and HTPA fluorescence method was used from work 

conducted previously [44]. In a beaker, 0.3 L of 0.5 mM TPA was dissolved in 6 mM NaOH 

solution. TiO2 nanomaterials were added to the solution with a TiO2 concentration of 0.1 g L
-1

.  

The experiments were conducted under illumination for 240 min and aliquots (1 mL) were taken 

at several time points. 

TPA undergoes a reaction with a hydroxyl radical, producing 2-hydroxyterephthalic acid 

(HTPA)[44], [45]. The HTPA concentration was monitored using a fluorescence plate reader 

(SpectraMax M3, Molecular Devices).  Under excitation mode (    = 315 nm),  a emission 

spectra from 350 – 550 nm was used. A HTPA standard curve was included in the plate to 

quantify the amount of HTPA formed during TPA degradation. The standard curve was generated 

from the intensity of the peak emission wavelength of each spectrum.  

The formation constant rate, k1, of HTPA, which is the first degradation product of TPA, 

was studied. In the first minutes of the experiment, there is an excess of TPA and the 

concentration of HTPA rapidly increases (first reaction step – formation of HTPA) due to the 

oxidation of TPA by holes and/or hydroxyl radicals formed on the surface of the TiO2 

nanomaterial. As the HTPA concentration increased over time, its degradation rate also increases 

(second reaction step). An equilibrium concentration is reached, in which the rates of formation 

and degradation of HTPA are equal. A simplified kinetic model for HTPA was proposed by  

Černigoj et al. [45]: 

 

 

http://www.sciencedirect.com/science/article/pii/S0920586110002105
http://www.sciencedirect.com/science/article/pii/S0920586110002105
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Eqn. 5.1 

where CHTPA represents the molar concentration of HTPA (mol L
-1

),  

 k1 represents the zero-order HTPA formation rate (min
-1

), and  

 k2 represents the pseudo-first order kinetic degradation rate (min
-1

).  

 

The fitting function was represented by the equation [45]: 

 

 
      

  

  
(       ) 

  

Eqn. 5.2 

In order to compare the photocatalysts used in the study, only the initial rate constant k1 (first 

reaction step) was considered.  The experiments were conducted in triplicates and the standard 

deviation was calculated. 

 

5.3 Results and Discussions 

5.3.1 Materials characterization 

Three types of TiO2 nanomaterials were investigated: P25, TNB, Ag-TNB and their 

material characteristics are given in Table 5.2 (See Fig. B1 in Appendix B for (a) Tauc plot, (b) 

Raman spectra, and (c) zeta potential). The SEM images of the nanomaterials are shown in Figure 

1. P25 has clustered particles that range from 10 – 30 nm, which is in the range of the 21 nm 

average particle size reported from the manufacturer. TNB images show nanobelts that range 

from 20 to 100 nm in width and  m lengths. This size distribution is consistent with previous 

studies [46, 47]. The TNB samples are also composed of nanoparticles and truncated rods fused 

on the surface of the nanobelt.  Ag-TNB images are similar in morphology to TNB samples and 

show no obvious Ag nanoparticles on the TNB. However a purple tinge can be seen by 

observation in Fig. B1d. Because of the growth along one dimension and large structure than P25, 

the synthesized one dimensional TiO2 nanomaterials settled faster in aqueous solution. The zeta 

potential can describe the stability of the dispersion and the average values obtained for P25, 

TNB, and Ag-TNB were -12.15 mV, -6.45 mV, and -8.6 mV, respectively, at the experimental 

pH of 11 used in this study. P25 is more stable than the synthesized nanomaterials in solution, 

however all the nanomaterials will settle over time under a zeta potential magnitude of less than 

30 mV under no external agitation. 
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All three nanomaterials are of anatase phase as confirmed through Raman spectroscopy 

with characteristic peaks as referenced through the RRUFF online database (R060277 and 

R050417). This is also confirmed through diffuse reflectance spectroscopy in which the bandgap 

energy is between 2.95 – 3.2 eV, characteristic for TiO2 anatase and indicates that only radiation 

below 400 nm is capable of generating electron-hole pairs in all samples.  

The surface area can impact adsorption capacity and photocatalytic activity, though the 

latter does not a correlate linearly to surface area; it depends on the other factors such as the 

contents of the water matrix used. The BET surface area of P25, TNB, and Ag-TNB were and 57 

20, and 87 m
2 

g
-1

, respectively. TNB has a lower surface area due to fusing of P25 nanoparticles 

during the hydrothermal process, reducing the overall surface area compared to P25. Ag-TNB has 

a higher surface area due to the acid corrosion step preceding Ag deposition than increases 

porosity. 

 

Table 5.2: Material Characterization of TiO2 nanomaterials 

Material Measurement P25 TNB Ag-TNB 

BET Surface Area (m
2
 g

-1
) 57 20 87 

DFT Pore Volume (cm
3
 g

-1
) 0.12 0.03 0.24 

Zeta potential at TPA (mV) -12.15 -6.45 -8.6 

Bandgap energy (eV) 3.02 2.95 3.20 

Crystal phase (Raman) Anatase/Rutile 
 

Anatase Anatase 

 

 

 
Figure 5.2: FESEM images of (a) P25, (b) TNB, and (c) Ag-TNB 

 

5.3.2 Photocatalytic performance under continuous illumination 

HTPA formation rate from TPA degradation and MG apparent removal rate coefficients were 

determined using P25, TNB, and Ag-TNB (Fig. 5.3). MG was used as a model dye pollutant 

similar to many studies that use dye pollutants to compare various catalysts and is not as 
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susceptible to dye decolourization under UVA radiation compared to visible light irradiation [24]. 

There was no statistical difference between the absolute kinetic rate coefficients of P25 and TNB, 

however there was a difference with Ag-TNB (p < 0.017) for both MG removal and HTPA 

formation rates (Table B2-A for one-way ANOVA test).  .  Even though the P25 and TNB have 

similar TPA formation rates,  the recombination rate of one-dimensional TiO2 is generally lower 

when compared to nanoparticles due to a decrease of grain boundary defects when joining  

nanoparticles into a one-dimensional structure, which decreases charge transfer resistance  [48], 

[49].  

 

Figure 5.3: HTPA and MG kinetic rates for P25, TNB, and Ag-TNB nanomaterials. Bars that do 

not share a common letter are significantly different at   = 0.05 significance level as determined 

by one-way ANOVA using the Holm-Sidak post-hoc test.  

 

5.3.2.1 Electron lifetime of TiO2 nanoparticles compared to nanobelts 

To test that nanobelts have a lower recombination rate than nanoparticles, the electron 

lifetime of the nanomaterials were compared. P25 nanoparticles and TNB were cast on fluorine-

tin oxide (FTO) glass using an electrodeposition method and tested using a photoelectrochemical 

setup (See Section B2 and B3 in Appendix B). Under open circuit conditions, the photogenerated 

electrons accumulate within TiO2 photoanode and react with is aqueous environment. At steady 

state conditions, the rate of electron accumulation  reaches  equilibrium  with the rate of electron 

loss [50, 51]. The electron lifetime of the photoelectrode can be found from the change in open 

circuit potential, VOC, upon termination of UV illumination. Electron recombination kinetics at 

the semiconductor interface can be analyzed from the decay rate. The decay rate can be 

calculated via the following equation  [50–52]: 
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Eqn. 5.3 

where kB is Boltzmann constant (J K
-1

),  

 T is the temperature (K), and  

 e is the elementary charge (C).    

 

The TNB film has an electron lifetime approximately one order of magnitude longer than 

the P25 NP film (Fig. 5.4b). This suggests that TNB supresses the recombination pathways at the 

photoanode interface better than TiO2 nanoparticles. Even though the electron lifetime is greater 

using nanobelts compared to nanoparticles, there is no statistical significant difference between 

the P25 and TNB in HTPA formation rate or MG removal rate (Table B2-A).  However, this may 

be attributed to the higher surface area in P25 (57 m
2
 g

-1
) compared to TNB (20 m

2
 g

-1
). TNB is 

also more prone to aggregation when dispersed in solution due to increased size in one dimension 

( m range) compared to nanoparticles.   

Generally, it is the case that the higher the surface area of the TiO2 nanomaterial, the 

higher the apparent reaction rate.  The zeta potential magnitude of nanobelts is lower than P25, 

which indicates that TNB will aggregate faster compared to P25 nanoparticles due to lower 

repulsion forces.    The addition of Ag on TNB improved the electron-hole pair generation as 

shown by the increased HTPA formation rate and MG degradation rate via hole and hydroxyl 

radical in Fig. 5.3. 

 
Figure 5.4: (a) Open circuit potential and (b) electron life of P25 and TNB 

 

5.3.3 TPA degradation under varied duty cycles 

To determine the effect of duty cycle on TiO2 photocatalysis, the duty cycle was tested at 

10%, 25%, 50%, 75%, and 100% at a constant pulse frequency ( = 1 Hz. Absolute and 
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normalized rates of HTPA under the various duty cycles were tabulated (Table B1 in Appendix 

B).  The normalized rate was given as: 

 

 
              

  

           
 

  

Eqn. 5.4 

The absolute and normalized rates of formation of HTPA (Fig. 5.5a) and the ratio of the 

normalized rate of HTPA formation at a specific duty cycle   to the HTPA formation rate at 

continuous illumination (duty cycle   = 100%), k1,DC:k1,DC=100%, were plotted for P25, TNB, and 

Ag-TNB (Fig. 5.5b).  Under continuous illumination, Ag-TNB has an increased HTPA formation 

rate compared to P25 and TNB by a factor of 1.33 and 2.59, respectively.  

 

Figure 5.5: (a) Absolute (filled) and normalized (patterned) formation rate of TPA, k1, at various 

duty cycles using P25, TNB, and Ag-TNB nanomaterials; (b) k1,DC/k1,DC=100% ratio vs. duty cycle. 

Bars that do not share a common letter are significantly different at   = 0.05 significance level as 

determined by one-way ANOVA using the Holm-Sidak post-hoc test to compare the formation 

rates at various duty cycles. 

 

The continuous introduction of photons results in a build-up of charges (ecb
-
/hvb

+
) that can 

favour undesirable recombination processes [53, 54].  This effect can be shown through the 

reaction order of photocatalysis at various intensities. There is an initial linear dependency of the 

photocatalytic reaction rate on radiant flux (   that eventually changes into a square-root 

dependency (       above a threshold radiant flux value. As the radiant flux increases, the 

concentrations of photo-electrons and holes increases, which exponentially increases the band-to-

band recombination rate rR, defined as[17]: 
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where kR is the recombination rate coefficient,  

 [  ] is the electron concentration, and  

 [  ] is the hole concentration.  

 

It was found that the lowest duty cycle tested ( =10%) had a significant increase in the 

normalized HTPA formation rate compared to continuous illumination for P25 and TNB 

experiments (P25: p<0.000; TNB: p<0.000). At  =10%, the normalized HTPA rate was 1.75, 

1.40, and 0.70 times the HTPA formation rate at continuous illumination for P25, TNB, and Ag-

TNB nanomaterials, respectively. In the case of P25 and, to a lesser extent, TNB, there was an 

improved normalized HTPA formation rate at low duty cycles ( =10%). This improvement is due 

to the introduction of a dark period that is beneficial in limiting the number of excess charges on 

the surface that do not undergo recombination and tend to  recombine [28, 54].  

In the case of Ag-TNB, the duty cycle confirms that the recombination losses are not of 

the same magnitude to P25 and TNB. Lower the duty cycle was detrimental to the photonic 

efficiency for Ag-TNB (Fig. 5.5). Ag nanoparticles on TNB form a metal-semiconductor and the 

Ag serves as an “electron sink” that collect electrons, while holes are left on the TiO2 surface. 

The enhanced charge separation at the metal-TiO2 interface has been attributed to the formation 

of a Schottky energy barrier that prevents recombination in the depletion region [55]. Because of 

lower recombination, a dark period is not necessary compared to other nanomaterials. Therefore, 

higher light intensities can be used for Ag-TNB without suffering from photonic losses.  Because 

the normalized HTPA formation rate was detrimental when lowering the duty cycle indicates that 

other processes are occurring under continuous UV irradiation that increases the normalized 

reaction rate such as localized surface plasmon resonance (LSPR) [33, 56–58]. 

 

5.3.4 TPA degradation under varied frequency  

The HTPA formation rate was measured under various pulse frequencies (  =25Hz, 5 Hz, 

0.5 Hz, and 0.05 Hz) at a constant duty cycle of   = 50% for P25, TNB, and Ag-TNB in Fig. 5.6 

(See Table B2-C for one-way ANOVA test). As the frequency increases, the UV irradiation 

approaches continuous illumination [54, 59]. There was a statistical difference using P25 at a 

pulse frequency of 0.05 Hz compared to all other frequencies tested (25 Hz: p=0.0006; 5 Hz: 

p=0.0002; 0.5 Hz: p=0.0018,       ). There was no statistical difference in HTPA formation 

for TNB when increasing the pulse frequency. There was a statistical difference in HTPA 
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formation rate at a pulse frequency of 25 Hz compared to 0.05 Hz for Ag-TNB samples  

( =0.10). Because high frequency CPI mimics continuous illumination, the results confirm the 

observations in the duty cycle experiments, in which Ag-TNB produced higher formation rates 

when UV light exposure was increased. 

P25 experiments indicate an improvement in HTPA formation at higher frequencies 

tested compared to 0.05 Hz  as shown in Fig.5.6 (See Table B2-B for one-way ANOVA test), 

which may be due to two possible mechanisms: (i) the excess charge under longer illumination 

periods and (ii) fragmentation processes in TiO2 particle networks that generate new adsorption 

sites from aggregates from illumination [54, 60, 61]. Under 0.05 Hz pulse frequency, HTPA 

formation kinetics for P25 reach steady-state due to the long UV exposure time of 10 seconds 

follow by a dark period of 10 seconds. This increased period permits excess charge build-up that 

increases recombination. Increasing the frequency from 0.05 Hz to  a higher pulse frequency 

reduces the steady-state time and  increases the HTPA formation rate, which was found to occur 

in the study by Bahnemann et al. [62]. Under aqueous conditions, TiO2 nanoparticles can attract 

other nanoparticles and aggregate due to electrostatic and van der Waals interactions. The 

concept of photoinduced disaggregation was proposed by Bahnemann’s group as explanation for 

higher oxidation using intermittent pulsing  [60, 63].  Their group attributed the increase in the 

quantum yield of formic acid oxidation under repetitive laser-pulses to disaggregation of 

nanoparticles and fragmentation of networks that promote additional adsorption sites for 

reactants. Irradiation of sufficient energy can partially disaggregate nanoparticles from their 

aggregates, increasing diffusion.  This  has been demonstrated through dynamic light scattering 

studies and membrane filtration comparisons under dark and light conditions in other studies, 

where  the hydrodynamic diameter of TiO2 aggregates can be reduced via light exposure [42], 

[64]. Agglomerated  TiO2 particles not only increase in catalyst surface area  upon disaggregation, 

but also acts as an antenna for transferring photon energy from the site of absorption to the site of 

reaction through a network effect [60].     

Derjaguin, Landau, Vervey, and Overbeek (DLVO) theory was used to ascertain if UV-

LEDs have sufficient energy to dislodge nanoparticles from aggregates. Electrostatic repulsion 

forces and van der Waals attraction forces are taken into consideration determining how these 

forces interact with particles. There exists a deep energy well, called the primary minimum, that 

traps particles that are below the energy well and coalesce. At larger separation distances, the 

energy profile passes through a shallow energy well, referred to as the secondary minimum [42].  

The force-separation distance profile for TiO2 nanoparticles was calculated (See Section B4 in 

Appendix B). The calculation indicates that 3.9 x 10
-21

 J (0.95 kbT) are needed for a particle to 
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escape the secondary minimum well. When irradiated with UV-LED, each particle can absorb up 

to 1.7 x 10
-17

 J s
-1

. This energy from UV-LEDs is sufficient to dislodge a particle in the secondary 

minimum from agglomerates. 

In the case of TNB experiments, there was no significant change in the HTPA formation 

rate when increasing the pulse frequency as indicated in Fig. 6 (See Table B2-C for one-way 

ANOVA test). This may be due to TNB having lower surface area and greater dimensions 

compared to nanoparticles, which increases the energy required for a particle to dislodge from the 

secondary minimum. Anisometric particles, such as nanorods and nanowires, are also likely to 

aggregate under the secondary minimum [65]. The degree of aggregation is dependent on shape 

and is most favourable for platelets, less favourable for rods and cylinders, and the least 

favourable for spherical nanoparticles [65].  

 

 
Figure 5.6: HTPA formation rate as a function of frequency 

 

5.3.4.1 Implications of CPI in photocatalyst application 

CPI has the benefit in reducing energy costs for TiO2 photocatalysts and the evaluation of 

the treatment maintenance costs, specifically energy, is one aspect that requires attention. Since 

the UV/TIO2 process requires electrical energy and can represent a significant amount of 

operating cost when it is scaled, figures-of-merit based on electrical energy consumption may be 

informative.  In this case, electrical energy per order (EEO), defined as the number of kilowatt 

hours of electrical energy required to degrade HTPA by one order of magnitude in a unit volume 

containing TPA as the starting compound. The EEO (kWh m
-3

 order
-1

) can be calculated [66, 67]: 
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Eqn. 5.6 

where Pel is the input power (kW) to the UV-LED system,   

 V is the volume of water (L) in the reactor,   

 k2 is the degradation constant of HTPA (min
-1

), and  

 the constant multiplier accounts for conversions to kWh m
-3

 order
-1

.    

 

 The addition of CPI can reduce the energy required to operate a batch reactor and under 

UV treatment options. The EEO of HTPA degradation under UV-LED CPI-controlled TiO2 

photocatalysis (P25, TNB, and Ag-TNB) was determined under a favourable CPI condition (v = 

25 Hz,   = 50%) and continuous illumination (Fig. 5.7).  Ag-TNB under the CPI condition 

requires only 50% to 55% of the EEO required by P25 and TNB.  Additionally, under the chosen 

CPI condition, Ag-TNB and P25 require 27% and 39% less EEO than under continuous 

illumination. The use of TNB did not change significantly under both light conditions. It may be 

beneficial of investigating catalysts under operational parameters such as CPI in terms of EEO and 

compare other batch reactor setups with similar chemical compounds of interest [66], [67] as 

kinetic rates alone do not take into account the reactor parameters.   

 

 
Figure 5.7: Energy per order magnitude of UV-LED/TiO2 process under CPI and continuous 

illumination.  
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5.4 Conclusions 

TNB and Ag-TNB nanomaterials were synthesized using a hydrothermal synthesis 

method. The following conclusions from the work are listed below:  

(1) The formation of P25 to TNB nanomaterials decreased the grain boundary defects that 

increase recombination reactions. Using open-circuit photovoltage study, one-

dimensional TiO2 provides a greater charge-separation than P25 nanoparticles.  

(2) P25 and TNB have a greater photonic efficiency at the lowest duty cycle (  = 10%) tested 

due to excess charge build-up under continuous illumination which leads to 

recombination losses. Ag hydrothermal deposition onto TNB reduces the recombination 

and increases the HTPA formation rate due to the formation of metal-semiconductor 

junctions. 

(3)  The Ag-TNB experiments demonstrate detrimental performance when lowering the duty 

cycle, which may be due to the effective charge separation under a photon-limited regime 

and/or the LSPR effects that enhance reaction rates under illumination. 

(4) P25 shows a slight increase in HTPA formation rate when the frequency is increased 

from 0.05 Hz, whereas TNB shows no change in formation rate when frequency is 

increased because of the shape in aggregation and increased energy required from UV-

LEDs to dislodge TiO2 particles from the secondary minimum of TNB. 

(5) The energy per order of magnitude was lowest for Ag-TNB under a high frequency CPI 

condition compared to the catalysts tested and continuous illumination. 
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6.0 Degradation of pharmaceuticals using UV-LED/TiO2 pulse width 

modulation 

 

Overview 

The presence of pharmaceutical and personal care products (PPCPs) in aquatic systems 

has been a growing cause for concern.  Advanced oxidation processes such as UV/TiO2 can 

breakdown PPCPs into smaller constituents, reducing the pharmaceutical activity. However, this 

process is limited by low photonic efficiency under UV systems. Controlled periodic illumination 

(CPI) is a promising solution to overcome the issues concerning low photonic efficiencies. Using 

a CPI controlled UV-LED/TiO2 process, a mixture of twenty-one PPCP compounds were 

analyzed for their degradation removal on porous titanium – titanium dioxide (PTT) substrates.  

Immobilization of TiO2 removes the need to recover TiO2 nanomaterials in slurry batch reactors, 

which were used in Chapter 4 and Chapter 5. The kinetic rates of PPCPs may be analyzed 

using multiple regression analysis with parameters such as net charge at experimental pH, 

solubility, and molecular weight. Negatively charged PPCP compounds were found to have the 

highest removal compared to neutral and positively charged compounds due to electrostatic 

attraction forces. Decreasing the duty cycle under CPI did not significantly change the individual 

and cumulative PPCP compound removal, suggesting that the CPI controlled UV-LED/TiO2 

processes using PTT substrates were effective in reducing energy requirements, without 

sacrificing removal performance.  

 

6.1 Introduction 

Advanced oxidation processes (AOPs), such as ozone (O3) and hydrogen peroxide (H2O2) 

are effective in treating organic contaminants but require a constant supply of chemical oxidants 

[1–5]. More recent technologies such as TiO2 photocatalysis are of interest.  TiO2 can be used as 

a renewable oxidant source generated from the interaction between a radiation source (artificial or 

natural) of enough energy to generate electron-hole pairs that can participate in redox reactions. 

These redox reactions can decompose small molecules  [6–10].  

Conventional TiO2 photocatalysis suffers from low photonic efficiencies, which prevents 

application of photocatalytic technology for large scale water treatment operations [11]. 

Increasing the photonic efficiency and degradation rate of photocatalysis is an ongoing goal and 

is primarily focused on optimizing operational conditions such as catalyst type, catalyst 

concentration, light intensity, pH, and temperature [12]. A simple approach is to optimize  the 
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light intensity or using a doped catalyst [13–16]that increases light adsorption and/or lowers 

carrier recombination [16, 17] .   

Generally, light intensity is linearly proportional to the kinetic reaction rate at low 

intensities and the square root of light intensity is proportional to kinetic reaction rate at high light 

intensities [12, 18, 19]. This drawback limits the photonic efficiency at high light intensities. 

However Sczechowski et al. suggested that intermittently turning on and off a UV source, known 

as controlled periodic illumination (CPI), can increase the photonic efficiency of TiO2 while 

reducing light exposure times [20]. The practical application of CPI was limited to mercury lamps 

due to the warm up time required to output light and the tendency of filament failure if the lamp 

is turned on and off too quickly and frequently. A potential solution is to design systems with 

mechanical shutters, such as a rotating disk reactor with a pneumatic shutter [21]. However, the 

mechanical shutter system cannot be scaled up without increasing cost and energy substantially.  

With the advent of UV-LED technology, it was possible to pulse UV-LEDs using 

microcontrollers and pulsed width modulation (PWM), increasing the lifespan of the light source 

and lowering energy expenditure [11]. Additionally, the workable wavelength of undoped TiO2 

photocatalysis is below 400 nm and mercury lamps possess some emission peaks above the 

wavelength for undoped TiO2 photocatalysis, thereby limiting efficiency using these light sources. 

UV-LEDs can utilize much of the light energy that is emitted because of its single, narrow 

Gaussian distribution [22–24].   

An analog of CPI  employs the concept of Parrondo’s paradox, which may provide 

insight into developing chemical systems in which forced oscillating conditions may bring 

unexpected outcomes [25]. Parrondo’s paradox is the unexpected outcome in which two “losing” 

strategies can, by alternative them, produce a favourable outcome. Parrondo’s paradox applied to 

photocatalytic processes may generate a higher yield of a measured product of interest when 

switching between UV light and dark conditions, compared to the steady-state condition alone, 

even though the total irradiation period is lower than under steady-state illumination. There have 

been some examples of this paradoxical behaviour under TiO2 photocatalysis. Tada et al. showed 

that by using Pt-shell/Ag-core particles loaded on TiO2 and applying light on-off cycles on thiol 

(2-mercaptopyridine), the H2 production rate was greater than  steady-state illumination or dark 

adsorption which produced no H2 [26].  Additionally, microorganisms and organic compounds 

under high frequency UV light on-off cycles showed higher removal compared to continuous 

illumination using similar UV intensities [27, 28].  

All of the current CPI studies  observed photochemical reactions using a single pollutant 

source [11, 21, 27–30]. However, natural water matrices contain many pollutants and components 
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that compete for adsorption sites in photocatalysts, thereby affecting the kinetic rates of pollutant 

removal [9]. Understanding the CPI conditions in  complex matrices is of interest because cycling 

conditions may influence interactions within this system that result in unexpected outcomes 

compared to single pollutant sources and under steady-state conditions [25].  

This study investigates the removal rates of 21 pharmaceuticals and personal care 

products (PPCPs) using synthesized porous titanium – titanium dioxide substrates under CPI 

conditions using UV-LEDs. PPCPs are emerging contaminants (ECs) that are of major concern in 

source waters and have been investigated in recent years due elevatedconcentrations in  

wastewater treatment plant (WWTP) discharges [4,  31–34].The apparent kinetic rate constants 

from the removal of PPCPs were correlated to the net charge, molecular weight, and solubility. 

The UV-LED pulse profile was controlled by duty cycle at a constant pulse frequency and the 

decomposition of a pharmaceutical cocktail containing twenty-one pharmaceuticals was observed 

over time. The study also investigates the electric energy consumption of the CPI-controlled UV-

LED/TiO2 processes compared to steady-state conditions. 

 

6.2. Materials and Methods 

6.2.1 Reagents and chemicals 

All solvents and chemicals for synthesis methods were purchased from Sigma Aldrich 

at >99% purity. Ultrapure water ((18.2 mΩ∙cm resistivity at 25
o
C) was obtained from a Milli-Q® 

Integral Water Purification System EMD Millipore. The suppliers for all the reagents and 

chemicals for running experiments (parent compounds, metabolites, and deuterated standards) 

sample preparation,  and LC-MS/MS analysis are described in previous work [9]. 

 

6.2.2 PTT substrate synthesis 

The PTT substrate synthesis was similar to prior work [9, 10]. Briefly, the porous 

titanium (PTi) sheets (0.254 mm thickness, Accumet Materials, Ossining, NY, USA) were cut 

into 50 mm diameter substrates and cleaned with ethanol and water. PTi substrates were 

immersed in 50 mL of 30% H2O2 solution in a jar (500 mL) at 80
o
C for 2 h. After the reaction, 

oxidized PTi substrates were washed in water, dried at 80
o
C for 8 h, and calcined at 600

o
C for 2 h.  

The resultant substrates have an oxidized TiO2 surface on porous titanium (PTT). 
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6.2.3 Materials characterization 

The morphology and features of PTi and PTT substrates was characterized using 

scanning electron microscopy (FE-SEM LEO 1550, Carl Zeiss Microscopy). Micro-Raman 

spectroscopy (Renishaw, He-Ne laser:   = 632.8 nm) and X-ray diffraction (XRD, XPERT-PRO) 

was used to determine the crystal structure.   

 

 

6.2.4 CPI UV-LED/TiO2 setup and experimental methods 

6.2.4.1 PPCPs and pharmaceutical metabolites  

Twenty-one PPCPs and metabolites were selected and analyzed for the experiments 

based on previous studies and their prevalence in the environment in Table 6.1 [9, 10, 35, 36]. 

Stock solutions of PPCPs (1 g L
-1

) in methanol were prepared and stored at 20
o
C when not in use 

and the appropriate amount was pipetted into the experiment when need [9]. Methanol was used 

to dissolve all pharmaceuticals at some expense to the degradation performance on photocatalysis 

due to scavenging of holes and hydroxyl radical species as discovered in previous studies [9], 

[10]. The methanol concentration was adjusted to 0.02 % v/v before degradation experiments. 

 

Table 6.1: Physical and chemical properties of target compounds 

Compound Abbr. 

Mol. 

Weight 

(g mol
-1

) 

pKa1, 

pKa2
a
 

pIEP
a
 

Net Charge 

Distribution 

Value at pH=5
a
 

Solubility 

(logS) 

at pH=5
a 

       

Atenolol ATEN 266.34 9.60 11.87 1(POS) 0.43 

Atorvastatin ATOR 558.64 4.33 0.98 -0.83(NEG) -6.28 

o-hydroxy 

atorvastatin 

o-ATOR 573.65 4.33 0.98 -0.83(NEG) -6.68 

p-hydroxy 

atorvastatin 

p-ATOR 573.65 4.33 0.98 -0.83(NEG) -6.68 

Atrazine ATZ 214.68 1.6 8.74 0 (NEUT) 

 

-3.8 

Bisphenol-A BPA 228.29 9.78 N/A 0 (NEUT) 

 

-3.18 

Caffeine CAF 194.19 -1.16 N/A 0 (NEUT) 

 

-0.44 

Carbamazepine CBZ 309.33 13.9 6.10 0 (NEUT) 

 

-3.79 

Carbamazepine-

10,11-epoxide 

e-CBZ 252.27 3.65, 

5.13 

9.39 0.46 (POS) -3.11 

Diclofenac DCF 296.15 4.51 0.96 -0.91(NEG) -3.25 

17-a- EE2 296.41 -1.66, 4.33 0.00 (NEUT) -4.83 
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Ethinylestradiol 10.33  

Fluoxetine FLX 309.33 9.80 11.90 1.00( POS) 0.00 

Norfluoxetine NFLX 295.00 9.80 N/A 1.00 (POS) 0.00 

Gemfibrozil GFZ 250.33 4.42 N/A -0.79 (NEG) -2.63 

Ibuprofen IBU 206.28 4.80 4.90 -0.58 (NEG) 

 

-3.16 

Naproxen NPX 230.60 4.12 N/A -0.87(NEG) 

 

-2.58 

Sulfamethoxazole SULF 253.28 1.6, 5.7 4.06 -0.06(NEG) 

 

-2.17 

Triclosan TCS 289.54 7.60 1.96 0 (NEUT) 

 

-5.27 

Triclocarban TCB 315.58 12.70 3.40 0 (NEUT) 

 

-5.67 

Trimethoprim TRIM 290.32 7.16 12.24 0.99 (POS) -0.64 

Venlafaxine VEN 277.40 9.8 11.66 1.00 (POS) 0.0 

pKa= acid dissociation constant, IEP = isoelectric point, S = solubility (g mol-1) 
a Properties were taken from http://chemicalize.org 

N/A – Not Available 

 

6.2.4.2 UV-LED CPI standardized setup  

The experimental setup consisted of stir plate, collimated UV-LED column, and 

microcontroller setup as seen in Fig. 6.1.  The details of the setup is described in Section 3.3.1.1. 

The microcontroller was programmed  using a Arduino script (see Section C1 in Appendix C ).  

 

Figure 6.1: Experimental photocatalytic batch reactor with pulse width modulation (PWM) 

control unit containing a (a) microcontroller, (b) LED driver, and (c) UV-LED 

The pharmaceutical stock solution was spiked into a beaker containing 300 mL of 

ultrapure water (2 ug L
-1

).  . The methanol concentration of the solution was 5 x 10
-3 

 mM (0.02 % 
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v/v). The PTT substrates were placed on stainless steel holders inside the beakers. The beakers 

were placed in a digital magnetic stir plate (four-position, Talboys), three of which contain a UV-

LED ( = 365 nm) collimating column with a beam size of 4 cm. The UV-LEDs were situated 

10.5 cm from the starting water level of the reactor; the PTT filter (sitting on the holder) was 1.5 

cm under the water level.  

The PTT batch reactor was illuminated under steady and intermittent UV light regimes 

using five duty cycles at a constant pulse frequency of 1 Hz and two frequencies at a constant 

duty cycle of 50% with varying light and dark times (ton and toff) as shown in Table 6.2. The cycle 

is defined as the period of illumination for a complete light and dark cycle and is the sum of the 

time on (ton) and the time off (toff), whereas the duty cycle,  , and pulse frequency,  , are defined 

in Eqn. 3.2 and Eqn. 3.3 in Section 3.3.1.1. The power output of the UV intensity estimated at 

10.5 cm from the UV-LED source is also shown in Table 6.2. The pH conditions (around pH ~ 5) 

were not adjusted. 

 

Table 6.2: Light profiles for dark, continuous, and periodic illumination under various duty 

cycles (   

Duty Cycle 

( ) 

Average UV 

power intensity 

(         ) 

Ton 

(ms) 

Toff 

(ms) 

Period 

(ms) 

Duty cycle experiments at constant frequency  

10% 0.22 100 900  

1000 (1 Hz) 25% 0.54 250 750 

50% 1.08 500 500 

75% 1.63 750 250 

100% 2.18 ------------------Continuous illumination----------------- 

Frequency experiments at constant duty cycle  

50% 1.08 10000 10000 20000 (0.05 Hz) 

50% 1.08 20 20 40 (25 Hz) 

Ton – Time light source is on; Toff – Time light source is off; Period – time of one exposure cycle  

 

6.2.4.3 Sample preparation and analysis 

Sample preparation and analysis was similar to previous work by Arlos et al. [9, 10]. 

Aliquoted samples (4 mL) were spiked with deuterated standard stock solution to a final 

concentration of 20 µg L
-1

. Solid phase extraction (SPE) was not used as in previous publications 
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because an ultrapure water matrix was used and no natural organic matter or other sources that 

could clog the liquid chromatography column were present [9, 10].  Two 4 mL samples of 

ultrapure water were spiked with both 32  L of 100  g L
-1

 regular and deuterated standard 

solution. A negative control consisting of 4 mL of ultrapure water was added to serve as a blank. 

Samples were evaporated completely using a solvent evaporator (Dionex SE 500, Thermo 

Scientific, Mississauga, ON). The dried samples were reconstituted with 160  L of methanol. 

The samples were transferred into 2 mL amber glass vials with plastic inserts, capped, and stored 

at -20
o
C until analysis. 

The analysis of the compounds was completed using Agilent 1200 HPLC (Agilent 

Technologies) coupled to a mass spectrometer (3200 QTRAP, ABSciex, Concord, ON). The 

optimized parameter values, including chromatographic and ionization parameters, data 

acquisition, and quantitation are detailed in Tables C1-C3 in Appendix C.  

 

6.2.4.4 Multiple regression and correlation analysis 

OriginLab (Version 8.0) was used to plot data and perform statistical analyses. Measured 

removal rate constants were fitted using pseudo first-order models. Multiple regression and 

correlation analyses were conducted on experimental sets. A multiple regression model was 

selected based on the relationship between the dependent variable, kinetic rate, and three 

independent variables – net charge at experimental pH, molecular weight, and solubility – 

obtained from an online chemical database (Chemicalize, ChemAxon Ltd.). The best model was 

chosen based on minimizing the residual sum of squares, maximizing R
2
, and testing for the 

significance of the variables. Correlation analysis was performed on the dependent and 

independent variables. Three correlation coefficients (Pearson’s r, Spearman’s  , Kendall’s  ) 

that measure monotonic relationships were used. These correlation coefficients help discern 

whether the relationship is linear or non-linear (e.g. exponential, piecewise linear, and power 

functions). Spearman and Kendall’s coefficients are resistant to the effect of outliers, whereas 

Pearson’s r measures linear correlations, a specific type of monotonic relationship, and is affected 

by outliers [37].  

 

6.3. Results and Discussions 

6.3.1 PTT membrane characterization 

TiO2 was synthesized on porous titanium (PTi) substrates as shown in Fig. 6.2. The 

unprocessed PTi substrate has an average pore size of 10 µm using a thermal sintering process 

(Fig. 6.2a).  The porosity of the substrate was 50% according to the manufacturer. Although the 
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increase in porosity is proportional to the surface area and the number of adsorption sites will 

increase as a result, there is a tradeoff to the mechanical strength of the substrate or adsorbent.  

When  the porosity of absorbents exceeds 50%,  they are more brittle and have lower mechanical 

strength [38]. The thermal-chemical oxidation of PTi occurred under 30% H2O2 and produced an 

oxidized TiO2 surface containing a TiO2 complex. Upon drying, the PTi-TiO2 complex was heat 

treated at 600
o
C to form porous titanium – titanium dioxide (PTT) substrate as seen in difference 

in contrast between Fig. 6.2b and Fig. 6.2a. TiO2 hierarchical nano-structures assembled on the 

surface of Fig. 6.2b were generated through the thermal oxidation process. 

 

 

 

Figure 6.2: SEM images of (a) PTi substrate and (b) PTT substrate at low magnification 

(1) and high magnification (2)  

The material characterization methods and values of the PTT substrate are given in Table 

6.3. The PTT substrates weigh 1.33 ± 0.08 g and have  an average surface roughness determined 

to be 5-10  m [10].  The Raman spectra indicates that the TiO2 surface is of anatase phase for 

PTT substrate and PTi support showed no Raman peaks indicative of TiO2 crystalline phases (Fig. 

6.3a). XRD confirms that there is also rutile and titanium crystalline phases in the PTT sample 
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along with the anatase phase (Fig. 6.3b). The bandgap energy of PTT was estimated to be at 3.0 

eV derived from the Tauc plot in previous work [9], and corresponds to crystalline TiO2. The 

isoelectric point was 6.0 based on previous work [9]. 

 

 

Figure 6.3: (a) Raman and (b) XRD spectra of PTT substrates  

 

Table 6.3: Material Characteristics of PTT substrate 

Material 

Characterization 
Value Method of Determination 

 

Crystal Phase 

 

 

Anatase 

 

 

Raman Spectroscopy 

 

Bandgap Energy 

 

3.0 eV 

 

Diffuse-Reflectance Spectroscopy 

 

Surface Roughness 

 

5-10 um 

 

Optical Scanning 

 

Pore size 

 

~10 um 

 

Scanning Electron Microscopy 

 

Isoelectric Point 

 

6.0 

 

Zeta Potential 

 

Mass of substrate 1.33 +/- 0.08 g Weight Measurements 
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6.3.2 UV-LED/TiO2 process against dark and photolysis controls 

The normalized parent compound concentration was used to determine the total 

cumulative pharmaceutical removal after the 60 min equilibration period, which is defined as: 

 

 
                                         

∑    
 
 

∑    
 
 

  Eqn. 6.1 

   

 

where   is the number of compounds tested, 

     is the concentration ( g L
-1

)  of  the   th 
compound at time  , and 

     is the initial concentration ( g L
-1

) of  the i
th 

compound. 

 

The photocatalytic degradation of the individual or cumulative organic compounds can be 

modelled using Langmuir-Hinshelwood kinetics  [39]. The L-H kinetics was simplified to Eqn. 

3.5 and 3.6 (See Section 3.3.2.4 for details). Individual compound and total parent compound 

kinetic rates were obtained. 

Under continuous illumination, the magnitude of the pharmaceutical removal rate was 2.6 

x 10
-3

 min
-1

 and was lower compared to previous studies due to higher total pharmaceutical 

concentration and substrate compound adsorption selectivity [9, 10]. The surface charge of PTT 

is negative at the experimental pH. The low removal rate is attributed  to  surface charge effects 

of pharmaceuticals that do not easily adsorb on the surface of the PTT substrate, such as 

positively charged compounds (venlafaxine, atenolol, norfluoxetine, fluoxetine, and caffeine) [9]. 

The individual compound kinetic rates are found in Table C4 in Appendix C and confirm that 

cationic compounds were not removed. The cumulative pharmaceutical removal profile (Fig. 6.4) 

depicts the changes in concentration over the 300 minute UV exposure time. The continuous UV 

illumination of the PTT substrate shows a statistically significant removal compared to pure 

photolysis (p<0.001) and dark (p<0.001) conditions in which little to no reductions in 

concentrations were observed.  There was no significant difference between dark and photolysis 

conditions (p=1). 
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Figure 6.4: Cumulative pharmaceutical removal profile under dark and UV illumination 

conditions (with PTT substrate) and under photolysis (without PTT substrate) 

 

6.3.3 Effect of net charge, molecular weight, and solubility on kinetics 

The decomposition rates of pharmaceuticals can be attributed to many physical and 

chemical characteristics of the PPCPs used in the study. The dark and photo- adsorption 

processes inherent in the TiO2/UV advanced oxidation process are dictated by the summation of 

interactions and forces in three interfaces: (1) the adsorbate-adsorbent, (2) the adsorbate and 

water, and (3) the water and adsorbent [38]. These forces cannot be readily measured. They can, 

however, be related to measurable parameters such as pH, net surface charge, solubility, and size 

[38]. Adsorption is also driven by pH as the pH affects both the charge of the PTT substrate 

which has an isoelectric point of 6.0, and the charge of ionizable polar species in PPCP 

compounds.  

 Different multiple regression models in Table 6.4 was used to relate the apparent kinetic 

rate degradation of PPCPs using TiO2/UV under continuous illumination with three variables: net 

charge at the experimental pH, molecular weight, and solubility. The 21 compounds is a mixture 

of PPCPs that are negatively charged (n = 8), neutral (n= 7), and positively charged (n = 6). 

Regression analysis was first conducted on net charge alone (R
2
 = 0.61), followed by the 

sequential addition of molecular weight (R
2
 = 0.82) and solubility (R

2
 = 0.87).  Each added 

variable improved the model based on higher adjusted R
2
 and lower residual sum of squares when 

compared to one or two explanatory variables alone. All of the independent variables inputted 

were significant using t-tests at α = 0.05. The overall model using ANOVA (Table C5 in 

Appendix C) was also significant (p < 0.000). 
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Table 6.4: Multiple regression analysis (forward approach) 

Forwards Model 1 Model 2 Model 3 

Constant 

Slope 0.566 -0.392 -0.328 

Std. Err. 0.010 0.205 0.177 

t 5.666 -1.907 -1.848 

p <0.000 0.073 0.082 

Net Charge 

Slope -0.823 -0.633 -0.855 

Std. Err. 0.146 0.105 0.121 

t -5.633 -6.022 -7.064 

p <0.000 <0.000 <0.000 

Molecular 

Weight 

Slope  0.003 0.0041 

Std. Err. <0.000 <0.000 

t 4.930 6.324 

p <0.000 <0.000 

Solubility 

Slope   0.118 

Std. Err. 0.043 

t 2.742 

p 0.014 

Adjusted R
2
 0.605 0.823 0.870 

Residual Sum of Squares 3.97 1.69 1.17 

 

Correlation analysis was used to measure relationships with the apparent kinetic rate, the 

dependent variable, and the three independent variables: net charge, molecular weight, and 

solubility. The kinetic rate was monotonically correlated with the net charge of pharmaceuticals. 

The experimental pH of this study was set at 5which indicates that the PTT substrate has a net 

positive charge and would attract and preferentially adsorb ionizable PPCP species that have a net 

negative charge. This behaviour was consistent in the removal of anionic compounds and lack of 

removal of cationic compounds as shown in Fig. 6.5a. The monotonic relationship between the 

kinetic rate and charge may not be linearly correlated. Pearson’s coefficient (r = 0.79) is 

sufficient to assume linearity, however Spearman’s coefficient (  = 0.88) is higher than r, 

suggesting that the relationship is non-linear. A power law, also known as Pareto Principle or the 

80/20 rule, may be feasible to model this relationship.  The most negative pharmaceutical 

compounds at the experimental pH tend to degrade the fastest and represent much of the removal 
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during the first 60 min under illumination, whereas less negative, neutral, and positive 

compounds are degraded much slower, or not at all. For instance, the five compounds with the 

highest negative net charge – diclofenac, atorvastatin, o-hydroxy atorvastatin, p-hydroxy 

atorvastatin, and naproxen – represent close to 23 % of the total pharmaceuticals in the water 

matrix tested, but account for 74.0 + 5.0 % of the total compound removal after 60 min of 

illumination. 

 

 

Figure 6.5: Multiple regression analysis of kinetic rate as a function of (a) net charge, 

(b)molecular weight, and (c) solubility at experimental pH (pH=5). Negative (red), neutral (blue), 

and positive (green) compounds at experimental pH were distinguished. Highlighted region (light 

blue) represents region of interest for negative compounds only 

 

There is also a weak, significant correlation between the apparent kinetic rate and 

solubility (p = 0.04), and a weak, non-significant relationship with molecular weight (p = 0.25) 

when all twenty-one compounds are considered in Fig. 6.5b and Fig. 6.5c. The correlation 

coefficients are stronger only when compounds with negative net charge are considered. The 

relationship is monotonic and significant between kinetic rate of negative compounds and 
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molecular weight using Pearson’s coefficient (r = -0.76, p = 0.030) and Spearman’s coefficient (  

= -0.80, p = 0.017). There is an even stronger monotonic relationship between the kinetic rate 

solubility of negatively charged PPCPs using Pearson’s coefficient (r = -0.75, pr = 0.030) and 

Spearman’s coefficient (  = 0.87, p = 0.005). Kendall’s coefficient,  , is usually smaller than 

both r and  , but are above | | = 0.70, suggesting that there are good monotonic relationships 

between apparent kinetic rate and the independent variables, molecular weight and solubility .  

 

6.3.4 The effect of duty cycle on the UV/TiO2 process 

To determine the effect of duty cycle on the apparent kinetic rates, the duty cycles of   = 

0% (Dark), 10%, 25%, 50%, 75%, and 100% (Continuous) at a constant pulse frequency of 1 Hz 

were tested (Fig. 6.6a) and the significance was calculated using ANOVA (Table C6-A in 

Appendix C).  At 0% (Dark), there is little to no cumulative removal (kapp < 1x10
-4

 min
-1

) which is 

significant compared to all duty cycles tested (p<0.024). This indicates that dark adsorption has 

no effect after the initial 60 min equilibrium time.  There is also no significant difference in 

cumulative removal between any two    above 0% at the = 0.05 significance level (See Table C6-

A in Appendix C). However there was a significant difference in the kinetic rate at    = 25% 

compared to   = 100% at the α = 0.1 significance level. Overall, changing the duty cycle from a 

range between 10% to 100% has no bearing on the overall apparent kinetic rate and reveals that 

the photocatalytic reaction of PPCP cocktail on the PTT substrate is much more efficient under 

longer toff periods and that the reaction is not photon-limited. 

 

Figure 6.6: (a) Cumulative kinetic rates of PPCPs at various duty cycles at a pulse 

frequency of 1 Hz and (b) a comparison of normalized kinetic rates. Our work: [TotalPPCP] 

= 42 ppb, PTT substrate, light intensity = 2.2 mW cm
-2

, pH=5, pulse frequency = 1 Hz. 

Xiong and Hu: [Ace]0=200 ppb, [TiO2]=10 ppm, light intensity = 5.0 mW cm
-2

, pH=5.6, 

pulse frequency = 10 Hz. 
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In a study by Xiong and Hu [27] ,CPI-controlled UV/TiO2 was used to decompose 

acetaminophen at relevant treatment concentrations in the parts per billion range. The kinetic rate 

results were adjusted by normalizing with the kinetic rate   = 100% and plotted as a function of 

duty cycle. The results were compared to the results in this work (Fig. 6.6b). Both experiments 

were conducted at a similar pH and light intensity, however, in Xiong and Hu’s experiment, the 

pulse frequency time is an order of magnitude higher and TiO2 slurry was used rather than an 

immobilized TiO2 substrate. Their results showed that the kinetic rate decreases linearly as   

decreases from   = 20% to   = 80%, even though the photonic efficiency increases. In the current 

work, there was no significant difference in kinetic rate at the lowest duty cycle tested (  = 10%) 

and under continuous irradiation (  = 100%). In the case of Xiong and Hu, the decrease in kinetic 

rate when decreasing   was due to less photon generation because the dark time, toff, increases 

and would be considered a rate-limiting step. In our work, mass transfer was the rate-limiting step 

due to three possible factors: (i) the lack of adsorption of positively charged and neutral 

pharmaceuticals, (ii) the relative difficulty in transferring micropollutants to a substrate compared 

to a slurry batch reactor, and (iii) less adsorption sites in TiO2 substrate compared to a TiO2 

particle-based slurry batch reactor [18].   Under a mass-transfer limited regime, the dependency 

of the reaction rate to light intensity is negligible (0
th 

order) because of saturated surface sites, low 

adsorption/desorption rates, and desorption products that may promote recombination [18].   

As in the case of photocatalysis under continuous illumination (  = 100%), only negative 

compounds and select neutral compounds showed removal no matter what   was chosen.   

Lowering the duty cycle from 100% did not affect removal characteristics in that the most 

negatively charged compounds degraded first, select neutral compounds showed low removal 

rates, and positive compounds showed no removal. Fig. 6.7a depicts the negatively charged 

compounds that were capable of being removed at all duty cycles from 10% to 100% above the 

threshold of |kapp| = 0.1x10
-2

 min
-1

. All other compounds did not show removal above the 

threshold, except neutral compounds such as BPA, TCS, TCCB, and EE2 (Fig. 6.7b). There was 

no significant difference in removal rates between   for any individual compound, which matches 

the results obtained from the cumulative pharmaceutical removal rates at α = 0.05 (Table C6B in 

Appendix C). 
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Figure 6.7: Kinetic rate of (a) negative, (b) neutral, and (c) positive compounds at various duty 

cycles 
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6.3.5 The effect of pulse frequency on the UV/TiO2 process 

The effect of pulse frequency was determined under three pulse frequency profiles: (a) 

0.05 Hz, (b) 25 Hz, and (c) alternating between 25 Hz for 500 cycles and 1 cycle at 0.05 Hz (dual 

frequency) at   = 50% (Fig. 6.8).  There was statistically significant removal rates (Table C7A in 

Appendix C) under continuous irradiation compared to 0.05 Hz pulse profile (p = 0.013) and dual 

frequency compared to the 0.05 Hz profile (p =  0.050).  All other comparisons were not 

significant at the   = 0.05 significance level, however there is a significant difference between 

continuous illumination and the 25 Hz profile (p = 0.062) at the   =  0.1 significance level.  

 

Figure 6.8: The (a) Concentration vs. Time Profile and (b) Kinetic Rates of total compound 

degradation at different frequencies (0.05 Hz, 25 Hz, Dual Frequency., and Continuous). Bars 

that do not share a common letter are significantly different at   = 0.05 significance level as 

determined by one-way ANOVA using the Tukey post-hoc test. 

Under the dual frequency profile, the total pharmaceutical parent compound kinetic rate 

was greater than the 25 Hz and 0.05 Hz profiles alone. This suggests that switching between a 

high frequency and low frequency profiles can generate higher kinetic removal rates due to 

interactions between pharmaceuticals and PTT substrate in the water matrix (Fig. 6.9).  There are 

no statistical differences between 25 Hz and 0.05 Hz frequency profiles of individual compounds 

(Table C7B in Appendix C). However under 0.05 Hz, the average kinetic rates of more 

negatively charged compounds were higher than 25 Hz profile but lower with more neutral 

compounds. The dual frequency profile has a synergetic effect that takes advantage of both single 

frequency profiles and has higher average degradation rates than individual 0.05 Hz and 25 Hz 

profiles. One compound, gemfibrozil, had a higher average kinetic rate under the dual frequency 

regime than at 0.05 Hz (p = 0.021,   = 0.05) and at 25 Hz (p = 0.096,   = 0.10).  The difference 
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between continuous and dual frequencies is not significant, even though the kinetic rate is slightly 

higher compared to dual frequency than in the continuous regime kapp=-(5.51 + 0.86) x 10
-3

 min
-1

.  

 

Figure 6.9:  Kinetic rate of (a) negative, (b) neutral, and (c) positive compounds at different 

frequencies (0.05 Hz, 25 Hz, Dual Frequency, and Continuous) 
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6.3.6 Implications and energy analysis of the CPI controlled TiO2/UV process 

The photocatalytic process is initiated by UV light when irradiation energy is greater than 

the TiO2 band gap energy. The generation of electrons and holes is in the order of femtoseconds. 

Slower reaction processes that do not require UV illumination and occur at the nanosecond to 

millisecond range, which are rate-limiting steps for TiO2 photocatalysis [11, 40]. These slower 

reaction processes include charge-carrier trapping, recombination, and interfacial charge transfer 

[11]. The incident photons that initiate charge separation are not efficiently used due to charge 

carrier recombination, which occurs from 0.1 ns (shallow trap states) to 10 ns (deep trap states). 

Recombination is faster than interfacial charge transfer processes so it limits charge transfer 

processes that are necessary for redox reactions [11, 29]. Sczechowski et al. proposed that under 

continuous illumination, photocatalytic reactions will build-up electron-hole (e
-
/h

+
) charges and 

photogenerated species (OH
*
/O2*

-
) that lead to undesirable reactions result in low photonic 

efficiency [20, 41]. The introduction of CPI and alternating the ton and toff UV-LED profiles can 

limit these undesirable reactions. 

Ku et al. modelled the interfacial charge transfer processes under CPI by establishing 

transient and steady-state balances of holes and electrons and generating a profile for the surface 

coverage profile for the adsorbate, dimethyl phthalate (DMP), OH
-
, O2, and O2

*-
 . It was assumed 

that DMP molecules were adsorbed onto TiO2 surface, while electron-hole pair was generated 

during the illumination period. DMP was oxidized into smaller constituents by radical species 

generating from interfacial charge transfer (OH*, O2
*-

, and h
+
) and were then desorbed from the 

TiO2 surface. During the dark period, adsorption and desorption of reacting species and products 

occur as they do under illumination. The model showed that the carrier recombination of photo-

induced electrons and holes is enhanced with decreasing surface coverage of OH
-
 or the DMP due 

to charge build-up when illumination time is increased. The dark period allows O2˙
-
 to react with 

DMP, which may increase the surface coverage due to desorption oxidation of DMP molecules 

[29].  Once the surface coverage is replenished, DMP molecules, OH-, and O2 molecules can be 

adsorbed under illumination. The overall process improves the utilization efficiency of photons.  

Because of increased utilization of photons using CPI, it is expected that energy 

consumption for photocatalytic systems can be improved through periodic illumination. The 

evaluation of the unit treatment costs is one aspect that requires attention. Since the UV/TIO2 

process requires electrical energy and can represent a significant amount of operating cost when it 

is scaled, figures-of-merit based on electrical energy consumption may be informative.  Electrical 

energy per order removal (EEO, Wh m
-3

 order
-1

) for low pollutant concentrations was determined 

for a batch-type reactor [29, 42]: 
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Eqn. 6.2 

 

where Pel is the input power (W) to the UV-LED system,  

 V is the volume of water (L) in the reactor, and 

 kapp is the apparent rate constant (min
-1

). 

 

In Fig. 6.10a, the EEO of the UV-LED source increases linearly with increasing 

illumination time (duty cycle) at a constant irradiation pulse frequency of 1 Hz.  Under the same 

experimental time of 5 h, the electric energy per order was decreased by a factor of ten from 

 =100% to  =10%. The decrease in energy required to remove an order of magnitude of 

pollutants is much lower using CPI at low   for the PTT substrate and may represent significant 

cost savings in energy if implemented in a larger scale for photocatalytic operations. Similarly, 

the implementation of alternating single frequency profiles (dual frequency) also lowers energy 

consumption compared to single frequency profiles alone without changing the duty cycle (Fig. 

6.10b). The dual frequency profile lowers the EE0 by around 35 to 45% compared to continuous 

illumination. 

 

 

Figure 6.10: Energy per order magnitude of UV-LED/TiO2 process under various (a) duty cycles 

and (b) frequencies. 

6.4. Conclusions 

In this chapter, UV-LED/TiO2 experiments were conducted under continuous and CPI 

conditions using PTT substrates. The following conclusions from this work are listed below:  
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(1) PPCP kinetic rates were affected by the water matrix containing 21 pharmaceuticals 

varying in net charge, solubility, and molecular weight. The net charge at the 

experimental pH was the main factor in determining the kinetic rate of a specific PPCP 

compound, in which negatively charge compounds degrade first and positive compounds 

do not degrade during the time span of the experiment. Other factors such as solubility 

and molecular weight also explain the variations in kinetic rate using a multiple 

regression model. 

(2) Programming UV-LEDs to operate under CPI and applying the process in TiO2 

photocatalysis is an effective treatment option when TiO2 is immobilized on a substrate. 

The electrical energy that is required to reduce the concentration per order of 

magnitude,EE0, is lower at lower duty cycles (   <50%) than under continuous 

illumination. These results occur because of mass-transfer limitations as there was no 

significant difference between using  =10% and  =100%. Additionally,  =10% requires 

a tenth of the light source energy required to reduce the PPCP compound mixture by an 

order of magnitude compared to  =100%.  

(3) Alternating frequency profiles lowered the EE0 compared to continuous illumination 

without changing the duty cycle. Under a mass-transfer limited regime, the dependency 

of the reaction rate to light intensity is negligible. This could be mitigated by using TiO2 

particle based suspensions and increasing fluid turbulence, which would increase the 

energy costs of operation, including particle separation steps 

Overall, CPI is a feasible method from an operational standpoint to lower energy costs of light 

sources using immobilized TiO2. Using CPI UV/TiO2 process with complex water matrices, 

containing microorganisms or natural organic matter, may be studied to understand its effects and 

varying treatment outcomes compared to continuous illumination.  
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7.0 Doped TiO2-quartz fiber membranes in a photocatalytic membrane 

reactor 

 

Overview 

Immobilized TiO2 batch reactors suffer from mass transfer limitations as seen in Chapter 

6. A solution to this problem is to increase mass transfer through fluid flow via filtration 

processes. Instead of relying solely on adsorption and photocatalytic oxidation processes; using a 

filtration apparatus reduces the requirement of decomposition. The self-cleaning property of 

immobilized TiO2 can reduce organic fouling and increase the lifespan of the membrane. This 

chapter investigates the use of TiO2 membranes in a photocatalytic membrane reactor (PMR). 

The TiO2 membranes were prepared by means of sol-gel dip coating methods and were 

subsequently tested in a PMR experiment that incorporated two pollutant removal processes: 

dead-end filtration and photocatalytic degradation.. Quartz fiber filters were immediately dip 

coated with undoped and doped TiO2 suspensions producing three types of membranes: undoped, 

nitrogen-doped, and boron-doped TiO2. The synthesized composite filters were analyzed for their 

(i) morphology using scanning electron microscopy (SEM) and (ii) crystal structure using Raman 

spectroscopy and X-ray diffraction (XRD). Chemical composition and chemical bonding of the 

membranes were determined using X-ray photoelectron spectroscopy (XPS). The permeability 

performance of the membranes was analyzed by measuring the flux using deionized water and 

acid orange 7 (AO7). The experiments were conducted in the PMR under dark and ultraviolet 

(UV) illumination. The removal of AO7 was improved when undoped and doped TiO2 filters 

were used in place of a bare quartz fiber filter, except in the case when boron was used at a low 

doping concentration The removal of A07 was due to four processes occurring concurrently: 

adsorption, filtration, photocatalysis, and photowetting. The study demonstrates that optimization 

of doping parameters, such as the type of dopant (N or B) and concentration, on TiO2 filter can 

improve the removal rates of AO7 using solely UVA irradiation without contribution of visible 

light irradiation.  Overall, the experiments demonstrated the potential of PMR using undoped and 

doped TiO2 materials for the removal of organic pollutants.   

 

7.1 Introduction 

Water pollution caused by refractory organic compounds – pharmaceuticals, pesticides, 

and organic dyes – is a prevalent problem. These compounds are difficult to remove using 

conventional water treatment methods, such as adsorption, flocculation, and biological treatments 
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[1, 2]. Membrane filtration and advanced oxidation processes (AOPs) have been shown to 

remove these compounds effectively, but have drawbacks regarding secondary costs associated 

with their implementation. Membrane filtration can be used to remove organic compounds, 

particulates, and microorganisms [3, 4], but these same pollutants can limit the lifetime of the 

membrane via fouling. Fouling limits the operation due to a reduction of filtration performance 

from the accumulation of particles on the surface. Chemical disinfection can be used to mitigate 

fouling, but it requires high dosages to be effective and can be costly [5].  

For several decades, advanced oxidation processes (AOPs) have been used to remove 

refractory organic pollutants through the generation of highly oxidative radical species, including 

hydroxyl ( OH), superoxide (O2 
-
), and perhydroxyl (HOO ) radicals [6]. These radicals oxidize 

organic compounds and may lead to their mineralization into CO2, H2O, or mineral acids 

provided sufficient exposure and reaction time [7, 8]. Semiconductor photocatalysis, a passive 

AOP, uses a photocatalyst, often TiO2, in conjunction with a light source that is capable of 

exciting electrons from the valence band to the conduction band.  The main advantage of 

semiconductor photocatalysis is that a renewable oxidant source is used compared to other AOPs 

which uses a consumable oxidant source, such as hydrogen peroxide (H2O2 ) with UV, or 

ozonation. TiO2 is often used as a photocatalyst due to its chemical and thermal stability, non-

toxicity, and relative cost compared to other photocatalysts. It is often used in  slurry batch setups, 

which offer high organic degradation rates [9–11]. The major drawback of heterogenous 

photocatalysis in slurry reactors is the need for separation of TiO2 particulates from the liquid 

phase to prevent secondary contamination of treated water effluents, which introduces a 

secondary cost for its implementation. Current methods of separation, such as gravity settling and 

centrifugation, are not feasible and cost-effective due to the low density and nano-scale size of 

TiO2 [12]. Immobilized TiO2 nanoparticles on a substrate offer a solution to this limitation and 

have been explored previously [13]–[18]. Some of the types of substrates  that have been used to 

immobilize TiO2 include glass [19], metals [20] , activated carbon [21], polymers [22], inorganic 

membranes [23], alumina [24], and silica paper [25].  

TiO2 thin films can be adhered onto a substrate using reactive Ti precursors, or sol-gels, 

which allow for chemical bonding with various substrates [15, 19, 26]. A catalyst film is formed 

at the induction period of the sol-gel process and the reaction takes place in an alcoholic solution 

containing TiO2 alkoxide (Ti(OR)4) and water as precursors. The chemistry of the process is a 

combination of hydrolysis and condensation reactions [27, 28] which are as follows: 
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 Ti(OR)4 + H2O   Ti(OR)3OH + ROH 

 

Eqn. 7.1 

 (RO)3Ti-OH + OH-Ti(OR)3   (RO)3Ti-O-Ti(OR)3 + H2O 

 

Eqn. 7.2 

 (RO)3Ti-OH + RO-Ti(OR)3   (RO)3Ti-O-Ti(OR)3 +R-OH. 

 

 

Eqn. 7.3 

TiO2 photocatalysis is limited by the maximum wavelength that electron-hole pairs can 

be produced. It can only be used under UV irradiation under   = 385 nm, if no modification is 

made. This restricts the viability of TiO2 under solar light, in which less than 5 % of the power 

output comes from UV light [29, 30]. In order to extend the photoactivity into the visible light 

regime, its bandgap should be modified. These modification of TiO2 includes doping with metals 

[31], non-metals [32–34], or coupling TiO2 with other narrow bandgap semiconductors. Choi et 

al. studied the photoactivity of metal doped TiO2 using 21 different dopants, including ruthenium 

(Ru), molybdenum (Mo), osmium (Os), rhenium (Re), vanadium (V), and rhodium (Rh) [35] . 

Other metal dopants have been investigated as well, such as copper (Cu) [36],  zinc (Zn) [37], 

iron (Fe) [38]. 

Doping with non-metal atoms, such as nitrogen (N) [39], boron (B) [40], and sulfur (S) 

[41], has been shown to increase the photocatalytic removal efficiency of organic compounds 

using TiO2 photocatalysts under visible light irradiation, and also change the morphology of the 

photocatalysts. N-doped TiO2 synthesized using hydrothermal methods have been reported to 

generate high surface area and demonstrate increased photoactivities under visible light radiation 

[42, 43]. Certain nitrogen containing compounds have been demonstrated as good precursors for 

N-doping on TiO2, including urea [44], ammonia [45], and ethyl methylamine [46].    

The present study is focused on combining filtration and photocatalytic processes in a 

dead-end PMR setup using immobilized undoped TiO2, N-TiO2, and B-TiO2 onto quartz fiber 

filters (QFF).   Undoped and doped TiO2 QFF was synthesized by dip coating deposition of sol-

gel TiO2 using an optimized T-mixer setup. Material characterization and hydraulic properties 

were carried out to determine the influence of undoped and doped TiO2 coatings on permeate flux 

using deionized (DI) water and acid orange 7 (AO7). The photowetting process in DI water was 

investigated in the absence of AO7. The filter performance was evaluated using the removal 

efficiency and cumulative removal of A07 using a medium mercury pressure lamp. The study 

highlights the optimization of doping parameters, such as the type of dopant (N or B) and 
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concentration, on TiO2 filter using solely UVA irradiation to assess improvements in removal 

compared to undoped TiO2. 

7.2 Experimental Procedures 

7.2.1 Materials 

Titanium isopropoxide (TTIP, 97%), urea, boric acid, and isopropanol (IPA, HPLC grade) 

were used as synthesis materials and obtained from Sigma-Aldrich. Acid orange 7 (AO7, >85%) 

was also obtained from Sigma-Aldrich and used as a model pollutant for filtration experiments. 

Commercial α-Al2O3 porous ceramic discs (diameter: 50 mm, thickness: 6 mm) with a pore size 

of 1.4 μm were purchased from Coors Tek, Inc. Quartz fiber filters (Type A/G, particle retention 

= 1.0 μm) were obtained from Pall Corporation and were used as substrates for TiO2 sol-gel 

deposition. 

 

7.2.2 Preparation of membranes 

TiO2 quartz fiber filters (TQFF) were prepared using a sol-gel method using a T-mixer 

setup (See Fig. D1 in Appendix D). Undoped TiO2 nanoparticles were synthesized by mixing two 

solutions: (A) MilliQ water/IPA and (B) TTIP/IPA (CTi=0.126 M) at 293 K. Equal volumes of 

reactant solutions (100 mL) at 293 K were pumped  into   a static T-mixer using two peristaltic 

pumps at a flow rate of 0.6 L min
-1

 [29]. The hydrolysis ratio was Cw/CTi = 2.1. Doped 

nanoparticles were prepared using the aforementioned procedure with the addition of different 

amounts of urea (N/Ti = 3, 5, and 7x10
-2

) and boric acid (B/Ti=3, 5, and 7x10
-2

) for N-doped and 

B-doped nanoparticles, respectively. The dopant compounds were added to solution (A) prior to 

injection with solution (B) into the T-mixer. 

The particles were immobilized during their period of relative stability, t<tinduction [47]. 

QFF were washed with sulphuric acid (98%) for one hour and then rinsed with ultrapure water, 

followed by drying at 70
o
C overnight. The supports were submerged for 90 s in the TiO2 

nanoparticle suspension at a withdrawal speed of 2 mm min
-1

 using a dip-coating apparatus (MTI 

Corpoaration, PTL-MMBO1); this process was repeated 6 times for adequate coating thickness 

and subsequently dried at 70 
o
C overnight. After drying, calcination was conducted using a ramp 

rate of 2 
o
C min

-1
 to a final temperature of 450 

o
C. The coated filters were washed in MilliQ water 

to remove any excess non-reacted and loose nanoparticles from the filter.  

For N-TiO2/QFF (NTQFF), the following abbreviations are used to denote samples at 

N/Ti concentration ratios of 3, 5, and 7x10
-2

, respectively: NTQFF3, NTQFF5, and NTQFF7.  

Similarly, for B-TiO2/QF (BTQFF), the following abbreviations were used to denote samples at 

B/Ti concentration ratios of 3, 5, and 7x10
-2

, respectively: BTQFF3, BTQFF5, and BTQFF7.  
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7.2.3 Analytical Procedures 

7.2.3.1 Materials characterization 

SEM, Raman Spectroscopy, and XRD were conducted as described in Section 3.1.1.XPS 

measurements were conducted as in Section 3.1.2. Ti2p, O1s, N1s, and B1s peaks were analyzed and 

their peaks were deconvoluted. 

 

7.2.3.2 Photocatalytic membrane reactor setup and experiments 

The photocatalytic membrane reactor (PMR) test setup is shown in Fig. 7.1. The 

permeate flux, transmembrane pressures and analyte concentration were measured. The setup 

(Fig. 7.1) is comprised of a compressed air line, pressurized feed tank, pressure gauge, UV 

irradiation source, and PMR module.  The designed PMR module was made out of stainless steel 

and contains an inlet and outlet with a quartz window to transmit a light source through the 

enclosure and onto the membrane. Polyethylene tubing (outer diameter of 5/16” and inner 

diameter of 3/16”) was used as connections. Medium pressure mercury lamp (MPM, UVP Blak-

Ray B-100SP, 100W) was used as the UV irradiation source and the beam was collimated using 

an accessory funnel with a height of 10.2 cm (4”). The effective quartz window and membrane 

illumination area was 38.1 cm (1.5”).  A porous support disc was used in conjunction with the 

photocatalytic membrane to add enough resistance for an optimum flow rate for testing. A silicon 

(Si) photodiode (Thorlabs, PM-100USB ) was used to measure the power density at a reference 

point 2 cm from the collimating funnel of the MPM lamp; the power density was adjusted to 12.0 

mW cm
-2

  at  =365 nm at this reference point. 

 



Doped TiO2-quartz fiber membranes in a photocatalytic membrane reactor 

 

109 

 

 

Figure 7.1: (a) Schematic of photocatalytic membrane reactor  (PMR) setup containing (1) 

compressed air line, (2) valve, (3) pressurized feed tank, (4) pressure gauge, (5) UV 

irradiation source, (6) quartz window, (7) membrane, (8)  -Al2O3 porous support, (9) 

permeate outlet; (b) UV light emission from medium-pressure mercury lamp with 

collimating funnel targeting PMR quartz window; and (c) TiO2 membrane on porous 

support in a stainless steel housing 

 

In order to evaluate the membrane permeate properties, the water permeability and flux 

under dark and UV conditions were tested. The performance of various undoped and doped 

membranes were evaluated using AO7 azo dye (See Table D1 for properties of the dye in 

Appendix D). Dead-end filtration was carried out to evaluate the combined photocatalytic and 

separation performance using a test solution of 2 mg L
-1

 AO7 in a 5 L feed tank. Membranes and 

porous alumina supports were immersed in AO7 solution for 1 hour prior to the experiment to 

eliminate the adsorption effects of AO7 dye. During the experiment, the MPM lamp was 
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switched on for 1 hour, followed by 1 hour of filtration in the dark.  The transmembrane pressure 

was fixed at 0.5 bar. After single pass filtration, the treated water was collected in the bottom 

chamber where it could be analyzed. The concentration of AO7 was determined using a UV-Vis 

spectrometer (Shimadzu UV-2501 PC) from a range of 200 nm to 800 nm. The peak height of the 

AO7 molecule at the 485 nm peak was used to determine the concentration from prepared 

calibration curves in the linear range. Adsorption tests were replicated in triplicates. 

 

7.3 Results and Discussions 

7.3.1 Membrane Material Characteristics 

Pure and doped TiO2 were immobilized onto a QFF during the induction period of the 

sol-gel reaction. These TiO2/QF filters were characterized using SEM, XRD, and Raman 

spectroscopy. Uncoated QFF (Fig. 7.2a) consisted of fibers less than 2  m in diameter, with 

lengths ranging from 10 - 100   . The coated QFF consisted of thin layers of TiO2 as seen in Fig. 

7.2. The TiO2 agglomerates are deposited directly on the QF, allowing for a porous network 

structure and high surface area. Pristine TiO2 sol-gel and B-TiO2 appeared homogeneous (Fig. 2b 

and 2d) compared to N-TiO2 in which nanoparticles agglomerated and formed clusters (Fig. 2c). 

These agglomerates were also observed by Kadam et al. [48] when they doped TiO2 nanoparticles 

with nitrogen. 

 

Figure 7.2: SEM images of the following filters: (a) QFF (b) TQFF, (c) NTQFF5, and (d) 

BTQFF5 
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The bandgap energy - the minimum energy for the generation of electron-hole pairs - was 

determined from diffuse reflectance spectra of the membranes. The diffuse reflectance spectra 

was converted into a Tauc plot, [   ( )]     vs.   , where    is the Planck’s constant,   is the 

frequency,   is the reflectance,   is a constant related to the nature of the sample transition, and 

 ( ) is the Kubelk-Munk function, given by: 

 

  ( )  
(   ) 

  
 . Eqn.7.4 

 

The value of   is 2 because TiO2 is an indirect bandgap semiconductor [49], [50]. The 

bandgap was estimated as the intercept between x-axis and the tangent line of the inflection point 

(See Fig. D2 in Appendix D). The optical bandgap of pure TiO2 and B-TiO2 was 3.20 eV; there is 

no significant difference in the bandgap energy of these two materials, which is in agreement 

with the reported results [51].   The bandgap of N-TiO2 was narrowed to  3.15 eV, which is 

consistent with literature [44–46], and there exists a wavelength range that can excite electrons in 

N-TiO2 that are not permissible in undoped TiO2 or B-TiO2.  

The X-ray diffraction patterns of TiO2, B-TiO2, and N-TiO2 produced by the sol-gel 

process and heat treated at 400
o
C are shown in comparison with commercial P25 Aeroxide

TM
 

(Figure 3). The doped and undoped TiO2 diffraction patterns show characteristic anatase peaks of 

(101), (004), (200), (105), (211), (204), (116), (220), and (215) planes. The P25 Aeroxide
TM

 

contains anatase and a minor amount of rutile, represented by the (110), (101), and (111) 

diffraction peaks. N and B doping conducted from a range of 3x10
-2

 to 7x10
-2

  dopant/Ti 

concentration ratio did not affect the crystal phase of the samples, nor produced other crystalline 

diffraction peaks. This is either because dopants are highly dispersed into the TiO2 structure, or 

the XRD is not sensitive enough to detect crystalline peaks containing these dopants [52–55].  
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Figure 7.3: X-ray diffraction patterns of (a) P25 Aeroxide
TM

, (b) TiO2 sol-gel, (c) N-doped TiO2 

and (d) B-doped TiO2 powders. Anatase (A) and rutile (R) phases are labelled 

 

X-ray photoelectron spectroscopy was used to determine the presence of nitrogen or 

boron incorporated into the TiO2 photocatalyst. Table 7.1 lists the binding energies of peaks 

found in Ti2p, O1s, N1s, and B1s regions which were deconvoluted (See Fig. D3 in Appendix D). 

All of the TiO2 samples exhibited Ti2p3/2 and Ti2p1/2  peaks at 459.5 eV and 465.2 eV, respectively, 

which are consistent with values reported in literature [15,30]. The O1s peaks of undoped, N-

doped, and B-doped TiO2 possessed of an asymmetric peak that was deconvoluted into two peaks 

with binding energy values of 530.6 eV and 532 eV. N-doped TiO2 exhibited a 400.62 eV peak in 

the N1s spectra, signifying the presence of interstitial nitrogen, N-O bonds in the photocatalyst 

matrix, or NH4
+
 species [51, 57]. It was found that interstitial nitrogen has no significant shift in 

conduction or valence bands of TiO2, but the anti-bonding     N-O orbital between the TiO2 

valence and conduction bands facilitating visible light absorption which benefits increases 

efficiency at the visible light range and hence the reaction rate for treatment processes using solar 

energy[31] . B-doped TiO2 exhibited a peak at 192.9 eV associated with the B-O-B bonds in B2O3  

[54, 58]. The addition of boron by interstitial B-doping or formation of B2O3 on TiO2 particle 

have unclear effects in photocatalytic activity in the treatment of various compounds [54, 58] . 
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Table 7.1: XPS peaks for undoped, N-doped, and B-doped TiO2 powders 

Sample 

Binding Energy (eV) and Percentage of Integrated XPS region spectra 

Ti2p region O1s region N1s region B1s region 

Ti2p1/2 Ti2p3/2 O1s O1s N1s B1s 

Undoped 

TiO2 

465.19 

(32.03%) 

459.49 

(67.97%) 

530.72 

(85.52%) 

532.2 

(14.48%) 

  

N-doped 

TiO2 

465.16 

(32.74%) 

459.46 

(67.26%) 

530.71 

(86.06%) 

532.1 

(13.94%) 

400.62 

(100%) 

 

B-doped 

TiO2 

465.21 

(31.42%) 

459.55 

(68.58%) 

530.77 

(60.45%) 

531.52 

(39.55%) 

 192.9  

(100%) 

 

7.3.2 Water permeability experiments 

The permeate flux was obtained from the measurements of flow rate at the outlet of the 

PMR module as shown in Fig.7.1a). The permeate flux is defined by Darcy’s law [59]: 

 
   

 

 
 
  
 
   

  

   
 

 

Eqn. 7.5 

where    is the flux density (m s
-1

), 

  is the flow rate (m
3
 s

-1
), 

  is the filtration area (m
2
), 

   is the hydraulic permeability of the membrane (m), 

  is the dynamic viscosity of the solvent used (Pa s), 

   is the transmembrane pressure (Pa), and 

   is the hydraulic resistance of the membrane (m
-2

). 

 

 

The hydraulic permeability (Lp) of the fiber filters depend on intrinsic characteristics of the 

membrane such as size distribution, thickness and hydrophilic nature. The permeability of all 

membranes was obtained from flux vs. transmembrane pressure plots (See Fig. D4 in Appendix 

D). The total membrane resistance can be determined by the sum of the contributions of each 

component in the membrane stack, given by: 

 

            
 

Eqn. 7.6 

where Rp is membrane resistance of  the porous support (m
-1

), 

Rf   is membrane resistance of the quartz fiber filter (m
-1

), and 

Rc is the membrane resistance of the TiO2 coating (m
-1

). 
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The undoped, N-doped, and B-doped TiO2 membrane resistances are shown in Fig. 7.4). 

The addition of TiO2 coating decreases the water permeability and increases resistance. In the 

case of TQFF and NTQFF5, there is a 9% and 29% decrease, respectively in water permeability. 

This phenomenon was also observed elsewhere [24, 27] and is due to increased thickness and 

pore size reduction after TiO2 deposition. Doped TiO2 samples have higher hydraulic resistances 

due to increased deposition of N-doped and B-doped TiO2 onto the surface of the QFF, albeit 

different surface morphologies, as seen in the SEM images (Fig.7.2). 
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Figure 7.4:  Hydraulic resistances of QFF, TQFF, NTQFF, and BTQFF membranes 

 

7.3.3 Photowetting processes of TiO2 filters  

The addition of a TiO2 layer introduces an effect called photowetting, in which the 

surface wettability of a substrate can be changed by light stimuli. Wang et al. observed 

amphiphilic surfaces when conducting contact angle measurements, in which a TiO2 surface 

under dark formed water droplets that varied from 15
o
 to 72

o
, increasing in hydrophobicity as a 

function of time in darkness. Upon UV illumination, the contact angle changed to 0
o
 .The contact 

angle of a TiO2 film under aqueous conditions generally decreases after UV exposure. This  can 

be modelled using an exponential function [60]: 

 

     
        

Eqn. 7.7 

where kUV is the rate constant (min
-1

) and 

t is the time (min) 
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The kUV value from other sources that use TiO2 films was around  0.15 – 0.16  min
-1

 [60, 61]. The 

function was plotted in Fig. 7.5a to visualize contact angle decrease of TiO2 on a relatively flat 

surface. As in the case of water, it has been proven that the same process can be applied to 

organic solvents and is independent of photocatalytic activities [34, 62, 63].  

 The normalized permeate flux of TQFF using DI water was compared to QFF under two 

conditions (Fig. 7.5b): (i) 2 h dark and (ii) 1 h dark with 1 h UV. In the case of 2 h dark condition, 

the flux steadily decreased by around 15% of its initial value for both QFF and TQFF towards 

equilibrium conditions. When UV light was introduced, the flux increased by about 12% initially 

using TQFF, and did not change when using naked QFF. The increased flux under illumination 

and decrease in flux in dark conditions using TQFF demonstrates the photowetting effect in TiO2 

because the increase in hydrophillicity  decreases the membrane resistance and water passes 

through the membrane easily in comparison to more hydrophobic materials resulting in increased 

flux [58, 59]. QFF also did not show a sudden increase in flux after illumination indicating that it 

is not irradiation of UV light alone that contributes to increased flux, but rather a material 

property of TiO2 in TQFF as depicted in Fig. 7.5a. 

 

Figure 7.5: (a) Schematic of photowetting effect on TiO2 surface; and (b) Normalized Permeate 

QFF and TQFF membranes  

 

The flux measurements were further carried out under dark and UV illumination 

conditions as a function of time for NTQFF and BTQFF samples (Fig. 7.6). Filtration was carried 

out in the dark for one hour, followed by UV illumination in the next hour.  Fig. 7.6 depicts the 
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normalized flux of TQFF, NTQFF, and BTQFF. Under UV illumination for 10 min and 60 min, 

there was an increase of 12% and 14% increase in flux for the TQFF compared to its baseline 

under dark conditions (at time point 60 min). This may be due to TiO2 photowetting effect. In the 

case of NTQFF samples (Fig. 7.6a), the flux increased under UV illumination initially (at time 

point 70 min) by 0%, 13%, and 7%, respectively. After 1h of UV illumination, the flux decreased 

by 7% for NTQFF3 and increased by 20% and 7% for NTQFF5 and NTQFF7, respectively. TQFF, 

NTQFF5, and NTQFF7 all demonstrated an increase in DI water flux when using a UVA radiation 

source. In the case of BTQFF samples (Figure 6b), at doping concentration ratios of B/Ti = 3, 5, 

and 7x10
-2

, the flux did not increase under UVA illumination at any point. 

 

Figure 7.6:  Permeate flux of (a) NTQFF and (b) BTQFF using DI water under dark and UV 

illumination period 

 

7.3.4 Removal of AO7 using photocatalytic membrane filtration  

AO7 was chosen as a compound of interest for the filtration through PMR because it is a 

non-biodegradable dye and any direct biological treatments are ineffective in removing this 

organic compound; however it can be removed through oxidation processes using TiO2 in 

conjunction with a UV source or through filtration. In this study, the adsorption, permeate flux, 

and removal efficiency were measured and analyzed for QFF, TQFF, NTQFF, and BTQFF. The 

water purification experiments were performed using photocatalytic filtration treatment of AO7 

solutions with concentration of 2 mg L
-1

 (5.7x10
-6

 mol L
-1

).  

 

7.3.4.1 AO7 Adsorption on filters 

All undoped and doped TQFFs and α-alumina porous supports were immersed in 50 mL 

of the solution of AO7 at 2 mg L
-1

 for one hour under darkness and stirring in order to reach the 
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adsorption equilibrium. The following equation was used to calculate the percentage of the initial 

concentration of dye adsorbed on the membrane: 

 

 
             

(      )

  
  

Eqn. 

7.8 

where Co is the AO7 concentration at the initial state (mg L
-1

)  and 

Ceq is the AO7 concentration at the equilibrium state (mg L
-1

). 

 

The AO7 adsorption of the membranes was quantified and shown in Fig. 7.7. Using 

nitrogen as a dopant, the adsorption of AO7 was higher than with undoped TiO2. This may be due 

to the film morphology in which N-TiO2 sol-gel nanoparticles deposited a greater number of TiO2 

agglomerates on the NTQFF than TQFF, increasing the surface area and thus the total adsorption 

of AO7. Increased B-doping of BTQFF reduced the adsorption because of its “smooth” film 

morphology (Figure 2d), in comparison to the high surface agglomeration of TiO2 particulates on 

NTQFF (Figure 2c), which results in a lower surface area for adsorption. 
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Figure 7.7: Percentage of initial concentration of dye adsorbed on the surface of the porous 

support, bare quartz fiber filter (QFF), and doped and undoped TiO2/QFF. Error bars represent 

the standard deviation. 

 

7.3.4.2 Permeate flux using AO7 under UV and dark conditions 

After equilibrium was achieved, filtration of dye solution was carried out using the PMR 

setup (Fig. 7.1). A solution of AO7 (2 mg L
-1

) was fed into the PMR module for 2 hours, 1 h 



Chapter 7 

118 

 

under UV followed by 1 h in the dark, and the permeate flux was measured in Fig. 7.8. The flux 

through the filters in AO7 solution was lower than DI water, which is attributed to dye molecules 

accumulating on the membrane surface forming a cake layer and increasing the membrane 

resistance [23].  

The permeate flux of the uncoated membranes decreased continuously to 32% of its 

initial value through 2 hours of the experiment and UV irradiation had no effect on the permeate 

flux. The permeate flux decreased less using TQFF and NTQFF than QFF under UV irradiation. 

The minimal decrease in flux for TQFF and NTQFF samples compared to QFF is due to an 

increase in wettability as mentioned and antifouling properties of TiO2 caused by photocatalytic 

degradation on the membrane surface [14, 23, 26]. The contribution of photocatalysis and 

photowetting processes is not easily understood as they both occur under light processes and 

quantifying the contribution of each is not in the scope of this study.  

 

Figure 7.8: Permeate flux of (a) NTQFF and (b) BTQFF membranes using AO7 (2 mg L
-1

) in 

water under UV and dark conditions 

 

The flux of all membranes decreased slightly after switching to dark conditions after 1 h 

of UV irradiation. The contact angle does not change rapidly after UV irradiation is removed so 

the hydrophilicity and flux would not significantly changed over 1 h in the dark [66]. This 

phenomenon was shown by Lee et al. in which they found that when switching from the 

hydrophobic to hydrophilic state (turning  the UV source on) the contact angle change occurs in 

the order of minutes; whereas switching from the hydrophilic state to the hydrophobic state 

(turning  the UV source off), occurs in the order of days [66]. In the case of BTQFF, there were 

no significant changes in normalized permeate flux compared to QFF. 

 



Doped TiO2-quartz fiber membranes in a photocatalytic membrane reactor 

 

119 

 

 

7.3.4.3 Removal of AO7 under UV and dark conditions  

The percentage (Fig. 7.9a and b) and cumulative (Fig. 7.9c and d) removal of AO7 were 

conducted under 1 hour irradiation, followed by 1 hour dark condition using undoped and doped 

filters. The percentage removal and cumulative removal are defined as: 

 

Percentage Removal = 
     

  
     ( )  

 

Eqn. 7.9 

  Cumulative Removal = 
∑ (     )    

   
 (mol m

-2
)  

 

Eqn. 7.10 

where Co is the initial concentration (mol L
-1

),  

Ct is the concentration at time t (mol L
-1

), 

Vt is the total volume filtered (L), 

M is the molar mass (g mol
-1

), and 

A is the filtration area (m
2
). 

 

 

The percentage removal does not take into account the hydraulic resistance of the membranes, 

and only gives the permeate concentration at specific time with respect to the inlet concentration. 

However, the cumulative removal considers the permeate flux, or the volume the membrane has 

filtered, and area of the membrane. 

The percentage removal of NTQFF3 and NTQFF7 was compared to TQFF and QFF. The 

results indicated that the removal of AO7 using NTQFF was higher than QFF and was dependent 

on the concentration of the dopant. After 1 h of UV irradiation, NTQFF5 and NTQFF7 removed 

10% and 55%, respectively, more on a percentage basis than TQFF. However NTQFF3 removed 

45% less than the TQFF. Under dark conditions, the removal percentage lowers as a function of 

time, whereas TQFF stays constant over 1 h. This is caused by the greater photocatalytic activity 

in NTQFF than TQFF. There is also an increased hydraulic resistance in doped TiO2 filters (Fig. 

7.8).  This observation suggests that because of the lowered flux, the volume filtered and the 

cumulative removal are generally lower compared to undoped TiO2 filters. The NTQFF7 had a 

greater cumulative removal under UV conditions than TQFF, but the removal rate over time 

decreased under dark conditions. The decrease in removal rate was also apparent for NTQFF3 and 

NTQFF5 when switching from UV conditions to dark conditions. The change in rate may be due 

to the wetting properties in which the contact angle decreases exponentially as in Eqn. 7.7.  
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Figure 7.9: Percentage (a, b) and cumulative removal (c, d) of AO7 in (a, c) NTQFF and (b, d) 

BTQFF samples 

BTQFF3, and BTQFF7 had a 70% and 45% lower A07 percent removal compared to 

TQFF, respectively. However, BTQFF5 demonstrated a 20% increase in percent removal 

compared to TQFF. There was no difference in dye removal when comparing under UV 

irradiation and dark conditions as revealed by the water flux measurements in Fig. 7.8b, in which 

no apparent changes in flux were observed. Boron was shown to be a poor dopant for TiO2 

photocatalysis compared to undoped TiO2 sources under UVA radiation sources [65, 66]. 

Additionally, the cumulative removal of A07 using BTQFF3 and BTQFF7 was lower than that of 

TQFF. The lower cumulative removal was due to higher hydraulic resistance as in the NTQFF 

samples except for BTQFF7, which demonstrated higher cumulative removal than other B-doped 

filters.  

 The NTQFF membranes may be further improved using solar sources as the medium 

pressure mercury lamp has a peak wavelength of 365 nm and this does not extend to the visible 

light region.   The application of solar light in the form of natural sunlight or xenon illumination 

may be used to improve N-TiO2, however, this is out of scope for this study. Doping with 
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nitrogen has been shown in literature to improve the photoactivity under visible light conditions 

(400-500 nm)  

 

7.4 Conclusions 

Photocatalytic quartz fiber filters were synthesized using sol-gel processes.  The pore size 

and TiO2 deposits were controlled by the sol properties, immersion time, and thermal treatment 

temperature and duration. TiO2 coatings on quartz filters were determined to be anatase for both 

undoped and doped TiO2 filters via XRD and Raman analysis. The following conclusions were 

made: 

(1) Coupling adsorption, photowetting, photocatalysis, and membrane filtration into a PMR 

by adding TiO2 sol-gel coating on QFF increased the flux and improved the removal rate 

of dissolved organic matter compared to uncoated QFF 

(2) It was discovered that the flux did not drop immediately after UVA radiation was 

removed during the AO7 filtration process due to the photowetting effect. NTQFF and 

TQFF demonstrated increased permeate flux using DI water and AO7 under dark and UV 

illumination; whereas the flux in BTQFF and QFF did not improve after UV irradiation 

was introduced. 

(3) Higher doping concentrations generally produced higher membrane removal than the 

lowest dopant concentration used. For example, the percentage and cumulative removal 

of AO7 was favourable using NTQFF7 and BTQFF5 compared to TQFF. 

(4) The percentage removal of AO7 exposed to 1 h UV irradiation followed by dark 

conditions was greater in UV conditions than in dark conditions for NTQFF samples, but 

not for TQFF and BTQFF. 

Additional studies on the effect of sunlight or a visible light source is useful in further 

determining the efficacy of doped-membranes in PMR. 
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8.0 Concurrent Photocatalytic Degradation of Organic Contaminants 

and Photocathodic Protection of Steel  

 

Overview 

The treatment of water is only one aspect of maintaining water quality. The maintenance 

of infrastructure is another necessity. Corrosion is of concern in water treatment plants and 

distribution systems, which require expensive steel infrastructure. Corrosion products from the 

oxidation of steel causes water quality problems, including health risks, discoloration, and taste-

and-odour issues [1–5].  

In Chapter 4, the application of UV illumination of an n-type TiO2 decreases the open 

circuit potential. When a metal coated with an n-type semiconductor (i.e. TiO2) is in contact with 

its aqueous environment, electrons will be transferred across the semiconductor-solution interface 

until the chemical potentials of electrons in the solid and solution is in equilibrium. A Schottky 

barrier is formed analogous to the synthesized Ag-TNB in Chapter 5.  Upon illumination, the 

electrode potential of the metal could be made sufficiently negative by injecting photo-electrons 

from the photoanode and preventing anodic reactions from occurring.  

In this chapter, coupled TiO2-composite and steel electrode pairs were investigated for 

their use in cathodic protection under illuminated and dark conditions. A series of 

photoelectrochemical tests were used to determine the properties of the photoanode and identify 

the cathodic protection behaviour in the presence and absence of organic/inorganic contaminants. 

Additionally, corrosion-prone steel (martensitic 22MNB5) was used to test the principle of 

photocathodic protection in reducing oxide formation and mass loss under base metal and welded 

materials. 

 

8.1 Introduction 

Stainless steel is an important material in industrial applications due to its mechanical 

properties and corrosion resistance. It is widely used in materials of construction because of the 

protective passive film layer that forms spontaneously on the surface. However passive film 

breakdown and localized corrosion in chloride-containing aqueous environments is a concern. 

Various surface treatments and coatings have been used to improve the corrosion resistance of 

stainless steels and other metals by providing a physical barrier between the environment and the 

metal surface [1–4]. However, these coatings can be easily scratched, so cathodic protection 

systems are often used. 



Concurrent Photocatalytic Degradation of Organic Contaminants and Photocathodic Protection  

 

123 

 

Cathodic protection is used to supply metal to be protected with electrons to shift its 

potential to a region where it is immune based on the Pourbaix diagram of the metal. The source 

of electrons could be supplied via sacrificial anode or impressed current using an external power 

supply (see Section 2.6.3). Sacrificial anodes, such as Mg and Zn, can be used to protect metals 

by having a greater negative reduction potential compared to the metal being protected. The 

sacrificial anode, however,  is consumed and needs to be replaced periodically [5]. 

The photocathodic protection method is a solution to replace sacrificial anodes with a 

semiconductor photoanode that generates photo-electrons under illumination. TiO2 photoanodes 

that are connected to metals can drastically shift to negative potentials under illumination and 

such approach is effective to protect the cathode [6–8]. However, a plain TiO2 coating usually 

suffers from charge recombination problems and is non-active under visible light illumination 

and in the dark. 

The photoresponse of TiO2 can be vastly improved. Many efforts have been made to 

enhance the performance of TiO2 under UV and visible light illumination. It has been shown that 

metal nanoparticles (NPs), such as gold (Au), silver (Ag), platinum (Pt), and palladium (Pd), can 

be embedded in TiO2 and  enhance the photocatalytic activity of TiO2 in visible light [9–12].  Ag 

NPs is often used as it is cheaper than noble metal elements [13]. However, Ag is chemically 

reactive and will form an oxide layer [14, 15], but it can be coated with a thin, transparent passive 

layer material (i.e. SiO2) to prevent oxidation under dark conditions.   

In this work, silver core – silica and titania shell (Ag@SiO2-TiO2, AST) NP were mixed 

into a commercial TiO2 powder and deposited on fluoride tin oxide (FTO) conductive glass 

substrates via electrophoretic deposition and  served as photoanodes. The morphology and 

elemental map of the composite thin films were characterized and the effects of AST on the 

photoelectrochemical (PEC) properties were examined. Photocathodic protection of SS304 was 

conducted in (i) inorganic and (ii) organic (glucose) hole scavenger solution under solar 

illumination. Additionally, corrosion sensitive steel (22MNB5) was used to inspect corrosion 

product formation at a short timescale through mass loss analysis and oxide peak identification.     

 

8.2 Methods 

8.2.1 Materials 

Fluoride tin oxide coated glass (FTO, surface resistivity, 15 ohm cm
-2

), iodine, and acetylacetone 

was purchased for Sigma-Aldrich. Ti metal sheet (grade 2) and stainless steel (SS304) were 

purchased from McMaster Carr. 22MNB5 sheets were obtained from Dofasco.  

 



Chapter 7 

124 

 

8.2.2 Sample preparation 

8.2.2.1 Preparation of photoanodes  

1 % Ag@SiO2-TiO2/P25 composites (AST-P25) were made by mixing 990 mg of P25 

and 10 mg of synthesized Ag@SiO2-TiO2 NP (see Section E1 in Appendix E for synthesis 

protocol) in a 20 mL scintillation vial.  10 mL of ethanol was pipetted into the vial and the 

mixture was sonicated for 30 min.  The AST-P25 solution was then placed in a beaker containing 

an electrophoretic solution mixture (140 mL ethanol, 100 mL methanol, 4 mL acetylacetone, 2 

mL water, and 27 mg iodine).  

An electrophoretic setup (similar to the one used in Chapter 4) was used to deposit the 

charged particles in the electrophoretic solution mixture.  FTO glass was used as the cathode and 

Ti metal sheet (grade 2) was used as the anode. A DC power supply was used to supply a 

constant voltage of 30 V for 20 s. An average of 4.0 mg   0.2 mg of the AST-P25 was deposited 

onto the FTO substrates. The FTO substrates were heat treated at 450 
o
C to improve adhesion of 

the particles and remove organic impurities.   

 

8.2.2.2 Preparation of SS304 working electrodes 

SS304 sheet metal was cut into 9 x 9 mm squares using a hydraulic shear. The samples 

were progressively ground with 600, 800, and 1200 fine grit silicon carbide paper then polished 

for a mirror-like finish on a polishing pad using 1  m diamond spray under 250 rpm rotation. 

Cleaned SS304 samples were placed in a working electrode cell when required for PEC studies. 

 

8.2.2.3 Preparation of base and welded 22MNB5 working electrodes 

A 200 x 100 mm coupon of galvanneal coated 22MNB5 (See  Table E1 in Appendix E 

for steel chemistry) was heated in a baffle furnace at 900 ºC for 6 minutes then transferred to a 

press containing flat dies for press hardening. The cooling rate of the coupon during press 

hardening was in excess of 30 
o
C s

-1
 in order to achieve a fully martensitic microstructure.  The 

samples were progressively ground to 600 grit size using silicon carbide paper.  Laser welding 

was performed using a fiber laser (IPG Photonics: YLS-6000) mounted on a 6-axis welding 

robot. The press hardened coupon was clamped in a welding fixture to prevent movement during 

the welding process. A single linear laser weld was performed at a laser power and welding speed 

of 4 kW and 12 m min
-1

, respectively. Welded specimens of 9 x 9 mm with the weld bead in the 

center were sheared from the coupon.  The weld bead is approximately 1 mm in diameter. The 

MM2NB5 samples were placed in a working electrode cell when required for PEC studies and 

stored in a vacuum desiccator. 
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8.2.3 Material characterization 

SEM, HRTEM, and XRD were conducted as described in Section 3.1.1. For HRTEM, 

EDS maps were collected for AST NPs and the Ag, Si, and Ti locations were superimposed on 

one image. 

 

8.2.4 Photoelectrochemical and corrosion testing 

Two PEC setups were used for the (i) PEC properties of photoanodes and (ii) corrosion 

performance of SS304 using photoanode assisted cathodic protection. For both setups, a xenon 

solar simulator (Newport, Research Solar Simulator) and a Gamry Potentiostat (Series 300) were 

used. All potentials were reported with respect to the saturated calomel electrode (VSCE). This 

setup was chosen to separate physical barrier effects in TiO2 coated metals and the photocathodic 

effect when determining corrosion performance. The coupled components form an 

electrochemical circuit using conductive solutions. 

The PEC tests for only photoanodes are described in Section 3.2.  The corrosion 

performance of SS304 using photoanodes was determined using a galvanic cell consisting of a 

photoanode cell (PAC) and a corrosion cell (CC), as seen in Fig. 8.1. The AST-P25 in the PAC is 

connected with the stainless steel (SS304) in the CC. A salt bridge containing 1 M KCl is 

connected between the cells. The CC consists of SS304 working electrode, Pt counter electrode, 

and SCE as reference in 0.5 M NaCl.  The PAC consists of FTO glass with TiO2 in 0.2 M KOH + 

hole scavenger solution.   Nitrogen gas bubbling was used in the corrosion cell. 

The PEC setup was used to evaluate the open circuit potential (OCP) and cyclic 

potentiodynamic polarization tests. The OCP test was carried out under open circuit (no current) 

mode for 10 h under intermittent light and continuous illumination. Cyclic potentiodynamic 

polarization tests were conducted from -0.8 VSCE to 0.8 VSCE with a maximum current density of 

20 mA cm
-2

, in which polarization will reverse above this value.  The test was performed at a 

scan rate of 0.167 mV s
-1

. 
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Figure 8.1: Schematic diagram of an electrochemical cell containing two compartments: (i) 

photoanode cell and (ii) corrosion cell. The photoanode cell, electrolytic bridge, and corrosion 

cell contain 0.2 M KOH + hole scavenger (D), 1 M KCl, and 0.5 M NaCl, respectively. 

 

The OCP testing of 22MNB5 samples was similar to SS304 except that the CC was in 5 

wt % NaCl (0.86 M) in order to accelerate corrosion, whereas as the photoanode cell contained 

0.1 M Na2S. The test was maintained for 48 h. After the experiment, the solution was sonicated to 

remove loosely bound oxides on the surface of the sample formed during corrosion and the 

electrolyte solution was kept in 50 mL conical tubes. The samples were centrifuged and washed 

three times to remove salts at 3500 rpm. The conical tubes containing corrosion products were 

dried under furnace at 100 
o
C overnight and weighed. Subsequently, the corrosion products were 

removed through washing and sonication step under 0.1 M HCl M. The sample was then rinsed 

with ultrapure water, dried under furnace overnight, and weighed. The difference between the 

masses with and without the corrosion products was used to calculate the mass loss.  

 

8.3 Results and Discussions 

8.3.1 Materials analysis 

TEM images of as synthesized Ag@SiO2-TiO2 (AST) compounds and an SEM image of 

AST-P25 composite are shown in Fig. 8.2 and Fig. 8.3a, respectively. The Ag NPs developed 

using the polyol methods are on average 64.6 + 12.3 nm (Fig. E1). There is a thin layer of SiO2 

and TiO2 around 10 - 15 nm Fig. 7.2b. The existence of Si (red) and Ti (green) elements in the 

superimposed STEM-EDX images (Fig. 7.2d) shows that there is evidence of a SiO2-TiO2 shell 

layer even though XRD was not sensitive enough to detect the shell layer containing SiO2-TiO2 

(Fig. 8.3b).  The AST compound was mixed in P25 via sonication in ethanol solution. The 
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resulting SEM image is shown in Fig. 8.3a where the P25 and AST NPs are clustered together 

after mixing. 

 

 

Figure 8.2:  Images of as-synthesized AST  nanoparticles in (a) conventional TEM, (b) HRTEM, 

(c) STEM, and (d) superimposed STEM-EDX (blue – Ag, red – Si, green – Ti). Reproduced with 

permission from [16]. 

    

 

Figure 8.3: (a) SEM image and (B) XRD spectra of AST-P25 composite. Reproduced with 

permission from [16]. 
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8.3.2 SS304 cyclic potentiodynamic polarization  

SS304 was tested under cyclic polarization in 0.5 M NaCl solution with N2 as seen in 

Fig. 8.4. The breakdown potential, Eb, is when pitting and crevices can propagate [16–18]. The Eb 

for the SS304 sample is around 0.4 VSCE and there is an increase in current density as the 

potential is increased to more positive values. Anodic reactions (corrosion) occur at high current 

densities. The anodization polarization scan was reversed once the current reached 20 mA cm
-2

.  

Under the reverse scan, the repassivation potential, Eprot, the potential in which the current  

intersects the forward scan, was reached at 0.1 VSCE,.  
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Figure 8.4: The cyclic potentiodynamic polarization test for SS304 in 0.5 M NaCl solution. 

Reproduced with permission from [16]. 

 

8.3.3 Photoelectrochemical properties of AST-P25 electrodes 

8.3.3.1 Photocurrent densities under unfiltered and filtered lamp illumination  

In Fig.8.5, the photocurrent density under unfiltered and filtered (< 400 nm cutoff) 

intermittent illumination was measured on P25 and AST-P25 electrodes. The photocurrent 

density of P25 and AST-P25 is 41  m cm
-2 

and 84  m cm
-2

, respectively. Under filtered light 

(visible light), the photocurrent density of AST-P25 is 28 times the photocurrent density of P25. 

The use of Ag in TiO2 improves the photocatalytic efficiency of TiO2 under visible light due to 

the surface plasmons in Ag NPs [19–21]. The surface plasmonic peak of Ag NPs is around 420 

nm for synthesized NPs (Fig. E1) so the absorption peak coincides with the bandgap of TiO2 

allowing for visible light to generate photocurrent. 
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Figure 8.5:  Photocurrent density tests using P25 and AST-P25 electrodes under (a) xenon lamp 

illumination and (b) filtered (400 nm cutoff filter) xenon lamp illumination in 1 M KOH solution. 

Reproduced with permission from [16]. 

 

8.3.3.2 Photocurrent densities as a function of glucose concentration 

Glucose is used as a hole scavenger to reduce the recombination as seen in Chapter 4 

[22–24]. Glucose will adsorb onto the surface of TiO2 and will decompose via hole or hydroxyl 

attack at the interface under illumination (Fig. E2).  The photocurrent densities as a function of 

the glucose concentration was plotted and the curve corresponds to Langmuir kinetic models 

(Fig. 8.6).  At lower concentrations, the process was limited by mass transfer. At higher 

concentrations, the photocurrent densities level off and the reaction rate was limited to interfacial 

reactions. The maximum photocurrent density was 620  A cm
-2

 (50 mM glucose),  7.2 times the 

photocurrent density of 1 M KOH solution due to oxidation reactions occurring.   
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Figure 8.6: (a) Photocurrent density of AST-P25 electrodes in 1 M KOH electrolyte + glucose 

under intermittent illumination; (b) Photocurrent density as a function of glucose concentration in 

solution. Reproduced with permission from [16] . 
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8.3.4 Photocathodic protection of SS304 using AST-P25 photoanodes  

The cathodic and anodic reaction processes will tend to equilibrium conditions. If 

electrons are withdrawn from metal, the rate of the anodic reaction will increase to compensate 

and iron dissolution will increase, while the cathodic reaction will decrease. If electrons are 

supplied from an external source, such as a semiconductor photoanode under UV illumination 

(Fig. 8.7a), the anodic reactions will decrease to reduce corrosion and cathodic reaction will 

increase. This is known as cathodic protection and is depicted in the anodic and cathodic curves 

of the Evan’s diagram (Fig 8.7b). The corrosion current, Icorr, and the corrosion potential, Ecorr, 

occur at the point of intersection of the anodic and cathodic curves (equilibrium). If electrons are 

injected into the metal, anodic (oxidation) of iron is decreased to a potential Ecorr
’
 and the rate of 

the anodic current decreases to Icorr
’
 due to increase in the cathodic current. 

 

 

 

 

Figure 8.7: Schematic of (a) coupled photoanode and steel cathode and (b) Evan’s diagram and 

application of current via photocathodic protection. 

 

 

Electroimpedance spectroscopy (Fig. E3) and potentiodynamic polarization (Fig. E4)  

was conducted with and without coupling with TiO2 photoanodes in 5 wt % NaCl solution 

corrosion cell and and 0.2 M KOH PEC cell under UV illumination. The corrosion potential of 

SS304 base metal (-0.258 VSCE) was shifted to more negative potentials when SS304 was coupled 

with TiO2 photoanode in the dark (-0.510 VSCE) and under illumination (-0.970 VSCE). The 

corrosion current (Icorr) increases when coupled under illumination, which may be attributed to 

enhanced of electrochemical reaction at the interface arising from photogenerated electrons 
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injected into the SS304 metal. The increased electrochemical reaction was measured using 

electrochemical impedance spectroscopy to investigate the surface and interface state of SS304 

with and without coupling with TiO2 photoanodes. It was observed in Nyquist plots that the 

diameter of the impedance arcs of SS304 coupled with TiO2 was much smaller than that of SS304 

base metal with and without UV illumination due to the increase in photoelectrons at the interface 

of SS304. 

 

8.3.4.1 The effect of hole scavengers  

Hole scavengers are useful in inhibiting recombination of photogenerated electron-hole 

pairs. Water can be considered a hole scavenger, however they perform poorly in terms of 

limiting electron-hole recombination compared to other inorganic and organic sources [25]. An 

organic hole scavenger, glucose, and an inorganic hole scavenger, sodium sulfide (Na2S), was 

used to test the OCP of SS304 connected to an AST-P25 photoanode.  

 

Inorganic Hole Scavenger 

Fig. 8.8 shows the OCP vs. time of SS304 in a 0.5 M NaCl solution that is dearated with 

N2 bubbling. The potential of  SS304 shifts to more negative values over time and finally stays at 

a fairly steady-state value of about -0.19 V. Coupling the SS304 with the AST-P25 photoanode, 

immersed in a cell containing 0.2 M KOH and an inorganic hole scavenger (0.1 M Na2S), the 

steel is protected from corrosion via the injection of photo-electrons. Under intermittent light, the 

steel is at a potential of -0.69 VSCE in the dark; when light is applied, there is an overvoltage,  , of  

-0.21 V that  decreases the potential to -0.90 VSCE.. At both these potentials, the SS304 is 

protected from anodic corrosion reactions. 

The inorganic hole scavenger, disodium sulfide (Na2S) is dissociated into Na
+ 

and S
2-

 

ions in aqueous solution. At the photoanode-electrolyte interface the following reaction occurs 

[26]: 

 

 S
2-

 + 2h
+   

S. 

 

Eq. 8.1 

The S
2-

 ions in this reaction are sacrificial donors so the photocatalytic efficiency will decay over 

time. Ideally, in order to obtain a regenerative redox couple, a second element is needed to couple 

S
2-

, and in most studies, sulfur is often added to form a polysulfide (S
2-

/Sx
2-

) redox couple [26]. 

This regenerative couple allows the photocatalysis process to undergo optimally for long periods.  
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Figure 8.8: The OCP as a function of time of (a) uncoupled SS304 electrode in a 0.5 M NaCl 

electrolyte (corrosion cell) and (b) SS304 electrode coupled with a AST-P25 electrode in 0.5 M 

NaCl (corrosion cell) /1 M KCl (electrolyte bridge)/ 0.2  M KOH + 0.1 M Na2S (photoanode 

cell). 

 

Organic Hole Scavenger 

Organic hole scavengers – alcohols, formate, acetate, citrate, and oxalate –  have been 

previously compared to determine their efficacy [25]. Organic compounds, such as glucose will 

oxidize into intermediate compounds under the TiO2/UV AOP process (see Section E2 and Fig. 

E2 in Appendix E). The effect of glucose on the photocathode protection of SS304 is 

demonstrated in Fig. 8.9a. The OCP shifts to more negative values and the magnitude of the shift 

is greater with the addition of glucose. Under intermittent light conditions and the addition of 

glucose, the SS304 is initially at an OCP of -0.25 VSCE in the dark; when light is applied, there is 

an   of -0.68 V that decreases the coupled potential to -0.98 VSCE.  When light is removed, the 

potential of the coupled electrodes increases to -0.51 VSCE; this suggests that SS304 is still 

partially protected from anodic reactions. The potential under dark conditions eventually decays 

to equilibrium conditions as the dark period is increased.  After several intermittent light cycles, 

the   decreases in each cycle (1 h each under the dark and under illumination) demonstrating in 

Fig. 8.9b. 
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Figure 8.9: SS304 electrode coupled with an AST-P25 photoanode under intermittent light 

conditions using an electrolyte couple containing 0.5 M NaCl (corrosion cell) /1 M KCl 

(electrolyte bridge)/ 0.2 M KOH + 25 mM glucose (photoanode cell). 

 

 During the photocathodic process, the glucose will scavenge holes generated by the 

illuminated photoanode and oxidize over time (Fig. 8.10). Over 40 % and 75 % of glucose is 

oxidized into its constituents under dark and solar irradiation, respectively. The oxidation of 

glucose under illumination matches well with the   decay after each intermittent cycle in Fig. 

8.9b, indicating the   is partially dependent on the glucose concentration in solution. In other 

words, photocathodic protection and organic degradation occur concurrently and the organic hole 

scavenger source must be replenished to maintain higher   than the base solution. 

 

 
Figure 8.10: Glucose concentration as a function of time using coupled AST-P25 photoanode 

and SS304 under illumination and dark conditionscontaing 0.5 M NaCl (corrosion cell)/ 1M KCl 

(electrolyte bridge)/ 0.2 M KOH + 25 mM glucose. 
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8.3.5 Reduction of mass loss using corrosion-prone martensitic steel 

Mass loss analysis was done on 22MNB5 base metal samples in 5 % NaCl for 48 h with 

and without photocathodic protection (Fig. 8.11a). 22MNB5 steel was used instead of SS304 in 

order to increase the corrosion rate for quick mass loss analysis in which detectable mass loss 

occurs is several orders of magnitude lower. The mass loss of 22MNB5 base metal over 48 h was 

0.03 % when no cathodic protection was used. Under cathodic protection, the mass loss was 

negligible. When the metal is uncoupled from the photoanode, the OCP fluctuates from -0.71 to -

0.72 VSCE, which has a higher magnitude OCP than SS304 indicating that the metal is more prone 

to anodic reactions. The coupled OCP decreases to -1.15 VSCE when 22MNB5 is coupled to the 

photoanode under UV illumination. The TiO2 photoanode has a higher negative potential under 

illumination, which indicates that the photoanode supplies electrons via semiconductor 

photocatalysis to the 22MNB5 base metal to prevent anodic reactions. The prevention of anodic 

reactions is observed visually in the negligible mass loss and mirror-like finish of the base metal 

coupon in Fig. 8.11a. The negligible mass loss was also observed under Raman spectra analysis 

(Fig. 8.11b), which demonstrate lack of iron oxide peaks under cathodic protection and formation 

of iron oxide crystalline peaks  under no protection producing iron oxide products and a more 

porous surface  (Fig. E5b). 

 

Figure 8.11: Percentage mass loss of 22MNB5 steel of (a) base metal and (b) welded samples 

with and without TiO2 photoanode under illumination after 48 h in 5 % NaCl. 

 

Welding of similar and dissimilar metals is required for water treatment infrastructure so 

it is necessary to test how welded metals behave under photocathodic systems. The welding 

process changes the composition of the base metal [27] so there are galvanic couples formed from 

heterogeneous metal compositions, which will preferentially corrode the higher negative potential 

regions in the weld, heat-affected zone, and base metal(s) [28]. In this study, a centre laser-
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welded 22MNB5 samples were used to test the corrosion performance under OCP (Fig. 8.12a).  

Introducing a weld onto the steel increased the mass loss of the uncoupled metal to 0.17 % and a 

mass loss of 0.02 % when coupling with the photoanode under UV illumination (Fig. 8.12b). The 

OCP behaviour with and without coupling of 22MNB5 welded samples was similar to the base 

metal because only a small region of the metal coupon was affected and the metal is 

predominantly base metal composition. There are still iron oxides present on the surface under 

photocathodic protection for 22MNB5 welded samples, but it is mitigated significantly when 

compared to uncoupled case. 

 

Figure 8.12: (a) Open circuit potential and (b) Raman spectra of 22MNB5 steel with 

and without TiO2/UV photocathodic protection. 

 

8.4 Conclusions 

Conventional cathode protection requires periodic replacement of sacrificial anodes or a 

constant supply of external power. AST-P25 NPs were synthesized and demonstrated higher 

visible light photoactivity than commercial P25 alone. It was shown that: 

(1) AST-P25 NPs had higher photocurrents under both unfiltered and filtered (< 400 nm 

cutoff) xenon lamp irradiation. 

(2) Inorganic and organic hole scavengers can be used to limit recombination and increase 

photocurrent density supplied to the metal being protected. 

(3) Using organic hole scavengers, such as glucose, imparted dual functionality to the 

photocathodic system in that organic compounds can be oxidized at the TiO2 photoanode 

simultaneously as photoelectrons are injected to the metal cathode, SS304, to prevent 

anodic reactions and electron-hole recombination processes. 

(4) Welded 22MNB5 samples corroded at a faster rate than base metal 22MNB5 samples and 

using photocathodic protection the mass loss from corrosion processes and surface oxides 

produced were minimized. 
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9.0 Conclusions and Future Work 

Overview 

In this thesis, the effect of pulsed and continuous light was explored on various TiO2 

nanomaterials. Various TiO2 synthesis methods were used for these methods that aimed to 

increase photonic efficiency, including 1-D TiO2, metal-semiconductor (Ag-TiO2), and doped 

TiO2 nanomaterials. Applications in emerging contaminants, membrane filtration, and corrosion 

protection were explored. This chapter contains the major conclusions from this work and 

recommendations for future avenues of research and development. 

 

9.1 Conclusions 

9.1.1 TiO2 nanobelts – material, photoelectrochemical, and photochemical properties 

TiO2 nanobelts (TNB) were synthesized from a hydrothermal method and studied for its 

photoelectrochemical and photochemical properties. TNB decreased the grain boundary defects 

of TiO2 nanoparticle aggregates limiting recombination. The photoelectrocatalytic efficiency of 

TNB photoanodes can be improved with the use of holes scavengers and applied potential. The 

photochemical degradation efficiency of pollutants, such as theophylline, can be improved using 

high reaction temperature, alkaline (high pH) conditions, and low pollutant concentration. 

 

9.1.2 Ag-TiO2 nanobelts under UV-LED controlled periodic illumination 

Ag-TNB nanomaterials were synthesized using a hydrothermal synthesis method and 

compared with TNB and P25 in a slurry batch reactor.  Controlled periodic illumination (CPI) 

was conducted using various duty cycles and frequencies and evaluated on the basis of apparent 

kinetic rate and energy requirements in the formation of 2-hydroxyterephthalic acid (HTPA) from 

the degradation of terephthalic acid. Ag-TNB reduces the recombination and increases the HTPA 

formation rate from Schottky junctions. Ag-TNB experiments demonstrate detrimental 

performance when lowering the duty cycle due to lower recombination rates. P25 shows a slight 

increase in HTPA formation rate when the frequency is increased, whereas TNB shows no 

change in formation rate because it is a prone to aggregation. The energy per order of magnitude 

was lowest for Ag-TNB under a high frequency CPI condition compared to TNB and P25. 

 

9.1.3 Degradation of pharmaceuticals using UV-LED/TiO2 pulse width modulation 

A water matrix containing 21 pharmaceuticals and personal care products (PPCPs) was 

tested using UV/TiO2 substrate under continuous illumination and CPI.  The net charge at the 
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experimental pH was the main factor in determining the kinetic rate of a specific PPCP 

degradation. The compounds degrade via power law starting from negatively charged compounds 

first due to electrostatic attraction of the positively charged TiO2 substrate at experimental pH = 

5. Other factors such as solubility and molecular weight explain the variations in the kinetic rate 

using a multiple regression model.  

Under CPI conditions, the duty cycle and frequency was varied. The electrical energy 

that is required to reduce the concentration per order of magnitude is lower at lower duty cycles 

(  <50%) than under continuous illumination. Alternating frequency profiles of 0.05 Hz and 25 

Hz lowered the electrical energy compared to single frequency profiles and continuous 

illumination, without changing the duty cycle. Overall, CPI is a feasible method from an 

operational standpoint to lower energy costs of light sources using immobilized TiO2 due to 

inherent mass transport limitations.  

 

9.1.4 Doped TiO2-quartz fiber membranes in a photocatalytic membrane reactor 

Photocatalytic quartz fiber filters (QFF) were synthesized using sol-gel and dip-coating 

processes. The filters were placed in a photocatalytic membrane reactor (PMR) that coupled 

adsorption, photowetting, photocatalysis, and membrane filtration processes. Adding a TiO2 

coating on quartz fiber filter (TQFF) increased the flux and improved the removal rate of 

dissolved organic matter compared to uncoated QFF due to the photowetting effect. Switching 

the UVA radiation source off during filtration did not immediately drop the flux. Nitrogen doped 

QFF (NTQFF) and TQFF demonstrated increased permeate flux using DI water and acid orange 

7 (AO7) under UV illumination; whereas the flux in boron-doped TQFF (BTQFF) and QFF did 

not improve after UV irradiation was introduced. Higher doping concentrations generally 

produced better membrane removal properties than the lowest dopant concentration used. The 

percentage removal of AO7 exposed was greater in UV conditions than in dark conditions for 

NTQFF samples, but not for TQFF and BTQFF. 

 

9.1.5 Concurrent Photocatalytic Degradation of Organic Contaminants and Photocathodic 

Protection of Steel 

Conventional cathode protection requires periodic replacement of sacrificial anodes or a 

constant supply of external power. Introducing a TiO2 photoanode allows for the combination of 

cathodic protection of photocatalytic degradation of organic pollutants. Silver core – silica-titania 

shell (AST) - P25 NPs were synthesized for higher photocatalytic activity in the visible light 

range compared to P25. Introducing organic hole scavengers, or organic pollutant, limits 
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recombination and increases the photocurrent density supplied to the metal being protected. 

Furthermore, using organic hole scavengers also adds an additional functionality to the 

photocathodic system in that organic compounds can be oxidized at the TiO2 photoanode 

simultaneously as photoelectrons are injected to the metal cathode, SS304, to prevent anodic 

reactions and electron-hole recombination processes. It was also shown that mass loss from 

corrosion processes and surface oxides produced can be minimized for both welded and pristine 

22MNB5 steel. 

 

9.2 Recommendations and Future Work 

9.2.1 Emerging contaminants 

Emerging contaminants are an issue due to the uncertainty of the impact they may 

present to aquatic ecosystems.  This work focused on PPCPs, but there are other contaminants 

that present not only problems to aquatic ecosystems, but also human health. Two types of 

emerging contaminants are of interest, especially in North America: (i) cyanobacteria toxins and 

(ii) naphthenic acids in oil sands process water (OSPW), which is a complex solution containing 

clays and dissolved organic compounds, trace heavy metals, bitumen residual, and solvents.  

One major issue facing Canada is the prevalence of cyanobacteria, which produce algal 

toxins when stressed that is detrimental to the health of humans and aquatic ecosystems. It was 

found that microcystin, a class of toxins produced by cyanobacteria, was found in 246 water 

bodies across Canada, and in every province, often exceeding maximum guidelines for potable 

water and recreational water quality [1]. The occurrence of potentially hazardous algae blooms 

has been increasing around the globe and may become more common with the effects of climate 

change and continued release of nutrients into the environment. The factors that result in the 

release of toxin are still not well understood. More studies into TiO2 photocatalysis may be 

conducted on these classes of toxins.  

 Extraction methods for bitumen mining in Canadian oil sands generate large volumes of 

OSPW and accumulate in tailing ponds. This solution is both toxic to many forms of life [2]. 

TiO2 photocatalysis combined with solar irradiation may offer a treatment step, to decompose 

components of OSPW, such as naphthenic acids.  

 

9.2.2 Controlled periodic illumination  

UV-LED CPI was shown to reduce the energy per order of magnitude removal of a 

mixture of pollutants, especially in immobilized TiO2 membrane reactors in Chapter 6. Further 

studies using the CPI UV/TiO2 process should be conducted with complex water matrices, 
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containing microorganisms or natural organic matter, to understand its effects and varying 

treatment outcomes compared to continuous illumination. Furthermore, more studies should be 

conducted to determine whether dual frequencies are able to improve degradation rates in 

complex mixtures and elucidate its mechanism via computational studies. Using higher pulse 

frequencies in the 100 Hz – 1 kHz range should be attempted and compared to the highest 

frequency, 25 Hz, used in this work. 

 

9.2.3 Photocatalytic membrane reactor 

Improvements to the PMR design and implementation may be explored in the following 

ways: (i) using doped-TiO2 and utilizing a UV/visible light sources such as xenon lamp 

irradiation or sunlight, (ii) operating the PMR under cross-flow conditions, and (iii) lowering 

PMR system footprint. Chapter 7 discussed doped TiO2 under UVA irradiation only and further 

studies on the effect of sunlight, or a visible light source, is useful in further determining the 

efficacy of doped-membranes in PMR. The PMR in this work was operating under dead-end 

filtration where membrane fouling was likely to occur. The rate of photocatalytic degradation 

may be much lower than the rate of fouling at high pollutant concentrations, so operating the 

PMR under cross-flow conditions would reduce the membrane fouling [3, 4]. Further 

improvements can be made by decreasing the PMR system footprint by incorporation of optical 

fiber bundles that can be used to transmit low power UV-LEDs into the membrane module and 

irradiate the membrane surface.  Side-glowing optical fiber can be inserted into a membrane 

module to make the PMR compact. 

 

9.2.4 Photocathodic protection 

Photocathodic protection was combined with the organic degradation of glucose in a 

coupled galvanic and photoelectrochemical cell (Chapter 8). The same principle can be used in 

the form of coating TiO2 on metals, which provide a barrier effect and photocathodic protection 

to prevent corrosion of metal.  Another avenue of research is applying photocathodic protection 

to a solar PMR system. Solar PMR alone is costly, but adding corrosion protection may make it 

justifiable to use.  A proposed system includes a flow-through photocatalytic reactor cell that 

degrades organic contaminants and produces photogenerated electrons that can be used to protect 

buried steel structures. A technical issue with this setup is that it requires a charging source to 

discharge during dark periods when there is no solar radiation. This problem can be alleviated 

using capacitors or materials with capacitive behaviour that can be added into TiO2 [5]. 
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Appendix A: Supplementary Information for Chapter 4 
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Figure A1:  Calibration curves of a) naproxen, b) theophylline, and c) theophylline. Reproduced 

with permission from [1] 

 

 

 

200 240 280 320 360
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

240 280 320 360
0.0

0.4

0.8

1.2

1.6

2.0

240 280 320 360
0.0

0.2

0.4

0.6

0.8

1.0

A
b
s
o
rb

a
n
c
e
 (

a
rb

. 
u
n
it
s
)

Wavelength (nm)Wavelength (nm)Wavelength (nm)

 -30 min

 0 min

 10 min

 20 min

 30 min

 40 min

 50 min

 60 min

 70 min

 80 min

 90 min

Naproxen

A
b
s
o
rb

a
n
c
e
 (

a
rb

. 
u
n
it
s
)

A
b
s
o
rb

a
n
c
e
 (

a
rb

. 
u
n
it
s
)

 -30 min

 0 min

 10 min

 20 min

 30 min

 40 min

 50 min

 60 min

 70 min

 80 min

 90 min

Theophylline(a) (b) (c)
 - 30 min

 0 min

 10 min

 20 min

 30 min

 40 min

 50 min

 60 min

 70 min

 80 min

 90 min

Carbamazepine

 

Figure A2: UV-Visible spectra of three pharmaceuticals (15 ppm) – naproxen, theophylline, and 

carbamazepine – undergoing photocatalytic degradation. Reproduced with permission from [1] 
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Figure A3: Theophylline (15 ppm) under four degradation processes: UV365nm at 100W, UV254nm 

at 6W, 10 mM H2O2/UV365nm, and 0.2 g L
-1

 TiO2/ UV365nm. Reproduced with permission from [1] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure A4:  Normalized Concentration of theophylline over time at temperatures of 4 
o
C, 20 

o
C, 

40 
o
C, and 60 

o
C. Reproduced with permission from [1]
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Figure A5: Photocatalytic degradation of theophylline at concentrations of 3 ppm, 30 ppm, and 

300 ppm. Reproduced with permission from [1] 
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Appendix B: Supplementary Information for Chapter 5 
 

B1: Pulse-width modulation script   

Pulsed width modulation (PWM) was used to control the UV-LED. Digital control is 

used to create a square wave, a signal switched between on and off states. This on-off pattern can 

simulate voltages in between full on (5 volts) and off (0 volts) by changing the portion of the time 

the signal spends on versus the time it spends off. The duration of the “on time” is called the 

pulse width. An Arduino Uno connected to a LED Current Driver (LEDSEEDUINO) and a high 

power UV-LED (LED Engin, 1 A,   = 365 nm) was used. Each time the digitalWrite function is 

used, it needs to be followed with a delay function. The desired duty cycle and pulse frequency 

was acquired by changing the time on and time off. Based on this, a PWM program was coded 

into the Arduino microcontroller using the following script:  

 

int ledPin = 9;                 // LED connected to digital pin 9 

int  timeON = x                // initializes x value of time that LED  is ON 

int timeOFF = y               // initializes y value of time that LED is OFF 

 

void setup() 

{ 

  pinMode(ledPin, OUTPUT);      // sets the digital pin as output 

} 

 

void loop() 

{ 

  digitalWrite(ledPin, HIGH);   // sets the LED on 

  delay(timeON);                  // waits for x milliseconds 

  digitalWrite(ledPin, LOW);    // sets the LED off 

  delay(timeOFF);                  // waits for y milliseconds 

}. 

 

 

B2: TiO2 Electrodeposition Method 

P25/FTO and TNB/FTO glass photoanodes were used as working electrodes and 

fabricated via electrodeposition. All chemicals required for electrodeposition was acquired from 

Sigma-Aldrich. TiO2 nanomaterials (0.5 g) were dispersed in a solution containing 250 mL of 

ethanol, 15 mL acetylacetone, 4 mL acetone, and 2 mL H2O. Iodine (27 mg) was added to 

increase dispensability. For TNB/FTO samples, polydimethyl ammonium chloride (0.1 mL) was 
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added to increase adhesion on the FTO electrode. The solution was sonicated for 30 min and 

stirred for an hour prior to deposition.  The deposition process was conducted using a two 

electrode setup in which a titanium sheet (2.54 cm x 7.62 cm) was used as the anode and FTO 

glass (2.54 cm x 7.62 cm) was used as the cathode.  The cathode and anode were placed upright 

and separated by 1 cm and connected with a DC voltage power supply using alligator clips with 

the conductive side of the FTO glass facing the titanium plate. Electrochemical tape (2.54 cm x 

2.54 cm) was taped in the middle to prevent contact with the solution at the air/liquid interface 

and expose two ends with an area 2.54 cm x 2.54 cm area – one exposed end in the solution and 

the other in contact with the negative terminal.  Half of the electrode area was immersed in a 

solution bath. The electrophoretic deposition was conducted at a constant voltage of 30 V for a 

period of 30 s for P25 and 60 s for TNB due to differing deposition rates. The resulting electrode 

was dried upright under 80
o
C for an hour and heat treatment at 450

o
C to remove organics and 

improved adhesion without affecting the FTO/glass. 

B3: Photoelectrochemical experiments 

Photoelectrochemical experiments were performed using a Gamry potentiostat (Series 

300) using a three electrode setup with 1M KOH solution as an electrolyte.  TiO2/FTO glass 

photoanodes were used as the working electrode, Pt wire was used as the counter electrode, and a 

Ag/AgCl (satureated KCl) electrode was used as the reference electrode. A 4.1 W UV-LED (LED 

Engin) with a 2.54 cm diameter collimating column  was used a light source with an incident 

light intensity of 8 mW cm
-2

 detected from 10 cm from the light source. Electron lifetime tests 

were conducted under open circuit potential, Voc. 

B4: Energy absorption and DLVO calculations 

Particle energy absorption 

To estimate the amount of light energy absorbed by each particle the number of TiO2 molecules 

per particle was calculated. Using a density 3.78 g cm
-3

, the number of TiO2 molecules per 

particle was estimated at 2.94x10
5
. The total number of molecules in the system was 7.70x10

14 
. 

100 mg L
-1

 TiO2 sample containing 30 mg of TiO2 in 300 mL ultrapure water. Assuming a 

monodisperse sample and 100% light absorption, the energy available is sufficient to dislodge a 

TiO2 nanoparticle from the secondary minimum. 
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DLVO theory calculations 

Two interparticle interactions, electrostatic repulsion and van der Waals attraction are considered 

in DLVO theory [1, 2]. Assuming low surface charge, spherical particles of equal size, and thin 

double layers compared to particle size, the electrostatic repulsion, GEL, is given by: 

 

 
    

         
    (   )

 
 

 

Eqn. B1 

 
       (

    
   

) 

 

Eqn. B2 

where k is Boltzmann constant  (J K
-1

)  

 T  is the temperature (K),  

    is the particle surface potential (V),     

 Z is the ion charge,  

 e is the elementary charge (C),  

 D is the separation distance between two particles (m).  

 

The inverse Debye length,  , can be obtained by: 

 

  √(
 (  )    

    
) 

Eqn. B3 

where NA is Avogadro’s constant,  

 c is the ion concentration,  

    is the particle surface potential (V),     

 

Under the assumptions that particles are spherical and of equal size, and separation is small 

compared to particle size, the van der Waals attraction force can be calculation by the following 

equation: 

     
    
     

 

 

where A121 is the Hamaker constant (J)  

 

The total energy is the summation of the two interactions: 

           

The following values were used for this case was given by Bennett et al. [1]: A121 = 9.1x10
-20

, of 

   (mV) = 30.97, D = 27 nm, T = 298 K, and c = 1x10
-3

 M. 
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Figure B1: The (a) Tauc plot, (b) Raman spectra, (c) zeta potential vs. pH and (d) powder sample 

images of P25, TNB, and Ag-TNB nanomaterials  
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Table B1-A:  P25 - Individual LED apparent kinetic rates as a function of duty cycle 

Duty 

Cycl

e 

(%) 

 

LED1 LED2 LED3 AVERAGE 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1 

(x10-1 

min-1) 

Std 

(x10-1 

min-1) 

k2 

(x10-3 min-1) 

Std 

(x10-3 

min-1) 

10 -1.23 3.47 -1.35 3.90 -0.90 2.02 -1.16 0.23 3.13 0.10 

25 -2.06 4.33 -2.19 4.81 -2.01 4.40 -2.09 0.09 4.51 0.26 

50 -4.00 8.08 -4.74 9.46 -3.41 6.51 -4.05 0.67 8.02 1.48 

75 -4.89 9.89 -5.09 10.3 -5.00 10.21 -4.99 0.10 10.1 0.22 

100 -6.74 13.02 -6.91 13.36 -5.94 11.65 -6.53 0.51 12.68 0.91 

 

Table B1-B:  TNB - Individual LED apparent kinetic rates as a function of duty cycle 

Duty 

Cycle 

(%) 

 

LED1 LED2 LED3 AVERAGE 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1 

(x10-1 

min-1) 

Std 

(x10-1 

min-1) 

k2 

(x10-3 min-1) 

Std 

(x10-3 

min-1) 

10 -1.73 3.28 -1.85 2.82 -1.66 3.89 -1.75 0.096 3.33 0.54 

25 -2.34 5.86 -2.39 6.54 -2.22 6.68 -2.32 0.087 6.36 0.44 

50 -5.52 10.04 -8.27 14.61 -5.74 10.83 -6.51 1.53 11.83 2.44 

75 -7.68 13.62 -11.64 20.19 -6.67 12.84 -8.66 2.63 15.55 4.04 

100 -13.55 24.12 -14.96 26.68 -9.65 17.15 -12.72 2.75 22.65 4.93 

 

Table B1-C:  Ag-TNB – Individual LED apparent kinetic rates as a function of duty cycle 

Duty 

Cycl

e 

(%) 

LED1 LED2 LED3 AVERAGE 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1  

(x10-1 min-1) 

k2  

(x10-3 min-1) 

k1 

(x10-1 min-1) 

Std 

(x10-1 

min-1) 

k2 

(x10-3 min-1) 

Std 

(x10-3 

min-1) 

10 1.23 4.01 -1.25 3.71 -1.07 3.25 -0.36 1.38 3.66 0.38 

25 -2.99 4.31 -3.85 6.19 -2.75 3.93 -3.20 0.58 4.81 1.21 

50 -7.41 13.06 -8.51 15.03 -6.08 10.82 -7.33 1.22 12.97 2.11 

75 -11.71 20.29 -13.81 23.26 -10.80 18.91 -12.11 1.54 20.82 2.22 

100 -18.32 32.58 -17.29 30.46 -15.21 26.37 -16.94 1.58 29.80 3.16 
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Table B2-A: Material comparison experiments under continuous illumination of p-values using 

one-way ANOVA tests (OriginLab, α=0.05). Post-hoc tests (multiples comparisons) were 

conducted when a statistical difference was detected using Holm-Sidak method with overall 

statistical levels. 

 

 

 

 

 

 

Table B2-B: Duty Cycle experiments of p-values using one-way ANOVA tests (OriginLab, 

α=0.05). Post-hoc tests (multiples comparisons) were conducted when a statistical difference was 

detected using Holm-Sidak method with overall statistical levels. 

 

 

 

 

Material 

Comparison 

HTPA formation MG degradation 

p-value   Sign. p-value   Sign. 

P25 vs. Ag-TNB <0.0000 0.0170 YES 0.0132 0.0170 YES 

TNB vs. Ag-TNB <0.0000 0.0253 YES 0.0313 0.0253 NO  

P25 vs. TNB <0.0000 0.0500 YES 0.5201 0.0500 NO 

Duty Cycle Comparison 

 

P25 TNB Ag-TNB 

p-value   Sign. p-value   Sign. p-value   Sign. 

25% vs. 10% 1.685x10-2 0.05 YES 7.114x10-1 0.05 NO 1.685x10-2 0.05 YES 

50% vs. 10% 4.435x10-6 0.0085 YES 9.800x10-3 0.0102 YES 4.435x10-6 0.0085 YES 

50% vs. 25% 1.208x10-4 0.0127 YES 1.879x10-2 0.0127 NO 1.208x10-4 0.0127 YES 

75% vs. 10% 3.298x10-7 0.0064 YES 9.522x10-4 0.0064 YES 3.299x10-7 0.0064 YES 

75% vs. 25% 4.212x10-6 0.0073 YES 1.720x10-3 0.0073 YES 4.212x10-6 0.0073 YES 

75% vs. 50% 1.543x10-2 0.0253 YES 1.801x10-1 0.0253 NO 1.543x10-2 0.0253 YES 

100% vs. 10% 1.319x10-8 0.0051 YES 2.518x10-5 0.0051 YES 1.320x10-8 0.0051 YES 

100% vs. 25% 8.150x10-8 0.0057 YES 3.960x10-5 0.0057 YES 8.150x10-8 0.0057 YES 

100% vs. 50% 1.712x10-5 0.0102 YES 1.990x10-3 0.0085 YES 1.712x10-5 0.0102 YES 

100% vs. 75% 7.818x10-4 0.0170 YES 2.197x10-2 0.0170 NO 7.818x10-4 0.0170 YES 
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Table B2-C: Pulse frequency experiments of p-values using one-way ANOVA tests (OriginLab, 

α=0.05). Post-hoc tests (multiples comparisons) were conducted when a statistical difference was 

detected using Holm-Sidak method with overall statistical levels. Green highlighted values 

represents α=0.05 significance and yellow highlighted values represent α=0.1 significance. 

 

 

 

 

 

 

 

 

 

 

Pulse Frequency 

Comparison 

P25 TNB Ag-TNB 

p-value   Sign. p-value   Sign. p-value   Sign. 

5 Hz vs. 0.05 Hz 0.0002 0.0085 YES 0.3815 0.0102 NO 0.6769 0.0500 NO 

25 Hz vs. 0.05 Hz 0.0006 0.0102 YES 0.7250 0.0170 NO 0.0194 0.0085 NO 

0.5 Hz vs. 0.05 Hz 0.0018 0.0127 YES 0.2845 0.0085 NO 0.4350 0.0253 NO 

5 Hz vs. 0.5 Hz 0.1044 0.0170 NO 0.8306 0.0253 NO 0.2452 0.0170 NO 

25 Hz vs. 5 Hz 0.3777 0.0253 NO 0.8895 0.0500 NO 0.1348 0.0127 NO 

25 Hz vs. 0.5 Hz 0.3957 0.0500 NO 0.4564 0.0127 NO 0.0694 0.0102 NO 
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Appendix C: Supplementary Information for Chapter 6 

 

C1: Pulsed Width Modulation Setup 

Pulse width modulation (PWM) was used to control the UV-LED. Digital control is used 

to create a square wave, a signal switched between on and off states. This on-off pattern can 

simulate voltages in between full on (5 volts) and off (0 volts) by changing the portion of the time 

the signal spends on versus the time it spends off. The duration of the “on time” is called the 

pulse width. An Arduino Uno connected to a LED Current Driver (LEDSEEDUINO) and a high 

power UV-LED (LED Engin, 1 A,   = 365 nm) was used. A PWM program was coded into the 

Arduino microcontroller using the following script:  

 

int ledPin = 9;                 // LED connected to digital pin 9 

int  timeON = x                // initializes x value of time that LED  is ON 

int timeOFF = y               // initializes y value of time that LED is OFF 

 

void setup() 

{ 

  pinMode(ledPin, OUTPUT);      // sets the digital pin as output 

} 

 

void loop() 

{ 

  digitalWrite(ledPin, HIGH);   // sets the LED on 

  delay(timeON);                  // waits for x milliseconds 

  digitalWrite(ledPin, LOW);    // sets the LED off 

  delay(timeOFF);                  // waits for x milliseconds 

}. 
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Table C1. Optimized MS/MS parameters and detection limits for the analysis of target compounds (regular standards). 

Compound IDL* 

(µg/L) 

Q1 Q3 Polarity DP EP CEP CE  CXP 

Pharmaceuticals          

Carbamazepine 1 216.2 174.3 + 55 4.9 14.3 51 2.7 

Venlafaxine 1 278.3 58.1 + 38.2 2.9 21.00 42 8 

Fluoxetine 3 310.3 44.3 + 48 2.9 12.08 44 7 

Atenolol 2 267.2 145.1 + 51 3 30.00 36 5 

Sulfamethoxazole 1 254.1 156.2 + 41 3 9.00 22.1 3 

Ibuprofen 2 204.9 160.9 − -41 -2.6 -19.24 -11 -0.5 

Atorvastatin 8 559.3 440.2 + 83 5.9 18.91 32 22 

Naproxen 3 229.0 170.0 − -29 -1.9 -20.13 -25 -3.8 

Atrazine 1 216.0 174.3 + 66.9 3.8 13.5 27.0 2.4 

Diclofenac 1 293.9 250.0 − -46.0 -2.5 -22.53 -15.0 -1.7 

Gemfibrozil 1 249.1 121.1 − -55.0 -2.0 -20.87 -17.0 -3.0 

Trimethoprim 0.5 291.1 261.2 + 59.0 4.0 12.00 32.0 3.0 

Caffeine 1 195.2 123 + 8.8 8.8 41 41 5 

Estrogen Compounds          

Ethinylestradiol 10 295.1 144.9 − -71.8 -7 -10 -54 -3 

Bisphenol A 10 227 211.9 − -53 -10 -20.055 -28 -5 

Personal care products          

Triclosan 10 286.9 35.0 − -33 -2 -7 -30 -3 

Triclocarban 4 314.8 161.6 − -50 -3 -12 -20 -13 

Metabolites          

10,11 epoxide carbamazepine 1 253.2 180.3 + 26 3.5 20 34 5 

Norfluoxetine 10 296.1 134.1 + 23 3 9.5 9 5 

p-hydroxy atorvastatin 10 575.2 440.3 + 64 4 19 32 5 

o-hydroxy atorvastatin 10 575.2 440.3 + 64 4 19 32 5 
 *the samples were consequently concentrated via solvent evaporation and reconstruction on the IDLs (concentration factor = 25) 
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Table C2. Optimized MS/MS parameters used for the analysis of target compounds (deuterated standards). 

Deuterated standards Q1 Q3 Polarity DP EP CEP CE CXP 

carbamazepine- d5 247.200 204.400 + 60.9 4.3 17.07 28.0 3.3 

venlafaxine- d6 284.271 64.100 + 44.8 3.3 18.22 45.0 2.4 

fluoxetine- d5 315.200 44.200 + 50.0 4.0 18.97 38.2 3.1 

atenolol- d7 274.300 145.200 + 49.8 3.7 41.40 35.6 3.7 

sulfamethoxazole- d4 258.122 160.100 + 54.0 4.0 25.00 37.0 3.0 

ibuprofen- d3 207.900 164.100 − -24.1 -7.6 -19.35 -10.0 -3.0 

atorvastatin- d5 564.300 445.300 + 45.6 4.0 25.94 30.0 16.0 

naproxen- d3 233.000 16.900 − -36.8 -2.0 -20.28 -25.7 -1.0 

triclosan- d3 289.900 35.000 − -28.5 -2.0 -11.31 -25.3 -2.3 

triclocarban- d4 316.900 159.900 − -50.0 -2.5 -23.38 -18.0 -2.0 

10,11 epoxide carbamazepine - d10 263.200 190.300 + 53.0 3.5 20.00 34.0 5.0 

norfluoxetine- d5 301.200 139.200 + 23.0 3.0 10.00 9.0 5.0 

p-hydroxtatorvastatin- d5 580.200 445.200 + 64.0 4.0 19.00 32.0 5.0 

o-hydroxtatorvastatin- d5 580.200 445.200 + 64.0 4.0 19.00 32.0 5.0 

ethinylestradiol- d4 299.100 146.900 − -72.9 -5 -28.23 -51.8 -15.1 

emfibrozil- d6 255 120.7 − -46.5 -11 -21.091 -19.2 -2 

bisphenol A- d16 241 142 − -50 -10 -20.573 -50 -3 

norfluoxetine- d5 301.2 139.2 + 10 10 9 9 5 

diclofenac- d4 298.2 253.8 − -25.8 -6.9 -22.689 -16.9 -6.1 

trimethoprim- d3 294.2 230.3 + 22 22 31 31 6 

caffeine- d3 198.2 123.1 + 15 15 42 42 4 
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Table C3. Chromatographic and ionization parameters used for LC-MS/MS analysis for 

target analytes. 

Ionization conditions Positive Negative 

Curtain Gas (psig) 30 10 

Collision Gas (psig) Low Low 

Ion Spray Voltage  5500 -4500 

Temperature (
o
C) 750 750 

Ion Source Gas 1 50 60 

Ion Source Gas 2 30 40 

Chromatographic conditions   

Injection volume (μL) 20  

Solvent A 
5 mM ammonium acetate in 

water 
 

Solvent B methanol  

Flow rate (mL/min) 0.8  

 

Mobile Phase Gradient 

For pharmaceuticals in positive mode, the mobile phase gradient began at 80% B and 

was ramped to 100% B over a 4.5 min period where it was held constant for 1 min. 

The initial negative mobile phase for pharmaceuticals gradient was 60% B which was 

then increased to 100% B over an 8 min period where it was held constant for 0.5 min. 

Column re-equilbration was done for 8 min at the end of the run. 
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Table C4: Pseudo-first order kinetics for dark, photolysis, and continuous experiments 

Compound 

Dark Photolysis Continuous UV 

kapp 

(x10
-2

 

min
-1

) 

Std. 

Dev. 

R
2
 kapp 

(x10
-2

 

min
-1

) 

Std. 

Dev. 

R
2
 kapp 

(x10
-2

 

min
-1

) 

Std. 

Dev. 

R
2
 

IBU -0.019 0.046 0.04 -0.099 0.053 0.48 -0.497 0.120 0.99 

BPA -0.173 0.317 0.43 0.022 0.137 0.15 -0.497 0.423 0.45 

NPX 0.038 0.093 0.50 0.016 0.054 0.00 -1.495 0.289 0.99 

GFZ -0.096 0.048 0.60 -0.014 0.047 0.06 -0.551 0.086 0.99 

DCF -0.033 0.041 0.15 0.002 0.079 0.36 -1.750 0.232 0.98 

EE2 -0.223 0.261 0.35 -0.293 0.280 0.48 -0.422 0.108 0.77 

TCS 0.008 0.091 0.40 -0.182 0.169 0.74 -0.299 0.045 0.99 

TCCB -0.053 0.167 0.36 -0.322 0.134 0.98 -0.113 0.016 0.97 

ATRZ 0.004 0.158 0.37 0.111 0.272 0.65 0.013 0.030 0.11 

CBZ -0.055 0.027 0.35 -0.035 0.056 0.21 -0.065 0.007 0.83 

FLX -0.094 0.020 0.66 -0.110 0.028 0.56 0.030 0.024 0.01 

ATOR -0.553 0.545 0.63 -1.195 0.102 0.88 -1.652 0.117 1.00 

VEN 0.028 0.032 0.20 -0.032 0.054 0.28 -0.014 0.014 -0.04 

SULF 0.056 0.050 0.14 -0.017 0.043 -0.09 -0.435 0.036 1.00 

TRIM 0.039 0.121 0.37 -0.046 0.056 0.14 -0.132 0.035 0.93 

NFLX -0.054 0.161 0.46 -0.152 0.085 0.59 0.049 0.056 0.23 

ATEN 0.014 0.026 -0.10 0.020 0.027 0.05 0.007 0.023 0.00 

CAFF 0.028 0.013 -0.12 0.149 0.129 0.37 -0.077 0.085 0.22 

e-CBZ 0.008 0.216 0.47 -0.112 0.163 0.55 -0.033 0.041 0.46 

p-ATOR -0.553 0.532 0.76 -0.975 0.248 0.93 -1.846 0.772 0.57 

o-ATOR -0.386 0.237 0.73 -0.793 0.209 0.88 -2.195 0.125 0.97 

*negative kinetic rates are compound decomposition rates, whereas positive kinetic rates are due to LC-

MS/MS detection variance since the initial concentration should not be less than subsequent concentration 

at time t 
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Table C5: ANOVA results for a multiple regression analysis (OriginPro) 

 DF Sum of 

Squares 

Mean Square F value p 

Model 3 9.436 3.145 45.630 <0.000 

Error 17 1.172 0.069   

Total 20 10.608    
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Table C6-A: Duty cycle experiments table (total PPCP parent compound concentration) of p-

values for One-Way ANOVA tests (OriginPro, α=0.05). Post-hoc tests (multiple comparisons) 

were conducted when a statistical significance was detected using Tukey method with overall 

statistical significance level of 0.05.  Green highlighted values represents α = 0.05 significance 

and yellow highlighted values represent that the comparison passes α = 0.1 significance threshold. 

 

 

 

 

 

 

 

 

 

 

 

 

Duty Cycle 

Comparison 
p-value Significance 

10%  0% 0.000 Yes 

25%  0% 0.024 Yes 

25%  10% 0.270 No 

50%  0% 0.002 Yes 

50%  10% 0.945 No 

50%  25% 0.720 No 

75%  0% 0.004 Yes 

75%  10% 0.808 No 

75%  25% 0.894 No 

75%  50% 0.999 No 

100%  0% 0.000 Yes 

100%  10% 0.948 No 

100%  25% 0.070 No (Yes at α =0.1) 

100%  50% 0.533 No 

100%  75% 0.344 No 
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Table C6-B: Duty cycle experiments using one-way ANOVA OriginPro, α=0.05). Post-hoc tests 

were conducted (Tukey method).  Green and yellow represent α = 0.05 and α = 0.1 significance. 

PPCP 

Duty Cycle Comparisons 

25% vs 

10% 

50% vs 

10% 

50% vs 

25% 

75% vs 

10% 

75% vs 

25% 

75% vs 

50% 

100% 

vs 10% 

100% 

vs 25% 

100% 

vs 50% 

100% 

vs  75% 

IBU No No No No No No No No No No 

p-value 0.707 0.601 1.000 0.620 1.000 1.000 0.423 0.983 0.997 0.996 

BPA No No No No No No No No No No 

p-value 0.845 0.879 1.000 0.921 1.000 1.000 0.989 0.601 0.646 0.712 

EE2 No No No No No No No No No No 

p-value 1.000 1.000 1.000 0.781 0.754 0.851 0.704 0.675 0.782 1.000 

TCS No No No No No No Yes No No No 

p-value 0.446 0.517 1.000 0.949 0.829 0.886 0.048 0.547 0.475 0.141 

TCCB No No No No No No No No No No 

p-value 1.000 0.992 0.979 0.999 0.996 1.000 0.605 0.530 0.831 0.729 

ATRZ No No No No No No No No No No 

p-value 0.456 0.690 0.992 0.992 0.692 0.896 0.817 0.960 0.999 0.964 

ATN No No No No No No No No No No 

p-value 0.828 0.756 1.000 0.996 0.951 0.909 0.981 0.984 0.962 1.000 

CBZ No No No No No No No No No No 

p-value 0.505 1.000 0.425 1.000 0.586 0.998 0.469 0.045 0.553 0.396 

SULF No No No No No No No No No No 

p-value 0.929 0.863 0.448 0.918 0.526 1.000 0.180 0.055 0.597 0.516 

e-CBZ No No No No No No No No No No 

p-value 0.922 0.841 0.999 0.997 0.988 0.956 0.975 0.999 0.991 0.999 

VEN No No No No No No No No No Yes 

p-value 0.958 0.600 0.274 0.305 0.117 0.973 0.622 0.936 0.090 0.036 

FLX No No No No No No No No No No 

p-value 0.426 0.366 1.000 0.469 1.000 0.999 0.281 0.997 1.000 0.993 

NFLX No No No No No No No No No No 

p-value 0.135 0.999 0.185 0.993 0.071 0.966 0.996 0.223 1.000 0.935 

CAF No No No No No No No No No No 

p-value 0.978 0.809 0.982 0.833 0.988 1.000 0.594 0.880 0.994 0.990 

p-ATOR No No No No No No No No No No 

p-value 0.980 0.991 1.000 0.993 1.000 1.000 0.929 0.999 0.997 0.995 

o-ATOR No No No No No No No No No No 

p-value 0.945 1.000 0.894 0.960 0.644 0.985 0.696 0.976 0.604 0.345 

ATOR No No No No No No No No No No 

p-value 0.707 0.702 1.000 0.910 0.991 0.991 0.333 0.948 0.950 0.777 

TRIM No No No No No No No No No No 

p-value 0.974 0.999 0.997 0.952 1.000 0.991 0.300 0.590 0.413 0.655 

NPX No No No No No No No No No No 

p-value 0.986 0.984 0.869 0.928 0.751 0.998 0.638 0.451 0.891 0.968 

GFZ No No No No No No No No No No 

p-value 1.000 0.921 0.949 0.866 0.904 1.000 0.489 0.543 0.904 0.949 

DCF No No No No No No No No No No 

p-value 0.966 1.000 0.991 0.898 0.577 0.813 0.833 0.994 0.913 0.369 
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Table C7-A: Frequency experiments table (total PPCP parent compound concentration) of p-

values for One-Way ANOVA tests (OriginPro, α=0.05). Post-hoc tests (multiple comparisons) 

were conducted when a statistical significance was detected using Tukey method with overall 

statistical significance level of 0.05.  Green highlighted values represents α = 0.05 significance 

and yellow highlighted values represent that the comparison passes α = 0.1 significance threshold. 

Frequency Comparison p-value Significance 

25 Hz vs. 0.05 Hz 0.677 No 

Dual Freq. vs. 0.05 Hz 0.050 Yes 

Dual Freq. vs. 25 Hz 0.246 No 

Cont. vs. 0.05 Hz 0.013 Yes 

Cont. vs. 25 Hz 0.062 No 

Cont. vs. Dual Freq. 0.758 No 
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Table C7-B: Frequency experiments table (individual PPCP compound) of p-values for One-

Way ANOVA tests (OriginPro, α=0.05). Post-hoc tests (multiple comparisons) were conducted 

when a statistical significance was detected using Holm-Sidak method with overall statistical 

significance level of 0.05.  Green highlighted values represents α = 0.05 significance and yellow 

highlighted values represent that the comparison passes α = 0.1 significance threshold. 

PPCP 

Frequency Comparisons 

Cont. vs.  

Dual Freq.  

Cont. vs. 25 

Hz 

Cont. vs. 0.05 

Hz 

Dual Freq. vs.  

25 Hz 

Dual Freq. vs.  

0.05 Hz 

25 Hz vs. 

0.05 Hz 

IBU No No No No No No 

p-value 0.898 0.252 0.671 0.563 0.965 0.814 

BPA No No No No No No 

p-value 0.927 0.429 0.402 0.757 0.727 1.000 

EE2 No No No No No No 

p-value 0.334 0.125 0.124 0.878 0.876 1.000 

TCS No Yes Yes No No No 

p-value 0.072 0.008 0.003 0.411 0.134 0.823 

TCCB Yes Yes Yes No No No 

p-value 0.023 0.004 0.003 0.261 0.219 0.903 

ATRZ No No No No No No 

p-value 0.995 0.998 0.653 1.000 0.521 0.552 

ATN No No No No No No 

p-value 0.650 0.841 0.227 0.798 0.427 0.303 

CBZ No Yes Yes No No No 

p-value 0.116 0.010 0.027 0.342 0.737 0.869 

SULF No No No No No No 

p-value 0.939 0.705 0.299 0.951 0.568 0.847 

e-CBZ No No No No No No 

p-value 0.983 0.975 1.000 0.864 0.975 0.983 

VEN No No No No No No 

p-value 1.000 0.705 1.000 0.705 1.000 0.637 

FLX No No No No No No 

p-value 0.469 0.273 0.996 0.967 0.586 0.359 

NFLX No No No No No No 

p-value 0.086 0.984 0.185 0.053 0.944 0.114 

CAF No No No No No No 

p-value 0.977 0.361 0.923 0.217 0.744 0.683 

p-ATOR No No No No No No 

p-value 0.996 0.976 0.901 0.920 0.804 0.996 

o-ATOR No No No No No No 

p-value 0.964 0.326 0.723 0.552 0.932 0.863 

ATOR No No No No No No 

p-value 0.394 0.128 0.560 0.825 0.987 0.651 

TRIM No Yes Yes No No No 

p-value 0.116 0.031 0.017 0.786 0.550 0.972 

NPX No No No No No No 

p-value 0.998 0.234 0.899 0.297 0.956 0.530 

GFZ No No No Yes No No 

p-value 0.578 0.132 0.522 0.021 0.096 0.702 

DCF No No No No No No 

p-value 0.901 0.352 0.631 0.705 0.947 0.944 

. 
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Appendix D: Supplementary Information for Chapter 7 

 

Table D1: The properties of acid orange 7 

Formula: C16O4H11N2Na 

Charge: Negative 

Molecular weight: 350.32 g mol
-1

 

Solubility limit 116 g L
-1

 

λmax : 485 nm 

Molar extinction 

coefficient: 
ε = 21,400 L mol

-1
 cm

-1
 at 

485 nm 

pKa: pKa1 = 1.1,  pKa2 = 11 

 

 

 

Figure D1: (a) Close-up image of T-mixer unit and (b) T-mixer sol-gel setup containing two 

peristaltic pumps (Pump 1 and 2) and reservoirs (Reservoir 1 and 2) that deliver solution into a 

mixing reservoir via a T-mixer  
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Figure D2: Diffuse reflectance spectra of (a) uncoated quartz fiber filter (QFF), (b) TiO2/QFF, (c) 

N-doped TiO2/QFF, and (d) B-doped TiO2/QFF  
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Figure D3: XPS spectra of A) Undoped TiO2, B) N-TiO2, and C) B-TiO2; and their 1) Ti 2p, 2) 

O1s, and 3) dopant (N, B) 1s regions. 
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Figure D4: Permeate flux as a function of transmembrane pressure for (a) porous support; (b) 

quartz fiber  filter (QFF); and quartz fiber  filter deposited with (c) TiO2 (d-f) N-TiO2 (N/Ti: 3, 5, 

and 7x10
-2

), and (g-i) B-TiO2 (B/Ti: 3, 5, and 7x 10
-2

) 
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Appendix E: Supplementary Information for Chapter 7 

E.1: Synthesis of Ag@SiO2-TiO2 (AST) nanoparticles 

Materials 

3-Aminopropyltrimethoxysilane (APTMS), titanium tetraisopropoxide (TTIP), 

polyvinylpyrrolidone (PVP K30) and P25 Aeroxide
TM 

were purchased from Sigma-Aldrich 

Chemicals Co. Silver nitrate and tetra orthosilicate (TEOS) were purchased from Alfa-Aesar. 

 

Synthesis 

Ag NPs were synthesized using 1.0 g AgNO3 and 5.0 g of PVP dissolved in 400 mL 

ethylene glycol. The mixture was heated to 130 
o
C and held for 0.5 h under 600 rpm.  The 

temperature was further held for 1 h without stirring. The Ag NPs were separated from ethylene 

glycol by the addition of 800 mL acetone, followed by sonication and centrifugation. The Ag NPs 

were redispersed in 100 mL of ethanol to obtain a concentration of about 6.0 g L
-1

. 

The Ag@SiO2 NPs were formed using a procedure described elsewhere [1]. In a typical 

synthesis of Ag@SiO2, 50 mL of Ag NPs/ethanol solution (6.0 g L
-1

) obtained from the 

aforementioned method was dissolved in 120 mL ethanol and stirred for 0.5 h at 600 rpm at room 

temperature. Subsequently, 40 mL of deionized water , 2.4 mL ammonia aqueous solution (28 

wt%) were added to the mixture. 50 uL TEOS in 10 mL ethanol was introduced to the mixture 

dropwise under continuous stirring and the reaction was continued for 10 h. The Ag@SiO2 core-

shell NPs were washed with deionized water and ethanol 3 times and redispersed in 50 mL 

ethanol.  

50 mL of Ag@SiO2 NPs was dispersed in 70 mL of ethanol and 200 uL APTMS was 

refluxed at 85 
o
C for 6 h. The as-synthesized APTMS-modified Ag@SiO2 was washed with 

ethanol 3 times and redispersed in 200 mL of ethanol. 200 uL of TTIP in 40 mL ethanol was 

added dropwise to the APTMS-modified Ag@SiO2 dispersion under stirring, followed by 

refluxing at 85 
o
C for 3 h. The resultant Ag@SiO2-TiO2 NPs (AST) were centrifuged, washed 

with deionized water, and dried overnight at 60 
o
C. 
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E.2: Glucose oxidation via TiO2/UV process 

E.2.1 Experimental Method 

Photocatalytic degradation experiment  

A 0.4 g L
-1

 TiO2 nanobelt slurry containing 600 mL (50 ppm, 0.278 mM) at room 

temperature was prepared. Initial adsorption profiles were conducted for 60 min under magnetic 

stirring, followed by photocatalytic degradation. A medium pressure mercury lamp was used as 

the UV light source. 

 

Glucose detection - spectrophotometric analysis 

Glucose spectrophotometric detection was determined using a protocol developed 

elsewhere [2]. In short, glucose is oxidized to  -D-glucose in the presence of glucose oxidase 

(GOX): 

 

  -D-glucose + O2 + H2O   -D-gluconolactone + H2O2 

 

Eq. E.1 

The measure the glucose concentration via the production of H2O2 is coupled to the enzyme horse 

radish peroxidase (HRP): 

 2 H2O2 + phenol + 4-aminoantipyrine   

4-N-(p-benzoquinoeimine)-antipyrine + 4 H2O 

 

Eq. E.2 

The reaction product exhibits an absorption maximum at 505 nm and a molecular extinction 

coefficient of 1.27 x 10
4
 M

-1 
cm

-1
 [2]. The glucose standards and unknowns were incubated at 30 

o
C for 10 min and absorbance values were measured. A glucose calibration curve was also 

prepared. 

 

Total Organic Carbon Determination 

Total organic carbon (TOC) was measured using an Aurora 1030c TOC Analyzer.  The 

TOC concentration of a sample is determined by converting the organically bound carbon into 

CO2. The method is based on the Standard Method 531- D: Wet Oxidation method [3]. In short, 

the sample is acidified to pH 2 or below to convert inorganic carbon species to CO2, purged to 

remove the inorganic carbon, then oxidized with persulfate in an autoclave at temperatures 

between 116 
o
C to 130 

o
C. The CO2 produced from the sample is then quantified by infrared 

spectrometry. 
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E.2.2 Results of glucose oxidation using TiO2/UV arc lamp process 

Glucose oxidation was conducted using TiO2/UV arc lamp process using synthesized 

TNB. The TNB degraded 50 % of the parent glucose compound within 90 min after the UV light 

was turned on (Fig. E2a).The mineralization of glucose using TNB/UV365nm occurred according 

to the TOC degradation profile (Fig. E2b); the organic carbon degradation had a half-life of 

around 68 min. It was also shown that UV light had no effect on the degradation of glucose 

. 

 

Table E1: Chemistry of 22MNB5 Usibor® steel 

Element Weight (%) 

C 0.221 

Mn 1.17 

P 0.012 

S 0.003 

Si 0.252 

Cu 0.038 

Ni 0.017 

Cr 0.179 

Sn 0.003 

Alsol 0.037 

Altotal 0.038 

Ca 0.0013 

Nb 0.002 

Mo 0.005 

V 0.006 

Zr 0.002 

Ti 0.026 

B 0.0025 

N 0.0064 
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Figure E1: Ag nanoparticle absorption spectra and size distribution curve (inset graph) 
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Figure E2: (a) Glucose concentration as a function of time using anatase TNB  under UV365nm 

illumination and (b) total organic carbon content through time under UV365 illumination with and 

without anatase TiO2. 
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Figure E3: EIS spectra of SS304 (a) uncoupled and (b) coupled with TiO2 photoanode under (i) 

illumination and (ii) no illumination 

 

 

 

Figure E4: Polarization curves of SS304 uncoupled and coupled with TiO2 photoanode under (i) 

illumination and (ii) no illumination  
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Figure E5: (a) Unprotected and (b) photocathodic protected 22MNB5 base metal after 48 h of 

immersion in 5 wt % NaCl 

 

 

 

  


