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Abstract

With the rapid growth of streaming media applications, there has been a strong demand

of Quality-of-Experience (QoE) measurement and QoE-driven video delivery technologies.

While the new worldwide standard dynamic adaptive streaming over hypertext transfer

protocol (DASH) provides an inter-operable solution to overcome the volatile network

conditions, its complex characteristic brings new challenges to the objective video QoE

measurement models. How streaming activities such as stalling and bitrate switching

events affect QoE is still an open question, and is hardly taken into consideration in the

traditionally QoE models. More importantly, with an increasing number of objective QoE

models proposed, it is important to evaluate the performance of these algorithms in a

comparative setting and analyze the strengths and weaknesses of these methods.

In this study, we build two subject-rated streaming video databases. The progressive

streaming video database is dedicated to investigate the human responses to the combined

effect of video compression, initial buffering, and stalling. The adaptive streaming video

database is designed to evaluate the performance of adaptive bitrate streaming algorithms

and objective QoE models. We also provide useful insights on the improvement of adaptive

bitrate streaming algorithms.

Furthermore, we propose a novel QoE prediction approach to account for the instanta-

neous quality degradation due to perceptual video presentation impairment, the playback

stalling events, and the instantaneous interactions between them. Twelve QoE algorithms

from four categories including signal fidelity-based, network QoS-based, application QoS-

based, and hybrid QoE models are assessed in terms of correlation with human perception
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on the two streaming video databases. Experimental results show that the proposed mod-

el is in close agreement with subjective opinions and significantly outperforms traditional

QoE models.
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Chapter 1

Introduction

1.1 Motivations

In the past decade, there has been a tremendous growth in streaming media applications,

thanks to the fast development of network services and the remarkable growth of smart

mobile devices. Since the ratification of the MPEG-DASH standard in 2011 [72], video

streaming providers have invested significant effort in the transition from the conventional

connection-oriented video transport protocols towards HTTP adaptive streaming protocols

(HAS) due to its ability to traverse network address translations and firewall, reliability

to deliver video packet, flexibility to react to volatile network conditions, and efficiency

in reducing the server workload. DASH [10] achieves decoder-driven rate adaptation by

providing video streams in a variety of bitrates and breaking them into small HTTP file

segments. The media information of each segment is stored in a manifest file, which is

created at server and transmitted to clients to provide the specification and location of

1



each segment. Throughout the streaming process, the video player at the client adaptively

switches among the available streams by selecting segments based on playback rate, buffer

condition and instantaneous TCP throughput [72]. Adaptive bitrate streaming (ABR)

algorithms, that determine the bitrate of the next segment to download, are not defined

within the standard but deliberately left open for optimization of the algorithms. The key

to developing the optimal ABR algorithm is to define an optimization criterion that aims

at maximizing viewer quality-of-experience (QoE). Here QoE refers to the overall viewer

satisfaction of the playback experience of the video stream at the client’s receiving and

display device. QoE is centralized on human experience at the end of the video delivery

chain, and is different from the concepts of quality-of-service (QoS) or quality-of-delivery

(QoD), which focuses on the service level and stability of the video transmission process

through the network, and is often measured by network service and performance parameters

such as bandwidth, bit error rate, packet loss rate, and transmission delay.

Over the past decade, ABR has been a rapidly evolving research topic and has attracted

an increasing amount of attention from both industry and academia [30, 46, 40, 81, 12,

35, 85, 5]. We need to thoroughly understand realistic impairment patterns with the

help of the most commonly used ABR algorithms. As human visual system (HVS) is the

ultimate receiver of streaming videos, subjective evaluation is the most straightforward

and reliable approach to evaluate the QoE of streaming videos. The understanding of HVS

would inspire development and validation of objective video QoE assessment methods.

Furthermore, with many ABR algorithms at hand, it becomes pivotal to compare their

performance, so as to find the best algorithm as well as directions for further improvement.

Even though subjective quality assessment studies provide reliable evaluations, they are
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inconvenient, time-consuming, and expensive. Most importantly, they are not applicable in

the real-time playback scheduling framework. Therefore, highly accurate, low complexity

objective models are desirable to enable efficient design of quality-control and resource

allocation protocols for media delivery systems. Over the past decade, substantial effort

has been made to develop objective QoE models [78, 80, 63, 55, 58, 82, 29, 28, 53, 61, 84,

26, 68, 83, 59]. Most of them are designed for specific applications such as static video

quality assessment or progressive video streaming. Thus, an objective QoE model that can

accurately predict the subjective QoE is highly desirable.

In addition, no QoE validation literature has previously reported comprehensive com-

parative performance of different objective QoE models. It is therefore important that

objective QoE algorithms be tested on extensive ground truth data if they are to become

widely accepted. Furthermore, if this ground truth data, apart from being extensive in

nature, is also publicly available, then other researchers can report their results on it for

comparative analysis in the future.

1.2 Objectives

The objectives of this thesis are to carry out subjective testing and develop advanced

QoE models accurately predict the subjective perceived satisfaction of HAS, and to sys-

tematically investigate the performance of existing objective QoE algorithms and ABR

algorithms.
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1.3 Contributions

The major contributions of this thesis are summarized as follows.

• We construct two subject-rated streaming video databases. The first database is

dedicated to the combined effect of initial buffering, stalling and video compression on

QoE, which is one of the first publicly available databases of its kind. Our experiments

show that the video presentation quality of the freezing frame exhibits interesting

relationship, which has not been observed before, with the dissatisfaction level of the

stalling event. The second video database is the first large-scale database dedicated

to subjective evaluation of HAS videos under realistic settings and evaluation of

objective QoE models. Based on the subjective responses on streaming videos, we

provide useful insights on the improvement of ABR algorithms.

• We formulate a joint video streaming QoE model that incorporates both the video

presentation quality and the influence of playback stalling. Based on the two databas-

es, we conduct by far the most comprehensive evaluation on the objective QoE mod-

els. Twelve QoE algorithms from four categories including signal fidelity-based, net-

work QoS-based, application QoS-based, and hybrid QoE models are assessed in

terms of correlation with human perception. Statistical hypothesis tests are also

performed to compare QoE models in a statistically meaningful manner. Extensive

experiments on the benchmark databases show that the proposed model significantly

outperforms existing QoE models. In the end, we shed light on the development

objective QoE measurement algorithms and practical deployment of real-time QoE

monitoring systems throughout the delivery chain. The results have significant im-
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plications on how content providers can best use their resources to maximize user

perceived QoE and how should a practical real-time QoE monitoring system be de-

ployed.

1.4 Thesis Outline

The layout of this thesis is organized as follows.

Chapter 2 discusses the related work in the literature. It starts with a brief introduction

about the subjective QoE studies and existing publicly available video quality databases.

We then perform a brief overview of existing objective QoE models.

Chapter 3 presents in detail the design of the two streaming video databases and subjec-

tive experiments. From the analysis of the subjective response to the streaming videos, we

illustrate the interaction between stalling and video quality, and evaluate the performance

of ABR algorithms.

In Chapter 4, we propose a joint video streaming QoE model that incorporates both

the video presentation quality and the influence of playback stalling. In order to evaluate

the performance of the proposed QoE model, we present by far the most comprehensive

comparative study on the performance of objective QoE models. In the end, we shed light

on the practical real-time QoE monitoring frameworks throughout the delivery chain.

Finally, Chapter 5 summaries the work that has been done so far and discusses different

avenues for future research.
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Chapter 2

Literature Review

2.1 Subjective QoE Studies

Several well-known QoE databases have been widely used in the literature. In 2012, Moor-

thy et al. conducted a subjective video quality study on mobile devices and created the

LIVE mobile video quality assessment database (LIVEMVQA) [49] that consists of ten

reference and two hundred distorted videos with five distortion types: H.264 compression,

stalling, frame drop, rate adaptation, and wireless channel packet-loss.The single-stimulus

continuous scale method [32] is adopted for testing, where both the instantaneous ratings

as well as an overall rating at the end of each video is collected. It is the first publicly

available subject-rated video database that contains various types of practical distortions

in the streaming process. However, the distortion types of video sequences are isolated

and hence, the conclusions of the studies may not be directly transfered to the combined

degradations.
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LIVE QoE database for HAS (LIVEQHVS) [6] contains three reference videos con-

structed by concatenating eight high quality high definition video clips of different con-

tent. For each reference video, five bitrate-varying videos are constructed by adjusting the

encoding bitrate of H.264 video encoder resulting 15 quality-varying videos. Based on the

continuous-time subjective ratings, Chen et al. recognize the importance of the hystere-

sis effect and nonlinear perception of the time-varying video quality. Following a similar

subjective experiment setup to LIVEMVQA, the authors collect both the instantaneous

ratings and an overall rating at the end of each video. However, the small number of video

sequences in the database limits its current utility.

Ghadiyaram et al. [25] perform a subjective study to understand the influence of dy-

namic network impairments such as stalling events on QoE of users watching videos on

mobile devices. The constructed database (LIVEMSV) consists of 176 distorted videos

generated from twenty-four reference videos with twenty-six hand-crafted stalling events.

The authors adopted the single stimulus continuous quality evaluation procedure where

reference videos are also evaluated to obtain a difference mean opinion score (DMOS) for

each distorted video sequence. However, some of the stalling patterns are not realistic in

practical HAS services. For example, two consecutive stalling events must have a minimum

temporal separation with the duration of one segment in most of the ABR algorithms. In

addition, the lack of video compression and quality switching reduce the relevance of the

work to HAS. A summary of the aforementioned databases are given in Table 2.1.

Several other streaming video quality studies have been conducted in the past, mainly

towards understanding the effects of network stream quality on QoE, validating the per-

formance of ABR algorithms, and developing objective QoE models. Pastrana et al. [54]

8



Table 2.1: Comparison of publicly available QoE databases for adaptive video streaming
Database # of Source Videos # of Test Sessions HAS-related Impairments

LIVEMVQA 10 200 switching or stalling
LIVEQHVS 3 15 switching
LIVEMSV 24 176 stalling

Waterloo SQoE-I 20 180 initial buffering or stalling
Waterloo SQoE-II 20 450 initial buffering & stalling & switching

made one of the first attempts to measure the impact of stalling in video streaming ser-

vices. The study showed that QoE is influenced by both the duration and the frequency

of stalling events and was confirmed by Qi et al. [56]. Among those findings, the most

important one is that viewers tend to prefer videos that have less number of freeze events

(even if they are relative longer) to videos that have a sequence of short freezes through

time. Besides, Qi et al. [56] also found that a stalling of frame-level duration could not

be perceived, and thus has no impact on QoE. Staelens et al. [71] extended Qi’s research

and conclude that isolated stallings up to approximately 400 ms is acceptable to the end-

users. Moorthy et al. [49] investigated the trade-off between stalling and quality switching.

While many studies [20][4] assumed that stalling events are more annoying than quality

switches, the results in [49] showed that few stalling events are not yielding worse quality

than downward quality switches. Hoßfeld et al. [27] and Sackl et al. [62] found fundamen-

tal differences between initial delays and stalling. Unlike initial delay which is somewhat

expected by today’s consumers, stalling invokes a sudden unexpected interruption and dis-

tort the temporal video structure. Hence, stalling is processed differently by the human

sensory system, i.e., it is perceived much worse [18]. Garcia et al. [23] investigated the

quality impact of the combined effect of initial loading, stalling, and compression for high

definition sequences, from which they observed an additive impact of stalling and com-
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pression on perceived QoE. Besides the effect of video impairment itself, Seshadrinathan

et al. [64] described a hysteresis effect in a recent study of time-varying video quality. In

particular, an unpleasant viewing experience in the past tends to penalize the QoE in the

future and affect the overall QoE. However, the unavailability limits the usefulness of the

databases. Two excellent surveys on subjective QoE study can be found in [66] and [22].

Based on these subjective user studies, one may conclude that: 1) video presentation

quality, duration and frequency of stalling are the key factors contributing towards the

overall QoE; 2) Although very short stalling may not be perceived and thus has little

impact on QoE, visible stalling events can severely degrade QoE; 3) Viewers are much

more tolerant to initial buffering than stalling; 4) An unpleasant viewing experience in the

past tends to penalize future QoE.

However, all of the above studies suffer from the following problems: (1) the interac-

tion between video presentation quality and stalling experience is not investigated, (2) the

dataset is of insignificant size, (3) hand-crafted stalling and quality switching patterns do

not reflect realistic scenarios in the HAS, (4) the distortion types of video sequences are

isolated, (5) spatial resolution adaptation that is commonly used in the HAS is not present-

ed, and (6) the bitstream and network information, which are valuable to the development

of ABR algorithms and objective QoE models, are not available. Realizing the need for an

adequate and more relevant resource, we have endeavored to create databases of broader

utility for modeling and analyzing contemporary HAS.
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2.2 Objective QoE Models

The existing QoE models can be roughly categorized as follows:

• Signal Fidelity Measurement

Objective VQA approaches tackle the QoE problem from a signal fidelity point of

view to provide computational models that can automatically predict video pre-

sentation quality. In practice, for the sake of operational convenience, bitrate and

Quantization Parameter (QP) are often used as the indicators of video presentation

quality [2][86][1][10]. However, using the same bitrate or QP to encode different

video content can lead to drastically different visual quality. In addition, different

encoders operate at the same bitrate or QP but different operational or complexity

modes can also cause large quality variations in the compressed video streams. In

order to have a better estimation of the user perceived QoE, it is desired to assess

the raw video. For this purpose, the simplest and most widely used VQA measures

are the mean squared error (MSE) and peak signal-to-noise ratio (PSNR), which

are easy to calculate and mathematically convenient, but unfortunately do not cor-

relate well with perceived visual quality [77]. Research in perceptual VQA [79][76]

has been drawing significant attention in recent years, exemplified by the success of

the structural similarity index (SSIM) [78], the multi-scale structural similarity index

(MS-SSIM) [80], motion-based video integrity evaluation index (MOVIE) [63], video

quality metric (VQM) [55] and SSIMplus [58]. State-of-the-art VQA models employ

human visual system features in quality assessment, and thus provide perceptually

more meaningful prediction. Nevertheless, all of these models are only applicable
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when the playback procedure can be accurately controlled. However, video stream-

ing services, due to network impairments, may suffer from playback issues that could

significantly degrade user QoE. How modern VQA models can be used in the context

of HAS is still an open problem.

• QoE Prediction via Network Quality-of-Service (QoS)

The philosophy behind this type of approach is that there exists an causal relation-

ship between generic QoS problems (e.g, loss, delay, jitter, reordering and throughput

limitations) and generic QoE problems (e.g., glitches, artifacts and excessive waiting

time) [19]. Therefore, QoE can be easily quantified once the mapping function be-

tween QoS and QoE is known. Kim [36] found an exponential relationship between

QoE and several network QoS parameters such as packet loss, jitter, and bandwidth

utilization ratio. Instead of looking for the direct relationship between network QoS

parameters to QoE, Mok [47] tried to firstly estimate the application QoS parame-

ters such as stalling time and stalling frequency from the network QoS parameters,

and then performed regression analysis to acquire the relationship between QoE and

application QoS.

• QoE Prediction via Application Quality-of-Service

Most existing research in this direction are dedicated to stalling experience quantification.

Watanabe et al. [82] attempt to quantify streaming video QoE based on playback

stallings. They observed a logarithmic relationship between the global length of

stalling events and QoE. Mok et al. [47] associated the length and frequency of

stalling to QoE with a linear function. Hoßfeld et al. [19] [29][28] demonstrated the
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superiority of exponential mapping functions in many streaming applications. Al-

though the global QoS statistics-based QoE models are computationally efficient,

they ignore the importance of temporal factors. Rodriguez et al. [61] consider the

pattern of jitter and local content importance by subjective training of the content.

Yeganeh et al. [84] quantify the stalling experience with a raised cosine function and

the recovery of satisfaction level during the playback state with a linear model. Deep-

ti et al. [26] employ a Hammerstein-Wiener model using the stalling length, the total

number of stalling events, the time since the previous stall, and the inverse stalling

density as the key features to predict the instantaneous experience at each moment.

Apparently both video presentation quality and application level QoS capture impor-

tant aspects in QoE. Unfortunately, very few approaches incorporate the two aspects

into a unified model. Liu et al. [41] and Yin et al. proposed to use both bitrate

and stalling duration to predict subjective QoE. Singh et al. [68] tried to solve this

problem by training a random neural network [24] using QP, frequency, average and

maximum duration of stalling events as input features. Xue et al. [83] estimated the

video presentation quality by QP and weighted the impact of stalling by packet bit

count as an indicator of motion complexity. These algorithms define video presen-

tation quality as a function of QP or bitrate, which have been proven to be poor

perceptual quality indicators.

• Hybrid Approach

Most existing methods rely on bitrate and global statistics of stalling events for QoE

prediction. This is problematic for two reasons. First, using the same bitrate to

encode different video content results in drastically different presentation quality.
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Second, the correspondence between bitrate and perceptual quality is non-linear. In

order to resolve the problems, Liu et al. [42] and Bentaleb et al. [5] incorporated

state-of-the-art VQA algorithms VQM [55] and SSIMplus [58] with stalling duration

to predict the subjective QoE.

Despite the demonstrated success, most existing QoE predictors either underestimate

the effect of perceptual video presentation quality or simply equate it to bitrate or QP.

More importantly, one common assumption of all these approaches is that there is no

interaction between video presentation quality and stalling experience, which has not been

systematically examined.
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Chapter 3

Subjective Quality-of-Experience

User Study of Streaming Videos

In this chapter, we construct two subject-rated databases to understand human perceived

QoE of streaming videos. We investigate the combined effect of video quality and stalling

experience on QoE with the first database, and evaluate the performance of existing ABR

algorithms under realistic contisions with the second database.

3.1 Progressive Streaming Video Database

To the best of our knowledge, current publicly available databases are dedicated to either

video presentation quality that is affected by compression, channel transmission losses,

scaling, or the impact of stalling in terms of its occurring position, duration, and frequency.

However, QoE of streaming video should be a joint effect of the video presentation quality
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and playback stalling. Although the combined effect of stalling and video bitrate has been

investigated by Garcia et al. [23], the study suffers from the following problems: (1) the

dataset is of insufficient size (6 source sequences); (2) bitrate is not a good indicator of

video presentation quality as discussed in the Section 2.2; and (3) the database is not

publicly available. Therefore, our goal is to develop a dedicated database to study the

interaction between stalling effect and presentation quality for video streaming.

3.1.1 Video Database Construction and Subjective User Study

A video database, named Waterloo Streaming QoE Database I (SQoE-I), of 20 pristine

high-quality videos of size 1920 × 1080 are selected to cover diverse content, including

humans, plants, natural scenes, architectures and computer-synthesized sceneries. All

videos have the length of 10 seconds [21]. The detailed specifications of those videos

are listed in Table 3.1 and a screenshot from each video is included in Fig. 3.1. Using

aforementioned sequences as the source, each video is encoded into three bitrate levels

(500Kbps, 1500Kbps, 3000Kbps) with x264 encoder to cover different quality levels. The

choices of bitrate levels are based on commonly-used parameters for transmission of HD

videos over networks. A 5-second stalling event is simulated at either the beginning or

the middle point of the encoded sequences. The stalling indicator was implemented as

a spinning wheel. In total, we obtain 200 test samples that include 20 source videos, 60

compressed videos, 60 initial buffering videos, and 60 mid-stalling videos.

The subjective testing experiment is setup as a normal indoor home settings with ordi-

nary illumination level, with no reflecting ceiling walls and floors. All videos are displayed
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Figure 3.1: Subjective test sequences
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Table 3.1: Information of reference videos.

Index Name Frame Rate Description
a Animation 25 animation, high motion
b Biking 50 human, outdoor
c BirdsOfPrey 30 natural, static
d ButterFly 25 natural, outdoor
e CloudSea1 24 architecture, static
f CloudSea2 24 outdoor, high motion
g CostaRica1 25 natural, static
h CostaRica2 25 natural, static
i Football1 25 human, high motion
j Football2 25 human, high motion
k Football3 25 human, high motion
l Forest1 25 natural, static

m Forest2 25 natural, outdoor
n MTV 25 human, indoor
o Ski 30 outdoor, high motion
p Squirrel 25 animation, outdoor
q Transformer1 24 human, static
r Transformer2 24 human, architecture
s Basketball1 25 human, high motion
t Basketball2 25 human, high motion

at their actual pixel resolution on an LCD monitor at a resolution of 2560 × 1600 pixel

with Truecolor (32bit) at 60Hz. The monitor is calibrated in accordance with the recom-

mendations of ITU-T BT.500 [32]. A customized graphical user interface is used to render

the videos on the screen with random order and to record the individual subject ratings

on the database. The study adopts a single-stimulus quality scoring strategy. A total of

25 näıve subjects, including 13 males and 12 females aged between 22 and 30, participate

in the subjective test. Visual acuity (i.e., Snellen test) and color vision (i.e., Ishihara) are

confirmed from each subject before the subjective test. A training session was performed

before the data collection, during which, 4 videos (of 1. pristine quality video, 2. 500Kbps
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encoded video, 3. video with initial buffering, and 4. video with stalling) were presented

to the subjects. We used the same methods to generate the videos used in the training and

testing sessions. Therefore, subjects knew what distortion types would be expected before

the test session, and thus learning effects are kept minimal in the subjective experiment.

Subjects were instructed with sample videos to judge the overall visual quality consider-

ing both picture distortion artifacts and video freezes as quality degradation factors. The

subjects are allowed to move their positions to get closer or farther away from the screen

for better observation. For each subject, the whole study takes about one and half hour,

which is divided into three sessions with two 7-minute breaks in-between. In order to min-

imize the influence of fatigue effect, the length of a session was limited to 25 minutes. The

choice of a 100-point continuous scale as opposed to a discrete 5-point ITU-R Absolute

Category Scale (ACR) has advantages: expanded range, finer distinctions between ratings,

and demonstrated prior efficacy [44].

A common dilemma in every subjective video quality experiment is how much instruc-

tion should be given to the subjects. In practice, humans are often attracted by video

content rather than quality variations. But to collect quality scores, certain instruction

has to be given to the subjects in order to obtain their opinions on video quality. On the

other hand, if too much instruction is given, the subjects may be over-educated to give

“clean” but unrealistic scores. In our study, to give uniform instruction to all subjects,

and to investigate the interactions between presentation quality and delay/stalling, we find

it necessary to inform the subjects about what types of quality degradations they should

expect to see. Other than that, no further specifications are given.

Since the break between successive test sessions is considerably short, alignment on the
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subjective scores is not performed. In other words, raw subjective scores are used in the

subsequent analysis. After the subjective user study, two outliers are removed based on

the outlier removal scheme suggested in [32]. After outlier removal, Z-scores are linearly

rescaled to lie in the range of [0, 100]. The final quality score for each individual image

is computed as the average of rescaled Z-scores, namely the mean opinion score (MOS),

from all valid subjects. The final quality score for each individual image is computed as the

average of subjective scores, namely the mean opinion score (MOS), from all valid subjects.

Considering the MOS as the “ground truth”, the performance of individual subjects can

be evaluated by calculating the correlation coefficient between individual subject ratings

and MOS values for each image set, and then averaging the correlation coefficients of all

image sets. The Pearson linear correlation coefficient (PLCC) and Spearman’s rand-order

correlation coefficient (SRCC) are employed as comparison criteria, whose range is from 0

to 1 and higher values indicate better performance. They can be computed for each subject

and their values for all subject are depicted in Fig. 3.2. It can be seen that each individual

subject performs well in terms of predicting MOSs. The average performance across all

individual subjects is also given in the rightmost column in Fig. 3.2. This provides a

general idea about the performance of an average subject. Therefore, we conclude that

considerable agreement is observed among different subjects on the perceived quality of

the test video sequences.

3.1.2 Subjective Data Analysis

One of the main objectives of this subjective experiment is to investigate whether the

impact of the stalling events are independent of the video presentation quality. If the
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Figure 3.2: PLCC and SRCC between individual subject rating and MOS. Rightmost
column: performance of an average subject.

answer is yes, then regardless of the video presentation quality, stallings will have the same

impact on the overall QoE scores. Assuming an additive relationship between stalling

and video presentation quality as in [23], we are expecting a near constant MOS drop

across different video presentation quality when a stalling event occurs in the middle of

the sequences.

Fig. 3.3 shows a scatter plot of the instantaneous quality of the freezing frame predicted

by SSIMplus [58] and the MOS degradation for both initial delay and playback stalling. It

can be observed that for the stalling at the same temporal instance and of the same dura-

tion, human subjects tend to give a higher penalty to the video with a higher instantaneous

video presentation quality at the freezing frame. We further performed a statistical signif-

icance test as follows. Denoting the SSIMplus score of the initial buffered/stalling frame,

and the MOS drop of the test video with initial buffering/stalling as random variables

X1/X2 and Y1/Y2, we specify the null hypotheses H1/H2 as that X1/X2 is uncorrelated
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Figure 3.3: SSIMplus of stalling frames vs. MOS drop.

with Y1/Y2. The test statistic is t = r
√
N−2

1−r2 , where r and N are the correlation coefficient

and the number of samples, respectively. The resulting test statistic is used to compute

the P -values by referring to a t-distribution with N − 2 degrees of freedom. Since the

P -values (6.32x10−8 for initial buffering and 6.87x10−13 for stalling) are much smaller than

the significance level 0.05, we reject the null hypotheses in favor of the alternatives. The

results suggest that there is sufficient evidence at the 0.05 significance level to conclude

that there is a linear relationship in the population between the SSIMplus score (estimation

of the presentation quality) of the initial buffered/stalling frame and the QoE drop. This

phenomenon was not observed in previous studies. One explanation may be that there

is a higher viewer expectation when the video presentation quality is high, and thus the

interruption caused by stalling make them feel more frustrated.
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3.2 Adaptive Streaming Video Database

Even though the Waterloo SQoE-I database illustrates interesting relationship between the

presentation video quality and impact of stalling events, it may not be an excellent resource

to validate the performance of objective QoE models. The degradations of the presented

video sequences are isolated. Combined degradations, like initial delay and compression,

or initial delay and stalling, are not investigated. As in a realistic setting, combined degra-

dations are not an exception, the results of this study cannot really be directly transferred.

Furthermore, the influence of bitrate switching, which has been recognized as an important

factor of QoE for adaptive streaming [66, 22], should also be investigated. Realizing the

need for an adequate resource, we have endeavored to create the Waterloo Streaming QoE

Database II (SQoE-II).

3.2.1 Video Database Construction and Subjective User Study

Evaluation Client Bandwidth 

Shaping

Network 

Emulation

HTTP Server

Figure 3.4: Experimental setup.

In order to generate meaningful and representative test videos, we conducted a set

of DASH video streaming experiments, recorded the relevant streaming activities, and
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reconstructed the streaming session using video processing tools. We followed the rec-

ommendation in [74] and [50] to setup the testbed. The architecture of the testbed is

depicted in Fig. 3.4 and consists of four modules: two computers (Ubuntu 14.04 LTS) with

a 100Mbps direct network connection emulating a video client and server. DASH videos

were pre-encoded and hosted on an Apache web server. The main components of this ar-

chitecture were the bandwidth shaping and the network emulation nodes which were both

based on Ubuntu utilities. The bandwidth shaping node controlled the maximum achiev-

able bandwidth for the client with the Linux traffic control system (tc) and the hierarchical

token bucket (htb) which is a classful queuing discipline (qdisc). The available bandwidth

for the client was adjusted every second according to bandwidth traces. The video client,

where adaptation algorithms were deployed, was a Google Chrome web browser for Linux

(version 44) with V8 JavaScript engine while the video server was a simple HTTP server

based on node.js (version 0.10.40). After each video streaming session, a log file was gen-

erated on the client device, including selected bitrates, duration of initial buffering, start

time, and end time of each stalling event. According to the recorded logs, we reconstructed

each streaming session by concatenating streamed bitrate representations, appending blank

frames to the test video to simulate initial buffering, and inserting identical frames at the

buffering time instance to simulate stalling event. The loading indicator (for both initial

buffering and stalling) was implemented as a spinning wheel. We describe each module in

the testbed in detail throughout this section.

Source Videos and Encoding Configuration: A video database of twenty pristine

high-quality videos of size 1920 × 1080 were selected to cover diverse content, including

humans, plants, natural scenes, architectures, screen content, and computer-synthesized
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(q) TrafficAndBuilding (r) Transformer (s) Valentines (t) ZapHighlight

Figure 3.5: Snapshot of sequences.
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sceneries. RushHour, TallBuildings, and TrafficAndBuilding were from the SJTU 4K video

dataset [69]. All videos have the length of 10 seconds [21]. The detailed specifications

of those videos are listed in Table 3.2 and a screenshot from each video is included in

Fig. 3.5. Spatial information (SI) and temporal information (TI) [33] that roughly reflect

the specifications of video content are also given in Table 3.2. Apparently, the video

sequences are of diverse spatio-temporal complexity and widely span the SI-TI space. Using

aforementioned sequences as the source, each video was encoded into eleven representations

as shown in Table 3.3 with x264 encoder to cover different quality levels. The choices

of bitrate levels were based on the Netflix’s recommendation [51] while representation

eleven was appended to the original bitrate ladder to cover the high-quality representation

suggested in the Apple’s recommendation [3]. We segmented the test sequences with

GPAC’s MP4Box [38] with a segment length of 2 seconds for the following reasons. First,

2-second segments are widely used in the development of adaptation logics and is the most

common segment size currently adopted by actual deployments. On the other hand, we

aimed to design test videos in an efficient way such that they cover a diverse adaptation

patterns in a limited time.

Bandwidth shaping: The delay of network simulator was set to 80ms corresponding

to what can be observed within long-distance fixed line connections or reasonable mobile

networks, and thus is representative for a broad range of application scenarios as suggested

in [74]. We used 13 network traces shown in Fig. 3.6 that are wide-ranging and repre-

sentative including stationary as well as different mobility scenarios, such as pedestrian,

car, train, etc. The average bandwidth of the network traces varies between 200Kbps and

7.2Mbps covering all range of bitrates in the bitrate ladder.
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Table 3.2: Spatial information (SI), temporal information (TI), frame rate (FPS), and
description of reference videos

Name FPS SI TI Description
BigBuckBunny 30 96 97 Animation, high motion

BirdOfPrey 30 44 68 Natural scene, smooth motion
Cheetah 25 64 37 Animal, camera motion

CostaRica 25 45 52 Natural scene, smooth motion
CSGO 60 70 52 Game, average motion
FCB 30 80 46 Sports, average motion

FrozenBanff 24 100 88 Natural scene, smooth motion
Mtv 25 112 114 Human, average motion

PuppiesBath 24 35 45 Animal, smooth motion
RoastDuck 30 60 84 Food, smooth motion
RushHour 30 52 20 Human, smooth motion

Ski 30 61 82 Sport, high motion
SlideEditing 25 160 86 Screen content, smooth motion
TallBuildings 30 81 13 Architecture, static
TearsOfSteel1 24 53 66 Movie, smooth motion
TearsOfSteel2 24 56 11 Movie, static

TrafficAndBuilding 30 66 15 Architecture, static
Transformer 24 72 56 Movie, average motion
Valentines 24 40 52 Human, smooth motion

ZapHighlight 25 97 89 Animation, high motion

Table 3.3: MPEG-DASH representations for test sequence

Representation
Resolution

Bitrate
index (kbps)

1 320×240 235
2 384×288 375
3 512×384 560
4 512×384 750
5 640×480 1050
6 720×480 1750
7 1280×720 2350
8 1280×720 3000
9 1920×1080 4300
10 1920×1080 5800
11 1920×1080 7000
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Figure 3.6: Bandwidth profiles used in the experiment. The profiles are indexed from the
lowest to the highest average bandwidth.
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ABR algorithms: We prototyped six bitrate adaptation algorithms in an open source

dynamic adaptive streaming player called dash.js [10]. Our choice of platform is a prag-

matic one because it is the reference open-source implementation for the MPEG-DASH

standard based on the HTML5 specification and is actively supported by leading industry

participants. The implementation details of the six bitrate adaptation algorithms are listed

as follows:

1. Rate-based [10]: The rate-based adaptation algorithm, which is the default logic in

the DASH standard, picks the maximum available bitrate which is less than through-

put prediction using the arithmetic mean of past 5 chunks. The original algorithm

starts with a constant bitrate if the viewing history is not available in the DOM

storage. We set the initial bitrate to 1200Kbps.

2. Buffer-based [30]: We employ the function suggested by Huang et al. [30], where

bitrate is chosen as a piecewise linear function of buffer occupancy. The algorith-

m always starts with the lowest bitrate till the buffer occupancy reaches a certain

threshold called reservoir. Once reservoir is filled up, the algorithm allows to select

a higher bitrate as the buffer occupancy increases till there is enough video segment

in the buffer (upper reservoir) to absorb the variation caused by the varying capac-

ity and by the finite chunk size, where the range from the lower to upper reservoir

is defined as cushion. We set lower reservoir and cushion to be 2 and 5 seconds,

respectively.

3. AIMD [40]: The algorithm proposed by Liu et al. picks the representation according

to the bandwidth estimation using the previous downloaded chunk in a additive
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increase multiplicative decrease manner. When the two thresholds for switching are

not met, the algorithm keeps the selected bitrate.

4. ELASTIC [12]: This algorithm incorporates a PI-controller to maintain a constant

duration of video in the buffer (5 seconds in the experiment). Since the bandwidth

estimation module is not specified in the original implementation, we adopt the

throughput prediction using harmonic mean of the past 5 chunks, because it is shown

to be effective in previous studies [35].

5. QDASH [46]: QDASH picks an intermediate bitrate when there is a bandwidth drop

to mitigate the negative impact of abrupt quality degradation. Without impacting

the performance, we replace the proxy service for bandwidth estimation in the orig-

inal implementation with the throughput prediction using harmonic mean of past 5

chunks for simplicity.

6. FESTIVE [35]: This rate-based algorithm balances both efficiency and stability, and

incorporates fairness across players but that is not a concern of this paper. We assume

there is no wait time between consecutive chunk downloads, and implement FESTIVE

without the randomized chunk scheduling. Note that this does not negatively impact

the player QoE. Specifically, FESTIVE calculates the efficiency score depending on

the throughput prediction using harmonic mean of the past 5 chunks, as well as a

stability score as a function of the bitrate switches in the past 5 chunks. The bitrate

is chosen to the minimize stability score plus α = 12 times efficiency score.

Since the selection of initial bitrate is not explicitly defined in AIMD, Elastic, QDASH,

and FESTIVE, to provide a realistic simulation and to cover a diverse distortion pattern,
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we add a random noise with standard deviation of 200Kbps to the initial bitrate in the

actual trace as the selected initial bitrate.

In the end of the simulation, a total of 1,560 streaming sessions (20 source videos

× 6 adaptation algorithms × 13 bandwidth profiles) are recorded. Around 25% of the

streaming videos are found to be duplications of each other due to the intrinsic similarity

between the adaptation algorithms, and thus are discarded from the subjective experiment

to shorten its duration, resulting in 1,164 unique streaming videos. Due to the limited

duration of the subjective experiment, we randomly select ten streaming sessions from

the resulting streaming video pool for fifteen contents and reconstruct all the streaming

sessions of the other five contents. In summary, the Waterloo SQoE-II database consists of

twenty reference videos and 450 distorted videos, and of average duration thirteen seconds.

The detailed profile of the streaming videos is illustrated in Fig. 3.7. Under the assumption

that the video player’s resolution does not change during video playback and the videos

are always played at full-screen mode, all YUV frames are upsampled to 1920×1080 and

then encapsulated into MP4 containers in order to match the rendering device resolution.

We adopt the same subjective testing methodology and data processing procedure as

in Section 3.1. A total of 34 näıve subjects, including nineteen males and fifteen females

aged between 18 and 35, participate in the subjective test. For each subject, the whole

study takes about three hours, which is divided into six sessions with five 7-minute breaks

in-between. In order to minimize the influence of fatigue effect, the length of a session was

limited to 25 minutes. Subsequently, 4 outliers are removed based on the outlier removal

scheme suggested in [32], resulting in 30 valid subjects. After outlier removal, Z-scores

are linearly rescaled to lie in the range of [0, 100]. The MOS for each individual video is
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(a) BigBuckBunny
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(b) BirdOfPrey
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(c) FCB
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(d) Ski
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(e) TearsOfSteel1
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(f) Cheetah
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(g) CostaRica
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(h) CSGO
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(i) FrozenBanff
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(j) Mtv
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(k) PuppiesBath
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(l) RoastDuck
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(m) RushHour

0 10 20 30
0

10

20

30

40

50

60

Time

Se
qu

en
ce

 

 

Stalling
235k
375k
560k
750k
1050k
1750k
2350k
3000k
4300k
5800k
7000k

(n) SlideEditing

0 10 20 30
0

10

20

30

40

50

60

Time
Se

qu
en

ce

 

 

Stalling
235k
375k
560k
750k
1050k
1750k
2350k
3000k
4300k
5800k
7000k

(o) TallBuildings
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(p) TearsOfSteel2
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(q) Traffic&Building
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(r) Transformer
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Figure 3.7: Representation of selected sequences.
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Figure 3.8: Quality characteristic of Waterloo SQoE-II database.

computed as the average of rescaled Z-scores, from all valid subjects. Fig. 3.8 plots the

MOS scores across distorted videos for the subjective study, and shows the corresponding

histograms for the MOS and the associated standard deviation in order to demonstrate that

the distorted videos span most of the quality range. The average standard deviation in the

MOS was 19 across the 450 distorted videos. By comparison, however, subjects have a less

degree of agreement in QoE for streaming videos with combined degradations than videos

with isolated degradations in LIVEMVQA [49] and Waterloo SQoE-I database [16]. The

result motivates the development of per-view QoE monitoring and optimization systems

in the future.

3.2.2 Evaluation of ABR Algorithms

We use MOS of the six ABR algorithms described in the previous section to evaluate

and compare their performance. The mean of MOS values across different content under
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Figure 3.9: Performance of adaptation logic under testing network conditions.

thirteen network conditions for the ABR algorithms are summarized in Fig. 3.9. It is worth

mentioning that this only provides a rough comparison of the relative performance of the

ABR algorithms in the “startup phase”. Besides, computational complexity is not a factor

under consideration.

From the subjective test results, we have several observations. First, the video quality

at which the content is streamed has a significantly higher impact on live content , e.g.,

FCB, than on VoD content. In particular, none of the live video sequences of average

bitrate lower than 800 kbps received a rating higher than 60. This conclusion is consistent

with the previous study [14]. Second, buffer-based algorithm [30], which spent 60% of

the time at bitrates lower than 1,000 kbps even under the best network condition in the

experiment, provides the lowest QoE under most network conditions. Similarly, due to the

conservative switching strategy where the player only switches to the next level and uses

a lower rate of upward switches at higher representation levels, FESTIVE [35] (the algo-
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rithm increase the bitrate at bitrate level k only after k chunks) performs poorly under the

ramp up network condition VIII. This suggests that a consistently low video presentation

quality is not tolerated by subjects. Third, FESTIVE [35] achieves the best performance

under the ramp down network condition VII although it consumes the lowest bitrate among

bandwidth-aware algorithms due to its multiplicative (0.85) factor on the estimated band-

width. This conservative strategy helps tolerate the buffer fluctuation caused by variability

in chunk size and reduces the likelihood of stalling, especially at high bitrates because a

sudden bandwidth drop may results in longer stalling time at higher bitrates. Based on

the two observations, we conclude that a QoE-driven ABR algorithm should adopt a state-

ful bitrate selection that performs aggressively at low bitrates and conservatively at high

bitrates. While FESTIVE [35] takes the stateful approach, bitrate level is not a proper

indicator of state because it does not generalize well to different size of bitrate ladder. In-

terestingly, previous studies [35] proved that such stateful design converges to a fair share

of bandwidth if there are multiple competitors. Our results further emphasize the benefits

of stateful design of ABR algorithms. Fourth, it can be observed from Fig. 3.9 that the

rate-based algorithm [10] performs at least as good as other bandwidth-aware algorithms

under network conditions I, II, and III while it performs poorly otherwise. This may be

explained by the startup strategy. Since the rate-based algorithm [10] starts with a con-

stant bitrate (1,200 kbps in our experiment) regardless of the network condition while the

other bandwidth-aware algorithms start with bitrates around the initial bandwidth, the

initial bitrates of the rate-based algorithm [10] is the highest among the bandwidth-aware

algorithms under the first three network conditions and the lowest under other network

conditions. The results suggest that the fast startup strategy that begins with low bi-
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trates is not appreciated by the subjects. This phenomenon is also orally confirmed by the

participants: about 40% of subjects reported that initial buffering events of duration less

than 4 seconds is acceptable and the initial impression of video quality plays an important

role in the QoE. Fifth, QDASH [46] that temporarily trades the buffer occupancy for high

bitrates during bandwidth drop outperforms all other algorithms under the ramp down

network condition XI, which confirms that smooth quality degradations are preferred over

abrupt transitions [46]. From the algorithm design space point of view, both rate-based

and buffer-based algorithms discard useful information, and thus result in suboptimal so-

lution. Sixth, not a single algorithm provides the best perceptual quality under all network

profiles. This suggests that there is still room for future improvement, and proper combi-

nation of the ideas used in different ABR algorithms has the potential to further improve

the performance.

3.3 Summary

We have presented two subjective studies to understand human visual QoE of streaming

video. The first subjective experiment reveals some interesting relationship between the

impact of stalling and the instantaneous presentation quality. We evaluate the performance

of ABR algorithms with the second streaming video database and provide useful insights

for future improvement.
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Chapter 4

Objective Quality-of-Experience

Model of Streaming Videos

In this chapter, we aim to tackle the problem of objective QoE assessment for streaming

videos. In order to validate the proposed QoE model, we carried out by far the most

comprehensive evaluation of objective QoE models on the two subject-rated databases.

Finally, we shed light on the practical real-time QoE monitoring frameworks throughout

the delivery chain.

4.1 A Quality-of-Experience Index for Streaming Video

Motivated by the observation and analysis provided in Section 3.1, we develop a unified

QoE prediction model named Streaming QoE Index (SQI) by incorporating the video

presentation quality and the impact of initial buffering and stalling events. In particular,
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we consider QoE as a combined experience of video presentation quality, stalling experience

and their interaction.

4.1.1 Video Presentation Quality

For each frame in the streaming video, its instantaneous video presentation quality Pn can

be estimated at the server side by a frame-level VQA model before transmission

Pn = V (Xn, Rn), (4.1)

where Xn and Rn are the n-th frame of the streaming video and pristine quality video,

and V (·) is a full reference VQA operator. The computed quality score V (Xn, Rn) can

either be embedded into the manifest file that describes the specifications of the video, or

carried in the metadata of the video container. Currently, the development of the next-

generation ISO base media file format that incorporates time-varying video quality metric

is ongoing [31]. The manifest or metadata file is transmitted to the client side such that

its information is available to the client. In commonly used streaming protocols such as

MPEG-DASH, the partially decoded frame will not be sent for rendering, and thus viewers

will see the last successfully decoded frame during the stalling interval. Thus, for a stalling

moment n in the interruption period [i, j], the video presentation quality at the instance,

Pn, is the same as the quality of the last decoded frame

Pn = Pi−1. (4.2)
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4.1.2 Stalling Experience Quantification

To simplify the formulation, we assume the influence of each stalling event is independent

and additive. As such, we can analyze each stalling event separately and compute the

overall effect by aggregating them. Note that each stalling event divides the streaming

session time line into three non-overlapping intervals, i.e., the time intervals before the

stalling, during the stalling, and after the stalling. We will discuss the three intervals

separately because the impact of the stalling event on each of the intervals are different.

First, we assign zero penalty to the frames before the stalling occurs when people have

not experienced any interruption. Second, as a playback stalling starts, the level of dissat-

isfaction increases as the stalling goes on till playback resumes. The study on the impact

of waiting time on user experience in queuing services [37] has a long history from both

an economic and a psychological perspective, and has been recently extended to quantify

the relationship between QoE and QoS in adaptive streaming [19]. The exponential decay

function has been successfully used in previous studies [19][29][28]. The use of exponential

decay assumes an existence of QoE loss saturation to the number and length of stalling,

and low tolerance to jitters comparing to the other commonly used utility function such

as logarithm and sigmoid. Here we approximate the QoE loss due to a stalling event

with an exponential decay function similar to [19][29][28]. Third, QoE also depends on

a behavioural hysteresis “after effect” [64]. In particular, a previous unpleasant viewing

experience caused by a stalling event tends to penalize the QoE in the future and thus

affects the overall QoE. The extent of dissatisfaction starts to fade out at the moment of

playback recovery because observers start to forget the annoyance. To model the decline of

memory retention of the buffering event, we employ the Hermann Ebbinghaus forgetting

39



curve [17]

M = exp

{
− t

T

}
, (4.3)

where M is the memory retention, T is the relative strength of memory, and t is the time

instance.

Assume that the k-th stalling event locates at [ik, ik + lk], where lk is the length of stall,

a piecewise model is constructed to estimate the impact of each stalling event on the QoE

Sk(t) =



Pik−1

(
−1 + exp

{
−
(
tf − ik
T0

)})
ik
f
≤ t ≤ ik+lk

f

Pik−1

(
−1 + exp

{
−
(
lk
T0

)})
·
(

exp

{
−
(
tf − ik − lk

T1

)})
t > ik+lk

f

0 otherwise

(4.4)

where f is the frame rate in frames/second, and T0, T1 and Sk(t) represent the rate of

dissatisfaction, the relative strength of memory and the experience of the k-th stalling

event at time t, respectively. Pik−1, the scaling coefficient of the decay function, has two

functions: 1) it reflects the viewer expectation to the future video presentation quality,

and 2) it normalizes the stalling effect to the same scale of VQA kernel. This formulation

is qualitatively consistent with the relationship between the two QoE factors discussed

in the previous section. In addition, since the impact of initial buffering and stalling

are different, we have two sets of parameters: {T init
0 , T init

1 } for initial delay and {T0, T1}

for other playback stallings, respectively. We also assume the initial expectation P0 is a

constant. In this way, the initial buffering time is proportional to the cumulated experience

loss.

The instant QoE drop due to stalling events is computed by aggregating the QoE drop
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caused by each stalling event and is given by

S(t) =
N∑
k=1

Sk(t), (4.5)

where N is the total number of stalling events.

An important fact we have learned from the previous subjective study [49] is that

the frequency of stalling negatively correlates with QoE for a streaming video of constant

quality, sufficient length, and a fixed total length of stalling L. Although not explicitly

defined in the expression, it can be shown that the effect of stalling frequency can be

captured by the proposed model with a deliberate parameter selection. To see that, we

first adopt the aforementioned test condition in [49] and assume Pn = C, where C is a

positive constant. Then, the end-of-process QoE of the proposed model is fully determined

by experience loss of stalling, which becomes a function of stalling frequency only. When

the total length of stalling L is fixed and assume equal length of each individual stall, then

the length of each stall is L/N , and the stalling frequency is inverse proportional to the

total number of stalls N . Thus, we only need to check whether the cumulated QoE drop

over all time

G(N) =

∫ ∞
−∞

S(t)dt, for lk =
L

N
, k = 1, 2, ..., N (4.6)

is monotonically decreasing with respect to N . By substituting Eqs. (4.4) and (4.5) into

(4.6), we can simplify the expression as

G(N) = C (T1 − T0)

{
N exp

[
−
(

L

NT0

)]
−N

}
− CL

for N ≥ 1, T0 > 0, T1 > 0, L > 0.

(4.7)
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Let g(x) = x exp
{
−
(

L
xT0

)}
− x, it is not hard to verify dg(x)

dx
< 0,∀x ≥ 1. Therefore, the

model is able to implicitly account for the effect of stalling frequency as long as T1 > T0.

In addition, we have also learned from previous subjective study [29] that the impact of

stalling tends to saturate with the increase of the number of stalling events at a constant

quality setting. Interestingly, with the independent and additive assumption, SQI is still

able to predict that the overall QoE has an exponential-like response for each addition

stalling event. To understand this, let us denote the video presentation quality of each

frame/segment, the length of static video in seconds, the duration of each stalling events,

the number of stalling events, and the overall QoE by Pn, T , Ts, N , and Q, respectively.

In [29], the authors performed their subjective study with a constant quality setting, i.e.,

Pn = P . According to Eq. (4.2), the video presentation quality that caused by the stalling

events changes from Pn = P, ∀n ∈ [0, T ] to Pn = P, ∀n ∈ [0, T + NTs]. According to

Eq. (4.5), the overall stalling experience is NSk(Ts),∀k ∈ [1, N ]. Thus, the overall QoE

can be represented as Q = (T+NTs)P+NSk(Ts)
T+NTs

. We plot Q with respect to N on a 5-point

absolute category rating (ACR) scale in Fig. 4.1, where it can be observed that the influence

of each additional stalling event follows an exponential-like decreasing pattern in SQI.

In real-world applications, to measure the impact of stalling at individual frames, we

convert the continuous function in Eq. (4.5) into its discrete form by sampling the function

at each discrete time instance n:

Sn = S

(
n

f

)
. (4.8)
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Figure 4.1: SQI at different number of stalling events.

4.1.3 Overall QoE

The instantaneous QoE at each time unit n in the streaming session can be represented as

the aggregation of the two channels

Qn = Pn + Sn. (4.9)

In practice, one usually requires a single end-of-process QoE measure. We use the mean

value of the predicted QoE over the whole playback duration to evaluate the overall QoE.

To reduce the memory usage, the end-of-process QoE can be computed in a moving average

fashion

An =
(n− 1)An−1 +Qn

n
, (4.10)

where An is the cumulative QoE up to the n-th time instance in the streaming session. An

example of each channel and the final output of the model is illustrated in Fig. 4.2.
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Figure 4.2: An illustrative example of and channel responses at each frame. (a) video
presentation quality of the static video at each frame. ‘*’ indicates the position of stalling.
(b) video presentation quality of the streaming video during playback at each frame. ‘*’
indicates the position of stalling and ‘o’ indicates the position of recovery. (c) QoE drop
due to each stalling events at each frame. The solid curve shows the QoE drop due to
initial buffering and the dashed curve shows the QoE drop due to playback stalling. (d)
Overall QoE at each time instance during playback.
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Table 4.1: SQI parameters.

Parameter Description
T0 rate of dissatisfaction in stalling event
T1 strength of memory in stalling event
T init

0 rate of dissatisfaction in initial buffering event
T init

1 strength of memory in initial buffering event
P0 expectation on initial quality of the video

4.1.4 Implementation details

Throughout the thesis, the proposed SQI uses the following parameter settings: T init
0 = 2,

T init
1 = 0.5, T0 = 1, T1 = 1.2 and P0 = 0.8 · |(V (·)|, where |V (·)| is the dynamic range of

adopted VQA kernel, e.g. PSNR ranges from 0 to infinity (in the actual computation, we

set the range of PSNR to 0-50); SSIM and MS-SSIM range from -1 to 1; and SSIMplus

ranges from 0 to 100. These values are somewhat arbitrary, but we find that in our

current experiments, the performance of the SQI is fairly insensitive to variations of T init
0 ,

T init
1 , T0 and T1 at least within an order of magnitude of the parameter values. P0 is

rather insensitive from 0.5|(V (·)| (Xue’s [83] selection) to |(V (·)|. The parameters are

summarized in the Table 4.1. Note that the initial buffering parameters do not have to

satisfy the stalling frequency because it cannot occur more than once in one session. In

real-world applications, the proposed scheme may include two step computations on the

client side. First, stalling events are detected in the video player. A straightforward way

to detect stalling events is to inspect the player progress every x milliseconds, e.g. 50. If

the player has not advanced as much as it is expected to, then we can infer a stalling has

occurred. By taking the difference between the expected progress and actual progress, the

duration and frequency of stalling can be measured reliably. In the second step, which is
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only necessary in the applications that require an end-of-process score, is the computation

of the QoE cumulation. Both steps demand minimum computation and can be updated

in real time. Moreover, the instantaneous QoE prediction is a valuable property for many

applications such as live streaming quality monitoring and adaptive streaming decision

making.

4.2 Performance of Existing Objective QoE Models

4.2.1 Progressive Streaming Video Database

Using the Waterloo SQoE-I database, we test the performance of four existing VQA models,

including PSNR, SSIM [78], MS-SSIM [80] and SSIMplus [58] and four state-of-the-art QoE

models [47][61][28][83]. The implementations for the VQA models are obtained from the

original authors and we implement four QoE models since they are not publicly available.

For the purpose of fairness, all models are tested using their default parameter settings. In

order to compare the performance of VQA and stalling-based QoE models, the quality of

video without stalling are estimated by VQA and the result is applied to the same video

with stalling events. For the hybrid model in [83], the model parameter c is not given in the

original paper. We set c = 0.05 such that the model achieves its optimal performance on

the current database. A comparison of the four QoE models is shown in Table 4.2. Three

criteria are employed for performance evaluation by comparing MOS and objective QoE.

Some of the criteria are included in previous tests carried out by the video quality experts

group [75]. Other criteria are adopted in previous study [67]. These evaluation criteria are:
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Table 4.2: Comparison of the existing QoE methods.

QoE models
Stalling Presentation quality

Regression function Influencing factors Regression function Influencing factors

FTW [15] exponential
stalling length,

N/A N/A
# of stalling

Mok’s [40] linear
stalling length,

N/A N/Astalling frequency,
initial buffering length

VsQM [17] exponential
average stalling length per segment,

N/A N/A# of stalling per segment,
period per segment

Xue’s [21] logarithmic
stalling length,

linear QP# of stalling,
bit count of the stalling segment

1) PLCC after a nonlinear modified logistic mapping between the subjective and objective

scores [67]; 2) SRCC; 3) Mean absolute error (MAE) after the non-linear mapping. Among

the above metrics, PLCC and MAE are adopted to evaluate prediction accuracy, and SRCC

is employed to assess prediction monotonicity [75]. A better objective VQA measure should

have higher PLCC and SRCC while lower MAE values. Fig. 4.3 summarizes the evaluation

results, which is somewhat disappointing because state-of-the-art QoE models do not seem

to provide adequate predictions of perceived quality of streaming videos. Even the model

with the best performance is only moderately correlated with subjective scores. These

test results also provide some useful insights regarding the general approaches used in

QoE models. First, the hybrid model [83] significantly outperforms QoS-QoE correlation

models. This suggests that the importance of video presentation quality in QoE should

not be underestimated. Second, even though modern VQA models cannot capture the

experience loss of stalling, most of them performs reasonably well on the Waterloo SQoE-I

database. These observations suggest a hybrid model that equips VQA methods as the

video quality predictor would be more promising in QoE estimation.

We validate SQI model using the Waterloo SQoE-I database described in Section 3.1
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Figure 4.3: PLCC, SRCC, and MAE of QoE models on the Waterloo SQoE-I database.

and compare its performance against eight existing objective QoE models. Among the

eight QoE models, four VQA algorithms including PSNR, SSIM [78], MS-SSIM [80] and

SSIMplus [58], are employed as the frame-level video presentation quality measures. They

also provide useful baseline comparisons. PLCC, SRCC and MAE are calculated to evalu-

ate the performance of all QoE models. The performance comparison results are provided

in Fig. 4.3. It can be seen that the proposed method delivers the best performance in

predicting subjective QoE on the Waterloo SQoE-I database with both compression and

frame-freeze impairment.

Fig. 4.4 shows the scatter plots of the MOS prediction results for each QoE model.

The existing QoE models, presentation VQA quality with and without incorporating the

proposed methods are listed in the first, second and third columns, respectively. We

have two observations here. First, the proposed SQI models significantly outperform their

baseline presentation VQA models. It is obvious that a higher compactness in the scatter

plots is achieved by applying the proposed model, which adds proper penalties for initial

buffering and stalling in addition to the presentation quality impairment. Second, the best
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Table 4.3: Statistical significance matrix based on F-statistics on the Waterloo SQoE-I
database. A symbol “1” means that the performance of the row model is statistically
better than that of the column model, a symbol “0” means that the row model is sta-
tistically worse, a symbol “-” means that the row and column models are statistically
indistinguishable.

FTW Mok’s VsQM Xue’s
PSNR

SSIM MS-SSIM SSIMplus SQI- SQI- SQI- SQI-
[28] [47] [61] [83] [78] [80] [58] PSNR SSIM MS-SSIM SSIMplus

FTW[28] - - - 0 0 0 0 0 0 0 0 0
Mok’s[47] - - - 0 0 0 0 0 0 0 0 0
VsQM[61] - - - 0 0 0 0 0 0 0 0 0
Xue’s [83] 1 1 1 - 1 - - - 1 0 0 0

PSNR 1 1 1 0 - 0 0 0 - 0 0 0
SSIM [78] 1 1 1 - 1 - - - 1 0 - 0

MS-SSIM [80] 1 1 1 - 1 - - - 1 0 0 0
SSIMplus [58] 1 1 1 - 1 - - - 1 0 - 0

SQI-PSNR 1 1 1 0 - 0 0 0 - 0 0 0
SQI-SSIM 1 1 1 1 1 1 1 1 1 - - -

SQI-MS-SSIM 1 1 1 1 1 - 1 - 1 - - -
SQI-SSIMplus 1 1 1 1 1 1 1 1 1 - - -

performance is obtained by combining the proposed method with the SSIMplus [58] VQA

model.

To ascertain that the improvement of the proposed model is statistically significant, we

carry out a statistical significance analysis by following the approach introduced in [67].

First, a nonlinear regression function is applied to map the objective quality scores to

predict the subjective scores. We observe that the prediction residuals all have zero-

mean, and thus the model with lower variance is generally considered better than the

one with higher variance. We conduct a hypothesis testing using F-statistics. Since the

number of samples exceeds 50, the Gaussian assumption of the residuals approximately

hold based on the central limit theorem [48]. The test statistic is the ratio of variances.

The null hypothesis is that the prediction residuals from one quality model come from the

same distribution and are statistically indistinguishable (with 95% confidence) from the

residuals from another model. After comparing every possible pairs of objective models,
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Figure 4.4: Predicted QoE vs. MOS.
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the results are summarized in Table 4.3, where a symbol ‘1’ means the row model performs

significantly better than the column model, a symbol ‘0’ means the opposite, and a symbol

‘-’ indicates that the row and column models are statistically indistinguishable. It can be

observed that most existing QoE models are statistically indistinguishable from each other,

while the proposed model is statistically better than all other methods on the Waterloo

SQoE-I database.

It can be observed from the experiments that the QoS-based QoE models [28][47][61]

do not perform well on the database. The major reason is that QoS-based models (i.e.,

FTW [28], Mok’s [47], and VsQM [61]), do not take the presentation quality of the videos

into consideration except for their bitrates. A common “mistake” is to equate bitrate with

quality, or assume a constant bitrate implies a constant presentation quality. This is highly

problematic because videos coded at the same bitrate but of different content could have

drastically different presentation quality. This is often the most dominant QoE factor,

and in many cases all other factors (such as stalling) become only secondary. Indeed,

this is quite apparent from our test results, where even PSNR, a very crude presentation

quality measure that does not take into account any initial buffering or stalling at all,

performs significantly better than QoS-based methods that ignore presentation quality.

By contrast, the proposed method not only builds upon the most advanced presentation

quality model (e.g., SSIMplus, which has been shown to be much better than PSNR and

other VQA measures), but moves one step further by capturing the interactions between

video presentation quality and the impact of stalling.
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4.2.2 Adaptive Streaming Video Database

4.2.3 Video Quality Assessment Models

Table 4.4: Performance comparison of VQA models on HAS video QoE database

VQA model
DA DB

PLCC SRCC PLCC SRCC
PSNR 0.6767 0.6676 0.5368 0.4606

SSIM[78] 0.6157 0.6013 0.5162 0.4396
MS-SSIM[80] 0.7454 0.7438 0.6060 0.5217
SSIMplus[58] 0.8202 0.8298 0.6519 0.5617

VQM[55] 0.8246 0.8192 0.6716 0.5650
STRRED[70] 0.6766 0.6843 0.5453 0.4699

VMAF[39] 0.7988 0.7977 0.6940 0.5613
VIIDEO [45] 0.5046 0.4388 0.4781 0.3506

Modern video quality assessment (VQA) algorithms tackle the QoE problem by mea-

suring the signal fidelity of a test video with respect to its pristine version. However, most

VQA models do not consider the impact of playback interruption. Since VQA models

serve as the major tools to measure the QoE of offline videos, it is imperative to under-

stand whether they can be applied to streaming videos. In this regard, we evaluate a wide

variety of VQA algorithms including PSNR, SSIM [78], MS-SSIM [80], STRRED [70],

VQM [55], VMAF [39], SSIMplus [58], and VIIDEO [45] against human subjective scores

on two datasets to test their generalizability on streaming videos, where dataset DA in-

cludes the videos without stalling and dataset DB contains all 450 streaming videos. The

implementations of the VQA models are obtained from the original authors. Notice that

we can do this as we will show later, the effect of initial buffering is insignificant in Sec-

tion 4.2.4. Two criteria are employed for performance evaluation by comparing MOS and
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objective QoE according to the previous study [67]: 1) PLCC after a nonlinear modified

logistic mapping between the subjective and objective scores; 2) Spearman’s rand-order

correlation coefficient (SRCC). Since none of the full-reference VQA algorithms supports

cross-resolution video quality evaluation except for SSIMplus, we up-sampled all represen-

tation to 1920×1080 and then apply the VQA on the up-sampled videos because it is the

size of display in the subjective experiment. Table 4.4 summarizes the evaluation results.

We have three observations from the experiment results. First, from the improvement of

MS-SSIM and SSIMplus upon SSIM, we may conclude that multi-scale approach performs

better against variations in resolution suggesting future refinements of VQA algorithms.

Second, VIIDEO is the weakest among all VQA algorithms such that there remains sig-

nificant room for improvement of no-reference VQA algorithms. Third, by comparing the

performance of VQA algorithms on the two datasets, we conclude that the existing VQA

algorithms are good at what they are designed for, but falls short of measuring QoE in the

presence of stalling. Thus, a more general QoE model is required.

4.2.4 Industrial Standard QoE Models

DASH industry forum proposed a standard for client-side QoE media metrics [11]. As

the standard metrics are widely used to assess the performance of ABR algorithms, it is

critical to systematically investigate their performance. This knowledge can help providers

to better invest their network and server resources toward optimizing the quality metrics.

In this section, we evaluate five industry-standard QoE metrics [11], along with the average

magnitude of switches that is also recognized as a major influencing factor of QoE [66].

We summarize the metrics below.
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Figure 4.5: Qualitative relationships between six quality features and MOS.
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1. Initial buffer time (Ti): Measured in seconds, this metric represents the duration

from the player initiates a connection to a video server till the time that sufficient

player video buffer has filled up and the player starts rendering video frames.

2. Rebuffer percentage (Pr): This metric is the fraction of the total session time (i.e.,

playing plus rebuffer time) spent in buffering. This is an aggregate metric that

can capture periods of long video “freeze” observed by a user. It is computed as∑
i duration of rebuffer event i

session duration
.

3. Rebuffer count (Cr): Rebuffer percentage does not capture the frequency of induced

interruptions observed by a user. For example, a video session that experiences “video

stuttering” where each interruption is small but the total number of interruptions is

high, may not have a high buffering ratio, but may be just as annoying to a user.

4. Average rendered bitrate (B): Measured in kilobytes per second, this metric is the

most widely used video presentation quality measure in streaming applications. It is

the average of the bitrates played weighted by the duration each bitrate is played.

5. Bitrate switch count (Cs): A single video session can have multiple bitrates played

in HAS. Number of switches is usually used to quantify the flicker effects introduced

by the quality variation. Several studies have argued that the

6. Average bitrate switch magnitude (Bs): Measured in kilobytes per switch, this metric

was also identified as an influencing factor of flicker effect. Conventional wisdom

dictates that people prefer multiple switches with smaller bitrate differences to abrupt

quality variation. It is computed as
∑n

i=2 |bitratei−bitratei−1|
# of switches

, where n is the number of

segments.
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Fig. 4.5 shows the scatter plots of the six aforementioned quality metrics versus MOS.

We evaluate the performance of each metrics using SRCC and summarize the result in

Table 4.5. Fig. 4.5 shows that average rendered bitrate, rebuffer percentage, and rebuffer

count have an monotonic relationship with MOS on average. While average rendered

bitrate has the strongest correlation to MOS, it exhibits a strong nonlinear relationship

with respect to MOS as shown in Fig. 4.5(a). In particular, bitrates in the range of 2,500

kbps to 7,200 kbps yield a very similar QoE. Furthermore, the seemingly well correlation

between bitrate and quality would not hold true when video sequences encoded from various

codecs and implementations are mixed together. Thus, existing video delivery optimization

frameworks that always strive for higher bitrate in all ranges not only result in inefficient

use of network, but also do not necessarily provide a better QoE. On the other hand,

the two second-order statistics of bitrate - bitrate switch count and average bitrate switch

magnitude - have relatively little impact to MOS. The impact of initial buffer time is

the least significant. In addition, despite the general trend of MOS with respect to these

quality metrics, none of the metric is sufficient to predict QoE accurately. In particular,

initial buffer time, rebuffer percentage, rebuffer count, bitrate switch count, and average

bitrate switch magnitude have very poor correlation with MOS. Even for the best metric

average rendered bitrate, the difference in MOS given the bitrate could be as large as 50.

Therefore, it is difficult to compare the performance of ABR algorithms and optimization

frameworks with the statistics of isolated metrics, which unfortunately remains as the

major validation approach. Moreover, we augment the correlation analysis with ANalysis

Of Variance (ANOVA) on the MOS data to reveal the statistical significance of each metric

on MOS, where the significance level p-value is set to 0.05. We choose bin sizes that
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Table 4.5: SRCC between standard quality metrics and MOS

Quality metric SRCC
Initial buffer time -0.0303

Rebuffer percentage -0.2733
Rebuffer count -0.2505

Average rendered bitrate 0.5118
Bitrate switch count 0.1334

Average bitrate switch magnitude 0.1583

are appropriate for each quality metric of interest: 1-second bin, 5% bin, unit bin, 360

kbps-sized bin, unit, and 600 kbps-sized bin for initial buffering time, rebuffer percentage,

rebuffer count, average rendered bitrate, bitrate switch count, and average bitrate switch

magnitude, respectively. The results of ANOVA suggest that initial buffer time is the only

factor that is statistically insignificant to MOS.

Given the poor performance of isolated quality metric. A natural question is: Does

combination of metrics provide more insights? To answer the question, we plot the cross

metric correlation in Fig. 4.6. Most metric pairs perform quite independently, which indi-

cates metrics supplement each other. Therefore, there is a great potential for a combination

of metrics to provide a better performance than the isolated metrics. At this juncture, it

may be prudent to apply regression analysis on the expected improvement in the QoE

prediction performance by combining different quality metrics for the following reasons.

First, content providers are interested in the relative importance of the quality metrics in

a unified model as they may want to know the top k metrics that they should monitor and

optimize to improve user QoE. On the other hand, quantitative analysis on the joint effect

of different quality metrics may provide a baseline solution to validate the improvement

of state-of-the-art QoE models. Thus, we apply linear regression to the quality metrics.
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Figure 4.6: Metric correlation matrix. Initial buffer time, rebuffer percentage, rebuffer
count, average rendered bitrate, bitrate switch count, and average bitrate switch magnitude
are indexed from A to F.

Directly applying regression techniques with complex non-linear parameters could lead to

models that lack a physically meaningful interpretation. While our ultimate goal is to

extract the relative quantitative impact of the different metrics, doing so rigorously is out-

side the scope of this thesis. We randomly divide the video data into disjoint 80% training

and 20% test subsets. To mitigate any bias due to the division of data, the process of

randomly splitting the dataset is repeated 50 times. SRCC between the predicted and

the ground truth quality scores are computed at the end of each iteration. The median

correlation and its corresponding regression model are reported in Table 4.6. For clarity,

rather than showing all combinations, we include 2, 3, and 4 variant regression models

with the highest relative correlation. For all metrics, the combination with the average

rendered bitrate provides the highest correlation while the combination of average rendered
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Table 4.6: Median SRCC across 50 train-test combinations of regression models

Regression model SRCC

-64.9Pr+0.0078B+49.7 0.7215
-64.5Pr+0.0076B+0.0006Bs+50.3 0.7681

-1.7Ti-53.3Pr+0.0073B+0.0006Bs+53.3 0.7729

Table 4.7: Comparison of the existing QoE methods

QoE model
Stalling Presentation quality Switching

Regression function Influencing factors Regression function Influencing factors Regression function
Liu’s [41] linear stalling length linear bitrate N/A
Yin’s [85] linear stalling length linear bitrate linear

FTW [28] exponential
stalling length,

N/A N/A N/A
# of stalling

Bentaleb’s [5] linear
# of stalling,

linear SSIMplus linear
stalling length

Kim’s [36] N/A N/A exponential
packet loss

N/Apacket jitter
bandwidth efficiency

Mok’s [47] linear
stalling length,

N/A N/A N/Astalling frequency,
initial buffering length

VsQM [61] exponential
average stalling length per segment,

N/A N/A N/A# of stalling per segment,
period per segment

Xue’s [83] logarithmic
stalling length,

linear QP N/A# of stalling,
bit count of the stalling segment

Liu’s [42] polynomial
# of stalling,

exponential VQM quadraticstalling length,
magnitude of motion vector

SQI [16] combination of exponentials
# of stalling,

linear SSIMplus N/Astalling length,
video quality of stalling segment

bitrate and rebuffer percentage achieves the highest correlation to MOS amongst bi-variant

regression models. What is also worth mentioning is that although bitrate switch count

and average bitrate switch magnitude are weakly correlated with MOS, the performance

of linear regression model can be greatly improved by taking the video quality variation

into consideration. The results further encourage exploration in the human perception of

time-varying video quality.
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Figure 4.7: Predicted QoE vs. MOS.

4.2.5 Performance of Existing Objective QoE Models

Using the Waterloo SQoE-II database, we test the performance of ten state-of-the-art QoE

models from three categories: network QoS-based, [36], application QoS-based [47, 61,

28, 41, 83, 85], and hybrid models of application QoS and signal fidelity [15, 42, 5]. A

description of the ten QoE models is shown in Table 4.7. Since the source code of the

QoE models is not publicly available, we try our best to implement the algorithms that

preserve as much details of the original implementations as possible under the instruction
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of the original authors. However, we do not claim perfect reproduction of the algorithms

because the databases that the QoE models were developed upon are not publicly available

for verification. For fairness, all models are tested using their default parameter settings.

For Xue’s [83], the model parameter c is not given in the original paper. We set c = 0.05

such that the model achieves its optimal performance on the current database. PLCC after

nonlinear regression and SRCC are employed as the evaluation criteria for objective QoE

models. Table 4.8 summarizes the evaluation results of the ten QoE models from three

categories along with the two top VQA algorithms in terms of prediction accuracy and

computational complexity. To compare the computational complexity of objective QoE

algorithms, we measured the average computation time required to assess one streaming

video (using a computer with Intel Core i7-4790 processor at 3.60 GHz). Scatter plots of

objective scores vs. MOS for all the algorithms on the entire Waterloo SQoE-II database,

along with the best fitting logistic functions, are shown in Fig. 4.7. These test results also

provide some useful insights regarding the general approaches used in QoE models. First of

all, it can be observed from the experiments that the stalling-centric QoE models [28][47][61]

do not perform well on the database. The major reason is that stalling-centric models

(i.e., FTW [28] and Mok’s [47] do not take the presentation quality of the videos into

consideration, which is often the most dominant QoE factor, and in many cases all other

factors (such as stalling) become only secondary. Indeed, this is quite apparent from our

test results, where even PSNR, a very crude presentation quality measure that does not

take into account any initial buffering or stalling at all, performs significantly better than

stalling-centric methods that ignore presentation quality. Second, the network QoS-based

QoE model Kim’s [36] also performs poorly because it ignores the characteristics of source
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video and ABR algorithms. As we have shown in the Section 3.2.2 that both utilizing

different ABR algorithms at the same network condition and using the same bitrate to

encode different video content can lead to drastically different QoE. Third, it is clear from

Fig. 4.7 that all QoE models except for SQI [16] fail to provide an adequate alignment to the

clusters with and without stalling suggesting that it is important to capture the interactions

between video presentation quality and the impact of stalling. Fourth, the cluster without

stalling in the Fig. 4.7(c) and Fig. 4.7(d) is more compact than the one in the Fig. 4.7(k)

and Fig. 4.7(h). Thus, penalizing quality degradation can improve the prediction accuracy

of QoE models. On the other hand, SQI tends to overestimate the quality of sequences

with large quality degradation, which also confirms that stability should be a concern of

QoE. Fifth, despite their superior performances, Liu’s [42] happen to overestimate the

QoE of sequences with steep quality improvement. The results suggest that subjects do

not appreciate abrupt quality improvement. However, the underlining mechanism of such

phenomenon is still unknown and thus deeper investigations on the human perception on

the time-varying video quality is desirable. Sixth, all models overestimate the QoE of live

video sequence FCB at low bitrates suggesting that a content type-aware QoE model may

further improve the performance of existing QoE models.

We carry out a F-test on the prediction residuals as described in Section 4.2.1. After

comparing every possible pairs of objective models, the results are summarized in Table 4.9,

where a symbol ‘1’ means the row model performs significantly better than the column

model, a symbol ‘0’ means the opposite, and a symbol ‘-’ indicates that the row and

column models are statistically indistinguishable. The performance of QoE models can

be roughly clustered into three levels based on the results of statistical significance test,
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Table 4.8: Performance comparison of QoE models on Waterloo SQoE-II database. Signal
fidelity-based, application QoS-based, network QoS-based, and hybrid models are indexed
from A to D.

QoE model Type
Prediction Computation
accuracy time in second

PLCC SRCC server client
SSIMplus[58] A 0.6519 0.5617 9.79 0

VQA[55] A 0.6716 0.5650 244 0
Liu’s [41] B 0.6902 0.5145 0 5×10−5

Yin’s [85] B 0.7028 0.7143 0 8.95×10−5

FTW[28] B 0.3506 0.2745 0 5.95×10−5

Bentaleb’s[5] D 0.6888 0.6322 9.79 1.11×10−4

Kim’s [36] C 0.0259 0.0196 0 5.55×10−5

Mok’s [47] B 0.2448 0.1702 0 1.57×10−4

VsQM[61] B 0.3375 0.2010 0 1.23×10−4

Xue’s [83] B 0.3973 0.3840 0 1.36×10−3

Liu’s [42] D 0.8170 0.8039 244 4.67×10−4

SQI[16] D 0.7751 0.7707 9.79 7×10−5

wherein Liu’s [42] and SQI are statistically superior to all other QoE models. While the

two top performers of application QoS-based models Liu’s [41] and Yin’s [85], the two

top performers of signal fidelity-based models SSIMplus[58] and VQM[55], and the worst

hybrid model Bentaleb’s[5] are statistically inferior than the tier-1 models, they outperform

the last group which mainly consists of QoS-based models. It is quite apparent that hybrid

QoE model is a promising research direction.

There is inherent variability amongst subjects in the quality judgment of a streaming

video. It is important not to penalize an algorithm if the differences between the algorithm

scores and MOS can be explained by the inter-subject variability. Therefore, we follow the

recommendation in [67] to compare the objective QoE models with the theoretical null

model. Specifically, we compute the ratio between the variances of residuals between the

63



Table 4.9: Statistical significance matrix based on F-statistics on the Waterloo SQoE-II
database. A symbol “1” means that the performance of the row model is statistically
better than that of the column model, a symbol “0” means that the row model is statis-
tically worse, and a symbol “-” means that the row and column models are Statistically
indistinguishable

SSIMplus VQM Liu’s Yin’s FTW Bentaleb’s Kim’s Xue’s Mok’s VsQM Liu’s SQI
[58] [55] [41] [85] [28] [5] [36] [83] [47] [61] [42] [16]

SSIMplus[58] - - - - 1 - 1 1 1 1 0 0
VQM[55] - - - - 1 - 1 1 1 1 0 0
Liu’s[41] - - - - 1 - 1 1 1 1 0 0
Yin’s[85] - - - - 1 - 1 1 1 1 0 0

FTW’s[28] 0 0 0 0 - 0 - - - - 0 0
Bentaleb’s[5] - - - - 1 - 1 1 1 1 0 0

Kim’s[36] 0 0 0 0 - 0 - - - - 0 0
Xue’s[83] 0 0 0 0 - 0 - - - - 0 0
Mok’s[47] 0 0 0 0 - 0 - - - - 0 0
VsQM[61] 0 0 0 0 - 0 - - - - 0 0
Liu’s[42] 1 1 1 1 1 1 1 1 1 1 - -
SQI[16] 1 1 1 1 1 1 1 1 1 1 - -

Figure 4.8: F-ratios for each objective models and theoretical null model.
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individual ratings of all streaming videos and the corresponding MOS and the residual

between individual ratings and the algorithm prediction of QoE (after non-linear regres-

sion). The ratio of two variances forms the F-statistic under central limit theorem. The

null hypothesis is that the variance of the model residual is statistically indistinguishable

(with 95% confidence) to the variance of the null residual. A threshold F-ratio can be

determined based on the degrees of freedom in the numerator and denominator, along

with the confidence level, where the numerator and denominator degrees of freedom in the

F-test is obtained by subtracting one from the number of samples. Values of the F-ratio

larger than the threshold indicates the objective QoE model and the null model are sta-

tistically distinguishable, and thus cause us to reject the null hypothesis. Otherwise, we

accept the null hypothesis - i.e., the performance of the objective QoE model is equivalent

to the theoretical null model. The variance of the residuals from the null model and each

of the 12 objective QoE models are shown in Fig. 4.8, wherein none of the QoE models is

equivalent to the theoretical null model. It is quite apparent from our results that there

remains considerable opportunity to improve the performance of objective QoE models

despite significant progress.

To determine whether an objective QoE model can be used to compare the perfor-

mance of ABR algorithms, we further compute SRCC on the MOS and the objective QoE

prediction of the six ABR algorithms across different network conditions. Table 4.10 sum-

marizes the evaluation results, which are somewhat disappointing because state-of-the-art

QoE models do not seem to provide adequate comparisons on the ABR algorithms. Even

the model with the best performance is only moderately correlated with subjective scores,

which suggests a more accurate QoE model should be developed to objectively compare
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Table 4.10: Prediction accuracy of the objective QoE models on the performance of adap-
tation algorithms

Network profile SSIMplus VQM Liu’s Yin’s FTW Bentaleb’s Kim’s Xue’s Mok’s VsQM Liu’s SQI
index [58] [55] [41] [85] [28] [5] [36] [83] [47] [61] [42] [16]

I 0.92 -0.92 0.92 0.20 0.20 0.20 -0.20 0.20 1.00 0.20 -1.00 0.20
II -0.09 0.60 -0.09 0.09 0.71 0.26 0.37 -0.03 0.71 0.31 0.14 0.77
III 0.60 -0.60 0.49 -0.20 -0.58 0.66 0.09 -0.43 -0.54 -0.43 0.83 0.54
IV 1.00 -1.00 0.94 0.09 -0.37 0.94 -0.03 -0.83 -0.43 -0.83 0.37 0.09
V 0.49 -0.49 0.49 0.87 -0.46 0.54 0.77 0.09 -0.52 -0.35 0.89 0.83
VI 0.77 -0.65 0.71 0.77 -0.14 0.94 0.60 -0.71 -0.23 -0.77 0.60 0.83
VII 0.83 -0.83 0.60 0.94 0.14 0.71 0.37 -0.09 -0.12 0.09 0.60 0.66
VIII 0.77 -0.77 0.77 0.89 -0.33 0.94 0.03 -0.03 -0.43 -0.37 0.94 0.89
IX -0.14 -0.14 -0.03 -0.37 0.26 0.26 -0.52 0.03 0.20 -0.43 -0.14 -0.14
X 0.89 -0.71 0.60 0.26 -0.70 1.00 0.26 -0.60 -0.71 -0.71 0.26 0.60
XI 0.77 -0.77 0.26 -0.09 -0.03 0.77 -0.60 -0.09 -0.66 -0.14 -0.14 -0.03
XII 0.89 -0.89 0.77 0.77 -0.03 0.77 0.03 0.09 -0.14 -0.03 0.94 0.77
XIII 0.71 -0.71 0.77 0.71 0.03 0.77 -0.97 -0.03 -0.31 0.09 0.94 0.94

Average 0.65 -0.61 0.55 0.38 -0.10 0.67 0.02 -0.19 -0.17 -0.26 0.40 0.53

the performance of ABR algorithms.

4.3 Discussion

The video sequences generated for the subjective study closely represent video experiences

delivered under real-world conditions. This feat is achieved by employing the most com-

monly used adaptation strategies, modeling typical network conditions, and using a wide

variety of video content types. As a result, the proposed database provides us the oppor-

tunity to compare performance of various approaches used for video QoE measurement

in a video delivery chain. These approaches can be categorized into three types based

on availability of content at various locations in the chain: server-side, network-side, and

client-side. We have all the ingredients required to answer one of the most important ques-

tions related to understanding viewer experience: where should we deploy the video QoE

monitoring system?
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The QoE prediction performance of the three approaches is primarily dependent on the

relevance of information available, at a location, corresponding to the viewer experience

on an adaptive streaming client. The server-side measurement benefits from availability of

video source. The impact of compression artifacts on video QoE can be better understood

using reference based perceptual video quality measurement algorithms as shown in Table

4.4. However, video stalling and switching related impairments are not known at the server-

side. Therefore, the server-side measurement is ideally suited for measuring preservation

of creative intent, hereby referred to as presentation QoE of video content. Network-side

algorithm do not typically have the luxury to process the content at a pixel level due to

high data transmission rates and possible encryption of video content. As a result, these

algorithms typically rely on transport-layer level information, that limits their capability

to accurately predict video QoE. Client-side approaches can be based on content quality

as well as impairments caused by network conditions: stalling and switching. However,

computational resources and capability of light-weight no-reference approaches is often very

limited. As a result client-side algorithm suffer from their inability to measure presentation

quality. Therefore, the client-side measurement is ideally suited for measuring network QoE

of video content.

None of the approaches are ideally suited for measurement of overall video QoE with

high accuracy. In order to achieve the best of both worlds, presentation QoE can be de-

livered to the client-side as part of meta-data downloaded by a client. The availability

of presentation QoE allows a client to understand the impact of the three dominant im-

pairments, i.e., video compression, stalling, and switching, on video QoE. A client-side

hybrid QoE measurement approach may not always be feasible. A cloud-based hybrid
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QoE measurement systems provides an alternative to the client-side approach. A QoE

server co-located with a streaming media server constantly monitors the streaming activi-

ties, such as stalling and switching, and stores the presentation quality measurements. The

presentation quality measurements are combined with streaming activities to measure the

hybrid QoE of a particular streaming session,. As a result, the hybrid approach has the

potential to achieve the best video QoE prediction accuracy compared to the three stand-

alone approaches while alleviating the power consumption of client device. Performance

comparison between the four approaches towards video QoE measurement, provided in Ta-

ble 4.8, points to the same qualitative conclusion. The table also compares the approaches

in terms of their computational complexity. The best performing approach would provide

the highest accuracy within available computational resources. The hybrid QoE methods

Liu’s[42] and SQI[16] achieve this feat among the methods under comparison.

4.4 Summary

Our work represents one of the first attempts to bridge the gap between the presentation

VQA and stalling-centric models in QoE prediction. We assessed twelve QoE models with

statistical analysis. Extensive experiments demonstrate the effectiveness of the proposed

objective QoE model. Last, we shed light on the development QoE measurement algorithms

and practical deployment of real-time QoE monitoring systems.
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Chapter 5

Conclusion and Future Work

We have presented two subjective studies to understand human visual QoE of streaming

video and proposed an objective model to characterize the perceptual QoE. Our work

represents one of the first attempts to bridge the gap between the presentation VQA

and stalling-centric models in QoE prediction. The subjective experiment reveals some

interesting relationship between the impact of stalling and the instantaneous presentation

quality. The Waterloo SQoE-II database is the first publicly available large scale HAS

database dedicated to benchmark the performance of objective QoE models. The data set

is diverse in terms of video content, and is both realistic and diverse in distortion types.

We systematically assessed twelve QoE models with statistical analysis and shed light

on the development of adaptation algorithms, QoE measurement algorithms, and practical

deployment of real-time QoE monitoring systems. Extensive experiments also demonstrate

that the proposed SQI model is simple in expression and effective in performance.

Future research may be carried out in many directions. First, other existing and future
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QoE models may be tested and compared by making use of the database. Second, although

pioneer researchers have made several attempts in the objective quality assessment of time-

varying videos, the resultant objective models are not validated in a systematic manner,

and are lack of explanation power. Thus, an objective QoE model that incorporate spatio-

temporal aspects of videos and that predict human reactions to spatial adaptation and

temporal adaptation could ultimately help video streaming approaches allocate resources

in a more efficient way. Third, optimization of the existing video streaming frameworks

based on QoE models is another challenging problem that is worth further investigations.
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