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Abstract

Computational methods have become a valuable tool for studying mathematical problems
and for constructing large combinatorial objects. In fact, it is often not possible to find large
combinatorial objects using human reasoning alone and the only known way of accessing
such objects is to use computational methods. These methods require deriving mathematical
properties which the object in question must necessarily satisfy, translating those properties
into a format that a computer can process, and then running a search through a space
which contains the objects which satisfy those properties.

In this thesis, we solve some combinatorial and number theoretic problems which fit
into the above framework and present computational strategies which can be used to
perform the search and preprocessing. In particular, one strategy we examine uses state-
of-the-art tools from the symbolic computation and SAT/SMT solving communities to
execute a search more efficiently than would be the case using the techniques from either
community in isolation. To this end, we developed the tool MathCheck2, which combines
the sophisticated domain-specific knowledge of a computer algebra system (CAS) with
the powerful general-purpose search routines of a SAT solver. This fits into the recently
proposed SAT+CAS paradigm which is based on the insight that modern SAT solvers
(some of the best general-purpose search tools ever developed) do not perform well in all
applications but can be made more efficient if supplied with appropriate domain-specific
knowledge. To our knowledge, this is the first PhD thesis which studies the SAT+CAS
paradigm which we believe has potential to be used in many problems for a long time to
come.

As case studies for the methods we examine, we study the problem of computing
Williamson matrices, the problem of computing complex Golay sequences, and the problem
of computing minimal primes. In each case, we provide results which are competitive with or
improve on the best known results prior to our work. In the first case study, we provide for
the first time an enumeration of all Williamson matrices up to order 45 and show that 35 is
the smallest order for which Williamson matrices do not exist. These results were previously
known under the restriction that the order was odd but our work also considers even orders,
as Williamson did when he defined such matrices in 1944. In the second case study, we
provide an independent verification of the 2002 conjecture that complex Golay sequences
do not exist in order 23 and enumerate all complex Golay sequences up to order 25. In the
third case study, we compute the set of minimal primes for all bases up to 16 as well for all
bases up to 30 with possibly a small number of missing elements.
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Reality is a lovely place, but I
wouldn’t want to live there.

Adam Young

Chapter 1

Introduction

This thesis studies several methodologies one can use when attempting to solve certain
problems in mathematics, in particular in combinatorics and number theory. Problems in
these fields often concern certain objects which are either conjectured to exist or to not exist.
Although such questions can sometimes be solved by purely theoretical means, it is often
the case that the most straightforward way of determining the existence or nonexistence of
a hypothetical object is to perform a search through the space (or a subspace) where the
object lives.

The advent of modern computers has made the search approach especially attractive,
as computers are able to perform the task of searching a space much more effectively than
would otherwise be possible. For this reason this thesis focuses on computational approaches
to solving such problems. However, even once one has decided on using a computational
approach to study a problem one still has to decide which tools and techniques to use
to carry out the search. Deciding which method(s) to use is a nontrivial problem and of
interest in its own right. As we will see, the choices one makes in how to structure the
search can make the difference between solving the problem and not solving the problem in
a reasonable amount of time.

Perhaps the most important aspect to consider when performing a computational search
is how to specify the search space under consideration. Typically it is easy to define a
space which trivially contains the hypothetical object in question and to write a program
which will construct and enumerate the objects in the space. In the case of a finite space,
this naive brute-force search is even guaranteed to answer the question of existence. The
problem with this approach is that the size of the naive search space is typically at least
exponential in the size of the object being searched for. In other words, even for objects of
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moderate size this approach is infeasible because the search space is so large.

One way of making the search more feasible in this case is to make use of known
facts about the object being searched for; such theorems or theory lemmas can sometimes
enormously decrease the size of the space necessary to search. On the other hand, it is not
always easy to encode such theoretical knowledge, or to encode it in a way such that it will
make the search procedure more efficient. Often there is more than one strategy that one
could use when encoding the theory lemmas and then performing the search; this thesis
examines multiple strategies that have shown to be effective in practice.

1.1 Case studies in this thesis

As a way of making the strategies which we will discuss concrete, we will study three
problems arising in combinatorics and number theory:

1. Computing Williamson matrices of a given order (or showing the nonexistence of
such matrices).

2. Computing complex Golay sequences of a given order (or showing the nonexistence of
such sequences).

3. Computing the minimal primes of a given base.

1.1.1 Williamson matrices

First defined in [Williamson, 1944], Williamson matrices have a long history and are studied
both for their elegant theoretical properties and practical applications. In fact, in the sixties
NASA’s Jet Propulsion Laboratory designed space probes which used error-correcting codes
based on Williamson matrices to communicate with Earth [Cooper, 2013]. To this end,
JPL constructed a Williamson matrix quadruple of order 23 [Baumert et al., 1962].

Since Baumert et al.’s successful search for a Williamson matrix of order 23, there
has been much work done in extending the known orders for which Williamson matrices
exist. For example, in [Koukouvinos and Kounias, 1988] and [Holzmann et al., 2008]. As
recounted in the latter paper:

Most researchers working in the area had hoped that Williamson matrices of
every order must exist.
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However, in the nineties it was shown [Ðoković, 1993] that Williamson matrices of order 35
do not exist. Fifteen years later, [Holzmann et al., 2008] provided an exhaustive search for
all odd orders up to 60 and showed that Williamson matrices of orders 47, 53, and 59 also
do not exist, but they do exist for all other odd orders below 60.

Our results

Note that the previous work on Williamson matrices left open the question of the existence
of Williamson matrices of even order. Our work remedies this situation, as we have provided
for the first time an exhaustive search of Williamson matrices for all orders up to 45,
including the even orders. Our results show that it is indeed the case that n = 35 is the
smallest integer for which Williamson matrices of order n do not exist.

We discuss in detail our results on Williamson matrices in Chapter 3 of this thesis. The
work done in Chapter 3 is based on work which appeared in the papers [Bright et al., 2016b]
and [Zulkoski et al., 2017] and was done in collaboration with Vijay Ganesh, Albert Heinle,
Ilias Kotsireas, Saeed Nejati, Krzysztof Czarnecki, and some currently unpublished work
with Chunxiao Li, Vijay Ganesh, and Ilias Kotsireas. The results were generated using the
MathCheck system which is based on the SAT+CAS paradigm discussed in Section 1.2.
This paradigm uses tools and techniques from the complementary fields of satisfiability check-
ing and symbolic computation. In particular, MathCheck works by combining SAT solvers
and computer algebra systems in a novel fashion. MathCheck was originally developed
by Edward Zulkoski, Vijay Ganesh, and Krzysztof Czarnecki [Zulkoski et al., 2015].

1.1.2 Complex Golay sequences

Marcel Golay first introduced the sequences which now bear his name in his ground-
breaking 1949 paper [Golay, 1949] on multislit spectrometry, although he did not for-
mally define them until his 1960 paper [Golay, 1961]. Since then, Golay sequences and
their generalizations have been widely studied both for their theoretical properties and
because of their usefulness to a surprising number of applied domains. As recounted
in [Gibson and Jedwab, 2011], they have been applied to such varied fields as optical
time domain reflectometry [Nazarathy et al., 1989], power control for multicarrier wireless
transmission [Davis and Jedwab, 1999], and medical ultrasound [Nowicki et al., 2003].

Although Golay defined his complementary sequences over a binary alphabet (e.g.,
{±1}), later authors have generalized the concept and defined complementary sequences
over larger alphabets. In our work, we focus on those sequences defined over the alphabet
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{±1,±i} where i is the imaginary unit
√
−1. Complementary sequences defined over this

alphabet are sometimes known as quaternary or 4-phase Golay sequences in the literature,
although we refer to them as simply complex Golay sequences. As we will see, complex
Golay sequences share some similarities with Williamson matrices and in fact both objects
can be defined in a similar manner. Of course, there are a few key differences such as the
fact that complex Golay sequences are defined over a larger alphabet.

Our results

In Chapter 4 we provide a novel algorithm for enumerating all complex Golay sequences of
a given order. The algorithm is based around using a computer algebra system to solve
certain classes of Diophantine systems and then using these results along with an algorithm
to enumerate permutations of a given form. The enumeration is exhaustive and occurs over
a space much smaller than the naive search space. Despite this, we prove that it contains
all possible complex Golay sequences of the given order.

Using our algorithm we have independently verified the work of [Fiedler, 2013] up to
order 25 as well as the conjecture of [Craigen et al., 2002] that no complex Golay sequences
of order 23 exist:

. . . we have thus far found no complex Golay sequences of length 23, and suspect
that they do not exist.

We discuss in detail our results on complex Golay sequences in Chapter 4 of this
thesis. The work done in Chapter 4 is based on work currently in submission and done in
collaboration with Vijay Ganesh, Albert Heinle, and Ilias Kotsireas.

1.1.3 Minimal primes

In a paper published in 2000 the computer scientist Jeffrey Shallit defined a set of 26 prime
numbers which he called the minimal primes [Shallit, 2000]. These prime numbers have
the special property that every prime, when considered as a string in base 10, contains
at least one minimal prime as a subword. In what he calls the “prime game” he suggests
that you ask a friend to write down a prime number and then bet them that you can strike
out 0 or more digits of that prime to obtain a minimal prime. Shallit’s result proves that
there is always a way for you to win, but the bet might nevertheless seem reasonable to an
unsuspecting friend as the list of minimal primes is innocuous looking; it is not obvious
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that you are always able to win. In fact, the entire list of minimal primes is small enough
that it fits on a piece of paper the size of a business card [Shallit, 2006].

Shallit closes his original paper [Shallit, 2000] with the remark

The reader may enjoy trying to computeM(S) for some other classical sets, such
as [. . .] the minimal elements of the primes expressed in bases other than 10.

In addition, the computer scientist David Eppstein later asked [Shallit, 2006] if there is an
algorithm that takes as input a base and outputs the list of minimal primes in that base.

Our results

We are able to give a partial answer to Eppstein’s question by providing a heuristic algorithm
which is able to successfully compute the set of minimal primes in all bases b ≤ 16, although
we do not have a proof that the algorithm will necessarily terminate. The algorithm was
also successful in computing the complete set of minimal primes in the bases b = 18, 20, 22,
23, 24, and 30. In the remaining bases for b < 30 our heuristic algorithm computed the
minimal primes with at most 37 missing elements and we provide a strict characterization
on the form of the missing elements if they do exist.

Furthermore, our heuristic algorithm was able to compute the set of minimal ele-
ments for primes of the form 4n + 1 as well as for primes of the form 4n + 3. This
successfully completed the sequences A111055 and A111056 in the Encyclopedia of Integer
Sequences [OEIS Foundation Inc., 1996]. Both of these entries had been missing elements
since they were added to the encyclopedia in 2005.

We discuss in detail our results on minimal primes in Chapter 5 of this thesis. The
content of Chapter 5 is based on work which appeared in the paper [Bright et al., 2016a]
and was done in collaboration with Jeffrey Shallit and Raymond Devillers.

1.2 The SAT+CAS paradigm

The SAT+CAS paradigm is a novel methodology for solving problems which originated
independently in two works published in 2015:

1. A paper at the Conference on Automated Deduction (CADE) by Edward Zulkoski,
Vijay Ganesh, and Krzysztof Czarnecki [Zulkoski et al., 2015] entitled “MathCheck:
A Math Assistant via a Combination of Computer Algebra Systems and SAT Solvers”.
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2. An invited talk at the International Symposium on Symbolic and Algebraic Computa-
tion (ISSAC) by Erika Ábrahám [Ábrahám, 2015] entitled “Building Bridges between
Symbolic Computation and Satisfiability Checking”.

Partially inspired by the usage of a SAT solver to solve a case of the Erdős discrepancy
conjecture [Konev and Lisitsa, 2014], the CADE paper mentioned above presented a tool
called MathCheck. This tool combined a computer algebra system (CAS) with a SAT
solver for the first time. The CADE paper describes MathCheck as combining “the search
capability of SAT solvers” with the “powerful domain knowledge of CAS systems” and
makes the case that

. . . a SAT+CAS system combines the efficient search routines of modern SAT
solvers, with the expressive power of CAS, thus complementing both.

Indeed, an immense amount of effort has gone into developing efficient SAT solvers and
these tools contain some of the best general-purpose search procedures ever developed.
While they do not perform well for all applications, the CADE paper showed that SAT
solvers can be made more efficient if they are supplied with appropriate domain-specific
knowledge, such as the knowledge available in a CAS.

MathCheck was designed to counterexample or finitely verify (i.e., verify up to some
finite bound) conjectures in mathematics. In particular, the system was used to verify two
conjectures in graph theory up to bounds which had previously been unobtainable. The
second version of the MathCheck system formed the basis for our work on Williamson
matrices, as we will discuss in Chapter 3.

Independently from the work done on MathCheck the computer scientist Erika
Ábrahám made the observation in her ISSAC 2015 invited talk that the symbolic computa-
tion and satisfiability checking communities have similar goals but the way in which they
approach and solve problems is rather different. She remarked that

. . . collaboration between symbolic computation and SMT solving is still (sur-
prisingly) quite restricted. . .

and made the case that the communities would benefit from increased mutual discussion.
Furthermore, she argued that developing algorithms and tools which combine the strengths
and insights from both these fields is a promising line of research which could be beneficial
to both communities.
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Later that year, Erika Ábrahám along with Pascal Fontaine, Thomas Sturm, and
Dongming Wang organized a “Symbolic Computation and Satisfiability Checking” seminar
at the computer science research centre Dagstuhl [Ábrahám et al., 2016b]. The seminar
ran from the 15th to the 20th of November 2015 and was billed as

. . . the first global meeting of the two communities of symbolic computation and
satisfiability checking.

In 2016, the SC2 project [Ábrahám et al., 2016a] (here SC standing for both Symbolic
Computation and Satisfiability Checking) was started with the stated goal of creating

. . . a new research community bridging the gap between Satisfiability Checking
and Symbolic Computation, whose members will ultimately be well informed
about both fields, and thus able to combine the knowledge and techniques of
both fields to develop new research and to resolve problems (both academic and
industrial) currently beyond the scope of either individual field.

The project is funded through the Horizon 2020 European Union funding programme for
research and innovation and officially started on July 1, 2016. On August 4, 2016, James
Davenport gave the project’s inaugural talk at the conference Applications of Computer
Algebra (ACA), where he introduced the project and outlined its goals [Davenport, 2016].
The SC2 project’s website sc-square.org illustrates that there is already much interest in
this topic from both academia and industry.

This thesis also explores this topic as one of the methodologies which we study. In
particular, part of Chapter 3 is based off of the paper [Bright et al., 2016b] which was
invited to appear in the SC2 topical session at the 2016 edition of Computer Algebra in
Scientific Computing (CASC). Here we presented our follow-up to the original MathCheck
system and described its use in computing Williamson matrices.

Additionally, we presented an extension of [Bright et al., 2016b] at the SC2 workshop
during the 2016 edition of the International Symposium on Symbolic and Numeric Algorithms
for Scientific Computing (SYNASC). In this extension we modified the inner loop of the
SAT solver so that it could programmatically learn facts about the search space as described
in the paper [Ganesh et al., 2012]. In our case, we added some functionality from a CAS
directly into the SAT solver and found an increase in its efficiency to solve certain SAT
instances generated by the MathCheck system. Timings which demonstrate this gain
in efficiency can be found in Section 3.6 of this thesis, providing evidence of the power of
the SAT+CAS paradigm. To our knowledge, this is the first PhD thesis which studies the
SAT+CAS paradigm which we believe has potential to be used in many problems for a
long time to come.

7
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1.3 Implementations

In order to demonstrate the effectiveness of the previously mentioned methods, we provide
implementations of our algorithms along with timings of their running times on inputs of
reasonable size. The source code for each of the studied search procedures are available as
specified below:

1. The tool and Python scripts which we used to generate Williamson matrices up to
order 45 can be found in the MathCheck2 BitBucket repository [Bright, 2016b].

2. An implementation of our algorithm for generating complex Golay sequences written
in C is available online [Bright, 2016a].

3. The C code which we used to generate the minimal primes up to order 30 can be
found in the MEPN (Minimal Elements for the Prime Numbers) GitHub reposi-
tory [Bright, 2014].

1.4 Historical context

Since the development of modern computers they have shaped mathematical practice by
changing how mathematical theorems are proven. In some cases, computers generate data
which is then used to make a conjecture that a mathematician proves in a conventional
manner. In other cases, computers are used in the process of proving a theorem and steps
of the proof rely on computations done by a computer. In principle these computations
could be hand-checked by a mathematician but it would often be prohibitive to do so. After
all, the very purpose of computers is that they allow us to compute things much more
efficiently than is possible to do by hand.

Because it is not practical for a mathematician to verify the computations themselves
in such computer-assisted proofs, some such as the philosopher of mathematics Thomas
Tymoczko have argued that accepting computer-assisted proofs as legitimate changes the
very sense of what it means for a theorem to be proven [Tymoczko, 1979]. He has argued
that such proofs are no longer an a priori deduction but an experimental argument, since
it requires trust that the computer performed the computations correctly and trust that
the computer was programmed correctly.

The impetus for Tymoczko’s paper referred to above was the publication of a computer-
assisted proof of the four colour theorem [Appel and Haken, 1976] which was the first major
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theorem to require the usage of a computer to perform the necessary computations. The
proof used mathematical arguments to reduce the number of cases to check to 1,936 and
then used a computer program to verify each case in turn. A simpler proof was later
published, albeit one still relying on the usage of computers [Robertson et al., 1997].

The computations done in Appel and Haken’s proof were independently checked using
different programs and hardware, making the possibility of error less likely. However, to fully
accept the proof one must still trust that the implementations are free of error. To remedy
this situation and further increase the confidence in the result, in 2005 Benjamin Werner
and Georges Gonthier completed a formal proof of the four colour theorem [Gonthier, 2008]
which was subsequently verified by the theorem prover Coq [Barras et al., 1997]. Thus,
one only needs to trust the implementation of the Coq kernel (which is small and well
tested) to have confidence that the theorem is correct. Of course, one also needs to ensure
that the formalization of the theorem’s statement in Coq is correct, but this should be
much easier than verifying the proof itself.

Another famous theorem proven using computer assistance was Kepler’s conjecture
that the most efficient way of packing spheres in three dimensions is in a pyramid shape.
Although the conjecture was first stated by Johannes Kepler in 1611 and later included
in David Hilbert’s famous 1900 list of 23 unsolved problems, it was not proven until 1998
by the mathematician Thomas Hales [Hales, 2005]. Like in the proof of the four colour
theorem, Hales’ proof reduced the problem to a large but finite number of cases and a
computer was used to individually check each case. The mathematician Jeffrey Lagarias
described the reviewing process [Lagarias, 2011] as follows:

The nature of this proof, consisting in part of a large number of inequalities
having little internal structure, and a complicated proof tree, makes it hard
for humans to check every step reliably. In this process detailed checking of
many specific assertions found them to be essentially correct in every case. This
result of the reviewing process produced in these reviewers a strong degree of
conviction of the essential correctness of this proof. . .

The issue of the Annals of Mathematics in which Hales’ paper appeared included the
following “Statement by the Editors”:

The computer part may not be checked line-by-line, but will be examined for the
methods by which the authors have eliminated or minimized possible sources of
error. . .
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Because the reviewers could not claim 100% confidence in Hales’ result, in 2003 he began a
project to produce a proof of the result which could be formally verified by a computer.
After over a decade of work, the project was completed in 2015 [Hales et al., 2015] and
the formal proof was successfully verified by a combination of the proof assistants HOL
Light [Harrison, 1996] and Isabelle [Nipkow et al., 2002].

Like in the computer-assisted proofs just described, the work in this thesis also relies on
computer programs to perform computations which would be infeasible to perform in any
other way. Thus, the confidence in our results is only as strong as the confidence we hold in
the implementors of the programs, operating systems, and hardware that we used. We used
independent implementations of the algorithms we describe whenever possible; this decreases
the likelihood that our results contain errors but it unfortunately does not completely rule
out the possibility. Ideally, we would produce a formal proof to accompany our results, but
we currently do not have this capability. Although some theorems which were proven using
SAT solvers can produce certificates which can then be formally verified [Heule et al., 2016],
our work relies on additional results (e.g., Theorem 3.2) which would also have to be
formally verified.

1.5 Structure of this thesis

In Chapter 2 we give background on SAT/SMT solvers, the MathCheck system, and the
Hadamard conjecture, which is necessary knowledge to understand our work on Williamson
matrices as presented in Chapter 3. In Chapter 4 we present our work on complex Golay
sequences, and in Chapter 5 we present our work on minimal primes. Finally, in Chapter 6
we conclude the thesis with what we believe are the main takeaways of our work. In
particular, we describe properties of problems which make them suitable for solving with
the SAT+CAS paradigm.
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If we can know, it surely would
be intolerable not to know.

Edward Titchmarsh

Chapter 2

Background

In this chapter we provide context and background which will help the reader understand
our work on the problems we discuss in the following chapters. In particular, we provide
background on SAT/SMT solvers, give an overview of the MathCheck system, and
describe the Hadamard conjecture.

Many conjectures in number theory and combinatorial mathematics are simple to state
but exceptionally hard to verify. For example, the Hadamard conjecture asserts the existence
of certain combinatorial objects in an infinite number of cases [Colbourn and Dinitz, 2007],
making exhaustive search impossible. In such cases, mathematicians often resort to finite
verification (i.e., verification up to some finite bound) in the hopes of learning some meta
property of the class of combinatorial structures they are investigating, or discover a
counterexample to such conjectures. However, even finite verification of combinatorial
conjectures can be challenging because the search space for such conjectures is often
exponential in the size of the structures they refer to. This makes straightforward brute
force search impractical. However, it is sometimes possible to use “inspired” brute force
search by using domain-specific knowledge to decrease the size of the search space coupled
with a general-purpose search procedure. As Doron Zeilberger has put it [Zeilberger, 2015],

Brute-brute force has no hope. But clever, inspired brute force is the future.

In recent years, conflict-driven clause learning (CDCL) Boolean SAT solvers (see for
example [Biere et al., 2009], [Marques-Silva et al., 1999], [Moskewicz et al., 2001]) have be-
come very efficient general-purpose search procedures for a large variety of applications.
Indeed, SAT solvers are probably the best general-purpose search procedures we currently
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have. Despite this remarkable progress these algorithms have worst-case exponential time
complexity, and may not perform well by themselves for many search applications—but
they can become more efficient with appropriately encoded domain-specific knowledge.
By contrast, computer algebra systems (CAS) such as Maple [Char et al., 1986], Math-
ematica [Wolfram, 1999], and Sage [Biere et al., 2009] are often a rich storehouse of
domain-specific knowledge, but do not generally contain sophisticated general-purpose
search procedures.

As argued by the SC2 project [Ábrahám et al., 2016a], the strengths of modern SAT
solvers and CAS are complementary, i.e., the domain-specific knowledge of a CAS can
be crucially important in cutting down the search space associated with combinatorial
conjectures, while at the same time the clever heuristics of SAT solvers, in conjunction with
CAS, can efficiently search a wide variety of such spaces.

2.1 SAT/SMT solvers

A propositional formula is an expression involving Boolean variables and logical connectives
such as AND (∧), OR (∨), and NOT (¬). The satisfiability problem is to determine if a
given formula is satisfiable, i.e., if there exists an assignment to the variables of the formula
which makes the formula true. One way of solving this problem is simply to try every
possible assignment of true and false to all variables. For example, Figure 2.1 shows all
possible assignments to the variables in the formula

φ := (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z

in a tree diagram; the leaves of the tree contain the result if that particular assignment
satisfies the formula or not.

A SAT solver is a program which solves the satisfiability problem and produces a
satisfying assignment in the case that the given formula is satisfiable. In practice, SAT
solvers usually accept formulae given in conjunctive normal form (CNF), i.e., formulae
of the form

∧
iCi where each Ci is a clause (of the form

∨
j lij where each lij is either a

Boolean variable or its negation). For example, the formula φ defined above is a CNF
formula.

Most modern SAT solvers are based on the Davis-Putnam-Logemann-Loveland (DPLL)
algorithm. At its core this algorithm performs a depth-first search through the space of
possible assignments, stopping when a satisfying assignment has been reached or when the
space has been exhausted. Naturally, there are many details and optimizations which make
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Figure 2.1: Tree of possible assignments for the formula (x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ z.

this idea more practical, such as employing conflict-driven clause learning. In more detail,
the DPLL algorithm repeatedly performs the following steps:

• Decide: Choose an unassigned variable and assign it a value. If all variables have
been assigned without a conflict, return the satisfying assignment.

• Deduce: Perform simplifications on the clauses in the given formula to detect conflicts
and infer values of variables. The inference process (Boolean Constant Propagation)
is used repeatedly until no new inferences are made.

• Resolve: If a conflict occurs, learn a clause prohibiting the current assignment and
perform a “backjump” by undoing the variable choices leading to the conflict and
continuing with another assignment. If the conflict occurs when there are no variable
assignments to undo, return UNSAT.

These steps are outlined in a flowchart diagram in Figure 2.2.

It is also possible to consider the satisfiability problem for quantifier-free formulas of
first-order logic over various theories. Some theories which are commonly used include
equality logic with uninterpreted functions, array theory, bitvector theory, and various
theories of arithmetic such as integer or real arithmetic (or their linear arithmetic fragments).
Programs which are able to solve the satisfiability problem in this context are known as
SAT-modulo-theories (SMT) solvers.

Modern SMT solvers typically combine a SAT solver with appropriate theory solver(s) to
determine satisfiability of first-order formulas. Given an existentially-quantified first-order
formula in conjunctive normal form it is possible to abstract the formula into a pure
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Figure 2.2: Flowchart outline of the DPLL algorithm.

propositional formula by replacing each theory constraint with a fresh propositional variable.
A SAT solver is then used to determine if the abstracted formula is satisfiable. If so, the
assignment is given to the theory solver to determine if the assignment yields a genuine
solution of the original formula. If the assignment does not give rise to a solution then the
theory solver determines a clause which encodes a reason why the assignment is prohibited
by the theory and passes that to the SAT solver so the search can be resumed. These steps
are outlined in a flowchart diagram in Figure 2.3.

The above procedure forms the basis of the DPLL(T ) algorithm (here T represents the
theory under consideration). The procedure is called lazy if it waits until all propositional
variables have been assigned until querying the theory solver. Less lazy variants are possible
which also query the theory solver with partial assignments and therefore pass theory
lemmas to the SAT solver more frequently.

2.2 The MathCheck system

In this section we outline a proof-of-concept system we call MathCheck which uses SAT
and CAS functionalities to finitely verify conjectures in mathematics. The first version of
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MathCheck [Zulkoski et al., 2015] was developed by Edward Zulkoski, Vijay Ganesh, and
Krzysztof Czarnecki and was successfully used to verify two conjectures from graph theory
up to bounds which had previously been unobtainable. A SAT solver was the primary
search tool used, but the system would periodically make queries to a CAS to learn facts
about the remaining search space. These facts were then translated into a form the SAT
solver could use and the search was resumed with these additional clauses.

The second version of MathCheck was developed by the author with Vijay Ganesh,
Albert Heinle, Ilias Kotsireas, Saeed Nejati, and Krzysztof Czarnecki. It was used to study
conjectures in combinatorial design theory, as we describe in Sections 2.3 and 3. The main
addition made in the second version of MathCheck is the addition of a more sophisticated
generator script. This script generates the SAT instance(s) and also queries a CAS for
information about the domain space and encodes relevant facts directly into the generated
instance(s).

The MathCheck system can be viewed as a parallel systematic generator of combina-
torial structures referred to by the conjecture under verification C. It uses a CAS to supply
domain-specific knowledge to prune away structures that do not satisfy C, while the SAT
solver is used to verify whether any of the remaining structures satisfy C. In addition, if
the SAT solver used supports the generation of UNSAT cores (concise encodings of why
a formula is unsatisfiable) we can use them to further prune the search in a CDCL-style
learning feedback loop.

The architecture of the MathCheck2 system is outlined in Figure 2.4. At its heart
is a generation script written in Python. This script generates SAT instances containing
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Figure 2.4: Outline of the architecture of MathCheck2. The boxes on the left correspond to
the preprocessing which encodes and decomposes the original problem into SAT instance(s).
The boxes on the right correspond to an SMT-like setup with the CAS playing the role of
the theory solver.

constraints defining the combinatorial structures of the conjecture in question. It also uses
data provided to it by CAS functions to prune the search space and it interfaces with SAT
solvers to discern if the certain subspaces of the search space contain an instance of the
combinatorial structure being searched for. For example, in Chapter 3 we show how to
use Theorem 3.2 to split the search space into partitions and then use a CAS to remove
some of those partitions from consideration. The generation script contains functions
useful for translating combinatorial conditions into clauses which can be read by a SAT
solver. The generator is currently optimized to deal with problems defined in terms of an
autocorrelation function. Such problems arise from the Hadamard conjecture from coding
and combinatorial design theory. For example, we discuss the the problem of computing
Williamson matrices (which can be used to construct Hadamard matrices) in Chapter 3.

Once the class of combinatorial objects has been determined, the script accepts a
parameter n which determines the size of the object to search for. For example, when
searching for Williamson matrices, the parameter n denotes the dimension (i.e., the number
of rows and columns) of the matrix. The generation script then queries the CAS it is
interfaced with for properties that any order n instance of the combinatorial object in
question must satisfy. The domain-specific information returned by the CAS is read by the
generator and then used to prune the space which will be searched by the SAT solver.

Once the generator determines the space to be searched it splits the space into distinct
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subspaces in a divide-and-conquer fashion. After the partitioning of the search space has
been completed, the script generates two types of files:

1. A single “master” file in DIMACS CNF (conjunctive normal form) format which
contains the conditions specifying the combinatorial object being searched for. These
are encoded as propositional formulas in conjunctive normal form. An assignment to
the variables which makes all of them true would give a valid instance of the object
being searched for (and a proof that no such assignment exists proves that there are
no instances of the object in question).

2. A set of files which contain partial assignments of the variables in the master file.
Each file corresponds to exactly one subspace of the search space produced by the
generator.

There are at least 2 advantages of splitting up the problem in such a way:

1. It easily facilitates parallelization. For example, once the instances are generated they
can be given to a cluster of SAT solvers running in parallel.

2. It allows domain-specific knowledge to be used in the splitting process; partitioning
the space in a fortuitous manner can considerably speed up the search, as it is possible
that the CAS can use its domain-specific knowledge to immediately rule out certain
subspaces that the SAT solver would have difficulty searching.

Furthermore, in cases that an instance is found to be unsatisfiable, SAT solvers such
as MapleSAT [Liang et al., 2016] that support the generation of a so-called UNSAT
core can be used to further prune away other similar structures that do not satisfy the
conjecture-under-verification. Given an unsatisfiable instance φ, its UNSAT core is a set of
clauses that concisely characterizes the reason why φ is unsatisfiable and thus encodes an
unsatisfying subspace of the search space.

Lastly, we modify the inner loop of the SAT solver with the addition of a callback
function. This function accepts the current partial assignment under consideration inside
the SAT solver and uses CAS functionality to try to show that the partial assignment
cannot be extended to a complete satisfying assignment. If the CAS is successful in ruling
out a class of assignments which includes the current partial assignment then a conflict
clause is generated encoding this fact and added into the SAT solver’s clause database. This
idea of programmatically generating conflict clauses was introduced in [Ganesh et al., 2012].
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We describe a callback function for the case of Williamson matrices in Section 3.4 and in
Chapter 3.6 show that this function is useful in practice.

The CAS which the SAT solver interfaces with does not necessarily need to be the same
CAS that the generator used when constructing the SAT instances, hence we refer to them
as CAS1 and CAS2 in Figure 2.4. Also, CAS2 needs to know the meaning of the variables
in the SAT instances so that it can appropriately determine which assignments to rule
out. This encoding information can either be given to CAS2 in a file or the generator can
always label variables in a manner such that this information can be implicitly inferred. For
example, in the Williamson case study the variables encoding the entries of the Williamson
matrices were always the variables in the SAT instances with the lowest indices.

2.3 The Hadamard conjecture

As motivation for studying autocorrelation problems, we formally introduce the Hadamard
conjecture from combinatorial design theory. First, we give the definition of a Hadamard
matrix.

Definition 2.1. A matrix H ∈ {±1}n×n, n ∈ N, is called a Hadamard matrix, if for all
i 6= j ∈ {1, . . . , n}, the dot product between row i and row j in H is equal to zero. We call
n the order of the Hadamard matrix.

First studied by Hadamard [Hadamard, 1893], he showed that if n is the order of a
Hadamard matrix, then either n = 1, n = 2 or n is a multiple of 4. In other words, he gave
a necessary condition on n for there to exist a Hadamard matrix of order n. The Hadamard
conjecture is that this condition is also sufficient, so that there exists a Hadamard matrix
of order n for all n ∈ N where n is a multiple of 4.

Conjecture 2.1. There exists a Hadamard matrix of order n for all n divisible by 4.

Hadamard matrices play an important role in many widespread branches of mathe-
matics, for example in coding theory [Muller, 1954, Reed, 1954, Walsh, 1923] and statistics
[Hedayat et al., 1978]. Because of this, there is a high interest in the discovery of different
Hadamard matrices up to equivalence. Two Hadamard matrices H1 and H2 are said to be
equivalent if H2 can be generated from H1 by applying a sequence of negations/permutations
to the rows/columns of H1, i.e., if there exist signed permutation matrices U and V such
that U ·H1 · V = H2.
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There are several known ways to construct sequences of Hadamard matrices. One of
the simplest such constructions is by Sylvester [Sylvester, 1867]: given a known Hadamard
matrix H of order n, [

H H
H −H

]
is a Hadamard matrix of order 2n. This process can of course be iterated, and hence one
can construct Hadamard matrices of order 2kn for all k ∈ N from H.

There are other methods which produce infinite classes of Hadamard matrices such
as those by Paley [Paley, 1933]. However, there is no known method which can provably
construct a Hadamard matrix of order n for arbitrary multiples of 4, although there
are some methods which are conjectured to have this property [Kotsireas, 2013b]. The
smallest unknown order is currently n = 4 · 167 = 668 [Colbourn and Dinitz, 2007]. A
database with many known matrices is included in the computer algebra system Magma
[Bosma et al., 1997] and further collections are available online [Sloane, 2004, Seberry, 1999].
In addition, we have submitted over 500 pairwise inequivalent Hadamard matrices which
were generated by MathCheck2 to the Magma database as well as making them available
through the MathCheck webpage [Ganesh et al., 2015].

Because there are 2n
2 matrices of order n with ±1 entries, the search space of possible

Hadamard matrices grows extremely quickly as n increases, and brute-force search is not
feasible. Because of this, researchers have defined special types of Hadamard matrices which
can be searched for more efficiently because they lie in a small subset of the entire space of
Hadamard matrices.

2.3.1 The Williamson construction

The so-called Williamson method is one way to generate large Hadamard matrices while
searching through a much smaller space than the space of all Hadamard matrices. In fact,
Hadamard matrices of size 4n× 4n generated by Williamson’s method are defined by only
approximately 2n Boolean variables.

Theorem 2.1 (cf. [Williamson, 1944]). Let n ∈ N and let A, B, C, D ∈ {±1}n×n. Further,
suppose that

1. A, B, C, and D are symmetric;

2. A, B, C, and D commute pairwise (i.e., AB = BA, AC = CA, etc.);
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3. A2 +B2 + C2 +D2 = 4nIn, where In is the identity matrix of order n.

Then 
A B C D
−B A −D C
−C D A −B
−D −C B A


is a Hadamard matrix of order 4n.

For practical purposes, one considers A, B, C, and D in the Williamson construction to
be circulant matrices, i.e., those matrices in which every row is the previous row shifted by
one entry to the right (with wrap-around, so that the first entry of each row is the last entry
of the previous row). Such matrices are completely defined by their first row [x0, . . . , xn−1]
and always satisfy the commutativity property. If the matrix is also symmetric, then we
must further have x1 = xn−1, x2 = xn−2, and in general xi = xn−i for i = 1, . . . , n − 1.
Therefore, if a matrix is both symmetric and circulant its first row must be of the form

[x0, x1, x2, . . . , x(n−1)/2, x(n−1)/2, . . . , x2, x1] if n is odd
[x0, x1, x2, . . . , xn/2−1, xn/2, xn/2−1, . . . , x2, x1] if n is even. (2.1)

Definition 2.2. A symmetric sequence of length n is one of the form (2.1), i.e., one which
satisfies xi = xn−i for i = 1, . . . , n− 1.

Williamson matrices are circulant matrices A, B, C, and D which satisfy the conditions
of Theorem 2.1. Since they must be circulant, they are completely defined by their first
row. In light of this, we may simply refer to them as if they were sequences, as we will do
in Chapter 3. Furthermore, since they are symmetric the Hadamard matrix generated by
these matrices is completely specified by the 4

⌈
n+1

2

⌉
variables

a0, a1, . . . , abn/2c, b0, b1, . . . , bbn/2c, c0, c1, . . . , cbn/2c, d0, d1, . . . , dbn/2c.

Given an assignment of these variables, the rest of the entries of the matrices A, B, C, and
D may be chosen in such a way that conditions 1 and 2 of Theorem 2.1 always hold. There
is no trivial way of enforcing condition 3, but in Chapter 3 we will derive consequences of
this condition which will simplify the search for matrices which satisfy it.
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2.3.2 Complexity

In the course of our research the question was raised concerning the computational complexity
of computing a Hadamard matrix. After all, if the problem was in P (i.e., solvable in
polynomial time) then trying to solve it by translating it into a SAT instance would be
somewhat questionable, as the problem of solving a SAT instance is NP-complete and
widely expected to not be solvable in polynomial time.

The problem is easily stated as a function problem as follows:

Problem 2.1. Given a natural number n, output an n× n Hadamard matrix if one exists
and “does not exist” otherwise.

This problem can be solved in nondeterministic polynomial time in n since one can
easily verify in polynomial time if a given n×n matrix is a Hadamard matrix. To ask if the
problem is NP-complete one must first formally state the problem as a decision problem.
There are multiple ways one could do this, but the obvious translation of “Given n, does
a Hadamard matrix of order n exist?” is not a good candidate, since if the Hadamard
conjecture is true then this problem has a simple solution of outputting yes if n = 1, 2, or
if 4 divides n, and outputting no otherwise.

We propose the following as a suitable formulation as a decision problem:

Problem 2.2. Given an n × n matrix with entries either empty or ±1 does there exist
some way of filling in the empty entries to generate a Hadamard matrix?

It is straightforward to see that if one can solve this problem in polynomial time then
one can construct a Hadamard matrix of order n in polynomial time, assuming one exists.
To accomplish this, one simply needs to make repeated queries to the procedure which
solves Problem 2.2, starting with an empty n× n matrix and arbitrarily filling in one extra
entry after each query. If after adding an entry one ever determines that the current matrix
is no longer extendable to a Hadamard matrix then one flips the last entry added. This
new matrix will be extendable to a Hadamard matrix since there are only two possibilities
for each entry, and following this procedure one will generate a Hadamard matrix with only
n2 queries.

The complexity of Problem 2.2 is unknown. Indeed, there seems to be no previous work
attempting to answer it. We are not aware of any work even formally stating the problem
as a decision problem as we have done. Clearly Problem 2.2 is in NP, since an affirmative
answer can easily be verified by an actual assignment of ±1 to the empty entries which
produces a Hadamard matrix.

21



There is also no known polynomial time algorithm for solving Problem 2.2. It would be
a phenomenal development if someone did find such an algorithm, since currently all of
the known methods which can provably construct Hadamard matrices in polynomial time
only work in very specific orders. The running times of the methods used for constructing
Hadamard matrices of order n in practice can only be provably bounded by an exponential
in n. Even with the heuristics used they are not expected to run in polynomial time.
Additionally, they focus on matrices of very special forms making them useless for answering
Problem 2.2. The best known algorithm for provably answering Problem 2.2 uses brute-force
search to try all possible ways of filling in the empty entries. There are O

(
2n

2) possibilities
for this and checking if a matrix is Hadamard can be done using O(n3) arithmetic operations
so the brute-force algorithm uses O

(
n32n

2) arithmetic operations.

It is straightforward to see that Problem 2.2 is equivalent to solving certain very specific
quadratic Diophantine systems where the variables are restricted to lie in {±1}, in particular,
Diophantine systems containing the variables hij for 1 ≤ i, j ≤ n and the constraints

hi1hj1 + · · ·+ hinhjn = 0 for i 6= j,

possibly along with some of the form hij = 1 or hij = −1. The complexity of gen-
eral quadratic Diophantine equations has been studied and they are known to be NP-
complete [Manders and Adleman, 1976].

One might think that the restriction that variables take on at most two values is severe
enough that Diophantine solving over such systems is not NP-complete, but this is not
the case. The book [Gopalakrishnan, 2006] gives a simple reduction from the problem of
solving SAT to the problem of solving Diophantine equations whose variables are restricted
to lie in {0, 1}, showing that the latter problem is NP-hard. It is NP-complete since it is
also in NP, the actual solution being a certificate of an affirmative answer.

The reduction mentioned above is to Diophantine systems which are not necessarily
quadratic. However, it is also known [Skolem, 1938] that the solvability of any Diophantine
equation can be reduced to the solvability of a system of quadratic Diophantine equations.
Also, the reduction is to systems with {0, 1} variables instead of {±1} variables, but this is
not an issue as the solvability of {0, 1}-systems reduces to the solvability of {±1}-systems
by replacing each variable x in the system with (x+ 1)/2.

In summary, we can state the following result:

Theorem 2.2. The problem of deciding whether a system of quadratic Diophantine
equations whose variables lie in {±1} has a solution is NP-complete.
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It should be stressed that this does not show that Problem 2.2 is NP-complete, as the
quadratic Diophantine equations which arise in Problem 2.2 are of a very specific form
which may potentially be easier to solve than general quadratic Diophantine equations.
Theorem 2.2 at least tells us that the equations being quadratic and having variables lying
in {±1} cannot be used to rule out the problem from being NP-complete.
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If a statement is false, that’s the
worst thing you can say about it.

Paul Graham

Chapter 3

Computation of Williamson Matrices

As recounted in the introduction, the search for Williamson matrices has a long history and
they have been studied by many mathematicians, who have tried to construct them in as
many orders as possible. In fact, the mathematician Richard Turyn constructed an infinite
family of Williamson matrices [Turyn, 1972]. However, his construction only applies to
orders n such that 2n− 1 is a prime power congruent to 1 (mod 4).

As described in Chapter 2.3.1, Williamson matrices of order n are used to construct
Hadamard matrices of order 4n. In Turyn’s 1972 paper cited above he makes the following
remarks:

It has been conjectured that an1 Hadamard matrix of this type might exist of
every order 4t, at least for t odd.

However, this conjecture was shown to be false in [Ðoković, 1993] when it was demonstrated
with the help of a computer search that no Williamson matrices exist for order n = 35.
Ðoković remarked that 35 was

. . . the first odd integer, found so far, with this property.

Williamson matrices of even order were not studied until recently [Bright et al., 2016b],
although Williamson-type matrices (a generalization of Williamson matrices defined in a
similar way) of even order have been studied [Wallis, 1974]. The work [Bright et al., 2016b]
constructed Williamson matrices in all orders up to 35, including the even orders. This

1This quote uses the French pronunciation of Hadamard.
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Figure 3.1: Outline of the architecture of MathCheck2 as applied to the Williamson
conjecture (that a Williamson matrix of order n exists for all n).

finally showed that 35 is indeed the smallest integer with the property that Williamson
matrices do not exist in that order. In this chapter we explain the work done to obtain this
result and report on additional results on Williamson matrices of even order. In particular,
we provide for the first time a count of the number of Williamson matrices which exist (up
to equivalence as described in Section 3.1.2) in all even orders less than 45.

An outline of the MathCheck2 system applied to the case study of computing
Williamson matrices is given in Figure 3.1 (this contains the same outline as in Fig-
ure 2.4 except is specific to this case study). The techniques and tools referred to in
Figure 3.1 will be described throughout this chapter. The work done in this chapter was
done in collaboration with Vijay Ganesh, Albert Heinle, Ilias Kotsireas, Saeed Nejati,
Krzysztof Czarnecki, and Chunxiao Li.

3.1 Mathematical preliminaries

Williamson matrices were already defined in Section 2.3.1, where it was pointed out that
the matrices could really be viewed as if they were sequences because of the large amount
of symmetry they contain. For convenience, in this section we will use a definition of
Williamson matrices which is equivalent to the previous definition but it makes no reference
to matrices at all. Because of this we will refer to the computation of Williamson sequences
for the remainder of this chapter.
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3.1.1 Periodic autocorrelation

Before defining Williamson sequences we require the notion of periodic autocorrelation.

Definition 3.1. The periodic autocorrelation function of A = [a0, . . . , an−1] is the periodic
function given by

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n for s ∈ Z.

Note that this function is symmetric and periodic. In particular, one has PAFA(s) =
PAFA(n− s) and PAFA(s) = PAFA(s mod n) (see [Kotsireas, 2013a]), so that the PAFA
only needs to be computed for s = 0, . . . , bn/2c. The other values can be computed through
symmetry and periodicity.

Many other combinatorial conjectures can also be stated in terms of the PAF. For
example, the chapter “Algorithms and Metaheuristics for Combinatorial Matrices” in the
Handbook of Combinatorial Optimization [Kotsireas, 2013a] contains a list of at least eleven
different types of combinatorial objects which are simply defined using an autocorrelation
function. If a conjecture can be recast in such a way it can be beneficial to do so since it
can allow the reusing of code written for dealing with PAF values.

The definition of Williamson sequences is straightforward now that the PAF has been
defined.

Definition 3.2. Four symmetric sequences A, B, C, D ∈ {±1}n are known as Williamson
sequences if they satisfy the equations

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 (3.1)

for s = 1, . . . , bn/2c.

To see that this is an equivalent definition to the one for Williamson matrices, note
that symmetric sequences generate symmetric circulant matrices. This is accomplished
by setting the first row of the matrix to be equal to the sequence, and every other row of
the matrix to be equal to the previous row shifted down and to the right by one position
(with a wrap-around). In other words, there is an equivalence between symmetric circulant
matrices and symmetric sequences.

There is also an equivalence between condition 3 of Theorem 2.1 which is the matrix
equation

A2 +B2 + C2 +D2 = 4nIn
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and the sum-of-PAFs equation (3.1). To see this, note that the sth entry in the first row of
A2 +B2 + C2 +D2 is exactly

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s).

Condition 3 requires that this entry should be 4n when s = 0 and that it should be 0
when s = 1, . . . , n − 1. The sum of the PAFX(0)s being 4n is not actually relevant to
the definition because it is guaranteed to hold as PAFX(0) =

∑n−1
k=0(±1)2 = n for any

X ∈ {±1}n.
Additionally, the first row of A2 +B2 + C2 +D2 will be symmetric as each matrix in

the sum has a symmetric first row. Thus ensuring that

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) = 0 for s = 1, . . . , bn/2c (3.2)

guarantees that every entry in the first row of A2 +B2 +C2 +D2 is 0 besides the first. Since
A2 +B2 + C2 +D2 will also be circulant, ensuring that (3.2) holds will ensure condition 3
of Theorem 2.1.

3.1.2 Williamson equivalences

There are three types of operations which can be applied to a Williamson sequence quadru-
ple (A,B,C,D) to produce another Williamson sequence quadruple (A′, B′, C ′, D′). If
(A′, B′, C ′, D′) can be generated from (A,B,C,D) by a sequence of such operations then
we say that these two Williamson sequences are equivalent. For our purposes, generating
just one of the equivalent quadruples will be sufficient, so we impose additional constraints
on the search space to cut down on extraneous equivalent solutions and hence speed up the
search. Such constraints are often referred to as symmetry breaking constraints.

1. Ordering

Note that the conditions on the Williamson sequences are symmetric with respect to A,
B, C, and D. In other words, those four sequences can be permuted amongst themselves
and they will still form a valid Williamson sequence quadruple. Given this, we enforce the
constraint that

|rowsum(A)| ≤ |rowsum(B)| ≤ |rowsum(C)| ≤ |rowsum(D)|,

where rowsum(X) denotes the sum of the entries of X. The sequences of any quadruple
(A,B,C,D) can be permuted so that this condition holds.
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2. Negation

The entries in the sequences A, B, C, or D can be negated and the sequences will still form
a valid Williamson sequence quadruple. Given this, we do not need to try both possibilities
for the sign of the rowsum of A, B, C, and D. For example, we can choose to enforce
that the rowsum of each of sequence is nonnegative (when the rowsum is 0 this condition
removes no equivalences so we can instead enforce that the sequence’s first entry is positive).
This is what we do when n is even, but when n is odd there is an alternative strategy which
is useful. In such a case we choose the signs so that they satisfy rowsum(X) ≡ 1 (mod 4)
for X ∈ {A,B,C,D}. In this case, the following lemma allows us to fix the first entries in
any Williamson sequence (A,B,C,D).

Lemma 3.1. If (A,B,C,D) is a Williamson sequence of order n ≡ 1 (mod 4) whose
rowsums are all congruent to 1 (mod 4) then a0 = b0 = c0 = d0 = 1.

Proof. By symmetry, one has that rowsum(A) = a0 + 2
∑(n−1)/2

k=1 ak and

(n−1)/2∑
k=1

ak ≡
(n−1)/2∑
k=1

1 ≡ (n− 1)/2 (mod 2),

so 2
∑(n−1)/2

k=1 ak ≡ n− 1 (mod 4). Thus

a0 ≡ rowsum(A)− (n− 1) ≡ 1 (mod 4)

and then a0 ∈ {±1} implies a0 = 1, and the same identity holds for each of b0, c0, and d0.

By the same argument, if n ≡ 3 (mod 4) then one can show that a0 = b0 = c0 = d0 = −1.
Furthermore, the following result of Williamson allows us to fix the value of akbkckdk for
all k.

Theorem 3.1 (cf. [Williamson, 1944]). If (A,B,C,D) is a Williamson sequence of odd
order n then we have akbkckdk = −a0b0c0d0 for all 1 ≤ k ≤ (n− 1)/2.

In summary, when n is odd we enforce the convention that all rowsums are taken to be
equivalent to 1 (mod 4) so that akbkckdk = −1 for all 1 ≤ k ≤ (n− 1)/2 and

a0 = b0 = c0 = d0 =

{
1 if n ≡ 1 (mod 4),
−1 if n ≡ 3 (mod 4).
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3. Permuting entries

We can reorder the entries of the sequences A, B, C, and D with the rule ai 7→ aki mod n

where k is any number coprime with n, and similarly for bi, ci, di (the same reordering must
be applied to each sequence for the result to still be equivalent). Such a rule effectively
applies an automorphism of Zn to the Williamson sequence quadruple.

Example 3.1. The sequence A := [1,−1, 1, 1, 1, 1,−1] has order 7 and can be permuted
to [1, 1,−1, 1, 1,−1, 1] using the rule ai 7→ a2i mod 7 and to [1, 1, 1,−1,−1, 1, 1] using the
rule ai 7→ a3i mod 7. The rules ai 7→ aki mod 7 for k ∈ {4, 5, 6} produce exactly the same
permutations. In general the symmetry property implies that ai 7→ aki mod n is equivalent
to ai 7→ a(n−k)i mod n.

3.1.3 Power spectral density

Because the search space for Williamson sequences is so large, it is advantageous to describe
properties which any Williamson sequence must satisfy. Such properties can speed up a
search by significantly reducing the size of the necessary space. One such set of properties for
Williamson sequences is derived using the discrete Fourier transform from Fourier analysis,
i.e., the periodic function DFTA(s) :=

∑n−1
k=0 akω

ks for a sequence A = [a0, a1, . . . , an−1],
where s ∈ Z and ω := e2πi/n is a primitive nth root of unity. Because ωks = ωks mod n one has
that DFTA(s) = DFTA(s mod n), so that only n values of DFTA need to be computed and
the remaining values are determined through periodicity. In fact, when A consists of real
entries, it is well-known that DFTA(s) is equal to the complex conjugate of DFTA(n− s).
Hence only

⌈
n+1

2

⌉
values of DFTA need to be computed.

The power spectral density of the sequence A is given by

PSDA(s) := |DFTA(s)|2 for s ∈ Z.

Example 3.2. Let ω = e2πi/5. The discrete Fourier transform and power spectral density
of the sequence A = [1, 1,−1,−1, 1] are given by:

DFTA(0) = 1 + 1− 1− 1 + 1 = 1 PSDA(0) = 1

DFTA(1) = 1 + ω − ω2 − ω3 + ω4 ≈ 3.236 PSDA(1) ≈ 10.472

DFTA(2) = 1 + ω2 − ω4 − ω6 + ω8

= 1− ω + ω2 + ω3 − ω4 ≈ −1.236 PSDA(2) ≈ 1.528
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3.1.4 Compression

Because the size of the space in which a combinatorial object lies is generally exponential in
the size of the object, it is advantageous to instead search for smaller objects when possible.
Recent theorems on so-called “compressed” sequences allow us to do that when searching
for Williamson sequences.

Definition 3.3 (cf. [Ðoković and Kotsireas, 2015]). Let A = [a0, a1, . . . , an−1] be a se-
quence of length n = dm and set

a
(d)
j = aj + aj+d + · · ·+ aj+(m−1)d, j = 0, . . . , d− 1.

Then we say that the sequence A(d) = [a
(d)
0 , a

(d)
1 , . . . , a

(d)
d−1] is the m-compression of A.

Example 3.3. Consider the sequence A = [1, 1,−1,−1,−1, 1,−1, 1, 1,−1, 1,−1,−1,−1, 1]
of length 15. Since 15 factors uniquely as 15 = 3 · 5, there are two non-trivial choices for
the tuple (d,m), namely (d,m) = (3, 5) and (d,m) = (5, 3). The sequence A then has the
two compressions

A(3) = [−3, 1, 1] and A(5) = [3,−1,−1,−1,−1].

As we will see, the space of the compressed sequences that we are interested in will be
much smaller than the space of the uncompressed sequences. What makes compressed se-
quences especially useful is that we can derive conditions that the compressed sequences must
satisfy using our known conditions on the uncompressed sequences. To do this, we utilize
the following theorem which is a special case of a result from [Ðoković and Kotsireas, 2015].

Theorem 3.2. Let A, B, C, and D be sequences of length n = dm which satisfy

PAFA(s) + PAFB(s) + PAFC(s) + PAFD(s) =

{
4n, s = 0

0, 1 ≤ s < len(A).
(3.3)

Then for all s ∈ Z we have

PSDA(s) + PSDB(s) + PSDC(s) + PSDD(s) = 4n. (3.4)

Furthermore, both (3.3) and (3.4) hold if the sequences A, B, C, D are replaced with their
compressions A(d), B(d), C(d), D(d).
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Since PSDX(s) is always nonnegative, equation (3.4) implies that PSDA(d)(s) ≤ 4n
(and similarly for B, C, D). Therefore if a candidate compressed sequence A(d) satisfies
PSDA(d)(s) > 4n for some s ∈ Z then we know that the uncompressed sequence A can never
be part of a Williamson sequence and we have the following Corollary.
Corollary 3.1. If X is a sequence which satisfies PSDX(s) > 4n for some s ∈ Z then X
or any uncompression of X is not part of a Williamson sequence.

Similarly, if PSDX(s) + PSDY (s) > 4n for some s ∈ Z then X and Y cannot both occur
in the same Williamson sequence.

Useful compression properties

Lastly, we derive some properties that the compressed sequences which arise in our context
must satisfy. For a concrete example, note that the compressed sequences of Example 3.3
fulfill these properties.
Lemma 3.2. If A is a sequence of length n = dm with ±1 entries, then the entries a(d)

i ,
i ∈ {0, . . . , d− 1}, have absolute value at most m and a(d)

i ≡ m (mod 2).

Proof. For all 0 ≤ j < d we have, using the triangle inequality, that∣∣a(d)
j

∣∣ =

∣∣∣∣m−1∑
k=0

aj+kd

∣∣∣∣ ≤ m−1∑
k=0

|aj+kd| = m.

Additionally, a(d)
j ≡

∑m−1
k=0 1 ≡ m (mod 2) since aj+kd ≡ 1 (mod 2).

In the course of our research we discovered the following useful property of compressed
sequences which significantly reduces the number of possible compressions of any Williamson
sequence.
Lemma 3.3. The compression of a symmetric sequence is also symmetric.

Proof. Suppose that A is a symmetric sequence of length n = dm. We want to show that
a

(d)
j = a

(d)
d−j for j = 1, . . . , d− 1. By reversing the sum defining a(d)

j and then using the fact
that n = md, we have

m−1∑
k=0

aj+kd =
m−1∑
k=0

aj+(m−1−k)d =
m−1∑
k=0

an+j−d(k+1).

By the symmetry of A, an+j−d(k+1) = ad(k+1)−j , which equals ad−j+dk. The sum in question
is therefore equal to

∑m−1
k=0 ad−j+dk = a

(d)
d−j, as required.
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3.2 SAT encoding

An attractive property of Williamson sequences when encoding them in a SAT context is
that each of their entries is one of two possible values, namely ±1. We choose the encoding
that 1 is represented by true and −1 is represented by false. We call this the Boolean value
or BV encoding. Under this encoding, the multiplication function of two x, y ∈ {±1}
becomes the XNOR function in the SAT setting, i.e., BV(x · y) = XNOR(BV(x),BV(y)).

If the intention is clear from the context then we may just use the variable names

a0, . . . , an−1, b0, . . . , bn−1, c0, . . . , cn−1, d0, . . . , dn−1

to refer to either the ±1 entries of a Williamson sequence or to the Boolean variables in
our SAT instances which encode those ±1 entries.

3.2.1 Encoding the PAF values

Recall that the periodic autocorrelation function is defined by

PAFA(s) :=
n−1∑
k=0

aka(k+s) mod n.

In a SAT context the products in the summand aka(k+s) mod n can be encoded by defining
the new ‘product’ variables

PA
k,s := XNOR(ak, a(k+s) mod n).

Note that since Williamson sequences are symmetric there are only b(n + 1)/2c distinct
variable choices for each ak and a(k+s) mod n. In other words, this definition requires the
introduction of approximately n2/4 new variables for each sequence A, B, C, and D.

Once the product variables have been defined, we want to find some way of encoding
the PAF condition

n−1∑
k=0

(
PA
k,s + PB

k,s + PC
k,s + PD

k,s

)
= 0,

where we are thinking of the product variables as ±1 values; since the sum of the variables
is zero there must be an equal number of +1s and −1s in this sum. Since there are 4n
terms in the sum there must be exactly 2n variables with the value +1 and 2n variables
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a

b
s = a⊕ b

c = a ∧ b

Figure 3.2: A schematic diagram of a half adder.

with the value −1. In other words, if we instead think of the product variables as Boolean
values then the PAF condition is equivalent to the cardinality constraint∣∣∣∣{x ∈ n−1⋃

k=0

{
PA
k,s, P

B
k,s, P

C
k,s, P

D
k,s

}
: x true

}∣∣∣∣ = 2n. (3.5)

This condition may be encoded in a SAT instance using what is known as the binary adder
method.

A binary adder is a circuit which accepts a number of variables as input and outputs
a count of how many input variables were set to true. If there are n variables of input
then there will be blog2 nc+ 1 output variables and they will encode in binary the number
of variables set to true. A digram of a 2-bit binary adder, also known as a half adder, is
shown in Figure 3.2. A 3-bit binary adder (or a full adder) is the same except it has 3
input variables.

Repeatedly using full and half adders one can construct arbitrary n-bit adders and we
use such a network to encode the constraint (3.5). The input to the binary adder network
will be the 4n variables

⋃n−1
k=0

{
PA
k,s, P

B
k,s, P

C
k,s, P

D
k,s

}
and the output to the network will be

blog2 4nc+ 1 variables. To ensure that the cardinality constraint is satisfied, i.e., to ensure
that exactly 2n input variables are true, we explicitly assign values to the output variables
so that they encode 2n in binary. As an example, if we wanted to ensure that 2 of the
inputs were true in Figure 3.2 (i.e., both of them) then we would set c to true and s to
false, since 2 encoded in binary is [1, 0] or [true, false].

3.3 Techniques for improved efficency

We call the SAT encoding that we have just described the “naive” encoding since it is
basically just a straight translation of the definition of Williamson sequences into a SAT
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context. The largest Williamson sequence we were able to find using the naive encoding
and an off-the-shelf SAT solver with a timeout of 24 hours had order 31 (see Section 3.6.1).
However, in this section we describe three techniques which allow us to prune the size of
the search space and increase the efficiency of our search.

3.3.1 Sum-of-squares decomposition

As a special case of compression, consider what happens when d = 1 andm = n. In this case,
the compression of A is a sequence with a single entry whose value is

∑n−1
k=0 ak = rowsum(A).

If A, B, C, and D are {±1}-sequences which satisfy the conditions of Theorem 3.2, then
the theorem applied to this m-compression says that

PAFA(1)(0) + PAFB(1)(0) + PAFC(1)(0) + PAFD(1)(0) = 4n.

Since PAF[x](0) = x2 by definition, this simplifies to

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2 = 4n.

Additionally, each rowsum must have the same parity as n by Lemma 3.2.

In other words, the rowsums of the sequences A, B, C, and D decompose 4n into the
sum of four perfect squares whose parity matches the parity of n. Since there are usually
only a few ways of writing 4n as a sum of four perfect squares this severely limits the
number of sequences which could satisfy the hypotheses of Theorem 3.2. Furthermore, some
computer algebra systems contain functions for explicitly computing what the possible
decompositions are (e.g., PowersRepresentations in Mathematica and nsoks by Joe
Riel of Maplesoft [Riel, 2006]). We can query such CAS functions to determine all possible
values that the rowsums of A, B, C, and D could possibly take. For example, when n = 35
we find that there are exactly three ways to write 4n as a sum of four positive odd squares
in ascending order, namely,

12 + 32 + 32 + 112 = 12 + 32 + 72 + 92 = 32 + 52 + 52 + 92 = 4 · 35.

As described in Section 3.1.2, any Williamson quadruple is equivalent to another quadruple
whose rowsum sum-of-squares decomposition

rowsum(A)2 + rowsum(B)2 + rowsum(C)2 + rowsum(D)2

is of one of the above three types.
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This is where the power of the SAT+CAS combination begins to be seen, because
although it is necessarily true that the rowsums of all Williamson sequences will provide a
sum-of-squares decomposition of 4n, it is unlikely that the SAT solver would discern this
on its own. After all, the SAT solver does not have any knowledge of the mathematical
background of the problem domain. The main drawback of translating such problems into
SAT is that the problem context is lost when everything is replaced with Boolean constraints.
This is where CAS knowledge can be extremely useful as the CAS can determine all possible
sum-of-squares decompositions for a given order, and that information can be provided to
the SAT solver to help guide its search.

For example, suppose we are searching for Williamson sequences whose rowsum sum-
of-squares decomposition is the first type given above, 12 + 32 + 32 + 112. Then we have
that

rowsum(A) = 1, rowsum(B) = 3, rowsum(C) = 3, rowsum(D) = 11.

Similarly to the addition encoding from Section 3.2.1 this information can be encoded using
four binary adder networks, one with each of the variables in A, B, C, and D. In fact, as
a small performance gain we can give variables which appear twice in the sequences (due
to symmetry) a weight of 2 in the adder network. For example, when n is odd we have
rowsum(A) = a0 + 2

∑(n−1)/2
k=1 ak so the variables ak for k = 1, . . . , (n− 1)/2 can be given a

weight of 2.

3.3.2 Divide-and-conquer via compression

Because each instance can take a significant amount of time to solve, it is beneficial to
divide instances into multiple partitions, each instance encoding a subset of the search
space. Not only does this allow us to use parallelism, it also allows us another opportunity
to use the domain-specific knowledge in a CAS. In certain cases the functionality provided
by a CAS can immediately show that an instance can be ignored.

In our case, we found that an effective splitting method was to split by compressions,
i.e., to have each instance contain one possibility of the compressions of A, B, C, and D.
To do this, we first need to know all possible compressions of A, B, C, and D. These
can be generated by applying Lemmas 3.2 and 3.3. For example, when n = 35 and d = 5
(so m = 7) there are 28 possible m-compressions of A with rowsum(A) = 1. In addition,
we can use the filtering condition in Corollary 3.1 to discard some of these sequences as
those which have a PSD value large enough that they can never be the compression of a
Williamson sequence. In fact, only 12 of the 28 possibilities for A(5) satisfy PSDA(5)(s) ≤ 4n
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[−7, 1, 3, 3, 1] [−7, 3, 1, 1, 3] [−3,−1, 3, 3,−1] [−3, 1, 1, 1, 1]
[−3, 3,−1,−1, 3] [1,−3, 3, 3,−3] [1,−1, 1, 1,−1] [1, 1,−1,−1, 1]
[1, 3,−3,−3, 3] [5,−3, 1, 1,−3] [5,−1,−1,−1,−1] [5, 1,−3,−3, 1]

Figure 3.3: Possible 7-compressions of symmetric {±1}-sequences of order 35 with a rowsum
of 1 and which satisfy Lemmas 3.2, 3.3, and Corollary 3.1.

for all s ∈ Z; these sequences are given in Figure 3.3. For efficiency, the calculation of the
PSD values was performed using the C library FFTW [Frigo and Johnson, 2005] instead
of querying a CAS.

There are also 12 possible 7-compressions for each of B, C, and D with rowsum(B) =
rowsum(C) = 3 and rowsum(D) = 11. (As previously mentioned, in practice we actually
use rowsums of −3 and −11 so that Lemma 3.1 applies.) Thus there are 124 total instances
which would need to be generated for this selection of rowsums. However, only 80 of them
satisfy the sum-of-PSDs condition in Theorem 3.2. Furthermore, only 23 of those 80 are
pairwise inequivalent; these sequences are given in Figure 3.4. It suffices to only consider
these 23 pairwise inequivalent 7-compressions, as if one 7-compression uncompresses to a
Williamson sequence (A,B,C,D) then any other equivalent 7-compression will uncompress
to a Williamson sequence equivalent to (A,B,C,D). (More precisely, if σ is an equivalence
operation then σ(A(5), B(5), C(5), D(5)) will uncompress to σ(A,B,C,D).) Since we are only
interested in finding Williamson sequences up to equivalence it suffices to use just one
7-compression from each equivalence class.

Using two compression factors

If n has two nontrivial divisors m and d then we can find all possible m- and d-compressions
of A, B, C, and D. In this case, each instance can set both the m- and d-compression for
each of A, B, C, and D. The downside of using two compressions in each instance is that
it leads to many more possible instances necessary to check. Since one does not know in
advance which (if any) m- and d-compression will lead to a solution, one has to check all
possible ways of combining the m- and d-compressions.

In this case removing equivalences from both the m- and d-compressions does not work.
As an example, say that (A,B,C,D) is a Williamson sequence which has the compression
(A(d), B(d), C(d), D(d)) in the equivalence class Γ and the compression (A(m), B(m), C(m), D(m))
in the equivalence class ∆. Then by applying a suitable equivalence operation to (A,B,C,D)
there is a Williamson sequence which m-compresses to any member of Γ, as well as
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A(5) B(5) C(5) D(5)

[5, 1,−3,−3, 1] [−3, 3,−3,−3, 3] [−3, 1,−1,−1, 1] [1,−3,−3,−3,−3]
[5, 1,−3,−3, 1] [−3, 3,−3,−3, 3] [1,−3, 1, 1,−3] [−3,−3,−1,−1,−3]
[5, 1,−3,−3, 1] [5,−3,−1,−1,−3] [1,−3, 1, 1,−3] [−3,−1,−3,−3,−1]
[5, 1,−3,−3, 1] [−3, 1,−1,−1, 1] [−3,−1, 1, 1,−1] [−7, 1,−3,−3, 1]
[1, 3,−3,−3, 3] [1, 1,−3,−3, 1] [5,−3,−1,−1,−3] [1,−3,−3,−3,−3]
[1, 3,−3,−3, 3] [1, 1,−3,−3, 1] [1,−3, 1, 1,−3] [−3, 1,−5,−5, 1]
[1, 3,−3,−3, 3] [−3, 1,−1,−1, 1] [−7, 1, 1, 1, 1] [1,−3,−3,−3,−3]
[1, 3,−3,−3, 3] [1,−3, 1, 1,−3] [−7, 1, 1, 1, 1] [−3,−3,−1,−1,−3]

[5,−1,−1,−1,−1] [1,−1,−1,−1,−1] [−7, 1, 1, 1, 1] [−7,−1,−1,−1,−1]
[1, 1,−1,−1, 1] [5,−1,−3,−3,−1] [1, 1,−3,−3, 1] [−7, 1,−3,−3, 1]
[1, 1,−1,−1, 1] [1, 1,−3,−3, 1] [1, 1,−3,−3, 1] [5,−5,−3,−3,−5]
[1, 1,−1,−1, 1] [−3, 3,−3,−3, 3] [1,−3, 1, 1,−3] [−7,−3, 1, 1,−3]
[1, 1,−1,−1, 1] [1,−3, 1, 1,−3] [−7, 1, 1, 1, 1] [−3,−5, 1, 1,−5]
[1, 1,−1,−1, 1] [−7, 1, 1, 1, 1] [−7, 1, 1, 1, 1] [−3,−1,−3,−3,−1]

[−3, 3,−1,−1, 3] [1, 3,−5,−5, 3] [1,−1,−1,−1,−1] [1,−3,−3,−3,−3]
[−3, 3,−1,−1, 3] [1,−1,−1,−1,−1] [−7, 1, 1, 1, 1] [1,−1,−5,−5,−1]

[−3, 1, 1, 1, 1] [1, 3,−5,−5, 3] [1,−1,−1,−1,−1] [1,−5,−1,−1,−5]
[−3, 1, 1, 1, 1] [5,−1,−3,−3,−1] [5,−3,−1,−1,−3] [1,−3,−3,−3,−3]
[−3, 1, 1, 1, 1] [5,−1,−3,−3,−1] [1,−3, 1, 1,−3] [−3, 1,−5,−5, 1]
[−3, 1, 1, 1, 1] [−3, 3,−3,−3, 3] [−3, 1,−1,−1, 1] [−7,−3, 1, 1,−3]
[−3, 1, 1, 1, 1] [−3, 3,−3,−3, 3] [−3,−3, 3, 3,−3] [1,−3,−3,−3,−3]
[−3, 1, 1, 1, 1] [−3, 1,−1,−1, 1] [−7, 1, 1, 1, 1] [−3,−5, 1, 1,−5]
[−7, 3, 1, 1, 3] [1, 1,−3,−3, 1] [1, 1,−3,−3, 1] [−3,−3,−1,−1,−3]

Figure 3.4: Possible 7-compressions of Williamson sequences with sums-of-squares decom-
position 12 + 32 + 32 + 112 which are pairwise inequivalent.
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a Williamson sequence which d-compresses to any member of ∆, but not necessarily a
Williamson sequence which compresses to any member of Γ and ∆ simultaneously. Therefore,
even if we are only interested in searching for inequivalent Williamson sequences we cannot
remove equivalences from both the m- and d-compressions because we do not know in
advance which representatives from the m- and d-compressions will simultaneously lead to
a solution. Using a set of inequivalent representatives for just one compression is fine, as in
that case every representative of an equivalence class will yield a solution if just one does.

Even though using two compressions factors has these drawbacks, we still found that
technique was advantageous to use when we could because it allows the encoding of much
more information into each instance. This information allows the instances to be solved
much faster than those generated using information from just one compression factor. The
main drawback of this technique was that it could lead to a huge number of instances
to generate. Because of this, we only used two compression factors when there would be
a reasonable number of SAT instances generated. We always used compression by the
smallest nontrivial divisor of the order n and only used compression by another nontrivial
divisor of n when there would be under 10,000 instances generated.

3.3.3 UNSAT core

After using the divide-and-conquer technique one obtains a collection of instances which are
almost identical. For example, the instances will contain variables which encode the rowsums
of A, B, C, and D. Since there are multiple possibilities of the rowsums (as discussed in
Section 3.3.1), not all instances will set those variables to the same values. However, since
the instances are the same except for those variables, it is sometimes possible to use an
UNSAT core result from one instance to learn that other instances are unsatisfiable.

Provided a master instance and a set of assumptions (variables which are set either
true or false), the UNSAT core contains a subset of the assumptions which make the
master instance unsatisfiable. Thus, any other instance which sets the variables in the
UNSAT core in the same way must also be unsatisfiable and we do not need to make
another call to a SAT solver to discover this. MapleSAT [Liang et al., 2016], based on
MiniSAT [Eén and Sörensson, 2004], is one SAT solver which supports the generation of
UNSAT cores.

For example, our instances for n = 35 contained 14,483 clauses which were identical
among all instances. The instances contained 3120 variables of which only 84 were given as
assumptions and assigned differently in each instance.
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3.4 Programmatic filtering

The paper [Ganesh et al., 2012] introduced the idea of a programmatic SAT solver. Such a
SAT solver can generate conflict clauses programmatically, i.e., by a piece of code included
with the SAT solver which is executed as the SAT solver carries out its search. Such code
can be custom to the specific problem under consideration and in certain cases the clauses
which are programmatically learned can dramatically increase the efficiency of the search.
The usage of a programmatic SAT solver also fits nicely into the SAT+CAS paradigm,
as the programmatic code can use any method to generate the learned clauses, including
querying CAS functions.

In our work we used a version of MapleSAT [Liang et al., 2016] modified with the
addition of a callback function which is called inside the inner loop of MapleSAT, just
before the decision step when an unassigned variable is assigned a truth value. The callback
function accepts the current partial assignment and if it can be determined that the partial
assignment cannot be extended into a satisfying assignment then it returns a conflict clause
encoding that fact. Not only can this increase the efficiency of the search it also allows for
increased expressiveness, as some constraints are difficult to express as a CNF propositional
formula but can be naturally expressed in a programmatic fashion.

Writing an appropriate callback function is a delicate task, as ideally one would want
the learned clauses to encode something which satisfies each of the following criteria:

(a) Nontrivial; something the SAT solver would not discover on its own.

(b) Useful; something which will increase the efficiency of the search.

(c) Efficiently computable; something which can be computed quickly and with little
overhead.

In our case, we found that an effective callback function was based on the PSD filtering
criteria of Theorem 3.2. In detail, our programmatic filtering callback function performs
the following:

1. Checks the variables defining the sequences A, B, C, and D to see which sequences,
if any, have had all their entries assigned.

2. Computes PSDX(s) for s = 0, . . . , bn/2c for the sequences X ∈ {A,B,C,D} which
have all of their entries set.
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3. If any computed PSDX(s) is strictly larger than 4n then learn a clause discounting
the variables in X from being set the way that they currently are. In other words, we
learn the clause

¬(xcur0 ∧ xcur1 ∧ · · · ∧ xcurbn/2c) ≡ ¬xcur0 ∨ ¬xcur1 ∨ · · · ∨ ¬xcurbn/2c (3.6)

where xcuri is the literal xi when xi is currently assigned to true and is the literal ¬xi
when xi is currently assigned to false.

4. Otherwise, compute
∑

X PSDX(s) for s = 0, . . . , bn/2c where the sum is over the
X ∈ {A,B,C,D} which have all of their entries set.

5. If any computed
∑

X PSDX(s) is strictly larger than 4n then learn a clause discounting
the variables in the sequences which have all their entries set from being set the way
they currently are.

This callback function meets the three criteria we outlined above:

(a) Nontrivial; the uncustomized SAT solver has no knowledge of Theorem 3.2 or that
the variables are being used to encode Williamson sequences.

(b) Useful; the clauses learned dramatically cut down the search space. As a rough
estimate, if the search space has about 24(n/2) total assignments then learning a clause
of the form (3.6) removes about 23(n/2) assignments from consideration.

(c) Efficiently computable; we used the C library FFTW [Frigo and Johnson, 2005] to
compute the PSD values which this library has been fined-tuned to do extremely
efficiently. The direct usage of C libraries is preferable to making calls to an external
CAS when possible, as such calls tend to have large overhead.

3.4.1 Numerical Accuracy

The library FFTW which we used to compute the PSD values uses floating point numbers
and thus is inherently imprecise. The FFTW website [Frigo and Johnson, 2014] makes the
following claim:

. . . floating-point arithmetic is not exact, so different FFT algorithms will give
slightly different results (on the order of the numerical accuracy; typically a
fractional difference of 1e−15 or so in double precision).
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However, we were not able to find any provable guarantee on the accuracy of FFTW which
makes it problematic to use for mathematical results of nonexistence. Conceivably, FFTW
could produce a result with the computed value of PSDX(s) larger than 4n+ ε (where ε is
whatever tolerance we use when checking the PSD condition) but the true value of PSDX(s)
smaller than 4n. In such a case, the learned clause could block a satisfying assignment and
the SAT solver could return UNSAT erroneously. This is less of an issue in the cases where
the SAT solver returns a satisfying assignment, since in those cases the assignment can
easily be checked to satisfy the instance constraints without relying on FFTW.

To address this problem we also computed the PSD values using a method with a
provable guarantee of accuracy. Note that it follows from the Wiener–Khinchin theorem
(see e.g., [Ricker, 2012]) that the PSD values of X are equal to the values of the discrete
Fourier transform of the PAF values of X. In other words,

PSDX(s) =
n−1∑
k=0

PAFX(s)e2πiks/n =
n−1∑
k=0

PAFX(s) cos(2πks/n), (3.7)

the later equality following since the values of X are real. We can use this expression to
evaluate PSDX(s) to a provable guarantee of accuracy. First, we use arbitrary precision
arithmetic to evaluate cos(2πks/n) to whatever level of accuracy we desire, e.g., double
precision (53 bits). Note that since cos(2πks/n) = cos(2π(ks mod n)/n) we only need to
make n evaluations of the cosine function.

Once the values of cos(2πks/n) are known to the required precision one can use standard
error analysis techniques to get a bound on the error introduced by evaluating the summation
in (3.7) using floating point arithmetic. These bounds depend on the unit roundoff µ of
the floating point system used (e.g., in double precision one has µ = 2−53). As summarized
in [Higham, 1993] the absolute error introduced by performing each multiplication in the
summands of (3.7) will be at most

|PAFX(s) cos(2πks/n)|µ ≤ nµ

and the absolute error introduced by computing the summation will be at most

(n− 1)µ

1− (n− 1)µ

n∑
k=1

|PAFX(s) cos(2πks/n)| ≤ n2(n− 1)µ

1− (n− 1)µ
.

When µ = 2−53 and n ≤ 26 the total absolute error will be at most 10−10 and thus if our
PSD filtering criterion tests that the computed value of PSDX(s) is larger than 4n+ ε for
ε > 10−10 it guarantees that the true value of PSDX(s) is larger than 4n. The computation
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of
∑

X PSDX(s) introduces similar floating point errors, but these are also irrelevant if the
tolerance ε is large enough. In our implementation we used ε := 10−2 which is multiple
orders of magnitude larger than strictly necessary.

3.5 Matching method

In order to compare the SAT+CAS method with a different approach we also examine a
method which proceeds by finding Williamson sequences by solving a matching problem.
This method also has the advantage that it is straightforward to use it to find all solutions
in the search space. One way to state the matching problem is as follows:

Problem 3.1. Given multiple lists of vectors with integer entries, find one vector from
each list such that their sum is the zero vector.

A solution of the problem is referred to as a matching of the lists. That is, a matching
is a set of vectors (one from each list) summing to the zero vector.

The matching problem is easily seen to be closely related to the problem of finding
Williamson sequences, for we can make a list of the vectors[

PAFA(1) PAFA(2) · · · PAFA(bn/2c)
]

for all symmetric A ∈ {±1}n, and similar lists for B, C, and D. Then any matching of
those four lists yields a Williamson sequence by taking the {±1}-sequences which were used
to generate the vectors in the matching.

Of course, it is advantageous to use filtering theorems to decrease the size of the lists as
much as possible before solving the matching problem. To do this, we again use the PSD
criterion of Theorem 3.2 and the sums-of-squares technique of Section 3.3.1. In other words,
we only populate the lists with vectors[

PAFX(1) PAFX(2) · · · PAFX(bn/2c)
]

for X with appropriate rowsum and for which PSDX(s) ≤ 4n for all s. Let LA, LB,
LC , and LD be the list of vectors formed in this way for some particular sums-of-squares
decomposition.

The naive way of finding a matching would be to search through every member of the
Cartesian product LA × LB × LC × LD and find those members whose vectors sum to the
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zero vector. When there are not many distinct values in the entries of the vectors a more
sophisticated way of running the search is to use a binning process, as we outline below.

Let valsk(LX) be the set of distinct values in the kth entry of the vectors in LX . To
start off with, we form the set

vals1(LA)× vals1(LB)× vals1(LC)× vals1(LD)

and search it for members whose four values sum to 0. If there are no such matchings then
there are no matchings to the original problem either, as there are not even any entries
in the first entry which sum to 0. Otherwise, for every matching (vA, vB, vC , vD) found we
form the filtered lists

L′X := {the vectors in LX with first entry equal to vX}.

Now we repeat the above procedure except using the second entries of the filtered lists, i.e.,
we form the set

vals2(L′A)× vals2(L′B)× vals(L′C)× vals(L′D)

and search it for members whose four values sum to 0. If there are no such members
then there are no matchings to the original problem whose first entries are the matching
(vA, vB, vC , vD). If there was another possible matching for the first entry then we have to
backtrack and try that selection of first entries as well. Otherwise, we inductively continue
on in this fashion, filtering entries of LA × LB × LC × LD so that the first k entries of their
vectors all sum to zero and then solving the matching problem on the distinct values in the
(k + 1)th entry.

To find Williamson sequences using this method it is necessary to store a mapping
between the original sequences A, B, C, D and the vectors containing their PAF values.
This is because the result of the matching process will be PAF vectors which sum to the
zero vector, not the actual sequences which were used to generate the PAF vectors, and of
course it is the latter sequences which will be the Williamson sequences we are interested in.

We implemented this method for finding Williamson sequences using a solver for the
matching problem as a black box. We used code written in C++ by Chunxiao Li and
publicly available on GitHub [Li, 2016]. The matching code can either stop after finding
one matching or continue until finding all matchings in the space; we provide timings for
both methods in Section 3.6.5. Furthermore, when constructing the lists LA, LB, LC , and
LD we guarantee that every Williamson sequence of the given order will be equivalent to
at least one Williamson sequence which generates a PAF vector in each of the lists. Thus,
finding all matchings of the lists we construct allows us to determine the exact number of
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Williamson sequences of a given order. In some cases multiple matchings will be generated
by equivalent Williamson sequences, so we need to run an equivalence checking script which
discards equivalent Williamson sequences before finalizing the total count.

3.6 Results and timings

In this section we provide our results and timings of each of the methods we have discussed.
The timings were run on the “Shared Hierarchical Academic Research Computing Network”,
a high-performance computing cluster known as SHARCNET [Bauer, 2016] run by a
consortium of 18 academic partners located in Ontario, Canada. Specifically, the cluster
we used ran CentOS 6.7 and used 64-bit AMD Opteron processors running at 2.2 GHz.
Each SAT instance was generated using the MathCheck2 system with the appropriate
parameters and the instance was submitted to SHARCNET to solve by running MapleSAT.

3.6.1 Naive method results

First, we present timings for the straight SAT encoding described in Section 3.2. These SAT
instances were generated by MathCheck2 without any of the techniques in Section 3.3
enabled. In Table 3.1 we give timings for both an unmodified version of MapleSAT and
a version of MapleSAT with the programmatic functionality described in Section 3.4
enabled; in both cases, a timeout of 24 hours was used. Every instance which successfully
returned a result in the allotted time was satisfiable.

In most cases, using the programmatic filtering was beneficial to the search. We
generated cases up to order 45 and the largest order the normal MapleSAT was able
to solve was 31, while the largest order the programmatic MapleSAT was able to solve
was 40. Additionally, the programmatic version often ran over 10 times faster than the
normal version, and in one case over 200 times faster. In a few cases the programmatic
version was several times slower than the normal version, but this was not due to the extra
computations in the callback function. Logging showed that the amount of time spent
in the programmatic code was not a significant amount of the total time. The orders in
which the programmatic version was unusually slow were those with only a few solutions
and in these cases luck tends to play an increased role in the runtimes. Evidently the
programmatic version searched some areas of the search space which was ignored by the
normal MapleSAT because the normal version had discovered a solution before searching
them.
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n
Normal

MapleSAT
Programmatic
MapleSAT

Programmatic
Speedup Factor

10 0.04 0.03 1.33
11 0.04 0.04 1.00
12 0.14 0.13 1.08
13 0.03 0.04 0.75
14 0.12 0.05 2.40
15 0.21 0.07 3.00
16 24.56 0.26 94.46
17 0.30 0.19 1.58
18 1.50 0.06 25.00
19 1.06 1.39 0.76
20 3.09 0.06 51.50
21 390.55 6.60 59.17
22 34.90 0.70 49.86
23 545.71 7.19 75.90
24 3116.93 13.72 227.18
25 591.78 42.62 13.89
26 6238.15 46.98 132.78
27 2485.84 719.32 3.46
28 6234.42 118.14 52.77
29 7053.56 25850.39 0.27
30 29881.94 441.49 67.68
31 20313.47 68538.98 0.30
32 − 3309.02 −
33 − 8549.17 −
34 − 2986.61 −
35 − − −
36 − 639.58 −
37 − − −
38 − − −
39 − − −
40 − 15835.62 −

Table 3.1: Timings in seconds for using MapleSAT to search for Williamson sequences of
order 10 ≤ n ≤ 40 using the naive method, both with and without programmatic filtering
enabled. A ‘−’ denotes a timeout after 24 hours. All instances returned SAT.
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3.6.2 Sums-of-squares decomposition method results

Now we present timings for instances encoded using the sum-of-squares decomposition
technique described in Section 3.3.1. We used MathCheck to generate instances up to order
45, and the resulting timings are given in Tables 3.2, 3.3, and 3.4. We give timings using
both the normal version of MapleSAT and the version with programmatic functionality
as described in Section 3.4. Again, the programmatic version generally performed better
than the normal version. The largest order the normal version was able to solve was 30 and
the largest order than the programmatic version was able to solve was 42.

The largest UNSAT case which was returned occurred in order 29; i.e., the nonexistence
of Williamson sequences of order 35 was not able to be shown by this method alone. Our
UNSAT instances tended to be harder than SAT cases of the same order, as the solver
could not ‘get lucky’ by finding a solution and stopping before the entire space is searched.
This makes UNSAT cases especially useful for comparing methods, and the programmatic
version did tend to perform especially well on UNSAT cases.

3.6.3 Divide-and-conquer method results

Next, we provide timings for the divide-and-conquer technique discussed in Section 3.3.2;
note that these instances also use the sum-of-squares decomposition technique and so the
timing for each instance is given along with the instance’s sum-of-squares decomposition.
We used MathCheck to generate instances up to order 45, and the resulting timings are
given in Tables 3.5 and 3.6.

Because the dividing technique splits the search space into many distinct subspaces, it
is possible to use parallelization to solve the resulting instances. In our case, we used 50
cores on SHARCNET and divided the instances evenly amongst those 50 cores. In the case
of SAT results, the timing indicates the time of the first core to return a SAT result. In
the case of UNSAT results, the timing indicates the time it took for all cores to finish and
return UNSAT.

Since our divide-and-conquer method works by splitting the search space based on
possible compressions it can only be applied when there is a nontrivial factor by which to
compress by, i.e., when the order is not prime. Hence, we do not provide timings for the
prime orders 29, 31, 37, 41, and 43.

Again, the programmatic filtering technique was demonstrated to be useful in most cases.
However, many instances finished very fast (in under a second) both with and without
programmatic filtering. In cases which did not finish so fast the programmatic filtering
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n Decomposition Normal
MapleSAT

Programmatic
MapleSAT

Programmatic
Speedup Factor Result

10 02 + 02 + 22 + 62 0.03 0.03 1.00 SAT
10 22 + 22 + 42 + 42 0.04 0.03 1.33 SAT
11 12 + 32 + 32 + 52 0.04 0.03 1.33 SAT
12 02 + 42 + 42 + 42 0.10 0.05 2.00 UNSAT
12 22 + 22 + 22 + 62 0.04 0.04 1.00 SAT
13 12 + 12 + 12 + 72 0.05 0.03 1.67 SAT
13 12 + 12 + 52 + 52 0.04 0.03 1.33 SAT
13 32 + 32 + 32 + 52 0.04 0.03 1.33 SAT
14 02 + 22 + 42 + 62 0.08 0.04 2.00 SAT
15 12 + 12 + 32 + 72 0.15 0.05 3.00 SAT
15 12 + 32 + 52 + 52 0.21 0.07 3.00 SAT
16 02 + 02 + 02 + 82 1.75 0.12 14.58 UNSAT
16 42 + 42 + 42 + 42 0.15 0.06 2.50 SAT
17 12 + 32 + 32 + 72 0.26 0.13 2.00 SAT
17 32 + 32 + 52 + 52 0.19 0.06 3.17 SAT
18 02 + 02 + 62 + 62 0.43 0.04 10.75 SAT
18 02 + 22 + 22 + 82 0.26 0.07 3.71 SAT
18 22 + 42 + 42 + 62 2.61 0.04 65.25 SAT
19 12 + 12 + 52 + 72 0.30 0.55 0.55 SAT
19 12 + 52 + 52 + 52 62.52 5.81 10.76 UNSAT
19 32 + 32 + 32 + 72 0.58 0.14 4.14 SAT
20 02 + 02 + 42 + 82 14.89 79.36 0.19 UNSAT
20 22 + 22 + 62 + 62 1.82 0.13 14.00 SAT

Table 3.2: Timings in seconds for using MapleSAT to search for Williamson sequences of
order 10 ≤ n ≤ 20 using the sum-of-squares decomposition method, both with and without
programmatic filtering enabled.
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n Decomposition Normal
MapleSAT

Programmatic
MapleSAT

Programmatic
Speedup Factor Result

21 12 + 12 + 12 + 92 95.13 0.22 432.41 SAT
21 12 + 32 + 52 + 72 73.27 1.46 50.18 SAT
21 32 + 52 + 52 + 52 15.69 0.83 18.90 SAT
22 02 + 42 + 62 + 62 162.70 1.02 159.51 SAT
22 22 + 22 + 42 + 82 44.39 0.22 201.77 SAT
23 12 + 12 + 32 + 92 12595.27 102.03 123.45 UNSAT
23 32 + 32 + 52 + 72 481.19 30.41 15.82 SAT
24 02 + 42 + 42 + 82 1690.09 6.36 265.74 SAT
25 12 + 12 + 72 + 72 57.29 13.29 4.31 SAT
25 12 + 32 + 32 + 92 8051.75 42.68 188.65 SAT
25 12 + 52 + 52 + 72 421.95 17.04 24.76 SAT
25 52 + 52 + 52 + 52 68.14 28.39 2.40 SAT
26 02 + 02 + 22 + 102 1685.26 19.12 88.14 SAT
26 02 + 22 + 62 + 82 2078.38 6.74 308.36 SAT
26 42 + 42 + 62 + 62 60284.93 8.86 6804.17 SAT
27 12 + 12 + 52 + 92 12997.81 44.92 289.35 SAT
27 12 + 32 + 72 + 72 32998.14 201.38 163.86 SAT
27 32 + 32 + 32 + 92 − 2103.05 − UNSAT
27 32 + 52 + 52 + 72 4543.09 147.52 30.80 SAT
28 22 + 22 + 22 + 102 35768.54 48.03 744.71 SAT
28 22 + 62 + 62 + 62 1030.11 12.38 83.21 SAT
28 42 + 42 + 42 + 82 − − − −
29 12 + 32 + 52 + 92 − 1189.22 − SAT
29 32 + 32 + 72 + 72 − 12144.50 − UNSAT

Table 3.3: Timings in seconds for using MapleSAT to search for Williamson sequences of
order 21 ≤ n ≤ 29 using the sum-of-squares decomposition method, both with and without
programmatic filtering enabled. A ‘−’ denotes a timeout after 24 hours.
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n Decomposition Normal
MapleSAT

Programmatic
MapleSAT

Programmatic
Speedup Factor Result

30 02 + 22 + 42 + 102 85258.48 127.09 670.85 SAT
30 22 + 42 + 62 + 82 10269.38 73.21 140.27 SAT
31 12 + 52 + 72 + 72 − 10491.08 − SAT
31 52 + 52 + 52 + 72 − 1971.16 − SAT
32 02 + 02 + 82 + 82 − 100.66 − SAT
33 12 + 12 + 32 + 112 − 21332.12 − SAT
33 12 + 52 + 52 + 92 − 7474.67 − SAT
33 32 + 52 + 72 + 72 − 47245.16 − SAT
34 02 + 02 + 62 + 102 − 550.86 − SAT
34 02 + 62 + 62 + 82 − 373.74 − SAT
34 22 + 22 + 82 + 82 − 402.70 − SAT
34 22 + 42 + 42 + 102 − 3345.30 − SAT
36 22 + 22 + 62 + 102 − 687.05 − SAT
36 62 + 62 + 62 + 62 − 555.97 − SAT
38 02 + 22 + 22 + 122 − 30178.19 − SAT
38 02 + 42 + 62 + 102 − 12810.39 − SAT
38 42 + 62 + 62 + 82 − 23925.97 − SAT
40 02 + 02 + 42 + 122 − 22969.16 − SAT
40 42 + 42 + 82 + 82 − 1864.23 − SAT
42 02 + 22 + 82 + 102 − 11233.80 − SAT

Table 3.4: Timings in seconds for using MapleSAT to search for Williamson sequences of
order 30 ≤ n ≤ 42 using the sum-of-squares decomposition method, both with and without
programmatic filtering enabled. A ‘−’ denotes a timeout after 24 hours. Cases for which
no results were generated are not shown.
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was usually significantly faster; for example, in order 35 the programmatic filtering was
consistently more than 30 times faster than without using programmatic filtering. In fact,
in order 35 with 150 processors (50 on each of the three sum-of-squares decompositions) the
divide-and-conquer method with programmatic filtering was able to show that Williamson
sequences of order 35 do not exist in under 21 seconds.

3.6.4 UNSAT core method results

Next, we provide timings for the UNSAT core technique discussed in Section 3.3.3. This
technique was somewhat hit-or-miss in that it was usually either significantly faster (if
the UNSAT cores which were generated provided useful information) or slightly slower
(due to the overhead of having to read UNSAT cores from disk). The timings for this
method incorporate the previous two techniques, as the UNSAT core method requires the
search space to be divided into multiple instances as a prerequisite. Thus, we provide the
sum-of-squares decomposition along with each time in Table 3.7.

The usage of UNSAT cores was seen to significantly improve the performance of three
cases for orders between 35 and 45: two cases in order 36, and one case in order 44. In
these cases, the UNSAT cores which were computed consisted of a single variable and were
used to discard many instances without making an additional call to MapleSAT.

To understand the meaning behing these UNSAT cores which were computed, we
examined what the variable in the UNSAT core was encoding. To explain the meaning of
the variable, recall that we computed compression values using binary adders and therefore
those values were encoded by variables representing bits in the binary encoding of the
compression values. In the cases we examined where the UNSAT cores were found to be
extremely effective the UNSAT cores encoded the fact that setting the low bit of the middle
entry in a 2-compression to be 1 (i.e., true) would cause the instance to be unsatisfiable.
We can explain this behaviour using the following lemma:

Lemma 3.4. Let A be a member of a Williamson sequence of order n = 4k with A(2k) its
2-compression. Then a(2k)

k 6= 0.

Proof. By definition, we have a(2k)
k = ak + a3k and by symmetry a3k = a4k−3k = ak. Thus

a
(2k)
k = 2ak ∈ {±2}.

This shows that when n is divisible by 4 the middle entry in a 2-compression is either 2
or −2 and the inputs to the binary adder calculating that value are the same (i.e., both
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n Decomposition Normal
MapleSAT

Programmatic
MapleSAT

Programmatic
Speedup Factor Result

25 12 + 12 + 72 + 72 0.37 0.10 3.70 SAT
25 12 + 32 + 32 + 92 2.69 0.04 67.25 SAT
25 12 + 52 + 52 + 72 0.61 0.12 5.08 SAT
25 52 + 52 + 52 + 52 3.34 0.04 83.50 SAT
26 02 + 02 + 22 + 102 0.02 0.02 1.00 SAT
26 02 + 22 + 62 + 82 0.02 0.02 1.00 SAT
26 42 + 42 + 62 + 62 0.03 0.03 1.00 SAT
27 12 + 12 + 52 + 92 0.03 0.05 0.60 SAT
27 12 + 32 + 72 + 72 0.19 0.03 6.33 SAT
27 32 + 32 + 32 + 92 7.29 0.35 20.83 UNSAT
27 32 + 52 + 52 + 72 0.12 0.03 4.00 SAT
28 22 + 22 + 22 + 102 0.10 0.07 1.43 SAT
28 22 + 62 + 62 + 62 0.11 0.05 2.20 SAT
28 42 + 42 + 42 + 82 0.22 0.22 1.00 UNSAT
30 02 + 22 + 42 + 102 0.07 0.02 3.50 SAT
30 22 + 42 + 62 + 82 0.03 0.02 1.50 SAT
32 02 + 02 + 82 + 82 4.31 4.18 1.03 SAT
33 12 + 12 + 32 + 112 1.17 0.38 3.08 SAT
33 12 + 12 + 72 + 92 0.59 0.26 2.27 SAT
33 12 + 52 + 52 + 92 1.23 0.43 2.86 SAT
33 32 + 52 + 72 + 72 0.48 0.22 2.18 SAT
34 02 + 02 + 62 + 102 1.25 0.31 4.03 SAT
34 02 + 62 + 62 + 82 0.05 0.03 1.67 SAT
34 22 + 22 + 82 + 82 0.04 0.02 2.00 SAT
34 22 + 42 + 42 + 102 0.13 0.09 1.44 SAT

Table 3.5: Timings in seconds for using MapleSAT to search for Williamson sequences of or-
der 25 ≤ n ≤ 34 using the divide-and-conquer method, both with and without programmatic
filtering enabled. Each case was solved using parallelization with 50 processors.
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n Decomposition Normal
MapleSAT

Programmatic
MapleSAT

Programmatic
Speedup Factor Result

35 12 + 32 + 32 + 112 410.79 11.07 37.11 UNSAT
35 12 + 32 + 72 + 92 671.05 20.44 32.83 UNSAT
35 32 + 52 + 52 + 92 311.26 9.15 34.02 UNSAT
36 02 + 02 + 02 + 122 6.00 6.42 0.93 UNSAT
36 02 + 42 + 82 + 82 3.45 3.89 0.89 UNSAT
36 22 + 22 + 62 + 102 0.48 0.14 3.43 SAT
36 62 + 62 + 62 + 62 0.45 0.06 7.50 SAT
38 02 + 22 + 22 + 122 0.36 0.08 4.50 SAT
38 02 + 42 + 62 + 102 0.19 0.03 6.33 SAT
38 42 + 62 + 62 + 82 0.36 0.07 5.14 SAT
39 12 + 32 + 52 + 112 301.85 17.48 17.27 UNSAT
39 12 + 52 + 72 + 92 259.43 16.72 15.52 UNSAT
39 32 + 72 + 72 + 72 126.16 4.86 25.96 UNSAT
39 52 + 52 + 52 + 92 30.11 1.89 15.93 SAT
40 02 + 02 + 42 + 122 5.15 5.14 1.00 SAT
40 42 + 42 + 82 + 82 6.11 4.46 1.37 SAT
42 02 + 22 + 82 + 102 4.21 0.16 26.31 SAT
42 22 + 22 + 42 + 122 3.04 0.16 19.00 SAT
42 22 + 62 + 82 + 82 9.79 0.20 48.95 SAT
42 42 + 42 + 62 + 102 11.16 0.15 74.40 SAT
44 02 + 42 + 42 + 122 3.83 3.42 1.12 UNSAT
44 22 + 62 + 62 + 102 2.95 0.20 14.75 SAT
45 12 + 12 + 32 + 132 − 1544.99 − UNSAT
45 12 + 32 + 72 + 112 − 1996.79 − UNSAT
45 12 + 72 + 72 + 92 − 1448.48 − UNSAT
45 32 + 32 + 92 + 92 − 1554.98 − UNSAT
45 32 + 52 + 52 + 112 − 1379.05 − UNSAT
45 52 + 52 + 72 + 92 − 1093.79 − SAT

Table 3.6: Timings in seconds for using MapleSAT to search for Williamson sequences
of order 35 ≤ n ≤ 45 using the divide-and-conquer method, both with and without
programmatic filtering enabled. A ‘−’ denotes a timeout after 1 hour. Each case was solved
using parallelization with 50 processors.
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false or both true). Thus, the output of the binary adder must be [false, false] (encoding 0
true inputs) or [true, false] (encoding 2 true inputs). In both cases, the low bit is false; it
is not possible for the low bit to be true which is exactly the fact encoded in the UNSAT
cores produced by MapleSAT.

Of course, now that we know Lemma 3.4 we could incorporate it into the MathCheck2
generation script by never generating instances whose 2-compressions have a middle entry
of zero when n is a multiple of 4. But it is still interesting that MathCheck2 is able to
automatically discover Lemma 3.4 and then use that knowledge to make the search more
efficient in an automated fashion.

3.6.5 Matching method results

Finally, we present timings for the matching method discussed in Section 3.5 and compare
them to timings for running MathCheck2 with all techniques and programmatic filtering
enabled. Table 3.8 contains the timings for finding a solution (or proving that none exist)
for each given sum-of-squares decomposition both using MathCheck2 and the matching
method as described in Section 3.5. When the result is SAT we also provide timings for the
matching method to find all solutions in the search space; when the result is UNSAT there
are no solutions in the search space so in this case there is no advantage to have the matching
method stop after finding one solution. The MathCheck2 timings include both the time
to generate the SAT instances (which is typically fast) and the time to solve the resulting
instances using 50 processors. The matching timings specify the amount of time necessary
to perform the matching process (either stopping after one solution or continuing until the
space is searched exhaustively), also using 50 processors per sum-of-squares decomposition.

In most sums-of-squares decomposition cases in Table 3.8 we find that MathCheck2 is
able to find a solution faster than using the matching method. However, note that since the
divide-and-conquer method used by MathCheck2 requires the order to be composite we
only give timings for composite orders in Table 3.8; we give the timings for the matching
method in prime orders in Table 3.9. The largest prime order that MathCheck2 was able
to solve (using just the sums-of-squares technique) was 31, as shown in Table 3.4.

Lastly, let Wn be a complete set of representatives for the set of Williamson sequences
of order n. We have provided one possible enumeration of the representatives in Wn where
n ≤ 45 and these results are available online [Bright, 2017]. In Table 3.10 we give the value
of |Wn|, that is, the number of inequivalent Williamson sequences of order n, for all n up
to 45. The counts for odd n up to 59 were published in [Holzmann et al., 2008], and our
counts agree with theirs in all cases, providing an independent verification. Additionally,
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n Decomposition Without
UNSAT Cores

With
UNSAT Cores

UNSAT Core
Speedup Factor Result

35 12 + 32 + 32 + 112 11.07 11.37 0.97 UNSAT
35 12 + 32 + 72 + 92 20.44 21.46 0.95 UNSAT
35 32 + 52 + 52 + 92 9.15 9.46 0.97 UNSAT
36 02 + 02 + 02 + 122 6.42 0.11 58.36 UNSAT
36 02 + 42 + 82 + 82 3.89 0.07 55.57 UNSAT
36 22 + 22 + 62 + 102 0.14 0.09 1.56 SAT
36 62 + 62 + 62 + 62 0.06 0.07 0.86 SAT
38 02 + 22 + 22 + 122 0.08 0.10 0.80 SAT
38 02 + 42 + 62 + 102 0.03 0.04 0.75 SAT
38 42 + 62 + 62 + 82 0.07 0.08 0.88 SAT
39 12 + 32 + 52 + 112 17.48 18.41 0.95 UNSAT
39 12 + 52 + 72 + 92 16.72 17.65 0.95 UNSAT
39 32 + 72 + 72 + 72 4.86 5.08 0.96 UNSAT
39 52 + 52 + 52 + 92 1.89 2.05 0.92 SAT
40 02 + 02 + 42 + 122 5.14 2.82 1.82 SAT
40 42 + 42 + 82 + 82 4.46 2.05 2.18 SAT
42 02 + 22 + 82 + 102 0.16 0.15 1.07 SAT
42 22 + 22 + 42 + 122 0.16 0.19 0.84 SAT
42 22 + 62 + 82 + 82 0.20 0.23 0.87 SAT
42 42 + 42 + 62 + 102 0.15 0.18 0.83 SAT
44 02 + 42 + 42 + 122 3.42 0.08 42.75 UNSAT
44 22 + 62 + 62 + 102 0.20 0.23 0.87 SAT
45 12 + 12 + 32 + 132 1544.99 1520.95 1.02 UNSAT
45 12 + 32 + 72 + 112 1996.79 2002.40 1.00 UNSAT
45 12 + 72 + 72 + 92 1448.48 1458.93 0.99 UNSAT
45 32 + 32 + 92 + 92 1554.98 1640.83 0.95 UNSAT
45 32 + 52 + 52 + 112 1379.05 1420.56 0.97 UNSAT
45 52 + 52 + 72 + 92 1093.79 993.50 1.10 SAT

Table 3.7: Timings in seconds for using MapleSAT with programmatic filtering to search
for Williamson sequences of order 35 ≤ n ≤ 45 using the divide-and-conquer method,
with and without using UNSAT cores. Each case was solved using parallelization with 50
processors.
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this is the first time that counts for even n have ever been published. Now that counts
are available for both even and odd orders an obvious observation which jumps out is that
there tends to be many more Williamson sequences up to equivalence of even order than
there are for odd order. So far, this phenomenon is unexplained. There does not seem to
be any obvious relationship between for example |Wn| and |Wn+2| or |Wn/2|.
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n Decomposition MathCheck2
Matching

(one solution)
Matching

(all solutions) Result

35 12 + 32 + 32 + 112 11.71 61.99 UNSAT
35 12 + 32 + 72 + 92 21.84 52.72 UNSAT
35 32 + 52 + 52 + 92 9.82 50.59 UNSAT
36 02 + 02 + 02 + 122 3.48 78.15 UNSAT
36 02 + 42 + 82 + 82 1.61 171.60 UNSAT
36 22 + 22 + 62 + 102 2.71 0.30 224.20 SAT
36 62 + 62 + 62 + 62 8.50 0.16 250.74 SAT
38 02 + 22 + 22 + 122 2.05 2.90 647.23 SAT
38 02 + 42 + 62 + 102 2.10 19.61 627.13 SAT
38 42 + 62 + 62 + 82 1.61 11.09 1204.38 SAT
39 12 + 32 + 52 + 112 18.83 3942.55 UNSAT
39 12 + 52 + 72 + 92 18.03 2229.72 UNSAT
39 32 + 72 + 72 + 72 5.48 4764.22 UNSAT
39 52 + 52 + 52 + 92 2.42 1082.42 2270.15 SAT
40 02 + 02 + 42 + 122 12.77 9.44 5463.89 SAT
40 42 + 42 + 82 + 82 27.56 6.05 14441.7 SAT
42 02 + 22 + 82 + 102 13.79 153.14 45467.6 SAT
42 22 + 22 + 42 + 122 11.53 154.08 64534.0 SAT
42 22 + 62 + 82 + 82 13.29 50.81 90023.2 SAT
42 42 + 42 + 62 + 102 25.35 85.39 74324.0 SAT
44 02 + 42 + 42 + 122 141.41 184393.0 UNSAT
44 22 + 62 + 62 + 102 86.13 231.75 205471.0 SAT

Table 3.8: Timings in seconds for using MapleSAT with all techniques enabled and the
matching method (both searching for one solution and all solutions) to search for Williamson
sequences of order 35 ≤ n ≤ 44. Each method used parallelization with 50 processors.
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n Decomposition
Matching

(one solution)
Matching

(all solutions) Result

37 12 + 12 + 52 + 112 171.37 UNSAT
37 12 + 72 + 72 + 72 143.51 UNSAT
37 32 + 32 + 32 + 112 111.92 145.35 SAT
37 32 + 32 + 72 + 92 47.50 178.21 SAT
37 52 + 52 + 72 + 72 14.45 185.50 SAT
41 12 + 12 + 92 + 92 3123.38 13223.2 SAT
41 32 + 32 + 52 + 112 9520.45 UNSAT
41 32 + 52 + 72 + 92 10890.6 UNSAT
43 12 + 12 + 12 + 132 48702.2 UNSAT
43 12 + 12 + 72 + 112 73135.1 UNSAT
43 12 + 32 + 92 + 92 56508.7 UNSAT
43 12 + 52 + 52 + 112 40013.0 60679.4 SAT
43 52 + 72 + 72 + 72 50618.1 74862.8 SAT

Table 3.9: Timings in seconds for using the matching method (both searching for one
solution and all solutions) to search for Williamson sequences of prime order 35 ≤ n ≤ 44.
Each method used parallelization with 50 processors.

n |Wn| n |Wn| n |Wn| n |Wn| n |Wn|
1 1 10 12 19 6 28 1536 37 4
2 1 11 1 20 412 29 1 38 1284
3 1 12 36 21 7 30 4240 39 1
4 5 13 4 22 432 31 2 40 21504
5 1 14 76 23 1 32 2304 41 1
6 4 15 4 24 768 33 5 42 8904
7 2 16 27 25 10 34 2176 43 2
8 5 17 4 26 484 35 0 44 6048
9 3 18 540 27 6 36 11008 45 1

Table 3.10: The number of inequivalent Williamson sequences which exist in all orders up
to 45; here Wn denotes a complete set of inequivalent Williamson sequences of order n.
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A proof is a proof.
Jean Chretien

Chapter 4

Computation of Complex Golay
Sequences

As our second case study, we will examine the problem of computing complex Golay
sequences and present an algorithm for enumerating all complex Golay sequences of a given
order. Additionally, we use this algorithm to enumerate all complex Golay sequences up to
order 25 and in Section 4.4 give counts of how many complex Golay sequences exist in each
order.

Complex Golay sequences are defined similar to how we defined Williamson sequences
in Definition 3.2, except that they are defined in terms of a nonperiodic autocorrelation
function, they do not necessarily have to be symmetric, their entries are not necessarily
real numbers, and the sequences occur in pairs, not quadruples. Despite these differences,
some of the applications of Williamson matrices also apply to complex Golay sequences.
In particular, complex Golay sequences can be used to construct Hadamard matrices or
complex Hadamard matrices. A complex Hadamard matrix is a matrix H ∈ {±1,±i}n×n
satisfying HH∗ = nIn where H∗ denotes the conjugate transpose of H.

The work done in this chapter was done in collaboration with Vijay Ganesh, Albert
Heinle, and Ilias Kotsireas.

4.1 Introduction

Complex Golay sequences have been extensively studied in multiple papers over the last 25
years, including [Holzmann and Kharaghani, 1994], [Craigen, 1994], [Craigen et al., 2002],
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and [Fiedler, 2013]. They were introduced in order to expand the orders of Hadamard
matrices attainable via real Golay sequences (also referred to as Golay pairs). A notion of
canonical form for Golay sequences has been introduced [Ðoković, 1998] and representatives
of the equivalence classes of Golay sequences for all lengths ≤ 40 have been found. More re-
cently, Golay sequences have been classified up to order 100 in [Borwein and Ferguson, 2004]
where the authors show that all such pairs can be derived using certain equivalence and
composition operations from five primitive Golay pairs.

A positive integer n is called a complex Golay number if there exist complex Golay
sequences of order n. The fundamental paper [Craigen et al., 2002] contains exhaustive
searches for all lengths of complex Golay sequences up to 19, a partial search for orders 20
and 22 and contains a conjecture that 23 is not a complex Golay number. In addition, it
is shown that n = 7, 9, 14, 15, 17, 19, 21 are not complex Golay numbers. Based on the
numerical evidence they have gathered, the authors state four conjectures pertaining to
complex Golay sequences and complex Golay numbers, all of which are still open. The
fourth of their conjectures states that “every prime divisor of a complex Golay number is a
complex Golay number”. Given the aforementioned list of known complex Golay numbers,
this means that to disprove this conjecture, one would have to construct/find complex
Golay sequences of any of the orders 28, 34, 35, 38, 46, . . . .

Another interesting phenomenon is that all known odd complex Golay numbers besides 1
are prime. Therefore it would be of interest to know whether 33, 35, and 39 are complex
Golay numbers or not. Finally, the authors provide theorems on the algebraic structure
of complex Golay sequences which connects their structure to polynomial factorization
over finite fields. In certain cases these theorems can be used to speed up computational
algorithms to search for these rather elusive combinatorial objects, although the present
work does not require them.

The following theorem [Craigen et al., 2002, Cor. 6] shows the importance of complex
Golay numbers to Hadamard matrices.

Theorem 4.1. If n is a complex Golay number, then there exists a complex Hadamard
matrix of order 2n and a Hadamard matrix of order 4n.

It is known that complex Golay sequences of order n = 2a+u3b5c11d13e exist where the
variables in the exponents are nonnegative integers which satisfy some linear inequalities.
In view of Theorem 4.1, extending the list of known prime complex Golay numbers would
enlarge the set of attainable orders of Hadamard matrices constructible via complex Golay
sequences.
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We present our new algorithm for exhaustively searching for complex Golay sequences of
a given order in Section 4.3, following the necessary background covered in Section 4.2. We
show that by solving certain Diophantine systems one can derive restrictions on the possible
forms that all complex Golay sequences of a given order must satisfy. These restrictions are
then used along with a procedure which can generate all permutations of a given form; this
allows an exhaustive search to be performed on a space smaller than would be necessary
using a naive exhaustive search.

4.2 Background on complex Golay sequences

In this section we present the background necessary to describe our algorithm for enumerating
complex Golay sequences. First, we require some preliminary definitions to describe the
kind of sequences we will be searching for. We use x to denote the complex conjugate of x.

Definition 4.1 (cf. [Kotsireas, 2013a]). The complex aperiodic (or complex nonperiodic)
autocorrelation function of a sequence A = [a1, . . . , an] ∈ Cn of length n ∈ N is defined as

NA(s) :=
n−s∑
k=1

akak+s, s = 0, . . . , n− 1.

Definition 4.2 (cf. [Kotsireas, 2013a]). Two sequences A and B in Cn are said to have
constant aperiodic autocorrelation if there is a constant c ∈ C such that

NA(s) +NB(s) = c, s = 1, . . . , n− 1.

Definition 4.3. A pair of sequences (A,B) with A and B in {±1,±i}n are called a complex
Golay sequence pair if they have zero constant aperiodic autocorrelation, i.e.,

NA(s) +NB(s) = 0, s = 1, . . . , n− 1.

If such sequences exist for n ∈ N we call n a complex Golay number.

Note that if A and B are in {±1,±i}n then NA(0) +NB(0) = 2n by the definition of
the complex aperiodic autocorrelation function and the fact that xx = 1 if x is ±1 or ±i.
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4.2.1 Equivalence operations

There are certain invertible operations which preserve the property of being a complex
Golay sequence pair when those operations are applied to sequence pairs (A,B). These are
summarized in the following proposition.

Proposition 4.1 (cf. [Craigen et al., 2002], section 4). Let ([a1, . . . , an], [b1, . . . , bn]) be a
complex Golay sequence pair. The following are then also complex Golay sequence pairs:

E1. (Reversal) ([an, . . . , a1], [bn, . . . , b1]).

E2. (Conjugate Reverse A) ([an, . . . , a1], [b1, . . . , bn]).

E3. (Swap) ([b1, . . . , bn], [a1, . . . , an]).

E4. (Scale A) ([ia1, . . . , ian], [b1, . . . , bn]).

E5. (Positional Scaling) ([p1a1, . . . , pnan], [p1b1, . . . , pnbn]) where pk := ik.

Definition 4.4. We call two complex Golay sequence pairs (A,B) and (A′, B′) equivalent if
(A′, B′) can be obtained from (A,B) using the transformations described in Proposition 4.1.

4.2.2 Useful properties and lemmas

In this subsection we prove some useful properties that complex Golay sequences must satisfy
and which will be exploited by our algorithm for enumerating complex Golay sequences.
Lemmas 4.1 and 4.2 are previously known results which we restate for convenience but we
are not aware of any other work in which Lemma 4.3 appears.

The first lemma provides a relationship that all complex Golay sequences must satisfy.
To state it, we require the following definition.

Definition 4.5. The Hall polynomial of the sequence A := [a1, . . . , an] is defined to be
hA(z) := a1 + a2z + · · ·+ anz

n−1 ∈ C[z].

Lemma 4.1. Let (A,B) be a complex Golay sequence pair. For every z ∈ C with |z| = 1,
we have

|hA(z)|2 + |hB(z)|2 = 2n.
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Proof. Since |z| = 1 we can write z = eiθ for some 0 ≤ θ < 2π. Similar to the fact pointed
out in [Kharaghani and Tayfeh-Rezaie, 2005], using Euler’s identity one can derive the
following expansion:

|hA(z)|2 = NA(0) + 2
n−1∑
j=1

(
Re(NA(j)) cos(θj) + Im(NA(j)) sin(θj)

)
.

Since A and B form a complex Golay pair, by definition one has that Re(NA(j)+NB(j)) = 0
and Im(NA(j) +NB(j)) = 0 and then

|hA(z)|2 + |hB(z)|2 = NA(0) +NB(0) = 2n.

This lemma is highly useful as a condition for filtering sequences which could not possibly
be part of a complex Golay sequence pair, as explained in the following corollary.

Corollary 4.1. Let A ∈ {±1,±i}n, z ∈ C with |z| = 1, and |hA(z)|2 > 2n. Then A is not
a member of a complex Golay sequence pair.

Proof. Suppose the sequence A was a member of a complex Golay sequence pair whose other
member was the sequence B. Since |hB(z)|2 ≥ 0, we must have |hA(z)|2 + |hB(z)|2 > 2n, in
contradiction to Lemma 4.1.

The next lemma is useful to derive conditions on how often each type of entry (i.e., 1,
−1, i, −i) occurs in a complex Golay sequence pair. It is stated in [Craigen, 1994] using
a different notation. We use the notation resum(A) and imsum(A) to represent the real
and imaginary parts of the sum of the entries of A. For example, if A := [1, i,−i, i] then
resum(A) = imsum(A) = 1.

Lemma 4.2. Let (A,B) be a complex Golay sequence pair. Then

resum(A)2 + imsum(A)2 + resum(B)2 + imsum(B)2 = 2n.

Proof. Using Lemma 4.1 with z = 1 we have

|resum(A) + imsum(A)i|2 + |resum(B) + imsum(B)i|2 = 2n.

Since |resum(X) + imsum(X)i|2 = resum(X)2 + imsum(X)2 the result follows.

The next lemma provides some normalization conditions which can be used when
searching for complex Golay sequences up to equivalence. We say that a complex Golay
sequence is normalized if it meets these conditions.
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Lemma 4.3. Let (A,B) be a complex Golay sequence pair. Then (A,B) is equivalent to
a complex Golay sequence pair (A′, B′) which satisfies the conditions

0 ≤ resum(A′) ≤ imsum(A′),

0 ≤ resum(B′) ≤ imsum(B′),

and resum(A′) ≤ resum(B′).

Proof. We will transform a given complex Golay sequence pair (A,B) into an equivalent
normalized one using the equivalence operations of Proposition 4.1. To start with, let
A′ := A and B′ := B.

First, we ensure that |resum(A′)| ≤ |imsum(A′)|. If this is not already the case then we
apply operation E4 (which has the effect of switching |resum(A′)| and |imsum(A′)|) and
the updated A′ will satisfy this condition.

Next, we ensure that resum(A′) ≥ 0. If this is not already the case then we apply
operation E4 twice (which has the effect of negating each element of A′) and the updated
A′ will satisfy 0 ≤ resum(A′) ≤ |imsum(A′)|. If imsum(A′) ≥ 0 then the first condition
is satisfied. If not, then it will be satisfied after applying operation E2 (which negates
imsum(A′)).

Next, we ensure that the second condition holds. If it not already the case, then we
apply operation E3 (switch A′ and B′); this will cause the second condition to be satisfied at
the cost of causing the first condition to no longer be satisfied. However, we may now repeat
the above directions to make the first condition satisfied again; note that these directions
do not modify B′ so that once we have completed them both the first two conditions will
be satisfied.

Lastly, we ensure the final condition resum(A′) ≤ resum(B′). If it is not already satisfied
then we apply E3 (switch A′ and B′) and the updated sequence pair will satisfy the condition
as required.

4.2.3 Sum-of-squares decomposition types

A consequence of Lemma 4.2 is that every complex Golay sequence yields a decomposition
of 2n into a sum of four squares. With the help of a computer algebra system (CAS) one
can even enumerate all the ways that 2n may be written as a sum of four squares (e.g.,
using the function PowersRepresentations in Mathematica). Furthermore, since it
suffices to search for complex Golay sequence pairs up to equivalence, by Lemma 4.3 we can

63



make assumptions about the form of the decomposition, for example, that the resum and
imsum of A and B are non-negative. Thus, it suffices to use a CAS to solve the quadratic
Diophantine system

r2
a + i2a + r2

b + i2b = 2n, 0 ≤ ra ≤ ia, 0 ≤ rb ≤ ib, ra ≤ rb (4.1)

for indeterminants ra, ia, rb, ib ∈ Z.
Example 4.1. When n = 23 the Diophantine system (4.1) has exactly four solutions, as
given in the following table:

ra ia rb ib
0 1 3 6
1 2 4 5
0 3 1 6
1 4 2 5

Let (A,B) be a complex Golay sequence of order n. Furthermore, let u, v, x, and y
represent the number of 1s, −1s, is, and −is in A, and let ra and ia represent the resum
and imsum of A, respectively. We have that

u, v, x, y ≥ 0, u− v = ra, x− y = ia, u+ v + x+ y = n. (4.2)

Given the values of n, ra, and ia this is a system of linear Diophantine equations which is to
be solved over the non-negative integers. From the last equality we know that u, v, x, y ≤ n
so such a system necessarily has a finite number of solutions.

Example 4.2. When n = 23, ra = 0, and ia = 1, the Diophantine system (4.2) has exactly
12 solutions, as given in the following table:

u v x y
0 0 12 11
1 1 11 10
2 2 10 9
3 3 9 8
4 4 8 7
5 5 7 6
6 6 6 5
7 7 5 4
8 8 4 3
9 9 3 2
10 10 2 1
11 11 1 0
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The multinomial coefficient
(

n
u,v,x,y

)
= n!

u!v!x!y!
tells us how many possibilities there are

for A ∈ {±1,±i}n with u entries which are 1s, v entries which are −1s, x entries which are
is, and y entries which are −is. For example, there are 23!

12!11!
= 1,352,078 possibilities for

A with 12 entries which are is and 13 entries which are −is (i.e., those which correspond
to the first row of the table in Example 4.2). Algorithms for explicitly generating all such
possibilities for A can be found in [Knuth, 2011].

4.3 Description of our algorithm

First, we fix an order n for which we are interested in generating a list of all inequivalent
complex Golay sequence pairs (A,B). Our algorithm finds all solutions ra, ia, rb, ib
of (4.1) and for all pairs (ra, ia) then solves the system (4.2). For each solution quadruple
(u, v, x, y) we use Algorithm 7.2.1.2L from [Knuth, 2011] to generate all possibilities for A
with the appropriate number of 1s, −1s, is, and −is. For each possibility for A we compute
Hk := |hA(e2πik/50)|2 for k = 1, . . . , 49. If any value of Hk is strictly larger than 2n, we
immediately discard the sequence A (see Corollary 4.1). If all values of Hk are smaller
than 2n then we record the sequence A as one which could appear in the first position of a
complex Golay sequence pair.

Next, we repeat the above steps except that we solve the system (4.2) for all pairs (rb, ib)
(replacing ra with rb and ia with ib), and this time we generate a list of possibilities for B,
sequences which could appear in the second position of a complex Golay sequence pair.

Finally, we use the matching technique of [Kotsireas et al., 2009] to compile a list of all
complex Golay sequence pairs of a given order. We form the strings

Re(NA(1)), Im(NA(1)), . . . ,Re(NA(n− 1)), Im(NA(n− 1))

and
−Re(NB(1)),− Im(NB(1)), . . . ,−Re(NB(n− 1)),− Im(NB(n− 1))

for all possibilities for A and B which were previously generated. We then create two files,
those containing the ‘A’ strings sorted in lexicographic order, and those containing the
‘B’ strings sorted in lexicographic order. Finally, we perform a linear scan through the
files to find all the strings which are common to both files. All matches are guaranteed
to produce complex Golay sequences since if the strings derived from sequences A and B
matched then Re(NA(s)) + Re(NA(s)) = Im(NA(s)) + Im(NA(s)) = 0 for s = 1, . . . , n− 1.
Furthermore, all normalized complex Golay sequences will be among the matches since by
construction if (A,B) is a normalized complex Golay sequence then A appears in the first
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list of possibilities generated and B appears in the second list of possibilities which were
generated.

If one wants the complete list of complex Golay sequence pairs, one can now repeatedly
apply the equivalence operations E1–E5 to the list of normalized complex Golay sequence
pairs until those operations no longer produce new sequences. Note that normalized
complex Golay sequences are not necessarily inequivalent, as the normalization conditions
of Lemma 4.3 do not capture all possible equivalences. If there are two sequences which are
equivalent to each other this can be checked by applications of the equivalence operations
E1–E5 and one of the equivalent sequences can be removed if desired.

4.3.1 Optimizations

There are some further properties which while not essential to the algorithm can be exploited
to remove some extraneous computations.

Lemma 4.4. Let Hk := |hA(e2πik/50)|2 be the quantity which we use in our algorithm’s
filtering criterion, and let H ′k be the same quantity but computed with respect to A′, the
reverse of A. Then Hk = H ′50−k.

Proof. Let θ := 2πk/50. Then H ′50−k = |hA′(e−iθ)|2 and as in the decomposition in
Lemma 4.1 one has

|hA′(e−iθ)|2 = NA′(0) + 2
n−1∑
j=1

(
Re(NA′(j)) cos(−θj) + Im(NA′(j)) sin(−θj)

)
.

From the definition of the aperiodic autocorrelation function one sees that NA′(0) = NA(0)
and NA′(s) = NA(s) for s = 1, . . . , n − 1. Using this with the standard facts that
cos(−x) = cos(x) and sin(−x) = − sin(x) one derives that this expansion is exactly the
same as the expansion for |hA(eiθ)|2 = Hk, as required.

In light of Lemma 4.4, we do not need to compute the values Hk for both A and its
reverse, since the Hk values for the reverse of A will be the exact same as those for A (albeit
in reverse order). In other words, A will be discarded by our filtering condition if and only
if its reverse is discarded by our filtering condition, so once A has been checked we need
not also check its reverse.

To avoid extraneous computations, we only perform the filtering check on one of A and
the reverse of A, whichever is lexicographically greater (if A is equal to its reverse it is also
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checked). Once the filtering process has been completed we take the list of sequences which
passed the filter and add to the list the reverse of each sequence on the list (except for
those which are their own reverse).

Of course, we can perform the same optimization when performing the filtering check on
the B sequences as well. In this case one can completely discard sequences whose reverses
are lexicographically strictly smaller than themselves because of the following lemma.

Lemma 4.5. The following normalization condition may be added to Lemma 4.3:

B′ ≥lex reverse(B′). (4.3)

Proof. Continuing the proof of Lemma 4.3, if the complex Golay sequence pair (A′, B′)
satisfies (4.3) then we are done. If not, we apply equivalence operation E1 (reversal) to
(A′, B′) so that (4.3) is satisfied. Furthermore, all the normalization conditions of Lemma 4.3
remain satisfied because the operation E1 does not change the resum or imsum of A′ or
B′.

Finally, we note that it is possible to optimize the evaluation of the Hall polynomial by
reusing previously computed values. If A := [a1, . . . , an] is the sequence which we need to
check the filtering condition for, then we want to compute the Hall polynomial evaluation

hA(e2πik/50) =
n−1∑
j=0

aj+1e
2πijk/50 for k = 1, . . . , 49.

Because of the periodicity e2πijk/50 = e2πi(jk mod 50)/50 and the fact −e2πijk/50 = e2πi(jk+25)/50

there are only 100 possible values for the summand in this sum, namely xe2πiy/50 for x = 1
or i and y = 0, . . . , 49. These can be computed once at the start of the algorithm and
reused as necessary.

Furthermore, in many cases it is possible to reuse some computations from the Hall
polynomial evaluation of the previously checked sequence. The algorithm we used to generate
the sequences [Knuth, 2011, §7.2.1.2] generates them in lexicographically increasing order,
meaning that consecutively generated sequences often share a large common prefix. If the
entries a1, . . . , al of a sequence are identical to those in the previously generated sequence
then the partial sum

∑l−1
j=0 aj+1e

2πijk/50 can be reused, assuming it was computed and stored;
as the Hall polynomial evaluations are being computed one can remember their partial
sums for varying l and k in a table.
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4.4 Results

The algorithm described above was implemented in C and run for all orders n up to 25. We
find that n = 23 and 25 are not complex Golay numbers, i.e., that complex Golay sequences
of order 23 and 25 do not exist. This result confirms the conjecture of [Craigen et al., 2002],
verifies the results of [Fiedler, 2013], and in addition implies that the next candidate prime
complex Golay number is n = 29. Our results match the previously computed results
of [Craigen et al., 2002] in all cases, but we also provide complete results for orders 20, 22,
23, 24, and 25; these results can be found online [Bright, 2016a].

The computations were performed with all optimizations enabled and on an Intel Xeon
CPU running at 3.3GHz under Ubuntu 14.04. The algorithm’s run time in hours for orders
20, 21, 22, 23, 24, and 25 was 4, 13, 32, 179, 361, and 3268, respectively. In each case
almost all of the time was spent enumerating the permutations of the required forms. Once
this enumeration had been completed, the remaining parts of the algorithm could typically
be run in only several seconds or minutes.

Table 4.1 contains a summary of how many complex Golay pairs exist for each order up
to 25. The second column contains the total number of complex Golay pairs and the third
column contains the number of inequivalent complex Golay pairs.
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Order Total Pairs Inequivalent Pairs
1 16 1
2 64 1
3 128 1
4 512 2
5 512 1
6 2048 3
7 0 0
8 6656 17
9 0 0
10 12,288 20
11 512 1
12 36,864 52
13 512 1
14 0 0
15 0 0
16 106,496 204
17 0 0
18 24,576 24
19 0 0
20 215,040 340
21 0 0
22 8192 12
23 0 0
24 786,432 1056
25 0 0

Table 4.1: A summary of the number of complex Golay pairs which exist in all orders up
to 25.
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Even if you were right, it’d be
1 + 1 + 2 + 1, not 1 + 2 + 1 + 1.

Wadsworth, Clue

Chapter 5

Computation of Minimal Primes

As our final case study, we examine the problem of computing the set of minimal primes
in various bases. While this set is known to be finite for every base there are no known
bounds on how large the set can be. Thus, this case study is different from both of our
previous case studies, whose search spaces were finite when searching for sequences of a
given order. This adds an additional complication that the algorithms attempting to solve
this problem must address. The naive brute force algorithm of “search the entire space one
candidate at a time” will never terminate.

Currently, it is not even known if the problem of determining the minimal primes of a
given base is a computable problem or not. Thus, we do not present an algorithm which
can be proven to terminate but instead a heuristic algorithm which terminates in many
cases of interest, including all bases less than 17 as well as 18, 20, 22, 23, 24, and 30.

The work in this chapter was done in collaboration with Jeffrey Shallit and Raymond
Devillers and appeared in the journal Experimental Mathematics [Bright et al., 2016a].

5.1 Introduction

Problems about the digits of prime numbers have a long history, and many of them are
still unsolved. For example, are there infinitely many primes, all of whose base-10 digits
are 1? Currently, there are only five such “repunits” known [Williams and Dubner, 1986],
corresponding to (10p− 1)/9 for p ∈ {2, 19, 23, 317, 1031}. It seems likely that four more are
given by p ∈ {49081, 86453, 109297, 270343}, but this has not yet been rigorously proven.
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Another problem on the digits of primes was introduced in the paper [Shallit, 2000]. To
describe it, we need some definitions. We say that a string x is a subword of a string y,
and we write x / y, if one can strike out zero or more symbols of y to get x. For example,
string is a subword of Meistersinger. (In the literature, this concept is sometimes called
a “scattered subword” or “substring” or “subsequence”.) A language is a set of strings. A
string s is minimal for L if (a) s ∈ L and (b) if x ∈ L and x / s, then x = s. The set of all
minimal strings of L is denoted M(L).

In this chapter we describe a heuristic technique for determining M(Lb) in the case
where Lb consists of the representations, in base b, of the prime numbers {2, 3, 5, . . .}. We
obtain a complete characterization of M(Lb) for bases 2 ≤ b ≤ 16 and b = 18, 20, 22, 23,
24, and 30. For the remaining bases b = 17, 19, 21, and 25 ≤ b ≤ 29, we obtain results that
allow us to “almost” completely characterize this set.

The same technique can also be applied to find minimal sets for subsets of prime
numbers. For example, we were able to determine the minimal set for primes of the
form 4n + 1 represented in base 10 (and similarly for those of the form 4n + 3). This
successfully completes the sequences A111055 and A111056 in the Encyclopedia of Integer
Sequences [OEIS Foundation Inc., 1996], which had been incomplete since their introduction
to the encyclopedia in 2005.

5.1.1 Notation

In what follows, if x is a string of symbols over the alphabet Σb := {0, 1, . . . , b−1} we let [x]b
denote the evaluation of x in base b (starting with the most significant digit), and [ε]b := 0
where ε is the empty string. This is extended to languages as follows: [L]b := { [x]b : x ∈ L }.
We use the convention that A := 10, B := 11, and so forth, to conveniently represent strings
of symbols in base b > 10. We let (x)b be the canonical representation of x in base-b, that
is, the representation without leading zeroes. Finally, as usual, for a language L we let
Ln := LL · · ·L︸ ︷︷ ︸

n

and L∗ :=
⋃
i≥0 L

i.
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5.2 Why minimal sets are interesting

One reason why the minimal set M(L) of a language L is interesting is because it allows us
to compute two natural and related languages, defined as follows:

sub(L) := {x ∈ Σ∗ : there exists y ∈ L such that x / y };
sup(L) := {x ∈ Σ∗ : there exists y ∈ L such that y / x }.

An amazing fact is that sub(L) and sup(L) are always regular. This follows from the
following classical theorem due to Higman [Higman, 1952] and Haines [Haines, 1969].

Theorem 5.1. For every language L, there are only finitely many minimal strings.

Indeed, we have sup(L) = sup(M(L)) and Σ∗ − sub(L) = sup(M(Σ∗ − sub(L))), and
the superword language of a finite language is regular, since

sup
(
{w1, . . . , wn}

)
=

n⋃
i=1

Σ∗wi,1Σ∗ · · ·Σ∗wi,|wi|Σ
∗

where wi = wi,1 · · ·wi,|wi| with wi,j ∈ Σ.

5.3 Why the problem is hard

Determining M(L) for arbitrary L is in general unsolvable, and can be difficult even when
L is relatively simple [Gruber et al., 2007, Gruber et al., 2009].

The following is a “semi-algorithm” that is guaranteed to produce M(L), but it is not
so easy to implement:

(1) M := ∅
(2) while (L 6= ∅) do

(3) choose x, a shortest string in L
(4) M := M ∪ {x}
(5) L := L− sup({x})
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In practice, for arbitrary L, we cannot feasibly carry out step (5). Instead, we work
with L′, some regular overapproximation to L, until we can show L′ = ∅ (which implies
L = ∅). In practice, L′ is usually chosen to be a finite union of sets of the form L1L

∗
2L3,

where each of L1, L2, L3 is finite. In the case we consider in this chapter, we then have to
determine whether such a language contains a prime or not.

However, it is not even known if the following simpler decision problem is recursively
solvable:

Problem 5.1. Given a base b and strings x, y, z ∈ Σ∗b , does there exist a prime number
whose base-b expansion is of the form x yy · · · y︸ ︷︷ ︸

n

z for some n ≥ 0?

An algorithm to solve this problem, for example, would allow us to decide if there are any
additional Fermat primes (of the form 22n + 1) other than the known ones (corresponding
to n = 0, 1, 2, 3, 4). To see this, take b := 2, x := 1, y := 0, and z := 0161. Since if 2n + 1
is prime then n must be a power of two, a prime of the form [xy∗z]b must be a new Fermat
prime.

Therefore, in practice, we are forced to try to rule out prime representations based on
heuristics such as modular techniques and factorizations. This is discussed in the next
section.

5.4 Some useful lemmas

It will be necessary for our algorithm to determine if families of the form [xL∗z]b contain a
prime or not. We use two different heuristic strategies to show that such families contain
no primes.

In the first strategy, we mimic the well-known technique of “covering congruences”
[Choi, 1971], by finding some finite set S of integers N > 1 such that every number in a
given family is divisible by some element of S. In the second strategy, we attempt to find a
difference-of-squares or difference-of-cubes factorization.

5.4.1 The first strategy

We start with the simplest version of the idea: to find an N > 1 that divides each element
of the family [xL∗z]b. At first glance, this would require checking that N divides xLnz for
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n = 0, 1, 2, . . . . However, the following lemma shows that it is only necessary to check
the two cases n = 0 and 1. Although divisibility based on digital considerations has a long
history (e.g., [Dickson, 1952, Chap. XII]), we could not find these kinds of results in the
literature.

Lemma 5.1. Let x, z ∈ Σ∗b , and let L ⊆ Σ∗b . Then N divides all numbers of the form
[xL∗z]b if and only if N divides [xz]b and all numbers of the form [xLz]b.

Proof. Let y = y1 · · · yn ∈ L∗, where y1, . . . , yn ∈ L. By telescoping we have

[xyz]b − [xz]b =
n∑
i=1

([xyiyi+1 · · · ynz]b − [xyi+1 · · · ynz]b).

Cancelling the final |yi+1 · · · ynz| base-b digits in the summand difference — which are
identical — this becomes

[xyz]b = [xz]b +
n∑
i=1

b|yi+1···ynz|([xyi]b − [x]b).

But b|z|([xyi]b − [x]b) = [xyiz]b − [xz]b by adding and subtracting [z]b, so we have

[xyz]b = [xz]b +
n∑
i=1

b|yi+1···yn|([xyiz]b − [xz]b).

Since N | [xz]b and N | [xyiz]b for each 1 ≤ i ≤ n, it follows that N | [xyz]b.

The other direction is clear, since [xz]b and numbers of the form [xLz]b are both of the
form [xL∗z]b.

In practice, our algorithm employs this lemma with L := {y1, . . . , yn} ⊆ Σb, and all
numbers of the form [xL∗z]b are shown to be composite with the following corollary.

Corollary 5.1. If 1 < gcd([xz]b, [xy1z]b, . . . , [xynz]b) < [xz]b then all numbers of the form
[x{y1, . . . , yn}∗z]b are composite.

Proof. By Lemma 5.1, we know that N := gcd([xz]b, [xy1z]b, . . . , [xynz]b) > 1 divides all
numbers of the form [x{y1, . . . , yn}∗z]b. By the size condition N is strictly less than each
such number, and so is a nontrivial divisor.

Example 5.1. Since gcd(49, 469) = 7, every number with base-10 representation of the
form 46∗9 is divisible by 7. Since 1 < 7 < 49, each such number is composite.
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We also generalize this to the following corollary in the case where a single divisor does
not divide each number in the family.

Corollary 5.2. Let L := {y1, y2, . . . , yn}. If

N0 := gcd
(
{[xz]b} ∪ [xL2z]b

)
and

N1 := gcd
(
[xLz]b ∪ [xL3z]b

)
lie strictly between 1 and [xz]b, then all numbers of the form [xL∗z]b are composite.

Proof. By Lemma 5.1 applied to [x(L2)∗z]b, we know that N0 divides all numbers of the
form [xL∗z]b in which an even number of yi appear. By Lemma 5.1 on [xyi(L

2)∗z]b for
each 1 ≤ i ≤ n, we know that N1 divides all numbers of the form [xL∗z]b for which an odd
number of yi appear. By the size conditions, N0 and N1 are nontrivial divisors.

Example 5.2. Since gcd([6]9, [611]9) = 2, every number with base-9 representation of the
form 61∗ of odd length is divisible by 2. Since gcd([61]9, [6111]9) = 5, every number with
base-9 representation of the form 61∗ of even length is divisible by 5. Since these numbers
lie strictly between 1 and 6, every number with base-9 representation of the form 61∗ is
composite.

We also note that it is simple to generalize Corollary 5.2 to apply to check if there are
divisors N0, N1, . . . , Nk−1 such that Ni divides all numbers of the form [x{y1, . . . , yn}∗z]b
in which the number of yi appearing is congruent to i mod k.

Example 5.3. Let b := 16. Then 7 divides [8A01]b and [8A0AAA1]b. Furthermore, 13 divides
[8A0A1]b and [8A0AAAA1]b, and 3 divides [8A0AA1]b and [8A0AAAAA1]b. Thus all numbers
with base-16 representation of the form 8A0A∗1 are divisible by either 7, 13, or 3, depending
on their length mod 3.

A version of Lemma 5.1 which applies to the most general kind of family we need to
consider (x1L

∗
1 · · ·xmL∗m, where we allow the case L∗m = ∅) is formulated in Lemma 5.2.

Lemma 5.2. Let x1, . . . , xm ∈ Σ∗b , and L1, . . . , Lm ⊆ Σ∗b . Then N divides all numbers of
the form [x1L

∗
1x2L

∗
2 · · ·xmL∗m]b if and only if N divides [x1 · · ·xm]b and all numbers of the

form [x1L1x2x3 · · ·xm]b, . . . , [x1 · · ·xm−1xmLm]b.
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Proof. Say w ∈ x1L
∗
1x2L

∗
2 · · · xmL∗m; then there exist yi,1, . . . , yi,ni

∈ Li such that

w = x1y1,1 · · · y1,n1x2y2,1 · · · y2,n2 · · ·xmym,1 · · · ym,nm

for 1 ≤ i ≤ m. As in the proof of Lemma 5.1, we have that

[w]b = [x1 · · ·xm]b +
m∑
i=1

ni∑
j=1

b|yi,j+1···ym,nm |([x1 · · ·xiyi,jxi+1 · · ·xm]b − [x1 · · ·xm]b)

from which the claim follows.

As in Lemma 5.1, we typically apply this lemma in the case where each Li ⊆ Σb and
show that all numbers of the form [x1L

∗
1x2L

∗
2 · · ·xmL∗m]b have a divisor.

Example 5.4. Take (L1, L2, L3) := ({0}, {0}, ∅) and (x1, x2, x3) := (9, 8, 1). Since 9 divides
981, 9081, and 9801, it follows that 9 divides every number with base-10 representation of
the form 90∗80∗1.

More generally, if a single divisor doesn’t work for every number, Lemma 5.2 can also
be applied in the case where all numbers of the form [x1L

∗
1 · · ·xi(L2

i )
∗ · · ·xmL∗m]b have one

divisor, and all numbers of the form [x1L
∗
1 · · ·xiLi(L2

i )
∗ · · ·xmL∗m]b have another divisor.

Example 5.5. Let b := 11. Since 3 divides each of [44A1]b, [44A111]b, [440A1]b , it follows
that every number of the form [440∗(11)∗1]b is composite. Since 2 divides each of [44A11]b,
[44A1111]b, [440A11]b, we know every number of the form [440∗(11)∗11]b is composite. It
follows that all numbers of the form [440∗A1∗1]b are composite.

Lemma 5.2 can also be applied to the case when all even-length strings under considera-
tion have one divisor, and all the odd-length strings have another divisor. One such case is,
for example, if numbers of the form [x1(L2

1)∗x2(L2
2)∗x3]b and [x1L1(L2

1)∗x2L2(L2
2)∗x3]b have

one divisor, and numbers of the form [x1L1(L2
1)∗x2(L2

2)∗x3]b and [x1(L2
1)∗x2L2(L2

2)∗x3]b have
another divisor.

Example 5.6. Let b := 9. Since 2 divides each of [6]b, [116]b, [611]b, [161]b, [11161]b,
[16111]b, every odd-length string of the form 1∗61∗ is composite. Since 5 divides each of
[16]b, [1116]b, [1611]b, [61]b, [1161]b, [6111]b, every even-length string of the form 1∗61∗ is
composite.
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5.4.2 The second strategy

A second way of proving that families of the form xL∗z do not contain a prime is via
algebraic factorizations, such as a difference-of-squares factorization.

Lemma 5.3. Let x, z ∈ Σ∗b , y ∈ Σb, and let g := gcd([y]b, b− 1), X := ([y]b + (b− 1)[x]b)/g,
and Y := (b|z|[y]b−(b−1)[z]b)/g. If b, X, and Y are all squares and

√
b|z|X−

√
Y > (b−1)/g,

then all numbers of the form [xy∗z]b are composite.

Proof. Evaluating the base-b expansion of xynz, we get

[xynz]b = b|z|+n[x]b + b|z|
bn − 1

b− 1
[y]b + [z]b

=
b|z|+nX − Y

(b− 1)/g
.

Since b, X, and Y are all squares the numerator factors as a difference of squares. By the
size condition both factors are strictly larger than the denominator, and so the factorization
is nontrivial.

Example 5.7. Let b := 16, x := 4, y := 4, and z := 1. Then g = 1, X = 82, Y = 72, and

[44n1]b =
(4n+1 · 8 + 7)(4n+1 · 8− 7)

15
.

Since 4 · 8− 7 > 15, this factorization is nontrivial and no number of the form [44∗1]b is
prime.

It is also possible to combine Lemma 5.2 with Corollary 5.2 to construct a test which
also applies to bases which are not squares.

Corollary 5.3. Using the same setup as in Lemma 5.2, if b|z|X and Y are squares,√
b|z|X −

√
Y > (b − 1)/g, and 1 < gcd([xyz]b, [xy

3z]b) < [xz]b, then all numbers of the
form [xy∗z]b are composite.

Proof. Say n = 2m is even. Then from the factorization in Lemma 5.2,

[xynz]b =
(bm
√
b|z|X +

√
Y )(bm

√
b|z|X −

√
Y )

(b− 1)/g

which is nontrivial by the size condition.

Alternatively, if n is odd then as in Corollary 5.2 we have that gcd([xyz]b, [xy
3z]b) divides

[xynz]b, and by the size condition this divisor is nontrivial.
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Example 5.8. Let b := 17, x := 19, y := 9, and z := 9. Then g = 1, b|z|X = 852, Y = 32,
and

[xy2nz]b =
(17n · 85 + 3)(17n · 85− 3)

16
.

Since 85 − 3 > 16 this factorization is nontrivial. Furthermore, all numbers of the form
[xy2n+1z]b are even, so all numbers of the form [199∗9]b are composite.

Finally, we present a variant of Lemma 5.3 which applies to a difference-of-cubes
factorization.

Lemma 5.4. Let x, z ∈ Σ∗b , y ∈ Σb, and let g := gcd([y]b, b− 1), X := ([y]b + (b− 1)[x]b)/g,
and Y := (b|z|[y]b−(b−1)[z]b)/g. If b, X, and Y are all cubes and 3

√
b|z|X− 3

√
Y > (b−1)/g,

then all numbers of the form [xy∗z]b are composite.

Proof. As in Lemma 5.3, we have

[xynz]b =

(
(b|z|+nX)1/3 − Y 1/3

)(
(b|z|+nX)2/3 + (b|z|+nXY )1/3 + Y 2/3

)
(b− 1)/g

.

The second factor is at least as large as the first (except in the single case b|z|+nX = 1 and
Y = −1, which is not possible by construction of X and Y ), so by the size condition both
factors are strictly larger than the denominator, and the factorization is nontrivial.

Example 5.9. Let b := 8, x := 1, y := 0, and z := 1. Then g = 7, X = 1, Y = −1, and

[10n1]b = (2n+1 + 1)(4n+1 − 2n+1 + 1).

Since 2 − (−1) > 1, this factorization is nontrivial and no number of the form [10∗1]b is
prime.

5.5 Our heuristic algorithm

As previously mentioned, in practice to compute M(Lb) one works with an underapproxi-
mation M of M(Lb) and an overapproximation L of Lb − sup(M). One then refines such
approximations until L = ∅ from which it follows that M = M(Lb).

For the initial approximation, note that every minimal prime in base b with at least 4
digits is of the form xY ∗z, where x ∈ Σb − {0}, z ∈ Σb, and

Y := Σb − { y : (p)b / xyz for some prime p }.
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Making use of this, our algorithm sets M to be the set of base-b representations of the
minimal primes with at most 3 digits (which can be found simply by brute force) and L to
be
⋃
x,z xY

∗z, as described above.

All remaining minimal primes are members of L, so to find them we explore the families
in L. During this process, each family will be decomposed into possibly multiple other
families. For example, a simple way of exploring the family xY ∗z where Y := {y1, . . . , yn} is
to decompose it into the families xY ∗y1z, . . . , xY ∗ynz. If the smallest member (say xyiz) of
any such family happens to be prime, it can be added to M and the family xY ∗yiz removed
from consideration. Furthermore, once M has been updated it may be possible to simplify
some families in L. In this case, xY ∗yjz (for j 6= i) can be simplified to x(Y − {yi})∗yjz
since no minimal prime contains xyiz as a proper subword.

Another way of decomposing the family xY ∗z is possible if one knows that a digit of
Y can only occur a certain number of times. For example, if xyiyiz has a proper prime
subword then the digit yi can occur at most once in any minimal prime of the form xY ∗z,
and we can split xY ∗z into the two families

x(Y − {yi})∗z and x(Y − {yi})∗yi(Y − {yi})∗z.

Lastly, the family xY ∗z can be decomposed by considering digits of Y which are mutually
incompatible, i.e., they cannot occur simultaneously in a minimal prime. For example, if
xyiyjz and xyjyiz (i 6= j) both have proper prime subwords then the digits yi and yj cannot
occur simultaneously in any minimal prime of the form xY ∗z, and we can split xY ∗z into
the two families

x(Y − {yi})∗z and x(Y − {yj})∗z.
Sometimes it is not possible to show two digits are mutually incompatible, but it is possible
to know that one digit must appear before the other. For example, if xyiyjz has a proper
prime subword then the digit yj must appear before yi in any minimal prime of the form
xY ∗z, and we can replace xY ∗z with the family

x(Y − {yi})∗(Y − {yj})∗z.

Similarly, if xyjyyiz has a proper prime subword then we can split xY ∗yY ∗z into the two
families

x(Y − {yi})∗yY ∗z and xY ∗y(Y − {yj})∗z.

We now formulate these arguments for the most general kind of family we need to
consider, namely x1L

∗
1 · · ·xmL∗m. For simplicity, we only specify the decompositions as

applying to L1 := {y1, . . . , yn}, but it is straightforward to generalize these decompositions
to also apply to Li for any 1 ≤ i ≤ m.
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Lemma 5.5. Every minimal prime of the form x1L
∗
1 · · ·xmL∗m must also be of the form

x1x2L
∗
2 · · ·xmL∗m or x1yiL

∗
1x2L

∗
2 · · ·xmL∗m for some 1 ≤ i ≤ n.

Proof. Follows from the fact that L∗1 = {ε} ∪
⋃n
i=1 yiL

∗
1.

Similarly, one can generalize Lemma 5.5 to apply to adding characters to the right of L1

rather than to the left.

Example 5.10. The family 10{0, 1}∗61∗1 splits into the families 1061∗1, 10{0, 1}∗061∗1,
and 10{0, 1}∗161∗1 by exploring {0, 1}∗ on the right.

Lemma 5.6. If x1y
k
i x2 · · · xm contains a prime proper subword (for some k ≥ 1) then

every minimal prime of the form x1L
∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(yi(L1 − {yi})∗)jx2L
∗
2 · · ·xmL∗m

for some 0 ≤ j < k.

Proof. If w ∈ x1L
∗
1 · · · xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

k or more instances of yi then by assumption it follows that w contains a proper prime
subword, and therefore is not a minimal prime. So if w is a minimal prime then y must
contain less than k instances of yi, i.e., y must be of the form (L1 − {yi})∗(yi(L1 − {yi})∗)j
for some 0 ≤ j < k, from which the claim follows.

Example 5.11. The string 661 represents a prime in base 9, and is a proper subword
of 10661. It follows that the family 10{0, 1, 6}∗1 splits into the families 10{0, 1}∗1 and
10{0, 1}∗6{0, 1}∗1 in base 9.

Lemma 5.6 is especially useful when it can be applied with k = 1, since in that case the
family x1L

∗
1 · · · xmL∗m is replaced by a single strictly simpler family, in contrast to the other

lemmas we will describe.

Lemma 5.7. If x1yiyjx2 · · ·xm and x1yjyix2 · · · xm contain prime proper subwords (where
i 6= j) then every minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m or x1(L1 − {yj})∗x2L

∗
2 · · · xmL∗m.

Proof. If w ∈ x1L
∗
1 · · · xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

both yi and yj then by assumption it follows that w contains a proper prime subword, and
therefore is not a minimal prime. So if w is a minimal prime then y cannot contain yi and
yj simultaneously, i.e., y must be of the form (L− {yi})∗ or (L− {yj})∗, from which the
claim follows.
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Example 5.12. The string 4611 represents a prime in base 8, and is a proper subword of
446411 and 444611. It follows that the family 44{4, 6}∗11 splits into the families 444∗11
and 446∗11 in base 8.

Lemma 5.8. If x1yiyjx2 · · · xm contains a prime proper subword (where i 6= j) then every
minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(L1 − {yj})∗x2L
∗
2 · · · xmL∗m.

Proof. If w ∈ x1L
∗
1 · · · xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

yi before yj then by assumption it follows that w contains a proper prime subword, and
therefore is not a minimal prime. So if w is a minimal prime then y cannot contain yi
before yj , i.e., y must be of the form (L−{yi})∗(L−{yj})∗, from which the claim follows.

Example 5.13. The string 10 represents a prime in base 11, and is a proper subword of
90101. It follows that the family 90{0, 1, 9}∗1 splits into the family 90{0, 9}∗{1, 9}∗1 in
base 11.

Lemma 5.9. If x1yix2y2,jx3 · · ·xm contains a prime proper subword (where y2,j ∈ L2)
then every minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m or x1L1x2(L2 − {y2,j})∗x3L

∗
3 · · ·xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2y

′x3L
∗
3 · · · xmL∗m for some y ∈ L∗1 and y′ ∈ L∗2.

If y contains yi and y′ contains y2,j then by assumption it follows that w contains a proper
prime subword, and therefore is not a minimal prime. So if w is a minimal prime then
either y cannot contain yi or y′ cannot contain y2,j , i.e., y is of the form (L1−{yi})∗ and y′
is of the form L∗2, or y is of the form L∗1 and y′ is of the form (L2−{y2,j})∗, from which the
claim follows.

Example 5.14. The string 60411 represents a prime in base 8, and is a proper subword
of 604101. It follows that the family 60{0, 4}∗10∗1 splits into the families 600∗10∗1 and
60{0, 4}∗11 in base 8.

We call families of the form xy∗z (where x, z ∈ Σ∗b and y ∈ Σb) simple families. Our
algorithm then proceeds as follows:

1. M := {minimal primes in base b of length ≤ 3}
L :=

⋃
x,z∈Σb

xY ∗z, where x 6= 0 and Y is the set of digits y such that xyz has no
subword in M
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2. While L contains non-simple families:

(a) Explore each family of L by applying Lemma 5.5, and update L.

(b) Examine each family of L:

i. Let w be the shortest string in the family. If w has a subword in M , then
remove the family from L. If w represents a prime, then add w to M and
remove the family from L.

ii. If possible, simplify the family by applying Lemma 5.6 with k = 1.
iii. Using the techniques of Section 5.4, check if the family can be proven to

only contain composites, and if so then remove the family from L.

(c) Apply Lemmas 5.6, 5.7, 5.8, and 5.9 to the families of L as much as possible and
update L; after each split examine the new families as in (b).

The process of exploring/examining/splitting a family can be concisely expressed in
a tree of decompositions. A sample tree of decompositions, for the family 1{0, 1, 6}∗1 in
base 9, is displayed in Figure 5.1. When applying Lemma 5.5 on a family with only one
nonempty Li we don’t show the first decomposition (simply removing L∗i ) since that results
in the shortest word in the family, which is always implicitly checked for primality/minimal
subwords at each step anyway.

5.5.1 Implementation

An implementation of our algorithm as described above was written in C using the GMP
library [Granlund et al., 1991] and the code is open source [Bright, 2014]. An indepen-
dent implementation using the same ideas was written in C++ using the MIRACL li-
brary [Scott, 2003] and the same results were derived (with a less extensive search for
primes in the simple families, but with results for bases b ≤ 50 [Devillers, 2016]).

Note that when exploring the families in line (a), one should not always apply Lemma 5.5
directly as stated by adding characters to the left of L1; in our implementation we alternate
between adding characters to the left and right of L1+k mod m, where k is the number of
times we have previously passed through line (a). Also, the application of Lemma 5.8
tended to initially produce an excess number of cases, so it was useful to only apply it
following a certain number of iterations (6 in our implementation). It also led to duplicate
families after simplifying, for example families of the form xy∗yny∗z for varying n, but these
could be detected and removed.
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At the conclusion of the algorithm described, L will consist of simple families (of the
form xy∗z) which have not yet yielded a prime, but for which there is no obvious reason
why there can’t be a prime of such a form. In such a case, the only way to proceed is to
test the primality of larger and larger numbers of such form and hope a prime is eventually
discovered.

The numbers in simple families are of the form (abn + c)/d for some fixed a, b, c, d
where d | abn + c for all n. Except in the special case c = ±1 and d = 1, when n is large
the known primality tests for such a number are too inefficient to run. In this case one
must resort to a probable primality test such as a Miller–Rabin test, unless a divisor of the
number can be found. Since we are testing many numbers in an exponential sequence, it is
possible to use a sieving process to find divisors rather than using trial division.

To do this, we made use of Geoffrey Reynolds’ srsieve software [Reynolds, 2010]. This
program uses the baby-step giant-step algorithm to find all primes p which divide abn + c
where p and n lie in a specified range. Since this program cannot handle the general case
(abn + c)/d when d > 1 we only used it to sieve the sequence abn + c for primes p - d,
and initialized the list of candidates to not include n for which there is some prime p | d
for which p | (abn + c)/d. The program had to be modified slightly to remove a check
which would prevent it from running in the case when a, b, and c were all odd (since then
2 | abn + c, but 2 may not divide (abn + c)/d).

Once the numbers with small divisors had been removed, it remained to test the
remaining numbers using a probable primality test. For this we used the software
LLR [Penné, 2015] written by Jean Penné. Although undocumented, it is possible to
run this program on numbers of the form (abn + c)/d when d 6= 1, so this program required
no modifications. A script was also written which allowed one to run srsieve while LLR
was testing the remaining candidates, so that when a divisor was found by srsieve on
a number which had not yet been tested by LLR it would be removed from the list of
candidates.

In the cases where the elements of M(Lb) could be proven prime rigorously we em-
ployed the program PRIMO [Martin, 2011] which is an elliptic curve primality proving
implementation written by Marcel Martin.

5.6 Results

A summary of the results of our algorithm is presented in Table 5.1; it was able to completely
solve all bases up to 30 except for 17, 19, 21, and those between 25 and 29. The results in
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1{0, 1, 6}∗1

10{0, 1, 6}∗1

10{0, 1}∗1

10{0, 1}∗01

100∗01

divisible by 2
100∗10∗01

subword 1011

10{0, 1}∗11

prime 1011

10{0, 1}∗6{0, 1}∗1

10{0, 1}∗61∗1

10{0, 1}∗061∗1

100∗061

divisible by 8

10{0, 1}∗161∗1

subword 1011

1061∗1

1061

not prime

11{0, 1, 6}∗1

11{0, 1, 6}∗1

11{0, 1}∗1

11{0, 1}∗01

prime 1101

11{0, 1}∗11

111∗11

difference of squares

11{0, 1}∗6{0, 1}∗1

11{0, 1}∗06{0, 1}∗1

subword 1101

11{0, 1}∗16{0, 1}∗1

111∗161∗1

divisible by 2 or 5

116{0, 1}∗1

1161∗1

divisible by 2 or 5

16{0, 1, 6}∗1

161∗1

divisible by 2 or 5

Figure 5.1: Tree of decompositions for 1{0, 1, 6}∗1 in base 9.
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base 29 required some additional strategies, as described in Section 5.7. The full collection
of minimal elements is available online [Bright, 2012].

For every solved base, we give the size |M(Lb)| and the “width” maxx∈M(Lb)|x| of the
corresponding family. For the unsolved bases, we give a lower bound on the size and width
of M(Lb), along with the number of families of the form xy∗z for which no prime member
could be found, nor could the family be ruled out as only containing composites. Since
such simple families can contain at most one minimal prime, an upper bound on |M(Lb)|
is given by the sum of the lower bound for |M(Lb)| and the number of unsolved families.
Additionally, we give the height to which the simple families were searched for primes; if
there are any more primes in M(Lb) they must have at least this many digits in base b.

The family 80∗1 in base 23, corresponding to the generalized Proth numbers 8 · 23n + 1,
was already known to be prime for minimal n = 119215 in the process of solving the
generalized Sierpiński conjecture in base 23 [Barnes, 2007].

The largest probable prime we found was the number 9E800873 (expressed as a base 23
string) or (106 · 23800873 − 7)/11 in standard notation. It contains 1,090,573 decimal digits
and at the time of discovery was the tenth largest known probable prime according to Henri
and Renaud Lifchitz’s ranking [Lifchitz and Lifchitz, 2000].

5.6.1 Unsolved families

There were 37 families for which we were unable to determine if they contain a prime or
not. They are explicitly described in Table 5.2 in both their “base b” string representation
xy∗z and “algebraic” form (abn + c)/d = [xynz]b. The numbers a and c are given in their
factorized form so as to help spot algebraic factorizations.

5.6.2 Primes of the form 4n + 1 and 4n + 3

The heuristic algorithm described in Section 5.5 may also be easily modified to apply to
recursive subsets of prime numbers, e.g., those congruent to 1 mod 4 (alternatively, 3 mod 4).
The modifications necessary are to the initialization of M in line 1, and to update the check
“w represents a minimal prime” to also check that w is in the subset under consideration.
When searching for minimal primes of the form 4n+ 1, it was necessary to remove families
only containing numbers of the form 4n+ 3, and vice versa. A modified Lemma 5.1 can be
used to check this, e.g., [x(L0 ∪ L)z]b are all congruent to c mod d implies that [xL∗z]b are
all congruent to c mod d.
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b |M(Lb)| max
x∈M(Lb)

|x| # unsolved
families

searched
height

2 2 2 0 −
3 3 3 0 −
4 3 2 0 −
5 8 5 0 −
6 7 5 0 −
7 9 5 0 −
8 15 9 0 −
9 12 4 0 −
10 26 8 0 −
11 152 45 0 −
12 17 8 0 −
13∗ 228 32,021 0 −
14 240 86 0 −
15 100 107 0 −
16 483 3545 0 −
17∗ ≥ 1279 ≥ 111,334 1 1,000,000
18 50 33 0 −
19∗ ≥ 3462 ≥ 110,986 1 707,000
20 651 449 0 −
21∗ ≥ 2600 ≥ 479,150 1 506,000
22 1242 764 0 −
23∗ 6021 800,874 0 −
24 306 100 0 −
25∗ ≥ 17,597 ≥ 136,967 12 303,000
26 ≥ 5662 ≥ 8773 2 486,000
27∗ ≥ 17,210 ≥ 109,006 5 368,000
28∗ ≥ 5783 ≥ 94,538 1 543,000
29∗ ≥ 57,283 ≥ 174,240 14 242,000
30 220 1024 0 −

∗Data based on results of probable primality tests.

Table 5.1: Summary of results for the prime numbers for each base b.
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Base Family Algebraic form
17 F19∗ (5 · 821 · 17n − 32)/16
19 EE16∗ (22 · 13 · 307 · 19n − 1)/3
21 G0∗FK 24 · 21n+2 + 5 · 67
25 6MF∗9 (1381 · 25n+1 − 53)/8

CM1∗ (59 · 131 · 25n − 1)/24
EE1∗ (8737 · 25n − 1)/24
E1∗E (337 · 25n+1 + 311)/24
EFO∗ 2 · 3 · 61 · 25n − 1
F1∗F1 (192 · 25n+2 + 37 · 227)/24
F0∗KO 3 · 5 · 25n+2 + 22 · 131
F0K∗O (5 · 11 · 41 · 25n+1 + 19)/6
LOL∗8 (53 · 83 · 25n+1 − 3 · 37)/8
M1∗F1 (232 · 25n+2 + 37 · 227)/24
M10∗8 19 · 29 · 25n+1 + 23

OL∗8 (199 · 25n+1 − 3 · 37)/8
26 A∗6F (2 · 26n+2 − 7 · 71)/5

I∗GL (2 · 32 · 26n+2 − 11 · 113)/25
27 80∗9A 23 · 27n+2 + 11 · 23

999G∗ (101 · 877 · 27n − 23)/13
CL∗E (32 · 37 · 27n+1 − 7 · 29)/26
EI∗F8 (191 · 27n+2 − 23 · 149)/13
F∗9FM (3 · 5 · 27n+3 − 113557)/26

28 OA∗F (2 · 7 · 47 · 28n+1 + 53)/27
29 1A∗ (19 · 29n − 5)/14

68L0∗6 7 · 757 · 29n+1 + 2 · 3
AMP∗ (8761 · 29n − 52)/28
C∗FK (3 · 29n+2 + 2 · 331)/7
F∗OPF (3 · 5 · 29n+3 + 139 · 1583)/28
FKI∗ (6379 · 29n − 32)/14
F∗OP (3 · 5 · 29n+2 + 7573)/28
LP09∗ (31 · 16607 · 29n − 32)/28
OOPS∗A 2 · 10453 · 29n+1 − 19
PC∗ (2 · 89 · 29n − 3)/7

PPPL∗O (87103 · 29n+1 + 32)/4
Q∗GL (13 · 29n+2 − 3 · 1381)/14
Q∗LO (13 · 29n+2 − 19 · 109)/14
RM∗G (389 · 29n+1 − 5 · 19)/14

Table 5.2: The unsolved families listed in their “base b” and “algebraic” representations.
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The lemmas of Section 5.4 can be used without modification, since a family which
contains only composites of course does not contain any primes of a special form, either.
For simplicity the lemmas of Section 5.5 are stated to apply when the minimal set consists
of primes, but actually apply to general minimal sets and also need no modification.

When run on the primes of the form 4n+ 1 represented in base 10, our implementation
successfully computes the minimal set consisting of 146 elements, the largest of which
contains 79 digits. The Encyclopedia of Integer Sequences [OEIS Foundation Inc., 1996]
contains the elements for this minimal set in entry A111055. Prior to our work, the longest
11 elements were missing from this listing.

When run on the primes of the form 4n+ 3 represented in base 10, our implementation
successfully computes the minimal set consisting of 113 elements, the largest of which
contains 19,153 digits. Because of its size this number is not easily proven prime, but
François Morain successfully produced a primality certificate for it [Morain, 2015]. The
second-largest number has 50 digits, so the remaining elements are easily proven prime.
The Encyclopedia of Integer Sequences [OEIS Foundation Inc., 1996] contains the elements
for this minimal set in entry A111056. Prior to our work, the longest 10 elements were
missing from this listing.

5.7 Some additional strategies

The strategies discussed so far suffice to restrict the possible forms of minimal primes to
a finite number of simple families in all bases 2 ≤ b ≤ 28. However, as b increased, in
addition to the calculations becoming more costly, it was found to be necessary to use
increasingly complicated strategies. We now describe some additional strategies which we
found sufficient to solve all non-simple families in base 29.

Lemma 5.10. If every number of the form x1(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m is compos-

ite, then every minimal prime of the form x1L
∗
1 · · ·xmL∗m must also be of the form

x1L
∗
1yiL

∗
1x2L

∗
2 · · ·xmL∗m.

Proof. If w ∈ x1L
∗
1 · · ·xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y does not

contain a yi then w is composite by assumption. Therefore if w is a prime then y contains a
yi, i.e., y ∈ L∗1yiL∗1, from which the result follows. (Note that one could improve this result
via y ∈ (L1 − {yi})∗yiL∗1 ∪ L∗1yi(L1 − {yi})∗, but this was found to be unnecessary for our
purposes.)
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Example 5.15. The numbers represented by the family F{0, 9, F}∗F in base 29 are di-
visible by 3, so every minimal prime of the form F{0, 9, F, P}∗F must also be of the form
F{0, 9, F, P}∗P{0, 9, F, P}∗F.

Lemma 5.11. If x1yiyjyix2 · · ·xm contains a prime proper subword (where i 6= j) then
every minimal prime of the form x1L

∗
1 · · ·xmL∗m is of the form

x1(L1 − {yi})∗(L1 − {yj})∗(L1 − {yi})∗x2L
∗
2 · · ·xmL∗m.

Proof. If w ∈ x1L
∗
1 · · · xmL∗m then w ∈ x1yx2L

∗
2 · · ·xmL∗m for some y ∈ L∗1. If y contains

yiyjyi then by assumption it follows that w contains a proper prime subword, and therefore
is not a minimal prime. So if w is a minimal prime then either y does not contain a yj, or
y contains a yj and all yis in y either come before or after the yj. In each case, y is of the
form (L− {yi})∗(L− {yj})∗(L− {yi})∗, from which the claim follows.

Example 5.16. The string QLQ represents a prime in base 29, and is a proper subword of
LQLQL. It follows that the family L{L, Q}∗L splits into the family LL∗Q∗L∗L in base 29.

This rule may also be generalized to apply to the case when x1yiyjyiyjx2 · · ·xm contains
a prime proper subword (where i 6= j).

Example 5.17. The string LL9L9LQL represents a prime in base 29. It follows that the
family LL{9, L}∗Q∗QL splits into the family LLL∗9∗L∗9∗Q∗QL in base 29.

In Section 5.4.1 we described a number of strategies for determining if every member of
a family has a divisor, but for some families divisors exist which will not be found using
those tests. The following lemma can help one discover when this is the case; in particular
when every member of a family is divisible by some small prime. For a language L we use
the notation [L]b mod N to denote the finite set of residues { [x]b mod N : x ∈ L }.

Lemma 5.12. If 1 < gcd(k,N) for every k ∈ [L]b mod N and p /∈ [L]b for every prime p
which divides N , then all numbers of the form [L]b are composite.

Proof. Let x be an arbitrary member of L. Then gcd([x]b, N) = gcd([x]b mod N,N) > 1 by
assumption, so [x]b cannot be prime unless [x]b = gcd([x]b, N). But in that case [x]b would
be a prime which divides N , and so [x]b /∈ [L]b by the second assumption, in contradiction
to x ∈ L.
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To make use of this lemma, we need to be able to compute [x1L
∗
1 · · ·xmL∗m]b mod N . To

do this, we can make use of the following relations:

[Lx]b mod N = (b · ([L]b mod N) + [x]b) mod N

[L{y1, . . . , yn}]b mod N =
n⋃
i=1

[Lyi]b mod N

[L{y1, . . . , yn}∗]b mod N =
∞⋃
i=0

[L{y1, . . . , yn}i]b mod N

In the final case, the union may be taken to be finite over i < l where l is chosen such
that

⋃l
i=0[L{y1, . . . , yn}i]b mod N =

⋃l−1
i=0[L{y1, . . . , yn}i]b mod N . Using these relations,

we can compute [x1L
∗
1 · · ·xmL∗m]b mod N progressively, working left to right and starting

from [∅]b mod N = {0}. To solve base 29 it was sufficient to use N = 2 · 3 · 5.

Example 5.18. Let b := 29 and N := 30. Then

[L1∗61∗LK∗K]b mod N = {4, 5, 6, 14, 15, 16, 25},

so if k is in this set then gcd(k,N) ∈ {2, 5, 6, 15} and gcd(k,N) > 1. Since 2, 3, 5 /∈
[L1∗61∗LK∗K]b, by Lemma 5.12 all numbers of the form L1∗61∗LK∗K are composite.
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Truth is difficult.
Tim Bray

Chapter 6

Conclusion

In this thesis we have studied some computational methods for certain combinatorial and
number theoretic problems. In particular, we have demonstrated the effectiveness of the
recently proposed SAT+CAS paradigm of combining tools and methods from the symbolic
computation and satisfiability checking communities.

In the course of our work in the SAT+CAS area we applied the programmatic SAT
idea of [Ganesh et al., 2012] and provided evidence of its effectiveness in speeding up a
SAT solver searching for Williamson matrices. In this context enabling the programmatic
functionality consistently made the search finish faster; programmatic timings were often 10
times faster and sometimes over 100 times faster. Additionally, many of the SAT instances
which we generated were only solved using programmatic functionality.

6.1 When the SAT+CAS paradigm is likely to be effec-
tive

Of course, the SAT+CAS paradigm is not something which can be effortlessly applied to
solve problems, and should not be expected to be useful for all types of problems. While
completing our work in this area we performed many experiments concerning the case
studies in this thesis and compared many different search techniques, encodings, splitting
methods, and types of domain-specific knowledge. Figure 6.1 contains an outline of the
MathCheck2 system but annotated with the generic techniques that we found useful in
our experiments.
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Problem Generator SAT solver

CAS
(filtering test, symmetry breaking,
compression, divide and conquer)

CAS (filtering test)

SAT UNSAT

Partial
assignment

Conflict
clause

SAT instance

SAT solver result
(Solution / UNSAT core)

Partitions of
search spaceSearch space

Figure 6.1: Diagram of the MathCheck2 system annotated with the generic techniques
used.

Determining which techniques were the most effective was a nontrivial problem in
its own right, since the heuristics used in the SAT solver can sometimes get unusually
lucky or unlucky, making the solver’s running time inconsistent. Because of this, using
the SAT solver’s runtime on isolated instances was an unreliable way to determine which
techniques were the best to use. Instead, we compared the SAT solver’s runtime over a
class of instances, like the those given in the tables of Section 3.6. One should also keep in
mind that some techniques perform well on very small instances but do not scale well. For
example, the naive “binomial” encoding of the cardinality constraint which says that exactly
half of 2n given variables are true contains about

(
2n
n

)
∼ 4n/

√
πn constraints. This is much

too inefficient for large n, though the encoding may perform well for small n. Thus, one
cannot only rely on small instances when testing the effectiveness of different techniques.

Our experience running these experiments and seeing which were effective at making
the searches run efficiently means that we can offer some guidance about which kinds of
problems the SAT+CAS paradigm is likely to be useful for. In particular, we highlight the
following properties of problems which makes them good candidates to study using the
SAT+CAS paradigm:

1. There is an efficient encoding of the problem into a Boolean setting. Since the problem
has to be translated into a SAT instance or multiple SAT instances the encoding
should ideally be straightforward and easy to compute. Not only does this make the
process of generating the SAT instances easier and less error-prone it also means that
the SAT solver is executing its search through a domain which is closer to the original
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problem. The more convoluted the encoding the less likely the SAT solver will be
able to efficiently search the space.

2. There is some way of dividing the Boolean formula into multiple instances using the
knowledge from a CAS. Of course, a SAT instance can always be split into multiple
instances by hard-coding the values of certain variables and then generating instances
which cover all possible assignments of those variables. However, this strategy was
not an ideal way of splitting the search space. The instances generated in this fashion
tended to have wildly unbalanced difficulties, with some very easy instances and some
very hard instances, limiting the benefits of using many processors to search the space.
Instead, the process of splitting using domain-specific knowledge allows instances
which cannot be ruled out a priori to not even need to be generated because they
encode some part of the search space which can be discarded based on domain-specific
knowledge.

3. The search space can be split into a reasonable number of cases. One of the disad-
vantages of using SAT solvers is that it can be difficult to tell how much progress
is being made as the search is progressing. In our experience, if the solver has not
finished running in 24 hours then it is unlikely to finish at all in a reasonable amount
of time. The process of splitting the search space allows one to get a better estimate
of the progress being made, assuming the difficulty of the instances isn’t extremely
unbalanced. As a rule of thumb, splitting the search space into 100 to 10,000 instances
seems to work well, at least in the cases we examined. This allowed each instance to
complete significantly faster than the original instance would have taken to complete
while not having too many calls to the SAT solver. Splitting the search space into too
many instances is suboptimal because with a very large number of cases the overhead
of repeatedly calling a SAT solver becomes more significant to the total running time.

4. The SAT solver can learn something about the space as the search is running. The
efficiency of SAT solvers is in part due to the facts that they learn as the search
progresses. It can often be difficult for a human to make sense of these facts but
they play a vital role to the SAT solver internally and therefore a problem where
the SAT solver can take advantage of its ability to learn nontrivial clauses is one
in which the SAT+CAS paradigm is well suited for. As an example, we showed in
Section 3.6.4 that the SAT solver was able to learn Lemma 3.4 on its own. For more
sophisticated lemmas that the SAT solver would be unlikely to learn (because they
rely on domain-specific knowledge) it is useful to learn clauses programmatically via
the programmatic SAT idea [Ganesh et al., 2012].
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5. There is domain-specific knowledge which can be efficiently given to the SAT solver.
Domain-specific knowledge was found to be critical to solving instances of the problems
besides those of the smallest sizes. The instances which were generated using naive
encodings were typically only able to be solved for small sizes and past a certain
point the instances became too expensive to solve. All significant increases in the size
of the problems past that point came from the usage of domain-specific knowledge,
showing how valuable it is to the SAT solver. Of course, for the information to be
useful to the solver there needs to be an efficient way for the solver to be given the
information; it can be encoded directly in the SAT instances or generated on-the-fly
using programmatic SAT functionality.

6. The solutions of the problem lie in spaces which cannot be simply enumerated. If the
search space is highly structured and there exists an efficient algorithm for searching
the space which exploits that structure then using this algorithm directly is likely to
be more efficient than using a SAT solver. For example, in Chapter 4.3 we use an
algorithm for generating permutations whose form allows them to be enumerated with
little overhead. A SAT solver can also perform this enumeration, but it is not likely
to be able to do it faster than an algorithm specifically designed to do this—unless
there are lemmas which allow one to avoid enumerating all such permutations.

6.2 Future work

In this thesis the effectiveness of the SAT+CAS paradigm was demonstrated in the case
study of computing Williamson matrices (see Chapter 3). Although this is a topic of interest
in its own right, the scope of the SAT+CAS idea is much broader than its application
to this one case study and the SAT+CAS approach shows potential to be an effective
method for solving many other computational problems. On the other hand, we have also
pointed out that the approach is not something that can be expected to be helpful if just
applied blindly. Currently the SAT+CAS approach requires a lot of experimentation and
trial-and-error before finding a combination of encodings, domain-specific knowledge, and
splitting methods which perform well together.

Many of the techniques we discussed for computing Williamson matrices apply to
related combinatorial problems but will not necessarily apply to problems from other
fields. Thus, an important area of future research is to apply the SAT+CAS approach to
different problems in different fields. Furthermore, it would be very useful to determine if
there are general principles for selecting good encodings, domain-specific knowledge, and
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splitting methods which could be applied across multiple domains. Ideally, one would
like an automated framework for choosing and using optimal encodings, knowledge, and
methods for the problem at hand but we are currently far from such an automated system
and more experience will be necessary before we can design such a system. It could also
be very useful for the system to make more use of the facts learned when solving the SAT
instances to make solving other instances more efficient or to aid the mathematician in the
discovery of theorems. Section 3.6.4 contains some preliminary results of this type, allowing
us to state and prove Lemma 3.4, but it would be nice for the system to learn even more
sophisticated facts.

It would also be interesting to see if the SAT+CAS paradigm could be useful in the
other case studies in this thesis. In the case of computing minimal primes it is unclear if
the SAT+CAS idea would be useful. It would be unlikely to be useful for searching through
the simple families for primes, as this process involved sieving for primality candidates
and then testing the candidates for primality using a primality test, which the programs
srsieve and LLR have been fined-tuned to do directly. On the other hand, our heuristic
algorithm also relies on a search through families of strings the form x1L

∗
1 · · · xmL∗m while

using the lemmas of Sections 5.4 and 5.5 to refine the search. One could potentially use a
string SMT solver coupled with those lemmas but it remains to be seen if this would be
effective in practice.

For our remaining case study of computing complex Golay sequences, some initial
experimentation using a SAT solver to perform the search was already performed, but more
work remains to be done. In the case where the SAT solver was searching for complex Golay
sequences of order n with u entries which were 1, v entries which were −1, x entries which
were i, and y entries which were −i, the SAT solver would usually enumerate all

(
n

u,v,x,y

)
sequences of that form, i.e., when one sequence was shown to not be a Golay sequence it
was not able to use that information to learn something which would also discount other
similar sequences.

Because the SAT solver was internally enumerating all sequences of the given form it
makes sense to use an algorithm specifically tailored to do that, as we did in Chapter 4.
On the other hand, this does not definitively mean the SAT+CAS paradigm is useless
for this problem, as there is still the possibility of using additional domain-specific knowl-
edge to make the search run more efficiently. The mathematician Frank Fiedler gives a
criterion [Fiedler, 2013] which could potentially be useful in this context. He shows that if
A = [a1, . . . , an] is a complex Golay sequence and z ∈ C with |z| = 1 then not only must
we have |hA(z)|2 ≤ 2n (see Corollary 4.1), we must even have |hA′(z)|2 ≤ 2n where A′ is a
subsequence of A whose entries all have indicies in the same equivalence class modulo some
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constant. For example, if n = 23 then possibilities for A′ are

[a1, a3, a5, . . . , a23] and [a2, a4, a6, . . . , a22].

This type of filtering criteria is the sort of domain-specific knowledge which we found
useful in our work with SAT+CAS systems. It meets the criteria we outlined in Section 3.4
of being nontrivial, useful, and efficiently computable. Additionally, there is no simple way of
modifying permutation enumeration algorithms like Algorithm 7.2.1.2L from [Knuth, 2011]
to only enumerate permutations which satisfy Fiedler’s criterion. The simplest method
would be to enumerate all permutations and then filter those which fail the criterion. A
SAT solver, on the other hand, if given access to the domain-specific knowledge, can use
that knowledge to speed up the search by not enumerating permutations which don’t satisfy
the filtering criterion.
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