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Abstract 

The objective of this research is to establish the effects of different milling techniques on 

the solvent-free electrostatic separation process for navy bean flour as well as to develop a model 

based on near infrared and fluorescence data to determine protein and starch content of the protein- 

and starch-enriched fractions using multivariate methods (i.e. partial least squares regression).   

Data fusion was used to combine the NIR and fluorescence spectra to try to achieve a model that 

had better predictability for protein and starch content. 

Protein content was measured using Kjeldahl digestion and starch content was measured 

using a dinitrosalicylic (DNS) acid array. The samples used in the NIR model are navy bean flour 

fractions from the electrostatic separation and the raw navy bean flour.  There are 102 samples that 

are split in calibration (82 samples) and validation (20 samples) sets.  The protein-enriched samples 

are collected from the electrostatic plate while the starch-enriched fractions are collected from the 

bottom of the electrostatic separator.  The acquisition of reproducible infrared and fluorescence 

data from powder samples was successfully achieved. 

The pin milled navy bean flour had an average particle size almost three times smaller than the 

regular milled navy bean flour which could have contributed to the a high protein content (40.7%) 

of the protein-enriched fraction.  The regular milled flour had a much higher protein extraction 

under optimum conditions but could only achieved a lesser protein content (32.5%) for the protein-

enriched fraction.  The regular milled navy bean flour also seemed to have particles disaggregate 

in the triboelectric charging process.  

Multivariate methods and pre-treatment techniques were compared for the NIR spectra of the 

navy bean flour fractions from electrostatic separation to measure the protein and starch content.  
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The best method used Multiplicative Scatter Correction (MSC) pre-treatment with PLS regressions 

and had R2 values of prediction of 0.965 and 0.912 for protein and starch content, respectively. 

The N-way partial least squares (NPLS) regression was still a good model seeing as the R2 

values of prediction for starch and protein content were 0.946 and 0.885, respectively.  Two 

fluorophores were observed in navy bean flour: tryptophan and an unknown peak.  It was observed 

that the starch model using the fluorescence dataset was highly correlated to the model’s predicted 

protein content (R2 of 0.978).  The protein content model was better calibrated using the training 

set as well as providing a better prediction using the validation set for both NIR and fluorescence 

spectra. 

Data fusion was achieved by combining the NIR and unfolded fluorescence spectra of the navy 

bean flour fractions.  The individual techniques had undergone pre-treatment separately and 

yielded the best model for determining protein content.  Starch content was best determined using 

only the NIR spectra. 
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Chapter 1 

Introduction 

 A novel, solvent-free triboelectric separation method has been developed for the 

production of protein- and starch-enriched fractions for agricultural flours.  This technique 

separates the triboelectrically charged flour particulates using an electrostatic field from a high 

voltage plate.  The advantages of using this separation method include that the protein is recovered 

in its native state and there is no downstream requirement for solvent removal, which is required 

in other approaches. 

Triboelectric charging occurs when two materials are brought into contact with each other 

and charge is gained for one material due to friction.  The amount of charge gained on a particulate 

from triboelectric charging depends on factors such as surface conditions, area of contact, speed 

of rubbing, the materials involved, and humidity (Matsusaka et. al 2010).  Electrostatic separation 

involves the separation of charged particles under the influence of an electric field.  The electric 

field is created by one or more high voltage electrodes and the particles usually enter the separator 

after being charged from triboelectric or corona processes. 

 It is possible to gain insight on the chemical composition and properties using 

spectroscopic techniques.   Near infrared spectroscopy is a fast, non-invasive technique that 

requires little to no sample pre-treatment or preparation.  It can be used to determine the chemical 

composition of components in a variety of complex organic samples through vibrational energy 

resulting from molecular bonds absorbing the infrared light (Workman & Weyer 2012).  

Fluorescence spectroscopy is also a non-destructive analysis that can accurately measure 

component concentrations at parts per billion (Christensen et al. 2006).  Molecules that can act as 
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fluorophores, whose chemical structure allows it to be excited by an external photon and then emit 

the photon while relaxing back to its ground state, are found in fluorescence spectra.  The 

molecules that fluoresce mainly involve aromatic structures but can also be molecules with 

carbonyl groups or highly conjugated double bonds (Patnaik 2004). 

 The objective of this research was to establish the effects of different milling techniques 

on the solvent-free electrostatic separation process for navy bean flour as well as to develop a 

model based on near infrared and fluorescence data to determine protein and starch content of the 

protein- and starch-enriched fractions using multivariate methods (i.e. partial least squares 

regression).  Acquisition of reproducible infrared and fluorescence data from powder samples was 

also an objective.  After the models for the near infrared and fluorescence spectra were developed, 

they were compared to a model that used a data fusion approach.  The advantages of data fusion 

are improved detection, an increase in accuracy and reliability, and extending the available data 

(Khaleghi et al. 2013). 
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Chapter 2 

Literature Review 

2.1 Triboelectric Charging 

Triboelectric charging occurs when two different materials are brought into contact where 

electric charge is transferred from one material to the other.  The materials become electrically 

charged due to friction.  The magnitude of the charge is affected by surface conditions, area of 

contact, speed of rubbing, the materials involved, and humidity (Matsusaka et. al 2010).  

The charge of materials that are brought into contact with each other is related to the work 

function of each material.  Work function is defined as the energy required to remove an electron 

from the surface of a material.  Work function of materials is unique since it depends on the 

electronic energy levels of the particular material due to its chemical composition.  Smooth 

surfaces with a great amount of contact pressure and relative motion result in greater changes in 

charge. 

Whether the material retains the charge depends on its conductivity and the availability for 

the charge to be grounded.  Grounding the material allows electrons to flow from or to the material 

returning it to its normal state. 

Charged particles are an instrumental part of various industrial applications.  Applications 

that use triboelectric charging equipment include electrostatic separation (Zenkiewicz et al. 2015), 

powder coating (Dastoori et al. 2005), and electrophotography (Schein et al. 1999).  Therefore, 

understanding the characteristics of charging the particles is important to the powder handling 

process and optimization of parameters to improve the application’s performance. 
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2.1.1 Triboelectric Series 

 A triboelectric series is a list of materials arranged according to their charge intensity.  The 

materials are ordered from negatively charged (electron accepters) to positively charged (electron 

donors).  Triboelectric series can be used to determine the material to gain the greatest charge or 

electrostatic separation processes. Figure 2-1 (Licari 1988) is an example of a triboelectric series.  

Teflon was chosen to be the material of the triboelectric charger (method and design in section 

3.3) because it most readily donates electrons as it is on the bottom of the triboelectric series. 

 

Figure 2-1: Triboelectric series of common materials used in triboelectric charging (adapted from 

Licari (1988)). 

 Hyun et al. (2008) created a tribocharger which combined a vertical reciprocator and 

various charger materials.  Their tribocharger was designed to charge plastics by a transfer from 

rotating motion to reciprocation of a cam axis into a charging bottle.  The charging properties of 

plastics were measured and a triboelectric series was obtained.  The tribocharger was used to 

predict material separation for the recycling of waste plastic. 
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 Zenkiewicz et al. (2015) developed a tribocharger series for three biodegradable polymers: 

polylactide (PLA), polycaprolactone (PCL), and poly(3-hydroxybuterate-co-hydroxyvalerate) 

(PHBV).  Two triboelectric chargers were used in the study.  A mechanical tribocharger was used 

and employed the mutual friction between particles interacting with each other and through the 

particle-tribocharger wall contacts.  A fluidized bed was also used to triboelectrically charge 

particles as the movement causes friction.   It was found that PLA/PCL mixtures can be 

electrostatically separated.  These two biodegradable biopolymers have the ability to be multi-

processed without considerable deterioration.   

2.1.2 Triboelectric Charge Modelling 

 Mizutani et al. (2013) developed an excellent derivation of a triboelectric charging model.  

The following summarizes the steps taken to reach an equation relating the length of the 

triboelectric charger with particle charge. 

 The contact region between a particle and the triboelectric charger wall can be considered 

the same as a capacitor.  Therefore, the charge induced by the impact can be represented by (1). 

∆𝑞 = 𝑘𝑐𝐶𝑉  (1) 

where:  Δq: change in charge of the particle 

  kc: charging efficiency 

  C: capacitance 

  V: total potential difference 

The capacitance (2) relates to the contact area of the particle and the critical gap during the 

particle-wall impact as shown in Figure 2-2. 
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Figure 2-2: Particle wall impact variables adapted from Mizutani (2013). 

𝐶 =
𝜀𝑜𝑆

𝑧𝑜
    (2) 

where:  εo: absolute permittivity of gas 

  S: contact area 

  zo: critical gap including geometrical factors between contact bodies 

 The total potential difference, shown in equation (3), relates to the particle wall contact and 

the potential difference arising from other particles and external electric fields. 

𝑉 = 𝑉𝑐 − 𝑉𝑒 − 𝑉𝑏 + 𝑉𝑒𝑥  (3) 

where:  Vc: potential difference obtained based on work functions 

  𝑉𝑒 = 𝑘𝑒𝑞: potential difference arising from image charge  

   q: particle charge before contact 

Vb: potential difference arising from the space of charge induced by the surrounding 

particles, negligible under dilute conditions 

  Vex: potential difference arising from other electric fields 
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The amount of charge that is induced per impact decreases as the number of impacts 

increase.  Therefore, the particle charge is generated through repeated impacts. 

𝑑𝑞

𝑑𝑛
= 𝑘𝑐𝐶𝑉  (4) 

where:  n: number of contacts 

Using equations (1-4) under dilute conditions (low concentration of particles in the carrier 

gas), the equation for charge transfer becomes the following: 

𝑑𝑞

𝑑𝑛
= −

𝑘𝑐𝑘𝑒𝜀𝑜𝑆

𝑧𝑜
𝑞 +

𝑘𝑐𝜀𝑜𝑆(𝑉𝑐 + 𝑉𝑒𝑥)

𝑧𝑜
  (5) 

Assuming the initial conditions of q=qo when n=0 and it is possible to solve the differential 

equation. 

𝑞(𝑛) = 𝑞𝑜𝑒
−𝑛
𝑛𝑜 + 𝑞∞ (1 − 𝑒

−𝑛
𝑛𝑜)   (6) 

where:  𝑛𝑜 =
𝑧𝑜

𝑘𝑐𝑘𝑒𝜀𝑜𝑆
                      

  𝑞∞ =
𝑉𝑐

𝑘𝑒
+
𝑧𝑜

𝑘𝑒
𝑉𝑒𝑥 

When the particles are travelling on a plate, it can be assumed the frequency of the particle 

wall impacts per unit plate length is constant.  Therefore, the length of the plate also has a 

relationship with the charge. 

𝑞(𝐿) = 𝑞𝑜𝑒
−𝐿
𝐿𝑜 + 𝑞∞ (1 − 𝑒

−𝐿
𝐿𝑜)   (7) 

where:  Lo: characteristic length of particle charging 
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2.1.3 Further Models of Particle Charge  

 One assumption from Mizutani et al. (2013) work is that the particles have a uniform 

charge;  however, this is not the case as the particle’s charge will be localized in the area of contact.  

Grosshans et al. (2017) developed a model that accurately accounts for the charge distribution on 

the particle during particle-wall and particle-particle collisions implemented in Computational 

Fluid Dynamics (CFD).  It was shown that the behaviour of non-uniform particles was different 

quantitatively and qualitatively from uniformly charged particles. 

 Grosshans et al. (2016) evaluated the air flow and pipe diameter as parameters affecting 

the charge on particles flowing through a pipe.  Large Eddy Simulations were performed in 

conjunction with Design of Experiments (DoE) methodology.  It was determined that decreasing 

the flow rate greatly reduces the charge on the particles.  This is because as the flowrate is reduced 

the number of contacts will decrease as the particles enter laminar flow.  The diameter of the pipe 

had a lesser effect.  However, as the pipe diameter increases, the charge on the particles does 

decrease. 

 

2.2 Electrostatic Separation 

 Electrostatic separation is a dry, non-destructive technique used mainly in the plastic and 

food industries.  In the plastic industry, electrostatic separation is mainly used for recycling pure 

plastic components from a milled mixture of components (Inculet et al. 2017; Nadjem et al. 2017; 

Zeghloul et al. 2016)  .  In the food industry, electrostatic separation is used to enrich a flour’s 

components such as protein and fibre (Jafari et al. 2016; Tabtabaei et al. 2016a; Tabtabaei et al. 

2016b; Tabtabaei et al. 2017).   
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Electrostatic separation involves the separation of charged particles under the influence of 

an electric field.  The electric field is created by one or more high voltage electrodes and can be 

charged either positively or negatively depending on the components to be separated.  The particles 

gain a charge before entering the separator usually through triboelectric or corona processes.   

There are two main types of electrostatic separators.  The first uses free-falling particles 

that come into contact with the electrostatic field.   Besides the electrostatic force from the 

electrode, the forces of gravity and the friction between the charged particles and the carrier gas 

play an important role in the separation process.  Therefore, the height of the separator chamber, 

distance from the particle input to the electrode, the particle sizing, and the electrode voltage have 

the greatest effect on the separation of the charged particles.  The other type of separator involves 

a carrier gas passing the particles horizontally where they come into contact with the electrostatic 

field from the electrode.  Therefore, the speed of the carrier gas is an additional variable affecting 

separation.  

2.2.1 Electrostatic Separation of Plastics 

 Inculet et al. (2017) used electrostatic separation to separate polyvinyl chloride (PVC) and 

polyethylene terephthalate (PET) mixtures for recycling the pure components.  A tower was 

designed so that the charged particles would be in free-fall and come into contact with an 

electrostatic field coming from two high voltage electrodes.  One electrode had a positive charge 

while the other’s was negative.  The collection bins were at the bottom of the tower and the 

particulates end up in a particular bin depending on the deflection resulting from the electrostatic 

field.  It was concluded that from a 50/50 mixture of PVC and PET, it was possible to recover 

92.7% and 92.9 % of each component respectively. 
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 Nadjem et al. (2017) separated polyvinyl propylene (PVP) and polypropylene (PP) 

granular materials treated with dielectric barrier discharge (DBD) prior to triboelectric charging.  

DBD modifies the triboelectric properties of the particles and was carried out in a plasma reactor 

consisting of two aluminum plate electrodes as shown in Figure 2-3.  In the free-fall electrostatic 

separator the electrodes were composed of aluminum and set to voltages of +/- 30 kV.  The best 

enhancements of triboelectric properties involved using DBD for short periods of time (3 seconds).  

Under optimal conditions the quantities of PVC and PP obtained were increased by 104% and 30% 

respectively. 

 

Figure 2-3: Schematic of free-fall electrostatic separator (adapted from Nadjem et al. (2017)). 

 Zeghloul et al. (2016) evaluated the effect of particle size on the selective sorting of fine 

particles using acrylonitrile butadiene styrene (ABS) and polystyrene (PS) mixtures.  The goal was 

to find the optimum design for an industrial electrostatic separator.  The parameters that were 

tested included carrier gas flowrate, electrostatic plate voltage, ad particle size.  The particles were 

charged in a fluidized bed via particle-particle and particle-wall interactions.  The electrostatic 

field was created using rotating disk electrodes.  In conclusion, they found that the separation 

efficiency was best for finely ground particulates (diameter < 1 mm). 
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2.2.2 Electrostatic Separation in Food 

 Wang et al. (2016) used a variety of dry fractionation techniques for dietary fibre 

enrichment from pin milled defatted rice.  The yields were compared using a two stage electrostatic 

separation, sieving, and a combination of electrostatic separation and sieving.  The particles 

acquired a charge due to particle-particle and particle-wall collisions occurring with a squared 

aluminum charging tube.  Electrostatic separation took place in a separation chamber with a high 

voltage aluminum electrode on one side as shown in Figure 2-4.  The yield using all three dry 

fractionation technique was similar, between 20-21%, while recovering 42-48% of the fibre from 

the original flour. 

 

Figure 2-4: Schematic of electrostatic separator (adapted from Wang et al. (2015)). 

Hemery et al. (2011) used electrostatic separation to divide wheat bran into fractions 

containing high purities of pericarp, testa and aleurone to be used as food ingredients.  Coarse bran 

was obtained using a roller milling process on wheat grains.  The coarse bran was then impact 

milled to become a finer powder.  Three stages of free-fall electrostatic separation was used with 

oppositely charged high voltage electrodes on either side of the separator chamber.  The purified 

fractions resulted in 34.1 and 12.6 % of the starting mass of the pure components. 
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 Schutyser et al. (2015) compared dry and wet fractionation techniques when separating 

legume flour into protein-enriched fractions.  Dry fractionation methods, such as electrostatic 

separation, resulted in lower purity but had a much higher yield.  In conclusion, combining dry 

and wet fractionalization methods increased the purity of the enriched fractions with a smaller 

decrease in the overall yield from the starting material. 

2.2.3 Modeling Electrostatic Separators 

 Chun et al. (2016) modelled a corona charging type electrostatic separator using Artificial 

Neural Network (ANN) architecture.  The schematic of the electrostatic separation process is 

shown below in Figure 2-5.  Electrostatic separation is this approach depends on the centrifugal 

force due to rotation, lifting force due to the electrode attraction, gravitational force, and pinning 

force due to electrode attraction from the corona electrode.   

 

Figure 2-5: Corona charging electrostatic separator (adapted from Masui (1982)). 

 ANN is a numerical estimation method that simulates the learning and memorizing 

operation of the brain.  It has three types of layers (input, hidden, and output) to compute the 

complex interactions between neurons.   
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 The input variables used in the experiment were the DC voltage level, the rotation speed 

of the roller, temperature, the angle of the electrode, the distance between the roller and corona 

charger, and the distance between the roller surface and electrode.  The output of the ANN model 

was the middling mass product (middling = product that fell between collection bins lowering 

efficiency) which was compared to the target mass from experiments.  The low values of error 

between the predicted and target masses showed that ANN is a potential tool for modelling the 

nonlinear electrostatic separation processes. 

 Labair et al. (2017) used COMSOL to model the trajectory of millimeter sized charged 

particles in a free-fall electrostatic separator.  The particles were subjected to electric (from the 

high voltage electrode) and gravitational forces.  The simulation was done on an ABS/PVC 

mixture containing an average of 4 mm sized granules.  The factors found to affect the separation 

efficiency were determined to be the electrode voltage and the friction between the granules and 

air.  Also, the trajectory of weakly charged granules can be improved by either increasing the 

voltage of the electrode or increasing the height of the separation chamber. 

 

2.3 Near Infrared Spectroscopy 

Near infrared (NIR) spectroscopy is a fast, non-invasive technique that requires little to no 

sample pre-treatment or preparation.  It can be used to determine the chemical composition of 

components in a variety of complex organic samples.  Infrared spectroscopy uses electromagnetic 

radiation where bonds in a molecule can absorb, transmit, reflect, or scatter infrared light 

(Workman & Weyer 2012). Molecular spectra result from vibrational energies caused by the 

absorption of infrared light. The NIR region consists of wavelengths between 780 and 2500 nm 

(Jerez et al. 2010). In this region, functional groups that include hydrogen absorb the wavelengths 
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to create the spectra. Chemical bonds vary in strength and therefore the amount of energy it takes 

for bonds to vibrate.  The different energies correspond to particular wavelengths where peaks in 

the spectra can be observed.   

 NIR spectra also commonly undergo pre-treatment effects for baseline correction and curve 

smoothing.  These techniques are mainly used to improve the quantification or classification of 

the spectra (Berg & Engelsen 2009).   Some common examples of pre-treatment are standard 

normal variate, multiplicative scatter correction, and Savitzky-Golay differentiation.  These 

methods are outlined and discussed in Chapter 5. 

The amplitude and width of the peak on the spectra can be calibrated to yield the 

concentrations of components in a sample. However, most biological samples contain many 

components which could have overlapping bands rendering it difficult to determine concentrations 

based on only peak size (Ranzan et al. 2014). Therefore, techniques using multivariate analysis 

have been developed to create models to quantify peaks for the components of the spectra based 

on a calibration set.  The model can then be used to predict the same components of a test or 

validation set.  Commonly used multivariate methods including principal component regression 

and partial least squares is discussed in Chapter 5. 

A review of methods used to classify and quantify components, primarily biological, from 

NIR spectra can be found in Table 2-1.
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Table 2-1: Review of multivariate methods to quantify or classify components in NIR spectra primarily for biological samples.  

Sample Type Measured 

Component 

Pre-

treatment 

Multivariate 

Method 

Results Reference 

Bio-oil from pine 

lumber feedstock 

Water content Raw, MSC PCR, PLS  Can successfully predict water content between 16 

and 36 % with an error less than 2 % 

 MSC pre-treated data yielded better estimates than 

the raw data for both PLS and PCR 

 The best model used MSC pre-treatment with PLS 

regression: R2(cal) of 0.971 and R2(val) of 0.963 

 All models had an R2 > 0.85 

(Tripathi et al. 

2009) 

Cultivated and 

wild soybean 

Crude protein, 

crude fat, neutral 

detergent fibre 

(NDF), acid 

detergent fibre 

(ADF) 

MSC PLS  Crude fat and crude protein equations are acceptable 

for quantitative prediction for soybeans (R2 above 

0.9) 

 NDF and ADF equations are only useful for 

screening purposes (R2 approximately 0.75 for both) 

(Asekova et al. 

2016) 

Meat 

 

 

Tablet (drug) 

 

Wheat 

Moisture, fat, and 

protein content 

 

Unspecified 

 

Carbon, nitrogen, 

sulfur content 

Raw, 1D, 2D, 

SNV, MSC, 

localized SNV 

(LSNV) 

PLS  Localized SNV uses correction parameters that are 

estimated over spectral areas 

 Comparison between a variety of NIR pre-treatment 

methods for three different datasets 

 LSNV pre-treatment provided the best overall model 

for all three datasets 

 Localized spectral pre-treatments have advantages 

over full range spectral pre-treatments 

(Bi et al. 2016) 
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Warfarin sodium Crystalline and 

amorphous 

fractions 

MSC + 1D PCR, PLS  Goal: minimize amount of product variation 

 Linear relationship between changes in the physical 

form of warfarin sodium and the NIR spectra 

 Model was very close to actual values obtaining an 

acceptable method for quantification 

 Amorphous R2 > 0.99, crystalline R2 > 0.98 

(Korang-

yeboah et al. 

2016) 

Minced beef 

adulterated with 

horsemeat  

Horsemeat 

content 

Raw, SNV, 

MSC, 1D. 2D 

PLS  Utilized the visible wavelength range (400-1000 nm) 

 Successfully used visible IR to detect and quantify 

the level of adulteration in horsemeat 

 All pre-treatment methods had extremely strong 

correlations (R2 > 0.95) 

 Best model used the raw data with no pre-treatment 

(Kamruzzaman 

& Makino 

2015) 

Skim milk 

powder, non-fat 

dry milk 

Classification 

 

 

 

 

 

Moisture, fat, and 

protein content 

SNV ANOVA-

PCA, Pooled 

ANOVA, 

Pooled 

ANOVA-PLS 

 

PLS 

 ANOVA-PCA was able to successfully separate the 

samples by day of analysis, production site, 

processing temperature, and individual samples into 

clear categories 

 The area of protein peaks had the greatest amount of 

variance between the samples 

 Calibration models for moisture, fat and protein were 

not precise, with R2 of 0.32, 0.6, and 0.78 

respectively 

(Harnly et al. 

2014) 
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Bibasic calcium 

phosphate – 8 

particle sizes (53-

300 μm) 

Median particle 

size and 

logarithmically 

transformed 

number of taps 

SNV Multiple linear 

regression 

(MLR) 

 Quantification using NIR spectra of dry powder 

 SNV pre-treatment conserves the particle size effect 

 Tested full spectra and reduced models (wavelength 

selection) and the full spectra performed better 

 High correlations for median particle size with full 

and reduced spectra (R2 > 0.95) 

(Ely et al. 

2008) 

Soil samples from 

Belgium and 

France 

Organic carbon, 

potassium, 

sodium, 

magnesium, 

phosphorus 

Maximum 

normalisation 

with 1D  

PCR, PLS, 

Back 

propagation 

neural 

network 

(BPNN) 

 Comparison of a variety of multivariate techniques 

for the best model to determine soil properties from 

IR/NIR spectra 

 BPNN outperformed both PLS and PCR for all soil 

properties 

 Excellent models for organic carbon and magnesium 

while the other properties still had good models 

(Mouazen et 

al. 2010) 

Commercial red 

wines 

Polyphenolic 

compounds such 

as malvin, 

catechin, and 

quercetin 

Normalisation, 

SNV, MSC, 

1D, 2D, 

combinations 

PCR, PLS  NIR can be used to predict individual polyphenolic 

compounds 

 PLS model outperformed PCR 

 Different pre-treatments were better for different 

compounds; there was not a single pre-treatment 

technique that resulted in the best model for all or 

even most of the compounds 

(Vázquez 

2014) 

Arabica coffee 

beans 

Classification MSC + 2D 

combination 

PLS-

discriminant 

analysis (DA) 

 Goal: detect defects or adulteration in coffee 

 PLS-DA model was able to discriminate coffee beans 

geographically and genotypically 

 Model had classified 94.4 % of the samples correctly 

 Region model had better separation than genotype 

model 

(Marquetti et 

al. 2016) 
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Polyester resin 

from dicarboxylic 

acids 

Acid value and 

hydroxyl number 

Raw PCR, PLS, 

BPNN 

 Comparing a variety of multivariate methods for the 

optimal model 

 BPNN was determined to be the best model for both 

measured components 

 BPNN had a faster decrease in predictability as the 

number of samples decreased 

 BPNN was successfully employed for monitoring the 

polyesterification of dicarboxylic acids   

(Marengo et al. 

2004) 

Rapeseed 

biodiesel fuel 

Density, viscosity, 

water content, and 

methanol content 

Mean 

centering, 

SNV, MSC, 

1D, 2D, 

combinations, 

range 

scattering (for 

ANN) 

PCR, PLS, 

Artificial 

neural 

network 

(ANN) 

 Comparing a variety of multivariate methods as well 

as pre-treatment methods 

 ANN was determined to be the superior approach as 

bio-diesel is a non-linear object 

 The best NIR pre-treatment method with the dataset 

was the first or second derivative followed by mean 

centering 

(Balabin et al. 

2015) 

Tablets provided 

by Roche 

Pharmaceuticals 

Active substance 

content: 

bromazepam 

(Tablet A), 

clonazepam 

(Tablet B) 

Raw, SNV, 

MSC, D2, 

orthogonal 

scatter 

correction 

(OSC), 

combinations 

PCR, PLS  Comparing a variety of pre-treatment methods using 

PLS and PCR 

 All models were highly correlated to the active 

substance content of both tablets (R2 > 0.97) 

 PLS provided better predictions than PCR models 

 Tablet A best pre-treatment: SNV 

 Tablet B best pre-treatment: SNV and D2 

(Chalus et al. 

2005) 
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Freeze-dried 

mannitol-sucrose 

mixtures 

Water content SNV PLS  Created a calibration model using mannitol-sucrose 

samples which were used to predict water content of 

other samples (included protein or excipient) 

 There was a highly linear correlation between the 

NIR predicted and measured water content 

(Grohganz et 

al. 2010) 

Soy bean oil Classification Raw, offset 

correction, 1D 

PCA, PLS-DA  Classify expired and non-expired samples of soy 

bean oil 

 Acidity and peroxide levels are important indexes of 

oils that can be determined using NIR 

 98% of the samples were successfully classified 

using PLS-DA indicating the model can be used to 

evaluate the degree of oxidation in soy bean oil 

(Bezerra et al. 

2016) 

0 
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2.4 Fluorescence Spectroscopy 

  Fluorescence spectroscopy is a non-destructive analysis that can accurately measure 

component concentrations at parts per billion (Christensen et al. 2006).  A fluorophore is a 

molecule whose chemical structure allows it to be excited by an external photon and then emit the 

photon while relaxing back to its ground state.   The photon is always emitted at a longer 

wavelength than the wavelength it was excited at.  The molecules that fluoresce mainly involve 

aromatic structures but can also be molecules with carbonyl groups or highly conjugated double 

bonds (Patnaik 2004).  All fluorophores have independent and specific wavelengths for excitation 

and emission which also result in different peak shapes.  Using several emission spectra taken at 

different excitation wavelengths, an excitation-emission matrix (EEM) can be obtained.   

Fluorescence data has two types of scattering which are elastic (Rayleigh) and inelastic 

(Raman) (Andersen 2005).  Rayleigh scattering occurs due to molecules oscillating at a multiple 

of the incident light frequency.  First order Rayleigh scatter would have the same frequency as the 

incident light and second order would have double the wavelength.  Raman scattering occurs since 

the emitted light has less energy than the absorbed light, resulting in a loss of energy.  This value 

is constant over the entire EEM.  Chapter 6 describes the pre-treatment methods used to correct 

for scattering effects.   

Multivariate methods have been developed to quantify and classify components which act 

as fluorophores.  Some common techniques include Parallel Factor Analysis (PARAFAC) and n-

way partial least squares (NPLS) regression.  These two methods are examined in detail in Chapter 

6.  Table 2-2 is a review of multivariate methods used to quantify and classify fluorescence EEMs 

for a variety of samples with a focus on those from a biological source.
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Table 2-2: Review of multivariate methods used to quantify or classify fluorescence EEM spectra with a focus on largely biologically 

sourced samples. 

Sample 

Type 

Measured 

Component 

Pre-treatment Multivariate 

Method 

Results Reference 

Carrot 

baby food 

Neoformed 

compounds 

(e.g. furosin, 

furan) 

First order Rayleigh 

replaced by missing 

values and estimated 

using maximum 

likelihood method 

PARAFAC  Furan is a carcinogen which has been found at higher 

levels than expected in processed vegetables 

 PARAFAC model was highly correlated to the measured 

compounds (R2 > 0.94) 

 The neoformed compounds were found to be lower in 

purees from semi-frozen carrots than fresh and 

pasteurized materials 

(Acharid et 

al. 2012) 

Sherry 

vinegar 

Classification 

on age 

Rayleigh scattering 

removed with missing 

values 

PARAFAC 

followed by 

PLS-DA, 

SVM 

 Goal: successfully classify Sherry vinegar by age (6 

months, 2 years, and 10 years) 

 PARAFAC model gave information about the 

fluorescent molecules and their relative amount 

 SVM was the most adequate classification method as 

there was almost no error in classifying the aged wine 

(Callejón 

et al. 2012) 

Graphene 

oxide 

(humic 

acid 

formation 

on surface) 

Humic acid 

fractionation 

Response of blank 

deducted from samples 

PARAFAC  PARAFAC identified two components that were humic-

like in shape and location 

 PARAFAC modelling can be used to track changes in 

the molecular size of humic acid 

 One humic-like components was determined to be larger 

sized and had a greater adsorption affinity 

(Lee et al. 

2015) 
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Water Dissolved 

organic matter 

(Suwanee 

River fulvic 

acid, Nordic 

Reservoir 

natural 

organic matter 

Raman scatter correction 

 

Missing values for 

Rayleigh scattering 

 

Intensity value of 0 

assigned to emission 

below excitation 

wavelengths 

PARAFAC  PARAFAC model revealed that there were 6 

independent components  

 The components behave differently as the pH is adjusted 

which can be monitored with the model 

 PARAFAC was also used to characterize the 

components in the sample (e.g. humic-like, protein-like) 

 Overall, PARAFAC was determined to be a promising 

technique to characterize the functions of dissolved 

organic matter 

(Yan et al. 

2013) 

Water Dissolved 

organic matter 

Response of blank 

deducted from samples 

 

Normalized using 

quinine sulfate units 

PARAFAC  Dissolved organic matter in drinking water can re-

promote the growth of bacteria and biofilm causing 

corrosion 

 Maximum fluorescence intensities were used to 

represent component concentrations 

 The PARAFAC model was successful in relating kinetic 

rate to individual dissolved organic matter components 

 The model provided new insights on the underlying 

mechanisms related to the photodegradation 

(Dinh & 

Hur 2015) 

Honey Classification Missing values inserted 

for Rayleigh scattering 

PARAFAC 

followed by 

PLS-DA 

 The fluorescence data on honey was taken using a front-

faced fluorescence approach 

 Goal: classify honey based on botanical origin and 

indent fake honey samples 

 6 components were found in the PARAFAC model 

 PLS-DA can successfully detect fake honey samples 

with 100 % sensitivity and specificity  

(Dramic et 

al. 2015) 
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Cell 

culture 

media 

Tyrosine, 

tryptophan, 

folic acid, 

pyridoxine  

Missing values inserted 

for Rayleigh scattering 

PARAFAC, 

multivariate 

curve 

resolution, 

NPLS 

 PARAFAC monitored the decrease of intrinsic media 

components and the photo-degradation products 

 NPLS could estimate changes in concentration for any 

product that was not extensively photo-degraded  

 Multivariate curve resolution was the more accurate 

method for quantifying degraded media  

(Calvet et 

al. 2014) 

Coffee Classification Rayleigh scattering was 

replaced by missing 

values 

PARAFAC, 

NPLS-DA, 

unfolded PLS-

DA 

 Goal: geographically classify coffee 

 Unfolded PLS-DA performed better than NPLS-DA for 

the geographical classification of coffees 

 The f-scores for regions using unfolded PLS-DA method 

were greater than 0.8 for the training and test sets 

(Botelho et 

al. 2017) 

Cell 

culture 

media 

Tryptophan, 

tyrosine 

Rayleigh scattering was 

replaced by missing 

values 

PARAFAC, 

NPLS 

 PARAFAC was used to identify the fluorophores present 

in the samples 

 Both tryptophan and tyrosine were successfully 

quantified using NPLS with an accuracy of 4.5 and 5.5 

%, respectively 

 It is possible to reduce the amount of error in prediction 

by reducing the range of the concentrations in the 

calibration set 

(Calvet et 

al. 2012) 

Cell 

culture 

media 

Downstream 

product yield 

Rayleigh scattering was 

replaced by missing 

values 

NPLS-DA, 

NPLS 

 NPLS-DA was used to accurately determine subtle 

composition changes that occur due to prolonged storage 

 The NPLS model was able to correlate small variances 

within the EEM to end product yield with an accuracy of 

+ 0.13 g/L 

(Ryan et 

al. 2010) 
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2.5 Data Fusion 

Data fusion is a process of combining several sources of data in order to find a uniform 

picture.  This technique borrows ideas from diverse fields in order to combine the data into one 

model.  The advantages of data fusion include improved detection, an increase in accuracy and 

reliability, and extending the available data (Khaleghi et al. 2013).  Fluorescence and near-infrared 

spectroscopy both give information about the chemical composition of the sample and therefore 

an enhancement to the model can be anticipated by combining the spectral data. 

 Data fusion can occur at three different levels: low, medium, and high (Solano et al. 2012). 

Low data fusion combines data after separately pre-treating, medium data fusion extracts certain 

data features before combining, and high data fusion creates separate multivariate models where 

the outputs are combines. 

Low level data fusion is the easiest and most commonly method used.  However, it is 

important to note that each technique’s dataset should be normalized and have about the same 

number of variables so that the final model does not depend more heavily on one technique than 

the others (Khaleghi et al. 2013).  

Table 2-3 is a review of data fusion using various spectroscopic techniques to classify or 

quantify components in the spectra.  Data fusion is not commonly used to combine NIR and 

fluorescence spectra.  Data fusion is much more common between NMR and other spectroscopic 

techniques (Bro et al. 2013; Dearing et al. 2011; Fernández et al. 2013; Anibal et al. 2011).
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Table 2-3: Review of data fused spectroscopic techniques used with multivariate methods to quantify or classify components. 

Sample Type Measured 

Component 

Fused Data 

Sources 

Multivariate 

Method 

Results Reference 

Spices Classification UV-Visible 

spectra, NMR 

PLS-DA  Detecting banned Sudan dyes in commercial spices 

 Four fuzzy aggregation connective operators (minimum, 

maximum, product, and average) used to fuse the data and 

perform PLS-DA 

 Data fused model is more effective than the individual 

techniques (model correctly classified 80-100 % of the 

samples individually and 97-100 % combined) 

(Anibal et al. 

2011) 

Soy 

hydrolysates 

Integrate viable 

cell density 

(IVCD) and 

immunoglobulin 

G (IgG) 

NIR, Raman, 

2D 

fluorescence, 

X-ray 

fluorescence 

Ensemble PLS 

(EPLS), multi-

block PLS 

(MBPLS) 

 Generated unified estimation from sub models of the 

multiple datasets (high level fusion) 

 Raman spectra yielded the best model individually 

 EPLS models outperformed MBPLS for the fused data 

 Data fused models using EPLS exhibit the best prediction 

accuracy overall 

 Certain predictions actually are better using the individual 

models, but the overall model is by far the best 

(Lee et al. 

2012) 

Crude oil Characterization 

of important 

parameters 

Raman, IR, 

NMR 

PLS  Low level data fusion performed after individual pre-

treatments 

 Data reduction of the NMR spectra before fusing 

 Data fusion successfully increased the model’s 

performance as seen by the significant reduction in the 

root mean squared error of prediction 

(Dearing et 

al. 2011) 
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Azo-dyes 

(acid orange 

61, acid red 

97, acid 

brown 425) 

Photodegradation 

process of the 

dyes 

US-Vis 

spectroscopy 

with a diode 

array detector 

(DAD), NMR 

Multivariate 

curve resolution-

alternating least 

squares 

 Low level data fusion with individual pre-treatment 

 After scaling both sets, the NMR dataset had to be 

reduced to have around the same number of data points as 

the UV-Vis 

 Fusion of data before multivariate analysis provides better 

results than the individual datasets (mostly with acid 

orange 61) 

 There was very little difference in the acid red 97 and acid 

brown 425 models between the UV-Vis and fused models 

(Fernández et 

al. 2013) 

Transformer 

insulating oil 

Interfacial 

tension, colour 

NIR, 

molecular 

fluorescence, 

NMR 

PLS, variable 

importance in the 

projection (VIP) 

scores 

 Separate pre-treatments were performed on each dataset 

before fusing 

 Compared full fused dataset as well as a VIP score 

reduced set (VIP scores evaluated as a means to compress 

the fused data) 

 The best prediction method for interfacial tension and 

colour used the fused dataset which had been compressed 

using the VIP scores 

(Godinho et 

al. 2014) 

Human 

plasma 

Detection of 

colorectal cancer 

Fluorescence, 

NMR 

PCA, Area under 

the curve 

 Area under the curve as the spectral variables to reduce 

the likeliness of overfitting (due to a limited amount of 

samples) 

 Low level data fusion after data reduction 

 The classification power improved with the fused dataset 

(Bro et al. 

2013) 
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Chapter 3 

Materials and Methods 

3.1 Flour Sources 

 Pin milled navy bean flour (Canadian International Grains institute, Winnipeg, Manitoba, 

Canada) and regular (hammer) milled navy bean flour (International Food Products, Chatham, 

Ontario, Canada) were used in the electrostatic separation process (Section 3.3) without 

modification aside from drying. 

 

3.2 Chemical Sources 

Armesco (Solon, Ohio, USA): acetic acid (glacial) 

British Drug Houses (United Kingdoms): calcium chloride dehydrate (A.C.S. reagent); potassium 

sodium tartrate (A.C.S. reagent) 

Ricca Chemical Company (Arlington, Texas, USA): Nessler reagent (R5250000) 

Sigma Aldrich Chemical Company (St. Louis, Missouri, USA): ammonium sulfate; 

amyloglucosidase (> 250 U/mL, from Aspergillus); 3,5-dinitrosalicylic acid (DNS); ethanol, 

potassium sulfate (A.C.S reagent); selenium oxychloride; sodium hydroxide (powder, A.C.S 

reagent); sulfuric acid; thermostable α-amylase (> 20000 U/mL). 
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3.3 Electrostatic Separation 

 The laboratory scale triboelectrostatic separator (schematic shown in Figure 3-1) was 

designed by Advanced CERT Canada Inc. (Waterloo, Ontario, Canada) which was used for the 

dry fractionation of the navy bean flour.  The flour was first dried at 70 oC for 24 hours before 

approximately 25 grams were placed into the fluidized bed.  The air (pressurized at ~200 kPa) was 

passed through a drying column and introduced into the fluidized bed at a constant flowrate.  The 

particles are suspended by a combination of a magnetic stirrer in the fluidized bed and high 

pressure dried air.  The suspended particles then enter the tribocharger tube pneumatically.   

Within the tribocharger the flour particles gain a charge resulting from particle-wall and 

particle-particle collisions.  The tribocharger was made of a polytetrafluoroethylene (PTFE) tube 

with 3/16 in. (4.76 mm) outside diameter and varied in length and shape (straight or coiled).  PTFE 

was chosen because it was most effective in positively charging the protein- and carbohydrate-rich 

particles of the navy bean flour based on the its work function (see Section 2.1.1 for background).  

 The actual separation of the protein- and carbohydrate-rich particles takes place in the 

rectangular separator unit.  Within the unit a 66 by 25.5 cm copper plate is negatively charged by 

a high voltage DC power supply source.  When the positively charged particles enter the separator 

they interact with the electrostatic field created by the copper plate and fractionate along the bottom 

of the separator and on the copper plate.  The protein-enriched fractions end up on the copper plate 

while the carbohydrate-enriched fractions end up on the bottom of the separator. 
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Figure 3-1: Schematic of the electrostatic separation (from Tabtabaei et al. 2016). 

3.3.1 Fraction Collection during Electrostatic Separation  

 Seven fractions of flour were collected after the completion of the batch electrostatic 

separation.  The fraction locations are shown in Figure 3-2 while a comparison of the areas is 

shown in Table 1.  The bottom of the separator and the plate were divided in to three sections, (B1, 

B2, and B3) and (PB, PM, PT), respectively.  .  A sixth fraction was material collected from the side 

of the separator (S).  When collecting the faction they were collected in the following order:   B1, 

B2, B3, S, PB, PM, and lastly PT. 
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Figure 3-2: Electrostatic separator fractions (adapted from Tabtabaei et al. 2016). 

Table 3-1: Fraction areas for the electrostatic separator. 

Fraction Area (cm2) 

B1 585 

B2 468 

B3 408 

PB 841.5 

PM 382.5 

PT 459 

S 3927 
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3.4 Protein Content Determination via Kjeldahl Digestion 

 The protein content of all the navy bean flour fractions was determined by the 

mircrodetermination of Kjeldahl nitrogen (Lang 1958).   

3.4.1 Digestion Solution Preparation 

 40 grams of potassium sulfate was added to 250 mL of milli-Q water.  The mixture was 

then placed on a magnetic stirrer and positioned in an ice water bath.  250 mL of sulfuric acid was 

added to the mixture.  The sulfuric acid was added slowly while monitoring the temperature of the 

ice bath.  Lastly, 2 mL of selenium oxychloride was added.  The digestion solution was mixed for 

an additional 2 h. 

3.4.2 Kjeldahl Standard Solution Preparation 

 Ammonium sulfate was added to distilled water at a concentration of 4.714 g/L.  2 mL of 

the standard solution was placed in a 30 mL Kjeldahl flask and the same procedure followed as 

for the samples. 

3.4.3 Acid Digestion 

 46-50 mg of flour (record weight) was added to a 30 mL Kjeldahl flask and 5 mL of 

digestion solution was added.  The Kjeldahl flask was then gently heated at low for 30 min.  The 

temperature was then increased to a setting of 2 for 1.5 h.  After digestion, the samples were cooled 

for 30 min at room temperature.  25 mL of distilled water was added to each sample and the new 

volume recorded. 
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3.4.4 Nesslerization 

 Each sample was added in quintuplicate to a clear flat bottom well plate with water and 

Nessler reagent in the amounts given in Table 3-2.  Flour fractions with a higher protein content 

(PB, PM, and PT) were diluted two fold.  The Kjeldahl standard had multiple dilutions (1, 2 4, 8 

times) in the plate to create the calibration curve.  A blank was also prepared consisting of only 

Nessler reagent and water. 

Table 3-2: Kjeldahl dilution amounts. 

Dilution Water (μL) Sample (μL) Nessler reagent (μL) 

1 200 40 50 

2 220 20 50 

4 230 10 50 

8 235 5 50 

Blank 240 0 50 

 

3.4.5 Protein Content Measurement 

 After the plate contents had been well mixed, the resulting colour was measured at 420 nm 

using a spectrophotometer (Bio Tek Instruments, USA).  The protein content of the sample was 

then calculated using equation (1).  A sample calibration curve can be found in Appendix A.  All 

protein content measurements were done in duplicate. 
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𝑃𝐶 =
(𝐴 − 𝐵) ∗ 𝑘 ∗ 𝑉 ∗ 6.25

𝑆𝑉 ∗ 𝑤 ∗ 1000
∗ 100%     (1) 

where:  PC: protein content (%) 

A: sample absorbance 

  B: blank absorbance 

  k: standard calibration curve slope 

  V: volume (measured, mL) 

6.25: factor converting crude nitrogen to protein (Iban 2003; Ndiowere 1984; 

Braaksma 1995) 

  SV: sample volume in plate well (mL) 

  w: mass of sample (measured, mg) 

 

3.5 Starch Determination using the Dinitrosalicylic (DNS) Acid Assay 

The starch hydrolysis procedure was adapted from the extended AOAC procedure for 

starch in cereal grains published by Hall (2009) and as outlined in the Megazyme Total Starch 

Assay test-kit (Megazyme International Ltd.).  Table 3-3 provides details for the preparation and 

storage of the solutions required for the assay. 
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Table 3-3: DNS solution preparation and storage 

Reagent 

 

Preparation and Storage 

Acetate Buffer Add 5.8 mL of glacial acetic acid (1.05 g/mL) to 900 mL of 

distilled water. Adjust the pH to 5.0 by adding approximately 30 

mL of 1 M sodium hydroxide solution. Add 0.74 g of calcium 

chloride dihydrate and dissolve. Adjust the volume to 1 L with 

distilled water and store the buffer at 4 °C. The solution should 

be stable for 2 months at 4 °C. 

Thermostable α-

amylase solution 

Dilute the volume of amylase solution containing 300 units of 

protein (i.e. 1.5 μL) by a factor 1:30 with acetate buffer. This 

solution will suffice for 10 assays and can be scaled up for larger 

volumes. When not in use, the solution should be frozen in 

propylene tubes in 3 mL- sized aliquots. 

Amyloglucosidase 

from Aspergillus 

niger  

Obtain amyloglucosidase solution (>200 units/mL) and directly 

dispense 20 units (i.e. 100 μL) into each sample tube. Store the 

enzyme at 2 to 8 °C. 

 

 Some modifications were made to the method.  First, a 15 mL polypropylene centrifuge 

tube was used in place of glass test tubes to avoid the use of glass during the centrifugation step.    

The incubation times with α-amylase were increased from 6 to 12 minutes (Megazyme assay test-

kit manual 2009).  Hall (2009)  calls for a second ethanol wash.  Since the navy bean flour used in 

this work contains low levels of free sugars and lipids, the second ethanol wash was not found to 

be necessary for reliable results.  Lastly, a standard followed the complete assay protocol (from 

the starch hydrolysis).  Therefore, enzymes or ethanol traces from the procedure could not 

contribute to the glucose measurement during the DNS assay (Numan 2015). 
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The procedure contains four steps: removal of free sugars and lipids, starch hydrolysis, 

glucose determination, and data analysis. 

3.5.1 Removal of Free Sugars and Lipids 

 50 mg of solid sample was added to a 15 mL polypropylene centrifuge tube.  A separate 

empty centrifuge tube was used as the standard and contained no sample.  5 mL of 80 % v/v ethanol 

was added to the sample and incubated for 5 min at 80-85 oC.  The sample was then vortexed and 

an additional 5 mL of 80 % v /v ethanol added.  Next, the sample was centrifuged at 3750 xg rpm 

for 10 min. 

3.5.2 Starch Hydrolysis 

 3 mL of buffered α-amylase enzyme solution (Table 3-3) was added to the sample which 

was then incubated in a boiling water bath for 12 min.  At 4, 8, and 12 minute marks the sample 

was vortexed vigorously to ensure the flour was well-distributed.  The centrifuge tubes were placed 

in a 50 oC water bath for 5 min.  100 μL of amyloglucosidase was added; the sample was then 

vortexed and incubated at 50 oC for 30 min.   

6.5 mL of distilled water was added and the total volume of the sample recorded.  The 

sample was then centrifuged at 3750 xg for 10 min.  1 mL of supernatant was collected and added 

to 9 mL of milli-Q water.  The mixture is once again vortexed and a 1 mL aliquot added to a new 

15 mL polypropylene centrifuge tube. 

3.5.3 Glucose Determination 

 2 mL of DNS solution was added to the aliquot.  A glucose standard was prepared (1 

mg/mL in milli-Q water) and diluted to concentrations of 0.1, 0.2, 0.3, and 0.4 mg/mL.  1 mL of 

milli-Q water was used as the blank for the glucose standard.  2 mL of DNS solution was also 

added to the glucose standards and blank.  All samples and standards were then incubated for 5 



36 
 

min in a boiling water bath.  Samples were taken out and cooled for 30 minutes at room 

temperature.  9 mL of milli-Q water was added to all the samples, standards, and blanks.  3 mL 

aliquots of each sample, standard and blank was transferred to a glass cuvette.  The absorbance 

was read using a spectrophotometer (Spectronic, Genesys 5) at 540 nm and recorded.  The 

standards were read against the distilled water blank while the samples were read against the 

standard with no sample. 

3.5.4 Data Analysis 

  The starch content of the samples was calculated using equation (2).  A sample standard 

curve can be found in Appendix A.  All starch content measurements were done in duplicate. 

𝑆𝐶 = (𝑚 ∗ 𝐴 + 𝑏) ∗ 𝐷𝑉 ∗
100

𝑤
∗
162

180
   (2) 

where:  SC: starch content (%) 

  m: slope of the glucose calibration curve 

  A: absorbance of sample (measured) 

  b: y-intercept of the glucose standard curve 

  DV: final sample volume (mL) = 10 * recorded volume (section 3.5.2) 

  w: mass of sample (measured, mg) 

  
162

180
: adjustment from D-glucose to anhydro D-glucose (as found in starch) 
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3.6 Near Infrared (NIR) Spectroscopy Set-up 

Approximately 72 mg of flour was compressed (less than 3 mm in thickness) into a sample 

holder (3.5 cm diameter) with a plunger as shown in Figure 3-3.  The compressed flour was 

inserted into the near infrared spectrophotometer (Perkin Elmer, Lambda 750S) and analyzed from 

1200 to 2500 nm using an integrating sphere.  All NIR scans were the result of averaging two 

scans.  There were 102 flour samples that were analyzed for absorbance.  The samples were split 

into sets of 10 where a standard sample was run before each set. 

 The following settings were used for the NIR spectrophotometer:    The slit width was set 

to 2 nm.  The PMT response, which defines the average signal time, was set to 0.2 s.  Lastly, the 

number of cycles was set to 2 as two scans were averaged for the final sample spectra. 

The spectrophotometer was zeroed before each set of 10 samples.  The zeroing was done 

through the spectrophotometer’s autozero program with no sample inserted.  Following the 

autozero, a standard whey protein isolate (~97 % protein) was run under the same conditions.  This 

standard was run before each set of 10 samples to account for the day to day variance for the 

spectrophotometer.  The results for the standard can be found in Appendix B. 

 

Figure 3-3: Compressed flour sample. 
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3.7 Fluorescence Spectroscopy Set-up 

 The same compressed flour sample (Section 3.6) was analyzed for its fluorescence 

excitation-emission matrix (FEEM).    The FEEM was acquired using a spectrofluorometer  

(Agilent Technologies, Cary Eclipse Fluorescence Spectrophotometer) equipped with a front-

faced fluorescence fibre-optic probe.  The set-up used for acquiring the FEEM is shown in Figure 

3-4.  The samples were adjusted such that the probe’s distance to the sample was as close as 

possible without making direct contact with the sample.  This height was at the largest scaling 

marker (see ‘height setting’ on Figure 3-4). 

The samples were analyzed with excitation wavelengths varying from 250 to 380 nm 

(increasing by 10 nm) and emission wavelengths between 300 and 600 nm (increasing by 1 nm) 

using a fibre optic probe at an angle of 45°.    All fluorescence spectra analyzed were the result of 

averaging two scans.  The PMT voltage was set at 680 V.  The slit widths for excitation and 

emission were both set at 5 nm.  There were 102 samples tested for fluorescence and were also 

split into sets of 10 where a standard was run before each set. 

The fluorometer was zeroed before each sample using a blank sample holder set to the 

same distance from the probe.  Before each set of 10 samples, a standard of whey protein isolate 

(~97 % protein) was analyzed under the same conditions as the samples to test for day to day 

variance from the spectrofluorometer.  The results for the standard can be found in Appendix B. 
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Figure 3-4: Front faced fluorescence set-up. 

 

3.8 Aerodynamic Particle Size Analysis 

 The volume- and number-weighted distribution curves were obtained using a TSI 3603 

(TSI Incorporated, Shoreview, MN, USA) aerodynamic particle sizer.  This was done by Grace Li 

at the University of Western Ontario. 

Aerodynamic particle sizers use the concept of inertia to size particles.  Particles and air flow is 

constructed using a nozzle which accelerates the flow.  The particles are also accelerated but at 

different rates which depends on the particle surface area and mass.  This method assumes that the 

particles are spherical and have unity density. 

 The velocity of the particles is measured from the particles passing through two laser 

beams.  As the particles pass through the light, they produce a pulse of scattered light.  The particle 

sizer has an elliptical mirror which collects the scattered light onto a photodetector.  Therefore, the 

time delay between the pulses is relates to the particle velocity which in turn is related to the 

particle diameter.
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Chapter 4 

Effect of Milling Techniques on Electrostatic Separation 

4.1 Particle Size of Pin and Regular Milled Navy Bean Flour 

 As discussed in Chapter 2, particle size is an important factor for both triboelectric charging 

and electrostatic separation.  Different milling techniques yield differing particle size distributions 

and therefore will have an effect on separation.  Two different milling techniques for navy bean 

flour were evaluated (regular and pin milled) using the electrostatic separation method described 

in Section 3.3.  

Pin milling works by introducing the feed product onto various spinning rotors with 

different configurations of pins or blocks that act as impactors (Rajkovich 2017).   Regular milling, 

or ball milling, occurs due to the impacts, compression, and grinding between the sample and the 

grinding media (Shin et al. 2016). 

Figure 4-1 presents the particle size distributions of pin and regular milled navy bean flour.  

Both navy bean flours have a protein content of just over 27% so they have very similar 

compositions even though they are from different sources.  Pin milling the navy bean yields a 

much smaller average particle size, 5.98 compared to 16.55 μm, which is almost three times as 

small.  Also, over 80% of the particles for pin milled flour have a diameter under 10 μm while the 

regular milled flour only about 21% under 10 μm.   
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Figure 4-1: Particle size distribution of pin and regular milled navy bean flour. 

 

4.2 Optimized Separation Conditions 

 Since the particle size distributions of pin and regular milled flour are different, it is 

possible that the optimum conditions for the electrostatic separation would also differ.  

Optimization was done similar to Tabtabaei et al. (2016) using mixed level full factorial 

experiment where the main focus was to optimize protein content and extraction of the protein-

enriched fraction.  The protein content was measured using Kjeldahl digestion (Section 3.4).  The 

extraction of protein is the percentage of total protein in the protein-enriched fraction.  Table 4-1 

shows the optimized separation parameters for pin and regular milled navy bean flour as well as 

the results for protein content and extraction of the protein-enriched fraction 
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Table 4-1: Optimal parameters and results for pin and regular milled navy bean flour (pin milled 

results from Tabtabaei et al. (2016)). 

 
Voltage (kV) 

Flowrate 

(LPM) 

Length 

(cm) 

Protein Content 

(%) 

Protein 

Extraction (%) 

Pin Milled -5 7 60 40.7 44.8 

Regular Milled -1 6.1 250 32.5 78.3 

 

 Since the particles of regular milled bean flour are larger, it takes more collisions for the 

particles to achieve the same amount of charge per unit volume.  Therefore, the length of the 

triboelectric tube was increased.  This resulted in more collisions that needed to be offset by a 

slower flowrate and lower voltage on separator plate. 

 It was not possible to obtain a protein content of the protein-enriched fraction comparable 

to the same level regular milled flour.  The regular milled flour had a much higher average particle 

diameter and pin milling inherently created particles that had more protein content.  Instead, a 

much higher extraction for the protein-enriched fraction was achieved but at a lower protein 

content. 

 

4.3 Particle Size Distribution of Navy Bean Flour Fractions 

 After separation, the flour fractions were divided into two larger fractions: protein- and 

starch-enriched.  Figure 4-2 and 4-3 shows the particle size distributions for the optimal separations 

of pin and regular milled flour, respectively. 



43 
 

 

Figure 4-2: Particle distribution of the fractions for pin milled navy bean flour under optimal 

conditions. 

 

Figure 4-3: Particle distribution of the fractions for regular milled navy bean flour under optimal 

conditions. 

 



44 
 

 There is not much difference between the particle size distributions for the enriched 

fractions and the raw pin milled navy bean flour.  However, the regular milled flour particle 

distribution is much different than the fractions.  This difference occurs mainly in the 10-40 μm 

particle size range.  It may be that there exists aggregates of starch and protein particles that 

disaggregate when they become charged in the triboelectric charger since there is a higher 

percentage of particles for the separation fractions in the 1-10 μm range. 

 Table 4-2 shows the protein content and average particle diameter for the enriched fractions 

for pin and regular milled navy bean flour under optimal separation conditions.  As expected, the 

average particle size for the regular milled flour is much higher than the pin milled flour.  Also, 

the raw navy bean protein content for both milling techniques is very similar.  Lastly, the protein 

content of the pin milled protein-enriched fraction is 7 % higher than the protein-enriched fraction 

for the regular milled flour.  

Table 4-2: Protein content and average particle diameter for raw and enriched fractions under 

optimal conditions for pin and regular milled navy bean flour (pin milled results from Tabtabaei 

et al. (2016)). 

 
Protein Content (%) Average particle diameter (um) 

 
Pin Milled Regular Milled Pin Milled Regular Milled 

Raw Flour 26.84 + 1.1 27.63 + 0.73 5.98 16.55 

Protein-enriched 42.90 35.23 4.12 14.70 

Starch-enriched 18.53 16.30 4.78 12.93 
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Chapter 5 

NIR Results 

5.1 Navy Bean Flour Samples 

 The samples used in the NIR model are navy bean flour fractions from the electrostatic 

separation and the raw navy bean flour.  There are 102 samples that are split into calibration (82 

samples) and validation (20 samples) sets.  In the calibration set, the samples are further split into 

fractions: protein-enriched, starch-enriched, and raw flour.  The protein-enriched samples are 

collected from the electrostatic plate while the starch-enriched fractions are collected from the 

bottom of the electrostatic separator.  The schematic of the collection can be found in Section 3.3. 

5.2 Data Pre-treatment 

5.2.1 Multiplicative Scatter Correction (MSC) 

MSC is a very common pre-treatment method for NIR spectra (Rinnan et al. 2009).  It 

gives an estimation for the scatter of each sample relative to the scatter of an ideal sample.  The 

ideal sample or reference spectrum is usually taken as the average spectrum for of all the samples.  

This technique corrects for baseline shifts by correcting each sample’s scattering to the same level.   

The algorithm for MSC (Geladi et al. 1985) is shown below.  The first step of the pre-

treatment process is to mean center the sample and reference spectra. 

𝑥𝑐 = 𝑥 − �̅�   (1) 

𝑟𝑐 = 𝑟 − �̅�   (2) 

 The next step is to determine the scaling coefficient (b) and correct for the baseline shift.  

The final pre-treated sample spectrum is depicted by xmsc. 



46 
 

𝑏 = (𝑟𝑐
𝑇 ∗ 𝑟𝑐)

−1 ∗ 𝑟𝑐
𝑇 ∗ 𝑥𝑐   (3) 

𝑥𝑚𝑠𝑐 =
𝑥𝑐
𝑏
+ 𝑟𝑐   (4) 

5.2.2 Standard Normal Variate (SNV) 

SNV has the same basic format as MSC and usually leads to very similar results 

(Kamruzzaman & Makino 2015; Vázquez 2014).  The difference is that each spectrum is processed 

on its own.  The spectrum is centered by its mean and scaled by its standard deviation (as shown 

in Equation 5) which removes the baseline shift between data samples.  This pre-treatment 

technique is sensitive to noisy entries in the spectra, but is less sensitive to outliers in the data since 

each spectrum is treated separately.  

𝑥𝑠𝑛𝑣 =
𝑥𝑖,𝑗 − 𝑥�̅�

𝜎𝑖
   (5) 

The mean and standard deviation of each spectra is calculated by equations 6 and 7, 

respectively. 

𝑥�̅� =
∑ 𝑥𝑖,𝑗
𝑛
𝑗=1

𝑛
   (6) 

𝜎𝑖 =
√∑ (𝑥𝑖,𝑗 − 𝑥�̅�)2

𝑛
𝑗=1

(𝑛 − 1)
   (7) 

5.2.3 Savitzky-Golay (SG) Differentiation  

SG derivation (Savitzky et al. 1964) involves fitting a polynomial to the raw data.  The 

polynomial increases the signal to noise ratio without distorting the data.  Also, by differentiating 

the data, the baseline shift is removed.  The polynomial can have a minimum order of the derivative 

number (e.g. linear for first derivative) and the derivative is taken over a moving window.  The 
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moving window is the number of points used to calculate the polynomial.  A 19 point moving 

window was used to determine the first derivatives of the navy bean flour and fraction samples in 

this work. 

 

5.3 Multivariate Methods 

5.3.1 Principal Component Analysis (PCA) 

Principal component analysis (PCA) is a mathematical procedure for resolving sets of data 

into orthogonal components whose linear components approximate the original data.  This 

technique adequately describes the data using far fewer factors with no significant loss of data 

(Burns 2008).  The principal components are given in the order of increasing variance explained 

in the data set.  That is the sample variances of the given points with respect to those derived 

coordinates are in decreasing order. 

 The covariance matrix is needed to determine the principal components of the n x p matrix 

X, as shown in Equation 8. 

𝑣𝑎𝑟(𝑋) =

(

 
 

𝑠1
2 𝑠12 ⋯ 𝑠1𝑝

𝑠21 𝑠2
2 ⋯ 𝑠2𝑝

⋮ ⋮ ⋱ ⋮
𝑠𝑝1 𝑠𝑝2 ⋯ 𝑠𝑝

2

)

 
 
= 𝑊       (8) 

 The coefficients of the principal components are the eigenvectors of the covariance matrix.  

Therefore, matrix X can have a total of p principal components.   Equations 9 and 10 show the 

determination of eigenvalues (λ) and eigenvectors (v), respectively.  The principal components are 

then arranged in order of decreasing variance explained in the matrix X.  Therefore, the principal 

components that explain the highest variance in the dataset are shown first. 
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det(𝑊 − 𝜆𝐼) = 0     (9) 

(𝑊 −  𝜆𝐼)𝑣 = 0    (10) 

 The eigenvectors (v) are also called loadings.  The principal component scores (S) are 

determined by the cross product of the principal component loadings and the dataset as shown in 

Equation 4.  The scores are a linear combination of the original dataset.  The calculation of 

principal component scores decreases the amount of variables to the number of principal 

components used. 

𝑆 = 𝑣 ∗ 𝑋     (11) 

 In summary, principal components are the result of applying a mathematical technique that 

generates eigenvalues.  The largest eigenvalues are used from a covariance matrix of the dataset 

where the components are orthogonal and linear combinations of the data.  The eigenvalues are 

put in an order of increasing variance explained in the original dataset.  Therefore, choosing a 

number of principal components reduces the dataset to the same number of variables which give 

the highest amount of variance explained in the dataset. 

5.3.2 Cross Validation 

The k-fold cross validation method is used to evaluate the number of principal components 

to be used in the model.  In this method, the dataset is split into k subsets.  Each subset is then used 

as the validation set once while the remaining subsets create the calibration model.  The advantage 

to the k-fold cross validation is that it allows the entire calibration set to be used to test and train 

the model.  10-fold cross validation is used in this study. 

The final model is then evaluated using the root mean squared error of calibration 

(RMSEC) and root mean squared error of cross validation (RMSECV) shown in Equations 12 and 
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13.  The equations have the same form with the only difference being the RMSECV only uses the 

error found when the sample is included in the validation set.   

𝑅𝑀𝑆𝐸𝐶 = √
∑ (𝑦𝑝,𝑖 − 𝑦𝑚,𝑖)2
𝑁
𝑖=1

𝑁
   (12) 

𝑅𝑀𝑆𝐸𝐶𝑉 = √
∑ (𝑦𝑝𝑣,𝑖 − 𝑦𝑚,𝑖)2
𝑁
𝑖=1

𝑁
   (13) 

where:  yp: y-value predicted from the model 

  ym: y-value from offline measurements 

  N: total number of samples 

  ypv: y-value predicted using the model (only from the validation set) 

The lower the RMSEC and RMSECV values are, the better the model.  To avoid 

overfitting, the number of principal components is identified to be when the RMSECV curve 

plateaus as adding additional components will only train the model to the calibration set which 

makes the model less robust. 

5.3.3 Principal Components Regression (PCR) 

Principal components regression finds the relationship between the x-scores (S) and the 

offline measurements found in Y (i.e. protein content, starch content).  The method involves 

solving for regression coefficient (b) which correlate the independent and dependent variables, Y 

and X, respectively while minimizing the least square errors. 

𝑌 = 𝑏𝑋   (14) 
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 PCR requires the x-variable scores from PCA then projects Y onto the scores solving for 

the least squares (A) as given by Equation 15. 

𝐴 = (𝑆′ ∗ 𝑆)−1 ∗ 𝑆′ ∗ 𝑌   (15) 

 The matrix A can then be converted into the regression coefficients by combining with the 

x-variable loadings also found in PCA as seen in Equation 16. 

𝑏 = 𝑣 ∗ 𝐴   (16) 

 The disadvantage of using this method is that the principal components do not take into 

account the independent variables (Y) when determining the scores and loadings of X.  

5.3.4 Partial Least Squares Regression (PLS) 

Partial least squares regression finds the best linear relationship between the principal 

components of the NIR spectra and offline measurements (in this study protein and starch content).  

This method attempts to find a regression coefficient (b) correlating the dependent and independent 

variables while minimizing the variance between the variables.  PLS regression has the same final 

equation as PCR (Equation 17), however the regression coefficients will differ. 

𝑌 = 𝑏𝑋   (17) 

PLS is a bilinear regression model.  Principal components are obtained differently from the 

PCA method described above.  PLS regression attempts to find factors that maximize the amount 

of variance in X that is relevant for predicting Y. 

The default method for PLS regression in the PLS Toolbox is the SIMPLS algorithm.  It is 

derived to solve a specific objective function which maximizes covariance.  It is faster than the 

NIPALS algorithm and involves calculating the weights, loadings, and scores of the matrices.  The 
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algorithm is shown below (Jong 1993) where X is an n x p and Y is an n x m matrix.  The first step 

of the algorithm is pre-treatment which involves mean centering Y.  Next, equations 20-35, the 

scores (T for X, U for Y) and loadings (P for X, Q for Y) of X and Y are solved for iteratively.  

The last steps involve solving for the regression coefficient, leverages, and variances shown in 

equations 36-39. 

𝑌𝑜 = 𝑌 −𝑀𝑒𝑎𝑛(𝑌)    (18) 

𝑆 = 𝑋′ ∗ 𝑌𝑜   (19) 

For 𝑎 = 1 𝑡𝑜 𝐴   (usually between 1 and 1000) 

𝑞 = 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑆′ ∗ 𝑆   (20) 

𝑟 = 𝑆 ∗ 𝑞   (21) 

𝑡 = 𝑋 ∗ 𝑟   (22) 

𝑡 = 𝑡 −𝑀𝑒𝑎𝑛(𝑡)   (23) 

𝑛𝑜𝑟𝑚𝑡 = √𝑡′ ∗ 𝑡   (24) 

𝑡 =
𝑡

𝑛𝑜𝑟𝑚𝑡
   (25) 

𝑟 =
𝑟

𝑛𝑜𝑟𝑚𝑡
   (26) 

𝑝 = 𝑋′ ∗ 𝑡   (27) 

𝑞 = 𝑌𝑜
′ ∗ 𝑡   (28) 

𝑢 = 𝑌𝑜 ∗ 𝑞   (29) 
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𝑣 = 𝑝   (30) 

If 𝑎 > 1 

𝑣 = 𝑣 − 𝑉 ∗ (𝑉′ ∗ 𝑝)   (31) 

𝑢 = 𝑢 − 𝑇 ∗ (𝑇′ ∗ 𝑢)   (32) 

End if 

𝑣 =
𝑣

√𝑣′ ∗ 𝑣
   (33) 

𝑆 = 𝑆 − 𝑣 ∗ (𝑣′ ∗ 𝑆)   (34) 

𝑡 = 𝑇, 𝑝 = 𝑃, 𝑞 = 𝑄   (35) 

Next a 

𝐵 = 𝑅 ∗ 𝑄′   (36) 

ℎ = 𝐷𝐼𝐴𝐺(𝑇 ∗ 𝑇′) ∗
1

𝑛
   (37) 

𝑣𝑎𝑟𝑋 =
𝐷𝐼𝐴𝐺(𝑃′ ∗ 𝑃)

𝑛 − 1
   (38) 

𝑣𝑎𝑟𝑌 =
𝐷𝐼𝐴𝐺(𝑄′ ∗ 𝑄)

𝑛 − 1
   (39) 
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5.4 Qualitative NIR Spectra Analysis 

5.4.1 Analysis of Protein and Starch Peak Locations 

 The near infrared spectrum consists of wavelengths between 780 and 2500 nm (Workman 

& Weyer 2012). Molecular spectra result from vibrational energies caused by the absorption of 

infrared light.  In this region, functional groups that include hydrogen absorb the wavelengths to 

vibrate which creates the spectra. Chemical bonds vary in strength and therefore the amount of 

energy it takes for the bond to vibrate.  The different energies correspond to particular wavelengths 

where peaks in the spectra can be observed.   

The goal in this work is to use the NIR spectra of powder specimens to quantify the 

concentrations of starch and protein in navy bean flour fractions that have been generated using a 

turboelectric-based separation approach.  There are a number of peaks found in this range that 

pertain to protein and starch which are summarized in Table 5-1.  It is possible for peaks to overlap 

when a sample has peaks in the same area.  Therefore, multivariate methods must be used to view 

the spectra quantitatively.  Figure 5-1 shows the spectra of potato starch and whey protein isolate 

in the near infrared range with the peaks found in Table 5-1 labelled on the curves.  These are the 

regions where the greatest variance between different navy bean fractions should be observed. 
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Table 5-1: Summary of protein and starch related peaks in the NIR spectral range (compiled from 

Workman & Weyer 2012). 

Number Peak Location (nm) Component Bond Vibrating 

1 1450 Starch O-H polymeric 

2 1500 Protein Amide from protein 

3 1540 Starch O-H polymeric 

4 1735 Protein C-H Methyl C-H, amine associated 

5 1935 Protein O-H, amine associated 

6 1960 Starch O-H polymeric from polysaccharides  

7 2050 Protein N-H from amino acids 

8 2100 Starch C=O-O polymeric from glucose polysaccharides 

9 2180 Protein N-H secondary amides from protein 

 

 

Figure 5-1: Near infrared spectra of potato starch and whey protein isolate with peak numbers 

corresponding to functional vibrations found in Table 5-1. 
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5.4.2 Raw Navy Bean Flour Fraction Spectra 

 Figure 5-2 shows the spectra of the original navy bean flour and protein- and starch-

enriched fractions from triboelectric purification.  There is a notable baseline shift between the 

samples.  This is because of the path length of the light reflecting from the sample to the integrated 

sphere.  As the path length between the sample and sphere increases, the baseline shift tends to be 

greater.  The path length would increase as the thickness of the compressed pellet decreases.  This 

is very hard to control as the compressed pellet flour samples are <3 mm in thickness. 

 There is a correlation between the fractions and the observed baseline shift which is a 

function of the particle size.  This is the cause of a greater baseline shift shown in the raw spectra.  

The same mass is compressed into a pellet for analysis and therefore the greater the average particle 

size, the greater the distance between the sample and integrated sphere.  Therefore, the starch-

enriched fractions are compressed into a pellet with a smaller thickness than the protein-enriched 

fractions. 

 

Figure 5-2: RAW spectra of original flour, a protein-enriched sample, and a starch-enriched 

sample. 
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 The variance between the actual curves of the spectra is more easily seen when the data 

has been pre-treated and will be discussed in Section 5.4.3. 

5.4.3 Pre-treatment Analysis 

 As shown in Figure 5-2, there is a noticeable baseline shift between the samples.  The 

baseline shift is also known to have a negative effect on the multivariate model.  Therefore, various 

pre-treatments can be implemented to negate the effects of the baseline shift.  Figure 5-3 compares 

the raw data of three samples (a protein-enriched fraction, a starch-enriched fraction, and original 

navy bean flour) to various methods of spectral pre-treatment. 

After pre-treating the data, it is much easier to see where the differences lie between 

samples.  The biggest variance occurs between 2000 and 2200 nm.  In this area there are three 

overlapping peaks corresponding to protein and starch.  The shape of the combination depends on 

the composition of the sample.  This is best seen in the SNV pre-treated data (Figure 5-3c).  The 

protein-enriched fractions have two very distinct peaks between 2000 and 2200 nm while the 

starch-enriched fractions have one distinct peak. 

 When comparing SNV and MSC pre-treatments (Figure 5-3b,c), it is worth noting the 

variance between the sample’s spectra is much greater for the SNV pre-treatment.  The three pre-

treatments which include first derivative (Figure 5-3d-f) also show the greatest variance in the 

2000-2200 nm range.  The first derivative was also combined with MSC and SNV pre-treatment.  

In these cases, the first derivative of the spectrum was taken before the other pre-treatments were 

applied which shows that the first derivative did not entirely remove the baseline shift. 
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Figure 5-3: Various pre-treatment methods on the spectra of original flour, protein-enriched, and 

starch-enriched samples [a: RAW; b: MSC; c: SNV; d: first derivative (1D); e: 1D and MSC; f: 

1D and SNV].

c) 

a) b) 

d) 

e) f) 
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5.5 NIR Multivariate Model Results 

The best model (from Table 5-4 and 5-5 in Section 5.6) was found using MSC pre-

treatment and PLS.  Therefore the analysis of steps found in the following sections will be done 

using this model.  Section 5.6 compares the different pre-treatment effects as well as the 

differences between the PLS and PCR models.  

5.5.1 Principal Components 

 The first step of using PLS is to determine the ideal number of components without 

overtraining the model to the calibration set.  Overtraining leads to a less robust model and 

therefore will not perform as well with samples outside the calibration set.  The number of 

components can be determined by using cross validation.  Figure 5-4 shows the cross validation 

results for the RMSECV and RMSEC for starch and protein content using principal components 

between 1 and 10. 

 

Figure 5-4: RMSECV and RMSEC for protein and starch content using 1 to 10 principal 

components with MSC pre-treatment and PLS to create the model. 
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 The RMSECV plateaus when using more than 3 principal components which makes the 

ideal number of principal components 3.  As shown by the RMSEC and RMSECV for starch 

content, increasing the number of components makes the model less robust.  Even though the 

calibration error (RMSEC) continues to decrease, the cross validation error (RMSECV) suddenly 

increases when using more than 3 components. 

 Another way of determining the number of components is to examine the amount of 

percentage of total variance a certain number of components explains.  This is shown in Figure 5-

5. 

 

Figure 5-5: Percentage of total variance explained depending on the number of components used 

in the PLS model with MSC pre-treatment for the navy bean calibration set. 

 In this case, the ideal number of principal components is also 3 as the curve begins to 

plateau when the number of principal components becomes greater than 3.  Therefore, principal 

components 4 through 10 capture the variance from noise in the spectra.  Using 3 components 

captures over 95 % of the total variance. 
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 After determining that the ideal number of principal components is 3, the loadings and 

scores using the PLS SIMPLS can be examined.  Since the number of principal components is 3, 

there will be three sets of loadings and three score values for each sample.  Figure 5-6 shows the 

three loadings which represent the weights corresponding to the wavelengths used to determine 

the component scores. 

The loadings represent the weights of each wavelength which are then multiplied by the 

spectrum absorbance to give the component scores.  Therefore, the highest values determine the 

wavelengths with the most importance.  In the first loading the greatest weights occur between the 

wavelengths of 1900 and 2200 nm.  This was the area that had the greatest difference between the 

protein- and starch-enriched fractions.  The second loading attributes the greatest weight around 

the O-H peaks found between 1900 and 2000 nm.  In this area there are two different O-H peaks, 

one associated with amines and the second associated with polymeric O-H bonds.  The third 

loading weight has a much smaller scale and explains the least amount of variance between the 

samples. 

 The loadings are used to create the principal component scores.  The scores can accurately 

group samples that are similar.  In Figure 5-7, the principal component scores are plotted against 

each other as a means to separate the samples into fractions.  Figures 5-7a and 5-7b accurately 

show splits between the protein-enriched, starch-enriched, and original flour fractions as there are 

separate groupings.  However, using only principal components 2 and 3 as in Figure 5-7c there are 

no groupings for the fractions and therefore comparing these two components does not separate 

the fractions. .
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Figure 5-6: Loadings corresponding to the three principal components using PLS regression and MSC pre-treatment for the navy bean 

calibration set [a: first component loading; b: second component loading c: third component loading]. 

a) b) 

c) 
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Figure 5-7: Principal component scores of protein-enriched, starch-enriched, and original flour fractions from PLS regression using 

MSC pre-treatment. 

a) b) 

c) 
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5.5.2 Determining Outliers 

 Outliers in the calibration set can severely affect the PLS model.  Therefore, outliers should 

be determined and removed from the calibration set.  An outlier is determined from the residual 

values which are the differences between the predicted and measured values.  When a sample 

residual is greater than the sum of the average residual and three times the standard deviation 

between residuals, that sample is considered an outlier (Burns, 2008). 

 Figure 5-8 shows the absolute residuals for protein and starch content of each sample with 

a line demonstrating the threshold for outliers.  There is one outlier for both protein content and 

starch content samples but the outliers are not the same sample.  When the outliers were removed 

from the model, it had no effect on the final outcome.  Therefore, the outliers were left in the 

calibration set. 

 Table 5-2 compares the root mean squared error of calibration and cross validation for 

protein content and starch content.   Since the residuals for protein content on average are lower 

than the average residuals for starch content, it is expected that the model to predict protein content 

will be more accurate than starch content.  The model for protein content is expected to be better 

for validation as the RMSECV is lower. 

Table 5-2: RMSEC and RMSECV for the PLS regression model for protein and starch content. 

Variable Protein Content Starch Content 

RMSEC 1.1517 2.4365 

RMSECV 1.1695 2.6022 
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Figure 5-8: Absolute residuals for protein and starch content for the determination of outliers [a: 

protein content residuals; b: starch content residuals]. 

5.5.3 PLS Model Results 

 The PLS regression model is used to predict the protein and starch content of all the 

samples.  There were 82 samples used in the calibration set and 20 samples used to validate the 

model.  Figures 5-9 and 5-10 compare the model’s predicted protein and starch content against the 

measured protein and starch content using wet analysis techniques, respectively.   

The models were evaluated using the R2 values.  These values give an estimate of how 

close the data is to the regressed line with a value of 1 being a perfect model.  Another way to 

determine the accuracy of the model is to compare the root mean squared errors of calibration and 

validation.  These values give an estimate of the difference between the predicted and measured 

values. Table 5-3 outlines the results of the PLS regression model. 

 

 

a) b) 
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Table 5-3: PLS regression model results for protein and starch content from the NIR spectra of 

navy bean flour samples. 

Variable Protein Content Starch Content 

R2 (cal) 0.973 0.940 

R2 (cal) 0.965 0.912 

RMSEC 1.1517 2.4365 

RMSEV 1.6826 5.9732 

 

 The protein content estimations using the PLS model are better than the starch estimates.  

This is seen by the higher R2 values and lower RMSE values for both calibration and validation.  

However, even the starch content can be very accurately predicted given that the R2 values are still 

above 0.9. 
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Figure 5-9: PLS Regression model for protein content of navy bean flour samples using MSC 

pre-treatment [a: calibration model, b: validation model]. 

 

Figure 5-10: PLS Regression model for starch content of navy bean flour samples using MSC 

pre-treatment [a: calibration model; b: validation model]. 

 

 

 

 

 

R2 (cal) = 0.973 R2 (pred) = 0.965 

R2 (cal) = 0.940 R2 (val) = 0.912 

a) b) 

a) b) 
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5.6 Model Comparisons 

 The purpose of using multiple pre-treatments and two multivariate techniques was to 

determine which combination yielded the best model.  Tables 5-4 and 5-5 give a summary of the 

results from the different model for protein and starch samples, respectively.  The bolded columns 

represent the overall best models for each of the protein and starch samples.  The best models for 

protein samples involve the first derivative combined with SNV and MSC pre-treatment.  

However, the best model for starch samples involve using just SNV or MSC pre-treatment.   

The MSC pre-treated data with PLS regression as the multivariate method was chosen as 

the best overall method even though it was a little weaker in determining protein content because 

it was the best model for determining starch content.  All the models very accurately predict protein 

content so the best overall model was the one that had the best prediction results for starch content. 

 Using PCR to build models performed worse than PLS regression models in terms of starch 

content.  Also, PCR models usually required more principal components than the PLS models.  

This is because determining the principal components has no dependence on the measured protein 

and starch content values.   The worst models for both protein and starch content contain no MSC 

or SNV pre-treatment.  The first derivative and raw data created the weakest model when no further 

pre-treatment was added. 

 All models developed for protein content were stronger than then the same model’s ability 

for determining starch content.  This could be a result of the Kjeldahl protein content measurements 

which may be more accurate and contain less variability in repeated runs.  The average standard 

deviation for repeated runs for the Kjeldahl protein determinations was almost half the value of 
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the average standard deviation found in repeated DNS starch determination experiments 

(Appendix C).
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Table 5-4: Protein content model results of navy bean flour samples for comparison of various multivariate methods and pre-treatment 

approaches. 

 

Table 5-5: Starch content model results of navy bean flour samples for comparison of various multivariate methods and pre-treatment 

approaches. 

 PLS PCR 

 RAW MSC SNV 1D MSC+1D SNV+1D RAW MSC SNV 1D MSC+1D SNV+1D 

RMSEC 2.8654 2.4365 2.4366 2.5781 2.2655 2.2671 2.9403 3.2011 2.4843 2.7911 2.3973 2.3955 

RMSECV 2.8972 2.6022 2.5791 2.7209 2.579 2.5519 2.9480 2.6197 2.3718 2.9249 2.6137 2.5891 

RMSEV 8.8172 5.9732 5.9659 6.9755 7.1788 7.1155 9.4003 10.0004 9.6488 7.565 6.7231 6.8056 

R2 (cal) 0.9173 0.9402 0.9402 0.933 0.9483 0.9482 0.9129 0.8968 0.898 0.9215 0.9421 0.942 

R2 (val) 0.8708 0.9124 0.9125 0.8977 0.8948 0.8957 0.8622 0.8534 0.8585 0.8891 0.9014 0.9002 

E (cal) 2.2727 1.4458 1.9678 2.0792 1.9265 1.9272 2.3349 2.5278 2.4814 2.2265 1.9947 1.9954 

E (val) 2.1007 1.8709 1.8698 1.9035 1.9705 1.9626 2.1787 2.2835 2.2496 1.9954 1.8203 1.8841 

PCs 4 3 3 4 4 4 4 4 4 4 5 5 

 PLS PCR 

 RAW MSC SNV 1D MSC+1D SNV+1D RAW MSC SNV 1D MSC+1D SNV+1D 

RMSEC 1.1128 1.1517 1.1516 1.1518 1.0308 1.0301 1.1346 1.2166 1.231 1.1519 1.0641 1.0594 

RMSECV 1.1166 1.1695 1.189 1.2206 1.0507 1.0463 1.2092 1.279 1.2698 1.2062 1.1028 1.0934 

RMSEV 2.0329 1.6826 1.6839 2.134 1.4451 1.4396 2.1318 1.1224 1.2404 2.1189 1.3147 1.3353 

R2 (cal) 0.9746 0.9728 0.972 0.9728 0.9782 0.9782 0.9736 0.9696 0.9649 0.9728 0.9768 0.977 

R2 (val) 0.9577 0.965 0.9649 0.9555 0.9699 0.97 0.9556 0.9766 0.9742 0.9559 0.9726 0.972 

E (cal) 0.9139 0.9435 1.0549 0.9168 0.785 0.7855 0.9366 0.9559 1.0464 0.925 0.8015 0.7981 

E (val) 1.1284 1.0543 1.6839 1.1495 1.0385 1.0343 1.1710 0.8496 0.8004 1.166 0.9977 1.0004 

PCs 4 3 3 4 4 4 4 4 4 4 5 5 
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Chapter 6 

Fluorescence Results 

6.1 Data Pre-treatment 

6.1.1 Scattering Effects 

The same samples and fractions as described in Section 5.1 are used for this Chapter. 

Fluorescence data has two types of scattering: Raman and Rayleigh.  Both forms originate between 

the molecules in the sample and the incident light.  Rayleigh scattering is perfectly elastic and 

occurs due to molecules oscillating at a multiple of the incident light frequency.  First order 

Rayleigh scatter would have the same frequency as the incident light and second order would have 

double the wavelength.   

 Usually only first order Rayleigh scattering is treated in fluorescence data.  The common 

method for correcting Rayleigh scattering is to insert missing values for the width of the Rayleigh 

peak (Andersen 2005).  However, it is difficult to determine the exact width of the Rayleigh peak, 

so trial and error is an option for determining this value.  The peak width of Rayleigh scattering 

was varied from 5 to 20 nm to determine the best model.  The values of emission below excitation 

wavelengths were set to zero as no fluorophores should emit at wavelengths lower than excitation.  

These variables tend to slow convergence and lead to non-ideal results (Andersen 2005). 

Raman scattering is non-elastic and occurs when the emitted light has less energy than the 

absorbed light.  It affects the entire excitation-emission matrix by the same factor; therefore, no 

pre-treatment method will be used to remove the effect in this study. 
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6.2 Multivariate Methods 

6.2.1 Parallel Factor (PARAFAC) Analysis 

 PARAFAC analysis is used to decompose multi-way data arrays.  It is like PCA and treats 

the different modes (variables) in the same manner (Eigenvector Research Inc. 2006).  There is 

only one solution to a PARAFAC model and it is unique to scaling and permutation.  Equation 1 

shows the decomposition of the array X used in PARAFAC analysis (Murphy 2013). 

𝑋𝑖𝑗𝑘 =∑𝐴𝑖𝑓𝐵𝑗𝑓𝐶𝑘𝑓 + 𝑒𝑖𝑓

𝐹

𝑓=1

   (1) 

 The nodes are equated to i, j, and k.  For fluorescence excitation-emission matrices, the 

nodes are sample, emission, and excitation respectively.  The total number of components in the 

PARAFAC analysis is F.  PARAFAC components will estimate signals from the fluorophores if 

the data is approximately tri-linear (Andersen & Bro 2003).   Therefore, the array X is decomposed 

for each variable which takes on the form of the matrices A, B, and C. 

The PARAFAC model is created with some assumptions about the fluorescence data 

(Murphy 2013).  The first assumption is that no two fluorophores will have the same fluorescence 

intensities or identical spectra.  The next assumption is that the number of components outlines 

that variation between the modes in the dataset.  Lastly, the total signal is a combination of the 

linear superposition of the fixed number of components.  A change in concentration of a 

fluorophore will therefore only change the magnitude of the contribution and not the shape of the 

peak. 
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 According to Bro & Vidal (2011), PARAFAC analysis models depend on the following 

factors which are all dependent on each other and cannot be chosen sequentially: 

1) Wavelengths to include 

2) How to handle Rayleigh scattering 

3) Number of components to use 

4) Samples to exclude (outliers). 

The wavelengths included in the analysis here include an emission between 300 and 600 nm 

(increasing by 1 nm intervals) and an excitation between 250 and 380 nm (increasing by 10 nm 

intervals).  The Rayleigh scattering will be eliminated by replacing the scatter with missing values.  

The width of the scatter was varied to find the best model.  The number of components used was 

determined using core consistency (Section 5.2.2).  Outliers were determined using the samples’ 

sum squared errors with the Hotelling T2 values.  Outliers will have high residuals and/or T2 values 

compared to the rest of the samples.  Another method to determine outliers is to compare the score 

values for the principal components.  An outlier would have a score value that is very different 

compared to all the other sample’s scores. 

6.2.2 Core Consistency  

 Core consistency is a method designed to assess the appropriateness of the PARAFAC 

model (Bro & Kiers 2003).  The PARAFAC model is a special case of the Tucker3 model 

(discussed in Bro et al. 1998) and the Tucker3 core is used to assess the PARAFAC model.  Core 

consistency is calculated using a binary array with zeroes in all places except the super diagonal 

(T) and a least squares fitted array G for a series of models with gradually increasing numbers of 

components.  This is shown in (2) (Bro et al. 1998): 
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𝐶𝑜𝑟𝑒 𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = 100 ∗ (1 −
∑ ∑ ∑ (𝐺𝑑𝑒𝑓 − 𝑇𝑑𝑒𝑓)

2𝐹
𝑓=1

𝐹
𝑒=1

𝐹
𝑑=1

𝐹
)    (2) 

 If the superdiagonal values of array G are close to one and off the superdiagonal close to 

0, the model is not overfitting.  A core consistency of above 90% represents very trilinear data and 

the number of components is acceptable.  If the core consistency drops below 50%, the model is 

problematic and contains both trilinear and non-trilinear variation (Bro et al. 1998). 

6.2.3 N-PLS Regression 

 N-PLS is a multiway calibration method for an array X of any order.  It produces score 

vectors that have maximum covariance with the unexplained part of the dependent variable (Bro 

1996).  It follows the same general principal of PLS: to describe the covariance between the 

dependent and independent variables.  It is developed as a PARAFAC-like model of array X that 

is obtained by modelling X as in Tucker3 decomposition (Favilla et al. 2013).  Unlike conventional 

two-way PLS, there are only loading weights since the NPLS algorithm cannot calculate 

orthogonal scores (Eigenvector Research Inc. 2006).   

 Equations 3 to 7 outline the iterative algorithm for the NPLS model (Bro 1996).  The first 

step, outlined in equation 3, is to calculate the matrix Z from the summation of the independent 

and dependent variables. 

𝑍 = 𝑋𝑇 ∗ 𝑌   (3) 

 The next step of N-PLS is to determine the weight vectors wJ and wK which are second and 

third order respectively.  This is done using singular value decomposition (Jolliffe 2002).  The 

weights are then used to calculate the scores, T, for the X array as shown in equation 4. 

𝑋𝑖𝑗𝑘 = 𝑇𝑖 ∗ 𝑤𝑗
𝐽 ∗ 𝑤𝑘

𝐾   (4) 
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 The scores of the X array are then used to solve for the regression coefficients (b) as shown 

in equation 5.  This step is the same in two-way PLS. 

𝑏 = (𝑇𝑇 ∗ 𝑇)−1 ∗ 𝑇𝑇 ∗ 𝑌   (5) 

 After the regression coefficients have been determined, the residuals using the model are 

found for X and Y.  When the residual values converge, the final model is found and the loop ends. 

𝑋𝑖 = 𝑋𝑖 − 𝑇𝑖 ∗ 𝑤
𝐽 ∗ (𝑤𝐾)𝑇   (6) 

𝑌 = 𝑌 − 𝑇 ∗ 𝑏   (7) 

 

6.3 Qualitative Fluorescence Spectra Analysis 

 A fluorophore is a molecule whose chemical structure allows it to be excited by a photon 

and then emit that same photon while relaxing back to ground state.  Molecules that can act as 

fluorophores mainly contain aromatic structures but can also contain highly conjugated double 

bonds (Christensen et al. 2006).  Each fluorophore has an independent excitation and emission 

pair.  Using several emission spectra at different excitation wavelengths, a 3-D excitation-emission 

matrix (EEM) can be created (Peiris et al. 2012; Peiris et al. 2013). 

 The emission spectra were gathered between wavelengths of 300 and 600 nm (increasing 

by one nm per interval) and for the excitation wavelengths between 250 and 380 nm (increasing 

by 10 nm intervals).  The fluorescence spectra will be used to create a model to determine protein 

and starch content for navy bean flour fractions from the electrostatic separation (Section 3.3).  

Protein content can be determined using the fluorescence that can be attributed to tryptophan.  This 

peak resides at a excitation/emission pair of approximately 295/330 nm (Sharma & Kalonia 2003).  



75 
 

Tyrosine also fluoresces, however its intensity is far lower than that of tryptophan (Calvet et al. 

2012).  Therefore, if tryptophan is present in the protein, it is not possible to see the contribution 

of tyrosine.  Figure 6-1 shows the excitation-emission spectra using front-face fluorescence for 

whey protein isolate.  This figure clearly shows the location of the tryptophan peak.  It is also 

worth noting there is a second peak for which at this point the chemical attribution is unknown.   

 

Figure 6-1: Excitation-emission matrix of whey protein isolate acquired using front-face 

fluorescence. 

 Sugars do not possess the chemical structures that produces any fluorescence.    Figure 6-

2 provides the excitation-emission matrix of potato starch using front-face fluorescence. 

Tryptophan 

Unknown 
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Figure 6-2: Excitation-emission matrix of potato starch acquired using front-face fluorescence. 

 As shown in Figure 6-3, there are two small peaks located at the tryptophan and unknown 

peak.  However, the intensities of the peaks are much smaller than what is found in the whey 

protein isolate.  There are no other additional peaks shown in the excitation-emission matrix of 

starch.  The model quantifying starch content from the fluorescence data should be based on a lack 

of protein content or smaller fluorophore peaks. 

The navy bean flour in this study contains both protein and starch in different proportions 

and therefore the resulting excitation-emission matrix should be a combination of what is seen 

Figures 6-1 and 6-2.  Figure 6-3 is the front faced fluorescence excitation-emission matrix acquired 

for raw navy bean flour. 

 



77 
 

 

Figure 6-3: Excitation-emission matrix for raw navy bean flour without any pre-treatment. 

 The tryptophan and unknown peaks are identified in Figure 6-3.  The intensities of these 

peaks are similar in value to the whey protein isolate sample reported in Figure 6-1.  Pre-treatment 

of the raw fluorescence data is necessary to remove the Rayleigh scattering data and as well as any 

emission wavelength which is lower than the excitation wavelength.  Figure 6-4 shows the 

excitation-emission matrix of the raw navy bean flour after the data has been pre-treated.  The pre-

treatment of the fluorescence data should improve the speed of obtaining the PARAFAC and n-

PLS models as well as the model’s accuracy (Andersen 2005). 
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Figure 6-4: Excitation-emission matrix for navy bean flour with pre-treatment including removal 

of the Rayleigh scattering and wavelengths of emission less than excitation wavelength. 

 

6.4 PARAFAC Model 

6.4.1 Number of Principal Components 

 The first step of PARAFAC modelling is to determine the number of principal components 

ideal for the dataset.  This is done using core consistency.  Figure 6-5 shows the core consistency 

results for 2 and 3 components. 
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.  

Figure 6-5: Core consistency of front-faced fluorescence spectra of navy bean flour fractions [a: 

2 components, b: 3 components]. 

 As seen in Figure 6-5, the ideal number of components is 2.  When the number of 

components is increased to 3, the ideally zero core elements vary from the target values which 

causes the core consistency value to decrease from 100.  The core consistency of 2 components is 

100 while with 3 components this value drops to 65.   

 When using 2 components the PARAFAC model explains over 99% of the variation shown 

in the fluorescence matrix.  Figure 6-6 depicts the amount of variance explained in each of the 2 

principal components.  PARAFAC modelling is unlike PCA because the principal components are 

not orthogonal and therefore principal components have the ability for components to repeat the 

same feature which is better described using only 1 component.  The two-component model shows 

a slightly higher amount of variance explained in the first component. 

a) b) 
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Figure 6-6: Percent variance explained for the fluorescence matrix for both components in the 

PARAFAC model. 

6.4.2 Principal Component Loadings and Scores 

 The principal component loadings for PARAFAC models are attributed to individual 

fluorophores.  Each principal component contains one peak, both from an excitation and emission 

standpoint.  With two principal components, two fluorophores for the navy bean flour samples are 

expected.  Two peaks were identified from the raw navy bean flour excitation-emission matrix 

(found in Figure 6-3). 

The first principal component represents a fluorophore to which assignment of chemical 

identity is uncertain and is shown in Figure 6-7.  This peak is relatively wide as it has a emission 

base of approximately 200 nm.  It also has an irregular shape, as the curve itself is not smooth in 

the emission curve.  The excitation curve is not expected to be smooth as the data points are 10 

nm apart.  It has a shape that is similar to humic acid (Lee et al. 2015; Yan et al. 2013), which is 

ruled out because it is not found in navy bean flour. 



81 
 

 The second principal component, shown in Figure 6-8, ist attributed to tryptophan as its 

emission maximum occurs at 330 nm with an excitation at 290 nm (Sharma & Kalonia 2003).  

This peak has a higher intensity than the unknown fluorophore and a smooth narrow shape.  There 

is a second peak in this principal component which could be the result of the influence of the 

unknown peak as it is also seen in the first prinicpal component. 

 

Figure 6-7: First principal component of the PARAFAC model representing the unknown 

fluorophore [a: emission curve, b: excitation curve]. 

 

Figure 6-8: Second principal component of the PARAFAC model representing tryptophan [a: 

emission curve, b: excitation curve]. 

a) b) 

a) b) 
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 The component scores of each sample can be used to group the 82 navy bean fraction 

samples that were analyzed for starch and protein content.  The samples were grouped into protein-

enriched, starch-enriched, and raw navy bean flour fractions.  Figure 6-9 shows the principal 

component scores plotted against each other for the three fractions. 

 

Figure 6-9: Principal component scores for protein-enriched, starch-enriched, and raw navy bean 

flour fractions.  

 The protein-enriched samples tend to have higher scores while the starch-enriched fractions 

tend to have lower scores for both principal components.  There is not a clear separation between 

the fractions but the overall trend is apparent.  The protein enriched samples possess higher score 

values of both components.  This means that both components explain the protein content of the 

samples. 
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6.4.3 Residuals and Outliers 

 Sample outliers are determined using the plot of Hotelling T2 and sum squared errors.  

Samples that have much higher T2 or sum squared error values are outliers.  The plot of Hotelling 

T2 and sum squared errors for the samples is shown in Figure 6-10. 

Figure 6-10: Influence plot comparing Hotelling T2 and sum squared error values for each navy 

bean flour sample. 

 As shown in Figure 6-10 there is only one sample with a much higher Hotelling T2 value 

than the rest of the samples (sample 11).  Since the sample’s sum squared error is similar to all the 

other samples and the Hotelling T2 is not an order of magnitude greater, sample 11 (protein-

enriched sample) is not deemed to be an outlier and is included in the PARAFAC model.  Figure 

6-11 compares the sum squared error for the three fractions. 

11 
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Figure 6-11: Sum-squared errors of the three fractions from the PARAFAC model. 

 The starch-enriched samples on average have a higher sum squared error than the raw navy 

bean flour and protein-enriched fractions.  This may be due to starch not containing any major 

fluorophores.  The excitation-emission matrix of potato starch (approximately 99% pure) did 

possess small peaks for both tryptophan and the unknown fluorophore.  This may explain why the 

starch-enriched samples tend to have higher sum squared errors in the PARAFAC model.  Lastly, 

no samples are observed as outliers when comparing all the sample’s sum squared errors. 
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6.5 N-PLS Model 

6.5.1 Principal Components 

 Determining the ideal number of principal components is the first step of NPLS modelling.  

The goal is to use the most principal components without overtraining the model to the calibration 

set.  An overtrained model will perform poorly when predicting samples outside the calibration 

set.  Cross validation is a powerful tool to determine the number of principal components.  Figure 

6-12 shows the root mean squared error of calibration and cross validation for both protein and 

starch content.   

 

Figure 6-12: Root mean square error of calibration and cross validation for protein and starch 

content to determine the number of principal components. 
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The ideal number of principal components occurs when the root mean squared error of 

cross validation (RMSECV) plateaus or increases as the number of principal components increase.  

According to Figure 6-12, the number of principal components should be 3 which will be used in 

the NPLS model. 

After determining that the ideal number of principal components is three, the loadings and 

scores can be examined.  Since the number of principal components is three, there will be three 

sets of loadings and three score values for each sample.  Since the fluorescence matrix is 3D 

(contains both excitation and emission wavelengths) there will be 3 loadings for both the emission 

and excitation wavelengths.  Figure 6-13 shows the emission wavelength loadings while Figure 6-

14 shows the loadings for the excitation wavelengths. 

The loadings for emission wavelengths in the NPLS are similar to the loadings found in 

the PARAFAC model (Section 5.4).  The first two emission loadings appear to be the same shapes 

as the tryptophan and unknown fluorophore peaks.    The third principal component seems to be a 

combination of the two fluorophores with greater reliance on the tryptophan area.  The tryptophan 

peak shape (found in the first loading) has a smoother shape than the other two principal 

components. 

 The excitation wavelength loadings consist of only 14 data points as there were only 14 

excitation wavelengths analyzed.  The pattern with the excitation loadings is the same as the 

emission loadings.  The first loading once again appears to correlate with the tryptophan peak, the 

second loading is attributed to the unknown fluorophore, and the third a combination of the two.
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Figure 6-13: Emission wavelength loadings corresponding the three principal components using NPLS regression [a: first component 

loading, b: second component loading, c: third component loading]. 

a) b) 

c) 



88 
 

 

 

Figure 6-14: Excitation wavelength loadings corresponding the three principal components using NPLS regression [a: first component 

loading, b: second component loading, c: third component loading].

a) b) 

c) 
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The combination of excitation and emission loadings are used to create the principal 

component scores.   Figure 6-15 plots the principal component scores against each other as a means 

to separate the samples in sections.  The groupings are split into: protein-enriched, raw navy bean 

flour, and starch-enriched.  The first component score describes the most variance in the excitation-

emission wavelengths with 53.7% and the total variance captured between the three components 

is over 94%. 

 Since the first two components capture the most variance, it is expected that comparing 

these two scores will yield the best comparison between the three fractions.  However, there are 

no clear divisions between the fractions but an overall trend is examined.  The protein-enriched 

samples tend to have higher values while the starch-enriched samples tend to have lower values 

for components 1 and 2.  The third component score only accounts for about 4% of the total 

variance and therefore shows the least separation between fractions. 

 The principal component scores of the calibration set are used to create the final NPLS 

model.  Since there is much less separation between fractions than what was shown in the NIR 

data, it is expected that the fluorescence model for determining protein and starch content should 

be weaker.
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Figure 6-15: Principal component scores of protein-enriched, starch-enriched, and original flour fractions from NPLS regression   [a: 

scores 1 and 2, b: scores 1 and 3, c: scores 2 and 3].

a) b) 

c) 
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6.5.2 Determining Outliers 

Outliers in the calibration set can severely affect the PLS model.  Therefore, outliers should 

be determined and removed from the calibration set.  An outlier is determined from the residual 

values which are the difference between the predicted and measured values.  A sample will be 

deemed an outlier if the residual value is high and removing the sample significantly affects the 

model. 

Figure 6-16 shows the residual values for protein and starch content of each sample.  The 

sample with the highest residual value for both protein and starch content was removed from the 

calibration set and a new model was developed.  In both cases there was not a significant change 

in the model and therefore the samples were included in the final calibration set.   

The average residual for protein content is lower than for starch content.  Table 6-1 

compares the root mean squared error of calibration and cross validation for protein content and 

starch content.   Since the root mean squared error of calibration and cross validation is lower for 

protein content, it is expected that the model to predict protein content will be more accurate than 

starch content.   

Table 6-1: RMSEC and RMSECV for the NPLS regression model for protein and starch content. 

Variable Protein Content Starch Content 

RMSEC 1.7685 3.5377 

RMSECV 1.8668 3.6470 
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Figure 6-16: Residuals for protein and starch content for the determination of outliers [a: protein 

content residuals, b: starch content residuals]. 

6.5.3 NPLS Model Results 

The NPLS regression model is used to predict the protein and starch content of all the 

samples.  There were 82 samples used in the calibration set and 20 samples used to validate the 

model.  Figures 6-17 and 6-18 compare the model’s predicted protein and starch content against 

the measured protein and starch content, respectively for both the calibration and validation 

samples.   

The models were evaluated using the R2 values.  These values give an estimate of how 

close the data is to the regressed line with a value of 1 being a perfect model.  Another way to 

determine the accuracy of the model is to compare the root mean squared errors of calibration and 

validation.  These values give an estimate of the difference between the predicted and measured 

values. Table 6-2 outlines the results of the PLS regression model. 

 

 

a) b) 
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Table 6-2: PLS regression model results for protein and starch content. 

Variable Protein Content Starch Content 

R2 (cal) 0.936 0.874 

R2 (val) 0.946 0.885 

RMSEC 1.7685 3.5377 

RMSEV 1.9102 2.8558 

 

 The protein content estimations using the PLS model are better than the starch estimates 

as was the case for the NIR spectra.  This is seen by the higher R2 values and lower RMSE values 

for both calibration and validation.  The model for starch is still a good model since the R2 values 

are just under 0.9.  The R2 values for validation are higher than for calibration which means that 

the model is very robust.   

 

Figure 6-17: NPLS Regression model for protein content using fluorescence spectra [a: 

calibration model, b: validation model]. 

a) b) 
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Figure 6-18: NPLS Regression model for starch content using fluorescence spectra [a: 

calibration model, b: validation model]. 

6.5.5 Starch Content Model 

 As discussed earlier in this chapter, starch does not contain the necessary chemical 

components to fluoresce; therefore, the prediction of starch content must be determined from the 

unknown fluorophore or could even be related to the predicted protein content.  Since the scores 

for the starch-enriched samples had lower scores for principal component 2 (describing the 

unknown fluorophore), the starch content prediction is most likely a function of the predicted 

protein content.  Figure 6-19 shows the relationship between the predicted values of protein and 

starch content. 

 

a) b) 
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Figure 6-19: Predicted protein and starch content relationship from the NPLS regression model. 

As shown in the above plot, the predicted starch content demonstrates a better relationship 

with the predicted protein content than the actual measured values.  The R2 value is extremely 

close to 1, signifying an almost perfect relationship.
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Chapter 7 

Data Fusion of NIR and Fluorescence Spectra 

7.1 Data Pre-treatment and Fusion Setup 

 The same samples and fractions as described in Section 5.1 are used for this Chapter. As 

discussed in Section 2.5, there are three different levels of data fusion.  Low level data fusion was 

used to combine the NIR and fluorescence spectral data.  This data fusion type allows the 

application of specific pre-treatment strategies  before combining the data (Solano et al. 2012).  

SNV pre-treatment was used for the NIR data while the fluorescence spectral data had no pre-

treatment. 

 An important aspect of data fusion is to adjust the NIR and fluorescence data to the same 

scale.  Therefore, each set of data was scaled to range from 0 to 1 by subtracting the minimum data 

point and dividing by the maximum.  Lastly, it is important for each set of data to have 

approximately the same number of data points (Khaleghi et al. 2013).  This helps to ensure that 

the model for the combined data is not weighted more heavily on one of the fused portions more 

than the other.  The setup of the NIR and fluorescence data prior to fusion is discussed in the 

following sections. 

7.1.1 NIR Data Setup Prior to Fusion 

 The number of NIR data points was not reduced; therefore, the only setup necessary was 

the SNV pre-treatment and scaling of the absorbance between 0 and 1.  Figure 7-1 depicts the SNV 

pre-treated data and SNV scaled data for raw navy bean flour, protein-enriched, and starch-

enriched samples. 
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Figure 7-1: NIR spectra of navy bean flour, protein-enriched, and starch-enriched samples for 

data fusion [a: SNV pre-treated data, b: SNV scaled pre-treated data]. 

7.1.2 Fluorescence Data Setup Prior to Fusion 

 No individual pre-treatment was necessary for the fluorescence data; however, the number 

of fluorescence data points has to be approximately the same as the NIR data points.  Since there 

are only 1301 NIR data points, approximately 75 % of the fluorescence data points have to be 

omitted.   

As in Chapter 6, there are two fluorophores present in the excitation-emission spectra for 

navy bean flour (tryptophan and an unknown fluorophore).  This is the area where there is the most 

variance between protein-enriched and starch-enriched samples and it is precisely this area that 

was chosen from the fluorescence spectral data.  Figure 7-2 shows the approximate area (shaded 

region) taken from the fluorescence spectra to be used in the data fusion outlined in Table 7-1. 
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Figure 7-2:  Fluorescence spectra of navy bean flour with the shaded regions used in the data 

fusion with the NIR spectral data. 

Table 7-1: Summary of fluorescence data points used in the data fusion with the NIR spectral data. 

Excitation (nm) Emission Range (nm) Number of data points 

250 300-350 50 

260 300-375 75 

270 300-375 75 

280 300-375 75 

290 300-400 100 

300 313-400 87 

310 400-500 100 

320 400-500 100 

330 400-500 100 

340 400-500 100 

350 400-500 100 

360 400-500 100 

370 400-500 100 

380 400-500 100 

 
Total 1262 
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 Since the NIR spectral data is 2-dimensional and the fluorescence spectral data is 3-

dimensional, it is necessary to unfold the fluorescence spectral data.  Lastly, the fluorescence data 

was also scaled between 0 and 1.  Figure 7-3 shows the chosen fluorescence data points, outlined 

in Table 7-1, unfolded and scaled for raw navy bean flour, protein-enriched, and starch-enriched 

samples. 

 

Figure 7-3: Unfolded and scaled fluorescence spectra of raw navy bean flour, protein-enriched, 

and starch-enriched samples for data fusion. 

7.1.3 Fused Data 

 A summary of the pre-treatment and data reduction for the NIR and fluorescence spectra 

is shown in Figure 7-4.  The final fused spectra have 2577 data points. 
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Figure 7-4: Summary of approach used for pre-treatment, data reduction, and fusion of the NIR 

and fluorescence spectral data.  

 The final fused data has approximately the same number of data points from the NIR and 

fluorescence spectra.  Figure 7-5 represents the fused data for raw navy bean flour, protein-

enriched, and starch-enriched samples.  The NIR data is the first 1301 data points and the unfolded 

fluorescence spectra follows.   The NIR and fluorescence data was conserved to better examine 

the correlation between the data and the model loadings.   

 

Figure 7-5: Fused NIR and fluorescence spectra for raw navy bean flour, protein-enriched, and 

starch-enriched samples. 

NIR Fluorescence 



101 
 

7.2 NIR and Fluorescence Fused Data PLS Model 

 PLS regression was chosen to create the fused data’s model for protein and starch content.  

In Chapter 5, it was determined that using PLS produced better models for starch content than PCR 

and the starch content model has greater room for improvement.  

7.2.1 Number of Components 

 The ideal number of components for the model is determined from cross validation.  Figure 

7-6 shows the root mean squared error of calibration and validation for protein and starch content.  

The number of principal components was varied between 1 and 10. 

 

Figure 7-6: RMSECV and RMSEC for protein and starch content using 1 to 10 principal 

components with the fused NIR and fluorescence data. 
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The root mean squared error of cross validation (RMSECV) for protein content plateaus at 

five components.  However, the RMSECV for starch content plateaus earlier at three components.  

In Chapter 6 it was determined that the starch content model for the fluorescence data depended 

only on the model for protein content and not the two fluorophores present in the navy bean flour 

samples.  Additionally, a three component model was the best for the NIR spectra with SNV pre-

treatment.  Therefore, it was expected that the ideal number of principal components for starch 

content should not increase from three by fusing the fluorescence spectra. 

The fluorescence spectra did yield a good relationship with the protein content via the 

tryptophan and unknown peaks.  Also, the NIR spectra had peaks relating to the amide group which 

is characteristic of protein (Workman & Weyer 2012).  This explains the larger number of principal 

components that are able to explain the protein content from the fused NIR and fluorescence data.  

Since the RMSECV for starch does not significantly increase from 3 to 5 principal components, 

the PLS model was developed using 5 components. 

7.2.2 Principal Component Loadings and Scores 

 There will be five sets of loadings and score values for each sample since the number of 

principal components is five.  Figure 7-7 shows the five loadings which represent the weights 

corresponding to the fused data.  The five principal components explain over 95 % of the variance 

in the fused data matrix.  Most the variance is found in the first two components as the remaining 

account for less than 10 % of the total variance each. 
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Figure 7-7: Loadings corresponding the five principal components using PLS regression on the NIR and fluorescence fused data [a: 

first component loading, b: second component loading, c: third component loading, d: fourth component loading, e: fifth component 

loading].

d) 

a) b) c) 

e) 
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All principal component loadings are the resulting weights of the NIR and fluorescence 

data.  That is each principal component loading has weights for the NIR and fluorescence data 

with no loading being singular to one of the fused data sets.  The first two loadings show that in 

the NIR region of the fused data, the highest weights are assigned to the 1900 to 2200 nm 

wavelength range.  In the fluorescence region, the shape is similar to the actual fluorescence 

section of the fused data.  The highest weights in this section seem to be the peaks attributed to the 

primary fluorophores attributed to the protein. 

The principal component loadings are combined with the fused data to create the principal 

component scores.  The scores are used in PLS regression to create the final model.  In Figure 7-

8, the first three principal component scores are plotted against each other to separate the samples 

into fractions.  The fractions are raw navy bean flour, protein-enriched, and starch-enriched 

samples. 

As shown in Figures 7-8a and 7-8b, there are clear groupings of the three fractions.  Using 

any combination of scores that does not include the first component results in no grouping or 

pattern found between the fractions.  This is shown in Figure 7-8c as the second and third 

components are plotted against each other.  The score plots that include the fourth and fifth 

component are not shown because there are also no groupings between the fractions and are like 

Figure 7-8c which is expected because both of these principal components represent less than 5 % 

of the total variance in the fused data matrix.
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Figure 7-8: Principal component scores of protein-enriched, starch-enriched, and original flour fractions for fused NIR and fluorescence 

data from PLS regression [a: first/second component scores, b: first/third component scores, c: second/third component scores].

a) b)
 a) 

c)
 a) 
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7.2.3 Residuals and Outliers 

As discussed in previous Chapter 5, outliers in the calibration set can severely affect the 

PLS model and should be determined and removed from the calibration set.  A sample will be 

deemed an outlier if the residual value is high and removing the sample significantly affects the 

model. 

Figure 7-9 shows the residual values for protein and starch content of each sample.  The 

sample with the highest residual value for both protein and starch content was removed from the 

calibration set and a new model was developed.  In both cases there was not a significant change 

in the model and therefore the samples were included in the final calibration set.   

The average residual for protein content is lower than for starch content which means that 

the model for protein content should be better.  Table 7-2 compares the root mean squared error of 

calibration and cross validation for protein content and starch content.   The root mean squared 

values are also lower for protein content, also suggesting that the protein content model will have 

a stronger relationship with the fused data.  Lastly, the average absolute residual for protein content 

is extremely low with a value of 0.745. 

Table 7-2: RMSEC and RMSECV for the NPLS regression model for protein and starch content 

using the fused NIR and fluorescence data. 

Variable Protein Content Starch Content 

RMSEC 0.939 2.454 

RMSECV 1.097 2.707 

E (cal) 0.745 2.013 
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Figure 7-9: Absolute residuals for protein and starch content for the determination of outliers for 

the NIR and fluorescence fused data [a: protein content residuals, b: starch content residuals]. 

7.2.4 Data Fusion Model Comparison 

The PLS regression model of the fused NIR and fluorescence data is used to predict the 

protein and starch content of all the samples.  The same 82 samples are used in the calibration set 

and 20 samples used to validate the model as done for the NIR and fluorescence models.  Figures 

7-10 and 7-11 compare the model’s predicted protein and starch content against the measured 

protein and starch content, respectively for both the calibration and validation sets. 

The models were evaluated using the R2 values.  The calibration model for protein content 

is almost perfect having an R2 value over 0.98.  In Figures 7-10 and 7-11, it is apparent that the 

model for protein content is stronger than the model for starch content.  This is due to the higher 

R2 values for both calibration and prediction. 

The goal of fusing the NIR and fluorescence spectra was to see if the fused data improved 

the predictability and robustness of the model.  Table 7-3 compares the results of the fused data 

with the individual models for each spectroscopic technique. 

a) b) 
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Table 7-3:  Comparison of NIR, fluorescence, and data fused models for protein and starch content 

of navy bean flour samples. 

  

Protein Content Starch Content 

NIR Fluorescence Fused Data NIR Fluorescence Fused Data 

RMSEC 1.152 1.769 0.939 2.437 3.538 2.454 

RMSECV 1.189 1.867 1.097 2.579 3.647 2.707 

R2 (cal) 0.972 0.936 0.982 0.940 0.874 0.939 

R2 (val) 0.965 0.946 0.972 0.913 0.885 0.910 

PC 3 3 5 3 3 5 

 

 The fused data actually performs better when comparing the value for protein content.  

Both R2 values are higher and the root mean squared values are lower which results in the better 

model.   This can be explained as both the NIR and fluorescence spectra can have spectral areas to 

determine protein content.  The NIR spectra contained the absorbance values from the amide bonds 

contained in protein while the fluorescence spectra has both the tryptophan and unknown 

fluorophore attributed to protein content.  The worst model for protein content came from the 

fluorescence spectra individually but is still a very reliable model to predict protein content. 

 The difference between the fused data and NIR models for starch content differ minimally.    

This is expected because the fluorescence data did not add any information as to the starch content 

in the samples since the two fluorophores did not directly relate to starch content.  As discussed 

earlier, the starch content in the fluorescence model has an incredibly strong relationship to the 

predicted protein content.  Once again the fluorescence model performed the worst in predicting 

starch content but is still a very good model. 
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 The NIR and fluorescence models by themselves are both extremely good leaving little 

room for improvement by fusing the two data sets.  Overall, there is only a minimal improvement 

in the protein content model when fusing the NIR and fluorescence data for predicting sample 

protein and starch content.  While this is the case for a navy bean flour calibration and validation 

sets, the fused model may have a better correlation using the navy bean flour as the calibration 

model to predict the protein and starch content of a different sources of flour (Anibal et al. 2011; 

Dearing et al. 2011; Godinho et al. 2014). 

 

Figure 7-10: NPLS Regression model for protein content using NIR and fluorescence fused data 

[a: calibration model, b: validation model]. 

 

 

 

 

 

a) b) 
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Figure 7-11:  NPLS Regression model for starch content using NIR and fluorescence fused data 

[a: calibration model, b: validation model].

a) b) 
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Chapter 8 

Conclusions 

 The objective of this research was to establish the effects of different milling techniques 

on the solvent-free electrostatic separation process for navy bean flour as well as to develop a 

model based on near infrared and fluorescence data to determine protein and starch content of the 

protein- and starch-enriched fractions using multivariate methods (i.e. partial least squares 

regression).  Acquisition of reproducible infrared and fluorescence data from powder samples was 

also an objective.    The following list represents the conclusions from this work: 

 Successful development of a method to obtain reproducible and reliable NIR and 

fluorescence data from compressed powder pellets. 

 The pin milled navy bean flour had an average particle size almost three times smaller than 

the regular milled navy bean flour.  This was likely the main factor contributing to the 

ability to produce a higher protein content in the protein-enriched fraction for the pin milled 

flour (40.7%) compared to the regular milled flour (32.5%) under optimal conditions.  

However, a much higher protein extraction under optimum conditions could be achieved 

for the regular milled flour. 

 For regular milled navy bean flour the two fractions (protein- and starch-enriched) had a 

higher percentage of smaller particles than the raw flour.  This might be attributed to 

disaggregation during the triboelectric charging process.   

 Multivariate methods and pre-treatment techniques were compared for the NIR spectra of 

the navy bean flour fractions from separation to measure the protein and starch content.  
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The best method used MSC pre-treatment with PLS regressions and had R2 values of 

prediction of 0.965 and 0.912 for protein and starch content, respectively. 

 The models for protein and starch content using NPLS regression with Rayleigh scatter 

replaced by missing values was not as highly correlated as the NIR model.  It was still a 

good model seeing as the R2 values of prediction for starch and protein content of 0.946 

and 0.885, respectively.  Two fluorophores were observed in navy bean flour: one 

attributed to tryptophan and an unknown peak. 

 The protein content model was better calibrated using the training set as well as providing 

a better prediction using the validation set for both NIR and fluorescence spectra.  This was 

observed from the protein content model having smaller residual values and better 

correlations.  While the NIR spectra have areas that can be attributed to bonds unique to 

starch, there are no fluorescent compounds.  It was found that the starch model using the 

fluorescence EEM was highly correlated to the model’s predicted protein content (R2 of 

0.978). 

 Data fusion was achieved by combining the NIR and unfolded fluorescence spectra for the 

navy bean flour fractions.  The individual approaches had undergone pre-treatment 

separately which involved SNV for the NIR spectra and reduction of data points for the 

unfolded fluorescence spectra.  The best model for determining protein content used the 

fused data illustrating the value in this approach. 
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Chapter 9 

Recommendations 

 Further investigation into the unknown fluorophore.  It has a shape and excitation/ emission 

pair that is similar to humic acid, which is ruled out because it is not found in navy bean 

flour, but further characterization of the flour could provide insight into the unknown 

fluorophore.  

 Increase the number of measured components in the model particularly fat content and 

moisture content. 

 Scanning electron microscopy of the raw and enriched fractions would help to confirm the 

disaggregation hypothesis developed to explain the size distribution phenomena observed 

for regular milled flour during triboelectric separation. 

 Better design for keeping the distance between the optic probe and compressed flour pellet 

consistent for each sample during fluorescence data collection.  This could have 

contributed to the fluorescence model not performing as well as the NIR model. 

 Further work on the effects of milling on the electrostatic separation.  Sieving the flour into 

fractions of differing size could provide insight into the separation of particular particle 

sizes.   

 Further research using the electrostatic separation approach for different types of 

agricultural flour (e.g. soy, wheat, etc.) should be explored.  The models for estimating 

protein and starch content of navy bean flour could be used as the calibration set for other 

flours providing insight into the robustness of the model. 
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Appendix A 

Calibration Curves 

A.1 Kjeldahl Calibration Curve 

 

Figure A-1: Calibration curve for Kjeldahl digestion. 

A.2 DNS Calibration Curve 

 

Figure A-2: Calibration curve for DNS acid assay.

y = 2.101x

R² = 0.9722

0

0.5

1

1.5

2

2.5

3

3.5

0 0.2 0.4 0.6 0.8 1 1.2 1.4

M
a

ss
 o

f 
N

it
ro

g
en

 (
u

g
)

Net Absorbance

y = 1.9714x + 0.0376

R² = 0.9995

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 0.05 0.1 0.15 0.2

G
lu

co
se

 C
o

n
ce

n
tr

a
ti

o
n

 (
m

g
/m

L
)

Net Absorbance



126 
 

Appendix B 

Whey Protein Isolate Standard 

B.1 NIR Standard 

 

Figure B-1: Standard deviation of each NIR wavelength for 10 standard samples of whey 

protein isolate (~97%). 

 

Figure B-2: CV of each wavelength for 10 standard samples of whey protein isolate (~97%). 
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B.2 Fluorescence Standard 

 

Figure B-3: Standard deviation of the fluorescence EEM for 10 standard samples of whey 

protein isolate (~97%). 

 

Figure B-4: CV of the fluorescence EEM for 10 standard samples of whey protein isolate 

(~97%). 



128 
 

Appendix C 

Protein and Starch Content of Navy Bean Flour Samples 

C.1 Calibration Set 

Table C-1: Navy bean flour samples raw data in the calibration set. 

Sample 

Number 
Sample 

Protein Content Starch Content 

Run 1 Run 2 Average 
Standard 

Deviation 
Run 1 Run 2 Average 

Standard 

Deviation 

1 Flour 1 28.60 27.80 28.20 0.57 55.83 49.62 52.73 4.39 

2 July 20 Pb 30.50 26.90 28.70 2.55 47.94 44.49 46.22 2.44 

3 July 20 Pm 33.40 31.00 32.20 1.70 36.63 38.07 37.35 1.02 

4 July 20 Pt 38.00 38.10 38.05 0.07 32.61 33.32 32.97 0.50 

5 July 20 S 27.00 26.90 26.95 0.07 53.93 48.45 51.19 3.87 

6 July 20 P1 22.20 21.80 22.00 0.28 58.92 51.64 55.28 5.15 

7 July 20 P23 23.70 18.80 21.25 3.46 49.26 52.66 50.96 2.40 

8 July 20 P4 22.10 20.80 21.45 0.92 59.73 52.26 56.00 5.28 

9 Aug 6 Pb 29.30 35.80 32.55 4.60 39.48 44.24 41.86 3.37 

10 Aug 6 Pm 31.90 33.40 32.65 1.06 48.99 42.48 45.74 4.60 

11 Aug 6 Pt 34.20 34.60 34.40 0.28 46.31 46.98 46.65 0.47 

12 Aug 6 P1 23.40 22.50 22.95 0.64 54.91 53.80 54.36 0.78 

13 Aug 6 P23 23.50 22.20 22.85 0.92 47.83 47.52 47.68 0.22 

14 Aug 6 P4 22.40 22.10 22.25 0.21 50.61 49.81 50.21 0.57 

15 Aug 10 Pb 29.47 30.60 30.04 0.80 39.63 42.15 40.89 1.78 

16 Aug 10 Pm 32.02 34.20 33.11 1.54 42.17 48.25 45.21 4.30 

17 Aug 10 Pt 33.89 35.10 34.50 0.86 45.94 45.95 45.95 0.01 

18 Aug 10 P1 25.54 22.60 24.07 2.08 46.96 48.36 47.66 0.99 

19 Aug 10 P4 22.58 18.73 20.66 2.72 50.41 52.48 51.45 1.46 

20 Aug 16 Pb 29.53 28.14 28.84 0.98 41.26 45.61 43.44 3.08 

21 Aug 16 Pm 32.39 31.69 32.04 0.49 41.91 42.67 42.29 0.54 

22 Aug 16 Pt 35.95 34.92 35.44 0.73 48.53 44.36 46.45 2.95 

23 Aug 16 P1 24.76 23.15 23.96 1.14 49.31 53.74 51.53 3.13 

24 Aug 16 P23 23.81 20.95 22.38 2.02 45.18 45.10 45.14 0.06 

25 Aug 16 P4 21.68 21.06 21.37 0.44 54.13 56.29 55.21 1.53 

26 Nov 1 Pb 32.40 33.53 32.97 0.80 37.70 32.00 34.85 4.03 

27 Nov 1 S 27.70 29.55 28.63 1.31 41.71 43.69 42.70 1.40 

28 Nov 1 P1 23.70 21.94 22.82 1.24 58.47 54.35 56.41 2.91 

29 Nov 1 P23 23.10 21.36 22.23 1.23 53.50 49.39 51.45 2.91 
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30 Nov 1 P4 24.10 21.19 22.65 2.06 54.82 51.78 53.30 2.15 

31 Flour 4 30.17 26.56 28.37 2.55 51.10 52.81 51.96 1.21 

32 Nov 8 Pb 34.24 31.81 33.03 1.72 37.82 40.59 39.21 1.96 

33 Nov 8 Pmt 39.74 36.29 38.02 2.44 30.53 35.81 33.17 3.73 

34 Nov 8 S 31.16 27.59 29.38 2.52 44.69 48.98 46.84 3.03 

35 Nov 8 P1 20.71 17.27 18.99 2.43 68.19 65.01 66.60 2.25 

36 Nov 8 P23 18.64 16.35 17.50 1.62 61.45 64.14 62.80 1.90 

47 Nov 8 P4 19.98 18.52 19.25 1.03 65.26 65.01 65.14 0.18 

48 Nov 11 Pb 31.74 32.34 32.04 0.42 40.57 38.92 39.75 1.17 

39 Nov 11 Pmt 37.96 36.40 37.18 1.10 32.90 31.51 32.21 0.98 

40 Nov 11 S 29.22 28.87 29.05 0.25 46.58 47.86 47.22 0.91 

41 Nov 11 P1 19.04 20.16 19.60 0.79 57.43 57.67 57.55 0.17 

42 Nov 11 P23 16.66 16.58 16.62 0.06 53.75 51.46 52.61 1.62 

43 Flour 6 28.53 26.93 27.73 1.13 52.00 52.48 52.24 0.34 

44 Nov 16 Pb 32.67 32.49 32.58 0.13 37.86 39.63 38.75 1.25 

45 Nov 16 S 30.57 29.41 29.99 0.82 50.41 50.80 50.61 0.28 

46 Nov 16 P1 17.09 17.23 17.16 0.10 68.09 68.11 68.10 0.01 

47 Nov 16 P23 17.22 17.47 17.35 0.18 61.63 56.23 58.93 3.82 

48 Nov 16 P4 18.95 17.44 18.20 1.07 65.81 65.89 65.85 0.06 

49 Flour 7 28.87 28.00 28.44 0.62 51.72 48.47 50.10 2.30 

50 Nov 18 Pmt 38.46 34.69 36.58 2.67 41.06 38.00 39.53 2.16 

51 Nov 18 S 30.14 27.86 29.00 1.61 50.63 52.66 51.65 1.44 

52 Nov 18 P1 17.66 17.43 17.55 0.16 62.87 62.17 62.52 0.49 

53 Nov 18 P4 17.45 16.27 16.86 0.83 67.14 67.20 67.17 0.04 

54 Nov 21 Pmt 35.98 34.40 35.19 1.12 35.09 37.50 36.30 1.70 

55 Nov 21 S 28.61 29.95 29.28 0.95 45.59 48.77 47.18 2.25 

56 Nov 21 P1 16.96 17.97 17.47 0.71 66.56 65.96 66.26 0.42 

57 Nov 21 P23 16.19 16.45 16.32 0.18 56.29 52.33 54.31 2.80 

58 Flour 9 28.30 28.67 28.49 0.26 51.10 49.77 50.44 0.94 

59 Nov 23 Pb 31.53 32.11 31.82 0.41 46.42 45.91 46.17 0.36 

60 Nov 23 Pt 37.15 36.77 36.96 0.27 33.67 35.11 34.39 1.02 

61 Nov 23 S 28.82 27.30 28.06 1.07 49.97 52.46 51.22 1.76 

62 Nov 23 P1 16.27 16.65 16.46 0.27 66.47 67.86 67.17 0.98 

63 Nov 23 P23 16.27 14.23 15.25 1.44 59.32 56.41 57.87 2.06 

64 Nov 23 P4 17.15 14.82 15.99 1.65 65.71 64.23 64.97 1.05 

65 Flour 10  28.69 25.98 27.34 1.92 50.50 52.54 51.52 1.44 

66 Nov 24 Pb 30.80 29.97 30.39 0.59 39.90 45.90 42.90 4.24 

67 Nov 24 Pm 36.43 34.55 35.49 1.33 38.17 39.81 38.99 1.16 

68 Nov 24 Pt 39.58 36.93 38.26 1.87 37.58 39.53 38.56 1.38 

69 Nov 24 S 27.90 28.01 27.96 0.08 54.90 51.62 53.26 2.32 

70 Nov 24 P1 16.88 16.39 16.64 0.35 65.63 64.61 65.12 0.72 
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71 Nov 24 P4 16.99 18.22 17.61 0.87 65.38 66.28 65.83 0.64 

72 Nov 28 Pb 31.11 32.76 31.94 1.17 40.40 41.60 41.00 0.85 

73 Nov 28 Pm 35.46 35.00 35.23 0.33 34.88 38.49 36.69 2.55 

74 Nov 28 Pt 38.60 36.72 37.66 1.33 30.84 30.14 30.49 0.49 

75 Nov 28 S 29.13 26.15 27.64 2.11 46.21 51.62 48.92 3.82 

76 Nov 28 P23 15.58 14.36 14.97 0.86 65.91 66.36 66.14 0.32 

77 Nov 28 P4 17.02 13.88 15.45 2.22 64.09 69.79 66.94 4.03 

78 Flour 12 27.70 25.14 26.42 1.81 50.66 50.59 50.63 0.05 

79 Dec 1 Pm 34.36 35.93 35.15 1.11 37.15 38.07 37.61 0.65 

80 Dec 1 S 27.92 29.59 28.76 1.18 50.81 46.94 48.88 2.74 

81 Dec 1 P1 16.48 18.09 17.29 1.14 64.99 65.29 65.14 0.21 

82 Dec1 P4 16.71 17.63 17.17 0.65 64.54 65.96 65.25 1.00 

    AVG 1.14   AVG 1.75 
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C.2 Validation Set 

Table C-2: Navy bean flour samples raw data in the validation set. 

Sample 

Number 
Sample 

Protein Content Starch Content 

Run 1 Run 2 Average Standard Deviation Run 1 Run 2 Average Standard Deviation 

83 Aug 6 Pds 29.70 30.50 30.10 0.57 47.59 44.77 46.18 1.99 

84 Flour 2 24.72 28.20 26.46 2.46 53.04 48.68 50.86 3.08 

85 Aug 10 Pds 27.83 27.90 27.87 0.05 46.70 47.02 46.86 0.23 

86 Aug 10 P23 22.90 23.84 23.37 0.66 46.84 45.42 46.15 1.00 

87 Aug 16 Pds 27.99 27.02 27.51 0.69 45.50 49.11 47.31 2.55 

88 Flour 3 27.80 26.14 26.97 1.17 51.33 51.68 51.51 0.25 

89 Flour 5 28.18 26.85 27.52 0.94 48.28 45.44 46.86 2.01 

90 Nov 11 P4 18.07 17.00 17.54 0.76 62.52 59.20 60.86 2.35 

91 Nov 16 Pmt 39.72 38.78 39.25 0.66 31.88 34.78 33.33 2.05 

92 Nov 18 Pb 31.55 30.90 31.23 0.46 42.77 48.25 45.51 3.87 

93 Nov 18 P23 17.59 16.31 16.95 0.91 62.73 58.02 60.38 3.33 

94 Flour 8 27.97 25.70 26.84 1.61 47.18 49.87 48.53 1.90 

95 Nov 21 Pb 30.87 31.65 31.26 0.55 44.38 41.09 42.74 2.33 

96 Nov 21 P4 17.70 16.47 17.09 0.87 63.59 65.24 64.42 1.17 

97 Nov 23 Pm 34.80 36.61 35.71 1.28 38.74 37.14 37.94 1.13 

98 Nov 24 P23 16.66 14.51 15.59 1.52 64.34 62.45 63.40 1.34 

99 Flour 11 28.18 29.36 28.77 0.83 49.18 53.63 51.41 3.15 

100 Dec 1 Pb 30.34 30.73 30.54 0.28 43.34 46.15 44.75 1.99 

101 Dec 1 Pt 37.25 38.72 37.99 1.04 37.86 37.68 37.77 0.13 

102 Dec 1 P23 16.81 15.29 16.05 1.07 52.69 58.31 55.50 3.97 

     AVG 0.92   AVG 1.99 

 

 

 


