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Parameter identification in dynamic systems
using the homotopy optimization approach
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Abstract Identifying the parameters in a mathematical model governed by a system of or-
dinary differential equations is considered in this work. It is assumed that only partial state
measurement is available from experiments, and that the parameters appear nonlinearly in
the system equations. The problem of parameter identification is often posed as an opti-
mization problem, and when deterministic methods are used for optimization, one often
converges to a local minimum rather than the global minimum. To mitigate the problem of
converging to local minima, a new approach is proposed for applying the homotopy tech-
nique to the problem of parameter identification. Several examples are used to demonstrate
the effectiveness of the homotopy method for obtaining global minima, thereby successfully
identifying the system parameters.

Keywords Parameter estimation· Global optimization· Homotopy · Reduced-order
modelling· Partial state measurement

1 Introduction

The problem of identifying the parameters in a mathematical model governed by ordinary
differential equations (ODEs), given a set of experimental measurements, is encountered in
many fields of physics, chemistry, biology, and engineering [8]. The problem of parameter
identification can be posed as an optimization problem [17,18], where the arguments of the
global minimum of the objective function are the identified parameters. If the parameters
appear linearly in the system equations and full state measurement is available from exper-
imental data, a large class of methods is available for both off-line and on-line parameter
identification [17,18]. In most practical engineering problems, however, it is not possible to
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obtain measurements for all states, and the parameters often appear nonlinearly in the equa-
tions of motion. Off-line identification algorithms are used when the main goal is to develop
a mathematical model for system simulation; on-line identification algorithms are more pop-
ular in adaptive control applications [15]. The optimization problems are usually solved
using deterministic methods, which require the solution ofdifferential equations at each op-
timization step. The solution of these ODEs can be obtained using initial-value methods [10,
26], shooting methods [1], or collocation methods [2]. Whendeterministic approaches like
the steepest descent [22], Gauss–Newton [22], and Levenberg–Marquardt [20] algorithms
are used in the optimization procedure, it is not uncommon toconverge to a local minimum
rather than the global minimum [7]. Stochastic methods, such as simulated annealing [23]
and genetic algorithms [9], can be used to find global minima,but these methods typically
require a large number of iterations to converge and, thus, are time-consuming, especially
for parameter identification problems where the equations of motion are integrated at every
optimization step [10,11,26]. An obvious question that arises is whether there exist any non-
stochastic algorithms that can find global minima. Althoughone can never be assured that a
deterministic algorithm will be able to find the global minimum in every situation, there are
approaches derived from homotopy methods that can find global minima in situations where
other deterministic methods cannot.

Homotopy [27] is a powerful technique that is used in severalareas of mathematics,
including optimization [5,12] and nonlinear root finding [4]. In homotopy methods, the ob-
jective function to be minimized is modified by adding another function whose optimum is
known, herein referred to as the known function, and a morphing parameter is used to trans-
form the modified function into the original objective function. A series of optimizations
is performed while slowly varying the morphing parameter until the modified function is
transformed back into the original objective function [5].Applying homotopy to algebraic
optimization problems is straightforward, but its application to the parameter identification
problem is not, since the objective function is, itself, dependent on the solution of differential
equations. Homotopy was successfully applied to ARMAX models [13,14] for the identifi-
cation of linear parameters. In the work of Abarbanel et al. [1], the authors have coupled the
mathematical model to the experimental data for identifying parameters from a chaotic time
series for first-order systems, which is related to the homotopy method. The application of
homotopy to the general nonlinear parameter identificationproblem has not been studied in
the literature. In this work, we present a methodology to apply homotopy to the problem of
parameter identification. We show several examples where the classical deterministic meth-
ods fail to find the global minimum while the homotopy method successfully minimizes the
objective function.

2 Problem Statement

The dynamic equations of the physical system for which the parameters must be identified
are assumed to be of the following form:

ẋ1 = x2

ẋ2 = f (x1,x2,p, t) (1)

For mechanical systems,x1(t) = [y1(t), y2(t), . . . , yn(t)]
T are the independent coordi-

nates (displacements) andp is a column vector containing the parameters to be identified.
The system is assumed to be nonlinear, and the parameters mayalso appear nonlinearly in
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equations (1). Experimental datax1e(t) = [y1e(t), y2e(t), . . . , yne(t)]
T of all the displace-

ments are assumed to be available over timeT ; it is assumed that the velocities are not mea-
sured. Note that it is possible to identify the system parameters with only a few components
of x1e(t) since, in coupled systems, each component ofx1e(t) contains information from
all the parameters due to the coupling between the system equations. The unknown initial
conditions of the states for which measurements are not available can be treated as unknown
parameters. In order to simplify the optimization procedure, experiments can be performed
starting from rest, such that the velocity initial conditions are zero. The goal is to identify the
parameters in the mathematical model such that the solutionof the differential equations (1)
closely matches the experimental data. To identify the parameters, we minimize the integral
of the squared difference between the experimental and simulated states:

V (p) =
1

2

n
∑

i=1







T
∫

0

(

yie(t)− yi(t,p)
)2

dt







(2)

Note that a discrete summation can be used in place of the integral in this equation. Given
the initial estimates of the parameters, we can minimize equation (2) iteratively using the
Gauss–Newton method [22] as follows:

p
r+1

= p
r
+ σdr (3)

whereσ is the step size anddr is the search direction, which can be obtained from the
following relation [26]:

H(p
r
)d

r
= −G

T
(p

r
) (4)

In equation (4),G andH are the gradient and the approximate Hessian of the objective
function, where the second-order sensitivities have been neglected in the latter:

G(p) =
∂V

∂p
= −

n
∑

i=1







T
∫

0

(

yie(t)− yi(t,p)
)∂yi
∂p

dt







(5)

H(p) =
∂2V

∂p2
≈

n
∑

i=1







T
∫

0

∂yi
∂p

T ∂yi
∂p

dt







(6)

The sensitivity data∂yi

∂p
=

[

∂yi

∂p1

, ∂yi

∂p2

, . . . , ∂yi

∂pm

]

can be obtained by solving the sensitivity

differential equations, which can be derived by the direct differentiation of equations (1)
with respect to the individual parameters:

∂ẋ1

∂pj
=
∂x2

∂pj

∂ẋ2

∂pj
=
∂f(x1,x2,p, t)

∂pj
+
∂f(x1,x2,p, t)

∂x1

∂x1

∂pj
+
∂f(x1,x2,p, t)

∂x2

∂x2

∂pj
,

j = 1, 2, . . . ,m (7)

We will briefly explain how homotopy is applied to a simple algebraic minimization
problem. LetF(p) be the objective function. We are interested in finding parametersp∗ at
whichF has a global minimum. If we start from an arbitrary pointp0, and if the function
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has multiple local minima, it is likely that the optimization procedure will converge to a
local minimum. In the homotopy method, we first construct thefollowing function:

H(p, λ) = (1− λ)F(p) + λG(p) (8)

whereG(p), referred to as the known function, is a chosen function thatis convex in the
unknown parameters, and for which the arguments of its global minimum are known. We
now begin the process by choosingλ0 = 1 and minimizingH(p, 1) = G(p). In this first
stage, the minimum ofH(p, 1) is simply the minimum ofG(p), which is known. Once the
minimum has been found,λ is decreased by a small amountδλ andH(p, λ1) is minimized,
whereλℓ = 1− ℓ δλ, using the converged result from the previous stage as the initial guess
for p. This process is continued untilλ = 0 and the objective function has been morphed
back intoF(p). Provided we are always finding the minimum ofH(p, λ) with an initial
guess that is close to its global minimum, it is more likely that we will find the global mini-
mum of the functionF(p). A variant of this method has been successfully applied to com-
plex optimization problems involving protein structures [6] and to finding the equilibrium
configuration of an elastica [28]. Note that the choice of known functionG(p) is nontrivial.
In general, the homotopy method is only capable of finding local minima; however, if the
nature ofF(p) is known, it may be possible to construct the homotopy transformation in
a way that increases the chance of finding the global minimum.It is for this reason that
the optimization problem for parameter identification is generally more challenging than it
is for purely algebraic problems. In particular, the shape of F(p) = V (p) is unknown in
parameter identification problems, since it is dependent onthe solution of differential equa-
tions (1), thereby making the selection of a suitable known functionG(p) very difficult. In
contrast to algebraic problems, however, where the minimumvalue of the objective function
is unknown, the minimum value of the objective function in parameter identification prob-
lems is zero—provided the mathematical model is known exactly. Since the mathematical
model is not precisely known in general, the final error may not be exactly zero; however, it
is expected to be small. We use this knowledge in developing our homotopy transformation.

We now discuss how the homotopy method can be applied to the problem of parameter
identification. To modify the objective function, the experimental data is coupled to the
mathematical model as follows:

ẋ1 = x2 + λK1 (x1e − x1)

ẋ2 = f (x1,x2,p, t) + λK2 (x1e − x1) (9)

Initially, when λ = 1, the coupling term acts as a high-gain observer [3,16], and if suf-
ficiently high values ofKi are used, the experimental data and simulated response will
synchronize. Note thatλ is introduced to the traditional definition of a high-gain observer
so as to construct the homotopy transformation. Also note that the sensitivity equations (7)
must be modified to account for the added coupling term. For very largeKi, the objective
function becomes a flat surface with a very small magnitude, and the experimental datax1e

and simulated responsex1 will closely match no matter what parameters are used. For the
purposes of parameter identification, we choose the lowest values ofKi such that the exper-
imental data and simulated response synchronize to within adesired toleranceε when the
initial parameter estimates are used. We now decreaseλ by a small amountδλ and minimize
the objective function (2), treating equation (9) as the mathematical model. The parameter
estimates are refined so as to reduce the error toβε, where0 < β < 1. We then decreaseλ
further to1− 2 δλ; since the parameter guesses have been refined, the observergain can be
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reduced without increasing the error beyondε. At each stage in this process, we use the con-
verged result from the previous stage as the initial guess for p. This process is repeated until
λ = 0, and equation (9) has morphed back into equation (1). In summary, the homotopy
optimization approach follows the path of minimal error as the observer gain is decreased.
We ensure that the error is close to zero (no greater thanε) at each value of the observer gain,
with the hope that the refined parameter guesses at the final stage are sufficiently close to
the global optimum of the original problem. The process of applying the homotopy method
to the problem of parameter identification is summarized in Algorithm 1.

Algorithm 1 Parameter identification using homotopy
Input: Experimental data (x1e), objective function tolerance (ǫ)
Output: Identified parameters (p)

Initialize

while λ ≥ 0 do

while V > ǫ do

Solve ODEs forx1 and ∂x1

∂pj
∀j

Minimize V (p) = 1
2

∑n
i=1

{

T
∫

0

(

yie(t) − yi(t,p)
)2

dt

}

SolveH(p)d = −GT(p) for d

p← p+ σd

end while

λ← λ− δλ

end while

return p

3 Numerical Examples

In this section, we present numerical examples in which the homotopy method has been
used to successfully identify the parameters in mechanicalsystems.

3.1 Linear parameters

Let us begin with the identification of parameters for a simple pendulum. We describe this
example in detail to further explain the idea of the homotopymethod. The equations of
motion for a simple pendulum are given in state-space form asfollows:

ẏ1 = y2

ẏ2 = −p sin(y1) (10)

with initial conditionsy1(0) = π/6 andy2(0) = 0. The solution of this system withp = 10

for time t ∈ [0, 50] is used as experimental datay1e. The goal is to determinep from the
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experimental data. We define the following minimization problem:

p∗ = min
arg

50
∫

0

(

y1e − y1(p)
)2

dt (11)

A direct search has been used to identify the shape of the objective function, as shown
in Figure 1. It can be seen that the objective function has multiple local minima, and any
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Fig. 1 Normalized objective function for simple pendulum

classical deterministic optimization method will fail to converge to the global minimum
unless we choose our initial guess forp to be quite close to10. To apply the homotopy
method, we modify the equations of motion as follows:

ẏ1 = y2 + λK1 (y1e − y1)

ẏ2 = −p sin(y1) + λK2 (y1e − y1) (12)

The sensitivity equations are now given as follows:

∂ẏ1
∂p

=
∂y2
∂p

− λK1
∂y1
∂p

∂ẏ2
∂p

= − sin(y1)− p cos(y1)
∂y1
∂p

− λK2
∂y1
∂p

(13)

Figure 2, again obtained using a direct search, illustratesthe shape of the objective function
for different values ofλ andp, using coupling parametersK1 = K2 = 10. As can be seen,
the modified objective function is convex whenλ = 1; as we decreaseλ to 0, the modified
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Fig. 2 Normalized objective function for simple pendulum with0 ≤ λ ≤ 1

objective function slowly morphs into the original objective function shown in Figure 1. The
line joining the minimum of the modified function for different values ofλ is also shown.
We have implemented the homotopy method for identifyingp as illustrated in Algorithm 1,
with ǫ = 0.001 andδλ = 0.2. Using the homotopy method with an initial guess ofp0 = 15,
we converge to the global minimum atp = 10 since we always remain close to the global
minimum of the modified objective function. Without using homotopy, again starting with
an initial guess ofp0 = 15, the parameter converges to a local minimum atp = 14.6755.

3.2 Nonlinear parameters

Consider the following system, which has been studied in [3]:

ü + 0.1u̇ + tan
−1 (ku) = sin

(

t

2
+ πψ

)

(14)

The system is nonlinear in bothk andψ. We usek = 1 andψ = 0.5 for generating ex-
perimental data, and then attempt to identify these parameters using initial guessesk0 = 4

andψ0 = 2. The identification procedure was first performed without using homotopy,
the results of which are shown in Figure 3(a). Clearly, the optimization procedure (Gauss–
Newton) has converged to a local minimum wherek = 4.5850 andψ = 1.9620. The homo-
topy method was then applied using the same initial guesses for k andψ. In this example,
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we use coupling parametersK1 = K2 = 10, step sizeδλ = 0.2, and objective function
toleranceǫ = 0.01. As shown in Figure 3(b), the global minimum was found and both pa-
rameters were correctly identified using the homotopy method (we obtaink = 1.0001 and
ψ = 2.5000). Note that the estimate forψ produces an equivalent response as doesψ = 0.5,
sincesin

(

t
2
+ π(ψ + 2)

)

= sin
(

t
2
+ πψ

)

.
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0
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5

Iteration Number

k
,
ψ

 

 

k
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,
ψ

 

 

k
ψ

(a) (b) 

Fig. 3 Parameter estimates for equation (14) obtained (a) withouthomotopy, and (b) with homotopy

3.3 Noisy experimental data

Consider the following two-degree-of-freedom (DOF) system [3]:

ü + 0.3u̇ + u +C1u
3
+C2v = 0

v̈ + 0.3v̇ + u+ C3v
3
+ cos(t) = 0 (15)

whereC1 = 1,C2 = 2, andC3 = 3 are used for generating the experimental data foru and
v, to which we add5% white noise. In this example, we assume that the initial conditions
for all states are known. Taking as initial guessesC0

1 = C0
2 = C0

3 = 10 and without using
homotopy, the optimization procedure converges to parameters that are different from the
experimental values (we obtainC1 = 13.3840, C2 = 7.9444, andC3 = 9.3622, as shown
in Figure 4(a)). Although we do not expect to achieve exact convergence due to the noise
in the experimental data, these parameter values are significantly different than the actual
values. Using the homotopy method withKi = 10 ∀i andδλ = 0.2, we obtain parameter
estimatesC1 = 0.9998, C2 = 2.0008, andC3 = 3.0034, which are very close to the
experimental values (see Figure 4(b)). Note that only the experimental data foru is coupled
to the equations of motion; it is assumed that the data forv is not measured. This coupling
strategy confirms that it is not necessary to measure all the coordinates of a multiple-DOF
system in order to identify all the system parameters. The experimental data and the results
from the simulated system using the identified parameters are in good agreement, as shown
in Figure 5.
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Fig. 4 Parameter estimates for equation (15) obtained (a) withouthomotopy, and (b) with homotopy
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Fig. 5 Experimental data and simulated response for equation (15)using identified parameters

3.4 Reduced-order modelling

In this final example, we consider the problem of identifyingparameters in a multibody sys-
tem given experimental data generated using a more complex model. In particular, a 14-DOF
vehicle model with a fully independent suspension, shown inFigure 6, is used to generate
the experimental data. This topology is recommended by Sayers [24] for simulating the
handling and braking behaviour of a vehicle, and has been adopted by several commercial
software packages. The position and orientation of the vehicle chassis (mc) together com-
prise 6 DOF. Four lumped masses (ms), each representing one-quarter of the suspension
components, are connected to the chassis by prismatic joints in parallel with springs (k)
and dampers (c), which represent the suspension compliance and together add 4 DOF. Each
wheel is connected to its corresponding lumped mass with a horizontally-oriented revolute
joint that allows the wheel to spin, collectively accounting for the final 4 DOF; torques (τ (t))
can be applied at these joints to accelerate the vehicle. ThePacejka2002 Magic Formula tire

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



10

Front view Side view 

wf wf 

mc 

ms 

kf 

δ(t) 

τ(t) 

lr lf 

mc 
v 

y 

z 

x 

cf kf cf kf cf kr cr 

ms ms ms 

δ(t) 

τ(t) 

Fig. 6 14-DOF vehicle model used for generating experimental data

model [21] is used to model the tire dynamics. The vertically-oriented revolute joints on the
front wheels (δ(t)) are used to steer the vehicle on a prescribed trajectory, sodo not add
any DOF to the system. The system parameters are obtained from [25], some of which are
shown in Table 1.

Table 1 System parameters for 14-DOF vehicle model

Parameter Value

Mass
Chassis (mc) 2077 kg
Quarter of suspension (ms) 10 kg

Stiffness
Front suspension (kf ) 48.30 kN/m
Rear suspension (kr) 30.52 kN/m

Damping
Front suspension (cf ) 3.08 kN-s/m
Rear suspension (cr) 2.33 kN-s/m

Dimensions

Front width (wf ) 0.760 m
Rear width (wr) 0.795 m
Front length (lf ) 1.353 m
Rear length (lr) 1.487 m

Experimental data generated from the 14-DOF model with Pacejka tires is used to iden-
tify parameters in the planar bicycle model shown in Figure 7. The planar bicycle model
is often used for the simulation of vehicle dynamics and for on-board stability controllers.
This simple model has only 3 DOF: the position of the chassis in thex-direction (y1), the
position of the chassis in they-direction (y2), and the orientation of the chassis in the plane
(y3). The mass of the chassis is assumed to bemb = mc +4ms = 2117 kg, and the lengths
are assumed to bedf = lf = 1.353 m anddr = lr = 1.487 m. The yaw inertia of the chas-
sis is also defined to match that of the 14-DOF model. A simple 4-parameter tire model [19]
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Fig. 7 Planar vehicle model for which parameters are sought

is used in place of the complex 117-parameter Pacejka model used in the 14-DOF system:

sb = 1−
vx,w
Rω

(16)

Fx,w = Along

(

1− e−Blongsb

)

Fz (17)

αb = arctan

(

vy,w
vx,w

)

(18)

Fy,w = Alat

(

1− e−Blatαb

)

Fz (19)

wheresb is the longitudinal slip,αb is the lateral slip angle,vx,w andvy,w are the longi-
tudinal and lateral components of the wheel velocity in the wheel reference frame,R is the
tire radius, andω is the rotational speed of the wheel. ForcesFx,w andFy,w are applied
directly to the wheel centers. The tire radius (R) is assumed to be equal to the unloaded
radius used in the Pacejka model, and the vertical tire force(Fz) is simply assumed to be
half the total static load in the 14-DOF model. We wish to find values for the tire parameters
(Along,Blong,Alat, andBlat) such that the simulated response of the 3-DOF planar model
matches the experimental data obtained from the 14-DOF model as closely as possible. Note
that the planar model has no suspension and can neither pitchnor roll.

To generate the experimental data, we must first define the required inputs. In order
to adequately capture both the longitudinal and lateral dynamics, we first accelerate the
vehicle from4 m/s to16 m/s by applying positive torque to each wheel, then perform alane-
change maneuver, and finally slow the vehicle to6 m/s by applying negative torque to each
wheel. The steer angle and wheel torque inputs are shown in Figure 8. Using these inputs,
the 14-DOF vehicle model is simulated for22 seconds and the state vector is stored every
millisecond. For the purpose of parameter identification, we assume that only five states are
known: the position of the chassis along thex- andy-axes, the orientation of the chassis
about thez-axis, and the average rotational speeds of the two front andtwo rear wheels.
Note that the wheel speeds of the 14-DOF model are required inorder to calculate the tire
forces applied to the 3-DOF model (equations (16) to (19)). We use the following objective
function:

V =

3
∑

i=1







wi

22
∫

0

(

yie(t)− yi(t, Along, Blong, Alat, Blat)
)2

dt







(20)

where weightsw1 = 0.001, w2 = 0.01, andw3 = 1 are chosen to scale the longitudinal
position, lateral position, and orientation errors to the same orders of magnitude. We obtain
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Fig. 8 Inputs used to generate experimental data with the 14-DOF model

rough initial guessesAlong = Blong = 100 andAlat = Blat = 1 by hand, which corre-
sponds to an objective function value of1.804 × 10−2 and produces the simulation results
shown in Figure 9.
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Fig. 9 Simulation results for (a) trajectory and (b) yaw angle, obtained using initial parameter guesses

We perform the optimization procedure using the homotopy method described above,
with Ki = 0.5 ∀i, δλ = 0.1, andǫ = 10−4. Convergence is achieved after a total of12

iterations, with a final objective function value ofVf = 3.3× 10−5, as shown in Figure 10.
The identified parameters areAlong = 99.97, Blong = 99.97, Alat = 3.05, andBlat =

3.06; the corresponding simulation results are shown in Figure 11.
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Fig. 10 Convergence of the objective function (normalized by the number of data points)
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Fig. 11 Simulation results for (a) trajectory, (b) yaw angle, (c) longitudinal velocity, and (d) yaw rate, ob-
tained using identified parameters
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4 Conclusions

In this work, we have presented a new methodology for applying the homotopy optimization
technique to the parameter identification problem. We have considered the general problem
of parameter identification for nonlinear parameters with partial state measurement cor-
rupted by measurement noise. The proposed homotopy method can successfully find global
minima given a wide range of initial parameter guesses. The effectiveness of the proposed
technique for parameter identification has been demonstrated by several example problems.
The authors are currently investigating the use of the homotopy method for recursive param-
eter identification in on-line applications, and for systems governed by differential-algebraic
equations.
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