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Abstract Identifying the parameters in a mathematical model governed by a system of or-
dinary differential equations is considered in this work. It is assumed that only partial state
measurement is available from experiments, and that the parameters appear nonlinearly in
the system equations. The problem of parameter identification is often posed as an opti-
mization problem, and when deterministic methods are used for optimization, one often
converges to a local minimum rather than the global minimum. To mitigate the problem of
converging to local minima, a new approach is proposed for applying the homotopy tech-
nique to the problem of parameter identification. Several examples are used to demonstrate
the effectiveness of the homotopy method for obtaining global minima, thereby successfully
identifying the system parameters.

Keywords Parameter estimationGlobal optimization- Homotopy - Reduced-order
modelling- Partial state measurement

1 Introduction

The problem of identifying the parameters in a mathematical model governed by ordinary
differential equations (ODES), given a set of experimental measurements, is encountered in
many fields of physics, chemistry, biology, and engineering [8]. The problem of parameter
identification can be posed as an optimization problem [17,18], where the arguments of the
global minimum of the objective function are the identified parameters. If the parameters
appear linearly in the system equations and full state measurement is available from exper-
imental data, a large class of methods is available for both off-line and on-line parameter
identification [17,18]. In most practical engineering problems, however, it is not possible to
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obtain measurements for all states, and the parametersagffear nonlinearly in the equa-
tions of motion. Off-line identification algorithms are as@hen the main goal is to develop
a mathematical model for system simulation; on-line idaatiion algorithms are more pop-
ular in adaptive control applications [15]. The optimipatiproblems are usually solved
using deterministic methods, which require the solutiodifférential equations at each op-
timization step. The solution of these ODEs can be obtaisedyunitial-value methods [10,
26], shooting methods [1], or collocation methods [2]. Wieterministic approaches like
the steepest descent [22], Gauss—Newton [22], and LevgAldarquardt [20] algorithms
are used in the optimization procedure, it is not uncommarotwerge to a local minimum
rather than the global minimum [7]. Stochastic methodshsagsimulated annealing [23]
and genetic algorithms [9], can be used to find global minioué these methods typically
require a large number of iterations to converge and, thestime-consuming, especially
for parameter identification problems where the equatiémsation are integrated at every
optimization step [10, 11, 26]. An obvious question thad@siis whether there exist any non-
stochastic algorithms that can find global minima. Althoogle can never be assured that a
deterministic algorithm will be able to find the global minim in every situation, there are
approaches derived from homotopy methods that can find lgieinéma in situations where
other deterministic methods cannot.

Homotopy [27] is a powerful technigue that is used in sevarahs of mathematics,
including optimization [5,12] and nonlinear root finding.[#h homotopy methods, the ob-
jective function to be minimized is modified by adding anothumction whose optimum is
known, herein referred to as the known function, and a magpparameter is used to trans-
form the modified function into the original objective fuimst. A series of optimizations
is performed while slowly varying the morphing parametetiltthe modified function is
transformed back into the original objective function [Bpplying homotopy to algebraic
optimization problems is straightforward, but its applica to the parameter identification
problem is not, since the objective function is, itself, elegent on the solution of differential
equations. Homotopy was successfully applied to ARMAX niefE3, 14] for the identifi-
cation of linear parameters. In the work of Abarbanel etld|.the authors have coupled the
mathematical model to the experimental data for identifyparameters from a chaotic time
series for first-order systems, which is related to the hompotmethod. The application of
homotopy to the general nonlinear parameter identificgifoblem has not been studied in
the literature. In this work, we present a methodology tdyphpmotopy to the problem of
parameter identification. We show several examples whereléissical deterministic meth-
ods fail to find the global minimum while the homotopy methodaessfully minimizes the
objective function.

2 Problem Statement

The dynamic equations of the physical system for which thrarpaters must be identified
are assumed to be of the following form:

:i:l = X2
2 = f(T1, T2, P, 1) 1)
For mechanical systemss; (t) = [y1(t), y2(t), ..., yn(t)]" are the independent coordi-

nates (displacements) amdis a column vector containing the parameters to be identified
The system is assumed to be nonlinear, and the parameteralsaagppear nonlinearly in
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equations (1). Experimental dat@.(t) = [y1e(t), y2¢(t), - - - , yne(t)]" of all the displace-
ments are assumed to be available over fimi is assumed that the velocities are not mea-
sured. Note that it is possible to identify the system patarsevith only a few components
of &1.(t) since, in coupled systems, each componeri Qf(t) contains information from
all the parameters due to the coupling between the systeatieqs. The unknown initial
conditions of the states for which measurements are ndedlaican be treated as unknown
parameters. In order to simplify the optimization proced@xperiments can be performed
starting from rest, such that the velocity initial conditsoare zero. The goal is to identify the
parameters in the mathematical model such that the solatithre differential equations (1)
closely matches the experimental data. To identify therpatars, we minimize the integral
of the squared difference between the experimental andaietlstates:

T

Vip) = %Z { / (vie®) — witt, p))” dt} )

1=1 0

Note that a discrete summation can be used in place of thgraite this equation. Given
the initial estimates of the parameters, we can minimizeatgu (2) iteratively using the
Gauss—Newton method [22] as follows:

ptt=p +od ®3)
whereo is the step size and” is the search direction, which can be obtained from the
following relation [26]:

H(p")d =-G'(p") @)

In equation (4),G and H are the gradient and the approximate Hessian of the obgectiv
function, where the second-order sensitivities have begiented in the latter:

T
ov - : v
G(p) = ap > {/ (yie(t) - yi(t7p)) 61; dt} (5)
=1 0
v & fowTo
Yi Yi
H(p) = ~y / dt (6)
op* = ) op Op
The sensitivity datéjs = [ggli AL g’p—yﬂ can be obtained by solving the sensitivity

differential equations, which can be derived by the diraffeckntiation of equations (1)
with respect to the individual parameters:

oy _ o

Op;  Op;

Oxa _ of(x1,x2,p,1) n Of (®1, ®2, p, t) 01 n Of (x1, @2, p,t) Ox2

(9])]' (9])]' 8w1 (9])]' (9:82 (9])]'7
i=12....m (7)

We will briefly explain how homotopy is applied to a simple etbgaic minimization
problem. LetF(p) be the objective function. We are interested in finding patensp™ at
which F has a global minimum. If we start from an arbitrary popft, and if the function
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has multiple local minima, it is likely that the optimizatigorocedure will converge to a
local minimum. In the homotopy method, we first constructftilewing function:

H(p,A) = (1 =) F(p) + AG(p) 8)

whereG(p), referred to as the known function, is a chosen function ihabnvex in the
unknown parameters, and for which the arguments of its gloliimum are known. We
now begin the process by choosing = 1 and minimizingH(p, 1) = G(p). In this first
stage, the minimum of{(p, 1) is simply the minimum of(p), which is known. Once the
minimum has been found, is decreased by a small amouiit and?(p, A1) is minimized,
wherel, = 1 — £ 4§, using the converged result from the previous stage as itfied uess
for p. This process is continued unfil = 0 and the objective function has been morphed
back intoF(p). Provided we are always finding the minimum&{p, \) with an initial
guess that is close to its global minimum, it is more likelgitttve will find the global mini-
mum of the functionF(p). A variant of this method has been successfully applied m-co
plex optimization problems involving protein structur&} §nd to finding the equilibrium
configuration of an elastica [28]. Note that the choice ofiindunctionG(p) is nontrivial.
In general, the homotopy method is only capable of findingllosinima; however, if the
nature of F(p) is known, it may be possible to construct the homotopy ti@msétion in
a way that increases the chance of finding the global minimuis. for this reason that
the optimization problem for parameter identification isgelly more challenging than it
is for purely algebraic problems. In particular, the shap&¢p) = V(p) is unknown in
parameter identification problems, since it is dependethersolution of differential equa-
tions (1), thereby making the selection of a suitable knouwncfionG(p) very difficult. In
contrast to algebraic problems, however, where the minivaiore of the objective function
is unknown, the minimum value of the objective function imgraeter identification prob-
lems is zero—provided the mathematical model is known éxa8ince the mathematical
model is not precisely known in general, the final error matylieoexactly zero; however, it
is expected to be small. We use this knowledge in developimgnomotopy transformation.

We now discuss how the homotopy method can be applied to tidegmn of parameter
identification. To modify the objective function, the exipeental data is coupled to the
mathematical model as follows:

1 =22 + AK1 (1 — 1)
T2 = f(x1,x2,p,t) + A K2 (T1c — 1) 9)

Initially, when A = 1, the coupling term acts as a high-gain observer [3,16], &sdfi
ficiently high values ofK; are used, the experimental data and simulated response will
synchronize. Note that is introduced to the traditional definition of a high-gainsebver

so as to construct the homotopy transformation. Also naiettie sensitivity equations (7)
must be modified to account for the added coupling term. Foyr keege K;, the objective
function becomes a flat surface with a very small magnitude the experimental date; .

and simulated responsg; will closely match no matter what parameters are used. Feor th
purposes of parameter identification, we choose the lovedisés ofK; such that the exper-
imental data and simulated response synchronize to witkiesaed tolerance when the
initial parameter estimates are used. We now decreéyea small amouni\ and minimize
the objective function (2), treating equation (9) as theheatatical model. The parameter
estimates are refined so as to reduce the errgetavhere0 < 8 < 1. We then decrease
further to1 — 2 §\; since the parameter guesses have been refined, the olgairvean be
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reduced without increasing the error beyendit each stage in this process, we use the con-
verged result from the previous stage as the initial guasp.f@his process is repeated until
A = 0, and equation (9) has morphed back into equation (1). In sanyyrthe homotopy
optimization approach follows the path of minimal error las bbserver gain is decreased.
We ensure that the error is close to zero (no greaterdhateach value of the observer gain,
with the hope that the refined parameter guesses at the fag# are sufficiently close to
the global optimum of the original problem. The process g@igpg the homotopy method
to the problem of parameter identification is summarizedIgoAthm 1.

Algorithm 1 Paraneter identification using honotopy

Input: Experimental dataa; ), objective function tolerance)
Output: Identified parameterg

Initialize
while A > 0do
while V' > e do
Solve ODEs fore and% Vj
Pj
Minimize V(p) = 2 > < [ (yie(t) - yi(t, P)) dt
0
Solve H(p) d = —GX(p) for d
p<+< p+od
end while
A A—0A

end while

return p

3 Numerical Examples

In this section, we present numerical examples in which thadtopy method has been
used to successfully identify the parameters in mechanicems.

3.1 Linear parameters

Let us begin with the identification of parameters for a senpndulum. We describe this
example in detail to further explain the idea of the homotapsthod. The equations of
motion for a simple pendulum are given in state-space forfolksvs:

Y1 = y2
Y2 = —psin(y1) (10)

with initial conditionsy, (0) = /6 andy2(0) = 0. The solution of this system with = 10
for time ¢ € [0, 50] is used as experimental daja.. The goal is to determing from the
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experimental data. We define the following minimizationkpem:

50

p* = min/ (yle — Y1 (p))2 dt (11)

arg
0

A direct search has been used to identify the shape of thetolgefunction, as shown
in Figure 1. It can be seen that the objective function hagiptellocal minima, and any
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Fig. 1 Normalized objective function for simple pendulum

classical deterministic optimization method will fail toroverge to the global minimum
unless we choose our initial guess foto be quite close td0. To apply the homotopy
method, we modify the equations of motion as follows:

U1 =y2 + AK1 (y1e — 1)
U2 = —psin(y1) + A K2 (y1e — y1) (12)

The sensitivity equations are now given as follows:

Oy _ Oy2 o O

9~ p ANKy ap

02 _ _ () — i\ i, 90

oy sin(y1) — pcos(y1) o9 A Ko 9 (13)

Figure 2, again obtained using a direct search, illustifeshape of the objective function
for different values of\ andp, using coupling parametefs; = K2 = 10. As can be seen,
the modified objective function is convex whan= 1; as we decreaskto 0, the modified
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Fig. 2 Normalized objective function for simple pendulum with< X < 1

objective function slowly morphs into the original objetifunction shown in Figure 1. The
line joining the minimum of the modified function for diffarevalues of) is also shown.
We have implemented the homotopy method for identifyiras illustrated in Algorithm 1,
with e = 0.001 andé\ = 0.2. Using the homotopy method with an initial guesgdf= 15,
we converge to the global minimum at= 10 since we always remain close to the global
minimum of the modified objective function. Without usingrhetopy, again starting with
an initial guess op® = 15, the parameter converges to a local minimurp at 14.6755.

3.2 Nonlinear parameters

Consider the following system, which has been studied in [3]
i+ 0.1% + tan ™" (ku) = sin (% + 7r1,[)> (14)

The system is nonlinear in bothand. We usek = 1 andy = 0.5 for generating ex-
perimental data, and then attempt to identify these paemesing initial guessdsd = 4
andy® = 2. The identification procedure was first performed withouihgshomotopy,
the results of which are shown in Figure 3(a). Clearly, thignaigation procedure (Gauss—
Newton) has converged to a local minimum whére 4.5850 andy) = 1.9620. The homo-
topy method was then applied using the same initial guessdsdnd. In this example,
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we use coupling parametefs; = K> = 10, step sizedA = 0.2, and objective function
tolerances = 0.01. As shown in Figure 3(b), the global minimum was found andhyuz-
rameters were correctly identified using the homotopy nmé(ae obtaink = 1.0001 and
1 = 2.5000). Note that the estimate far produces an equivalent response as does0.5,
sincesin (£ + 7(y + 2)) =sin (£ + 79).

(@ 5 ‘ ‘ ! () 5
4P/7 4
3 3
= =
< <
] S RN RN SRR 2
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| N A I N B
0 50 100 150 20C 0 50 ~100 150 20C
Iteration Number Iteration Number

Fig. 3 Parameter estimates for equation (14) obtained (a) withoototopy, and (b) with homotopy

3.3 Noisy experimental data

Consider the following two-degree-of-freedom (DOF) sys{8]:

4 0.30 4+ u + Cru® + Cov =0
b4 0.30 + u + C30° + cos(t) = 0 (15)

whereC; = 1, C2 = 2, andC3 = 3 are used for generating the experimental data:.fand

v, to which we addb% white noise. In this example, we assume that the initial dwr
for all states are known. Taking as initial gueségs= C3 = C2 = 10 and without using
homotopy, the optimization procedure converges to parrsighat are different from the
experimental values (we obtalth = 13.3840, C2 = 7.9444, andC's = 9.3622, as shown
in Figure 4(a)). Although we do not expect to achieve exaovergence due to the noise
in the experimental data, these parameter values are sagmifj different than the actual
values. Using the homotopy method wifhy, = 10V: andd\ = 0.2, we obtain parameter
estimatesC; = 0.9998, C2 = 2.0008, andCs = 3.0034, which are very close to the
experimental values (see Figure 4(b)). Note that only tiedmental data fou is coupled
to the equations of motion; it is assumed that the data fsrnot measured. This coupling
strategy confirms that it is not necessary to measure alldbedinates of a multiple-DOF
system in order to identify all the system parameters. Tipeemental data and the results
from the simulated system using the identified parameterinagood agreement, as shown
in Figure 5.



O©CO~NOOOTA~AWNPE

9
5 : : : b
(@ 15 ®) 1 —0,
» 2
[\ 8‘ ...... == 3
@10;«.‘. -------------------------- S 6
(c)\] S gsSEEEEEEEEEEsEEsEEEEsEEsEEEEE (c)\] :l ---- .
I 4 T :
O 5 Q
—C) 2
«Cy
0 : : =Gy 0 : : :
0 50 100 150 20C 0 100 200 300 40C

Iteration Number Iteration Number
Fig. 4 Parameter estimates for equation (15) obtained (a) withoototopy, and (b) with homotopy

| — Experimentat - - Estimated

0 10 20 30 40 50
Time [s]

Fig. 5 Experimental data and simulated response for equationu&iay identified parameters

3.4 Reduced-order modelling

In this final example, we consider the problem of identifypagameters in a multibody sys-
tem given experimental data generated using a more commldglin particular, a 14-DOF
vehicle model with a fully independent suspension, showRigure 6, is used to generate
the experimental data. This topology is recommended by rSggd] for simulating the
handling and braking behaviour of a vehicle, and has beepteddy several commercial
software packages. The position and orientation of theclelthassis..) together com-

prise 6 DOF. Four lumped masses), each representing one-quarter of the suspension

components, are connected to the chassis by prismatic joinparallel with springsk)
and dampersd], which represent the suspension compliance and togetlet BOF. Each
wheel is connected to its corresponding lumped mass wittriadmaally-oriented revolute
joint that allows the wheel to spin, collectively accougtior the final 4 DOF; torques(t))
can be applied at these joints to accelerate the vehiclePabejka2002 Magic Formula tire
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Fig. 6 14-DOF vehicle model used for generating experimental data

my

model [21] is used to model the tire dynamics. The verticalignted revolute joints on the
front wheels §(t)) are used to steer the vehicle on a prescribed trajectorgipswt add
any DOF to the system. The system parameters are obtaimad2&j, some of which are

shown in Table 1.

Table 1 System parameters for 14-DOF vehicle model

Parameter Value
Mass Chassis®u.) 2077 kg
Quarter of suspensiomr{s) 10 kg
. Front suspensiork() 48.30 kN/m
Stiffness Rear suspensiorkf) 30.52 kN/m
Damoin Front suspensiorc() 3.08 kN-s/m
ping Rear suspensiom{) 2.33 KN-s/m
Front width ) 0.760 m
Dimensions Rear width {v,) 0.795 m
Front length {y) 1.353 m
Rear length ) 1.487m

Experimental data generated from the 14-DOF model withjRatiees is used to iden-
tify parameters in the planar bicycle model shown in Figur@te planar bicycle model
is often used for the simulation of vehicle dynamics and fotoard stability controllers.
This simple model has only 3 DOF: the position of the chassibé xz-direction 1), the
position of the chassis in thedirection 2), and the orientation of the chassis in the plane
(y3). The mass of the chassis is assumed tope= m. + 4ms = 2117 kg, and the lengths
are assumed to b&; = [y = 1.353 m andd,. = [, = 1.487 m. The yaw inertia of the chas-
sis is also defined to match that of the 14-DOF model. A simglardmeter tire model [19]
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Fig. 7 Planar vehicle model for which parameters are sought

is used in place of the complex 117-parameter Pacejka maéelin the 14-DOF system:

va w
=1-= 16
- (16)
Frw = Along (1 _ e*Bwnng) F. 17)
ap = arctan (’Uy,w) (18)
Vz,w
Fyow = At (1 - e*Bmab) F, (19)

wheres; is the longitudinal slipey is the lateral slip angley,,., andv, ., are the longi-
tudinal and lateral components of the wheel velocity in theel reference frame? is the

tire radius, andv is the rotational speed of the wheel. Fordés., and F, ., are applied
directly to the wheel centers. The tire radiug)(is assumed to be equal to the unloaded
radius used in the Pacejka model, and the vertical tire fOF¢g is simply assumed to be
half the total static load in the 14-DOF model. We wish to fiaétlies for the tire parameters
(Aiong, Biongs Aiat, andBi,:) such that the simulated response of the 3-DOF planar model
matches the experimental data obtained from the 14-DOF hagd#osely as possible. Note
that the planar model has no suspension and can neithemugitabll.

To generate the experimental data, we must first define théreeqinputs. In order
to adequately capture both the longitudinal and lateraladyins, we first accelerate the
vehicle from4 m/s to16 m/s by applying positive torque to each wheel, then perfotame-
change maneuver, and finally slow the vehicl@ ta/s by applying negative torque to each
wheel. The steer angle and wheel torque inputs are showrgurd-B. Using these inputs,
the 14-DOF vehicle model is simulated f22 seconds and the state vector is stored every
millisecond. For the purpose of parameter identificatioa assume that only five states are
known: the position of the chassis along theand y-axes, the orientation of the chassis
about thez-axis, and the average rotational speeds of the two fronthandear wheels.
Note that the wheel speeds of the 14-DOF model are requireddir to calculate the tire
forces applied to the 3-DOF model (equations (16) to (198.u04k the following objective
function:

3 22
2
V= Z {wz/ (yie(t) — yi(t, Aiong, Blong, Alat,Blat)> dt} (20)
im1

0

where weightav; = 0.001, we = 0.01, andws = 1 are chosen to scale the longitudinal
position, lateral position, and orientation errors to tame orders of magnitude. We obtain
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Fig. 8 Inputs used to generate experimental data with the 14-DQ#emo

rough initial guessesdl;ong = Biong = 100 andA;q; = Bjq¢ = 1 by hand, which corre-
sponds to an objective function valueo804 x 10~2 and produces the simulation results
shown in Figure 9.
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Fig. 9 Simulation results for (a) trajectory and (b) yaw angle agtetd using initial parameter guesses

We perform the optimization procedure using the homotopyhot described above,
with K; = 0.5V4, 6\ = 0.1, ande = 10~ %, Convergence is achieved after a totallof
iterations, with a final objective function value B} = 3.3 x 10~%, as shown in Figure 10.
The identified parameters ar o,y = 99.97, Biong = 99.97, Ajqr = 3.05, and By, =
3.06; the corresponding simulation results are shown in Figdre 1
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Fig. 11 Simulation results for (a) trajectory, (b) yaw angle, (a)d@udinal velocity, and (d) yaw rate, ob-

tained using identified parameters
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4 Conclusions

In this work, we have presented a new methodology for apglthie homotopy optimization
technique to the parameter identification problem. We hawsidered the general problem
of parameter identification for nonlinear parameters widlntinl state measurement cor-
rupted by measurement noise. The proposed homotopy medimosliccessfully find global
minima given a wide range of initial parameter guesses. Tieet&veness of the proposed
technique for parameter identification has been demoestitat several example problems.
The authors are currently investigating the use of the hopyotnethod for recursive param-
eter identification in on-line applications, and for syssegoverned by differential-algebraic
equations.
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