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Abstract

In this paper, we survey two kinds of mathematics-based battery models intended for
use in hybrid and electric vehicle simulation. The first is circuit-based, which is founded
upon the electrical behaviour of the battery, and abstracts away the electrochemistry
into equivalent electrical components. The second is chemistry-based, which is founded
upon the electrochemical equations of the battery chemistry.
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1. Introduction

Battery modelling is a challenging field that has been receiving a great amount of
interest recently due to two main commercial drives: the desire for longer-lasting portable
electronic devices [1–3], and the great push for hybrid and battery electric vehicles by
the automotive industry [4, 5].

These two industries have different aims. The portable electronics industry is con-
cerned with maximizing the operating life of a low-power electronic device that runs for
a long period of time on a small inexpensive battery pack. The electric vehicle industry
is concerned with maximizing the driving range and fuel economy of hybrid and electric
vehicles using large battery packs in demanding applications that involve high power
charge and discharge rates that push the batteries to their limits, while operating within
a range that maximizes the expensive battery pack’s service life.

In both of these areas, accurate and efficient battery modelling is vital to help max-
imize the performance of a device and its battery, and to inform the development of
electronic and control systems. The overall performance and life of the device depends
on the control system and electronics that interface with the battery, which need to be
carefully tailored to the behaviour of the battery. Furthermore the size and configura-
tion of the battery pack must be chosen to maximize the performance of the device while
minimizing its cost.
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In this paper we focus on the field of battery modelling for automotive electric vehicle
simulation, with an aim to help engineers and scientists become familiar with the field
of battery modelling and the different models and techniques that are commonly used.
Because the field of battery modelling is so extensive, we limit ourselves to considering
only the most common battery chemistries and modelling techniques.

We also limit ourselves to acausal, physics-based battery models. This means our
batteries use voltage, current, and temperature as the physical quantities of interest, and
that they can be written as a system of continuous-time equations. This is in contrast
to causal, signal-based battery models that typically use discrete-time equations in an
iterative solution, and power as the main physical quantity of interest.

The most commonly used batteries in electric vehicles today are the Nickel-Metal-
Hydride (NiMH) and Lithium-Ion (Li-ion) chemistries [6]. In the past, Lead-Acid batter-
ies (PbA) were used, but these are falling out of favour to the higher energy and power
densities of the Ni-MH and Li-ion chemistries. However many of the techniques devel-
oped for modelling these PbA batteries are applicable to more modern chemistries. In
the future, Li-ion is a very promising chemistry that is light weight and has high energy
and power densities; however more research needs to be done to drive down the cost of
these batteries and to increase their safety [6] and performance, particularly at relatively
high and low temperatures.

In Section 2 we survey battery models as they apply to various battery modelling
tasks. Section 3 focuses on equivalent circuit models in particular, and surveys different
modelling techniques and considerations. Section 4 surveys electrochemical battery mod-
elling, and Section 5 briefly compares an equivalent circuit and electrochemical battery
under pulse discharge, shows the results of a sensitivity analysis of the two battery mod-
els, and finally shows the results of an electric vehicle simulation. The paper is finished
off by the conclusions, acknowledgements, references, and appendices.

2. Battery Modelling

The two most common techniques we encountered for modelling batteries in auto-
motive applications are equivalent electric circuit and electrochemical modelling. Some
models [7–9] combine elements of both chemistry and circuit-based modelling techniques.

Equivalent circuit modelling techniques abstract away the electrochemical nature of
the battery and represent it solely as electrical components [1]. Sometimes these contain
non-linear components like diodes that strive to better approximate the electrochemical
nature of the battery. The structure of the model depends on the type of experimental
method used to determine the parameters of the model – which is usually either elec-
trochemical impedance spectroscopy or measuring pulse discharge behaviour – as well as
the desired fidelity and goals of the modelling effort.

Electrochemical modelling techniques are all based on the highly non-linear equations
that describe the electrochemical physics of the battery, and employ many different
approximations to simplify the equations and the solutions thereof, depending on the
level of fidelity one requires and the goals of modelling the battery.

Generally, the simpler the model, the faster it will simulate, but the lower its fidelity.
This is an important trade-off that one must consider when choosing a battery model to
suit one’s application, particularly if real-time simulation is a requirement.
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Although a comprehensive comparison of different models would be challenging due
to the wide variety of phenomena different models are good at capturing, comparing
similar models is possible. Zhang and Chow [10] do a computational complexity versus
modelling error analysis for a Thévenin resistor-capacitor network circuit model, varying
the number of RC pairs. Increasing the number of RC pairs decreases the error and
increases the computation time, and this paper shows how these quantities scale as a
function of RC pair number.

For real-time control system applications, where high fidelity models are often not
required, simple circuit based models are employed [11–14]. However for applications
requiring higher fidelity such as vehicle performance, drive cycle simulations, battery
ageing, and other computation-intensive simulations, a higher fidelity circuit-based or
chemistry-based model can be used to increase the accuracy of the results. Thus, the
choice of the right battery model to use depends on the fidelity one requires for one’s
application.

For on-line state of charge (SOC) estimation, battery models are usually fairly simple,
as they are fused with an actual battery using a technique like an Extended Kalman Filter
(EKF) [15–17], a fuzzy-logic system [18, 19], a least-squares regression model [20], or a
sliding-mode observer model [21]. What is usually required in these applications is that
the model be simple enough to run on an embedded controller while being accurate
enough to model the battery’s internal variables of interest, primarily the SOC [22].

For control system development, battery models can again be fairly simple. Being
able to run in real-time and on embedded computers is an important requirement for
control systems, so the battery models can not be too computationally expensive. The
majority of these models are circuit-based, comprising either a simple resistor, or a
Thévenin resistor-capacitor network [11–14].

When doing fuel economy and vehicle performance simulations using drive cycles,
more accurate models are desired to fine-tune the performance of the vehicle and power
management controller to see how they perform over a long period of time with successive
charge and discharge cycles. Since these calculations are usually executed offline on
workstations, the stringent requirements of real-time computation are absent, and one
can afford to use a more computationally expensive model such as the Li-ion models of
[8, 10, 23–32], the NiMH models of [7, 9, 23, 33], or the lead-acid models of [23, 34, 35].
A good comparison of circuit-based models for Li-ion batteries is presented by Hu et al.
in [36].

If one is analysing the response of the battery to transients, a model that is based on
these measurements and takes the dynamic battery response into account is desired. The
Thévenin models of [13, 23, 24, 26, 33] and the electrochemical impedance spectroscopy
(EIS) models of [7, 8, 22, 37–39] are good examples of these. For high frequency switching,
a greater number of resistor-capacitor (RC) pairs are necessary to better approximate
the short time behaviour of the battery [23]. Alternatively one can model the mostly
inductive behaviour of a battery in the high-frequency region using resistor-inductor (RL)
networks [40].

An important consideration for electric vehicle applications is the battery’s depen-
dence on temperature, especially in cold climates. Because the rate of chemical diffusion
is slowed by low temperatures, this can have a serious impact on the current-delivering
capabilities of the battery. Although high temperatures have the opposite effect, the
downside is that the rate of detrimental electrode oxidization is increased, which short-

3



ens the service life of the battery [1, 41].
Many battery models do not consider temperature variations. If this is a modelling

requirement, then it is necessary to use models like those proposed in [7–9, 25–31, 34] that
include the effects of temperature on the dynamic response and state-of-charge behaviour
of the battery.

State of health (SOH) is a more difficult quantity to measure. It represents the
battery’s gradual loss of maximum capacity and increase in internal resistance over a
long period of time, which eventually results in the battery needing to be replaced. It is
due to gradual chemical effects changing the structure of the battery, mainly electrode
oxidization, active material degradation, and electrolyte decomposition [1, 42]. These
are hastened by high operating temperature, overcharging, and deep discharging.

Experimentally, SOH is a time-consuming effect to measure, as it changes slowly over
hundreds to thousands of battery charge-discharge cycles.

In battery models, the effects of SOH are incorporated or measured in different ways.
Bhangu et al. [15] use a circuit model with an EKF to determine SOH by measuring the
change in bulk capacitance. Prada et al. [7, 8] use EIS and an electrochemical ageing
model to measure degradation. Troltzsch et al. [42] use a multi-frequency EIS approach
with battery model parameter identification to match battery ageing with changes in
model parameters. Salkind et al. [19] use a fuzzy-logic system to determine SOH in
many battery chemistries. Erdinc et al. [28] use a resistance element that depends on
the cycle number. A detailed review of using EIS to measure SOH is presented in [43], a
small table of SOH measurement methods is presented in [5], and Zhang and Lee review
prognostics and health monitoring of Li-ion batteries in [44].

There is no single model that is capable of meeting all the requirements one may
have. Thus, it is important to consider one’s modelling requirements and select which
battery model best matches those requirements.

If one is using an electric circuit model and has a particular battery one wants to
model, it is necessary to perform experimental measurements to get data that are then
converted into the parameters of the model. The model by Gao et al. [26] can use infor-
mation from manufacturer’s data sheets to help determine its parameters. Alternatively
if one has a detailed chemistry model, one could use it to generate the necessary data.

In any case, one must identify the circuit model parameters from battery charge-
discharge data. Many people who use Thévenin models identify the circuit parameters
using the battery’s time response to pulse discharges [24, 27, 31, 33]. By looking at
the instantaneous voltage drop, the time constants of the charge depletion and recov-
ery regions, and the current, one is able to identify the resistors, capacitors, and open
circuit voltage for a particular SOC. Kim and Qiao [45] apply a least-squares method
to this pulse-discharge technique. Hu et al. [46] apply an algebraic simplification to the
non-linear battery equations to ease the identification of circuit components from pulse
discharge data.

Other people use more complicated techniques that compare the battery model sim-
ulation to the actual battery response with an objective function. Hu et al. [36] use
multi-swarm particle swarm optimization to match several different battery models to
the same experimental data. Hu et al. [29, 30] use a genetic algorithm and 1D and
2D spline interpolation to find the SOC and temperature dependence of circuit model
component values for charge and discharge current directions. Troltzsch et al. [42] use a
combination of genetic global optimization and Levenberg-Marquardt local optimization
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to find parameter values for an EIS circuit model.
Unlike the chemistry-based models, the circuit-based models are not able to adapt to

changing an arbitrary physical parameter of the battery, for example the molality of the
electrolyte or the surface area of the anode, since the circuit model parameters do not
correspond directly to these physical entities. Since parameter identification techniques
are used to determine the values of circuit model components, it is necessary to obtain
experimental or simulated data in order to tailor the circuit model to a particular kind
and size of battery. An exception to this is when using batteries that differ only in size, as
the currents and capacities can be normalized and scaled between batteries [38]. Battery
packs of different sizes, but using identical battery cells, can also be modelled by scaling
the current and voltage appropriately.

The following subsections provide more detail on the different techniques in circuit
and chemistry-based battery modelling.

3. Equivalent Electrical Circuit Models

Circuit-based models attempt to model the electrochemical physics of a battery using
only electrical components. These component models can easily be incorporated into the
system model of an electric vehicle, and are generally not computationally expensive.
Some of them can also be used in circuit-simulation environments such as SPICE [35,
47, 48].

The simplest circuit model is the resistance model, shown in Figure C.1, with terminal
equations described by Equation 1. This uses an open circuit voltage Voc based on the
battery’s state of charge (SOC) and a resistor R to model the equivalent series resistance
of the battery [35]. A load ZL is connected across the battery terminals with voltage V(t)
and current I(t) measured at the load. To keep track of the SOC, current integration
(also called Coulomb-counting) is used.

V (t) = Voc −RI(t) (1)

Current integration, described by Equation 2, is the simplest way of keeping track
of a battery’s SOC, which ranges from 0 (empty) to 1 (full). CN is the battery’s rated
charge storage capacity and I(t) is the battery current. The current consumed by loss
reactions can also be accounted for by subtracting it from the battery current.

SOC = SOC(t0) +
1

CN

∫ t

t0

I(τ)dτ (2)

For simulations, Coulomb-counting is acceptable, but in practice it suffers from drift.
Thus, in the field it is only accurate for short durations, or when the battery is frequently
recharged to a known SOC. A comprehensive overview of a variety of SOC determination
techniques can be found in [44, 49, 50].

The first step in increasing the fidelity of the simple resistor model is to make the
resistor and open-circuit voltage dependent on SOC and temperature [25, 51], or by
incorporating non-linear components such as diodes to change the battery parameters
under charge and discharge conditions [11, 16, 35].
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Further increases in fidelity can be achieved by incorporating more circuit compo-
nents into the model, such as a network of resistors and capacitors to model time-
dependent effects. These higher-fidelity models can be divided into two main groups:
Thévenin models and impedance models. The Thévenin models usually comprise a se-
ries of resistor-capacitor pairs, and have their model parameters identified by using pulse
charge/discharge techniques. The impedance models usually incorporate a constant-
phase Warburg element and have their model parameters identified using EIS.

3.1. Thévenin Models

As mentioned above, Thévenin models generally consist of a network of a series of
parallel resistor-capacitor pairs. These models can capture the time-dependent effects of
charge depletion and recovery.

Charge depletion is an effect seen when one first begins to discharge a battery [52].
Due to an initially high concentration of chemical products near the cathode and anode
the initial battery voltage drop is subdued and gradually decreases as chemical products
are consumed. Charge recovery is the opposite effect, where the battery seems to recharge
itself after discharging has stopped, due to chemical products diffusing from within the
body of the battery to the anode and cathode. These behaviours can be seen when pulse
discharging a battery, as illustrated in Figure C.2, and a simple explanation for this is
given in [1].

A simple model that can capture these effects is shown in Figure C.3, incorporating
one or more parallel resistor-capacitor networks in series. Here Rs is the series resistance
that models the instantaneous change in voltage with respect to current, and the RiCi
parallel pairs, where i ∈ {1, .., N}, model the exponentially decaying time-dependent
variation of voltage with respect to current. The circuit component values can be found
using pulse discharge analysis [24, 27, 31, 33, 45, 46], or parameter identification tech-
niques [29, 30, 36]. Variations on this parallel-RC model are the most common circuit
models encountered by the authors.

The fidelity of these Thévenin models can be improved by making the battery compo-
nent values depend on various internal states of the battery. The most basic improvement
is to incorporate a dependence on the battery’s SOC [10, 23, 24, 27–32, 35, 45, 46].

A further improvement is to take into consideration the effects of temperature on the
battery’s response by making the model component values a function of temperature.
There does not seem to be a consensus on the best way to do this, and each group takes
a slightly different approach.

Gao et al. [26] introduce correction factors to the battery capacity and open circuit
voltage of the battery that can be calculated from measurements or manufacturers’ data
sheets. Erdinc et al. [28] use the same voltage correction technique and also models
capacity fade with cycle number and battery age considering storage temperature. Ver-
brugge and Conell [9] have the open circuit voltage, resistors, and self-discharge depend
on temperature. The model of Baronti et al. [27] has the resistors depend on tempera-
ture, and the model by Lam et al. [31] has the resistors, capacitors, and usable capacity
depend on temperature. Hu et al. [30] use 2D splines to make the components depend on
both SOC and temperature, and Ceraolo [34] has the circuit components, battery capac-
ity, and open circuit voltages depend on temperature. Some papers [9, 26, 34] consider
the battery’s thermal generation and heat transfer aspects, while others [27, 28, 30, 31]
consider temperature to be an external variable.
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A rarely discussed modelling feature is the fact that the battery’s model parameters
change depending on whether the battery is being charged or discharged. Aside from the
diodes used in the simple circuit models [11, 16, 35] mentioned at the beginning of the
section, very few papers take into consideration the effects of current direction. Hu et
al. [29, 30] use two completely different sets of battery parameters for the charging and
discharging behaviour, requiring the computer simulation to determine which set should
be used.

Some models incorporate a capacitor to account for the charge storage capacity of
the battery. Since the voltage across a capacitor is the first time integral of the current
flowing through it, this can immediately be mapped onto the state of charge. However
the open circuit voltage of the battery is not a linear function of the state of charge, so
the charge storage capacitor’s voltage must be mapped non-linearly onto the open circuit
voltage [23, 24, 27, 28, 31, 32, 44].

By putting a resistor in parallel with the charge storage capacitor, the battery’s
self-discharge can be modelled. However since the time scale of self-discharge is much
greater than that of the dynamic effects that are usually of interest, and battery powered
vehicles are frequently recharged, the effect of self-discharge can usually be neglected in
automotive applications [24, 31].

A circuit diagram of such a model can be seen in Figure C.4, which is based on the
model by Chen and Rincón-Mora [24]. The dashed lines indicate the mathematical rela-
tionship between the two separate capacity and time-response circuits. Current flowing
in the time-response circuit is made to flow in the capacity circuit, while the values of
the resistors and capacitors in the time-response circuit are related non-linearly to the
voltage of the capacity circuit, which is proportional to the SOC.

To improve this model, Zhang et al. [32] use a discharge-current-dependent charge
storage capacitor to model the “C-rate effect”, which causes the capacity of the battery to
diminish with increasing discharge current. Kim and Qiao [45] take a different approach
for modelling the C-rate effect, and replace the charge storage capacitor with a component
based on the Kinetic Battery Model (KiBaM) by Manwell and McGowan [53].

The model by Erdinc et al. [28] models the SOH by taking into consideration the
effects of capacity fading and increased series resistance with increasing time and cycle
number.

Turning back to general Thévenin circuit models, Hu et al. [36] provide a comparison
of different circuit-based Li-ion battery models trained using the same battery data,
and discovered that for the LiNMC and LiFePO4 batteries they tested, a battery model
containing a single RC parallel pair was sufficient to accurately describe the battery
behaviour. In the case of the LiFePO4 battery, adding hysteresis to the model improved
the accuracy.

Zhang and Chow [10] performed an investigation into the optimal number of RC
parallel pairs that balance the conflicting requirements of high model fidelity and low
computational expense, and found that two RC parallel pairs were a good compromise.

Some models are designed to be coupled with an actual battery in order to inform
the user about the battery’s internal states. For SOC there is the sliding mode observer
model by Kim [21], the on-line non-linear regression model of Verbrugge and Tate [20],
and the EKF model by Vasebi et al. [17]. For both SOC and SOH there is the non-linear
observer model by Bhangu et al. [15].
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3.2. Impedance Models

A special type of circuit-based model is one based on the experimental technique
of electrochemical impedance spectroscopy (EIS) [43, 54]. This injects a range of low
frequency AC current (up to a few kilohertz) into the battery and measures the battery’s
voltage response. The magnitude and phase of the response can then be interpreted to
give the battery’s complex (real and imaginary) impedance as a function of frequency.
This method has the limitation that it is a small-signal method that assumes a linear
battery model [37] (this fact is actually an asset in the analytical electrochemical models
of Sikha and White [55, 56] mentioned at the end of Section 4). These models are not
often used as a stand-alone simulation of a battery. They are often used to determine
the SOC or SOH of a resting battery, or are used as a system model in a Kalman filter
to provide on-line battery state estimation.

A battery half-cell, representing one half of the battery’s chemical reaction that occurs
at one of the electrodes, can be modelled by a Randles circuit similar to Figure C.5
[39], where L, Ri, and C model the inductance, internal resistance, and capacitance,
respectively. The non-linear resistor R depends on the current flowing through it. The
impedance Zw, described by Equation 3, refers to a constant-phase Warburg element
used to model diffusion, where Aw is the Warburg coefficient, ω is the angular frequency,
and j is the imaginary number

√
−1.

Zw(ω) =
Aw√
ω

(1− j) (3)

By measuring the complex impedance of the battery as a function of frequency and
looking at the spectrum, one can determine the type of electrical circuit network needed
to reproduce its behaviour [54]. By using a reference electrode, one can measure and
model the spectra of the positive and negative electrodes separately. This gives the most
accurate results, since the parameters of both electrodes cannot be reliably determined by
measuring them both together [43]. Different battery chemistries can have considerably
different EIS spectra. Shih and Lo [54] provide a technical report with many different
EIS circuit models that correspond to a wide range of battery chemistries.

Although circuit models abstract away the electrochemical physics happening in the
battery, EIS models stay closer to mapping the physics onto circuit elements. Troltzsch et
al. [42] provide a nice explanation of how the battery physics maps onto EIS components,
and how these effects show up in the EIS spectra. They also describe a clever method
of using multiple excitation frequencies and frequency-domain analysis to speed up the
spectroscopy procedure.

The EIS spectra, a depiction of which can be seen in Figure C.6, depend on SOC,
current, temperature, and SOH. In some ways this is a disadvantage, as it increases the
complexity of the model. Huet [43] discusses some of the issues with the temperature
dependence of the spectra in relation to determining SOC and SOH of batteries in the
field.

However it can also be an advantage, as these effects can be included in the model.
Models like [7, 19, 42] are designed to determine SOC and SOH in conjunction with a
real battery under test. Others can be used to simulate a stand-alone battery, including
various effects on the model behaviour. References [22, 38, 39] consider SOC only, [7]
considers SOC and SOH, while [8] considers SOC, SOH, and temperature.
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Using a complex non-linear least squares fitting algorithm [57] seems to be the usual
way of determining the circuit model parameters from EIS spectra. Troltzsch et al.
[42] use a combination of a genetic global optimization and Levenberg-Marquardt local
optimization to find model parameters.

Another challenge is that the behaviour of the Warburg element is defined in the
frequency domain, and must be converted to a series of resistor-capacitor pairs in order
to be simulated in the time domain [22, 38]. Increasing the number of pairs increases the
model fidelity, but also the amount of computation time required.

4. Electrochemical Models

Unlike equivalent circuit modelling approaches, electrochemical models explicitly rep-
resent the chemical processes that take place in the battery. These models describe the
battery processes in great detail, making them the most accurate of battery models.
However, the highly detailed description results in considerable computational complex-
ity, and it may take hours to simulate a charge-discharge cycle of a detailed battery
model if no model reduction approach is used to treat the battery equations.

There are several approaches to developing electrochemical battery models. One
of the most popular approaches is a lumped parameter model where the battery is
described by a small set of differential algebraic equations (DAEs) that represent the
time-dependent electrochemical phenomena between the electrodes, while assuming a
uniform spatial distribution of chemical products. This approach constitutes the major-
ity of the early physics-based battery models, mostly for describing simple lead-acid and
non-rechargeable batteries [58, 59]. This approach is based on Nernst’s theory and the
Butler-Volmer equation. For example, the equation for the open-circuit potential that
relates the electrical potential Φ(t) of an electrode to the electrical charge or molality
m(t) for a galvanic cell can be described using Nernst’s equation [58] as:

Φ(t) = Φ0 − RT

nF
ln

(∏
k

(mk(t)γk)νk

)
(4)

in which the k subscript represents the kth reactant, m is the molality, γ is the activity
coefficient, n is the number of electrons, ν is the stoichiometric coefficient, and Φ0 is the
electromotive force at standard conditions. Please see Appendix B for the nomenclature
used in these chemistry equations.

The Butler-Volmer equation describes the relationship between battery current den-
sity J(t) and over-potential η(t) (alternatively called polarization) by

J(t) = J0

[
exp

(
αF

RT
η(t)

)
− exp

(
(1− α)F

RT
η(t)

)]
(5)

where α is called the charge transfer coefficient and J0 is the exchange current density.
These two equations constitute most of the early primary and secondary battery

models, mostly for lead-acid batteries [58] and some NiMH cells [60, 61]. An advantage
of the lumped models is that the equations are fairly simple and easy to integrate,
resulting in a fast and accurate model suitable for automotive applications and control
design purposes. As an example, the full NiMH battery model developed by Wu et al.
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[60] simulates in milliseconds using today’s computers. When reorganized using a linear
graph theory formulation that results in a more optimized and compact set of equations,
the simulation time reduces a further 30% [61].

The main drawback of the lumped parameter approach is that the simple DAEs are
insufficient to describe the complex electrochemical processes in most modern batteries
produced using today’s advanced technology, such as Li-ion cells. Rapid advances in
battery research, resulting in new electrode materials and battery designs, requires better
models that can describe more complex electrochemical and physical processes in greater
detail. For example, one needs to model the spatial distribution of Li+ ions and the
electrical potential between the two electrodes to have an insight into the temperature
distribution in a Li-ion cell or an HEV battery pack. This is where the lumped models
fall short and a distributed model is needed to meet such requirements. Newman et
al. [62–65] pioneered the development of porous electrode theory to describe models for
Li-ion cells. This method has become the foundation and standard for most physics-
based battery modelling techniques today and, in many cases, is used for generating
battery testing data for model validations. This model describes a battery in great
detail and considers all the major electrochemical processes including mass transport
and diffusion, ion distribution, side reactions, temperature effects, and battery ageing.
Most of the current rigorous battery models are derived from the porous electrode and
concentrated solution theories that describe charge, discharge, and species transport in
the solid and electrolyte phases across a simplified one-dimensional spatial cell structure.
This 1D model considers dynamics along only one axis (the horizontal x-axis shown in
Figure C.7) and neglects the dynamics along the remaining two axes (y-axis and z-axis)
[62, 63, 66–70]. This approximation is applicable to most cell structures as the length
scale of a typical Li-ion cell along the x-axis is on the order of 100 µm, whereas the
length scale for the remaining two axes is on the order of 100,000 µm or more [71].

In contrast to lumped-parameter modelling, the porous electrode theory uses partial
differential equations (PDEs) to describe the electrochemical processes. In general, these
PDEs are derived based on Fick’s law of diffusion for the active material concentration,
Ohm’s law for electrical potential distributions, and the Nernst and Butler-Volmer equa-
tions. Specifically, the PDEs that describes the changes in lithium concentration in solid
and liquid phases due to the gradient changes in the diffusive flow of Li+ ions are given
by:

∂cs,k(x, r, t)

∂t
=
Ds,k

r2

∂

∂r

(
r2 ∂cs,k(x, r, t)

∂r

)
(6)

and

εk
∂ce,k(x, t)

∂t
=

∂

∂x

(
Deff,k

∂ce,k(x, t)

∂x

)
+ ak (1− t+) Jk(x, t) (7)

where k = p for the positive electrode and k = n for the negative electrode.
Charge conservation in the solid phase of each electrode can be described by Ohm’s

law

σeff,k
∂2Φs,k(x, t)

∂x2
= akFJk(x, t) (8)

with boundary conditions at the current collectors being proportional to the applied
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current density

−σeff,p
∂Φs,p

∂x

∣∣∣∣
x=0

= −σeff,n
∂Φs,n

∂x

∣∣∣∣
x=L

= I (9)

−σeff,p
∂Φs,p

∂x

∣∣∣∣
x=Lp

= −σeff,n
∂Φs,n

∂x

∣∣∣∣
x=Lp+Ls

= 0 (10)

where the current density I is related to the applied current i and the surface area A of
the electrode as I = i/A.

The effective electronic conductivity can be expressed in terms of the porosity of the
electrode as

σeff,k = σk (1− εk − εf,k) (11)

Combining Kirchhoff’s law with Ohm’s law in the electrolyte phase yields

−σeff,k
∂Φs,k(x, t)

∂x
− κeff,k

∂Φe,k(x, t)

∂x
+

2κeff,k(x, t)RT

F
(1− t+)

∂ ln ce,k
∂x

= I (12)

The Butler-Volmer equation describing the relationship between the current density,
concentrations, and over-potential is given by [68]

Jk(x, t) = Kk (cs,k,max − cs,k,surf)
0.5

(cs,k,surf)
0.5
c0.5e,k(x, t)

×
[

exp
(

0.5F
RT µs,k(x, t)

)
− exp

(
− 0.5F

RT µs,k(x, t)
) ] (13)

These partial differential algebraic equations (PDAEs) are defined separately for each
of the positive electrode, separator, and negative electrode regions and are coupled with
each other by the continuity in the boundary conditions. In total, there are 14 non-linear
PDAEs with 14 unknowns.

The traditional methods for solving battery PDEs were mainly based on finite dif-
ference technique, which approximates continuous quantities as being constant within
discrete evenly-spaced intervals along the x axis, and approximates the derivatives based
on a Taylor series expansion. As an example, the second derivative of the Li+ concen-
tration in liquid phase can be approximated as

∂2ce,k(x, t)

∂x2
=
ci+1(t)− 2ci(t) + ci−1(t)

h2
(14)

where segments along the x axis are indexed with i, and h is the length of a segment.
When this is substituted into Equation (7) it results in

εk
∂ce,k(x, t)

∂t
= Deff,k

ci+1(t)− 2ci(t) + ci−1(t)

h2
+ ak (1− t+) Ji(t) (15)

The boundary conditions can be approximated using forward and backward difference
forms as

∂ce,k(x, t)

∂x

∣∣∣∣
x=0

=
ci+1(t)− ci(t)

h
(16)

∂ce,k(x, t)

∂x

∣∣∣∣
x=Lp

=
ci(t)

ci−1(t)
(17)
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The end result is a set of N linear differential equations, with N being the number
of discretization segments. The finite difference method is simple, yet to obtain good
accuracy N must be quite large due to the loss of precision when non-linear equations
are linearly approximated. This makes solving the whole battery system in real-time
difficult using the finite difference method. During the last few years, many model
reduction methods have been developed around this porous-electrode theory to make the
battery models suitable for real-time applications. These approaches can be classified
into two different groups: (1) trying to reduce the order of the model while preserving
the fidelity of the system, and (2) trying to neglect some the model properties with a
loss of information.

The first group consists of mathematical techniques to better handle the model PDEs
or to convert the PDEs into a simpler form that can be integrated faster using numerical
solvers. Some of the most well-known methods are based on temporal-spatial separation
techniques, including collocation method and Galerkin’s method. The idea behind these
methods is similar and is based on finding the approximate numerical solution to a non-
linear PDE using a set of orthogonal basis functions which turns the PDE into coupled
set of ODEs. The real utility of these methods comes from their application to non-
linear PDEs. Take the liquid phase concentration PDE in Equation (7) as an example,
the Galerkin idea is to start off with the spatial decomposition and allow time-varying
coefficients:

φ(x, t) =

N∑
j=1

ηj(t)αj(x) (18)

where N is the number of node points, αj(x) are the orthogonal basis functions
that have been carefully chosen to satisfy the boundary condition of (7), and ηj are the
unknown functions of time to be solved for. Chebychev polynomials or sine functions are
good candidates for the basis function. Let’s assume that αj(x) = cos

(
jπ
L x
)
. Inserting

this approximate solution into the full PDE in (7) gives

Rc(x, t) = εk

N∑
j=1

αj(x)
dηj(t)

dt
−Deff,k

N∑
j=1

d2αj(x)

dt2
ηj(t) + ak (1− t+) J ≈ 0 (19)

This function is known as the residual. In Galerkin’s method, we replace the condition
that the residual should be approximately zero by the condition that the residual should
be orthogonal to the set of basis functions. That is, for j = 0, ..., N we multiply the
residual by the basis function cos

(
jπ
L x
)

and integrate it over x, then set the result to
zero. In the collocation method, we choose a finite set of points where the exact solutions
must be matched. These points are called collocation points and at these points, the
residual becomes zero. The collocation and Galerkin’s techniques both result in a set of
ODEs which, when solved, give the approximate numerical solution of the time-varying
unknowns. These unknowns can be substituted into the approximate solution in (18) to
obtain the order-reduced form of the PDE.

The techniques outlined above have been used in the works of Subramanian et al. in
[72–75]. As one of the pioneers in battery modelling, Subramanian et al. developed a
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wide range of methods for battery model reduction and a real-time simulation model us-
ing a combination of perturbation techniques and heuristic simplifications [72–74]. They
reported that the wall time for their real-time simulation model for a single process was
around 100 ms to simulate a complete charge-discharge cycle. To derive the lower-order
model using this method, one needs to carry out preprocessing and have a priori knowl-
edge of the behaviour of the system under different conditions, which makes their method
less flexible than desired. In recent research, Ramadesigan et al. expanded Subramanian’s
collocation method to simulate the electrochemical-thermal behaviours of a battery pack
in real-time [75] and used Subramanian’s reformulated model for estimation of battery
capacity fade (decrease in SOH) [76].

Other methods, including the Chebyshev polynomial method [77, 78], the residue
grouping method [79, 80], proper orthogonal decomposition method [81], and Padé ap-
proximation [82] have also been used to derive reduced-order models for Li-ion batteries.
In the methods using Chebyshev polynomials, the state variables are approximated by
linear combinations of several Chebyshev polynomials, and then an approximate model is
projected onto a subspace formed by these orthogonal Chebyshev polynomials to form a
reduced-order model, which can then be solved for the unknown coefficients in the trun-
cated expressions. With the residue grouping method, Smith et al. were able to reduce
computational time by roughly 20 times compared to the full-order model [79]. Smith
et al. [83] also developed a control-oriented one-dimensional (1D) electrochemical model
by using the method of residue grouping. Their transfer functions are represented by a
truncated series of grouped residues with similar eigenvalues. Cai and White [81] pro-
posed an approach based on proper orthogonal decomposition for tackling the problem
by using two steps of approximation: PDE discretization, and truncation of the number
of orthogonal modes. Cai and White showed that the order-reduced model simulated
seven times faster than the full-order model for a similar level of accuracy. Some of the
most recent efforts for model reduction in this category include the work of Dao et al.
[84], who applied Galerkin’s method with sinusoidal shape functions that has resulted
in a fast model suitable for real-time vehicle applications. Dao et al. also applied the
simplified battery models to a number of high-fidelity EV and HEV systems [85] which
simulated several orders of magnitude faster than real-time.

Most recently, Guo and White [86] and Hu et al. [87] applied model reduction tech-
niques to reformulate Li-ion equations as a state-space model for system identification.
Their models can be applied for both spherical and non-spherical particles using a trans-
fer function calculation based on step response and complex exponential methods. Guo
and White [86] showed that the approximate solution can provide accuracy and time-
efficiency in simulation. They also indicated that the approximate solution simulates
faster at high current rates and shows better long-time accuracy than the short-time
solution.

The methods outlined above result in fast models with little loss of information and
are, therefore, very suitable for applications that require high model fidelity. However,
not all applications require high fidelity over a wide range of battery operating condi-
tions. For example, many applications only need model accuracy with low-to-medium
charge/discharge currents. In this case, techniques such as the electrode averaging
method [88] or volume-averaging technique [89] can be used to produce a fast chemistry-
based model. Speltino et al. also made several simplifications such as neglecting solid
concentration distribution and assuming constant electrolyte concentration. As a result,
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their model simulated quickly, but with a heavy loss of information [88, 90].
An interesting application of porous electrode theory to EIS is in the papers of Sikha

and White [55, 56] where they develop analytical expressions for the impedance spectrum
of a Li-ion cell.

Due to the small signal amplitude used in EIS, they are able to use a small-signal
approximation and solve the electrochemical equations in the Laplace domain. With this
they get a closed-form analytical expression for the impedance spectrum that sheds light
on the contribution of the different physical processes on the resulting spectrum, and
allows the spectrum to be calculated under different limiting conditions.

Their model produces results that are very close to numerical simulations, and are
an order of magnitude faster. Due to the accuracy of the model, physical parameters of
a battery can be estimated using experimental data.

5. Simulation Example

The parameters for both circuit and electrochemical models can be tuned so that the
simulations produce very similar results. An equivalent circuit model is usually easier to
build, but might be more difficult to expand and incorporate some of the battery physical
behaviours. Hence, one has to decide what battery model to use depending on the type
of application. As a comparison between the two modelling approaches, the simulation
results from both equivalent circuit and electrochemical models are shown in Figure C.8,
and compared to experimental data taken from Figure 5 of [24]. The equivalent circuit
model, its parameters, and its current discharge curve are the same as those used by
Chen and Rincón-Mora in [24], and the electrochemical model’s parameters have been
tuned to match it. The sizes of the electrodes on the electrochemical model were tuned
to ensure that the two models have the same capacity. See Table D.1 for the parameters
used in the electrochemical model, and Appendix A for the parameters used in the
equivalent circuit model. We were able to make the two curves match up closely with
each other with little effort in parameter tuning.

To investigate the sensitivity of the models to parameter uncertainty or variation, a
sensitivity analysis was performed on the equivalent circuit and electrochemical models
used to generate Figure C.8. Parameters were assigned to the equivalent circuit model
equations presented in Appendix A, yielding the following equations:

Ccap = P1

Voc = P2 exp (P3Vsoc) + P4 + P5Vsoc + P6V
2
soc + P7V

3
soc

Rseries = P8 exp (P9Vsoc) + P10

Rshort = P11 exp (P12Vsoc) + P13

Cshort = P14 exp (P15Vsoc) + P16

Rlong = P17 exp (P18Vsoc) + P19

Clong = P20 exp (P21Vsoc) + P22

Parameters were also assigned to the electrochemical model. The non-constant pa-
rameters that had non-zero sensitivities were assigned the parameter names appearing
in Table D.2.
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The model sensitivities were found using the RMS difference between the simulated
voltage, Vsim(t), and the experimental voltage, Vexp(t), using the following equation:

RMS =

√∫ tend

0

(Vsim(t)− Vexp(t))
2
dt

and the sensitivity for parameter ν is defined as:

µν =
RMSp −RMS0

RMS0

ν0

νp − ν0

where νp and ν0 are the perturbed and nominal parameter values, respectively, and
RMSp and RMS0 are RMS values corresponding to the perturbed and nominal ν val-
ues, respectively. The sensitivity represents the fraction change in the RMS fit of the
simulation to the experimental data given a fraction change in one of the parameters of
the simulation.

By using νp = 1.01ν0 for each of the parameters in the equivalent circuit and electro-
chemical models, and tend = 20000s for the simulation, Figure C.9 was generated, and
used the data from Figure 5 of [24] as the experimental data. Parameters that had zero
sensitivity were omitted from the figure.

As can be seen from Figure C.9, the parameters of greatest sensitivity for the equiv-
alent circuit model are the total battery capacitance and the parameters expressing the
polynomial component of the open circuit voltage, followed by the constant parts in the
expressions of the resistor and capacitor components. The parameters in the exponential
functions are of much lower sensitivity than the others.

For the electrochemical model the electrode area, thickness, radius of intercalation,
volume fraction, and maximum Li+ ion concentration for the positive and negative elec-
trodes were the most important, with the separator being significantly less sensitive.

In EV/HEV simulations, the Li-ion models simulate quickly, as anticipated. As an
example, we simulated an EPA drive cycle with a series HEV model comprising a mean-
value engine, power control unit, complete cooling system, and battery pack, a block
diagram of which can be seen in Figure C.10. The battery pack consisted of 70 Li-ion
cells which were modelled from the rigorous PDAE, and the results of the simulation are
plotted in Figure C.11.

Using a 2.0 GHz PC laptop computer and a Runge-Kutta numeric integrator with 1
ms time step took 12 seconds to simulate in MapleSimTM6.0.

The execution time is reduced largely due to the symbolic model reduction techniques
performed by MapleSim, which reduces the number of symbolic equations from 874 to
79 with no loss of fidelity.

6. Conclusions

Battery modelling is a broad and complicated field, with no single model capable of
meeting the requirements for all applications.

Two of the most common techniques, equivalent-circuit modelling and electrochemical
modelling, were discussed in detail, and battery models suitable for real-time simulation,
control systems, battery state estimation, state of health, thermal effects, and high-
fidelity modelling were touched upon.
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Which model to use in one’s application depends on the application constraints and
the specific quantities of interest one is interested in simulating.
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Appendix A. Equivalent-Circuit Model Parameters

Figure C.12 and the following equations show the circuit diagram and circuit param-
eters used in the equivalent circuit model of Figure C.8. The charge storage circuit is
on the top, and the time-response circuit is on the bottom. The current I(t) flowing
through the time-response circuit is made to flow in the charge storage circuit. The
voltage across the charge storage circuit, Vsoc, represents the SOC. The state of charge
determines the values of the circuit elements in the time-response circuit. The terminals
of the time-response circuit represent the terminals of the battery. The parameters used
in this model are identical to those used by Chen and Rincón-Mora [24].

Ccap = 3060

Voc = −1.031 exp (−35Vsoc) + 3.685 + 0.2156Vsoc − 0.1178V 2
soc + 0.3201V 3

soc

Rseries = 0.1562 exp (−24.37Vsoc) + 0.07446

Rshort = 0.3208 exp (−29.14Vsoc) + 0.04669

Cshort = −752.9 exp (−13.51Vsoc) + 703.6

Rlong = 6.603 exp (−155.2Vsoc) + 0.04984

Clong = −6056 exp (−27.12Vsoc) + 4475

Appendix B. Nomenclature

Nomenclature

Ak surface area of electrode k (k = p, n, s), [m2]
ak specific surface area of electrode k (k = p, n), [m−1]
bruggk Bruggman coefficient of region k (k = p, n), [1]
ce,apprx assumed solution for electrolyte-phase concentration of Li+, [mol ·m−3]
ce,k electrolyte concentration in region k, [mol ·m−3]
ce,k,0 initial electrolyte concentration in region k, [mol ·m−3]
cs,k concentration of Li+ ions in the intercalation particle of electrode k, [mol ·m−3]
cs,k,0 initial concentration of Li+ ions in the intercalation particle of electrode k, [mol ·
m−3]
c̄s,k average concentration of Li+ ions in the intercalation particle of electrode k, [mol ·
m−3]
cs,k,surf concentration of Li+ ions on the surface of intercalation particle of electrode k,
[mol ·m−3]
D electrolyte diffusion coefficient, [m2 · s]
Ds,k Li+ ion diffusion coefficient in the intercalation particle of electrode k, [m2 · s]
F Faraday’s constant, [C ·mol−1]
I applied current density, [A ·m−2]
Jk wall-flux of Li+ on the intercalation particle of electrode k, [mol ·m−2 · s−1]
Kk intercalation/deintercalation reaction-rate constant of electrode k, [mol−0.5 ·m2.5 ·
s−1]
L total thickness of cathode-separator-anode, [m]
Lk thickness of region k, [m]
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n negative electrode
N number of node points for Galerkin’s approximation
p positive electrode
q̄s,k volume-averaged concentration flux of Li+ ions in the intercalation particle of elec-
trode k, [mol ·m−3 · s−1]
r radial coordinate [m]
R universal gas constant
Rc residual function for concentration of Li+ in electrolyte-phase
Rs,k radius of intercalation of electrode k, [m]
RΦ residual function for electrical potential in electrolyte-phase
s separator
t+ Li+ transference number in the electrolyte
T absolute temperature, [K]
Uk open-circuit potential of electrode k, [V ]
x spatial coordinate, [m]
α charge transfer coefficient
εk volume fraction of region k
εf,k volume fraction of fillers in region k
η over-potential, [V ]
ηi time-dependent variable of of i’th basis function for electrolyte-phase concentration,
[s]
θk dimensionless concentration of Li+ ions in the intercalation particle of electrode k
(θk = cs,k/cs,k,max)
κ ionic conductivity of electrolyte, [S ·m−1]
γ activity coefficient
κeff,k effective ionic conductivity of the electrolyte in region k, [S ·m−1]
ν stoichiometric coefficient
ρi time-dependent variable of of i’th basis function for electrolyte-phase potential, [s]
σk electronic conductivity of solid phase of electrode k, [S ·m−1]
σeff,k effective electronic conductivity of solid phase of electrode k, [S ·m−1]
Φ electrical potential, [V ]
Φ0 electromotive force at standard conditions, [V ]
Φe electrolyte-phase potential, [V ]
Φe,apprx assumed solution for electrolyte-phase potential, [V ]
Φs solid-phase potential, [V ]

Appendix C. Captions and Figures

Appendix C.1. Figure Captions

1. Simple equivalent series resistance circuit

2. Charge depletion and recovery

3. Dynamic RC battery model

4. Complex equivalent circuit battery model

5. Half-cell EIS circuit

6. A typical electrochemical impedance spectroscopy plot

7. Anatomy of Li-ion cell (colour on Web)
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8. Battery voltage in response to pulsed current. Experimental data from Fig. 5 of
[24].

9. Sensitivities for equivalent circuit (top) and electrochemical (bottom) battery mod-
els

10. Series HEV block diagram

11. Battery voltage and SOC over EPA drive cycle

12. Battery circuit

Appendix C.2. Figures
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Table D.1: Battery parameters.

Positive Negative
Symbol Unit electrode Separator electrode
σk S m-1 100 100
εf,k 0.025 0.0326
εk 0.385 0.724 0.485
brugg 1.5 1.5 1.5
Ds,k m2s-1 1× 10−14 3.9× 10−14

D m2s-1 7.5× 10−11 7.5× 10−11 7.5× 10−11

Kk mol-0.5 m2.5 s-1 2.344× 10−11 5.0307× 10−11

cs,k,max mol m-3 40554 30555
cs,k,0 mol m-3 0.4955× 40554 0.8551× 30555
ce,0 mol m-3 5000 5000 5000
Rs,k m 2.0× 10−6 2.0× 10−6

Lk m 133× 10−6 20× 10−6 139× 10−6

RSEI Ω m2 5× 10−3

t+ 0.363 0.363 0.363
F C mol-1 96487
R J mol-1K-1 8.314
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Table D.2: Electrochemical sensitivity symbols and names

Parameter Parameter Parameter
Symbol Name Symbol Name Symbol Name
An An εf,n efn Ln Ln
Ap Ap εf,p efp Lp Lp
As As εn en Ls Ls
ce,0 ce0 εp ep Rs,n Rsn
cs,n,max csnmax εs es Rs,p Rsp
cs,p,max cspmax
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