
Daptomycin forms cation- and size-selective pores in model membranes

TianHua Zhanga, Jawad K. Muraihb, Ben MacCormickc, and Michael Palmerad

aDepartment of Chemistry, University of Waterloo, Waterloo, Ontario, Canada

bDepartment of Chemistry, University of Al-Muthanna, Samawah, Al-Muthanna, Iraq

cBioMedica Diagnostics, Windsor, Nova Scotia, Canada 

dCorresponding author. Email: mpalmer@uwaterloo.ca

1

The final publication is available at Elsevier via http://doi.org/10.1016/j.bbamem.2014.05.014 © 2014. This manuscript 
version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Waterloo's Institutional Repository

https://core.ac.uk/display/144150411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://doi.org/10.1016/j.bbamem.2014.05.014
http://creativecommons.org/licenses/by-nc-nd/4.0/


Abstract

Daptomycin is a lipopeptide antibiotic that is used clinically to treat severe infections 

caused by Gram-positive bacteria. Its bactericidal action involves the calcium-dependent 

binding to  membranes  containing phosphatidylglycerol,  followed by the  formation of 

membrane-associated  oligomers.  Bacterial  cells  exposed  to  daptomycin  undergo 

membrane depolarization,  suggesting the formation of channels or pores in the target 

membranes. We here used a liposome model to detect and characterize the permeability 

properties  of  the  daptomycin  pores.  The  pores  are  selective  for  cations,  with 

permeabilities being highest for Na+, K+, and other alkali metal ions. The permeability is 

approximately twice lower for Mg++, and lower again for the organic cations choline and 

hexamethonium. Anions are excluded, as is the zwitterion cysteine. These observations 

account for the observed depolarization of bacterial cells by daptomycin and suggest that 

under typical in vivo conditions depolarization is mainly due to sodium influx. 
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Introduction

Daptomycin is the first clinically approved lipopeptide antibiotic; it has been available for 

injection  under  the  trade  name  Cubicin® since  2003  [1].  It  is  used  to  treat  severe 

infections  caused  by  Gram-positive  bacteria  such  as  Staphylococcus  aureus and 

Enterococcus  faecalis,  including  strains  that  are  resistant  to  β-lactam antibiotics  and 

vancomycin [2, 3]. Daptomycin consists of a cyclic peptide moiety with 10 amino acids, 

from which the N-terminal three amino acids protrude; the N-terminus carries a decanoyl 

fatty  acyl  side  chain  (Figure  1).  The  antibiotic  is  extraribosomally  synthesized  by 

Streptomyces roseosporus [4, 5] and contains several non-standard amino acids. 

Daptomycin acts at the bacterial membrane. Various molecular targets and action modes 

have been proposed, including the inhibition of peptidoglycan  [6] or lipoteichoic acid 

synthesis  [7]. However,  the only effect consistently reported in studies from different 

laboratories  consists  in  the  depolarization  of  the  bacterial  cell  membrane  [8-11]. 

Concomitantly  with  membrane  depolarization,  bacterial  cells  lose  the  ability  to 

accumulate  amino  acid  substrates,  while  leaving  glucose  uptake  intact,  indicating  a 

selective nature of the membrane permeability defect  [9]. No membrane discontinuities 

have  been observed by electron  microscopy [12],  also supporting the  notion that  the 

functional membrane lesion is discrete and small. 

Based  on  precedent  from  other  membrane-damaging  peptides  and  proteins,  it  was 

proposed  early  on  that  daptomycin  acts  through  the  formation  of  oligomeric 

transmembrane  pores  [10];  however,  experimental  evidence  was  only  obtained  more 

recently. Using various fluorescently labeled, functionally active daptomycin derivatives, 

oligomerization was observed both on model liposomes and on bacterial membranes [13-

15],  and it  was  subsequently shown that  oligomerization  is  required  for  antibacterial 

action  [16].  The  model  liposomes  used  in  those  studies  contained  only 

phosphatidylcholine  (PC),  which  is  largely  inert  to  daptomycin  [13],  and 

phosphatidylglycerol  (PG),  which  was  required  to  induce  binding  at  physiologically 

relevant calcium concentration, as well as to trigger oligomer formation. 
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It is noteworthy that the abundance of phosphatidylglycerol in bacterial cell membranes 

is also a major determinant in the susceptibility of bacteria to daptomycin [17-19]. It was 

therefore of interest to determine whether the PC/PG liposome model also suffices to 

support the formation of the functional daptomycin pore, and if so, to characterize the 

pore's  permeability properties. This  study reports  the corresponding experiments.  The 

results  show  that  daptomycin  forms  discrete  pores  on  liposome  membranes  that  are 

selective for cations of limited size.

Materials and methods

Preparation of indicator-loaded large unilamellar vesicles

1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 1,2-Dimyristoyl-sn-glycero-

3-phospho-rac-(1’-glycerol)  (DMPG;  both  from  Avanti  Polar  Lipids,  Alabaster,  AL, 

USA) were used to prepare the vesicles. Equimolar amounts of DMPC and DMPG were 

weighed  into  a  round-bottom flask  and  dissolved  in  chloroform/methanol  (3:1).  The 

solvent mixture was then evaporated with nitrogen to produce a ipid film, which was 

further dried under vacuum for three hours and then dispersed in buffer. The resulting 

lipid suspension was extruded through a 100 nm polycarbonate filter 15 times, using a 

nitrogen-pressurized  extruder  to  produce  indicator-loaded  large  unilamellar  liposomes 

[20]. 

The buffers used for dispersing the lipid film contained either pyranine or dithio-bis-

nitrobenzoic acid (DTNB) as indicators for the permeabilization assays, and they varied 

in pH and salt composition as detailed in Table 1. Following polycarbonate membrane 

extrusion, the liposomes were subjected to  gel filtration on a Bio-Rad P-6DG column 

(Bio-Rad, Richmond, CA, USA) in order to remove unentrapped indicator. The column 

buffers used in the gel filtration step matched those used for lipid film rehydration, except 

for the absence of pyranine or DTNB. 

As  indicated  in  Table  1,  all  loading  buffers  also  contained  250  mM  sucrose.  This 

experimental detail was adopted from a previous study [21] and was found to improve the 

stability of the indicator-loaded liposomes. 
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Fluorescence measurements

With  pyranine-loaded  liposomes,  time-based  emission  scans  were  acquired  on  a  PTI 

QuantaMaster  4  system,  the  sample  holder  of  which  was  thermostatted  at  30  ºC. 

Liposome suspensions were diluted to a final concentration of 250 µM of total lipids into 

reaction  buffer  with  5mM  CaCl2.  Daptomycin  (Cubist),   carbonyl  cyanide  m-

chlorophenyl  hydrazine (CCCP, Sigma),  and valinomycin or gramicidin (Sigma) were 

added  as  indicated  to  final  concentrations  of  1  μM,  5  nM,  0.5  μM,  and  10  nM, 

respectively, in order to initiate the reaction. The fluorescence emission at 510 nm was 

recorded for 5 minutes, with excitation at 460 nm. Triton X-100 was then added to a final 

concentration of 0.1%, followed by one more minute of recording; this was done in order 

to disrupt the liposomes and so establish the fluorescence intensity equivalent to 100% 

test solute permeation. 

With cationic test solutes, the reaction buffer was similar to the corresponding liposome 

hydration buffer (see Table 1), but the concentration of the test solute was increased to 

100 mM, and the pH value from 6.00 to 8.00. With the anionic test  solute (Cl -),  the 

reaction buffer was similar to its hydration buffer, but choline chloride was added to 100 

mM, and the pH value was lowered from 8.00 to 6.00. Using the intrinsic fluorescence of 

the kynurenine residue, we confirmed that daptomycin binds quantitatively to the model 

membranes under these experimental conditions (see Figure S1).

Spectrophotometric measurements

The permeation of thiols into the liposomes was measured through reduction of entrapped 

DTNB, which was measured by its absorption at 412 nm (ε=13,400 M-1cm-1). DTNB-

loaded liposomes were diluted to a final concentration of 250 µM total lipids into the 

corresponding hydration buffer (Table 1) supplemented with 100 mM cysteine and 5 mM 

CaCl2. 1 µM daptomycin was added to initiate the reaction.

Assessment of flow rate of different cations through daptomycin pores 

To convert observed changes of pyranine fluorescence to permeation rates of cations, a 

calibration curve for pyranine fluorescence as a function of pH was recorded. 200 mL of 
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buffer (5 mM MES, 5 mM Tricine, 5 mM NaCl, 5 mM KCl, 250 mM sucrose, pH 6.00; 

the same as used for the liposome interior when testing cation permeation) containing 2 

µM  pyranine  was  titrated  with  1  M  NaOH,  while  measuring  both  the  pyranine 

fluorescence intensity at 510 nm and the pH value after each successive addition. The 

measured curve was fitted with the empirical polynomial function:

y=ax+bx1 /2
+cx1/3

+dx1/4

The fitted function was  then used as a calibration curve to convert the measured time-

based fluorescence traces to changes in the intraliposomal proton concentration. 

Results

Effect of daptomycin on cation permeability

The permeability of liposomes for cations was measured using a coupled fluorescence 

assay that is based on the pH-sensitive indicator pyranine, whose fluorescence increases 

with  the  pH as  its  phenolic  OH group  dissociates  between  pH 6  and  8.5  [21].  The 

experimental rationale, with potassium as an example, is illustrated in Figure 2. Dilution 

of the pyranine-loaded liposomes into the final reaction buffer containing 100 mM KCl at 

pH 8 creates two opposite ion concentration gradients across the liposome membrane: the 

K+ concentration is higher outside, whereas the H+ concentration is higher inside (Figure 

2A). Addition of the proton ionophore CCCP alone to this system will cause little change 

to the pH within the liposomes, since the efflux of protons will very soon be restricted by 

the ensuing diffusion potential  (Figure 2B).  The internal pH will  change significantly 

only  after  addition  of  daptomycin,  if,  and  only  if,  daptomycin  allows  the  influx  of 

potassium ions.  Both  ion  gradients  will  then  dissipate,  the  interior  pH will  rise,  and 

pyranine will dissociate and fluoresce (Figure 2C). 

The findings obtained using this assay with different cations are illustrated in  Figure 3. 

Panel A shows that the experiment works as expected with valinomycin, a potassium-

specific ionophore. With potassium, but not with sodium, the combination of valinomycin 

and CCCP induces a rapid change that indicates swift dissipation of the proton gradient, 
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facilitated by exchange of protons and potassium ions across the membrane. CCCP alone 

does not induce an appreciable change in fluorescence, while valinomycin alone shows a 

minor one; it may be that valinomycin has a limited ability to translocate protons bound 

to it, as has been suggested earlier [22].  

Figure 3B shows the same experiment with daptomycin instead of valinomycin. Again, 

only the combination of daptomycin and CCCP induces a major change of fluorescence, 

while either agent alone induces negligible changes in fluorescence. This indicates that 

daptomycin allows the influx of potassium ions. Also note that the rate of fluorescence 

change  induced  with  daptomycin/CCCP  was  significantly  smaller  than  with 

valinomycin/CCCP, which indicates that under the given experimental conditions the rate 

of fluorescence change was constrained by daptomycin and not by CCCP. This latter 

conclusion is further supported by the experiments shown in Figures S2 and S3. 

Furthermore, when CCCP was added several minutes after daptomycin in order to allow 

lead time for daptomycin pore assembly before triggering ion gradient dissipation, the 

ensuing  fluorescence  traces  were  very  similar  to  those  obtained  with  simultaneous 

application (data not shown). This indicates that the rate of ion flux was not limited by 

the process of pore assembly, but rather by the permeability of the already assembled 

pores. 

When significantly higher concentrations of daptomycin were employed together with 

CCCP, the rate of permeabilization increased, but there was also a notable increase in the 

rate of fluorescence change in the absence of CCCP (data not shown). This agrees with a 

previous  study  showing  that,  at  higher  concentrations,  daptomycin  destabilizes  and 

induces  fusion  of  lipid  bilayers  [23].  We  therefore  used  a  concentration  of  1  μM 

throughout;  this  value  is  similar  to  minimal  inhibitory  concentrations  in  susceptible 

bacteria [24]. 

To further  investigate  the  ion  selectivity  and  functional  size  of  the  pores  formed  by 

daptomycin, the same experimental conditions were used on a series of cations (Figure 

3C).  The  various  metal  ions,  choline,  and  hexamethonium  (N,N,N,N',N',N'-

hexamethylhexane-1,6-diaminium) were all used as their respective chloride salts and at 
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the same molar concentrations. All metal ions produced a similar rate of fluorescence 

increase. Similar rates of permeabilization were also observed with lithium, rubidium, 

barium, and calcium (data not shown); however, calcium is also a cofactor of daptomycin 

activity,  which  might  conceivably  skew  this  measurement.  Compared  to  the  metal 

cations,  choline  and  hexamethonium  produced  significantly  lower  increases  in 

fluorescence intensity (Figure 3C). Both are organic cations and, in unhydrated form, are 

larger than the metal ions. 

Effect of daptomycin on the permeability of anions

To determine whether daptomycin pores also allow the permeation of anions, the assay 

format was varied slightly. Pyranine-loaded liposomes with high internal pH (8.00) were 

diluted  into a  reaction  buffer  containing 100 mM choline  chloride  at  low pH (6.00), 

creating H+ and Cl- gradients that point the same way. Choline has been shown above to 

be only slowly transported by daptomycin,  whereas proton transport by CCCP is fast 

(compare Figure 3A); therefore, an influx of chloride should mostly be compensated by a 

simultaneous influx of protons, lowering the interior pH and causing the fluorescence to 

drop. This, however, was not observed; the fluorescence intensity was not significantly 

affected  by  the  presence  of  daptomycin,  with  our  without  CCCP (Figure  4A).  We 

conclude that daptomycin pores have no or low permeability for chloride ions. 

Effect of daptomycin on the permeability of neutral solutes

DTNB (Ellman’s reagent) is useful for detection of thiol groups in compounds such as 

cysteine. Its disulfide bond is readily cleaved by thiols to produce 2-nitro-5-thiobenzoate 

(NTB-), which absorbs at 412 nm [25]. We here used it to test the permeation of thiols 

across daptomycin pores. In this experiment, DTNB-loaded liposomes were added to a 

solution containing 100 mM of thiol.

The  experiment  shown  in  Figure  4B  depicts  the  findings  obtained  with  cysteine. 

Absorption was measured every 2 minutes over a period of 10 minutes, which showed no 

significant change until 0.1% Triton X-100 was added. Addition of 1 µM daptomycin did 

not accelerate the reduction of DTNB (indeed it seemed to slightly delay it), indicating 
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that  the  daptomycin  pore  allows  no  or  only  slow  passage  of  cysteine  across  the 

membrane. 

Cysteine  has  a  neutral  net  charge,  but  it  is  not  uncharged.  Two  uncharged  thiols, 

dithiothreitol (DTT) and 2-mercaptoethanol, were also tested. These molecules, however, 

were found to swiftly enter the liposomes and reduce DTNB even at lower concentrations 

and in the absence of daptomycin, so that no conclusion could be reached as to their 

ability to be transported by daptomycin pores. 

These  findings  do  not  allow us  clearly assess  the  ability  of  daptomycin  to  transport 

neutral solutes; cysteine transport may be limited either by lack of a positive charge or by 

its molecular size.  

Estimation of the rate of ion flow across daptomycin pores

As illustrated in Figure 2, each proton that is to leave the liposome needs to be replaced 

by one (alkali metals and choline) or one half (magnesium and hexamethonium) cation 

that enters through a daptomycin pore. Therefore, a given decrease in the total (buffered 

and  unbuffered)  proton  concentration  corresponds  to  a  proportional  increase  in  the 

concentration of the test cation, and it is thus possible to estimate the rate of permeation 

through daptomycin pores from the rate of fluorescence change. 

The relationship between pyranine fluorescence intensity and total proton concentration 

was determined empirically by titrating pyranine-containing cation hydration buffer with 

NaOH.  The  titration  curve  was  mathematically  fitted  with  an  empirical  polynomial 

function  (Figure  5A),  which  was  then  used  to  convert  the  previously  acquired 

fluorescence traces to changes of intravesicular cation concentrations (Figure 5B). The 

rates are highest for the alkali metal ions and lowest for magnesium and hexamethonium. 

In Figure 5C, the rate of sodium transport during the first minute was approximated using 

a single-exponential fit. The parameters of this fit indicate an initial transport rate of 22 

μM per second. To estimate the number of ions actually transported, we need to consider 

that  the  experiment  observes  the  change  in  ion  concentration  only  within  the 

intraliposomal  volume.  Liposomes  with  100  nm  diameter  and  at  a  total  lipid 
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concentration  of  250  μM  should  enclose  approximately  0.08%  of  the  total  volume. 

Therefore, an apparent ion transport rate of 22 μM/s converts to a liposomal entry of only 

18 nM/s from the bulk volume. The daptomycin concentration is 1 μM; if all daptomycin 

molecules are indeed incorporated into functional pores, and  each pore is an oligomer 

that  consists  of  7  or  8  subunits  [14,  26],  the  average  transport  rate  of  each  pore  is 

approximately 0.12 sodium ions per second. While this is only a rough estimate, it  is 

clear that ion transport by daptomycin is many orders of magnitude slower than those of 

typical cellular ion channels or of gramicidin, which transports upward of 106 ions per 

seond under similar conditions [27] (compare also Figure S2).

Discussion 

In  previous  experiments,  we  have  shown  that  daptomycin  forms  oligomers  on  the 

membranes of liposomes consisting of PC and PG, as well as on bacterial cells [13, 15]. 

These oligomers were subequently shown to contain approximately 7 subunits each [14] 

and to be involved in the bactericidal action of daptomycin [16]. We recently proposed a 

revised and more detailed model, in which the oligomer comprises eight subunits, with 

four each in the inner and the outer membrane leaflet [26].Earlier studies had established 

that daptomycin depolarizes the cell membranes of susceptible bacteria [8-10]. From the 

closely parallel observations obtained with the liposome model and with bacterial cells 

regarding  oligomer  formation,  the  question  arose  whether  the  functional  daptomycin 

lesion could also be observed and characterized in the liposome model. 

The findings reported here show that this is indeed the case. Daptomycin was found to 

permeabilize  the  liposome  membranes  in  a  cation-selective  fashion.  The  rate  of 

permeation was virtually the same for all alkali metal ions. It was approximately twice 

lower  for  magnesium,  and  lower  again  for  the  organic  cations  choline  and 

hexamethonium, indicating that  the pore also discriminates between different  cations, 

most likely according to size.

When comparing the bare ions,  without  hydration shells,  the two organic cations are 

much  larger  than  all  of  the  metal  ions;  both  choline  and  hexamothonium  contain 

tetramethylammonium as  a  moiety,  which  has  an  unhydrated  diameter  of  5.7  Å. In 
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contrast, when we take the hydration shells into account, magnesium at 8.6  Å exceeds 

the alkali metals and the organic ions, which are all close to 7  Å (all ionic diameters 

according to [28]). In membrane nanofiltration experiments [29], sodium and potassium 

have been found to be more permeant than magnesium and calcium, and it was proposed 

that  nanopore  permeation  involved  the  partial  shedding  of  hydration  shells.  Partial 

dehydration may also be involved in ion permeation across the the daptomycin pore. The 

organic cations bind their hydration shells most weakly [30]; nevertheless, they are less 

readily transported than the alkali  metal ions, which suggests that daptomycin prefers 

ions  with  an  effective  radius  below  that  of  unhydrated  choline  or  hexamethonium. 

Chloride, in both hydrated and unhydrated form, is very similar in diameter to potassium; 

therefore, its  exclusion is apparently not caused by size but may be due to electrostatic 

repulsion between it and one of the several acidic residues on the daptomycin molecule. 

It seems likely that the pore is also permeable for protons; however, due to the very low 

free (as opposed to buffered) proton concentration at  near neutral pH, this would not 

result in a rapid dissipation of transmembrane proton gradients and therefore would not 

be detected in our assay.

The  observations  reported  here  agree  rather  well  with  previous  reports  on  the 

permeabilization of bacterial cells. Daptomycin depolarizes  Bacillus cells and disrupts 

their uptake of amino acids, which is mostly driven by cation cotransport, but does not 

induce leakage of already accumulated amino acids [9]. The major cations that control 

the membrane potential are potassium and sodium. In an intact cell, the permeability is 

higher  for  potassium  than  for  sodium,  which  creates  a  negative-inside  membrane 

potential.  Changing  the  permeability  balance  in  favor  of  sodium will  depolarize  the 

membrane. This would occur with either sodium-selective channels or with non-selective 

pores  such  as  those  formed  by  daptomycin,  which  indeed  reproducibly  induces 

depolarization. Interestingly,  one experimental study reported a short-lived yet distinct 

transient hyperpolarization, followed by depolarization [31]. The extracellular medium 

used in that study was low in sodium; in this situation, permeabilization for both sodium 

and potassium might produce a transient dominance of the strongly negative potassium 
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equilibrium potential,  which would then  collapse as  the cytosol  becomes  depleted of 

potassium through continued leakage. 

A quantitative  estimation  of  the  rate  of  ion  transport  for  a  single  daptomycin  pore 

indicated that  this  rate  is  several  orders  of  magnitude lower than that  of  gramicidin, 

another peptide antibiotic that permeabilizes membranes for cations. It must be noted that 

the transport rate obtained here for daptomycin is an average value; while it might indeed 

apply to each of the functional pores in the ensemble, it is also possible that only a small  

fraction of all daptomycin oligomers form functional pores, with correspondingly greater 

permeability, or that the pores alternate between closed and open states, with the latter 

only prevailing during a small fraction of the time. While the conductivity properties of 

the  individual  daptomycin  pore  must  be  determined  in  future  experiments,  the  low 

average  conductivity,  compared with  a  dedicated  channel  former  such as  gramicidin, 

might suggest that pore-formation may be only one of several aspects of daptomycin's 

bactericidal action. It should, however, be noted that no additional action mode has been 

biochemically  substantiated  [11].  Moreover,  liposome  permeabilization  is  readily 

observed with daptomycin concentrations equivalent to typical MIC values [10], even 

though the ratio of daptomycin molecules to membrane lipids is lower in a liposome expe 

than in a bacterial  culture freshly inoculated for MIC measurement;  this  supports the 

notion that membrane permeabilization is relevant to antibacterial activity. 

In sum, our study shows that a very simple artificial membrane model suffices to elicit  

and characterize  the  pore-forming activity  of  daptomycin.  The only lipid  specifically 

required for pore formation in our model is PG. A key role for PG in vivo is consistent 

with several studies on the causation of bacterial resistance to daptomycin [17-19]. The 

availability of a simple yet sufficient liposome  model for daptomycin pore formation 

should be useful in further characterizing the structure and action mode of daptomycin, as 

well as the molecular basis of bacterial resistance.
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Table 1

Buffers  and  indicators  used  to  detect  membrane  permeabilization  toward  different 

solutes.  The indicators  were dissolved in  the corresponding hydration buffer,  and the 

solution  was  then  used  to  rehydrate  PC/PG  lipid  films.  After  extrusion  of  the  lipid 

dispersion through polycarbonate membranes, unentrapped indicator was removed by gel 

filtration  using  the  corresponding  hydration  buffer.  In  experiments  with  anionic  or 

cationic test solutes, pH gradients were established by diluting the liposome samples into 

reaction buffers with different pH. Pyranine (8-hydroxypyrene-1,3,6-trisulfonic acid) and 

DTNB (5,5’-dithiobis-(2-nitrobenzoic acid)) were obtained from Sigma. 

Test solutes Hydration buffer Entrapped indicator pH value

Cations 5 mM MES, 5 mM Tricine,

5 mM NaCl, 5 mM KCl,

250 mM Sucrose

5 mM pyranine 6.00

Anions 5 mM MES, 5 mM Tricine,

5 mM NaCl, 5 mM KCl,

250 mM Sucrose

5 mM pyranine 8.00

Neutral solutes 
(thiols)

20 mM HEPES, 

150 mM NaCl,

250 mM Sucrose

5 mM DTNB 7.00

13



Legends to Figures

Figure 1. Schematic of the structure of daptomycin. Arrows indicate amide bonds, except 

between kynurenine and threonine, where an ester bond between the carboxyl group of 

kynurenine and the side chain hydroxyl group of threonine closes the ring. 

Figure  2. Schematic  representation  of  the  pyranine-based  liposome  permeabilization 

assay, using K+ ions as an example. Liposomes loaded with pyranine were diluted into the 

final  reaction  buffer  to  create  two  opposite  ion  concentration  gradients  across  the 

membrane  (A).  Application  of  the  protonophor  CCCP alone  will  create  a  diffusion 

potential, which will prevent a major efflux of protons (B). If daptomycin is added also 

and allows K+ ions to enter, both ion gradients can dissipate, the pH in the liposome will 

rise, and pyranine fluorescence will increase (C). 

Figure 3. Time-based fluorescence traces of pyranine-loaded liposomes after exposure to 

different test solutes and permeabilizing agents, which were added at t=0. The interior pH 

was 6 and the exterior pH was 8. Test solutes added to the exterior buffer at 100 mM 

were KCl in B, and otherwise as indicated; “hexa” in C and D is hexamethonium. After 

300  seconds,  the  samples  were  solubilized  with  Triton-X100,  and  the  fluorescence 

monitored  for  another  minute.  The  fluorescence  intensity  observed  after  Triton 

solubilization was used to normalize each fluorescence trace.  A: Valinomycin (val., 0.5 

μM)  with  CCCP (5  nM)  permeabilize  liposomes  for  potassium  but  not  sodium.  B: 

Daptomycin (1 μM) plus CCCP (5 nM) also causes permeabilization for potassium.  C: 

Permeabilization traces  obtained  with  both  daptomycin  and  CCCP  present,  after 

subtraction of the traces obtained with CCCP only. D: Averages and standard deviations 

of  fluorescence  intensities  after  300  seconds  of  incubation,  for  3  or  4  independent 

experiments performed as in C (“chol.” is choline).

Figure 4. Absence of liposome permeabilization toward chloride (A) and cysteine (B). A: 

Pyranine-loaded  liposomes  with  an  interior  pH  of  6  were  diluted  100  mM  choline 

chloride,  pH  8,  and  CCCP  (5  nM)  and  daptomycin  (1 μM)  were  added  at  t=0. 
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Permeabilization for chloride should have resulted in an accelerated dissipation of the pH 

gradient and concomitant drop in pyranine fluorescence. The experiment shown is one of 

4  independent  ones  and  is  representative.  B: Time  course  of  reduction  of  DTNB 

entrapped in liposomes by 100 mM cysteine added to the outside, in the absence and 

presence  of  daptomycin  (1  μM).  Reduction  of  DTNB  results  in  an  increase  of  the 

absorption at 412 nm. After the last reading at 10 minutes, samples were solubilized with 

Triton-X100, resulting in immediate complete DTNB reduction. Error bars are standard 

deviations  from three  independent  experiments.  Daptomycin  does  not  increase  in  the 

permeation of cysteine into the liposomes. 

Figure 5. Conversion of observed pyranine fluorescence changes to cation flow rates. A 

calibration  curve  relating  total  (buffered  and  unbuffered)  proton  concentration  to 

pyranine  fluorescence  intensity  was  obtained  by  titrating  a  solution  matching  the 

liposome interior with NaOH (A). A polynomical function was fitted to the measured 

values.  In  panel  B,  the  polynomial  function  obtained  in  A was  applied  to  the  raw 

fluorescence traces shown in Figure 3C in order to transform them to ion fluxes. The flow 

rates for hexamethonium and Mg++ were then divided by 2, as each of these cations is 

exchanged for 2 protons. In C, an exponential function was fitted to the transport curve 

for sodium in order to estimate the initial transport rate (see text for further details). 
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