
Predictable Shared Memory Resources for
Multi-Core Real-Time Systems

by

Mohamed Hassan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Electrical and Computer Engineering

Waterloo, Ontario, Canada, 2017

c©Mohamed Hassan 2017

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining
Committee is by majority vote.

External Examiner Tulika Mitra
Professor

Supervisor Hiren Patel
Associate Professor

Internal Member Rodolfo Pellizzoni
Associate Professor

Internal Member Catherine Gebotys
Professor

Internal-external Member Bernard Wong
Associate Professor

ii

This thesis consists of material all of which I authored or co-authored: see Statement of Con-
tributions included in the thesis. This is a true copy of the thesis, including any required final
revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Statement of Contributions

In what follows is a list of publications which I have co-authored and used their content in this
dissertation. For each publication, I present a list of my contributions.

The use of the content, from the listed publications, in this dissertation has been approved by
all co-authors.

1. Mohamed Hassan, Hiren Patel, ”Requirement- and Criticality-aware Bus Arbitration for
Mixed Criticality Systems” In IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS 2016), Vienna, Austria [1]

• Developed the arbitration algorithm and implemented it

• Conducted the timing analysis

• Designed and executed the experiments

• Analyzed the experimental results

• Wrote a significant portion of the article

2. Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, ”A Predictable Cache Coherence
for Multi-core Real-time Systems” In IEEE Real-Time and Embedded Technology and
Applications Symposium (RTAS 2017), Pittsburgh, PA, USA [2]

• Identified the sources of unpredictability in conventional coherence protocols

• Defined the invariants that maintains predictable behaviors

• Developed the predictable coherence protocol (PMSI)

• Formulated the optimization problem

• Conducted the timing analysis

• Involved in designing the experiments

• Involved in analyzing the experimental results

• Wrote a significant portion of the article

3. Mohamed Hassan, Hiren Patel, Rodolfo Pellizzoni, ”A Framework for Scheduling DRAM
Memory Accesses for Multi-Core Mixed-time Critical Systems” In IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS 2015), Seattle, USA [3]

iv

• Developed the mixed page policy

• Developed the optimal harmonic TDM schedule

• Formulated the optimization problem

• Conducted the timing analysis

• Designed and executed the experiments

• Analyzed the experimental results

• Wrote a significant portion of the article

4. Mohamed Hassan, Hiren Patel, Rodolfo Pellizzoni, ” PMC: A Requirement-aware DRAM
Controller for Multi-core Mixed Criticality Systems” In ACM Transactions on Embedded
Computing Systems (TECS) [4]

• Extended PMC to support multi-rank DRAMs

• Extended PMC to support smaller transaction sizes

• Designed and executed the experiments

• Analyzed the experimental results

• Wrote a significant portion of the article

5. Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, ”Reverse Engineering Embedded
Memory Controllers through Latency-based Analysis” In IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS 2015), Seattle, USA [5]

• Developed the reverse-engineering algorithms

• Defined the inference rules used in the reverse-engineering process

• Conducted the latency-based analysis

• Involved in designing the experiments

• Involved in analyzing the experimental results

• Wrote a significant portion of the article

6. Mohamed Hassan, Anirudh M. Kaushik, Hiren Patel, ” Exposing Implementation Details
of DRAM Memory Controllers through Latency-based Analysis” In IEEE Transactions on
Computers (TC) (Under Review) [6]

• Added the reverse-engineering of the write buffer policy

v

• Extended the reverse-engineering of the XOR address mapping

• Identified potential applications for exposing the memory controller details

• Involved in designing the experiments for the FPGA

• Involved in analyzing the experimental results from the FPGA

• Wrote a significant portion of the article

7. Mohamed Hassan, Hiren Patel, ”MCXplore: An Automated Framework for Validating
Memory Controller Designs” In IEEE Design, Automation and Test Conference in Europe
(DATE 2016), Dresden, Germany [7]

• Defined the formal models of the input stimulus of the memory system

• Implemented these models in a modeler checker tool and used them as a test genera-
tion engine

• Developed a methodology to use DRAM utilization to validate the memory controller
behavior

• Implemented the MCXplore framework as an open-source tool

• Developed the regression test suites that stress the DRAM behavior

• Showed case studies on using MCXplore to validate state-of-the-art DRAM policies

• Applied the proposed methodology to discover timing violations in memory con-
trollers

• Wrote a significant portion of the article

8. Mohamed Hassan, Hiren Patel, ” MCXplore: Automating the Validation Process of DRAM
Memory Controller Designs” In IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems (TCAD)(Under Review) [8]

• Illustrated the usage of MCXplore with other high-level statistics

• Extended the framework to validate other DRAM policies

• Designed and executed the experiments

• Analyzed the experimental results

• Wrote a significant portion of the article

vi

Abstract

A major challenge in multi-core real-time systems is the interference problem on the shared hard-
ware components amongst cores. Examples of these shared components include buses, on-chip
caches, and off-chip dynamic random access memories (DRAMs). The problem arises because
different cores in the system interfere with each other, while competing to access the shared hard-
ware components. It is a challenging problem for real-time systems because operations of one
core affect the temporal behaviour of other cores, which complicates the timing analysis of the
system. We address this problem by making the following contributions. 1) For shared buses,
we propose CArb, a predictable and criticality-aware arbiter, which provides guaranteed and dif-
ferential service to tasks based on their requirements. In addition, we utilize CArb to mitigate
overheads resulting from system switching among different modes. 2) For the cache hierar-
chy, we address the problem of maintaining cache coherence in multi-core real-time systems by
modifying current coherence protocols such that data sharing is viable for real-time systems in
a manner amenable for timing analysis. The proposed solution provides performance improve-
ments, does not impose any scheduling restrictions, and does not require any source-code modi-
fications. 3) At the shared DRAM level, we propose PMC, a programmable memory controller
that provides latency guarantees for running tasks upon accessing the off-chip DRAM, while as-
signing differential memory services to tasks based on their bandwidth and latency requirements.
In addition to PMC, we conduct a latency-based analysis on DRAM memory controllers (MCs).
Our analysis provides both best-case and worst-case bounds on the latency that any request suf-
fers upon accessing the DRAM. The analysis comprehensively covers all possible interactions of
successive requests considering all possible DRAM states. Finally, we formally model request
interrelations and DRAM command interactions. We use these models to develop an automated
validation framework along with benchmark suites to validate and evaluate PMC and any other
MC, which we release as an open-source tool.

vii

Acknowledgements

First and foremost, all the praise and thankfulness to Allah for empowering me to complete
this thesis. Without his help, I would not have the ability to pass the finish line of this stage in
my life.

I would like to seize this opportunity to thank Professor Hiren Patel (my supervisor), and
Professor Rodolfo Pellizzoni for their valuable help and guidance. I would also like to thank my
committee members: Professor Tulika Mitra, Professor Catherine Gebotys, Professor Rodolfo
Pellizzoni, and Professor Bernard Wong for taking the time and effort to participate in my exam-
ination committee and provide me with valuable feedback.

I would like to thank my friends in the Computer Architecture and Embedded Systems Re-
search (CAESR) group at the University of Waterloo for all the great collaborations, discussions,
and projects: Anirudh M. Kaushik, Nivedita Sritharan, Yunling Cui, Zhuoran Yin, and Danlu
Guo.

I cannot find the words to thank my parents for their continuous and endless support through-
out my whole life. I thank them for believing in me and for helping me be who I am today.
Thanks to my brother, Alaa, my sister, Shimaa, and my dear friend, Youssef Elkady for the
unconditional love and support.

I would like to express my deep gratitude to my wife, Hebatullah. Thanks for her patience,
support, love, sacrifices, and consideration. I also thank my son, Albaraa, and my daughter,
Jannah, for shining our home with their beautiful smiles.

viii

Dedication

Indeed, my prayer, my rites of sacrifice, my living and my dying are for Allah , Lord of the
worlds. [Qura’n 6:162]

ix

Table of Contents

List of Tables xvi

List of Figures xviii

List of Abbreviations xxii

List of Symbols xxv

1 Introduction 1

2 Criticality- and Requirement-aware Bus Arbitration for Multi-core Mixed Critical-
ity Systems 4

2.1 Introduction . 4

2.1.1 Contributions . 6

2.2 Related Work . 7

2.3 System Model . 8

2.4 Execution Time Decomposition . 10

2.4.1 Illustrative Example . 10

2.5 Applicability of real-time arbiters in MCS . 11

2.6 CArb: Proposed Arbitration Scheme . 13

2.6.1 Inter-class Arbitration . 14

2.6.2 Intra-class Arbitration . 15

x

2.6.3 Area Overhead . 17

2.7 WC Analysis and Problem Formulation . 17

2.7.1 WC analysis . 18

2.7.2 Optimization problem formulation . 19

2.7.3 Λ(L): The WC number of memory accesses as a function of CL 21

2.8 Dynamic Re-arbitration . 21

2.8.1 Motivation . 21

2.8.2 Proposed Solutions . 21

2.8.3 Effect of Re-arbitration on Lower-criticality Tasks 24

2.9 Experimental Evaluation . 25

2.9.1 Avionics Use-case . 26

2.9.2 Minimum Achievable Latency . 27

2.9.3 Synthetic Experiments . 27

2.9.4 Dynamic Re-arbitration . 29

2.10 Summary . 32

3 PMSI: Predictable Cache Coherence for Multi-core Real-time Systems 33

3.1 Introduction . 33

3.1.1 Contributions . 35

3.2 Related Work . 35

3.3 Background: Cache Coherence . 37

3.3.1 Transient Cache Coherence States . 39

3.4 System Model . 40

3.5 Sources of Unpredictability Due to Coherence 41

3.5.1 Source 1 : Inter-core Coherence Interference on Same Line 42

3.5.2 Source 2 : Inter-core Coherence Interference on Different Lines 43

3.5.3 Source 3 : Inter-core Interference Due to Write Hits 44

3.5.4 Source 4 : Intra-core Coherence Interference 46

xi

3.6 PMSI: A Predictable Coherence Protocol . 47

3.6.1 Architectural Modifications . 48

3.6.2 Coherence Protocol Modifications . 49

3.7 Latency Analysis . 52

3.8 Evaluation . 56

3.8.1 Verification . 57

3.8.2 Exp.1: Bounding the Memory Latency 57

3.8.3 Exp.2: Comparing Performance with Conventional Protocols and Alter-
native Predictable Approaches . 59

3.8.4 Exp.3: Comparing to the Ideal Scenario 60

3.8.5 Exp.4: Scalability . 61

3.9 Summary . 62

4 PMC: A Requirement-aware DRAM Controller for Multi-core Mixed Criticality
Systems 63

4.1 Introduction . 63

4.1.1 Contributions . 64

4.2 Background: Main Memory . 66

4.2.1 Memory Page Policies . 68

4.3 Related Work . 69

4.4 Arbitration Mechanisms . 71

4.5 PMC: The Proposed Solution . 72

4.5.1 PMC Architecture . 72

4.5.2 Formulating Bundles . 74

4.5.3 Dynamic Bank Interleaving . 76

4.5.4 Rank Interleaving . 77

4.5.5 Arbitration Logic . 78

4.6 Schedule Generation . 79

xii

4.6.1 Proposed Implementation . 80

4.6.2 Schedule parameters . 82

4.6.3 Schedule Slots . 82

4.7 Timing Analysis . 84

4.7.1 Problem Formulation . 86

4.8 Experimental Evaluation . 88

4.8.1 Case-study: Multimedia System . 88

4.8.2 Synthetic Experiments . 90

4.9 Summary . 98

5 Reverse Engineering Embedded DRAM Memory Controllers through Latency-based
Analysis 99
5.1 Introduction . 99

5.1.1 Contributions . 100

5.2 Related Work . 101

5.3 Memory Latency Analysis . 102

5.3.1 Proof Strategy . 103

5.3.2 Example 1: Two accesses with same access type to two different banks
in the same rank . 105

5.3.3 Example 2: Two accesses with different access type to two different
banks in the same rank . 106

5.4 Reverse-Engineering Properties of the MC . 108

5.4.1 Reverse-engineering page policy and address mapping 108

5.4.2 Reverse-engineering the command arbitration scheme 114

5.4.3 Advanced MC features . 115

5.4.4 Performance Counters . 117

5.5 Potential Applications . 117

5.6 Experimental Evaluation . 119

5.6.1 Reverse-engineering MC’s properties of the XUPV5-LX110T platform . 119

5.6.2 Evaluation on simulation framework . 122

5.7 Summary . 127

xiii

6 MCXplore: Automating the Validation Process of DRAM Memory Controller De-
signs 128

6.1 Introduction . 128

6.1.1 Contributions . 129

6.2 Background: Model Checking . 130

6.3 Related Work . 131

6.3.1 Formal Verification of the Memory System 132

6.4 MCXplore Methodology . 134

6.4.1 Proposed Models . 135

6.5 Validating MC’s Frontend . 138

6.5.1 Address Mapping Policies . 139

6.5.2 Page Management Policies . 147

6.5.3 Arbitration Schemes . 149

6.6 Validating MC’s backend . 151

6.6.1 tCCD . 152

6.6.2 tRC . 154

6.6.3 tFAW . 155

6.6.4 tRTRS . 156

6.6.5 tRTP . 158

6.6.6 tRCD,tWL, and tRL . 159

6.6.7 tRRD . 161

6.6.8 tWR . 163

6.6.9 tWTR . 164

6.6.10 Summary . 165

6.6.11 Smart Refresh . 167

6.6.12 Command Bus Contention . 167

6.7 Extensibility of MCXplore . 169

6.8 Summary . 170

xiv

7 Bounding Total Memory Latency in Multi-Core Real-Time Systems 171

7.1 System Model . 171

7.2 Timing Analysis of Coherence Interference Assuming CArb’s Schedule 172

7.3 Aggregated Memory Latency Analysis . 174

8 Conclusion and Future Work 176

References 178

xv

List of Tables

2.1 Experiment using the avionics use-case from Honeywell [9]. 25

2.2 Parameters of synthetic experiments. 28

2.3 Parameters of the dynamic case experiment. 30

3.1 Transient states between S and I in a conventional MSI protocol. issue msg/state
means the core issues the message msg and move to state state. -/state indicates
that there is no msg issued. Shaded cells represent the situations where no tran-
sition occurs, while cells marked with X denote impossible cases under correct
operation [10]. 40

3.2 Private memory states for PMSI. issue msg/state means the core issues the mes-
sage msg and move to state state. A core issues a load/store request. Once the
cache line is available, the core reads/writes it. A core needs to issue a replace-
ment to write back a dirty block before eviction. Changes to conventional MSI
are in bold red. 49

3.3 Semantics of the proposed transient states to achieve a predictable behavior. . . . 52

4.1 Important JEDEC timing constraints (DDR3-1333) [11]. 68

4.2 Different bank interleaving for a single rank DDR3-1333. Bundle widths are in
cycles. 77

4.3 Terms and brief descriptions. 83

4.4 Multimedia processing system requirements. 89

5.1 Best and worst-case latencies. 107

5.2 Results of XORing different bank and row bits. 115

xvi

5.3 DDR2 specifications. 120

5.4 Address mapping findings for XUPV5-LX110T. 121

5.5 System configuration. 122

5.6 MC configurations. 123

6.1 Currently supported configurations. 136

6.2 Validating tRTP . 159

6.3 Validating tRCD, tRL and tWL. 161

6.4 Tests of timing parameters. 166

xvii

List of Figures

1.1 Multi-core architecture. 2

2.1 Multi-core architecture. 8

2.2 Real-time arbiters. 12

2.3 Memory bus arbitration using CArb. 14

2.4 Avionics use-case results. 26

2.5 Latency requirements. 28

2.6 Synthetic experiments (y-axis is the total WCL, ytot). 29

2.7 Effect of decreasing core frequency on tasks of C2. 31

3.1 Cache coherence. 38

3.2 Unpredictability source 1: inter-core coherence interference on same line. Ini-
tially, c0 modified A. c2 is under analysis. 43

3.3 Unpredictability source 2: inter-core coherence interference on different lines.
Initially, c0 modified A and B. c1 is under analysis. 44

3.4 Unpredictability source 3: inter-core interference due to write hits. 45

3.5 Unpredictability source 4: intra-core coherence interference. Initially, c0 has
modified A. c2 is under analysis. 47

3.6 Architectural changes necessary for PMSI. 48

3.7 Transient states example; grey boxes are events, and arrows are state transitions.
Initially, c0 has A in S. 51

3.8 Different latency components. Initially, c0 modified B and c1 modified A. 53

xviii

3.9 The latency bound on each interference component. Empty slots/periods do not
have events that are related to c1’s latency. 55

3.10 WC latencies and the effect of unpredictability sources on them. Unpredictable
i corresponds to source i in Section 3.5. Horizontal dotted line represents the
analytical bound. 58

3.11 Execution time slowdown compared to MESI protocol. 60

3.12 Slowdown in the execution time of different approaches compared to ideal sce-
nario. 61

3.13 Latencies with different number of cores. 62

4.1 DRAM subsystem. 66

4.2 A write access followed by a write or read access targeting the same bank and
rank for close-page policy. 67

4.3 PMC framework. 73

4.4 Command arrangements of the four bundles interleaving across 8 banks of DDR3-
1333 for a write request. A: ACTIVATE command, C: CAS command, CP: CASp
command, and N: NOP command. 74

4.5 Bundles usage for the 4 bank interleaving case. 75

4.6 A write followed by a read both targeting an open row. 78

4.7 Command arrangements of the four bundles interleaving across 2 ranks and 4
banks per rank. 79

4.8 A write followed by a read for no bank interleaving (single bank bundle). 80

4.9 TDM scheduling mechanisms. 81

4.10 A schedule example. 84

4.11 Results for the multimedia processing system use-case. 89

4.12 Effect of varying kmax and s of SRT requestors. 91

4.13 Effect of varying number of requestors. 93

4.14 Effect of the transaction size. 94

4.15 Dynamic vs. static bank interleaving. 95

4.16 Effect of rank interleaving on memory latency. 97

xix

5.1 A write access followed by a write or read access targeting the same bank and
rank. A: ACTIVATE, W: WRITE, R: READ, P: PRE, D: DATA. 103

5.2 The two conditions controlling the issuance of the first command of pr2. C1 and
C2 represent CAS1 and CAS2 commands respectively. 104

5.3 Two accesses with same access type to two different banks in the same rank. . . . 105

5.4 A read access followed by a write access targeting different banks in the same rank.106

5.5 Reverse-engineering process. 109

5.6 Latency bounds for a sequence of two requests. 110

5.7 Latency plots for test1 stimulating the on-board MC of XUPV5-LX110T. OP:
open-page policy, and CP: close-page policy. 120

5.8 Latency plots for page policy and address mapping inference tests. 123

5.9 Latency plot for hybrid-page policy. 124

5.10 Latency plot for FR-FCFS threshold test. 126

5.11 Write buffer policy. 127

6.1 Model checking operation. 131

6.2 Proposed validation process of MCs. 134

6.3 DRAM commands and timing constraints interaction. Subscripts reflect the tar-
geted bank and rank, respectively. d: different, s: same, x: do not care. Di: start
of the data transfer. De: end of the data transfer. P is for same bank. Ad,s is an A
command to a different bank on the same rank. 138

6.4 Test generation for validating XOR mapping 140

6.5 XOR address mapping. 141

6.6 Command sequence of SuiteXOR on XOR mapping. 141

6.7 Address masking operation. 143

6.8 Address masking schemes. 143

6.9 Address masking results. 144

6.10 Command sequence from executing Testi on Schemei, i ∈ {1, 2, 3}. 144

6.11 Rank hopping. 146

xx

6.12 Evaluation of page policies. 148

6.13 Command arrangement for TestPP . 149

6.14 Evaluation of FR-FCFS threshold. 150

6.15 Command sequence of Suitethr when hit = thr − 1. 151

6.16 Validation dependency graph for timing parameters. 152

6.17 Command sequence of TestCCD. 153

6.18 Test generation for validating tCCD. 153

6.19 tCCD validation results. 154

6.20 tRC validation results. 155

6.21 tFAW validation results. 156

6.22 tRTRS validation results. 157

6.23 Command sequence of TestRTRS . 158

6.24 Command sequence of TestRTP . 159

6.25 tRTP validation results. 159

6.26 Validating tRCD, tRL, and tWL. 160

6.27 tRCD, tRL, and tWL validation results. 161

6.28 tRRD validation results. 162

6.29 Command sequence of TestRRD. 163

6.30 tWR validation results. 164

6.31 Command sequence of TestWR. 164

6.32 tWTR validation results. 166

6.33 Command sequence of TestWTR. 166

6.34 Smart Refresh behaviour with different number of accessed rows. 168

6.35 Policies to resolve command bus contention. 169

7.1 An architectural example for the system model used in deriving the total WC
memory aggregated latency. The system has three cores and three tasks, where
τ11 is mapped to c0, τ12 is mapped to c1, and τ13 is mapped to c2. 173

xxi

List of Abbreviations

ABS Anti-lock Brake System
AMC Analyzable Memory Controller

BMC Bounded Model Checking
BW Bandwidth

CCSP Credit Control Static Priority
CL Criticality Level
COP conservative Open Page
COTS Commercial Off The Shelf
CPU Central Processing Unit

DIMM Dual In-line Memory Modules
DMA direct Memory Access
DoS Denial of Service
DRAM Dynamic Random Access Memories

FCFS First-Come First-Serve
FIFO First-In First-Out
FR-FCFS First-Ready First-come First-Serve
FSM Finite State Machine

GPU Graphical Processing Unit

HRR Harmonic Round Robin
HRT Hard Real-Time
HWRR Harmonic Weighted Round Robin

xxii

IBB Initial Bank Bits

LLC last-level cache
LRU Least Recently Used
LRU Pseudo Least Recently Used
LTL Linear Temporal Logic
LUT Look Up Table

MC Memory Controller
MCS Mixed Criticality Systems
MIG Memory Interface Generator
MSI Modify–exclusive-Share-Invalidate coherence protocol
MSI Modify-Share-Invalidate coherence protocol

PMC Programmable Memory Controller
PMSI Predictable MSI coherence protocol
PMU Performance Monitoring Unit
PR Pending Request
PRR Prioritized Round Robin
PWB Pending Writeback

RM Rate Monotonic
RR Round Robin
RTL Register Transfer Level

SRT Soft Real-Time
SVA system Verilog Assertion

TDM Time Division Multiplexing
TLM Transaction Level Modeling

WC Worst Case
WCET Worst-Case Execution Time

xxiii

WCL Worst Case Latency
WRR Weighted Round Robin

xxiv

List of Symbols

Cl Criticality class l

Djl Deadline of task τjl

Ejl Total WCET. Ejl = Sjl + Ijl.

Γl total number of tasks in Cl

H Hyperperiod of a CArb schedule

Ijl(L) WC additional latency due to inter-task interference. Sjl is a function of L.

Ll Criticality level l

Sjl(L) WCET of any job of task τjl when it runs in isolation (no inter-task interference).
Sjl is a function of L.

τjl Task j in criticality class l

Tjl Minimum inter-arrival time for jobs of task τjl, which represents the task period

CHl The hyperperiod of class Cl in a CArb schedule

CPl The class period of Cl in a CArb schedule

CWl The class weight of Cl in a CArb schedule

xxv

γr Total number of tasks in partition r for partitioned scheduling.

Λjl maximum number of memory accesses issued by any job of τjl.

Mjl Memory latency requirement of task τjl.

τPjl The task period of τjl in a CArb schedule

τWjl The task weight of τjl in a CArb schedule

Ûr The partial utilization granted to partition r for partitioned scheduling

Ur Total utilization of tasks in partition r for partitioned scheduling.

yacc CArb’s access latency of a request reqr generated by τjl.

yschjl,r CArb’s scheduling latency of a request reqr generated by τjl

ytotjl CArb’s total worst-case latency of any request generated by τjl

Zl The window size of a CArb schedule, which represents the number of task slots in
a class slot

BWLi The minimum bandwidth required by ri

LRi The memory access latency requirement of ri

R The set of requestors in the system deploying PMC

kmaxi Maximum number of bundles of a requestor ri that are serviced per sub-request

xxvi

LBBi The lower-bound bandwidth delivered to a requestor ri

pi Harmonic period: the interval (in slots) between two successive executions of i. It
is equal to the total number of slots divided by si

pri ri’s relative priority

pi Harmonic period: the interval (in slots) between two successive executions of i. It
is equal to the total number of slots divided by si

ri Requestor number i in the system deploying PMC

si Harmonic slots: total number of slots allocated to requestor ri

tBUS Time required to transfer a data burst on the data bus

tFAW The number of cycles in which four activates are allowed within the same rank

tRCD The minimum time between activating the row and a read/write access to it

tRC The minimum time between two accesses to different rows in a bank

tRL The minimum time between a read CAS and the start of data transfer

tRP The row pre-charge time

tRTRS The rank to rank switching delay

tRTW Read to write switching delay

tWL The minimum time between a write CAS and the start of data transfer

xxvii

tWTR Write to read switching delay

UBDi The upper-bound latency incurred by a memory request from ri

wi The width of slot j in clock cycles

Yj The total number of requestors assigned to slot j

Lacc The time required to transfer the requested data by ci between the shared memory
and the private cache of ci

Larbir Arbitration latency of request, reqi,r, generated by core ci

WCLarbi The worst-case arbitration latency of any request generated by core ci

Lcohi,r Coherence latency of request, reqi,r, generated by core ci

WCLinterCohi The worst-case inter-coherence latency of any request generated by core ci

LinterCohi,r Inter-core coherence latency of request, reqi,r, generated by core ci

WCLintraCohi The worst-case intra-coherence latency of any request generated by core ci

LintraCohi,r Intra-core coherence latency of request, reqi,r, generated by core ci

ti The arrival time of the first command from pri to the command queue

lBESTi The best-case latency of pri

BKW The number of DRAM bank bits

xxviii

bnki The target bank of the ith physical request

chi The target channel of the ith physical request

CLW The number of DRAM column bits

CNW The number of DRAM channel bits

cli The target column of the ith physical request

csi The memory commands sequence of the ith physical memory request

fi The time-stamp at which pri starts its data transfer

li The latency of pri defined as li = fi − ti

lai The address of the ith logical memory request

lri The ith logical memory request

oi The type of the ith logical memory request. It is either a read or a write, o ∈
{R,W}

pai The address of the ith physical memory request

pri The ith physical memory request

PW The number of bits in the physical address

RKW The number of DRAM rank bits

rnki The target rank of the ith physical request

xxix

RWW The number of DRAM row bits

rwi The target row of the ith physical request

lWORST
i The worst-case latency of pri

L1Rhitsi The number of read requests issued by core ci and are hits in L1 cache

L1Whits
i The number of write requests issued by core ci and are hits in L1 cache

L1accL L1 hit latency specified by the processor datasheet

L2hitsi The number of requests issued by core ci and are hits in L2 cache

L2missesi The number of requests issued by core ci and are misses in L2 cache

MALi The total WC memory aggregated latency of a core ci

SL2 The slot width of the TDM schedule managing accesses to L2 cache

WCLDRAMi The WCL of a read or write request issued by core ci upon accessing DRAM

WCLRL1
i The WCL of a read request issued by core ci upon accessing L1 cache

WCLWL1
i The WCL of a write request issued by core ci upon accessing L1 cache

WCLL2
i The WCL of a read or write request issued by core ci upon accessing L2 cache

xxx

Chapter 1

Introduction

Real-time systems are those, whose behaviour depends not only on their functionality, but also
on their response time. Until recently, real-time systems have been limited to safety-critical
domains such as avionics and spacecrafts. However, with the emanating cyber-physical systems
(CPS) and Internet of Things (IoT) revolution, real-time systems are becoming ubiquitous in
many emerging domains [12]. Examples include transportation (such as automobiles, avionics,
space vehicles, etc.), infrastructures such as power grids, health care (such as medical devices,
and implantable and biomedical devices), and industrial environment (such as manufacturing
plants, power plants, and robots) to name a few.

Since application demands from these emerging domains continue to increase, there is a
surge in wanting to use multi-core platforms to deploy real-time systems. This is primarily due
to the benefits multi-core platforms provide in cost, and performance. However, multi-core plat-
forms impose new challenges towards guaranteeing requirements of running applications. These
challenges arise because different cores in the platform may interfere each other, while com-
peting to access memory resources that are shared amongst them. As Figure 1.1 depicts, these
shared resources include buses, on-chip caches, and off-chip dynamic random access memories
(DRAMs). This interference is a challenge for real-time systems because operations of one core
affect the temporal behaviour of other cores, which complicates the timing analysis of the sys-
tem. Timing analysis is crucial for real-time systems to guarantee that tasks meet their timing
requirements such that the task’s worst-case execution time (WCET) is less than its deadline.
Hence, the highlighted interference challenge is the focus of this thesis. In particular, this the-
sis proposes predictable architectures for shared buses, caches, and DRAMs. We believe that
providing predictable solutions for shared memory resources is of unavoidable necessity towards
deploying real-time systems onto multi-core platforms. In addition, the problems associated with
this interference are exacerbated in real-time systems deploying tasks with different criticalites,

1

known as mixed criticality systems (MCS) since a non-critical task can affect the behaviour of a
critical task. Consequently, this thesis pays special attention to MCS.

DRAM
3

CoreNCore0 Core1

Shared BUS

CPU Chip

I/O
Devices

DMA

1

Memory
Controller

Chapter 4

Chapters 6, 7, 8

Private
Cache(s)

Private
Cache(s)

Private
Cache(s)

Shared Cache(s) 2
Chapter 5

Figure 1.1: Multi-core architecture.

We address the interference problem on the shared buses (1 in Figure 1.1) in multi-core
MCS by proposing CArb [1], a predictable and criticality-aware arbiter (Chapter 2). In addi-
tion, we utilize CArb to mitigate overheads resulting from system switching among different
modes, which is one of the onerous challenges in MCS. CArb does not impose any restrictions
on mapping applications to cores. Hence, it operates in tandem with existing operating system
(OS) scheduling policies. CArb is able to dynamically adapt arbitration at run time to respond
to increases in the monitored execution times of tasks. Utilizing this adaptation, CArb is able
to offset these increases; hence, it postpones the OS’s need to switch to a degraded mode. Our
evaluation using an avionics case study from Honeywell shows that CArb is able to meet diverse
requirements of tasks with mixed criticalities.

At the cache hierarchy level (2 in Figure 1.1), one of the challenging burdens for computer
architects is to maintain correctness of shared data stored in cache hierarchies of multi-core
platforms, which is known as cache coherence [10]. Although cache coherence has been exten-
sively investigated for conventional performance-oriented platforms, multi-core real-time sys-
tems introduce new challenges from the predictability perspective. To exemplify, we show that
deploying a conventional coherence protocol in a predictable system can lead to unpredictable

2

behaviours [2]. In Chapter 3, we highlight those challenges and provide a set of invariants to ad-
dress them. These invariants are architecture- and protocol-independent. Based on these invari-
ants, we propose the first predictable hardware cache coherence protocol, named PMSI, which
enables tasks to simultaneously share data in a manner amenable for timing analysis. PMSI
augments the classic modify-share-invalid (MSI) protocol with transient coherence states, and
minimal architectural changes. This allows us to derive worst-case (WC) latency bounds that
provide timing guarantees. Our empirical results show that PMSI improves average-case perfor-
mance by up to 4× over the next best alternative, which avoids caching the shared data on the
private cache of each core.

At the shared DRAM level (3 in Figure 1.1), we propose PMC [3, 4], a programmable
memory controller that provides latency guarantees for running tasks upon accessing the off-
chip DRAM, while assigning differential memory services to tasks based on their bandwidth and
latency requirements (Chapter 4). PMC supports MCS by enabling the system designer to specify
requirements per software task. Leveraging awareness of these requirements, PMC optimally
assigns differential memory service per task. We also presented a formal timing analysis that
proves latency and bandwidth guarantees.

In addition to PMC, we conduct a latency-based analysis on DRAM memory controllers
(MCs) [5,6]. Our analysis provides both best-case and worst-case bounds on the latency that any
request suffers upon accessing the DRAM (Chapter 5). The analysis comprehensively covers all
possible interactions of successive requests considering all possible DRAM states. To show the
effectiveness of this analysis, we use it to reverse-engineer properties deployed in state-of-the-art
embedded memory controllers. We execute carefully-crafted yet simple C programs and measure
the memory latency through performance counters. Afterwards, we use the proposed analysis to
infer certain properties of the memory controller.

Finally, to validate and test the performance of our work at the DRAM level, we present an
automated framework for the validation of DRAM MCs, called MCXplore [7, 8] (Chapter 6).
In developing MCXplore, we construct formal models for memory requests interrelation and
DRAM command interaction. The framework enables validation engineers to define their test
plans precisely as temporal logic specifications. We use the NuSMV model-checker to gener-
ate counter-examples that serve as test templates; hence, MCXplore uses these test templates to
generate memory tests to validate the correctness properties of the memory controller. We show
the effectiveness of MCXplore by validating various state-of-the art MC features as well as hard-
to-detect timing violations that often occur. We also provide a set of predefined test plans, and
regression tests that validate essential properties of modern DRAM MCs. We release MCXplore
as an open-source framework to allow validation engineers and researchers to extend and use.

3

Chapter 2

Criticality- and Requirement-aware Bus
Arbitration for Multi-core Mixed
Criticality Systems

This chapter presents CArb, an arbiter for controlling accesses to the shared memory bus in
multi-core mixed criticality systems. CArb is a requirement-aware arbiter that optimally allo-
cates service to tasks based on their requirements. It is also criticality-aware since it incorporates
criticality as a first-class principle in arbitration decisions. CArb supports any number of critical-
ity levels and does not impose any restrictions on mapping tasks to cores. Hence, it operates in
tandem with existing scheduling policies. In addition, CArb is able to dynamically adapt mem-
ory bus arbitration at run time to respond to increases in the monitored execution times of tasks.
Utilizing this adaptation, CArb is able to offset these increases; hence, postpones the system need
to switch to a degraded mode. We prototype CArb, and evaluate it with an avionics case-study
from Honeywell as well as synthetic experiments.

2.1 Introduction

MCS consist of a set of interacting software components, where the components may operate
under various criticality levels (CLs) [9]. Each CL provides a degree of assurance against the
software component’s failure [13]. For instance, DO178C used in avionics denotes five CLs

4

ranging from critical to no effect. The real-time research community is interested in using multi-
cores to deploy MCS, mainly because multi-cores offer small-sized, low-weighted, and low-
cost hardware platforms that are mainstream nowadays. However, this requires consolidating
software components onto the multi-core platform, which implies sharing hardware resources
such as buses, caches and main memories among these components. Resource sharing brings
out a key challenge in the design of MCS: to effectively schedule shared hardware resources so
as to ensure safety guarantees mandated by the CLs, and to deliver the performance demanded by
each software component. Recent efforts addressing this challenge have focused on proposing
models and scheduling algorithms that schedule tasks with CLs onto cores [14–18]. Earlier
approaches proposed methods to deploy MCS onto single core platforms [14, 15], which were
further advanced to multi-core platforms [16–18].

These efforts developed a standard model for MCS, where each task is characterized by a
criticality level, usually two CLs: LO and HI . Each task has WCET estimate, S, for each CL,
S(LO) and S(HI) for the two levels case. The system operates initially in a normal mode,
where it considers the S(LO) of each task and both higher- and lower-critical tasks utilize the
hardware resources. If a critical task exceeds its S(LO), the system switches to a degraded
mode, where it suspends all lower-critical tasks and considers the S(HI) of the higher-critical
ones [19]. These dynamic migrations between various modes is a key characteristic of MCS as
compared to single-criticality traditional real-time systems. Since this model evolved initially
for single-core MCS, it suffers from two crucial weaknesses when applied to multi-core MCS. 1)
As observed by [20], approaches adopting this model do not incorporate inter-task interference
arising from accessing resources that are shared amongst cores such as memory buses, caches,
and main memories in their scheduling or analysis. Experiments show that memory interference
can contribute up to 300% to the WCET of a task [21], while the memory bus interference in
commercial-off-the-shelf (COTS) systems can solely increase the WCET up to 44% [22]. As a
consequence, we find it is of unavoidable necessity to account for this interference for multi-core
MCS. 2) These approaches, upon switching to the degraded mode, do not provide any guaranteed
service to lower-critical tasks. Since lower-critical tasks are still critical, industry criticizes this
action as it may result in safety issues [13].

Fortunately, recent works address interference in MCS due to shared off-chip DRAMs [3,23]
and shared on-chip caches [24,25]. Nonetheless, there is a limited focus on addressing the inter-
ference problem on shared buses in MCS. To our knowledge, [26] [20] are the only approaches
to incorporate the memory bus interference in MCS modeling. However, both have certain limi-
tations. [26] is adequate only for two criticality levels and mandates a particular mapping of tasks
to cores. [20] comprises predictable COTS bus arbiters such as RR and FCFS, which lack the
criticality notion. As a result, we find that the obtained bounds in [20] are pessimistic, foremost
because of lacking a criticality-aware arbitration amongst different traffics on the memory bus.

5

In addition, we find that these limitations in [20,26] disallow them from exploring possible novel
solutions at the arbiter level when it comes to the dynamic mode migrations of MCS.

2.1.1 Contributions

We address the interference problem on the shared memory bus in multi-core MCS by making
the following contributions.

1. We expose strengths and inherent limitations of currently used arbiters in traditional single-
criticality systems upon their applicability to MCS (Section 2.5).

2. Hence, we introduce CArb, an arbitration mechanism for controlling accesses to the shared
memory bus in MCS (Section 2.6). CArb is a hierarchical two-tier arbiter that is, to our
knowledge, the first to be criticality- and requirement-aware. This is necessary for two
reasons. First, it results in optimal service allocation to tasks to meet their temporal re-
quirements (Section 2.7). Second, it prioritizes tasks of higher criticality if the current set
of memory requirements of all tasks is not schedulable. This is a vital characteristic when
moving to higher modes in MCS (Section 2.8).

3. We illustrate a methodology to decompose WC memory access latencies from the WC
computation latencies experienced by a task (Section 2.4). This has the advantage of al-
lowing various MCS scheduling policies on cores to co-exist and operate in tandem with
CArb; thereby, not imposing any restrictions on OS scheduling.

4. We propose two mechanisms to dynamically adapt the memory bus arbitration at run time
to respond to increases in the monitored execution times of tasks (Section 2.8). We show
how these mechanisms can mitigate these increases; thus, in some cases, postpone or even
eliminate the system need to switch to a degraded mode. We believe that avoiding these
switches is highly desirable because of their notoriously huge overheads. In addition, the
proposed mechanisms prevent unnecessary suspension of lower-critical tasks.

5. We experiment with a case-study from the avionics domain as well as with synthetic ex-
periments (Section 2.9). Our results show that CArb is well-suited for bus arbitration in
multi-core MCS.

6

2.2 Related Work

There are several research efforts that investigate scheduling tasks with mixed criticalities on the
same platform [14–18]. While earlier works primarily focus on single-core platforms [14, 15],
recent efforts propose strategies for deploying MCS onto multi-core platforms [16–18]. An on-
going survey [27] maintains a comprehensive list of these efforts. There exist two practical issues
in these efforts that are related to this thesis:

1. They suspend LO-critical tasks at the HI-mode [27], thus having no guarantees for the those
tasks that are deemed low criticality, but still critical to some degree. As a result, industry
is reluctant to widely adopt these efforts since the aforementioned suspension can result in
safety issues [13].

2. They do not address temporal interference between tasks arising from accessing resources
that are shared amongst cores such as memory buses, caches and DRAMs.

For the first issue, we are the first, to the best of our knowledge, to address it. In Chapter 2, we
promote fine-grained rescheduling to enable higher-critical tasks to meet their new requirements,
while not suspending the lower-critical ones, if possible (Section 2.8). For the second issue, as
far as we are aware, [20, 26] are the only existing prior efforts to address it. The approach
in [26] employs a software-based throttling mechanism to manage accesses to the shared main
memory. It assigns a memory access budget to each core, and when a non-critical core exceeds its
budget, [26] throttles it to guarantee requirements of the critical core. We find that this approach
is suitable for only dual-criticality MCS, where each task is either critical or non-critical. For
MCS with multiple criticalities, [26] faces the aforementioned issue of throttling lower-critical
tasks. In addition, [26] mandates mapping all critical tasks to the same core. Two drawbacks
arise from this requirement. 1) It limits the applicability of this technique to other scheduling
approaches that do not meet this requirement. 2) Systems with large number of critical tasks
cannot use this approach if critical tasks are not schedulable in a single core. The technique
in [20] arbitrates amongst memory requests from all tasks using conventional round robin (RR)
and first-come first-serve (FCFS) policies. However, these arbiters, as we discuss in Section 2.5,
are agnostic to the distinct criticality and requirements of tasks, as they allocate the same service
to all tasks. As a consequence, the bounds obtained in [20] are pessimistic. We address these
limitations in Chapter 2 by proposing CArb that arbitrates accesses to the shared memory bus
according to both criticality and timing requirements of all tasks. Utilizing CArb, we illustrate
how to distinctly allocate service to tasks in an optimal fashion.

7

2.3 System Model

Figure 2.1 depicts the system considered in this chapter. We assume a multi-core system, where
each core executes a single task. This task runs until completion on the dedicated core. We
support any mapping of tasks to cores. This allows the integration of CArb with a wide variety of
existing task mapping schemes. Existing cores share inter-core platform resources. Specifically,
off-chip DRAM, on-chip last-level cache (LLC), and the memory bus connecting cores to the
LLC. We assume that the interference on shared DRAM is resolved using existing techniques
such as the partitioning scheme proposed in [23], or requirement-aware scheduling as we propose
in [3] and detail in Chapter 4. Similarly, interference on shared data in the LLC is addresses
by deploying cache partitioning or colouring [24]. Accordingly, this chapter focuses on the
interference problem on the shared memory bus, and its impact on the total execution time of
various tasks.

• We consider a mixed criticality system with n criticality levels. We classify tasks according
to their criticality into groups that we denote as classes. Hence, there exist a set of n
classes.

• Each class is defined as Cl = 〈Ll,Γl〉, where L is the criticality level and Γl is the total
number of tasks in Cl. Higher values of L denote higher criticality levels.

• A task is characterized as: τ jl= 〈Ll, Tjl, Djl, Ejl, Sjl(L), Ijl(L),Λjl〉 where:

– Tjl is the minimum inter-arrival time of task jobs which represents the task period.

– Djl is the task deadline, where Djl = Tjl.

– Sjl is the WCET of any job of task τ jl when τ jl runs in isolation (no inter-task
interference).

Shared Cache

CoreN

Private
Cache(s)

Memory
Controller

D
R

A
M

CPU Chip

I/O
Devices

DMA

Arbiter

Core1

Private
Cache(s)

Core0

Private
Cache(s)

Shared Memory BUS

Figure 2.1: Multi-core architecture.

8

– Λjl is the maximum number of memory accesses issued by any job of τ jl. It is
worth noting that CArb makes no assumption about the memory access rate of tasks.
Λjl represents the WC number of memory accesses per period over all periods of
the task, similar to [28]. This is analogous to the execution time of the task. Both
the number of memory accesses, and the execution are different from one period to
another; nonetheless, the task model only considers the WC execution time of a task.
Both S and Λ can be collected using either measurement-based techniques or static
analysis tools. For sake of simplicity, we assume that Λ is constant for all CLs. In
section 2.7.3, we generalize the model to consider Λ(L) as function of the CL.

– Ijl is the WC additional latency due to inter-task interference. Ijl = Mjl×Λjl, where
Mjl is the WC interference delay per memory request. In Section 2.4, we present a
methodology to calculate Mjl. Since the number of running tasks varies with regard
to the CL, so does the interference amongst these tasks. Hence, I is a function in the
CL, I(L).

– Ejl is the total WCET. Since the interference delays can be considered to be additive
to the task’s WCET in isolation [29], we assume that Ejl = Sjl + Ijl. Each task
has an S value for each CL in the system. This is a primary characteristic of MCS.
The intuition behind these different values per task is as follows. The computed WC
times of a task are estimates calculated using extensive testing and/or static analysis
methods. Hence, based on the accuracy and pessimism levels of these methods, dif-
ferent estimates may exist. The higher the criticality level is, the more pessimistic the
values are [9, 19].

This task model considers two extensions to the standard MCS model [27]. 1) We assume an ar-
bitrary number of CLs. We promote this for two reasons. First, to not limit the integration support
of CArb to only dual-criticality scheduling mechanisms; rather, CArb supports also mechanisms
with more criticality levels such as [30]. Second, we encourage MCS models that adopt more
criticality levels because current industrial standards, for instance in avionics domain, call for
up to five levels. Examples of these standards include IEC 61508, DO-178B, DO-254 and ISO
26262 [19]. 2) Decomposition of total execution time, E, into S and I . This enables memory
bus arbitration to optimize service allocation to tasks according to their deadline requirements.
A more detailed discussion on this decomposition is in the following section.

9

2.4 Execution Time Decomposition

Migrating MCS onto multi-core platforms with inter-core shared resources, the interference de-
lay due to shared resources amongst cores becomes an eminent component in the total WCET.
Therefore, we claim that focusing on the interference delays of tasks is as necessary as the tradi-
tional focus on WCETs calculated in isolation. In consequence, we incorporate the total WCET
E with its two components S and I in the proposed MCS model. This allows core scheduling
techniques to focus on optimizations that affect S and shared memory arbitration techniques to
minimize or eliminate I . In this chapter, we employ this decomposition process, and show that
such separation enables attaining optimal solutions to the interference problem. This section
illustrates the decomposition process, while Section 2.7.2 targets optimal allocations.

Existing approaches in scheduling MCS usually formulate the requirement on S relative toD
as a schedulability condition. Tasks in the system are schedulable under the scheduling scheme
only if they satisfy this condition. For the aforementioned reasons, we argue for substituting S
with E in the schedulability analysis of multi-core MCS, and we assume S and I are additive
such that E = S + I . Hence, if S is known beforehand, the schedulability condition turns into
a requirement on the total interference delay encountered by each task such that the set of tasks
is schedulable. Further, for static analysis purposes, the WC interference delay per memory
request, M , must be assumed. Recall that the total number of memory requests of a task is Λ;
thus, I = M × Λ. Both S and Λ are predetermined task’s characteristics. Subsequently, from
the schedulability condition, we derive a requirement on Mjl for each τ jl such that the set of
tasks is schedulable. Since this chapter focuses on the interference on shared memory buses, we
denote this condition as the memory latency requirement. The arbiter must allocate services to
tasks such that the maximum memory latency of any request does not violate this requirement.

2.4.1 Illustrative Example

We show how to derive the memory access requirement from the schedulability condition. We
use the partitioning algorithm proposed by Sha [31] as an example of a scheduling policy used
in the avionics domain. The policy in [31] splits the set of tasks into partitions. All tasks of a
partition must execute on the same core. A class, as defined in Section 2.3, can consist of multi-
ple partitions. Hence, tasks of same class can execute in parallel on multiple cores if they belong
to different partitions. In consequence, the partitioning algorithm of [31] resembles a general
scheduling example by allowing tasks of same as well as different criticalities to run simulta-
neously; thus, interfere on shared memory. Under this algorithm, a time-division-multiplexing
(TDM) scheduler assigns slots to partitions and a rate monotonic (RM) algorithm schedules tasks

10

of the same partition. Sha [31] proved that the sufficient schedulability condition for each parti-
tion is:

Ur ≤ γr
(
(

2

2− Ûr
)

1
γr − 1

)
. (2.1)

Where for partition r, γr is the total number of tasks in r, Ur is the total utilization of those tasks,
and Ûr is the partial utilization granted to r, which is the number of TDM slots granted to the
partition divided by the total number of slots in the TDM schedule. From this schedulability
condition for a partition, we compute the memory latency requirements using the following pro-
cedure:

(1) Given that the utilization of all tasks in partition r is Ur =
kr∑
j=1

Sjr
Djr

and substituting S with

E = S + I , as discussed earlier, then:

γr∑
j=1

Sjr +Mjr × Λjr

Djr

≤ γr
(
(

2

2− Ûr
)

1
γr − 1

)
(2) Recall that Sjr and Λjr are predetermined for all tasks, then the memory access latency
requirements per task to satisfy schedulability condition is obtained by Equation 2.2. Memory
access latencies of all tasks of that partition must satisfy the condition in Equation 2.2. Notice
that if a different scheduling algorithm is used, a similar procedure can be conducted to obtain
the corresponding condition.

γr∑
j=1

Mjr × Λjr

Djr

≤ γr
(
(

2

2− Ûr
)

1
γr − 1

)
−

γr∑
j=1

Sjr
Djr

(2.2)

2.5 Applicability of real-time arbiters in MCS

We study commonly used arbiters in traditional real-time systems to investigate their applica-
bility on MCS. Particularly, we focus on RR arbiters: bare RR, prioritized RR (PRR), weighted
RR (WRR), and harmonic RR (HRR) in addition to TDM arbiters: contiguous TDM, and work-
conserving distributed TDM. We argue that an adequate arbiter for MCS must posse two fea-
tures: requirement-awareness and criticality-awareness. Requirement-awareness implies that
the arbiter is able to allocate service to tasks based on their temporal requirements. Compara-
tively, criticality-awareness is achievable when the arbiter allocates service to tasks relative to
their criticality. We evaluate each arbiter with regard to adopting these two features using Fig-
ure 2.2 for illustration. In Figure 2.2, we assume a system with three criticality levels and 6 tasks.

11

(a) RR.

(b) PRR1. (c) PRR2.

(d) WRR and TDM.

(e) Harmonic WRR and distributed TDM.

Figure 2.2: Real-time arbiters.

τ 13 and τ 23 are the highest critical, τ 12 and τ 22 are of medium criticality, and τ 11 and τ 21 are
non-critical. yacc is the access latency to the shared memory.

Bare RR. RR is dynamic and simple to implement. The arbiter equivalently rotates amongst
tasks (Figure 2.2a). The WC latency of a request from any task is bounded by the number of
tasks in the system; hence, RR assures predictability. RR allocates the same service to all tasks
regardless of their distinct criticality and timing requirements. For instance, in Figure 2.2a, all
tasks encounter the same WC latency of 6yacc cycles. Hence, RR is neither criticality-aware nor
requirement-aware; thus, ill-suited to MCS.

PRR. Authors in [32] address the deficiencies of RR by proposing PRR. The arbiter conducts
RR arbitration amongst critical tasks only. Non-critical tasks gain access only on slack slots,
which are slots when there are no ready requests from any critical task. This solution targets
systems with dual-criticality. Applying PRR in MCS with more than two levels, critical tasks
(but not the most critical) can be scheduled by two approaches. 1) They share the schedule
with the most critical tasks; hence, attain as much service as them even though they may have
different requirements. In Figure 2.2b, both tasks of C2 and C3 have a WC latency of 4yacc. 2)
They share the slack slots with non-critical tasks; thus, they have no timing guarantees, and may
miss their deadlines (Figure 2.2c). Accordingly, we find that PRR’s applicability is limited to
dual-criticality systems where tasks with the lower CLs have no requirements.

WRR and Contiguous TDM. Unlike bare RR, WRR [33] is capable of allocating different

12

amounts of service (slots or weights) to tasks based on their requirements as Figure 2.2d illus-
trates. Similar capability exists for contiguous TDM. The major difference between contiguous
TDM and WRR is that TDM arbiters are, in general, non-work conserving. A slot assigned to
a task will remain idle if there are no ready requests from this particular task even if there are
ready requests from other tasks. On the other hand, WRR is work-conserving, and assigns idle
slots to the first task with a ready request. Deploying either contiguous TDM or WRR, tasks with
higher weights (or number of slots in TDM) encounter less average-case latency; though, the WC
latency of requests from these tasks is either the same as or higher than bare RR. For example, in
Figure 2.2d, the most critical task τ 13 obtains 1/4 of the total slots. Notice that it suffers a WC
latency of 10yacc cycles compared to only 6yacc cycles in bare RR. This is because in the WC, a
request from any task (critical or non-critical) must wait for requests from all other tasks before
it gets an access. Consequently, their deployment in MCS leads to pessimistic WCETs, and may
not satisfy task requirements.

HRR and work-conserving distributed TDM. HRR [34] and work-conserving TDM [3] ad-
dress this pessimism in WRR and contiguous TDM by evenly distributing slots assigned to tasks
across the schedule as shown in Figure 2.2e. They have a different WC bound per task based
on its requirements. Therefore, they are requirement-aware. Nevertheless, they assign service
to tasks solely based on their timing requirements and not criticality. Upon applied to MCS,
being non-criticality aware has two drawbacks. 1) In both approaches [3, 34], meeting the re-
quirements for lower-criticality is as important as meeting those of the most-critical tasks. As
aforementioned, in MCS, importance of fulfilling task requirements is relative to its criticality.
For instance, in the automotive domain, it is crucial that the anti-lock brake system (ABS) meets
its requirements over the proper functioning of the radio system does [35]. 2) Under the dynamic
migration between various modes of the MCS system, a non criticality-aware approach is agnos-
tic to which tasks must meet their requirements under all modes and which ones, on the other
side, can be throttled at certain situations.

2.6 CArb: Proposed Arbitration Scheme

Motivated by the limitations of existing arbiters for MCS, we introduce CArb: a configurable
criticality- and requirement-aware arbiter. CArb deploys a hierarchical two-tier arbitration scheme
to manage accesses to the shared memory bus. It classifies tasks by their criticality grouping tasks
of same CL in a class. Then, it executes a harmonic WRR inter-class arbitration among classes
in the first tier, and a harmonic WRR intra-class arbitration amongst tasks of the same class in
the second tier. Figure 2.3 depicts a system with 11 tasks classified into three classes C1, C2 and
C3, where C3 is the most-critical. We use it as an example to illustrate CArb’s operation.

13

Intra-Class
 WRR

Inter-Class WRR
Tier1:

Tier2:

(a) Inter- and intra-class arbitration.

(b) Look-up table required for schedule
parameters.

Task slotClass slot
Class slots Task slots

(c) Final CArb schedule.

Figure 2.3: Memory bus arbitration using CArb.

2.6.1 Inter-class Arbitration

CArb has two types of slots: class slots and task slots. A class slot consists of one or more task
slots and is granted to a single class. The number of task slots in a class slot is generally distinct
per class and is defined by its window size, Zl. Since CArb deploys a harmonic WRR arbitration
amongst classes, the number of class slots assigned to Cl is relative to its class weight, CWl.
Schedule hyperperiod is the summation of all class weights, H =

n∑
l=1

CWl such that CArb repeats

the same schedule every H . Subject to CWl and H , each class gets a slot every CPl = H
CWl

,
which we denote as CArb’s class period. In Figure 2.3, class weights CW1, CW2 and CW3 are
2, 2 and 4, respectively comprising a hyperperiod of H = 8, while the class window sizes Z1, Z2

and Z3 are 2, 3 and 3, respectively.

Algorithm 2.1 describes the inter-class arbitration mechanism. For each class slot, a flag bit
is reset to indicate that the slot is not allocated yet (line 3). Then, the arbiter iterates through
the set of classes starting from the most critical one. For each class, Cl, the arbiter checks if

14

Cl has to start a new period. If Cl starts a new period, a flag bit, denoted as class grant CGl,
is reset (line 6). If CGl = 0, which implies that Cl is ready to be scheduled, and the current
class slot is not allocated yet, CArb allocates this slot to Cl (lines 7 to 11). At this step, CArb
moves to the intra-class arbitration to schedule tasks of Cl. Afterwards, CArb switches to the next
class slot and repeats the same process again (the loop in lines 2 to 13) for H slots, then starts a
new hyperperiod with same schedule. The inter-class WRR shown in Figure 2.3a exemplifies a
schedule resulting from Algorithm 2.1, where the schedule repeats every 8 class slots.

Algorithm 2.1: CArb(. . .) – inter-class arbitration.
Input: CWl, Zl,Γl ∀l in [1, n]

1 H ← SUM∀l(CWl);
2 foreach (classSlot in [0, H − 1]) do
3 allocated← false;
4 foreach (l in [n, 1]) do
5 CPl ← H/CWl;
6 if (mod(classSlot, CPl) = 0) then
7 CGl ← 0;
8 end
9 if (CGl = 0 and allocated = false) then

10 CGl ← 1;
11 scheduleClass(Zl,Γl);
12 allocated← true;
13 end
14 end
15 end

2.6.2 Intra-class Arbitration

Recall that the inter-class tier grants Zl task slots to Cl every class slot assigned to it. This results
in a total of CWl × Zl task slots every H . The role of the intra-class arbitration is to distribute
these task slots amongst tasks of Cl to satisfy their requirements. This is achieved by executing
a per-class schedule that deploys a harmonic WRR arbitration amongst tasks of the same class.
Thus, the task weight, τWjl, determines the number of task slots assigned to τ jl. Summation of

all task weights constructs the class hyperperiod: CHl =

Kl∑
j=1

τW
j l. The intra-class arbitration

15

Algorithm 2.2: scheduleClass(. . .) – intra-class arbitration.
Input: Zl,Γl

1 τWjl ∀j in [1,Γl]
2 CHl ← SUM∀lτWj l;
3 foreach (taskSlot in [0, Zl − 1]) do
4 allocated← false;
5 foreach (j in [1,Γl]) do

6 τPjl← CHl/τWjl;
7 if (mod(indxl, τPjl) = 0) then

8 τGjl← 0;
9 end

10 if (τGjl= 0 and allocated = false) then

11 τGjl← 1;
12 inc(indxl);
13 if (τ

j l has a waiting request) then
14 scheduleTask(τ jl);
15 allocated← true;

16 end
17 end
18 end
19 end

repeats the same task schedule amongst tasks of Cl every CHl, while τ jl gets τWjl task slots
every CHl. τPjl= CHl

τW
j l

is the CArb’s task period such that CArb must grant a task slot to τ jl
every τPjl task slots in CHl. In Figure 2.3, weights of C3’s tasks τW13, τW23 and τW33 are
3, 2 and 1, respectively. This results in a class hyperperiod of CH3 = 6.

Algorithm 2.2 illustrates the intra-class arbitration process. Clearly, it is very similar to the
first tier arbitration amongst classes with some conceptual differences. The intra-class arbitration
executes a distinct schedule per class— see for example the task schedules if C1, C2 and C3 at the
intra-class tier in Figure 2.3a. CArb tracks the number of task slots allocated to Cl in the current
schedule hyperperiod by the counter indxl (line 7). For the current task slot, with particular
indxl value, it checks if τ jl has to start a new period (line 4). It repeats this check for all tasks in
Cl. indxl is reset at the start of every H . We dictate the task slot width to allow for one access to
the shared memory finish. Hence, once CArb grants access to a request from any task, it cannot

16

be preempted. This is mandatory to guarantee predictability, while keeping the arbiter feasibly
simple to implement. Having CArb implementing WRR, it is a work-conserving arbiter. For any
task slot, if a task does have a ready request, CArb will allocate this slot to the first task in the
schedule with a ready request (line 8 in Algorithm 2.2). The final schedule that CArb implements
by executing both tiers of arbitration is akin to the instance shown in Figure 2.3c.

2.6.3 Area Overhead

For CArb to be able to execute a bus schedule satisfying memory requirements, it seeks the
pre-knowledge of the variables that comprises this schedule, which we denote as schedule pa-
rameters. Particularly, it requires the values of τWjl, CWl and Zl for all classes and tasks. We
formulate an optimization problem in Section 2.7 to specify the optimal values of these variables
and solve this problem offline based on requirements obtained in Section 2.4. Hence, obtained
schedule parameters are stored in a configurable look-up table during boot time. For the example
schedule shown in Figure 2.3, we illustrate the look-up table structure in Figure 2.3b. Let each
schedule parameter require a 32bits (or 4B) register. Generally, for n classes and Γl tasks per
class, class parameters (CWl and Zl) demand (8× n)B, while task parameters per class require
(4×Γl)B. Accordingly, a total storage of 440B is sufficient to store the schedule of a system with
5 classes (5 is the maximum number of criticality levels specified by standards) and 100 tasks
per class. We believe that this is a negligible area overhead for commodity multi-core systems.

2.7 WC Analysis and Problem Formulation

When using CArb, a request to the shared memory bus incurs two types of latencies, scheduling
latency and access latency. Definitions 2.1 and 2.2 formally define these latencies.

Definition 2.1. Scheduling latency, yschjl,r, of a request reqr generated by τ jl is measured from
the time stamp of its issuance until it is granted access to the memory bus. yschjl,r is due to requests
from other tasks scheduled before τ jl.

Definition 2.2. Access latency is the latency suffered by a request generated by τ jl while it is
accessing the shared memory. We assume that accessing the shared memory takes a fixed latency,
yacc. This latency can be considered as the WC access latency of the shared memory.

17

2.7.1 WC analysis

Lemma 2.1. The total WC latency of a memory request generated by τ jl, denoted as ytotjl , is
computed as follows.

ytotjl =

((v=Γl∑
v=1,v 6=l

⌈
τWvl

τWjl

⌉)
+

(⌈
τPjl
Zl

⌉
×

∑
∀e|(e6=l∧
fe∈χl)

(⌈CWe

CWl

⌉
× Ze

))
+ 1

)
× yacc

Proof. The WC scheduling latency occurs when a request waits for the WC number of requests
before it can get access to the resource. Recall that scheduling latency suffered by a request
from τ jl is due to requests from other tasks scheduled before τ jl. These tasks belong either
to the same class and cause intra-class scheduling latency, yintraCjl , or other classes and cause
inter-class scheduling latency, yinterCjl .

WC intra-class scheduling latency. In WC, during τPjl, there are
⌈
τWvl

τWjl

⌉
slots assigned to

τ vl (v 6= l). Since each task slot is yacc and the number of tasks in Cl is Γl, the WC intra-class
scheduling latency can be calculated as:

yintraCjl =
(v=Γl∑

v=1

⌈
τWvl

τWjl

⌉)
× yacc (2.3)

In Figure 2.3c, a request from τ 33 has to wait for 3 requests from τ 13 and 3 requests from τ 23.
WC inter-class scheduling latency. In WC, Cl has to wait for DCl = MIN(CPl, n) distinct
classes before it is granted a class slot, where each of these classes is assigned

⌈
CWe

CWl

⌉
class slots.

Furthermore, these classes are assigned the maximum number of task slots. Let fe = CWe ×Ze
be the maximum number of task slots. In Figure 2.3c, f1 = 4, f2 = 6 and f3 = 12. Equation 2.5
calculates the WC number of task slots CArb grants to other classed before it grants Cl a class
slot. χl = MAX(F,DCl) represents the largest DCl elements of F where F = {f1, f2, ..., fn}.
χl identifies the DCl classes with maximum number of task slots to represent the worst-case for
Cl. ∑

∀e|e6=l∧
fe∈χl

(⌈CWe

CWl

⌉
× Ze

)
(2.4)

18

In addition, having Cl attained a class slot, does not necessarily imply that τ jl attains a task slot.
Recall that once Cl attains a class slot, Zl task slots are granted to its tasks, and τ jl gets a task

slot every τPjl at the Cl’s schedule. Hence it gets one task slot every
⌈
τPjl
Zl

⌉
class slots granted

to Cl. Consequently, a request from τ jl suffers from a WC inter-class scheduling latency of:⌈
τPjl
Zl

⌉
×
(∑
∀e|e6=l∧
fe∈χl

(⌈CWe

CWl

⌉
× Ze

))
× yacc (2.5)

In Figure 2.3c, a request from τ 33 has to wait in WC for
(⌈

CW2

CW3

⌉
× Z2

)
×
⌈
τP33

Z3

⌉
= (1 ×

3)× 2 = 6 task slot granted to other classes before it is granted an access.

Using Equations 2.3 and 2.5, and adding additional yacc cycles to account for the access
latency of the request itself, the total WC latency of any request is equal to the value computed
in Lemma 2.1.

2.7.2 Optimization problem formulation

Target Function. We formulate the schedule construction process as an optimization problem.
The target is to generate the harmonic schedule with minimum hyperperiod that satisfies require-
ments of all tasks. Hence, the schedule is optimal amongst the set of harmonic schedules. Note
that there may exist a non-harmonic schedule with a shorter schedule hyperperiod, which can
be obtained using either unconstrained search or heuristic solutions (see for example [36]) than
CArb. Since CArb is a hardware arbiter, we consider the harmonic property to minimize the area
overhead as discussed in Section 2.6, while allowing for 100% bus utilization. We determine the
optimal values of weights and window sizes assigned to classes and weights assigned to tasks to
construct that schedule. Therefore, we express the target function as:

MIN(
l=n∑
l=1

CWl × Zl).

Variables. The outcomes of this optimization problem are the task weights τWjl, class
weights CWl, and class window sizes Zl that construct the schedule. Accordingly, using these
values, task periods τPjl, class periodsCPl, class hyperperiodsCHl, and schedule hyper periods
H are calculated.

19

Constraints. 1) The total WC latency must satisfy the memory access requirement obtained
by Equation 2.2:

ytotjl ≤Mjl (C.1)

2) Constraint C.2 prevents starvation at the inter-class arbitration tier. The lower bound,CPl ≥ 2,
prohibits each class from starving other classes. If CPl = 1, Cl will saturate the memory bus.
The upper bound CPl ≤ H prevents starving Cl as it assures that Cl will get at least one class
slot in the schedule hyperperiod.

H ≥ CPl ≥ 2 (C.2)

3) Similarly, Constraint C.3 prohibits starvation at the intra-class arbitration tier:

CHl ≥ τWjl ≥ 2 (C.3)

4) Three conditions are required to assert the periodicity characteristic such that CArb executes
the schedule every H class slots or, equivalently every CWl × Zl task slots. First, the schedule
hyperperiod, H , must be an integer multiple of CArb’s class weights:

H

CWl

∈ Z>0. (C.4)

Second, every class hyperperiod, CHl must be an integer multiple of CArb’s task weights:

CHl

τWjl

∈ Z>0 ∀l ∈ [1, n]∀j ∈ [1,Γl]. (C.5)

Third, the total number of task slots granted to a class every H must be an integer multiple of the
total number of required slots by tasks in that class:

CWl × Zl
CHl

∈ Z>0. (C.6)

A final remark here is regarding constraint C.1. Recall that the condition on Mjl in Equation 2.2
depends on the value of Sjl, which is distinct per system mode. Two approaches can be followed
based on two cases of the system requirements. 1) The first case is when the values of S for all
tasks increase by the same ratio when system moves to higher levels. In this case, CArb stores
only one optimal schedule that considers the value of Sjl for the lowest mode. Upon switching
to higher modes, the operating system suspends lower-criticality tasks. Hence, their interference
effect over all other tasks is eliminated. Since S increases by the same ratio for all tasks running
at the new level, their schedule weights remain the same. Hence, the resulting schedule is
sufficient to meet the requirements of the running tasks. 2) The second case is when the increase

20

ratios of S are not the same among tasks. In this case, CArb requires a schedule per each mode
l that corresponds to Sjl(l). Since current standards defines up to a maximum of 5 levels, the
total area overhead of these schedules is approximately 2KBs, which we find acceptable for
commodity systems.

2.7.3 Λ(L): The WC number of memory accesses as a function of CL

So far, we have considered Λjl to be fixed for all CLs. However, since Λ and S are calculated
using same methods, either analysis or measurements, the level of assurance on Λ can, akin to
S, depend on CL. Hence, the higher the criticality level, the larger the value of Λ for the same
task. To address this situation, for each l-mode, we run the optimization framework considering
Sjl′(l) and Λjl′(l) for all tasks at that level. Namely, tasks of l′ ≥ l since tasks of l′′ < l are
already suspended by the system at l-mode. A resulting schedule per mode needs to be stored at
the boot time. Upon mode switching, CArb switches to the corresponding optimal schedule to
fulfill the new requirements of all tasks executing at that mode.

2.8 Dynamic Re-arbitration

2.8.1 Motivation

Suppose that the system operates at l-mode. Let the execution time of τ jl+1 with criticality l+1,
sjl+1, exceed its WCET value, sjl+1 > Sjl+1(l). Then, the conventional approach is to switch
the system to (l + 1)-mode suspending all tasks of l criticality. Tasks of criticality l′′ < l are
already suspended at l-mode. This approach creates two challenges that motivate our proposed
fine-grained rescheduling at the arbiter level. 1) Suspending l-critical tasks at the (l + 1)-mode
entails having no guarantees for those tasks. 2) Due to high overheads upon mode switching
at the system scheduling mechanism as studied by [37], minimizing those switches is highly
desirable.

2.8.2 Proposed Solutions

Leveraging CArb, we can conduct a set of fine-grained rescheduling techniques at the arbiter
hardware that can mitigate the aforestated two issues of the conventional approach. We illustrate
two of these techniques.

21

Scheme1: Prioritized CArb. This technique does not directly suspend tasks of l criticality.
Instead, CArb allows them to access the shared memory bus only on slack slots when there are no
ready requests from any task of higher criticality. As a consequence, this technique eliminates the
interference from l-critical tasks. Thus, the interference suffered by τ jl+1, ijl+1 decreases. Since
the total execution time is ejl+1 = sjl+1 + ijl+1, if the decrease in ijl+1 mitigates the observed
increase in sjl+1 such that ejl+1 ≤ Ejl+1(l), there is no need to switch the mode. Otherwise,
a mode switch is unavoidable. Since CArb schedule is statically predetermined, the maximum
increase in the execution time of τ jl+1 that this technique can mitigate before switching the
mode, denoted as smaxjl+1, is known offline for all tasks. During running time, the operating system
monitors the execution time of all tasks and makes the decisions shown in Algorithm 2.3.

Algorithm 2.3: Prioritized CArb.
1 if (sjl+1 ≤ Sjl+1(l)) then
2 run in normal l-mode;
3 end
4 else if (Sjl+1(l) < sjl+1 ≤ smaxjl+1(l)) then
5 apply prioritized CArb;
6 end
7 else if (sjl+1 > smaxjl+1(l)) then
8 switch to (l + 1)-mode;
9 end

Although prioritized CArb may appear similar to other priority-based arbiters, there are im-
portant differences. For instance, static-priority arbiters such as the one deployed in [23], does
not provide any guarantees except for the highest-criticality tasks. In worst-case, tasks with the
highest-criticality can issue requests forever; thus, starving other lower-criticality tasks. In other
words, simple static-priority arbiters allow all tasks other than the highest-critical ones to issue
requests only on slack time. In contrast, CArb applies prioritization only when a potential mode
switch is discovered that CArb can avoid using re-arbitration. Amongst running tasks, only tasks
of lowest-criticality (l-critical tasks at l-mode) issue requests on slack time. For example, assume
a MCS with 5 criticality levels, where tasks are running at 1-mode, and the system monitors an
increase in the execution time that CArb can mitigate without a mode switch. Accordingly, pri-
oritized CArb forces tasks with 1-criticality to issue requests only on slack slots, and reallocate
their slots to other tasks. All tasks of criticalities 2 to 5 are guaranteed to meet their requirements.
On the other hand, if the system implements the aforementioned static-priority arbitration, only
tasks of 5-criticality meet their requirements.

22

There exist other static-priority arbiters that avoid starvation of lower-criticality tasks by
deploying budgeting mechanisms such as the credit-control static priority arbiter (CCSP) [38].
However, they have shortcomings when applied to MCS. For example, during each period, lower-
criticality tasks have to wait for all higher-criticality tasks to finish their budgets before it can
issue a single request. Accordingly, they may or may not meet their temporal requirements. This
has the same disadvantage as the contiguous TDM discussed in Section 2.5. Contrarily, priori-
tized CArb distributes slots amongst running tasks in a harmonic way that is requirement-aware.
This is true for all running tasks except for the lowest-criticality that CArb executes on slack time.
In addition, once the monitored execution times decrease below their corresponding worst-case
estimates, CArb reloads the normal schedule in the next schedule hyperperiod. Consequently, all
tasks are guaranteed to meet their requirements.

Scheme2: Having an optimal schedule per mode. Prioritized CArb can be considered as a
special case schedule, where weights of lower criticality tasks are set to 0. Although it success-
fully delays the mode switching, it can be considered a conservative solution. Generally, based
on the amount of increase in the execution times, there exist a set of possible CArb solutions that
can offset this increase. On l-mode, each solution comprises an optimal schedule that satisfy the
new requirements, with larger Sjl′ values for all l′ > l, while it maximizes the allocated slots to
tasks of l instead of setting their allocated slots to 0. For the task under analysis, τ jl+1, since
the set of real execution times between Sjl+1 and smaxjl+1 is uncountably infinite, some execution
time values must be selected to find the optimal schedule for. In addition, the larger the selected
execution times are, the less the allocated service to l-critical tasks. Hence, a trade-off exists
between the allocated service to tasks of l, and the area required to store the selected number of
corresponding schedules. For instance, suppose that only one additional schedule is stored for
each level that corresponds to the middle point of value ssch2

jl+1 =
smaxjl+1+Sjl+1

2
; hence, for l-mode

and task τ jl+1, the operating system decisions become as shown in Algorithm 2.4.

To obtain these additional optimal schedules for l-mode, Constraints C.1, and C.4 to C.6
apply only for l′ > l and the target function of the optimization problem changes to MAX(CWl×
Zl) only for tasks of l criticality.
Finally, there are important observations to highlight. First, suppose that CArb is executing
scheme1 or scheme2, if all monitored execution times decrease below their WCET values, CArb
can move back to the original optimal schedule. Second, the overheads of proposed schemes are
negligible compared to mode switches as 1) they are conducted at the arbiter hardware which is
much faster than rescheduling at the system level, and 2) the operating system does not require
to handle any of the complex procedures of mode switching; instead, it just sends a signal to
CArb to move to one of these schemes. At the end of each hyperperiod, CArb monitors whether
it receives this signal from the system. In case of signal reception, CArb applies the appropriate
re-arbitration at the next schedule hyperperiod.

23

Algorithm 2.4: Scheme2 for dynamic re-arbitration.

1 if (sjl+1 ≤ Sjl+1(l)) then
2 run in normal l-mode;
3 end
4 else if (Sjl+1(l) < sjl+1 ≤ ssch2

jl+1) then
5 apply optimal schedule2;
6 end
7 else if (ssch2

jl+1 < sjl+1 ≤ smaxjl+1(l)) then
8 apply prioritized CArb;
9 end

10 else if (sjl+1 > smaxjl+1(l)) then
11 switch to (l + 1)-mode;
12 end

2.8.3 Effect of Re-arbitration on Lower-criticality Tasks

Under normal operation, a MCS should satisfy requirements of both higher and lower critical-
ity tasks. However, when the execution time of tasks increase, this may not be possible. The
objective of the dynamic re-arbitration is to achieve the following two goals at each criticality
level:

1. Guarantee the timing requirements of higher criticality tasks.

2. Provide lower criticality tasks with the maximum possible service after satisfying the first
goal.

These two goals do not guarantee satisfying the timing requirements of lower-criticality tasks
upon re-arbitration. In fact, upon re-arbitration, CArb will reduce the service delivered to lower-
criticality tasks to satisfy requirements of higher ones. Nonetheless, the proposed fine-grained re-
arbitration, unlike the traditional mode-switching approach, does not completely suspend lower-
critical tasks unless needed. This is important since lower-criticality tasks are usually soft-real
time tasks, which care about average-case rate of service or memory bandwidth. Hence, degrad-
ing their service is potentially a more practical solution than completely suspending them [13].

24

Use-case requirements OS Scheduling using [31] Optimal CArb parameters

τjl Djl (ms) Sjl (ms) Λjl Partition Core U memory access requirements τwjl (CWl, Zl)

τ14 25 1.06 500 1 1 0.25 M14 ≤ 5.02µs 6

(3, 4)
τ24 50 3.09 500 2 1 0.25 M24 ≤ 8.11µs 3

τ34 100 2.7 500 3 1 0.25 M34 ≤ 23.17µs 1

τ44 200 1.09 500 4 1 0.25 M44 ≤ 45.96µs 2

τ13 25 0.94 1000

5 2 0.4 2M13 +M23 +M33 ≤ 6.45µs

6

(6, 4)

τ23 50 1.57 1000 4

τ33 50 1.68 1000 4

τ43 50 4.5 1000

6 2 3/5 4M43 + 4M53 + 2M63 +M73 ≤ 35.28µs

3

τ53 50 2.94 1000 3

τ63 100 1.41 1000 3

τ73 200 6.75 1000 1

τ12 50 5.4 4000 7 3 0.4 M12 ≤ 1.77µs 1 (3, 1)

τ11 50 2.4 2000

8 3 0.6 4M11 +M21 + 4M31 +M41 ≤ 28.77

5

(12, 5)

τ21 200 0.94 2000 2

τ31 50 1.06 2000 5

τ41 200 2.28 2000 3

τ51 25 4.75 3000

9 4 1 8M51 + 2M61 +M71 + 2M81 + 4M91 ≤ 24.17

20

τ61 100 12.87 3000 6

τ71 200 0.47 3000 3

τ81 100 1.24 3000 6

τ91 50 1.62 3000 10

Table 2.1: Experiment using the avionics use-case from Honeywell [9].

2.9 Experimental Evaluation

We experimentally prototype CArb using a multi-core architectural simulator called Mac-
Sim [39] with CArb managing accesses to a shared L3 cache. We use a multi-core architecture
of four x86 cores, private 16KB L1 and 256KB L2 caches per core, and a single 1MB L3 cache
shared and partitioned amongst cores and operates at 1GHz. The access latency of the L3 cache
is 50 cycles. The evaluation consists of four parts as follows.

1. We evaluate CArb using a real use-case MCS requirements from the avionics domain.

25

2. We compare CArb with commonly used real-time arbiters (namely, RR and different con-
figurations of WRR).

3. We highlight the trade-offs associated with adapting CArb’s schedule parameters.

4. We study the effectiveness of the proposed re-arbitration schemes.

2.9.1 Avionics Use-case

Experiment setup. We simulate a workload of 21 tasks derived from partition-based avionics
system from Honeywell [9]. Table 2.1 tabulates for each task: the deadline, Djl, WC execution
time in isolation, Sjl, and the maximum number of memory access issued in a period, Λjl. The
workload has 9 partitions (column 5 in Table 2.1) and 4 criticality classes, C1 to C4. Since the
actual task implementations are not publicly available, we implement in-house workloads that
match requirements of these tasks. We deploy the algorithm proposed by Sha [31] to schedule
tasks on cores using core assignments and utilizations given in columns 6 and 7 of Table 2.1,
respectively. Obtaining CArb parameters. We use the schedulability condition in Equation 2.2
to construct the memory latency, which we show in column 8 of Table 2.1. Afterwards, we
implement the optimization framework proposed in Section 2.7 in Matlab to obtain the optimal
values of CArb’s schedule parameters. According to the memory latency requirements, we get
the optimal values for τWjl (column 9 in Table 2.1), CWl and Zl (column 10) that satisfy these
requirements while minimizing the schedule hyperperiod.

Results. Figure 2.4 shows the WC latencies obtained when CArb executes the optimal sched-
ule to arbitrate requests from all tasks to the shared L3 cache. Clearly, the values satisfy all the
memory access latency requirements in column 8.

0

1
.9 2

1
2
3
4
5
6

1
.6
5

1
.7

4
.9
5

3
.2
5

1
.1 1
.9 2 2

1
.6
5

1
.3
5 2
.8

0
.6
5

1
.0
5

0
.91
.3
5

1
.9

1
.9

1
.0
5

5
.7

Figure 2.4: Avionics use-case results.

26

2.9.2 Minimum Achievable Latency

In this experiment, we show the usefulness of CArb’s requirement-awareness in satisfying mem-
ory requirements that are unsatisfiable by conventional non-requirement-aware arbiters such as
RR and WRR.

Experiment Setup. Towards this target, we vary the number of co-running critical and non-
critical tasks and plot the minimum possible worst-case latency that can be guaranteed to a critical
task. We call this latency the minimum achievable latency because the arbiter cannot guarantee a
lesser latency for the critical task under any possible configuration. If a critical task has a memory
requirement, Mjl, that is less than this minimum achievable latency, the set of tasks is deemed
unschedulable by the arbiter. Figure 2.5 shows the results of this experiment. WRR-2 and WRR-
4 represent a WRR arbitration, where each critical task is granted two and four consecutive slots,
respectively. both arbiters grant one access slot for each non-critical task. The access latency of
one request is 50 cycles.

Observations. 1) CArb is able to grant the critical task a fixed service regardless of the
number co-running number of tasks. Varying the number of non-critical tasks from 2 to 8 has
no effect on the minimum achievable WCL in Figure 2.5. For the case of 0 non-critical tasks,
the minimum achievable WCL is less since there are no slots at all granted to (and hence, no
interference from) the non-critical tasks. 2) The minimum achievable WCL increases for both
RR and WRR by increasing the number of co-running tasks whether they are critical or not. This
is because each task has to get at least one access slot. Since the slots are assigned contiguously,
these slots contribute to the total WCL of the critical task. 3) In Figure 2.5, by increasing the
number of co-running critical tasks, the minimum achievable WCL increases since we assume
all critical tasks have the same requirements.

2.9.3 Synthetic Experiments

CArb is capable of meeting various system requirements by adapting its configurable parameters
CWl, Zl and τWjl. Certainly, this adaptation involves a trade-off between requirements of dif-
ferent tasks. It is the role of the optimization framework to explore this trade-off and provide
optimal values that satisfy all requirements. However, this experiment does not focus on discov-
ering the optimal setting, but giving the reader a perspective on how parameters influence the
outcome. In doing that, we disable the optimization framework and sweep each parameter to
study its effect.

Experiment setup. We assume a system with three classes C3, C2 and C1. C3 has two tasks
τ 13 and τ 23, C2 has one task τ 12 while C1 has four tasks τ 11 to τ 41. We run each task on a core

27

0

200

400

600

800

1000

1200

1400

1600

0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8 0 2 4 8

0 1 2 3 4 5

M
in
. A

ch
ie
va
bl
e
W
CL
 [c
yc
]

Number of competing SRT tasks (0,2,4,8) and HRT tasks (0,1,2,3,4,5)

HWRR RR WRR‐2 WRR‐4

Figure 2.5: Latency requirements.

Exp. CW3 CW2 CW1 Z3 Z2 Z1 τWj3 τWj2 τWj1 τW41

j 6= 4

1 1 1 vary 2 1 4 1 1 1 1

2 2 2 4 1 1 vary 1 1 1 1

3 2 2 4 1 1 3 1 1 1 vary

Table 2.2: Parameters of synthetic experiments.

and CArb manages accesses to a shared cache among cores. We conduct three experiments to:
1) vary CW1, 2) vary Z1, and 3) vary τW41. Table 2.2 shows the values of all parameters used
in these experiments. Figure 2.6 delineates the results of each experiment.

Observations. 1) Increasing CW1, CArb grants more class slots to C1. Similarly, increasing
Z1 will increase the number of task slots assigned to C1’s tasks. Consequently, in both cases,
ytot of C1’s tasks will decrease at the expense of increasing ytot of tasks in C2 and C3. We
also show the amount of interference that C1’s tasks contribute to latencies of tasks belonging
to other classes by illustrating the case when no task from C1 is scheduled (CW1 = 0). Since
this situation implies starving C1’s tasks, the optimization framework prohibits it under normal
conditions.

2) At certain values, increasing weights or window sizes of a class may not decrease ytot of

28

tasks in that class. For example, in Figure 2.6b, increasing Z1 from 2 to 3 does not decrease ytotj1 ,
while it has a negative effect on ytot of tasks inC2 andC3. The rationale behind this observation is
that increasing Z1 from 2 to 3 do not, in fact, change the WC situation for tasks in C1. According
to the values of experiment 2 in Table 2.2 and Z1 = 2, each task in C1 attains 2 of 12 task
slots in the schedule hyperperiod. Therefore, it has a WC scheduling latency of d12

2
e = 6 slots.

Increasing Z1 from 2 to 3, each task in C1 wins 3 of 16 task slots; hence, the WC scheduling
latency becomes d16

3
e = 6 slots. As a consequence, increasing Z1 from 2 to 3 does not change

ytotj1 ; however, it decreases average-case latency as tasks of C1 execute more frequently.

0

100

200

300

400

500

1 20

(a) Class weight.

0

250

500

750

1000

1 2 3 4

(b) Class window size.

1 30
0

100

200

300

400

500

600

700

800

(c) Task weight.

Figure 2.6: Synthetic experiments (y-axis is the total WCL, ytot).

3) By changing τW41 (Figure 2.6c), the intra-class schedule of C1 changes. Apparently,
increasing τW41 decreases ytot41 at the expense of increasing ytot of other tasks in C1. Notice that
with the exception of τW41= 0, changing τW41 has no effect on ytot of tasks in C2 and C3. This
is because the inter-class schedule remains the same. This is a consequence of the criticality-
awareness of CArb as it separates class arbitration from task arbitration. Since assigning τW41=
0 will result in a free slot that will be assigned to other tasks, tasks of C2 and C3 have less ytot.

2.9.4 Dynamic Re-arbitration

Experiment Setup. In this experiment, we investigate the capabilities of CArb’s dynamic re-
arbitration mechanisms proposed in Section 2.8. We use the parameters in Table 2.3 to simulate
a system with 3 classes. The partitioning algorithm in Sha [31] is used for core scheduling and

29

Table 2.3 tabulates the used partitions and utilizations. According to the standard MCS model,

τ D (ms) S (ms) Partition Core U Λ M(µs) τw CW Z

τ13 5 1 1 1 0.5 2000 M13 ≤ 0.22 1
4 1

τ23 5 1 2 1 0.5 2000 M23 ≤ 0.22 1

τ12 5 2
3 2 1

1000
2M12 +M22 ≤ 1.28

1
2 1

τ22 10 3 1000 1

τ11 10 2
4 3 1

2000
3M11 + 2M21 ≤ 2.9

1
2 1

τ21 15 8 2000 1

Table 2.3: Parameters of the dynamic case experiment.

there are 3 modes of operations. 1-mode is the normal mode, where all tasks of all classes are
operating according to the requirements given in Table 2.3. In 2-mode, the operating system
suspends tasks of C1 and only tasks of classes C2 and C3 are utilizing the hardware. Finally,
in 3-mode, tasks of C1 and C2 are suspended and only tasks of C3 have the permit to execute.
Normally, a switch from the 1-mode to the 2-mode occurs when the execution time of any task in
C2 orC3 exceeds its Sij value in Table 2.3. To expose benefits of CArb dynamic re-arbitration, we
postpone this mode switch and investigate if this re-arbitration is able to mitigate the increase in
the execution time such that the requirements of tasks in C2 and C3 are met without suspending
tasks of C1. We model the increase in the execution time by decreasing the core operating
frequency.

Observations. All tasks are affected by the frequency scaling. For clarity, we focus on results

of C2’s tasks (partition 3). Figure 2.7 depicts U3 =
2∑
j=1

ej3

Dj3
=

2∑
j=1

sj3 +mj3 × Λj3

Dj3
. The dotted line is

the schedulability bound (right hand side of Equation 2.1).
1)Deploying CArb without dynamic re-arbitration and disable mode switching. As expected,
decreasing the frequency, s12 and s22 increase and U3 keeps increasing until violating schedula-
bility condition (noDynamic plot in Figure 2.7).
2) Deploying CArb with scheme1. When s12 and s22 exceed their corresponding WCETs, S12

and S22, CArb switches to the prioritized CArb mechanism, where tasks of C1 gains access only
on slack slots. As Figure 2.7 illustrates, Scheme1 mitigates up to 12% and 18% increase per-
centages in s12 and s22, respectively, without requiring the operating system to switch to mode
2. This results in postponing the mode switch from the frequency point of 990MHz to 950MHz.
However, this comes at the expense of switching all tasks of C1 to execute on slack slots.

30

0.80
0.81
0.82
0.83
0.84
0.85
0.86
0.87
0.88

9309409509609709809901000
Core Frequency (MHz)

S
ch

e
d
u

la
b
ili

ty
 C

o
n
d
.

Cond. noDynamic Schedule2 Scheme2 Scheme1

(2.12,3.18)(2.06,3.09)(2.03,3.05) (s
12

,s
22)

Figure 2.7: Effect of decreasing core frequency on tasks of C2.

3) Deploying CArb with scheme2. Given the trade-off discussed in Section 2.8, we choose to
store only one additional schedule configuration for scheme2 per mode. We choose a middle
point between the WCETs and the maximum execution times that scheme1 can mitigate, where
(s12, s22) equal (2.06, 3.09)ms, respectively, in Figure 2.7. This point is statically predetermined
and we rerun the optimization framework to obtain the new optimal schedule. The obtained op-
timal schedule does not change the intra-class schedule and only reallocates the inter-class slots.
This is achievable exclusively because CArb is criticality-aware with hierarchical scheduling.
In the new schedule (Schedule2 in Figure 2.7), the class weights are the same as in Table 2.3,
while class window sizes change to 1, 2 and 2 for C1, C2 and C3 respectively. Instead of directly
applying prioritized CArb once the execution times exceeds their WCETs, Schedule2 mitigates
increases up to 6% and 9% in s12 and s22, respectively. This occurs from 990MHz to 970MHz in
Figure 2.7. In addition, it guarantees some service allocation on the memory bus to C1’s tasks.
Afterwards, Scheme2 deploys the prioritized CArb (from 970MHz to 950MHz in Figure 2.7).
Finally, a mode-switch is unavoidable when s12 and s22 exceed the point (2.12, 3.18)ms (region
after 950MHz in Figure 2.7).

31

2.10 Summary

In this chapter, we addressed the inter-task interference problem in multi-core mixed criticality
systems by presenting CArb. CArb is a criticality- and requirement-aware bus arbiter adopting
two-tier weighted round-robin arbitration. CArb has the following advantages: it does not restrict
the scheduling policy for tasks on cores, and it supports any number of criticality levels. In
addition, it optimally allocates service to tasks through configurable schedules loaded at boot
time. CArb is capable to dynamically adapt its schedule under varying system conditions. This
adaptation proves its effectiveness to mitigate the system need to switch to a degraded mode upon
increases in the execution times of tasks. Finally, we evaluated CArb using avionics case-study
and synthetic experiments.

32

Chapter 3

PMSI: Predictable Cache Coherence for
Multi-core Real-time Systems

This chapter addresses the challenge of allowing simultaneous and predictable accesses to shared
data on multi-core systems. We accomplish this by proposing a predictable cache coherence pro-
tocol, which mandates the use of certain invariants to ensure predictability. In particular, we
enforce these invariants by augmenting the classic MSI protocol with transient coherence states,
and minimal architectural changes. This allows us to derive worst-case latency bounds on pre-
dictable MSI (PMSI) protocol. We implement PMSI in gem5, and execute SPLASH-2 and syn-
thetic multi-threaded workloads. Our empirical results show that our approach is always within
the analytical worst-case latency bounds, and that PMSI improves average-case performance by
up to 4× over the next best predictable alternative. PMSI has average slowdowns of 1.45× and
1.46× compared to conventional MSI and MESI protocols, respectively.

3.1 Introduction

In HRT systems, correctness depends not only on the functioning behavior, but also on the timing
of that behavior [40]. Applications running on these systems have strict requirements on meeting
their execution time deadlines. Missing a deadline in a HRT system may cause catastrophic
failures [32]. Therefore, ensuring that deadlines are always met via static timing analysis is
mandatory for such systems. Timing analysis computes an upper bound for the execution time
of each running application on the system by carefully accounting for hardware implementation
details, and using sophisticated abstraction techniques. The WCET of that application has to be
less than or equal to this upper bound to achieve predictability. As application demands continue

33

to increase from the avionics [41] and automotive [42] domains, there is a surge in wanting to
use multi-core platforms for their deployments. This is primarily due to the benefits multi-core
platforms provide in cost, and performance. However, multi-core platforms pose new challenges
towards guaranteeing temporal requirements of running applications.

One such challenge is in maintaining coherence of shared data stored in private cache hierar-
chies of multi-cores known as cache coherence. Cache coherence is realized by implementing a
protocol that specifies a core’s activity (read or write) on cached shared data based on the activity
of other cores on the same shared data. While cache coherence protocols can be implemented
in software or hardware, modern multi-core platforms implement the cache coherence protocol
in hardware. This is so that software programmers do not have to explicitly manage coherence
of shared data in the application. A recent work studied the effect of cache coherence on execu-
tion time using five different Intel and AMD processors and three coherence protocols [43]. The
study compared between executing an application sequentially and in parallel. It concluded that
the interference from cache coherence can severely reduce benefits gained from parallelism. In
fact, it can make the parallel execution 3.87× slower than sequential execution.

This emphasizes the importance of considering cache coherence effects when deriving WCET
bounds. However, as observed by a recent survey [44], there is no existing technique to account
for the effects of coherence protocols in static timing analysis in real-time systems. As a result,
tasks on multi-core systems cannot coherently and predictably share data unless some restric-
tions to eliminate those effects are enforced. For instance, a possible solution is disabling the
caching of shared data [45, 46]. Clearly, this solution significantly increases the execution time
of applications with shared data, which may render applications unschedulable. Another solu-
tion prohibits tasks with shared data from running simultaneously on different cores using task
scheduling [47]. However, this solution requires special hardware performance counters and
modifications to currently available scheduling techniques. A third solution suggests modifying
the applications by marking instructions with shared data as critical sections such that they are
accessed by only a single core at any time instance [48]. Although this allows caching of shared
data, it stalls all tasks but one from accessing the data, which in WC amounts to sequentially
running the tasks.

In summary, existing solutions prohibit tasks from simultaneously accessing shared data.
This approach successfully avoids data incoherence, but it does so at the expense of one or more
of the following: 1) severely degrading performance, 2) imposing scheduling restrictions, 3) im-
posing source-code modifications, and 4) requiring hardware extensions. This chapter presents a
predictable cache coherence protocol to allow for simultaneous accesses to shared data. The pro-
posed solution provides considerable performance improvements, does not impose any schedul-
ing restrictions, and does not require any source-code modifications.

34

3.1.1 Contributions

We address the problem of maintaining cache coherence in multi-core real-time systems by mod-
ifying current coherence protocols such that data sharing is viable for real-time systems in a
manner amenable for timing analysis. Doing so, we make the following contributions:

1. We identify behaviors in conventional coherence protocols that can lead to unpredictability.
The identified behaviors are general and independent of the implementation details of the
deployed cache coherence protocol. We use these observations to propose a set of invariants
to address unpredictability in coherence protocols.

2. We show the unpredictable behaviors and the proposed solutions to rectify them using the
MSI coherence protocol. Accordingly, we propose predictable MSI (PMSI), a coherence
protocol that fulfills the proposed invariants on MSI by introducing a set of transient states
while making minimal architectural changes to cache controllers (Section 3.6). We release
the implementation of PMSI at [49] for researchers to use and extend. Modern commodity
multi-core architectures implement various protocols that are optimizations of MSI such as
MESI, MOESI and MESIF [50, 51]. Accordingly, our observations and proposed invariants
are applicable to modern cache coherence protocols with those optimizations.

3. We provide a timing analysis for our proposed coherence protocol and decompose the anal-
ysis to highlight the contributions to latency due to arbitration logic and communication of
coherence messages between cores (Section 3.7).

4. We evaluate the proposed coherence protocol using the gem5 full-system simulator [52] (Sec-
tion 3.8). Our evaluation shows that cache coherence can increase the memory latency up to
10× in a quad-core system. This further emphasizes the importance of providing safe bounds
that account for the effect of cache coherence. Performance evaluation shows that PMSI
achieves up to 4× speedup over competitive approaches.

3.2 Related Work

Sharing data coherently has been investigated for many years for conventional performance-
oriented architectures. Researchers have proposed different coherence protocols that are his-
torically classified into directory-based or snoopy-based [10]. Recently, other alternatives have
been proposed such as the token-coherence [53] and time-based coherence [54]. Snoopy-based
protocols requires a totally ordered interconnection network [10]. Some approaches have been
proposed to deploy snoopy-based protocols into unordered networks [55] and split-transaction

35

buses [56]. The latter is the most related to this thesis for two reasons: 1) we assume a bus-based
architecture, and 2) usually predictable arbiters force a different ordering than the arrival order
to ensure predictability. Thus, we discuss the solution proposed in [56] and highlight why it is
ill-suited for real-time systems. The approach followed by the POWERpath-2 bus architecture in
the SGI multiprocessor chip [56] is to disallow multiple pending requests to the same cache line.
This is achieved by maintaining a pending-read queue of size 8 to track read requests that are not
serviced yet. Any request (write or read) that targets a cache line matching that targeted by one
of the pending reads is stalled until the read is serviced. This solution is not suitable for real-time
systems because it does not guarantee a bounded memory latency. For example, the number of
serviced requests from one core is uncontrolled; therefore, one core can flood the pending-read
queue resulting in stalling all other cores.

For real-time systems, recent research efforts investigated the access latency overhead result-
ing from shared buses [32], caches [24,57,58], and dynamic random access memories (DRAMs)
[3, 59, 60]. Data isolation appears to be the prevalent technique in literature. For shared caches,
most of these efforts primarily focused on preventing a task’s data accesses from affecting an-
other task’s data accesses. They used data isolation between tasks by utilizing strict cache parti-
tioning [24] or locking mechanisms [57]. Authors in [58] promote splitting the data cache into
multiple data areas (e.g. stack, heap,..etc.) to simplify the analysis. However, they indicate that
the coherence is still an issue that has to be addressed. Similarly, several proposals for shared
main memories deployed data isolation by assigning a private memory bank per core [59, 60].
However, we find that data isolation suffers from three limitations. 1) They disallow sharing of
data between tasks; thus, disabling any communication across applications or threads of parallel
tasks running on different cores. 2) It may result in a poor memory or cache utilization. For
instance, a task may keep evicting its cache lines if it reaches the maximum of its partition size,
while other partitions may remain underutilized. 3) It does not scale with increasing number of
cores. For example, the number of cores in the system has to be less than or equal to the number
of DRAM banks to be able to achieve isolation at DRAM. Recent works [3, 61, 62] recognized
these limitations, and offered solutions for sharing data. Authors in [3] share the whole memory
space between tasks for main memory, and [61, 62] suggested a compromise by dividing the
memory space into private and shared segments for caches. Nonetheless, these approaches focus
on the impact of sharing memory on timing analysis, and they do not address the problem of data
correctness resulting from sharing memory. Authors of [63] study the overhead effects of co-
running applications on the timing behaviour in the avionics domain, where coherence is one of
the overhead sources. A recent survey [44] observed that there is no existing technique to include
the effects of data coherence on timing analysis for multi-core real-time systems. However, there
exist approaches that attempt to eliminate unpredictable scenarios that arise from data sharing.
Authors in [47] proposed data sharing-aware scheduling policies that avoid running tasks with

36

shared data simultaneously. A similar approach proposed by [43] redesigned the real-time oper-
ating system to include cache partitioning, task scheduling, and feedback from the performance
counters to account for cache coherence in task scheduling decisions. Such approaches rely on
hardware counters that feed the schedule with information about memory requests. They also
require modifications to existing task scheduling techniques. For example, the solution in [47] is
not adequate for partitioned scheduling mechanisms. A different solution introduced in [48] ap-
plied source-code modifications to mark instructions with shared data as critical sections. These
critical sections were protected by locking mechanisms such that they were accessed only by a
single core at any time instance. This solution suffers from certain limitations. 1) It exposes
cache coherence to the software to assure correctness of shared data. 2) Only one core can ac-
cesses a cache line of shared data at a time. Other cores requesting this data have to stall. In
worst case, this is equivalent to sequential execution. 3) Additionally, they still require hardware
to keep track of whether each cache line is shared or not.

We address these limitations in Chapter 3 by proposing PMSI. PMSI allows tasks to simul-
taneously and predictably access shared data, which considerably improves performance. In ad-
dition, it does not pose any requirements on task scheduling techniques, and it does not require
software modifications. We also provide a timing analysis that accounts for memory coherence
for PMSI.

3.3 Background: Cache Coherence

The objective of cache coherence is to provide all cores read access to the most recent write
on shared data. Incoherent sharing of data occurs when multiple cores read different versions of
the same data that is present in their private cache hierarchies. Figure 3.1a shows one instance
of data incoherence on the shared cache line A in a dual-core system. 1 Initially, the shared
memory has A with a value of 30. 2 Core c0 performs a read on A; hence, it obtains a local
copy of A in its private cache. 3 Afterwards, c0 executes a write operation that updates this local
copy to 50. 4 When c1 reads A, the shared memory responds with the old value of A, 30. This
is because c0 did not update the shared memory with the new value of A; thus, c1 obtains a stale
(incorrect) version of A.

A coherence protocol avoids data incoherence by deploying a set of rules to ensure that cores
access the correct version of data at all times. Usually, the coherence protocol maintains data
coherence at cache line granularity, which is a fixed size collection of data. A state machine im-
plements these rules with a set of states representing read and write permissions on the cache line,
and transitions between states denoting the activity of all cores on the shared data. The cache

37

A:30

Shared memory

c0 cache c1 cache

Bus

A:30

A:30 50

Shared memory

c0 cache

c1 cache

A:30

A:30

Shared memory

c0 cache

c1 cache

A:30

A:50 A:30A:30

Shared memory

c0 cache c1 cache

1 2

3 4

Bus

Bus Bus

(a) Incoherent sharing of data.

M

O
th

er
G

et
M

 o
r

O
w
nP

ut
M

O
w
nG

et
M

O
w
n
G

etS

O
therG

etM

OwnUpg

OtherGetS

or O
therU

pg

OwnGetS or
OtherGetS

OwnGetM

I

S

(b) MSI state diagram.

Figure 3.1: Cache coherence.

controller typically implements the coherence protocol. General purpose processors deploy dif-
ferent variants of coherence protocols. Most of them consist of three fundamental stable states,
which establish the MSI protocol: modified (M), shared (S), and invalid (I) [10]. Figure 3.1b
presents these states and the transitions amongst them. This state machine is implemented by
the cache controller of each private cache. In addition, the shared cache controller implements
a similar state machine to track the status of each block in the shared cache. A cache line in
modified state means that the current core has written to it and did not propagate the updated
data to the shared memory yet. Only one core can have a specific cache line in a modified state.
A cache line in shared state means that the core has a valid, yet unmodified version of that line.
One or more cores can have versions of the same cache line in shared state to allow for fast read
accesses. A cache line in invalid state denotes the unavailability of that line in the cache or that
its data is outdated. A cache controller changes the state of the cache line by observing the bus
for coherence messages related to the same cache line by other cores, known as bus snooping
cache coherence or receiving action messages from a centralized shared cache controller, known
as directory-based cache coherence. In this thesis, we focus on bus snooping cache coherence
as it is typically implemented in multi-core platforms with a small number of cores, which is
the case in current real-time systems. For example, bus snooping is adopted in ARM chips such
as [64]. For bus snooping protocols, we distinguish between two types of messages: coherence
messages (Definition 3.1) and data messages (Definition 3.2).

38

Definition 3.1. Coherence messages. Coherence messages are messages that represent an
action corresponding to a core’s activity on the cache line.

Definition 3.2. Data messages. Data messages are messages that represent data sent or re-
ceived by a core as a consequence of a core’s activity.

If a core requests a cache line A for reading, it issues a GetS(A) message. If it requests A for
writing, it issues a GetM(A) message. If A is modified and evicted, then the core issues a PutM(A)
message, which triggers a write back to the shared memory. If the core has A in a shared state
and wants to modify it, it issues an Upg(A) message. A core observes its own messages on the
bus as well as messages by other cores. We refer to the former as Own, and to the latter as Other.
For instance, in Figure 3.1b, when the core has a line in S state and observes its OwnUpg(), it
moves to M state. In contrast, if it observes a GetM() issued by another core, OtherGetM(), it
changes its state to I.

To fix the data incoherent scenario, we apply the MSI protocol for the example in Figure 3.1a,
c0 first issues a GetS(A) to obtain A for reading, and then issues an Upg(A) to modify it. When
c1 issues a GetS(A) to obtain A for reading, c0 observes an OtherGetS(A) on the bus. Hence,
it either sends the updated data to c1 directly, or it writes back A to the shared memory and c1

reads the new data from it. The former case is possible only if the architecture allows for direct
cache-to-cache communication. In both cases, c1 reads the updated data and c0 moves to the
shared state. The cache coherence protocol is responsible for orchestrating such communication
and transfer of data.

3.3.1 Transient Cache Coherence States

Interconnecting cores with an atomic in-order bus prevents all other cores from utilizing the
bus until the core that was granted access to the bus completes its request. Consequently, most
modern systems implement non-atomic reordering buses for improved performance, where the
stall time of one core waiting for data response can be used to service requests of other cores. One
example is the QuickPath interconnect architecture [65] from Intel that is used for inter-processor
communication. However, if the bus is not an atomic in-order one, then a memory request to a
cache line may be intervened by other requests to the same cache line before it completes (non-
atomicity), and coherence messages can be reordered by the bus (reordering bus). Hence, a
set of transient states between stable states is required to capture events caused by intervening
coherence messages due to a non-atomic bus architecture. Table 3.1 tabulates the transient states,
which are necessary between the two stable states I and S. Similar transient states exist between
other stable states [10]. We categorize the transient states imposed by a non-atomic reordering
bus into two categories based on their semantics.

39

Core events Bus events

Load Store Replacement OwnData OwnGetM OwnGetS OwnPutM OtherGetS OtherGetM OtherPutM

I issue GetS/ISd issue GetM/IMd X X X X X

S hit issue GetM/SMad -/I X X X -/I -/I

ISd stall stall stall read/S X X X ISdI

ISa stall stall stall X X read/S X X

ISad stall stall stall ISa X ISd X

ISdI stall stall stall read/I X X X X

Table 3.1: Transient states between S and I in a conventional MSI protocol. issue msg/state
means the core issues the message msg and move to state state. -/state indicates that there is no
msg issued. Shaded cells represent the situations where no transition occurs, while cells marked
with X denote impossible cases under correct operation [10].

1. Transient states for coherence messages. These transient states denote that a core is waiting
for its own coherence message to be placed on the bus. A core’s own coherence message may
be delayed on the bus due to the presence of other messages on the bus. For instance, when
a core ci has a read request to an invalid line (I state in Table 3.1), it issues a GetS message.
Because of the non-atomicity and reordering nature of the bus, ci might receive its requested
data before it observes its message on the bus as shown by [10]. In this case, ci moves to a
transient state (ISa in Table 3.1) waiting for its OwnGetS() to appear on the bus before moving
to the stable state, S.

2. Transient states for data messages. These states denote that a core is waiting for data either
from a core that has the data in its private cache hierarchy or from the shared memory. For
example, the ISd transient state in Table 3.1 denotes that a core issued a GetS() and did not
receive a data response yet.

3.4 System Model

We consider a multi-core system with N cores, {c0,c1,...,cN−1}. Each core has a private cache,
and all cores have access to a shared memory. This shared memory can be an on-chip LLC, an
off-chip DRAM, or both. Tasks running on cores can have shared data. These tasks can belong to
a parallel application that is distributed across cores, or different applications that communicate
between each other. Cores can share the whole shared memory space similar to [3] or share part

40

of the memory space similar to [62]. We do not impose any restrictions on how the interference
on the shared memory is resolved, whether it is the LLC or the DRAM. Furthermore, we do not
require any special demands from the task scheduling mechanism. This allows one to integrate
the proposed solution to current task scheduling techniques, and to various mechanisms that
control accesses to shared memories in real-time systems. Cores share a common bus connecting
private caches to the shared memory, where data transfers amongst private caches are only via the
shared memory (no cache-to-cache transfer). Although some of the problems addressed in this
chapter may also apply to systems supporting cache-to-cache transfer, those systems are not the
focus of this thesis. The common bus transfers data and coherence messages between the shared
memory and the private caches. For example, Figure 3.1a shows a two core setup where the cores
are connected to each other and to the shared memory via a common bus. The common bus also
transfers coherence messages deployed by the coherence protocol to ensure data correctness.
The system deploys a predictable arbitration on the common bus. The proposed solution is
independent of the core architecture, and the arbitration mechanism on the bus. However, the
analysis and experiments we present in this chapter consider a system with in-order cores, and
a TDM bus as the base arbitration scheme to derive WC latencies. TDM can be either time-
conserving or non time-conserving. Time-conserving TDM grants the slot to the next core if
the current core does not have pending requests, while in non-time conserving TDM such slot
remains idle [3]. We use a TDM slot width that allows for one data transfer between shared
memory and the private cache including the overhead of necessary coherence messages.

3.5 Sources of Unpredictability Due to Coherence

A cache coherence protocol ensures correctness of shared data across all cores in a multi-core
platform. Nonetheless, careless adoption of a conventional coherence protocol into a real-time
system may lead to unpredictable scenarios. As we show in this section, simply adopting a pre-
dictable arbiter in this case does not necessarily mean that tasks will have predictable latencies
upon accessing the shared memory. This is because, as illustrated in Section 3.3, the latency
suffered by one core accessing a shared line is dependent on the coherence state of that line in
the private caches of other cores. A major contribution of this chapter is 1) to identify these
unpredictable scenarios, and 2) to propose invariants to address them. It is worth mentioning
that not all platforms necessarily suffer from all sources. Exact sources existing in platforms
are implementation-dependent and not publicly-available. The proposed invariants are general
design guidelines, which are independent of the adopted cache coherence protocol and the un-
derlying platform architecture. Satisfying these invariants eliminates the identified unpredictable
scenarios; thus, it leads to a predictable behavior. An arbiter manages accesses to the shared bus

41

such that at any time instance it exclusively grants the bus to a single core. A predictable arbiter
guarantees that each core with a ready request will eventually access the bus; thus, it enables
deriving latency bounds. Upon implementing a coherence protocol, a core initiates memory
requests by exchanging coherence messages with other cores and the shared memory. There-
fore, before investigating the potential sources of unpredictability, we extend the predictable bus
arbiter with Invariant 3.1 such that it manages both data transfers and coherence messages.

Invariant 3.1. A predictable bus arbiter must manage coherence messages on the bus such
that each core may issue a coherence request on the bus if and only if it is granted an access
slot to the bus.

Investigating the implications of a conventional coherence protocol on the WCET, we find
that there are four major sources that can lead to unpredictable behavior. Figures 3.2–3.5 illus-
trate example scenarios for these sources (left side of each figure with the source of unpredictable
behavior shaded in red). Figures 3.2–3.5 also illustrate how satisfying the proposed invariants
prevents these actions and leads to a bounded memory latency (right side of each figure). Fig-
ures 3.2–3.5 consider a system with three cores, c0, c1, and c2, and deploys a TDM arbitration
amongst their requests to the common bus. If the request type is not specified whether it is a read
or write, that means the scenario is agnostic to it. Each of Figures 3.2–3.5 separately defines the
initial system state and the core under analysis for the corresponding scenario.

3.5.1 Source 1 : Inter-core Coherence Interference on Same Line

If a core requests a line that has been modified by another core, it has to wait for the modifying
core to write back that line to the shared memory. Source 1 occurs when multiple cores request
the same line, say A, where A is modified by another core. In Figure 3.2, initially, c0 has a
modified version of A in its private cache. 1 c2 issues a read request to A. Since c0 has the
modified version of A, it has to write back its data to the shared memory first. However, this is
c2’s slot; thus, c0 has to wait for its slot to perform the write back. 2 c0 writes back A to the
shared memory in its slot. 3 c1 issues a write request to A. Since the shared memory has the
updated version of A, c1 is able to obtain A and modify it. 4 c2 reissues a read request to A.
This time c2 has to wait for c1 to write back A. From c2’s perspective, slot 4 is a repetition of
1 ; c2 reissues its request to A and waits for another core to write it back. Thus, this situation
is repeatable and can result in unbounded memory latency. Although c2 is granted access to the
bus, it is unable to obtain the requested data due to the coherence interference.

Proposed solution. We avoid this problem by enforcing Invariant 3.2. Invariant 3.2 requires
memory to service requests to the same cache line in their arrival order; thus, it guarantees that
a line being requested by a core will not be invalidated before the core accesses it. Imposing

42

c2:req A

c0:mark A

 for WB

c0:WB A

 to mem

c1:req A

mem:sends
 A to c1

c1:modify A

c2:req A

c1:mark A

 for WB

...

c0c2 c1 c2

TDM slots

or
d
er c1:req A

...

c1 c2

A requested by c2

c1:stalling on A

mem:sends
 A to c2

c2:read A

Inv. 22 3 41

Figure 3.2: Unpredictability source 1: inter-core coherence interference on same line. Initially,
c0 modified A. c2 is under analysis.

Invariant 3.2 in Figure 3.2, c2’s request to A arrives to the shared memory before c1’s request;
therefore, c1 has to wait for c2 to execute its operation before it gains an access to A.

Invariant 3.2. The shared memory services requests to the same line in the order of their
arrival to the shared memory.

3.5.2 Source 2 : Inter-core Coherence Interference on Different Lines

This source of interference arises when a core has multiple pending lines to write back because
other cores requested them. This is an indirect source of interference. Cores requesting access
to different lines can interfere with each other because of the coherence protocol. For instance
in Figure 3.3, c0 has modified versions of lines A and B. The core under analysis is c1. c1 and
c2 issue requests to A 1 and B 2 during their corresponding slots. Accordingly, c0 has to write
back both A and B to the shared memory. Since c0 is permitted to conduct one memory transfer
in a slot, at 3 , it can write back only one line. If no predictable mechanism manages the write
backs, c0 can pick any pending one. At 3 , c0 writes back B. Therefore, at 4 , c1 is stalling on A.
This situation can repeat indefinitely. While c1 is waiting for A, c2 can ask for another line, say
C, which is also modified by c0 and the same situation can repeat.

Proposed solution. We avoid this situation by enforcing Invariant 3.3. Invariant 3.3 imposes
an order in servicing coherence messages from other cores (write backs, for example). The right
side of Figure 3.3 deploys Invariant 3.3. Since the request to A arrives before that to B, c0 has to
write back A first then B; thus, a predictable behavior is guaranteed.

Invariant 3.3. A core responds to coherence requests in the order of their arrival to that core.

43

c2:req B

c0:mark B

 for WB

c0:WB B

 to mem

c1:stalling

 on A
c2:modify B

...

c0c2 c2

TDM slots

or
d
er

c1

c1:req A

c0:mark A

 for WB

c1

mem:sends
 B to c2

c0:WB A

 to mem

c2:stalling

 on B
...

c0 c2c1

Inv. 3

mem:sends
 A to c1

c2:modify A

1 2 3 4 5

Figure 3.3: Unpredictability source 2: inter-core coherence interference on different lines. Ini-
tially, c0 modified A and B. c1 is under analysis.

3.5.3 Source 3 : Inter-core Interference Due to Write Hits

This source is due to write hits in the private cache to non-modified lines. Since the predictable
bus arbiter only controls accesses to the shared bus, a request that results in a hit in the private
cache can proceed without waiting for the corresponding core slot. This yields two possible
scenarios of interference as follows.

3.5.3.1 Source 3A: inter-core interference due to write-hits to non-modified lines during
another core’s slot

Figure 3.4a exemplifies this scenario. c0 has a version of A in its private cache that is not modified.
During c2’s slot, c2 issues a write request to A, while simultaneously c0 has a write operation to A
that results in a hit in its private cache. This creates a race with two possibilities. If c0’s write hit
on A occurs first, c2 has to wait until c0 writes back A. On the other hand, if c2’s request appears
on the bus first, c0 has to invalidate its own local copy of A. Hence, c0’s request to A will be a
miss and has to wait for c2 to write back A before it gets another access to it. Assume that c0’s
write hit occurs first and c2 waits. After c0 writes back A and during c2’s next slot, c0 again has
another write hit to A. Again, c2 has to wait for c0 to write back A. Consequently, this situation is
repeatable and can starve c2.

Proposed solution. We avoid this interference by enforcing Invariant 3.4. Invariant 3.4 stalls
a write request by a core, which is a hit to a non-modified line until the arbiter grants an access
slot to that core. Thereby, it avoids the aforementioned unpredictable consequences. It is worth
noting that Invariant 3.4 aligns with Invariant 3.1 as follows. Invariant 3.1 mandates that a core
can initiate coherence messages into the bus only when it is granted an access to it by the arbiter.
Although a write hit to a non-modified line does not need data from the shared memory, it still

44

c0: cannot modify A

c2:req A

c0:WHit on A

c2 TDM slots

o
rd

er

c0:modifies A

c2:stalls on A

c2:modifies A

c0:miss on A and stalls

mem:sends A to c2

Inv. 4
c2:req A

c0:WHit on A

c2

not c0's slot

c2:modifies A

mem:sends A to c2

c2:req A

OR

(a) Source 3A: initially, c0 read A. c2 is under analysis.

c2:req A
c0:mark

A for
WB

c0:WB

A to
mem

c1:stalling

 on B

c0c2 c2

or
d
er

c1

c2:WB

B to
mem

c0:WHit

on
A and
modify

c0 c1

mem:sends
A to c2

c2:read A

c0:WHit on A

A requested
by c2

c0:cannot

 modify A

c0 c2c1

Inv. 5

1 2 3 4 5 6

TDM slots

...

c2:req A
c0:mark

A for
WB
c2

(b) Source 3B: initially, c0 modified A, c2 modified B, and c1 requested B. c2 is under analysis.

Figure 3.4: Unpredictability source 3: inter-core interference due to write hits.

needs to send coherence messages on the bus. This is necessary to invalidate local copies of the
same line that other cores have in their private caches. Accordingly, a write hit to a non-modified
line has to wait for a granted access by the arbiter. On maintaining Invariant 3.4 in Figure 3.4a,
the following behavior is guaranteed. Since the current slot belongs to c2, and c0’s request is a
write hit to A, which is not modified, c0 must wait for its slot to that request. On the other hand,
c2 issues its write request to A. Since no core has a modified version of A, c2 obtains A from the
shared memory and performs the write operation. c0 invalidates its own local copy of A.

Invariant 3.4. A write request from ci that is a hit to a non-modified line in ci’s private cache
has to wait for the arbiter to grant ci an access to the bus.

45

3.5.3.2 Source 3B : inter-core interference due to write hits to non-modified lines that are
requested by another core

Invariant 3.4 resolves the race situation between a request generated by a core in its designated
slot and write hits from other cores. Note that the write hits to non-modified lines can lead to
another unpredictable situation that Invariant 3.4 does not manage. We illustrate this situation
in Figure 3.4b. Initially, c0 has a modified version of A, c2 has a modified version of B, and c1

has requested B. 1 c2 requests A to read; thus, in c0’s next slot, it updates the shared memory
with the modified value of A 2 . Since c2’s request is a read, c0 does not invalidate its local
version of A. At 4 , c2 has two pending actions: fetching A from memory, and writing back B to
the memory in response to c1’s request. Assume that c2 chooses to write back B. Therefore, its
request to A waits for the next slot. At 5 , c0 has a write hit to A. Consequently, since this is c0’s
slot, it conforms with Invariant 3.4; thereby, it modifies A. At 6 , it has to reissue its request to A
and wait for c0 to write back A to memory again. From c2’s perspective, this situation is similar
to the situation at 1 . Similarly, in next periods, after c0 writes back A, it can have a write hit
to A before c2 receives it from the memory. Clearly, this situation is repeatable indefinitely, and
creates unbounded memory latency for c2.

Proposed solution. We avoid the unbounded latency by enforcing Invariant 3.5. Invariant 3.5
stalls a write request, which is a hit to a non-modified line until all waiting requests from pre-
vious slots are completed. Thereby, it avoids the aforementioned unpredictable consequences.
Maintaining Invariant 3.5 in the right side of Figure 3.4b, the following behavior is guaranteed.
During c0’s slot, it has a hit to A. Since A is non-modified by c0 and is previously requested by
c2, the write-hit cannot be processed. Accordingly, c2 obtains A from the shared memory in its
next slot and performs its operation. c0’s request to A is issued afterwards in the corresponding
slot.

Invariant 3.5. A write request from ci that is a hit to a non-modified line, say A, in ci’s private
cache has to wait until all waiting cores that previously requested A get an access to A.

3.5.4 Source 4 : Intra-core Coherence Interference

This interference is between two actions from the same core. The first action is its own pending
request, while the second is its response to a request from another core. This response is for
example, a write back to a line that this core has in a modified state. In Figure 3.5, c0 has a
modified version of A. 1 c2 requests A; thus, c0 marks A to write back in its next slot. However,
at 2 c0 is in its next slot and has its own request to B pending to issue to the bus. Thus, the
write back of A waits for c0’s next slot. Similarly, at 4 , it has another pending request to another

46

1

c2:req A

c0:mark A

 for WB

c0:req B

c0c2 c2

TDM slots

or
d
er

c1 c0

c2:stalling

 on A
c0:req C

...

c0

c0:WB A

 to mem

c1 c2

mem:sends
A to c2

c2:read A

2 3 4 Inv. 6

Figure 3.5: Unpredictability source 4: intra-core coherence interference. Initially, c0 has modi-
fied A. c2 is under analysis.

line, C. Accordingly, the write back of A by c0 can indefinitely stall, which results in unbounded
latency of c2’s request.

Proposed solution. We introduce Invariant 3.6 to resolve this intra-core interference problem
predictably. Invariant 3.6 states that any predictable arbitration mechanism between coherence
requests of a core and responses from the same core is sufficient to address the intra-core inter-
ference. Deciding the adequate arbitration depends on the application. Deploying Invariant 3.6
in Figure 3.5, the predictable arbitration mechanism will eventually allocate one c0’s slot to the
write back operation of A. Thus, the memory latency of c2’s request is bounded.

Invariant 3.6. Each core has to deploy a predictable arbitration between its own generated
requests and its responses to requests from other cores.

3.6 PMSI: A Predictable Coherence Protocol

We show the effectiveness of the proposed invariants by applying them to the conventional MSI
protocol. This results in the predictable PMSI protocol for multi-core real-time systems. To
ensure these invariants are held, we propose architectural modifications and additional coher-
ence states. The proposed architectural modifications satisfy Invariants 3.1 and 3.2 without any
changes to the coherence protocol. However, Invariants 3.3–3.6 require modifications to both the
architecture and the coherence protocol. This is because Invariants 3.3 and 3.6 regulate the write
back operation of cache lines. Since a core has to wait for a designated write back slot to write
back a cache line A, it has to maintain A in a transient state to indicate that A is waiting for write
back. Similarly, Invariants 3.4 and 3.5 regulate the write hit operation to non-modified lines. A

47

State Tag Data

PR
FIFO

PWB
FIFO Private cache

Tag Data
C0

Shared memory

Addr CID Msg
PR LUT State

TDM arbiter

Cn

1 2

3

4

T
D
M

Figure 3.6: Architectural changes necessary for PMSI.

core has to wait for a designated slot to perform the write hit operation to a cache line, say B.
Accordingly, it has to maintain B in a transient state indicating that it has a pending write to B.

3.6.1 Architectural Modifications

Figure 3.6 depicts a multi-core system with a private cache for each core and a shared memory
connected to all cores via a shared bus. A TDM bus arbiter manages accesses to the shared
memory. The proposed architecture changes are highlighted in grey. In our four-core evaluation
system, the storage overhead is less than 128 bytes.

1 The TDM arbiter manages the coherence requests such that each core can issue a coherence
request message only when it is granted an access to the bus. This satisfies Invariant 3.1.

2 The shared memory uses a FIFO arbitration between requests to the same cache line. We im-
plement this arbitration using a look-up table (LUT) to queue pending requests (PR), denoted
as PR LUT in Figure 3.6. Each entry consists of the address of the requested line, the id of
the requesting core, and the coherence message. The PR LUT queues requests by the order
of their arrival. When the memory has the updated data of a cache line, it looks for the first
pending request for that line and services it first. This satisfies Invariant 3.2.

3 Each core buffers the pending write back responses in a FIFO queue, which Figure 3.6 de-
notes as the pending write back (PWB) FIFO. This modification cooperates with the proposed
transient states to satisfy Invariant 3.3.

4 Each core deploys a time-conserving TDM arbitration between the PR FIFO and the PWB
FIFO. This arbitration along with the proposed transient states comply with Invariant 3.6.

48

Core events Bus events

Load Store Replacement OwnData OwnUpg OwnPutM OtherGetS OtherGetM OtherUpg OtherPutM

I issue GetS/ISd issue GetM/IMd X X X

S hit issue Upg/SMw X X X I I X

M hit hit issue PutM/MIwb X X X issue PutM/MSwb issue PutM/MIwb X X

ISd X X X read/S X X ISdI ISdI

IMd X X X write/M X X IMdS IMdI X

SMw X X X store/M X I I X

MIwb hit hit X X send Data/I X X

MSwb hit hit MIwb X X send Data/S MIwb X X

IMdI X X X write/MIwb X X X

ISdI X X X read/I X X X

IMdS X X X write/MSwb X X IMdI X

Table 3.2: Private memory states for PMSI. issue msg/state means the core issues the message
msg and move to state state. A core issues a load/store request. Once the cache line is available,
the core reads/writes it. A core needs to issue a replacement to write back a dirty block before
eviction. Changes to conventional MSI are in bold red.

These architectural changes, along with the coherence protocol changes, also satisfy Invari-
ants 3.4 and 3.5 as follows. A core, say ci, that has a write-hit to a non-modified line, say A,
has to initiate a coherence message on the bus, known as an Upg(). With change 1 , the TDM
bus arbiter does not allow this Upg() message on the bus unless it is the TDM slot of the initiat-
ing core. In consequence, the write-hit to A is postponed to the ci’s next slot, which implements
Invariant 3.4. Assume that during ci’s next slot, there were one or more pending requests to A
from other cores that arrived before ci’s request. According to Invariant 3.5, ci’s write hit to A
has to wait until these pending requests are serviced. Recall that PR LUT 2 queues pending
requests. If the write-hit is to one of these lines, the arbiter does not elect the write-hit to execute
during this slot. Accordingly, Invariant 3.5 is fulfilled.

3.6.2 Coherence Protocol Modifications

Table 3.2 shows all possible coherence states for a cache line and the transitions between these
states for PMSI. We do not make changes to the coherence states for the shared memory, and
hence it is not shown. Shaded cells represent the situations where no transition occurs, while

49

cells marked with ”X” denote impossible cases under correct operation. Take for instance the
case where ci has a cache line A in state I. If ci has a read operation to A, it issues an OwnGetS()
message for A, and moves to state ISd. On the other hand, if ci observes an OtherGetM() mes-
sage on the bus for cache line A that it has in state I, it does not make any change to A’s state.
Alternatively, ci cannot have a replacement request for A, since A is originally invalid in its pri-
vate cache. The three stable states I, S, and M have the same semantics as the conventional MSI
protocol as explained in Section 3.3.

3.6.2.1 Removed transient states

Recall in Section 3.3, we categorized transient states into: 1) states that indicate the waiting
for coherence messages to appear on the bus, and 2) states that indicate the waiting for data
responses. For a real-time system, the first category is not needed. On deploying a predictable
bus arbitration, once a core is granted access to the bus, no other core can issue a coherence
message during that slot. This is assured by Invariant 3.1. Accordingly, during a core slot, its
coherence messages are not disrupted by messages from other cores. For example, assume that
ci has a read request to a line A that is invalid in its private cache. During ci’s slot, it issues its
OwnGetS() to the bus. Since ci is the only core issuing coherence messages to the bus, it cannot
receive its data before observing its OwnGetS() on the bus. Therefore, ci atomically changes A’s
state from I to ISd without the need to move to ISa. By removing these transient states, PMSI has
fewer total states and transitions compared to the conventional MSI protocol as in [10]. Thus,
PMSI encounters no overhead in state encoding.

3.6.2.2 Unmodified transient states

In contrast, the second category that denotes the waiting for data response is required in a real-
time system that deploys a predictable bus arbitration and does not allow for cache-to-cache
transfers. This is because if ci issues a request to a cache line that is modified by another core cj ,
ci must wait until cj writes back that cache line to the shared memory. If cache-to-cache transfer
is not allowed, this operation consumes multiple schedule slots. Accordingly, ci has to move to
a transient state indicating that it is waiting for a data response from the memory. In Table 3.2,
these states include ISd for a read request and IMd for a write request. In addition, there are three
other unmodified transient states in Table 3.2, ISdI, IMdI, and IMdS. These states indicate that the
core has to take an action after receiving the data and perform the operation. Figure 3.7 explains
the necessity of these transient states with an illustrative scenario. In Figure 3.7, c1 issues a read
request to A 3 , which c0 has modified 2 . c1 changes A’s state to ISd waiting for c0 to write
back A to shared memory. Before c1 receives the data, c2 requests A to modify 4 . According to

50

c1: req A

c0c2 c1 c2

TDM slots

c0: WHit

c0:S SMw
on A: stall

c0: perform
WHit on A
c0:SMw M

to read
c1:I ISd

c0 :M MSwb

c2: req A
to write

c1:I ISdI
c2:I IMd

c0: WB A
to mem

c0 :MIwb I
c0 :MSwb MIwb

c1: obtain A
from mem

c1: perform
load on A
 c1: IS

dI I

c2: obtain A
from mem

c2: perform
store on A
 c2: IM

d M
c0 c1 c2

1 2 3 4 5 6 7

Figure 3.7: Transient states example; grey boxes are events, and arrows are state transitions.
Initially, c0 has A in S.

Invariant 3.2, the memory services c1’s request to A before c2’s request. However, c1 has to store
the information that there is a pending coherence message to A that it has to respond to once it
completes its operation to A. This information is preserved by the transient states. For instance,
during c2’s slot 4 , c1 observes OtherGetM(A); thus, it has to move to ISdI state to indicate that
upon receiving the data and conducting the read operation, it has to invalidate A as c2 will modify
it 6 .

3.6.2.3 Proposed new states

We propose three additional transient states that are necessary to guarantee that invariants are
upheld. Table 3.3 tabulates the proposed states along with their semantics. States MIwb and MSwb

manage the write back operation. This is crucial for achieving predictability for any request to a
modified cache line. For instance, in Figure 3.7, during c1’s slot, c0 observes c2’s read request to
A, which c0 has modified 4 . Therefore, it marks A to be written back in the next slot by moving
it to the MSwb state. This indicates that c0, in the next designated slot, will write back A to the
memory and change its local copy of A to S state. Before c0 writes back A to shared memory, it
observes c2’s modify request to A 4 . As a consequence, it updates its A’s state to MIwb, which
indicates that c0’s has to invalidate A once it performs the write back operation 5 . State SMw

is necessary to handle write hits to non-modified lines predictably. For example, in Figure 3.7,
during c2’s slot 1 , c0 has a write-hit to A, which it has in S state. To impose Invariant 3.4, c0 has
to postpone this operation to its next slot. Towards doing so, it updates its A’s state to SMw to
preserve the information of the upgrade request to A. In its next slot, if no other core is pending
on A (Invariant 3.5), c0 issues its OwnUpg(A) on the bus, performs the write to A, and moves its
A to the stable state M 2 .

51

Transient state Initial state Final state Semantics

MIwb M I ci has a line A in M state. Another core re-
quested A to modify. MIwb is necessary to re-
flect that ci has to write back A in its next write
back slot.

MSwb M S Similar to MIwb except that the other core re-
quested A to read.

SMw S M ci has a write-hit to non-modified A in another
core slot. ci moves to SMw until its allowable to
perform the write-hit operation.

Table 3.3: Semantics of the proposed transient states to achieve a predictable behavior.

3.7 Latency Analysis

We derive the upper bound per-request latency that a core suffers when it attempts to access
the shared memory. The considered system deploys the predictable MSI protocol proposed in
Section 3.6 and a TDM bus arbitration amongst cores. We partition this latency into four com-
ponents and compute the WC value of each of them. Definitions 3.3–3.7 formally define these
latency components.

Definition 3.3. Arbitration latency. The arbitration latency, Larbi,r , of a request number r gener-
ated by ci, reqi,r, is measured from the time stamp of its issuance until it is granted access to the
bus. Larbi,r is due to requests from other cores scheduled before ci.

Definition 3.4. Access latency. The access latency is the time required to transfer the requested
data by ci between the shared memory and the private cache of ci. We assume that this data
transfer takes a fixed latency, Lacc. This latency can be considered as the WC access latency of
the shared memory.

Definition 3.5. Coherence latency. The coherence latency, Lcohi,r , of a request reqi,r generated
by ci is measured from the time stamp when ci is granted access to the bus until it starts its data
transfer. Lcohi,r occurs due to the rules enforced by the deployed coherence protocol to ensure data
correctness.

52

c0: WB B

to mem

c0 c1 TDM slots

c1: req C

c0 c1c1

c0: WB C

to mem

c0

c0: obtain A

from mem

c1: obtain B

from mem

Arrival of
req0,1 to A

Response Own request Response

c0: req A c1: WB A

to mem

Own request

c0 c1

c0 issues
req0,1 on bus

A is ready
for c0

Figure 3.8: Different latency components. Initially, c0 modified B and c1 modified A.

We divide the coherence latency into two components: inter-core and intra-core coherence
latency, which we denote receptively as LinterCohi,r and LintraCohi,r .

Definition 3.6. Inter-core coherence latency. The inter-core coherence latency, LinterCohi,r , of a
request reqi,r generated by ci is measured from the time stamp when reqi,r is granted access to
the bus until the data is ready by the shared memory for ci to receive in ci’s slot. reqi,r to a line A
suffers inter-core coherence latency if another core has modified or requested A to modify before
ci issued its request.

Definition 3.7. Intra-core coherence latency. A request reqi,r generated by ci suffers intra-core
coherence latency, LintraCohi,r , if it has to wait until ci issues a coherence response to an earlier
request by another core. ci is required to issue a coherence response when another core requests
a line, say B, that ci has in a modified state. Therefore, ci needs to write back B to the shared
memory.

Figure 3.8 depicts the different latency components for a dual-core system with a TDM bus
arbiter. c0 issues req0,1 to A one cycle after its slot has started; thus, it must wait for one TDM
period before it accesses the bus in its next slot; hence, Larb0,1 = 2 TDM slots. However, c0’s next
slot is dedicated to write back responses. c0 writes back B to shared memory since c1 is pending
for it. Consequently, req0,1 must wait for another period before it gets an access to the bus.
LintraCoh0,1 accounts for this delay and equals one TDM period. When c0 issues req0,1 to the bus,
it turns out that c1 has modified it. Therefore, c0 has to wait for c1 to update the shared memory
with the new value of A. This waiting latency is the LinterCoh0,1 and equals 2 TDM periods. Finally,
the memory sends the data to c0 and the transfer consumes Lacc, which is a single TDM slot.

Lemma 3.1. The WC arbitration latency, WCLarbi , of any request generated by ci occurs when
ci has to wait for the maximum possible number of requests generated by other cores before it can

53

issue a request on the bus. For a system deploying conventional TDM bus arbitration, WCLarbi

is calculated by Equation 3.1, where N is the number of cores and S is the TDM slot width in
cycles.

WCLarbi = N · S (3.1)

Proof. Recall that the deployed TDM arbiter grants one slot to each core per period. Thus, the
period equals to N · S cycles. The WC situation occurs when a request reqi,r by ci arrives one
cycle after the start of ci’s slot. Consequently, reqi,r has to wait for one TDM period until it is
granted access by the bus, which equals to N · S.

Lemma 3.2. The WC inter-core coherence latency, WCLinterCohi , occurs when a core requests
a line that has been previously modified or requested to modify by all other cores.

Proof. As per Definition 3.6, reqi,r to a line A suffers inter-core coherence latency if another
core has modified or requested A to modify before ci issued reqi,r. Thus, ci has to wait until
previously pending requests to A complete and the shared memory has the updated value of A
before it gains an access to it. As a result, ci suffers WCLinterCohi when all other N − 1 cores
in the system requested to modify A before ci issued its request. We prove this by contradiction.
Assume that each core consumes T periods to obtain A, write to it, and update the shared memory
with the new value. As a result, ci must wait for L1 = (N − 1) · T periods before it accesses A.
Now, assume that ci suffers L2 = WCLinterCohi when N ′ cores requested to modify A before ci
issued its request, where N ′ < N − 1. In this case, ci must wait for L2 = N ′ · T periods before
it accesses A. Since N ′ < N − 1, then L2 < L1. However, this contradicts the hypothesis that
L2 = WCLinterCohi .

Lemma 3.3. WCLinterCohi is calculated by Equation 3.2.

WCLinterCohi = 2N · S · (N − 1) +

{
N · S N > 2

0 N ≤ 2
(3.2)

Proof. From Lemma 3.2, ci has to wait in WC forN−1 cores to obtain the line from the memory,
perform the write operation, and finally update the shared memory with the new value. In WC,
this procedure consumes two TDM periods for each other core, which leads to a total of 2(N−1)
TDM periods. This accounts for the first component in Equation 3.2. Figure 3.9a shows the WC
inter-core coherence latency for c1 in a three-core system, where c1 waits for 4 periods from the
stamp of issuing the request to the bus until its data is ready to be sent by the memory. Moreover,
if N > 2, when the shared memory has the updated version that is ready to send to ci, ci might
have missed its slot in the current period. Therefore, it has to wait for an additional period to be

54

c0c1 c1c2
ResponseOwn request

c1: obtain A

from mem
c1: perform

load on A
c1: IS

dI I

c2: write req

to A
c2: I IM

d

c0: IM
d IMdI

c0: A from mem

c0: store on A

c0: IM
dI MIwb

c1: read req A

c1: I IS
d

c2: IM
d IMdS

c0: WB A

c0: MIwb I

c2: A from mem

c2: store on A

c2: IM
dS MSwb

c2: WB A

c2: MSwb S

c1: A from mem

c1: load on A

c1: IS
dS S

Response Response Own request

Arrival of

req1,1 to A
c1 issues

req1,1 on bus
A is ready

for c1

Pending order

on A

c2 c0 c1 c2 c0c1 c2 c0 c1

c0 c2 c0 c2 c1c2 c1

(a) WC inter-core coherence latency. Initially, c0 and c1 have pending requests on A with c1 ordered first.

c0: read req

to B

c0: I IS
d

c1: M MSwb

c1: WB B

c1: MSwb S

c2: read req

to C

c2: I IS
d

c1: M MSwb

c0: B from mem

c0: load on B

c0: IS
d S

c1: read req

to A

c1: I IS
d

c0: M MSwb

c0: WB A

c0: MSwb S

c1: WB C

c1: MSwb S

c2: C from mem

c2: load on C

c2: IS
d S

c1: A from mem

c1: load on A

c1: IS
d S

c1 c2 c0 c1 c2 c0 c1 c2 c0 c1 c2 c0 c1

Arrival of

req1,1 to A
c1 issues

req1,1 on bus
A is ready

for c1

x y

Response

1
2 3 4 5

Own request Response Own request

(b) WC intra-core coherence latency. WCLintraCoh
1 =x+ y. Initially, c0 and c1 have pending requests on A with c1

ordered first.

Figure 3.9: The latency bound on each interference component. Empty slots/periods do not have
events that are related to c1’s latency.

able to receive A from the shared memory. In Figure 3.9a, the WC inter-core coherence latency
of c1 is 5 TDM periods, i.e. 15 slots. On the other hand, if N ≤ 2, the core is guaranteed to have
a slot in the same period as the data is ready at the memory. This is illustrated by Figure 3.8.
This accounts for the second component in Equation 3.2. Recall that each period is N ·S cycles.
WCLinterCohi is as calculated by Equation 3.2.

Lemma 3.4. The WC intra-core coherence latency is calculated by Equation 3.3.

WCLintraCohi =

{
2 ·N · S N > 2

N · S N ≤ 2
(3.3)

Proof. 1. Case of N > 2. A request from ci implies two actions from ci. First, issuing the

55

request to the bus. Second, receiving the data from the shared memory. As a result, the
worst-case intra-coherence latency occurs when each of these actions is delayed by write
back responses that ci has to conduct. Since the system deploys a time-conserving TDM
between responses and own requests. Each action can encounter a maximum delay of one
TDM period. Accordingly, the WC intra-coherence latency is two TDM periods or 2 ·N · S.
Figure 3.9b delineates this situation. For the first action, although c1 is granted a slot at time
stamp 2 , it is a designated write back slot. Thus, c1 does not issue its request until 3 , which
is one TDM period later. For the second action, although the memory has the data ready for
c1 in its slot 4 , it is again a designated write back slot. Therefore, c1 does not receive the data
until 5 , which is one TDM period later.

2. Case of N ≤ 2. Recall that cores are in-order such that each core can have at maximum one
pending request at any instance. Hence, ci cannot have two pending write back requests from
the only other core in the system, cj . In worst-case, ci requests a line that is modified by cj .
Thus, it has to wait for two TDM periods because of inter-core coherence interference as per
Lemma 3.3. In addition, ci can have a worst-case arbitration latency of one TDM period as
per Lemma 3.1. During this delay, which is three TDM periods at worst, ci can have up to
only one pending write back. This is because of the TDM arbitration between write backs and
own requests. Figure 3.8 illustrates this situation.

Theorem 3.1. The total WCL suffered by a core ci issuing a request to a shared line A is calcu-
lated as:

WCLtoti = (2 ·N2 + 1) · S +

{
2 ·N · S N > 2

0 N ≤ 2
(3.4)

Proof. Recall that Lacc is fixed and equals to the slot width, S. From Lemmas 3.1, 3.3, and 3.4
and since WCLtoti =WCLarbi +WCLinterCohi +WCLintraCohi +Lacc, WCLtoti can be calculated by
Equation 3.4.

3.8 Evaluation

Architecture. We integrate PMSI into a full-system simulator called gem5 [52]. We use the
Ruby memory model in gem5, which is a cycle-accurate model with a detailed implementation
of cache coherence events. We use a multi-core architecture that consists of x86 cores running at
2GHz. The cores implement in-order pipelines, which we find are representative of cores used
in the real-time domain. Each core has a private 16KB direct-mapped L1 cache, with its access

56

latency as 3 cycles. All cores share an 8-way set-associative 1MB LLC cache. Since the focus of
this chapter is on coherence interference, we use a perfect LLC cache to avoid extra delays from
accessing off-chip DRAM. Consequently, the access latency to the LLC is fixed, and equals to 50
cycles (Lacc = 50 cycles). The DRAM access overheads can be computed using the approach we
propose in Chapter 4 or other approaches such as [60], and they are additive [29] to the latencies
derived in this chapter. Both L1 and LLC have a cache line size of 64 bytes. The interconnect
bus uses TDM arbitration amongst cores. The L1 cache controller uses time-conserving TDM
arbitration between a core’s own requests and its responses to other core requests. We do not run
an operating system in the simulator, and hence, all memory addresses generated by the cores
are physical memory addresses.
Workloads. We evaluate PMSI using the SPLASH-2 [66] benchmark suite. In addition, we use
synthetic workloads that we generated especially to stress the worst-case behaviour.

3.8.1 Verification

We verified the correctness of PMSI using various methods. 1) We used the Ruby Random Tester
with gem5 [52] specifically to verify coherence protocols. We stressed PMSI with 10 million
random requests. 2) We used carefully-crafted synthetic micro benchmarks to cover all possi-
ble transitions and states in PMSI. This also ensures the exhaustiveness of the identified unpre-
dictability sources and corresponding invariants. Recall that PMSI only addresses the aforestated
sources. All observed latencies conform to the bounds. If there was an unpredictability source
that is not included in Section 3.5, it should lead to unpredictable behavior (i.e., observed la-
tencies would exceed the bound) at one or more of the transitions, which we did not observe.
3) We executed the applications in the SPLASH-2 suite on gem5 using PMSI and they run to
completion. Furthermore, we check data correctness by checking the output of each application.

3.8.2 Exp.1: Bounding the Memory Latency

We study the effectiveness of PMSI to bound the delays resulting from coherence interference.
We also study the effects of violating each one of the invariants on the memory latency. We use
a 4-core system for our experiments. For SPLASH-2, we launch each SPLASH-2 application as
four threads using four single-threaded cores, where only one application is used per experiment.
Figure 3.10 depicts our findings. It shows the observed WC latencies for a) the total memory
latency, b) the inter-coherence latency, and c) the intra-coherence latency. Since SPLASH-2
applications are optimized to minimize data sharing, they do not stress the coherence protocol.
Therefore, to further stress the coherence protocol, we execute synthetic experiments using 9
synthetically-generated workloads: Synth1 to Synth9 in Figure 3.10.

57

0

500

1000

1500

2000

2500

3000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(a) Total memory latency for SPLASH suite.

0

500

1000

1500

2000

2500

3000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(b) Inter-core coherence latency for SPLASH.

0
100
200
300
400
500
600
700
800
900

1000

barnes cholesky fft fmm lu ocean radiosity radix raytrace

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(c) Intra-core coherence latency for SPLASH.

0

500

1000

1500

2000

2500

3000

3500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(d) Total memory latency for the synthetic work-
loads.

0

500

1000

1500

2000

2500

3000

3500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(e) Inter-core coherence latency for the synthetic
workloads.

0

500

1000

1500

2000

2500

3000

3500

Synth1 Synth2 Synth3 Synth4 Synth5 Synth6 Synth7 Synth8 Synth9

W
C

L
[c

yc
le

s]

PMSI Unpredictable 2 Unpredictable 3 Unpredictable 4

(f) Intra-core coherence latency for the synthetic
workloads.

Figure 3.10: WC latencies and the effect of unpredictability sources on them. Unpredictable i
corresponds to source i in Section 3.5. Horizontal dotted line represents the analytical bound.

In each synthetic experiment, we simultaneously run four identical instances of one workload
by assigning one instance on each core. These experiments represent the maximum possible shar-
ing of data since each core generates the same sequence of memory requests. Figure 3.10 also
illustrates the experimental WC latencies for these experiment. The WC arbitration latency for
benchmarks in all experiments is N · S = 200 cycles for N = 4 cores and slot S = Lacc = 50
cycles; hence, not shown.
Observations. 1) Figure 3.10 shows that for PMSI all the WC latencies are within their analytical
bounds. 2) On the other hand, violating any of the invariants introduces a source of unpredictabil-
ity, which results in exceeding those bounds. Moreover, for source 1, one of the cores is not able

58

to obtain an access to a block that it requests and the program never terminates. This is the reason
that Figure 3.10 does not show Unpredictable 1. This shows that augmenting a conventional co-
herence protocol with a predictable arbiter does not guarantee predictability. 3) For a quad-core
system, the latency suffered by a core due to coherence interference is 9× more than the latency
due to bus arbitration. The inter-core coherence interference solely contributes a latency up to
7× of the arbitration latency, while the latency resulting from the intra-core coherence interfer-
ence is double the arbitration latency. This provides evidence of the importance of considering
the coherence latency when sharing data across multiple cores for real-time applications.

3.8.3 Exp.2: Comparing Performance with Conventional Protocols and
Alternative Predictable Approaches

We compare the overhead caused by four approaches to handle data sharing in multi-core real-
time systems: 1) not using private caches (uncache-all), 2) not caching the shared data (uncache-
shared), 3) the proposed PMSI, 4) and mapping all tasks that share data to the same core (single-
core). For the first three approaches, each application is distributed across four-cores. uncache-
shared is an adaptation of the approach by [45, 46], but for data instead of instructions. single-
core maps tasks with shared data to the same core to eliminate incoherence due to shared data,
which adopts the idea of data-aware scheduling [47]. The overhead is calculated as the slowdown
compared to the conventional MESI protocol. Figure 3.11 depicts our findings, where MSI and
MESI are the conventional (unpredictable) protocols implemented as in [10].
Observations. 1) The uncache-all is useful when there is minimal amount of shared data being
repeatedly accessed. From our experiments, we notice that data reuse is common in applications.
This is the reason that uncache-all has the worst execution time for most applications with a ge-
ometric mean slowdown of 32.66× compared to MESI. 2) Since private data does not cause any
coherence interference, uncache-shared allows caching of only private data, while uncaching of
all shared data. In Figure 3.11, uncache-shared has better performance than uncache-all for all
applications with a geometric mean slowdown of 2.11× Nonetheless, uncache-shared requires
additional hardware and software modifications to distinguish and track cache lines with shared
data, which are the same modifications required by [48]. 3) Mapping applications with shared
data to the same core avoids data incoherence since these tasks share the same private cache.
However, it prohibits parallel execution of these application. In consequence, for some appli-
cations (fft, radix, and raytrace), single-core achieves better performance compared to uncache-
shared, while for other applications, it exhibits lower performance. This is dependent on several
factors such as the memory-intensity of the application and the ratio of shared to non-shared
data. Overall, single-core achieves a geometric slowdown of 2.67×. 4) Finally, PMSI achieves
better performance compared to all other predictable approaches for all benchmarks, except for

59

4.
19

2.
17

7.
17

2.
20

1.
26

4.
82

1.
68 2.

84

2.
51

5.
13

1.
18

2.
67

1.
67

1.
74

4.
63

1.
66

1.
31 2.

54

0.
99

7.
94

1.
41 2.

11

1.
37 1.
52

1.
22 1.
41

1.
22 1.

92

1.
17 2.

00

1.
50

1.
46

1.
00

1.
01

1.
00

1.
01

1.
01

1.
01

1.
00

1.
01

1.
00

1.
01

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

1.
00

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00

10.00

barnes cheolesky fft fmm lu ocean radiosity radix raytrace geo

Sl
ow

do
w

n

uncache-all single-core uncache-shared proposed MSI MESI
87
.8
1

97
.8
8

74
.1
2

81
.4
2

11
.3
8

32
.6
6

Figure 3.11: Execution time slowdown compared to MESI protocol.

radiosity and raytrace. PMSI achieves improved performance of up to 4× the best competitive
approach, uncache-shared, with a geometric mean slowdown of 1.46× in performance compared
to MESI. Upon analyzing radiosity and raytrace, we found that both do not show considerable
reuse of the shared data. Shared lines in a core’s private cache are often invalidated because
of other cores before they are accessed again. Therefore, uncaching these cache lines achieves
better performance. since the shared memory has the most updated value at all time instances;
thus, cores do not suffer coherence interference.

3.8.4 Exp.3: Comparing to the Ideal Scenario

It is desirable to minimize the coherence interference, while allowing tasks to simultaneously ac-
cess shared data. Optimally, the coherence interference equals zero. Although this is attainable
only if all running tasks are independent so as they do not share data, it can be used as the ideal
metric to compare different approaches to it.
Methodology. In this experiment, we study the slowdowns resulting from the proposed PMSI
and the uncache-shared approach compared to the ideal case, independent-tasks. We stress both
PMSI and uncache-shared by using our synthetic workloads similar to Exp.1. In independent-
tasks, for each application, we simultaneously run three other applications in the three other
cores, which do not share data with the current application. In uncache-shared, we simultane-
ously run four identical instances of each application, one instance on each core. Since these
applications share their all memory data, uncache-shared and uncache-all are equivalent ap-
proaches; thus, we do not consider the uncache-all case. We delineate the results of these exper-
iments in Figure 3.12.
Observations. 1) Since the data sharing is maximum for uncache-shared, all memory requests
have to access the shared memory suffering from Lacc latency. Accordingly, uncache-shared

60

2.
0 2.
3

1.
9

2.
8

1.
9

1.
9 2.
3

1.
3 2.

0

2.
1

5.
8

6.
9

5.
5

7.
4

5.
8

5.
4

7.
0

2.
0

4.
5 5.

2

0
1
2
3
4
5
6
7
8

S
lo

w
d
ow

n

independent-tasks PMSI uncache-shared

Figure 3.12: Slowdown in the execution time of different approaches compared to ideal scenario.

suffers from severe slowdowns compared to the ideal case, independent-tasks. In Figure 3.12, its
execution time ranges from 2× to 7.4× compared to independent-tasks, with a geometric mean
of 5.2×. 2) On the other hand, PMSI allows cores to cache the data (both private and shared)
to their private caches, which improves the overall performance. PMSI’s execution time ranges
from 1.3× to 2.8× compared to independent-tasks, with a geometric mean of 2.1×. This illus-
trates the importance of deploying a coherence protocol to manage data sharing, while decreasing
performance overheads.

3.8.5 Exp.4: Scalability

Methodology. We study the impact of each latency type upon increasing number of cores. We
run one instance of the Synth1 workload on the core under consideration, c0, and sweep the num-
ber of co-running cores from 0 to 7. Each co-running core also executes the Synth1 workload.
We measure the experimental WC latencies of c0 and delineate them in Figure 3.13.
Observations. Clearly, increasing the number of cores, the increasing rate in the inter-coherence
latency is much larger than that of the arbitration and intra-coherence latencies. This aligns with
the analysis in Section 3.7. The inter-coherence latency is a quadratic function, while both the
arbitration and intra-coherence latencies are linear functions in the number of cores. Moreover,
the increasing rate of the intra-coherence latency is double that of the arbitration-latency. Fig-
ure 3.13 shows that increasing the number of cores, the coherence-latency dominates the total
memory latency. This emphasizes the importance of carefully considering the coherence latency
impact on multi-core real-time systems upon allowing for simultaneous accesses to shared data.

61

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

W
CL

Num. of cores
totL interCohL intraCohL arbL accL

Figure 3.13: Latencies with different number of cores.

3.9 Summary

In this chapter, we pointed out possible sources of unpredictable behaviour on conventional co-
herence protocols. To address this unpredictability, we described a set of invariants. These
invariants are general and can be applied to any coherence protocol. We showed how to deploy
these invariants in the fundamental MSI protocol as an example. Towards this target, we pro-
posed a set of novel transient states as well as minimal architecture requirements. In addition,
we integrated the coherence effects on the latency analysis for the first time. We experimented
using parallel applications from the SPLASH-2 suite as well as worst-case oriented synthetic
workloads.

62

Chapter 4

PMC: A Requirement-aware DRAM
Controller for Multi-core Mixed Criticality
Systems

We propose a novel approach to schedule DRAM requests in MCS. This approach supports
an arbitrary number of CLs by enabling the MCS designer to specify memory requirements per
task. It retains locality within large-size requests to satisfy memory requirements of all tasks.
To achieve this target, we introduce a compact harmonic work-conserving TDM scheduler, and
a framework that constructs optimal schedules to manage requests to off-chip memory. We also
present a static analysis that guarantees meeting requirements of all tasks. We compare the pro-
posed controller against state-of-the-art MCs using both a case study and synthetic experiments.

4.1 Introduction

As aforementioned, MCS contain a mix of tasks with different criticalities. For example, HRT
tasks are latency-critical and mandate strict assurances that their temporal requirements are never
violated such that their worst-case latencies should always be no greater than their deadlines.
Since a violation in temporal requirements of a HRT task may result in unacceptable loss of
lives, a detailed WCET analysis of the task executions on the designated hardware platform is
necessary. However, to compute tight WCET estimates, the hardware platforms must be pre-
dictable; thereby, leading itself to accurate WCET analysis. This means that speculative features
such as out-of-order execution, complex cache hierarchies, and branch prediction are often elim-
inated [67]. Contrarily, SRT tasks can be considered as non latency-critical. They require a

63

minimum average-case performance and memory BW. To accomplish this, hardware platforms
often use architectural features such as those disallowed for the purposes of predictability. Hence,
the requirements of predictability for HRT tasks and average-case performance for SRT are in
conflict. This poses an increasingly difficult challenge for designers of MCS.

One response to this challenge is utilizing temporal isolation [68–70]. Temporal isolation re-
quires the designer to deploy the application such that resources used by tasks with strict temporal
requirements are distinct. Heterogeneous multi-cores [71] with a combination of predictable and
conventional processors offer an appealing hardware platform for deploying mixed criticality
tasks. This is because HRT tasks can execute on predictable cores while SRT tasks execute on
conventional cores. However, providing distinct off-chip memories to the cores is prohibitively
costly, and researchers recognize that access to off-chip memories must be shared.

This has generated a considerable volume of research in the re-design of memory controllers
(MCs) [59, 72–74] to control accesses to off-chip dynamic random-access memories (DRAMs).
The key technique used in these works is to write back the data in the DRAM row buffer af-
ter each access. This is known as close-page policy, which ensures that every DRAM access
consumes the same number of cycles and thereby achieves predictability. However, row local-
ity between successive requests is not exploited. While this is apt for HRT tasks, SRT tasks
experience significant bandwidth degradation. This makes such MCs ill-suited for SRT tasks.
Goossens et al. [75] address this issue by keeping the data in the row buffer available for any
further access within a designated time window. To exploit this for performance benefits, there
must be multiple requests targeting the same row within a short time window. To address this
limitation, Wu et al. [60] assign private DRAMs to each core to utilize the fact that accesses from
the same core have a higher likelihood of exploiting row locality. Their approach prohibits shar-
ing of data across the cores, and it requires assigning a DRAM bank per core, which may not be
possible with a large number of cores. Three recent MCs [23,76,77] target MCS with critical and
non-critical tasks. All the three MCs deploy a fixed-priority scheduling; thus, providing neither
latency nor BW guarantees to any task other than the most-critical ones. While fixed-priority
approach is suitable for dual-criticality systems, we find it ill-suited for systems with various
mixed-critical tasks, where less-critical tasks may still require some guarantees [13]. As a result,
we find that designers are still faced with the challenge of designing DRAM MCs that allow
tasks with different memory requirements to share off-chip DRAMs in MCS while satisfying
their respective temporal and bandwidth requirements.

4.1.1 Contributions

1. We directly address this challenge by proposing a novel requirement-aware approach to man-
age DRAM accesses in MCS. This is achieved by enabling the designer of MCS to assign

64

memory requirements (both BW and latency) per task/requestor1. To achieve this target, we
introduce three components that together construct our approach. (1) A novel harmonic dis-
tributed time-division-multiplexing (TDM) scheduling scheme with low cost implementation
adequate for MCS (Section 4.6). (2) A deployment framework to generate optimal schedules
for the MC. The proposed framework is a tool to explore the trade-offs between requirements
of different tasks to provide the optimal MC behaviour satisfying these requirements (Sec-
tion 4.7.1). (3) Since MCS can deploy different sets of running tasks, we introduce PMC,
a programmable memory controller that can be programmed with the optimal schedule at
boot-time to meet varying requirements of different task sets in MCS (Section 4.5.1).

2. The proposed approach is based on the following novel observation. In MCS, SRT BW-
sensitive requestors (such as multimedia processors, network processors and direct-memory
access (DMA) processors) usually issue large-size memory requests. The observation we
make is that if the locality within these large-size requests is exposed to the MC, we can min-
imize the WCL of HRT tasks, while satisfying the BW requirements of SRT tasks. To exploit
the locality in large-size requests, we use a mixed-page policy that dynamically switches be-
tween close- and open-page policies based on the request size (Section 4.5.2). In addition,
to bound the interference among different requestors, we provide an adaptive rate regula-
tion mechanism (Section 4.5.5). The framework decides the optimal threshold of this rate-
regulator to meet latency and BW requirements of all tasks.

3. Current DRAM modules are composed of a number of entities denoted as banks, where mul-
tiple banks can be combined in one group called rank. Based on the available DRAM module
in the system as well as the characteristics of the set of running tasks, we introduce two archi-
tecture optimizations to PMC that further reduce DRAM latency and enhance its performance.
(1) For systems with multi-rank DRAMs, requests can be interleaved across different ranks
such that they are serviced in parallel. Rank interleaving is different than the rank switching
mechanism proposed by [23, 59, 78] in that it parallelizes each request across available ranks
instead of mapping consecutive requests to different ranks. We utilize this rank interleaving
to reduce WCL, while increasing memory performance (Section 4.5.4). (2) To exploit the
available bank parallelism, PMC interleaves each request across banks. Bank interleaving ap-
proach is followed by many real-time controllers such as [72,74,75,79]. Interleaving requests
with small transaction sizes across all available banks can result in unnecessary latency and
bandwidth penalties [80]. Accordingly, we follow a similar approach to [79] and extend PMC
to support interleaving across dynamic number of banks based on the issued transaction size
(Section 4.5.3).
1Assuming a core affinity where each task executes on a designated core, we use words task and requestor in

this chapter interchangeably.

65

R
e
q
u
e
st

o
rs

Logical
Address Address

Mapping

Physical
Address Command

Generation

Command Queues

Command
Arbitration

Memory Controller Banks Columns

Row buffer

Rows

Interface Queues

Requestors
Arbitration

Rank

Frontend Backend

DIMM

chip

Figure 4.1: DRAM subsystem.

4. We present a static analysis for accesses to the DRAM managed by PMC in multi-core MCS
to guarantee meeting the requirements of all requestors under all circumstances. The static
analysis provides a different latency and BW bounds per requestor based on the generated
optimal schedule (Section 4.7).

5. We provide a detailed comparison between the three different memory access policies: close-
page policy [74], conservative-open page policy [75] and the mixed-page policy, which illus-
trates the strengths and scope of each one.

4.2 Background: Main Memory

As Figure 4.1 illustrates, a DRAM is organized in dual in-line memory modules (DIMMs),
each DIMM consists of multiple DRAM chips. Each DRAM chip consists of memory cells
arranged as banks. Cells in each bank are organized in rows and columns. A DRAM rank is a
group of banks. Accesses to different ranks or banks can be interleaved to minimize the DRAM
latency. We define the maximum amount of data that a DRAM can transfer when interleaving
across all banks as the memory granularity, and it is equal to BL × nbanks × CLW , where BL
is the burst length that can be 4B or 8B, nbanks is the number of banks the access interleaves
across, and CLW is the column width in bytes. For multi-channel DRAMs, each channel has
its own buses and consists of one or more ranks. Accesses to different channels, similar to ranks
and banks, can be interleaved to reduce their access latency. On the other hand, accesses to
different rows in the same bank suffer from row conflicts and encounter larger latencies. Data
is transferred to/from the memory cells via sense amplifiers. These sense amplifiers work as a
row buffer that caches the most-recently accessed row in each bank. A DRAM request consists
of a type and an address. The type is either a read or a write. DRAM accesses are controlled

66

A1

tRCD tWL

Command
Bus

Data Bus

W1

D1
tBUS

R2

P1

A2

tRCD

tRP

D2

tRL

tWR

tRC

tRAS

Figure 4.2: A write access followed by a write or read access targeting the same bank and rank
for close-page policy.

by the MC, which translates the read/write requests into one or more of the following DRAM
commands: ACTIVATE (A), READ (R), WRITE (W), PRECHARGE (P), and REFRESH (REF). A
fetches the row from the memory cells to the sense amplifiers (row buffer). R (W) reads (writes)
the required columns in the row buffer. P closes the activated row, and prepares the cell array
for the next memory access by restoring the charge level of each DRAM cell in the row. Finally,
REF activates and precharges DRAM rows to prevent charge leakage.

The DRAM JEDEC standard [11] imposes strict timing constraints on these commands (Ta-
ble 4.1). All MC designs must satisfy these constraints to ensure correct DRAM behaviour. We
use Figure 4.2 to illustrate the meaning of these constraints. It shows a write access followed by
a write or read access targeting the same bank and rank. In Figure 4.2, tRCD cycles are required
between A1 and W1, and between A2 and R2. tWL cycles are required between the issuance of
W1 and the start of writing data to the DRAM. Contrarily, tRL cycles are required between the
issuance of R2 and the start of reading data from the DRAM. Then, the data transfer takes tBUS
cycles. tWR cycles are necessary between the end of the data writing, and the P1 command.
tRP cycles are required between P1 and A2. These are timing constraints set by the physical
properties of the DRAM.

Typically, a MC implements an arbitration scheme, an address mapping, and a page policy.
The arbitration scheme arbitrates amongst different requests. The address mapping translates
request addresses into its 5 segments: channel (ch), rank (rnk), bank (bnk), row (rw), and
column (cl). We refer the number of bits assigned to channel, rank, bank, row and column
indices as CNW , RKW , BKW , RWW , and CLW , respectively. This makes the physical
address PW=CNW+RKW+BKW+RWW+CLW bits. The page policy controls the liveness
of the row in the row buffer.

67

Table 4.1: Important JEDEC timing constraints (DDR3-1333) [11].

Const. Meaning Cyc.

tRC Minimum time between A commands to same bank. 33

tCCD Column-to-column delay. 4

tRP Row precharge time 9

tBUS request size
data bus size × 2 : Time required to transfer a data burst. 4

tRAS Minimum time between A command and P command. 24

tWL Minimum time between W and the start of data transfer. 7

tRL Minimum time between R and the start of data transfer. 9

tRCD Minimum time between activating the row and accessing it. 9

tFAW Four bank activation window in same rank. 20

tRTRS Rank to Rank switching delay. 1

tRTP Read to precharge delay. 5

tWTR Write to read switching delay. 5

tWR Write recovery delay. 10

tREFI Refresh Period. 7.8µs

tRFC Time required to refresh. 160ns

RKtoRK (tBUS + tRTRS): Rank switching delay.

RtoW (tRL+ tBUS + tRTRS − tWL): R to W delay.

WtoR B (tWL+ tBUS + tWTR): W to R in same rank delay.

WtoR RK (tWL+ tBUS + tRTRS − tRL): W to R in different ranks delay.

RtoP (tBUS + tRTP − tCCD): R to P delay.

WtoP (tWL+ tBUS + tWR): R to P delay.

4.2.1 Memory Page Policies

There are two main page policies for accessing DRAMs: close-page and open-page. These page
policies manage the duration during which the data is available in the row buffer. Close-page
policy writes back the data in the row buffer and flushes the row buffer after each request. Under
close-page policy, each request will consist of an A, a CAS, and a P commands. Hence, every
request takes the same amount of access time, which helps deriving predictable latencies. Open-
page policy, on the other hand, leaves the data in the row buffer to allow future accesses for data
within the buffer to be accessed faster than having to read the data from the memory cells into the

68

row buffer again. MCs deploying open-page policy keep the row open until a request to another
row arrives or the refresh period is reached. This enables open-page policy to be faster than
close-page in the average-case. The primary drawback of open-page policy is that requests have
a larger worst-case latency (WCL). This WCL occurs when a request targets a different row than
the opened row, which requires precharging the opened row before loading the requested row in
the row buffer. For these reasons, MCs in high-performance architectures often use open-page
policy [81], while predictable MCs typically prefer close-page policy [23, 59, 72–74].

4.3 Related Work

There are several efforts that propose predictable MCs [23, 59, 60, 72–76, 79, 82, 83]. Most of
these efforts [23, 59, 72–74] use close-page policy. Hence, available locality in the row buffer
(known as row locality) is not exploited for performance benefits. The solution proposed by
Goossens et al. [82] presents a configurable architecture where the MC can be reconfigured with
different time division multiplexing (TDM) schedules that satisfy new run-time requirements.
Gomony et al. [83] propose an optimal mapping of requestors to channels for a multi-channel
MC. However, the latter two solutions also deploy a close-page policy, and do not exploit row
locality.

Wu et al. [60] utilize open-page policy; however, they require each core to be assigned its own
private DRAM bank. This makes their approach inapplicable when there is shared data between
cores or the number of cores is greater than the number of DRAM banks. Goossens et al. [75]
offer a compromise with their proposal of conservative open-page policy. This policy exploits
row locality for SRT requestors while maintaining tight WCL bounds on HRT requestors. The
proposed MC in [75] retains the data in the row buffer for a specified time window. When a
request targets the same row in the row buffer and arrives within this window, it takes advantage
of the row locality . While this approach allows SRT tasks to leverage performance benefits
from open-page, it does not reduce the WCL compared to close-page policy. Furthermore, the
proposed policy depends on the arrival time of requests. As noted by Wu et al. [60], non-trivial
applications deployed on multi-core systems often require the designer to make no assumptions
on the arrival times of memory requests due to multiple requests arriving from various cores.
Unlike [75], PMC proposed in Chapter 4 requires no assumption on the arrival time of memory
requests. In addition, unlike [60], we allow for shared data across cores.

Li et al. [79] deploy a MC backend that dynamically schedules DRAM access commands and
supports different transaction sizes. Based on the transaction size, the numbers of interleaved
banks and data bursts are determined through a look-up table. The backend issues DRAM com-
mands on a FCFS basis. The dynamic command scheduling approach is promising for mixed crit-

69

icality systems since it increases average-case performance for requests of SRT tasks. Though,
requests from HRT tasks incur same WCL of close-page controllers. PMC is a complete fron-
tend and backend controller that promotes a mixed-page policy to decrease the WCL of memory
accesses.

Ecco et al. [84] reduce the data bus switching delay by employing a CAS reordering tech-
nique. They schedule CAS commands in rounds such that all commands in the same round
have the same type (read or write). Among the A and P commands, they deploy a RR arbitra-
tion. In [85], Ecco et al. extend this memory controller to support multi-ranked DRAMs. If
the DRAM has multiple ranks, they schedule same type of CAS in one rank, and then switch to
another rank to decrease the rank switching overhead.

Krishnapillai et al. propose ROC [78], a rank-switching open-row controller that forces con-
secutive requests to access different ranks to avoid the read-to-write and write-to-read switching
time on the data bus. It deploys a RR arbitration across ranks and across banks of the same rank.
ROC is able to decrease the WCL compared to [79]. However, it is complex to implement since
it has three levels of arbitration on the backend only. Unlike [23, 78], which are rank-switching
MCs, PMC deploys rank interleaving. While [23, 78] forces consecutive memory requests to
access different ranks to avoid data bus switching, PMC interleaves each request across ranks to
decrease its latency leveraging parallelism. In addition, consecutive accesses will be mapped to
different ranks to avoid bus switching similar to [23, 78].

Three recent efforts have introduced MCs for MCS [23, 76, 77]. Jalle et al. introduce
DCmc [76], which uses open-page policy and divides banks into critical and non-critical banks.
They assign critical banks to critical requestors and schedule them using round robin (RR); hence,
they provide latency bound guarantees for critical requestors. On the other hand, they assign non-
critical banks to non-critical requestors and schedule them using first ready-first come first serve
(FR-FCFS) to increase average-case performance. Ecco et al. introduce MCMC [23]. MCMC
uses multi-ranks and bank partitioning with close-page policy. It assigns each bank partition to
a critical requestor and a number of non-critical requestors. Then, it assigns critical requestors
higher priority to eliminate the interference from the non-critical requestors. MCMC requires
bank partitioning, which may limit shared data across requestors similar to [60]. Kim et al. [77]
implement bank-aware address mapping and command-level scheduling to accommodate both
critical and non-critical tasks. Banks are shared between both types of tasks. The command-level
scheduling prioritizes commands of critical tasks. If a command from a critical request arrives
while a non-critical request is being serviced, they pre-empt the non-critical request. As a re-
sult, the non-critical request has to be reissued again; thus, it suffers from performance penalty.
Additionally, the first command from the critical request has to wait until satisfying all timing
constraints after the pre-empted non-critical command. As observed by [86], this increases the
latency of the critical request. All of the three MCs [23, 76, 77] are dual-criticality with fixed-

70

priority scheduling. Critical-tasks always have higher priority; hence, non-critical tasks have
neither performance nor latency guarantees. This is acceptable for systems deploying only two
types of tasks. Nonetheless, we find those MCs ill-suited for systems with various mixed-critical
tasks, where less-critical tasks may still require some guarantees.

In contrast, PMC does not always prioritize higher-critical tasks. Instead, it executes an
optimized schedule that allows the system designer to specify different latency and bandwidth
requirements for each requestor. The schedule provides each task with the amount of service that
is only sufficient to meet its specified requirements, while not starving other tasks.

4.4 Arbitration Mechanisms

A variety of arbitration mechanisms have been deployed by researchers for shared resources in
real-time systems. Examples include RR [74], harmonic RR (HRR) [34], harmonic weighted RR
(HWRR) [1], and TDM [59, 82]. Although RR is simple and efficient to implement, it shares
the resource equally among different requestors regardless their type; and hence, it does not
suit MCS. Yoon et al. [34] propose HRR to address this problem by assigning different periods
to different tasks. They use HRR to maximize system utilization and not to minimize WCL.
TDM scheduling is able to provide different services to different requestor types. The traditional
TDM scheme is to allocate all slots assigned to a requestor contiguously in the schedule. The
MCs in [75, 82, 83] follow this approach. Nonetheless, contiguous assignment of TDM slots
does not provide tight WCL as each requestor has to wait, in worst case, for all other requestors
before it is granted an access. PMC avoids this drawback by utilizing an optimized harmonic
distributed assignment of the TDM slots. This is further discussed in Section 4.6. A recent effort
that explores the state-space of TDM slot assignment has been proposed in [36]. Akesson et
al. propose the credit-control-static priority (CCSP) scheduler [72]. CCSP is a fixed priority
scheduler. During each period, lower-priority tasks in worst case have to wait for all higher-
priority tasks to finish their budgets before it can issue a single request. Accordingly, they may
or may not meet their temporal requirements. This has the same disadvantage of the contiguous
TDM, which we discuss in Section 4.6. Contrarily, we propose an optimized schedule that
allocates slots amongst running tasks in a harmonic distributed bases that is requirement-aware.

Conventional MCs usually deploy a FR-FCFS scheduling scheme among memory requests.
FR-FCFS arbitrates amongst requests based on two factors: readiness and age. It prioritizes
ready requests over non-ready requests. Ready requests are requests targeting an already open
row. For two requests of the same category (both are ready or non-ready), FR-FCFS schedules
the older first. This is not suitable for real-time tasks with tight timing requirements, since a non-
ready request from a HRT task may suffer from extremely high WCL. Kim et al. [28] partially

71

address this problem by bounding the number of consecutive requests to the open row using
a predefined threshold. However, this threshold is static and requestor-agnostic. Consecutive
requests to the open row can belong to different requestors. Therefore, it is neither requestor-
nor requirement-aware. Major differences between PMC’s policy and FR-FCFS are as follows.
1) PMC arbitration is not age-based, it is an optimized TDM schedule that is requirement-aware.
2) The rate-regulation threshold of the mixed-page policy is per requestor and is independent of
the row buffer state.

4.5 PMC: The Proposed Solution

We define the input to the PMC to be memory requests from a set of m requestors, R =
{r1, r2, ...rm}. Each requestor executes a task until completion. Accordingly, a requestor is
identified by the requirements of its running task. A requestor ri∈ R is defined by the tuple:
〈pri, LRi, BWLi〉. pri is ri’s relative priority. It is an optional parameter that represents prior-
ities of requestors, if they exist. More details about the role of pri are in Section 4.6. LRi and
BWLi are the memory access latency and BW requirements of ri, respectively. The derivation
process of these requirements is out side the focus of this chapter. We propose a methodology to
derive memory requirements for task sets in Chapter 2.

Figure 4.3a illustrates the proposed PMC framework. The framework takes as input the
system requirements provided by the designer as the set of requestors R, and the optimization
objective of the system determined by the designer.

The designer can choose to optimize for the overall memory access latency, the access latency
incurred by some of the requestors (HRT requestors for example), the overall BW provided by
the DRAM, or the BW provided to some of the requestors (SRT requestors for example). The
optimization framework determines the schedule parameters that satisfy system requirements
and optimizes for the designer’s target. These parameters are provided to the PMC at boot-time,
which PMC uses to execute the arbitration schedule. We assume that these requirements does
not change during running time. If a new set of tasks need to execute, the framework needs to
rerun to determine the new optimal schedule parameters and provide them to PMC at boot-time.

4.5.1 PMC Architecture

We depict the proposed PMC architecture in Figure 4.3b. Requests from HRT and SRT tasks to
the PMC are queued in the Interface Buffers. Each requestor is assigned a distinct interface buffer.
Interface Buffers are typically part of the requestors architecture as load/store queues [87] or part

72

System
Requirements: Optimization

 Framework

Schedule
Parameters PMC

Optimization
Objective

(a) Proposed methodology.

Interface
Buffers

R
eq

u
es

ts

Arbiter

Address
Translator

Bundle
Generator

cmds

store
data

memory
address

req.
address

load
data

.

Rows

C
o
lu
m
n
s

Row Buffer

Banks

DRAM

Schedule

re
q
u
es
ts

Arbiter

M
u
x

Parameters

PMC

Optimization
Framework

set of requestors: R

period, starting slot, order, kmax

system objective

(b) Overview of PMC architecture.

Figure 4.3: PMC framework.

of the network-on-chip architecture known as transaction queues [88]. The Schedule Parameters
block in Figure 4.3b is a look-up table to store the schedule parameters necessary to execute the
schedule. The Arbiter executes the schedule identified by these parameters, and it also regulates
the service rate provided to requests. Once a requestor is scheduled to access the DRAM by
the Arbiter, the Request Selector retrieves the memory request from the Interface Buffers and
supplies its address to the Address Translator. The Address Translator maps the physical address
of the request to low-level addresses of the DRAM (rank, bank, row, and column addresses). The
Bundle Generator generates low-level access commands to perform the access to the DRAM.

73

A N NN N N CPCP CP
1 10 2 23 3Bank ID

NOPs

tb1 = 47 cycles

3 3

0
CP

2 3 2

4 5 7

N
2

N N CP
3

CP
2

6 4 5
N
3

CP N
3

CP
6 7

A A A A A A A N
5

(a) Bundle 1.

tb2 = 45 cycles

A N NN N N
1 10 2 23 3Bank ID

NOPs 3 3

0

2 3 2

4 5 7
N
2

N N
3 2

6 4 5
N
3

N
3

6 7
N
3

C C C C C C C CA A A A A A A

(b) Bundle 2.

C C C CN NN N
0 1 2 3

3 3 3 3

Bank ID

NOPs

tb3 = 32 cycles

C C C CN NN N
3 3 3 3

4 5 6 7

(c) Bundle 3.

CP CP CP CPN NN N
0 1 2 3

3 3 3 3

Bank ID

NOPs

tb4 = 34 cycles

CP CP CP CPN NN N
3 3 3 5

4 5 6 7

(d) Bundle 4.

Figure 4.4: Command arrangements of the four bundles interleaving across 8 banks of DDR3-
1333 for a write request. A: ACTIVATE command, C: CAS command, CP: CASp command, and N: NOP
command.

4.5.2 Formulating Bundles

We combine DRAM commands in statically defined groups with predictable behaviour that we
call bundles. We construct four bundles of commands. Figure 4.4 describes the command ar-
rangement for the four bundles in case of interleaving across eight banks. There are two numbers
in the figure. The one at the bottom is the number of the bank being addressed, and the one at the
top is the number of NOPs placed to satisfy the timing constraints. We use CASp to represent a
CAS command with an automatic P command following it. Close-page policy uses CASp com-
mands. Bundles 1 and 4 have CASp commands, which denote close-page policy, while bundles
2 and 3 use CAS commands, which denote open-page policy. Bundles 1 and 2 begin with an
ACT command as they access the DRAM when the row is closed by a prior access. Conversely,
bundles 3 and 4 begin with a CAS or a CASp command as they access the DRAM when their
targeted row is already opened via prior bundles. A mix of these bundles promotes a run-time
switching between close- and open-page policies. We construct the bundles to satisfy all con-
straints in worst case. For example, bundles 1 and 4 are padded with 5 NOPs to satisfy the

74

write-to-read switching constraints.

Although the command arrangements of the proposed bundles are similar to the groups pro-
posed by [75], we use these bundles for a different target. The conservative open-page proposed
by [75] leverages the command groups to increase the average-case performance, while maintain-
ing the worst-case latency equivalent to the close-page policy. On the other hand, PMC leverages
the command bundles to increase average-case performance and decrease the WCL compared to
the close-page policy. This is achieved by exploiting the inherent locality in large-size requests.
To achieve this, the Bundle Generator generates different bundle combinations for different re-
quests based on their transaction sizes as follows. For a request with a transaction size that can
be completed in one memory access, the Bundle Generator generates bundle 1 that implements
close-page policy (Figure 4.5(a)). On the other hand, a request with a transaction size greater than
the memory granularity is divided by PMC into multiple sub-requests, where each sub-request
consists of a number of bundles. The number of sub-requests and the number of bundles granted
to a sub-request are determined by the rate regulator as explained in Section 4.5.5. For a general
sub-request, the Bundle Generator generates bundle 2 to open the targeted row, followed by a
sequence of type 3 bundles deploying open-page policy accesses, and finally bundle 4 at the end
to close the row (Figure 4.5 (b)). Therefore, rather than relying on the arrival time of requests,
bundles 3 and 4 benefit from the row locality as they target an already open row in the row buffer.
Consequently, as Figure 4.5 illustrates, the execution latency of each sub-request depends on its
data size. We exploit this behaviour for tighter worst-case latency bounds while satisfying BW
requirements (Section 4.6). We formally define the execution latency as follows.

Definition 4.1. Execution Latency. The execution latency, tEXi, of a sub-request of a request
ri is defined as the time elapsed from issuing the first command of that sub-request to the end of
its data transfer from/to the DRAM. This time depends on the maximum number of consecutive

Bank ID 0
CP

D0 D1 D2 D3

A
0 3

CP

(a) 1-bundle size sub-request.

Bank ID 0
CPb3 b3b2

D3

3
CP

(b) Multi-bundles size sub-request.

Figure 4.5: Bundles usage for the 4 bank interleaving case.

75

bundles granted to ri (kmaxi) and is calculated as follows.

tEXi =

{
tRCD + (nbanks − 1)tCCD + χ(tFAW − 4tRRD) + tCL+ tBUS, if kmax = 1

tb2 + (kmaxi − 2)tb3 + (nbanks − 1)tCCD + tCL+ tBUS, if kmaxi ≥ 2

Where:

χ =

{
0, if nbanks ≤ 4

1, Otherwise

tCL =

{
tWL, if ri is a write request
tRL, if ri is a read request

Figure 4.5a illustrates tEX for a single-bundle sub-request, while Figure 4.5b illustrates tEX
for a multi-bundle sub-request in case of interleaving across 4 banks.

4.5.3 Dynamic Bank Interleaving

Statically interleaving across all available banks simplifies the Bundle Generator , requires a
small area overhead, and assist in deriving predictable latencies. Therefore, many predictable
MCs follow this approach [3, 72–74]. However, this approach may result in transferring non-
requested data; hence, non-utilized BW and/or unnecessarily larger memory latencies [73].
Equation 4.1 defines the percentage of non-utilized BW, BWNU .

BWNU =
transferred bytes− requested bytes

transferred bytes
(4.1)

For example, if a requestor issues transactions of 32B, while the memory granularity is 128B,
75% of the BW delivered to this requestor is non-utilized, and this requestor’s maximum uti-
lization cannot exceed 0.25 regardless of the MC’s efficiency. In addition, interleaving across 8
banks requires larger number of cycles than interleaving across only 2 banks. Hence, if those
32B transactions require only 2 banks, having a fixed 8-bank interleaving results in larger mem-
ory latency. If the transaction sizes of all requestors in the system is fixed and known in advance,
the MC can interleave across the appropriate number of banks instead of fully interleaving across
all banks. However, MCS have different requestor types with different transaction sizes. In ad-
dition, a single requestor may issue requests with different transaction sizes. Accordingly, a MC
targeting MCS has to dynamically decide the number of banks to interleave across.

76

Table 4.2: Different bank interleaving for a single rank DDR3-1333. Bundle widths are in cycles.

Banks tb1 tb2 tb3 tb4 N Bytes
R W R W

1 33 39 13 4 14 30 16
2 33 39 17 8 14 30 32
4 33 39 25 16 14 30 64
8 47 47 45 32 29 34 128

Bundle Formulation– To allow for smaller transaction sizes, we support interleaving across
a dynamic number of banks based on the issued transaction size. Similar to Figure 4.4, where
bundles interleave across 8 banks, we formulate bundles that interleave across any number of
banks. Table 4.2 tabulates the number of cycles each bundle consumes across different number
of banks. We claim that adding this dynamic interleaving support requires a minimal additional
area overhead. This is due to two observations. First, requests with transaction sizes less than the
memory granularity are 1-bundle size requests, thus, only bundle 1 needs to be stored. Second,
memory transactions are usually 2N bytes; thus, only a subset of the possible number of banks
are practically needed (namely, 1, 2, 4 and 8 as Table 4.2 shows). Since we construct bundles to
target the worst case, the values of tb1 and tb4 in Table 4.2 assume that consecutive requests are
targeting same banks; hence, tRC and write-to-precharge constraints are considered.

4.5.4 Rank Interleaving

The read-to-write and write-to-read switching times significantly increase the memory latency
when successive requests to the same rank are of different type (a read followed by a write or vice
versa). Since the bundle formulation in Figure 4.4 represents the worst-case of a write request,
it considers the next request to be a read. Hence, the last CASp command of the bundle and the
first CASp command of the next bundle must be separated by tWL+ tBUS + tWTR; thus, we
have the 5 NOPs at the end of the bundle to satisfy these constraints. Figure 4.6a demonstrates
this situation. In contrast, each rank has its own data bus; thereby, no switching time is required
between requests of different type.

Instead, there is a different constraint for successive accesses targeting different ranks: the
rank-to-rank switching, tRTRS as Figure 4.6b illustrates. tRTRS is one to three cycles in
different DDR modules, and is less than the read-to-write and write-to-read switching times. We
promote a bundle formulation that leverages rank interleaving to avoid the switching latencies;
thus, it decreases both average- and worst-case latency.

77

Rank ID 0
W0

D0 D1

Rank ID 0
R1

Request 0

Request 1

Data Bus

(a) Requests targeting same rank (latency = 29 cycles).

Rank ID 0
W0

D0 D1

Rank ID 1
R1

Request 0

Request 1

Data Bus

(b) Requests targeting different ranks (latency = 19 cy-
cles).

Figure 4.6: A write followed by a read both targeting an open row.

Bundle Formulation– Figure 4.7 depicts one formulation example of bundles interleaving
across two ranks. To avoid the data bus switching times, the first and last set of commands of
each bundle access different ranks. In Figure 4.7, the time period between the CAS (or CASp)
command targeting bank 4 and rank 1, and the one targeting bank 3 and rank 0 is 6 cycles
to accommodate for tBUS + tRTRS constraint between CAS commands targeting different
ranks. For bundles 1 and 4, the rank interleaving avoids the data bus switching time between
the last CASp command and the first CASp command in the next bundle; hence, provides less
latency. For bundle 3, rank interleaving incurs more latency than the non interleaving case.
This is because bundle 3 is always followed by either bundle 3 or bundle 4 of the same request.
Accordingly, the non interleaving case in Figure 4.4c does not suffer from a bus switching time.
On the other hand, in case of rank switching in Figure 4.7c, it suffers from the tRTRS constraint.
It is also important to highlight that Figures 4.4 and 4.7 shows interleaving across 8 banks. In
case of interleaving across less number of banks, the timing constraints between the first CASp
command in a bundle and the first A command in the next bundle subsumes the bus switching
time. As a result, rank interleaving does not reduce the latency for this case. Figure 4.8 shows
this situation for a single bank bundle case. tWR+tRP+tRCD equals 28 cycles, while tWTR
is 5 cycles only. As a conclusion, the rank switching effectively reduces the latency for small
size requests that interleave across 8 banks.

4.5.5 Arbitration Logic

The Arbiter in Figure 4.3b executes the schedule based on the schedule parameters to arbitrate
accesses among requests. In addition, the Arbiter performs a rate regulation mechanism to prevent
any single requestor from saturating available resources. For a requestor ri ∈ R, a maximum
number of bundles that can be serviced per access is defined as kmaxi. The Arbiter receives
the request information (data size and requestor identifier) and computes the total number of
bundles needed by the request (ki). If ki > kmaxi, the Arbiter splits the request into

⌈
ki

kmaxi

⌉
78

A N NN N CPCP CP
1 10 2 23 3Bank ID

NOPs

tb1 = 42 cycles

3 3

0
CP

2

4 5 7
N
2

N CPCP
2

6 4 5
N
3

CP N
3

CP
6 7

2
N
2

N
2

0Rank ID 00 0 0 0 0 01 1 1 1 1 1 1 1

A A A A A A A

(a) Bundle 1.

tb2 = 45 cycles

Bank ID

NOPs

1 10 2 23 3

3 3

0

2

4 5 7

2

6 4 5 6 7

2
N
3

A N NN N N N
2

N
3

N
3

N
2

N
2

CCCCCCCC

0Rank ID 00 0 0 0 0 01 1 1 1 1 1 1 1

A A A A A A A

(b) Bundle 2.

C C C CN NN N
0 1 2 3

3 3 3

Bank ID

NOPs

tb3 = 34 cycles

C C C CN NN N
3 3 3 3

4 5 6 7

5

0Rank ID 1 1 1 10 0 0

(c) Bundle 3.

CP CP CP CPN NN N
0 1 2 3

3 3 3

Bank ID

NOPs

tb4 = 31 cycles

CP CP CP CPN NN
3 3 3

4 5 6 7

5

0Rank ID 1 1 1 10 0 0

(d) Bundle 4.

Figure 4.7: Command arrangements of the four bundles interleaving across 2 ranks and 4 banks
per rank.

sub-request accesses. kmaxi is calculated by the optimization framework for each requestor
based on the system requirements. When a sub-request of data size RSi bytes from requestor ri
is granted access to the DRAM, the Bundle Generator computes the number of bundles needed
as ksubi =

⌈
RSi
BS

⌉
, where BS = BL × nbanks × DW denotes the bundle data size, which is

equal to the memory granularity. BL is the burst length that can be 4 or 8, nbanks is the number
of banks the access interleaves across, and DW is the data bus width in bytes (2B in our used
DRAM). Hence, assumingBL = 8, BS is 128B in case of interleaving across all the eight banks
of DDR3 and 64B when interleaving across four banks only.

4.6 Schedule Generation

There are two common types of TDM schedules: contiguous TDM and distributed TDM [89].
They are distinguished based on how the slots are assigned. Figure 4.9 shows an example of

79

C0

D0 D1

C1

Request 0

Request 1

Data Bus

A0

A1P1

Figure 4.8: A write followed by a read for no bank interleaving (single bank bundle).

four requestors (r1, r2, r3 and r4) scheduled by contiguous (Figure 4.9a) and distributed TDM
(Figure 4.9b), where r1, r2, r3 and r4 are assigned 4, 2, 2 and 2 slots, respectively. Contiguous
TDM assigns slots to each requestor in a consecutive fashion. In Figure 4.9a, for a total of 10
slots, the first four are assigned to r1. Let the WCL be the time elapsed from the arrival of the
request until it is completed. Then, the WCL of r1 is 7 slots, which allows all other requests to
access the resource before granting access to r1. The advantage of contiguous TDM is that it is
easy to implement with small area overhead. Basically, only the number of slots per requestor
and the order of served requestors need to be stored. However, the downside of contiguous TDM
is that the WCL of each requestor is larger compared to distributed TDM. For example, although
r1 gets 4 slots out of 10, its WCL is 7 slots.

In contrast, distributed TDM as shown in Figure 4.9b distributes the slots assigned to each
requestor. Accordingly, the WCL of requestors in the distributed TDM schedule is less than
that of the contiguous TDM. For example, r1 in Figure 4.9b gets assigned once every two slots.
This results in a WCL of 3 slots. Nonetheless, distributed TDM is more difficult to implement
compared to the contiguous TDM as, in general, the whole schedule must be stored. This is
because it is hard to equally distribute slots of each a requestor in the schedule. This is due to
two challenges. First, the number of allocated slots to a requestor are not necessarily evenly
divisible by the total number of slots in the schedule, known as the frame size. For instance, r1

in Figure 4.9b needs 4 slots while the frame size is 10. Second, two requestors may require to
be assigned the same slot. In consequence, the whole distributed TDM schedule has to be stored
which may require large area overhead.

4.6.1 Proposed Implementation

To overcome the above-mentioned limitations, we propose a novel method to implement a dis-
tributed TDM schedule by applying two modifications. First, we set the frame size as a variable,
which the framework determines its value based on the system requirements. Hence, we set the
framework constraints such that the number of slots assigned to each requestor is divisible by
the frame size. Consequently, we avoid the first challenge. Second, we divide each TDM slots

80

slot

WCL=

(a) Contiguous TDM.

slot

WCL=

(b) Distributed TDM.

slot

WCL=

sub-slot

(c) Proposed TDM.

Figure 4.9: TDM scheduling mechanisms.

into sub-slots such that the framework can assign multiple requestors to the same slot one after
the other in successive sub-slots. As a result, unlike conventional TDM schedules, the slot width
is intentionally variable. The optimization framework also determines the order of requestors
within a slot by taking into account the relative priorities of requestors. This addresses the sec-
ond challenge. Using our approach, we store the following parameters for each request: the
period, the starting slot and the order in the slot. We explain these parameters in details in Sec-
tion 4.6.2 For example, for r1 in Figure 4.9c, the period is 1, the starting slot is 1 and the order
is 1, which means that r1 occupies the first sub-slot in each slot. Figure 4.9c shows that we have
four slots, and these four slots have multiple requests such that each requestor posses a number
of sub-slots. The details of the slot assignment is discussed in Section 4.6.3.

The proposed scheduler is work-conserving. A slot will not be idle unless no requestor has
a ready request at this slot. In non work-conserving TDM scheduling, the time slot assigned to
a requestor remains idle if there are no requests from this particular requestor. This conservative
approach may be suitable for composable systems to force the latency to be equal to the WCL.
However, it reduces system utilization and increases average latency. On the other hand, the
proposed schedule grants access to the next scheduled requestor in case there are no requests
from the current requestor. This is important to increase the utilization of shared resources, and
improve the average-case performance. In the remaining of this section, we explain the details
of the schedule and the schedule parameters. Based on these parameters, we compute the WCL
bounds for any request accessing the DRAM using timing analysis in Section 4.7. For clarity,
we tabulate all the terms used in the remaining of the chapter in Table 4.3, and accompany them
with their explanations.

81

4.6.2 Schedule parameters

The fact that MCS execute tasks with different temporal and bandwidth demands raises the im-
portance of having a programmable memory controller. Most existing predictable DRAM mem-
ory controllers employ static schedules (examples include [59, 72–75]); hence, they lack the
ability to meet these demands. In PMC, schedule parameters are loaded at boot-time to the
Schedule Parameters look-up table, which allows PMC to execute a different schedule that suits
the running set of applications.

Area Overhead. The assignment of slots to requestors is harmonic. This increases the
slot utilization, which we discuss in details in Section 4.6.3. Therefore, recall that we have m
requestors, the number of slots in the schedule is at maximum 2m−1. For each requestor, we
store the period (m − 1 bits) and the starting slot (m − 1 bits). Since multiple requestors can
be assigned the same slot, we store the order of the requestors in the execution (dlog2me bits).
Finally, for the purpose of rate regulation, we store the maximum bundle limit kmaxi for each
requestor (log2(2KB

64B
) = 5 bits for a request of 2KB). Consequently, the data size overhead is

small. In the worst-case, we need m× (2(m− 1) + dlog2me+ 5) bits. As an example, a system
with m ≤ 30 requestors, the PMC requires less than 256 bytes to store the parameters.

4.6.3 Schedule Slots

As aforestated, the deployment framework utilizes the requirements prescribed by the requestors
and the optimization objective of the system to produce a schedule that satisfies these require-
ments and optimizes for the selected objective. Figure 4.10 shows a schedule example for seven
requestors, R = {r1, r2, ..., r7}, with eight time slots. We use Figure 4.10 to illustrate the analy-
sis provided in this section and Section 4.7. PMC assigns each requestor one or more slots within
a schedule based on its LRi and BWLi requirements. For instance, r1 is assigned slots: slot1,
slot3, slot5 and slot7. This means that r1 is granted permission to access the DRAM whenever
its turn arises in these slots. It is worth noting that there is an order of requestors within a slot
based on priorities assigned to requestors. In slot1, the schedule grants permission to r4 first,
r1 next, and r3 last. When there are no requests from a particular requestor within a slot, PMC
grants the next requestor the permission to send a request. The assignment of slots to requestors
is harmonic (si = 2q−1) where q is a positive integer. The rationale behind the harmonic-slot
assignment is to schedule the requestors on a regular basis as it achieves 100% slot utilization.
It also requires a smaller amount of memory to store the schedule in the controller as detailed in
Section 4.6.2. The total number of slots in the schedule is n. This is a variable that is defined
based on the system requirements, generally n = 2m−1. In order to discover the smallest n, the
framework selects a value of n. If it fails to generate a schedule satisfying the requirements, the

82

Table 4.3: Terms and brief descriptions.

Variable Description
R The set of requestors in the system.
ri Requestor number i in the system: ri ∈ R.
kmaxi Maximum number of bundles of a requestor ri that are serviced per sub-request.
pri ri’s relative priority.
LRi The memory access latency requirement of ri.
BWLi The minimum bandwidth required by ri.
si Harmonic slots: total number of slots allocated to requestor ri.
pi Harmonic period: the interval (in slots) between two successive executions of i. It

is equal to the total number of slots divided by si.
xik Indicator variable defined in equation 4.2, determines the total number of slots

granted to requestor i.
yij Indicator variable defined in equation 4.3, determines the slots granted to requestor

i.
Yj The total number of requestors assigned to slot j.
wj The width of slot j in clock cycles.
W The scheduling window: the total number of cycles of all slots. After W, the

schedule is repeated.
UBDi The upper-bound latency incurred by a memory request from ri.
LBBi The lower-bound bandwidth delivered to a requestor ri.

framework increases n until we obtain a schedule that satisfies the requirements. To control the
assignment of slots to requestors, we define two binary variables xiq and yij . In Equation 4.2,

xiq = 1 only if ri is assigned 2q−1 slots. Consequently, if we ensure that
∑
∀q

xiq = 1, as we

will see in Section 4.7.1, then we guarantee the harmonic property of slots. In Equation 4.3, yij
identifies slots assigned to each requestor as it denotes whether ri is assigned a particular slot j.

xiq =

{
1, if si = 2q−1 q ∈ Z+.

0, otherwise.
(4.2)

yij =

{
1, if requestor ri is assigned to slot j.
0, otherwise.

(4.3)

83

	
r

8 of

Scheduling window(W)

Period, 	 Period,

WC for R4 Slot width ()

Execution Delay (
Max bundles,

4 r4 r4 r4 r4 r4 r4 r4 r4r1 r1 r1 r1 r1r3 r3 r3 r3 r3r2r2 r5r5 r7 r6

Figure 4.10: A schedule example.

Recall that the total number of requestors in the system is m. Using Equation 4.3, the total

number of requestors that PMC grants access at slot j is calculated as Yj =
m∑
i=1

yij , and the total

number of slots si that PMC assigns to a requestor ri is computed as si =
n∑
j=1

yij . Based on the

slots assigned to requestors, each requestor has a harmonic period pi. For example in Figure 4.10,
requestor r2 has p2 = 4 slots.

4.7 Timing Analysis

We provide the timing analysis to upper-bound the latency incurred by any request to the DRAM,
as well as lower-bound the delivered BW to any requestor. These bounds are necessary to achieve
predictability. As aforestated, PMC decomposes a request into a number of sub-requests. Each
sub-request is a sequence of consecutive bundle commands on the command bus that results in
data transfers on the data bus. Figure 4.10 delineates that command sequence for a sub-request
from r6 in slot8 which shows the bundle time. The bundle time of a sub-request represents the
contribution of that sub-request to the interference latency of other sub-requests. Definition 4.2
formally defines this bundle time.

Definition 4.2. Bundle time. The bundle time, tBi, of a sub-request from ri is the time consumed
by its bundles while it is performing the access to the DRAM. This time depends on the maximum
number of consecutive bundles granted to ri (kmaxi) and is calculated as:

tBi =

{
tb1 , if kmax = 1

tb2 + (kmaxi − 2)× tb3 + tb4 , if kmaxi ≥ 2

84

Since PMC can assign multiple requestors to the same slot, the proposed schedule has a
varying slot width. Equation 4.4 calculates the width of slot j, wj . It is consists of the bundle
times of the sub-requests granted access at slot j. Given that all slot widths are calculated using
Equation 4.4, Equation 4.5 computes the total schedule window latency .

wj =
m∑
i=1

(yij × tBi) (4.4)

W =
∑
∀j

wj (4.5)

Using Equation 4.4, Definition 4.3 formally defines the interference latency.

Definition 4.3. WC interference latency. The worst-case interference latency suffered by a sub-
request from ri due to other sub-requests is defined as:

tIF i = pi × MAX∀j(wj)

In the worst case, a requestor has to wait for pi slots and each slot has the maximum width. pi is
the harmonic period of ri as Table 4.3 defines.

Accounting for the execution latency (Definition 4.1) of the sub-request as well as the worst-
case interference latency incurred due to other requests (Definition 4.3), Equation 4.6 upper-
bounds the memory latency incurred by any sub-request accessing the DRAM.

UBLsubi = tIF i + tEXi (4.6)

Recall that any request requiring a number of bundles ki > kmax is split into multiple
sub-requests. Accordingly, the UBL for a request is computed as the UBL of its sub-requests
multiplied by the number of sub-requests as shown in Equation 4.7. Equation 4.7 does not take
the latency resulting from the interference of refresh commands into account. This is because
Equation 4.7 calculates per request latency and it is not realistic to account for the refresh in-
terference every request. However, it can be incorporated since the refresh operation is periodic
and occurs every tREFI cycles. A realistic approach to account for the refresh interference is
to incorporate the refresh latency every designated number of requests. This can be done in a
task-based analysis such as [28].

UBLi =

⌈
ki

kmaxi

⌉
× UBLsubi (4.7)

85

LBBi is the lower-bound BW serviced to requestor ri every W and is calculated by Equa-
tion 4.8, where kmaxi ×BS represents the data size of the sub-request in bytes.

LBBi = (kmaxi ×BS)/UBLsubi (4.8)

4.7.1 Problem Formulation

We formulate the schedule generation problem as a mixed-integer non-linear optimization prob-
lem that can be solved using an appropriate optimization solver. We implement the optimization
framework using Matlab [90]. As aforementioned, the framework enables the designer to build
a schedule that meets the requirements of HRT and SRT requestors as well as optimizes for the
system target simultaneously.

4.7.1.1 Target Function

The designer has the ability to optimize for one of four targets that we find practical for MCS: 1)
the overall WCL, 2) the WCL incurred by some of the requestors (HRT requestors for example),
3) the overall BW provided by the DRAM, 4) the BW provided to some of the requestors (SRT
requestors for example). As an example, the following formulation optimizes the schedule for
the first target: minimizing the total WCL in the system.

MIN(
m∑
i=1

UBLi)

4.7.1.2 Input Parameters

Recall from Figure 4.3a that the framework takes as an input the latency and bandwidth require-
ments of each requestor as well as requestor’s relative priority if it exists.

LRi, BWLi, pri ∀i in [1,,m]

4.7.1.3 Variable Parameters

For each requestor, ri, the framework determines the optimal value of ri’s period, total number
of slots assigned to ri, the maximum number of bundles from ri that PMC can grant an access to

86

DRAM consecutively. Finally, based on these values of all requestors, the framework determines
the total number of slots in the schedule. These variable parameters construct the schedule that
PMC executes and are respectively as follows.

pi, si, yij, kmaxi, n ∀i in [1,,m]∀j in [1,, n]

4.7.1.4 Constraints

The first constraint, C.1, ensures the harmonic property of the number of slots that PMC assigns
to any requestor. The second constraint, C.2, asserts that the total number of assigned slots to
any requestor is consistent with the selected harmonic number of slots chosen by the frame-
work for that requestor. If the system has priorities between requestors, we provide the higher
priority requestors with at least the same number of slots provided to the lower priority ones.
Constraint C.3 accomplishes this target. However, the priority is an optional system parameter.
Setting all priorities to 1, for example, makes the framework agnostic to this constraint. Priorities
are also used to define the order of sub-requests within a slot. If no priorities are defined, the
framework chooses an arbitrary order. The fourth and fifth constraints force the distributed-TDM
characteristic in the schedule. They determine how to spread each requestor ri over the slots to
have a separation between each two successive executions to be exactly pi. This is important to
guarantee the UBLi requirements. Constraint C.4 enforces that a request will get exactly one
slot every pi, and constraint C.5 asserts that the total number of assigned slots is equal to the
harmonic number of slots determined by the framework. Constraints C.6 and C.7 assert that the
LR and BWL requirements of all requestors are satisfied. These are optional parameters. If a
requestor has no LR requirement, it can be set to infinity. If a requestor has no BW minimum
requirements, it can be set to zero or one.

∀i, l, k in [1,,m] :

∑
∀q

xiq = 1 (C.1)

n∑
j=1

yij = si (C.2)

prl < prk =⇒ pl < pk (C.3)

87

pi∑
j=1

yij = 1 (C.4)

pi∑
j=1

(yij ×
si−1∑
u=0

(yi,j+u×pi)) = si (C.5)

UBLi ≤ LRi (C.6)

LBBi ≥ BWLi (C.7)

4.8 Experimental Evaluation

We extend MacSim, a multi-threaded architectural simulator [39] with the proposed PMC to
manage accesses to a DDR3-1333 off-chip memory. We use a multi-core architecture model
composed of x86 cores. The number of cores depend on the experiment. Each core has a private
16KB L1 and 256KB L2 caches, and a shared 1MB L3 cache. To compare the effectiveness of
the proposed solution, we also implement two competitive MCs, the first one employs the con-
servative open-page policy [75] (COP), and the second one is AMC that employs the close-page
policy [74]. In addition, we compare against a configurable system that combines the opti-
mized TDM schedule in [83] and the COP. We use benchmarks from EEMBC-auto benchmark
suite [91], which are representative for real-time applications. We conduct our evaluation by
adopting two types of experiments: case-study system requirements and synthetic experiments.

4.8.1 Case-study: Multimedia System

System Configuration. We use a practical system with requirements modeled after the multime-
dia system in [83]. The system has seven requestors, r1 to r7, with different requirements. r1 is
an input device that writes the encoded media stream to the memory. r2 and r3 are the input and
output cores/requestors respectively for a media engine decoder that decodes the media stream.
r4 and r5 are the input and output cores/requestors respectively for a graphical processing unit
(GPU). r6 is an HDLCD-screen controller. Finally r7 is the central processing unit (CPU) of the
system. We first map these requirements to the DDR3 equivalent requirements and then adapt
it for a single channel DDR, since it was originally proposed for a 4-channel memory system.
Since the actual applications are not publicly available, we implement in-house workloads that
match requirements of these tasks Table 4.4 also tabulates the requirements of each requestor.
LR =∞means that the requestor has no LR requirements, whileBWL = 0 models a requestor

88

Table 4.4: Multimedia processing system requirements.

Requestor transaction size LRi (cycle) BWLi (MB/s)
r1 128 ∞ 0
r2 128 ∞ 384.9
r3 128 ∞ 46.65
r4 256 ∞ 500
r5 256 816 250
r6 256 816 250
r7 128 ∞ 75

0

100

200

300

400

500

600

700

r1 r2 r3 r4 r5 r6 r7

W
CL

 [
Cy

cl
es

]

Requestor
AMC COP‐1 COP‐2 OptimalCop PMC

(a) WCL.

0

200

400

600

800

1000

1200

r1 r2 r3 r4 r5 r6 r7

BW
 [M

B/
s]

Requestor

AMC COP-2 Op�malCOP PMCCOP-1

(b) Minimum BW.

Figure 4.11: Results for the multimedia processing system use-case.

with no BW requirements. The minimum transaction size in Table 4.4 is 128B; thus, we inter-
leave across all banks of the DRAM. Accordingly, the bundle size (or the group size for case of
COP) is 128B.

MC Configurations. To further validate the improvements we get in both the WCL and the
average-case performance considering the proposed solution, we implement a memory controller
that combines both the COP policy [75] and the optimized TDM schedule configuration in [83],
which we call optimal COP. Optimal COP is able to assign different number of slots to the
requestors based on the requirements. To compare the proposed PMC against optimal COP, we
implement the proposed PMC as well as optimal COP in MacSim simulator. We assign a core
for each requestor in Table 4.4.

Observations. Figures 4.11a and 4.11b show the experimental WCL and minimum BW,
respectively for both PMC and the optimized COP. Results show that both MCs are able to
meet the requirements. However, PMC shows better assignment of the resource based on the
requirements.

89

4.8.2 Synthetic Experiments

To comprehensively evaluate PMC, we perform five sets of synthetic experiments.

1. We verify the capability of the proposed solution to satisfy different WCL and BW require-
ments. We carry this out by tuning the configurable parameters: the maximum number of
consecutive bundles (kmaxi) and the schedule slots (si) of each requestor ri.

2. We study the scalability of different MCs. We investigate the effect of the number of SRT
requestors in the system on the WCL of HRT tasks.

3. We demonstrate the behaviour of PMC and competitive MCs with different transaction sizes.

4. We study the effectiveness of rank interleaving by comparing two versions of PMC: the first
one supports only single-rank DRAMs while the second one interleaves across two ranks.

5. We compare the dynamic bank interleaving presented in Section 4.5.3 against static bank
interleaving.

Recall that the role of the optimization framework is to determine the optimal values of
the schedule parameters. Since in the synthetic experiments we are sweeping the configurable
parameters (namely, kmax and s), there is no need to use the optimization framework.

4.8.2.1 Varying PMC parameters

System Configuration. We deploy the following system configuration in the MacSim simulator.
We use a multi-core architecture of five x86 cores (r1 to r5). r1 is a HRT requestor with 64B
memory transactions. r2 to r5 are SRT requestors with 2KB memory transactions. The used
DRAM model is DDR-1333 [92]. Since the smallest transaction size is 64B, which can be ob-
tained using four banks, we interleave across only four banks to avoid underutilizing the DRAM
BW.

MC Configurations. AMC executes RR arbitration amongst the five requestors. COP exe-
cutes a contiguous TDM schedule such that each requestor is assigned two consecutive slots. The
2-slot version of COP is chosen rather than the 1-slot version (where each requestor is granted
only one slot) because it allows for locality exploitation among requests of the same core [75].
AMC and COP only support transactions up to the memory granularity. Hence, for both MCs,
the 2KB transactions from SRT requestors are chopped into contiguous 64B transactions at the
requestor side before sending them separately to the MC. On the other side, since PMC sup-
ports larger transaction sizes than the memory granularity, transactions are exposed to PMC as a

90

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

N
or
m
al
ize

d
W
CL

kmax (1,8,16,32) across s (1,2,4)

AMC_HRT COP_HRT PMC_HRT
SRT SRT

(a) WCL of the HRT requestor.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

N
or
m
al
ize

d
W
CL

kmax (1,8,16,32) across s (1,2,4)

AMC_SRT COP_SRT PMC_SRT
SRT SRT

(b) WCL of one of the SRT requestors.

0
0.25
0.5
0.75

1
1.25
1.5
1.75

2
2.25
2.5

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

N
or
m
al
ize

d
BW

kmax (1,8,16,32) across s (1,2,4)
AMC_HRT COP_HRT PMC_HRT

SRT SRT

(c) BW of the HRT requestor.

0

0.25

0.5

0.75

1

1.25

1.5

1.75

1 8 16 32 1 8 16 32 1 8 16 32

1 2 4

N
or
m
al
ize

d
BW

kmax (1,8,16,32) across s (1,2,4)
AMC_SRT COP_SRT PMC_SRT

SRT SRT

(d) BW of one of the SRT requestors.

Figure 4.12: Effect of varying kmax and s of SRT requestors.

whole without splitting them. PMC is capable of granting a different service to each one of the
SRT requestor. However, for clarity, we simplify the experiment by granting all SRT requestors
the same amount of service (kmax and s). Since r1 has 64B transactions, kmax1 is set to 1.
For SRT requestors (r2 to r5), we vary kmax (kmaxSRT in this context) to be 1, 8, 16 or 32.
PMC’s schedule consists of 4 slots. We grant the first sub-slot in each schedule slot for the HRT
requestor (r1), s1 = 4. For SRT requestors, we vary s (sSRT in this context) to be 1, 2 or 4.

Observations. Figures 4.12a and 4.12b depict the latency results of the HRT and one of
the SRT requestors, respectively. We plot both the average- (solid coloured bars) and worst-
case latencies (thinner T-sharp bars). Similarly, Figures 4.12c and 4.12d depict BW results. We
normalize all results compared to the values obtained from AMC. Based on these results, we
make the following observations:

(1) Both AMC and COP have a fixed WCL since they have a fixed schedule and a bounded
transaction size. In contrast, PMC has the capability of achieving different WCL and BW for
different use-cases or requirements. As Figures 4.12a–4.12d illustrate, this is attained by tuning
the configurable parameters.

91

(2) Results highlight the main novelty of PMC: exploring the trade-off between temporal and
BW requirements of different tasks to provide the optimal MC behaviour. Assigning a higher
kmax for SRT requestors improves their average-latency (Figure 4.12b) and BW (Figure 4.12d).
However, it increases the WCL of HRT requestors (Figure 4.12a). Contrarily, a lower kmaxSRT
will reduce the WCL of HRT requestors by throttling the BW serviced to SRT requestors. Similar
effect occurs by changing the number of granted slots to each SRT requestor sSRT . The optimal
(kmax and s) pair per requestor depends on the use-case requirements and is determined by the
provided optimization framework.

(3) Any system requirements that can be satisfied using AMC or COP are satisfied by the
proposed mixed-policy PMC. This is because PMC encompasses both behaviours of AMC and
COP. Setting kmax = 1 for all requestors and assigning SRT requestors the same number of
slots as HRT ones (sSRT = 4) results in a behaviour similar to AMC. Correspondingly, setting
kmax = 2 and assigning SRT requestors the same number of slots as HRT ones achieves a
behaviour similar to COP.

(4) Figures 4.12a and 4.12b delineate the memory latency bounds for PMC (thinner T-sharp
bars) obtained from the static analysis. Results show that the calculated bounds are safe since all
obtained WCL measurements are less than their corresponding bounds.

4.8.2.2 WCL scaling: Effect of Number of Requestors

System Configuration. Recall that the highest priority target of MCS is to meet the tempo-
ral requirements of the most critical requestors (HRT). In these experiments, we investigate the
ability of MCS to satisfy the WCL requirements of HRT, while increasing the number of SRT
requestors in the system. Similar to the previous system configuration, the HRT requestors issue
64B transactions and the SRT requestors issue 2KB transactions. We conduct two sets of exper-
iments. The first set has a single HRT requestor, while the second one has 2 HRT requestors. In
both sets, the number of SRT requestors vary from 1 to 8.

Observations. Figure 4.13a represents the WCL of the HRT requestor(s), while Figure 4.13b
represents the BW of the SRT requestors. We normalize all results compared to the AMC results
for one HRT requestor and one SRT requestor. (1) Figure 4.13a demonstrates that PMC success-
fully achieves the target of the experiment by providing a fixed WCL for the HRT requestor(s)
regardless of the number of SRT requestors. This is by virtue of the configuration capability of
both the rate regulator (kmax) and the arbitration schedule (s). We configure kmax and s for all
requestors such that each HRT requestor is assigned a sub-slot in all schedule slots, while only
one SRT requestor is assigned a sub-slot in a schedule slot. In addition, we set kmax = 1 for
all SRT requestors. In consequence, the WCL of HRT requestors remains the same regardless of
the number of SRT requestors in the system. In contrast, for the one HRT requestor experiment,

92

1.
0 1.
5

2.
5

4.
5

1.
5 2.
0

3.
0

4.
0

1.
8

2.
7

4.
3

7.
4

2.
7

3.
4

5.
1

8.
2

1.
0

1.
0

1.
0

1.
0 1.
5

1.
5

1.
5

1.
5

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

1 2 4 8 1 2 4 8

1 2

N
or
m
al
iz
ed

 W
CL

Number of SRT requestors (1,2,4,8) across number of HRT requestors (1,2)
AMC‐HRT‐WCL COP‐HRT‐WCL PMC‐HRT‐WCL

(a) WCL of a HRT requestor.

1.
00
0

0.
46
4

0.
23
7

0.
13
9

0.
96
5

0.
46
6

0.
23
2

0.
16
0

1.
04
7

0.
51
1

0.
26
2

0.
15
4

1.
00
6

0.
51
6

0.
25
8

0.
17
8

1.
00
0

0.
46
3

0.
23
4

0.
13
5

0.
96
5

0.
46
6

0.
23
0

0.
15
6

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

1 2 4 8 1 2 4 8

1 2

N
or
m
al
ize

d
BW

Number of SRT requestors (1,2,4,8) across number of HRT requestors (1,2)
AMC‐SRT‐BW COP‐SRT‐BW PMC‐SRT‐BW

(b) BW of a SRT requestor.

Figure 4.13: Effect of varying number of requestors.

the WCL of the HRT requestor increases by up to 352% and 310% in comparison to a single
SRT requestor case in AMC and COP, respectively. Similarly, for the two HRT requestors exper-
iment, the WCL of each HRT requestor increases by up to 166% and 204% in AMC and COP,
respectively.

(2) We observe that for a system with more than one SRT requestor, the BW delivered to the
SRT requestors by PMC is less than that delivered by AMC or COP MCs. This is because we
set the values of kmax and s to minimize the WCL of HRT requestors. Hence, we sacrifice part
of the service delivered to SRT requestors. If the BW delivered by PMC to SRT requestors is
not satisfying their requirements, another configuration should be selected to relax the constraint
of having a fixed WCL of the HRT requestor, and increase the BW delivered to SRT requestors.
Again, this emphasizes the potential of the proposed framework to have different schedules for
different system requirements.

(3) Finally, we observe that COP offers higher bandwidth for SRT requestors at the expense
of higher WCL of HRT requestors compared to AMC and PMC. This is because COP assigns two
consecutive slots to each requestor. SRT requestors usually utilize these slots and send requests
that exploit row locality as they are memory intensive due to the large-size requests (each 2KB
request is split into 32 successive 64B accesses). Therefore, the BW of SRT requestor increases.
On the other side, HRT requestors, in the worst case, have to wait for two slots per SRT requestor
which increases their WCL.

4.8.2.3 Effect of the Transaction Size

To study the effect of various MCs and system parameters, we conducted all previous exper-
iments assuming a single transaction size for both SRT (2KB) and HRT (64B) requestors. In
reality, while the transaction size of a core request is usually determined by the line size of its

93

12

System Configuration– We experiment using one HRT re-
questor and one SRT requestor. The HRT requestor issues a
transaction size of 128B in all experiments in this set, while the
SRT requestor issue a different transaction size in each experiment
which we vary between 128B and 4KB.

MCs Configuration. Since the minimum transaction size
in this set of experiments is 128B, we interleave across the 8
banks for all MCs. In addition, we experiment using different
kmax configurations. We plot both the average- (solid coloured
bars) and worst-case (thinner T-sharp bars) latencies for the HRT
requestor in Figure 15(a) and the BW delivered to the SRT
requestor in Figure 15(b). The legend PMC-kmaxi represents a
PMC configuration with kmax = i. All values are normalized
based on the experimental WCL of the AMC controller.

Observations– (1) The aforementioned observation that PMC
encompasses the behaviour of both AMC and COP is confirmed
at Figure 15 by comparing the behaviour of PMC-kmax1 against
AMC PMC-kmax2 against COP. (2) Again, COP with 2 consecu-
tive slots assigned to each requestor has higher WCL than AMC,
while it utilizes these two slots to increase average-case BW by
keeping the row open as much as possible. (3) The configurability
of PMC provides the ability to provide different WCLs and BWs
by changing the kmax. The suitable kmax value is chosen to
satisfy requirements of all tasks. (4) We deduce from Figure 15
that there is no meaning - and there is no harm as well - to assign
a kmax value to a requestor higher than the sufficient value to
serve all its required data size in one access. For example, for a
transaction size of 512, assigning kmax > 4 to the SRT requestor
has no effect on neither WCL nor BW compared to kmax = 4.
Recall that we interleave across all 8-banks and the bundle size is
128B. Hence, Assigning kmax = 4 to the SRT requestor, it is
able to issue four consecutive bundles to transfer a data of 512B.

AMC COP PMC kmax1 PMC kmax2
PMC kmax4 PMC kmax8 PMC kmax16 PMC kmax32

0
1
2
3
4
5
6
7
8
9

10
11
12

128 256 512 1024 2048 4096

N
or
m
al
iz
ed

 L
at
en

cy

Transaction Size of the SRT requestor

0
0.25
0.5
0.75

1
1.25
1.5

128 256 512 1024 2048 4096

N
or
m
al
ize

d
BW

Transaction Size

Fig. 15. Effect of the transaction size.

7.2.4 Supporting rank interleaving
We test the effectiveness of rank interleaving in decreasing both
average- and worst-case latency compared to single-ranked PMC.
System Setup– In order to quantify the effect of rank interleaving

on eliminating switching latency, we perform this comparison
using a2time benchmark running on a single core to extirpate
latencies due to interference from other requestors. The transaction
sizes are swept from 128B to 4KB.

MCs Setup– We compare the PMC with single-rank bundles
(PMC-1RNK) against the multi-rank bundles (PMC-2RNK). Fig-
ure 16 illustrates the results of this comparison. It depicts both
the average-case latencies (solid coloured bars) and the experi-
mental worst-case latencies (thinner T-sharp bars). All values are
normalized based on the experimental WCL of PMC-1RNK.

Observations– Based on Figure 16, we highlight the following
observations:

(1) Interleaving bundles across different ranks results in both
better worst- and average-case latencies compared to mapping the
bundles to a single rank. As explained in section 4.4, this is due to
the way the DRAM is designed. Successive requests with different
types to the same rank suffer from the switching time of the data
bus (either tRTW or tWTR) while requests interleaved across
different ranks suffer only from the rank-to-rank switching time
(tRTRS) which is much less than the data bus switching time.

(2) There exists a big different between the average-case and
worst-case latencies for PMC-1RNK (up to 10% difference for
128B transaction size) while they are coinciding for PMC-2RNK.
This is because in in worst-case, PMC-1RNK assumes a switching
latency between successive requests, while in average-case the
switching latency may be less. On the other hand, PMC-2RNK
doesn’t encounter a switching latency. Moreover, the rank-to-rank
switching latency is incorporated in the bundle execution time
since each bundle is accessing two-ranks. Recalling that in this
experiment only a single requestor accessing the DRAM, the only
source of unpredictability is the data bus switching time. Hence,
both average- and worst-case latencies are expected to be the same.

(3) The latency gaps diminishes by increasing the transaction
size. This is true for both the gap between average- and worst-
case latencies in PMC-1RNK (from 10% for 128B transaction
size to 0.4% for 4KB transaction size) and between PMC-1RNK
and PMC-2RNK (from 14% for 128B transaction size to 0.5% for
4KB transaction size). We interpret this observation by analysing
the ratio between the execution and switching latencies. By in-
creasing the transaction size, the execution latency increases while
the switching latency remains the same. As a result, the impact of
the switching latency on the total memory latency diminishes.

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

128 256 512 1024 2048 4096

N
or
m
al
iz
ed

 L
at
en

cy

Transaction Size

PMC‐1RNK PMC‐2RNK

Fig. 16. Effect of rank interleaving on memory latency.

7.2.5 Supporting Dynamic Bank Interleaving
We add the dynamic bank interleaving support to PMC. Based on
the transaction size, PMC decides how many banks to interleave
across and hence, selects the appropriate bundles to access the
DRAM.

(a) Memory Latency.

12

System Configuration– We experiment using one HRT re-
questor and one SRT requestor. The HRT requestor issues a
transaction size of 128B in all experiments in this set, while the
SRT requestor issue a different transaction size in each experiment
which we vary between 128B and 4KB.

MCs Configuration. Since the minimum transaction size
in this set of experiments is 128B, we interleave across the 8
banks for all MCs. In addition, we experiment using different
kmax configurations. We plot both the average- (solid coloured
bars) and worst-case (thinner T-sharp bars) latencies for the HRT
requestor in Figure 15(a) and the BW delivered to the SRT
requestor in Figure 15(b). The legend PMC-kmaxi represents a
PMC configuration with kmax = i. All values are normalized
based on the experimental WCL of the AMC controller.

Observations– (1) The aforementioned observation that PMC
encompasses the behaviour of both AMC and COP is confirmed
at Figure 15 by comparing the behaviour of PMC-kmax1 against
AMC PMC-kmax2 against COP. (2) Again, COP with 2 consecu-
tive slots assigned to each requestor has higher WCL than AMC,
while it utilizes these two slots to increase average-case BW by
keeping the row open as much as possible. (3) The configurability
of PMC provides the ability to provide different WCLs and BWs
by changing the kmax. The suitable kmax value is chosen to
satisfy requirements of all tasks. (4) We deduce from Figure 15
that there is no meaning - and there is no harm as well - to assign
a kmax value to a requestor higher than the sufficient value to
serve all its required data size in one access. For example, for a
transaction size of 512, assigning kmax > 4 to the SRT requestor
has no effect on neither WCL nor BW compared to kmax = 4.
Recall that we interleave across all 8-banks and the bundle size is
128B. Hence, Assigning kmax = 4 to the SRT requestor, it is
able to issue four consecutive bundles to transfer a data of 512B.

AMC COP PMC kmax1 PMC kmax2
PMC kmax4 PMC kmax8 PMC kmax16 PMC kmax32

0
1
2
3
4
5
6
7
8
9

10
11
12

128 256 512 1024 2048 4096

N
or
m
al
iz
ed

 L
at
en

cy

Transaction Size of the SRT requestor

0
0.25
0.5
0.75

1
1.25
1.5

128 256 512 1024 2048 4096

N
or
m
al
ize

d
BW

Transaction Size

Fig. 15. Effect of the transaction size.

7.2.4 Supporting rank interleaving
We test the effectiveness of rank interleaving in decreasing both
average- and worst-case latency compared to single-ranked PMC.
System Setup– In order to quantify the effect of rank interleaving

on eliminating switching latency, we perform this comparison
using a2time benchmark running on a single core to extirpate
latencies due to interference from other requestors. The transaction
sizes are swept from 128B to 4KB.

MCs Setup– We compare the PMC with single-rank bundles
(PMC-1RNK) against the multi-rank bundles (PMC-2RNK). Fig-
ure 16 illustrates the results of this comparison. It depicts both
the average-case latencies (solid coloured bars) and the experi-
mental worst-case latencies (thinner T-sharp bars). All values are
normalized based on the experimental WCL of PMC-1RNK.

Observations– Based on Figure 16, we highlight the following
observations:

(1) Interleaving bundles across different ranks results in both
better worst- and average-case latencies compared to mapping the
bundles to a single rank. As explained in section 4.4, this is due to
the way the DRAM is designed. Successive requests with different
types to the same rank suffer from the switching time of the data
bus (either tRTW or tWTR) while requests interleaved across
different ranks suffer only from the rank-to-rank switching time
(tRTRS) which is much less than the data bus switching time.

(2) There exists a big different between the average-case and
worst-case latencies for PMC-1RNK (up to 10% difference for
128B transaction size) while they are coinciding for PMC-2RNK.
This is because in in worst-case, PMC-1RNK assumes a switching
latency between successive requests, while in average-case the
switching latency may be less. On the other hand, PMC-2RNK
doesn’t encounter a switching latency. Moreover, the rank-to-rank
switching latency is incorporated in the bundle execution time
since each bundle is accessing two-ranks. Recalling that in this
experiment only a single requestor accessing the DRAM, the only
source of unpredictability is the data bus switching time. Hence,
both average- and worst-case latencies are expected to be the same.

(3) The latency gaps diminishes by increasing the transaction
size. This is true for both the gap between average- and worst-
case latencies in PMC-1RNK (from 10% for 128B transaction
size to 0.4% for 4KB transaction size) and between PMC-1RNK
and PMC-2RNK (from 14% for 128B transaction size to 0.5% for
4KB transaction size). We interpret this observation by analysing
the ratio between the execution and switching latencies. By in-
creasing the transaction size, the execution latency increases while
the switching latency remains the same. As a result, the impact of
the switching latency on the total memory latency diminishes.

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

128 256 512 1024 2048 4096

N
or
m
al
iz
ed

 L
at
en

cy

Transaction Size

PMC‐1RNK PMC‐2RNK

Fig. 16. Effect of rank interleaving on memory latency.

7.2.5 Supporting Dynamic Bank Interleaving
We add the dynamic bank interleaving support to PMC. Based on
the transaction size, PMC decides how many banks to interleave
across and hence, selects the appropriate bundles to access the
DRAM.

(b) BW.

Figure 4.14: Effect of the transaction size.

last-level cache, other requestor types such as DMAs and IO processing elements can issue re-
quests with different transaction sizes. Hence, in this experiment we study the effect of different
transaction sizes on the behaviour of experimented MCs.

System Configuration. We experiment using one HRT requestor and one SRT requestor.
The HRT requestor issues a transaction size of 128B in all experiments in this set, while the SRT
requestor issue a different transaction size in each experiment, which varies between 128B and
4KB.

MCs Configuration. Since the minimum transaction size in this set of experiments is 128B,
we interleave across the 8 banks for all MCs. In addition, we experiment using different kmax
configurations. We plot both the average- (solid coloured bars) and worst-case (thinner T-sharp
bars) latencies for the HRT requestor in Figure 4.14a and the BW delivered to the SRT requestor
in Figure 4.14b. The legend PMC-kmaxi represents a PMC configuration with kmax = i. We
normalize all values based on the experimental WCL of the AMC controller. Observations.
(1) Figure 4.14 confirms the aforementioned observation that PMC encompasses the behaviour
of both AMC and COP by comparing the behaviour of PMC-kmax1 against AMC, and PMC-
kmax2 against COP. (2) COP with 2 consecutive slots assigned to each requestor has higher
WCL than AMC, while it utilizes these two slots to increase average-case BW by keeping the
row open as much as possible. (3) The configurability of PMC provides the ability to provide
different WCLs and BWs by changing the kmax. The framework chooses the suitable kmax
to satisfy requirements of all tasks. (4) We deduce from Figure 4.14 that there is no effect from
assigning a kmax value to a requestor higher than the sufficient value to serve all its required
data size in one access. For example, for a transaction size of 512B, assigning kmax > 4 to the
SRT requestor has no effect on WCL nor BW compared to kmax = 4. Recall that we interleave
across all 8-banks, and the bundle size is 128B. Accordingly, assigning kmax = 4 to the SRT
requestor, it is able to issue four consecutive bundles to transfer a data of 512B.

94

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

16 32 64 Rand 128

%
 W

as
te
d
BW

Transaction Size
Dynamic Static

(a) Wasted BW.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

16 32 64 128 Rand

N
or
m
al
ize

d
La
te
nc
y

Transaction size
Dynamic Static

(b) Memory latency.

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

16 32 64 128 RandN
or
m
al
ize

d
Ex
ec
ut
io
n
Ti
m
e

Transaction Size
Dynamic Static

(c) Total execution time.

Figure 4.15: Dynamic vs. static bank interleaving.

4.8.2.4 Supporting Dynamic Bank Interleaving

We add the dynamic bank interleaving support to PMC. Based on the transaction size, PMC
decides the number of banks to interleave across and hence, selects the appropriate bundles to
access the DRAM.

Experiment Setup. We run different experiments in which we vary the number of requestors
and the issued transaction sizes. For clarity, we show the results of experiments with one re-
questor that issues a different transaction size in each experiment (16B, 32B, 64B, Rand and
128B). In the experiment with Rand transaction size, the requestor issues requests with a ran-
dom transaction size that is amongst the following set: {16B, 32B, 64B, 128B}.

MC Configurations. We perform the experiments on both the PMC version with static bank
interleaving, where PMC interleaves across the 8 available banks and the PMC version with
dynamic bank interleaving. We delineate the results in Figures 4.15a–4.15c.

Observations. (1) Figure 4.15a depicts the percentage of non-utilized BW as defined by
Equation 4.1 in Section 4.5.3. Static bank interleaving transfers a fixed data size each transaction
(128B in our experiments). Therefore, the lower the actual requested data size by the transactions
is, the higher the non-utilized BW is. As Figure 4.15a shows, the non-utilized BW reaches up
to 87% for a requestor with 16B transactions. In contrast, dynamic bank interleaving adjusts

95

the number of banks to interleave across in each transaction to transfer the requested data size.
Hence, as Figure 4.15a illustrates, there is no non-utilized BW.

(2) Figure 4.15b presents both the average-case latencies (solid coloured bars) and the ex-
perimental worst-case latencies (thinner T-sharp bars). We normalize all values based on the
experimental WCL of the static interleaving configuration. From Figure 4.15b, we make the
following observations. (2.a) For a requestor with a fixed transaction size that is less than the
memory granularity (16B, 32B and 64B in Figure 4.15b), dynamic bank interleaving achieves
both better worst- (35% less) and average-case (38% to 60% less) latency compared to static
interleaving across all available banks. (2.b) For a requestor that generates random transaction
sizes (Rand in Figure 4.15b), the worst-case latency is the same as the static interleaving. This
WCL is suffered by the 128B transactions as they require interleaving across all available banks.
However, Figure 4.15b highlights that even for a requestor with random transaction sizes dy-
namic interleaving outperforms static interleaving on average-case by 40%.

(3)Figure 4.15c depicts the execution time of the application running on the requestor. We
normalize all values compared to the execution time of the static interleaving configuration. As
Figure 4.15c illustrates, dynamic interleaving decreases the total execution time of the applica-
tion by 5% to 8%.

4.8.2.5 Supporting Rank Interleaving

We test the effectiveness of rank interleaving in decreasing both average- and worst-case latency
compared to single-rank PMC.
System Setup. In order to quantify the effect of rank interleaving on eliminating switching la-
tency, we perform this comparison using a single core to eliminate latencies due to interference
from other requestors. As discussed in Section 4.5.4, the rank interleaving mechanism is effec-
tive only for requests accessing 8 banks. Hence, in this experiment, we interleave across 8 banks
for the single-rank case. We sweep the transaction sizes from 128B to 4KB.

MC Configurations. We compare the PMC with single-rank bundles (PMC-1RNK) against
the multi-rank bundles (PMC-2RNK). Figure 4.16 illustrates the results of this comparison. It
depicts both the average-case latencies (solid coloured bars) and the experimental worst-case
latencies (thinner T-sharp bars). We normalize all values based on the experimental WCL of
PMC-1RNK.

Observations. Based on Figure 4.16, we highlight the following observations. (1) For small
size requests (128B and 256B), interleaving bundles across different ranks results in better worst-
case latency compared to mapping the bundles to a single rank. Given that HRT requestors
usually issue small size requests (cache line size), rank interleaving is crucial to decrease their

96

WCL. Moreover, for the 128B case, the average-case latency of PMC-2RNK is also less than
that of PMC-1RNK. This is because requests accessing different ranks do not suffer from bus
switching time.

(2) There exists a considerable difference between the average-case and worst-case latencies
of single requestor accesses the DRAM for PMC-1RNK (up to 10% difference for 128B trans-
action size) while they coincide for PMC-2RNK. This is because, in worst case, PMC-1RNK
assumes a switching latency between every two successive requests, while in average-case the
switching latency may be less. On the other hand, PMC-2RNK does not encounter a switching
latency. Moreover, the rank-to-rank switching latency is incorporated in the bundle execution
time since each bundle is accessing two ranks. Recalling that in this experiment only a single re-
questor accessing the DRAM, the only source of unpredictability is the data bus switching time.
Hence, both average- and worst-case latencies are expected to be the same.

(3) The latency gaps between average- and worst-case latencies in PMC-1RNK diminishes by
increasing the transaction size (from 10% for 128B transaction size to 0.4% for 4KB transaction
size). We interpret this observation by analysing the ratio between the execution and switching
latencies. By increasing the transaction size, the execution latency increases, while the switching
latency remains the same. As a result, the impact of the switching latency on the total mem-
ory latency diminishes. (4) Increasing the transaction size, PMC-2RNK incurs larger WCL than
PMC-1RNK. As aforestated in Section 4.5.4, this is expected for the following reason. The num-
ber of bundle 3 increases by the increase in the transaction size. Recall that tb3 for PMC-2RNK
is larger than tb3 for PMC-2RNK because of the tRTRS constraint. Accordingly, increasing
number of bundle 3 increases the worst-case latency of PMC-2RNK compared to PMC-1RNK.

0.80

0.85

0.90

0.95

1.00

1.05

128 256 512 1024 2048 4096

N
or
m
al
ize

d
La
te
nc
y

TransactionSize
PMC‐1RNK PMC‐2RNK

Figure 4.16: Effect of rank interleaving on memory latency.

97

4.9 Summary

In this chapter, we presented PMC, a programmable DRAM MC for MCS, and an optimization
framework to provide optimal schedules for different sets of applications running on these sys-
tems. PMC supports an arbitrary number of criticality levels by enabling the MCS designer to
specify memory requirements per task. In addition, the framework optimizes the schedule for dif-
ferent MCS memory targets such as total worst-case latency or bandwidth. We also promoted a
novel implementation of TDM schedule that enables lower worst-case latencies than contiguous
TDM, while it has a lower area overhead than distributed TDM. PMC allows different requestors
to issue memory requests with different transaction sizes. This is important for practical systems
such as media processing systems, especially with multi-core architectures. We implemented
a mixed-page policy scheme that dynamically switches between close- and open-page policies.
By exploiting locality, the proposed policy reduces the worst-case latency of requests while in-
creasing the average-case performance compared to state-of-the-art MCs. Finally, we presented
a complete static analysis to provide upper bounds on the latency, and lower bounds on the BW
serviced to any requestor.

98

Chapter 5

Reverse Engineering Embedded DRAM
Memory Controllers through
Latency-based Analysis

We explore techniques to reverse-engineer properties of DRAM MCs. This includes page poli-
cies, address mapping schemes and command arbitration schemes. There are several benefits
to knowing this information: they allow analysis techniques to effectively compute worst-case
bounds, and they allow for platform-aware optimizations at the operating system, source-code,
and compiler levels. We develop a latency-based analysis, and use this analysis to devise al-
gorithms and C programs to extract properties of MCs. We show the effectiveness of the pro-
posed approach by reverse-engineering the implementation details of the MC deployed in the
XUPV5-LX110T platform from Xilinx. Furthermore, in order to cover a breadth of page poli-
cies, address mappings and command arbitration schemes, we explore our technique using a
micro-architecture simulation framework and document our findings.

5.1 Introduction

Modern computing systems implement a memory hierarchy with a combination of on-chip scratch-
pads, caches, and off-chip DRAMs [93]. This hierarchy is a critical component of all computing
systems, employed in server, embedded, desktop, and mobile systems [94]. Realizing sufficient
information about the implementation details of this hierarchy has several implications on various
areas of research. Leveraging this information would assist architecture simulators to be more
accurate [95], and assist compilers to provide platform-aware optimizations [96,97]. In addition,

99

it enables operating systems to allocate memory in a certain way to provide high performance
or task isolation [98]. From a security perspective, exposure to this information enables the re-
searchers to identify existing vulnerabilities in the memory system, which can lead to covert-
and side-channel attacks [99, 100]. Moreover, it facilitates efficient construction of hardware
disturbance errors such as the well-known DRAM rowhammer attack [101]. For embedded sys-
tems, information about the memory hierarchy is necessary to allow WCET analysis techniques
to account for latencies incurred during memory accesses [28,95]. Unfortunately, manufacturers
consider the implementation details of the memory hierarchy as intellectual property; hence, this
information is not publicly available neither for caches [95] nor for DRAMs [98].

There are several research efforts that reverse-engineer cache properties [95, 102–107], but,
there is limited work that does the same for main memories [98, 108, 109]. Therefore, there
is a need to devise approaches to expose implementation details of the main memory system;
thereby, it is the focus of this chapter. The main memory system composes of one or more
DRAM channels and a MC managing accesses to the DRAM. A MC comprises three main
components: address mapping, page policy, and arbitration scheme. Prior efforts [98, 108, 109]
partially reverse-engineer properties of the MC. In particular, they discover the address mapping
schemes. However, they do not discover page policies or command arbitration schemes that can
provide further opportunities for research in all of the aforementioned aspects. For instance,
authors in [28] assume that all properties of the MC including the page policy and arbitration
are known a priori. They use this information to provide bounds on memory interferences in
multi-core systems. This provides evidence of the advantages of knowing properties of the MCs.
However, the techniques to reverse-engineer important properties of MCs remains an unexplored
challenge.

5.1.1 Contributions

In response to the highlighted challenge, we develop a latency-based analysis to reverse-engineer
essential properties of the MC. We discover commonly used page policies, address mapping
schemes, and command arbitration schemes. Our technique relies on deriving best- and worst-
case latency equations for memory accesses to the MC (Section 5.3). We use this analysis to
develop algorithms for micro-benchmarks that can elicit properties of the MC (Section 5.4). We
show the effectiveness of the proposed approach by reverse-engineering the implementation de-
tails of the MC deployed in the XUPV5-LX110T platform from Xilinx. Moreover, since most
hardware platforms typically have a fixed set of MC policies, we deliberately experiment with a
micro-architectural simulation framework MacSim [39] interfaced with a comprehensive DRAM
simulator called DRAMSim2 [110] to enable a thorough exploration of MC configurations. Fi-
nally, we highlight the potential exploitations that the reverse-engineering of MC properties in-

100

spires (Section 5.5).

5.2 Related Work

Researchers have proposed various techniques to infer properties of caches using measurement-
based analysis [95, 102–107]. We broadly classify these approaches into those that use perfor-
mance counters present in the platforms [95, 102–104], and those that rely on latency analy-
sis [105–107]. The approaches proposed in [95, 102–104] make use of performance counters
available in current platforms to infer properties of the cache hierarchy. While [102, 104] iden-
tify least recently used (LRU) replacement policies and variants of LRU such as pseudo-LRU
(PLRU) and fill PLRU, a recent work by Abel and Reineke [95] uses block order maintained in
the cache sets due to cache hits and misses to distinguish between LRU, first-in first-out (FIFO),
and random replacement policies. Latency analysis approaches [105–107] measure access laten-
cies to the memories to discover their properties. This approach is necessary when performance
counters are either unavailable or do not provide sufficient statistics for inference. For example,
authors in [105] infer cache properties of an NVIDIA GT200 GPU via latency analysis because
performance counters were unavailable.

Recent works such as [98, 108, 109] infer certain properties of the MC in an effort to pro-
pose novel virtual-to-physical page allocations. Yun et al. [98] propose a new virtual-to-physical
memory allocation scheme by first inferring the mapping between virtual address bits and phys-
ical bank bits for the Intel Xeon processor using latency-based analysis. Park et al. [108] em-
ploy similar latency based analysis to identify channel, rank, and bank bit mapping between
virtual and physical addresses. However, we find the approach followed by [108] is suitable
for mappings where all the bits assigned to a certain group (such as bank, ranks or channels)
are contiguous. This approach will not be able to reveal details of distributed address mapping
schemes. Recently, authors in [109] reverse engineered the address mapping details of various
Intel architectures. They use both physical probing and latency-based analysis. However, all
these approaches [98, 108, 109] do not infer other important properties of the MC such as the
page policy, and command arbitration schemes that are essential in understanding the temporal
behaviour of the MC.

In Chapter 5, we attempt to do this for the most common page policies, address mappings,
and command arbitration schemes.

101

5.3 Memory Latency Analysis

When the MC grants the logical memory requests (Definition 5.1) access to the DRAM, it con-
verts the logical memory requests into physical memory requests. A physical memory request
(Definition 5.3) consists of two components: the physical address (Definition 5.2), and a se-
quence of low-level DRAM commands. The address mapping policy translates the logical mem-
ory address to the physical memory address.

Definition 5.1. Logical memory request. A logical memory request is a 2-tuple lr = 〈la, o〉
where la is a LW bits wide logical memory address la ∈ {0, 1}LW and o ∈ {R,W} designates
a read or write access operation.

Definition 5.2. Physical address. A physical address pa = 〈cn, rnk, bnk, rw, cl〉 is PW bits
wide. It is composed of CNW channel bits, RKW rank bits, BKW bank bits, RWW row bits
and CLW column bits, respectively.

Definition 5.3. Physical memory request. A physical memory request is a 2-tuple pr = 〈pa, cs〉
such that pa is the physical address and cs is a sequence of DRAM commands.

Definition 5.4. Arrival time. The arrival time ti is the time-stamp at which the first DRAM
command of pri arrives at the command queue.

Definition 5.5. Finish time. The finish time fi of a physical request pri is the time-stamp at
which pri starts its data transfer.

Definition 5.6. Access latency. The access latency of the ith physical request pri is defined as li
= fi − ti.

The commands issued by the MC to the DRAM adhere to certain timing constraints based
on a DRAM access protocol. These timing constraints affect the access latency of any request
to the DRAM. If the arrival time of pri is such that pri will not incur any waiting latency due
to timing constraints between commands of pri and commands of previous requests, then pri
will incur the best-case access latency. Figure 5.1 illustrates two physical requests, pr1 and pr2

with their arrival times t1 and t2, latencies l1 and l2 and finish times f1 and f2. Let the MC be
initially idle and pr1 arrives at time-stamp 0 (t1=0). Hence, in Figure 5.1, pr1 trivially satisfies the
timing constraints and the MC issues A1 immediately. However, t2 does not satisfy the timing
constraints as pr2 arrives before the P1 is issued; therefore, the MC must delay issuing A2 to
satisfy the timing constraints.

The arrival time ti depends on several factors that the MC cannot control. For example,
delays incurred due to pipeline stalls or the interconnect. As a result, we study the effect of

102

A1

tRCD tWL

Command
Bus

Data Bus

pr1

pr2

W1

D1
tBUS

R2

P1

A2

tRCD

tRP

D2

tRL

tWR

Time0

tRC

tRAS

Figure 5.1: A write access followed by a write or read access targeting the same bank and rank.
A: ACTIVATE, W: WRITE, R: READ, P: PRE, D: DATA.

arrival times on access latencies experienced by physical requests. Let pr1 = 〈pa1, cs1〉 and pr2

= 〈pa2, cs2〉 be two successive physical requests. Our approach presents an analysis to derive the
access latency for pr2, its best- (lBEST2), and worst-case access (lWORST

2) latency bounds. The
analysis is done under the assumption that the DRAM MC is initially in an idle state; hence,
there are no active rows in the row buffers. Recall that we use R command for a read CAS and W
command for a write CAS. If the access latency analysis is agnostic to the request type, then R
and W have the same effect on the latency. Therefore, we denote the access command simply as
CAS, and the timing constraint between the CAS and the start of the data transfer as tCL. Since
tBUS constraint includes the tCCD constraint in all DDR modules, throughout this chapter we
let tBUS ≥ tCCD.

5.3.1 Proof Strategy

We highlight the strategy we follow to obtain the best- and worst-case access latencies. We
then introduce an example to apply this strategy for two accesses with same access type to two
different banks in the same rank.

Theorem 5.1. The effect of DRAM timing constraints on a request latency can be expressed
generally as a function of two conditions on the arrival time of that request, cond1 and cond2,
such that the best-case latency for pr2 occurs when t2 ≥ t̂2, where t̂2 = MAX(cond1, cond2).

Proof. Let pr1 and pr2 be successive requests to a MC in the idle state, and pr1 arrives at 0
(t1 = 0). Hence, the first command of pr1 (A1) can be issued immediately. However, pr2 has
to satisfy the timing constraints between commands of pr1 and pr2 before it can issue its first

103

A1

A2

tRCD

D1 D2

tCL

tBUS

Command
Bus

Data Bus

pr1

pr2

C1

C2

0 Time

Figure 5.2: The two conditions controlling the issuance of the first command of pr2. C1 and C2
represent CAS1 and CAS2 commands respectively.

command. The observation we make in this proof strategy is that these timing constraints can
be combined into two conditions. These two conditions, denoted as cond1 and cond2, must
be satisfied before the first command of pr2 can be issued. Figure 5.2 depicts an example of
these two conditions. cond1 in Figure 5.2 represents the timing constraints between A1 and
A2 commands, while cond2 represents the constraints between CAS1 and CAS2 commands.
Suppose that cond1 ≥ cond2, then t̂2 = cond1. There are two cases based on the arrival time of
pr2.
Case 1a: When t2 ≥ t̂2, then cond1 is satisfied. Since cond1 ≥ cond2, cond2 is also satisfied.
Therefore, commands of pr2 will not incur any latency due to commands of pr1. Let the latency
of pr2 in this case be l1a2 .
Case 2a: When t2 < t̂2, then cond1 is not satisfied. Hence, the MC delays the issuance of the
first command of pr2 by t̂2 − t2 resulting in an access latency of l2a2 = (t̂2 − t2) + l1a2 . Now,
Suppose that cond1 < cond2, then t̂2 = cond2. There are again two cases based on the arrival
time of pr2.
Case 1b: When t2 ≥ t̂2, then cond2 is satisfied. Since cond2 > cond1, cond1 is also satisfied.
Therefore, commands of pr2 will not incur any latency due to commands of pr1. Let the latency
of pr2 in this case be l1b2 . Note that l1b2 = l1a2 .
Case 2b: When t2 < t̂2, then cond2 is not satisfied. Hence, the MC delays the issuance of the
first command of pr2 by t̂2 − t2 resulting in an access latency of l2b2 = (t̂2 − t2) + l1b2 . Note that
l2b2 = l2a2 . Since l1a2 < l2a2 and l1b2 < l2b2 , the arrival time for pr2 producing the best-case latency
occurs when t2 ≥ t̂2 with t̂2 = MAX(cond1, cond2).

The following corollary uses results of Theorem 5.1 to compute the access latency l2.

Corollary 5.1. The latency of pr2 at any given arrival time t2 when t̂2 = MAX(cond1, cond2) is

104

A1

A2

tRCD

tRRD tBUS

D1 D2

tCL

tBUS

Command
Bus

Data Bus

pr1

pr2

C1

C2

0 Time

Figure 5.3: Two accesses with same access type to two different banks in the same rank.

given by:
l2 = MAX(t̂2 − t2, 0) + l1a2 .

Substituting t2 ≥ t̂2 in Corollary 5.1 will give the best-case latency lBEST2 = l1a2 , while
substituting t2 = 0 will give the worst-case latency lWORST

2 = t̂2 + l1a2 .

5.3.2 Example 1: Two accesses with same access type to two different
banks in the same rank

For two requests with the same access type, cs1 = CAS1 and cs2 = CAS2 such that CAS1 and
CAS2 are of the same type (both should be either R or W), Figure 5.3 shows the timing diagram
for this sequence.

Theorem 5.2. The best-case latency for pr2 occurs when t2 ≥ t̂2, where t̂2 = MAX(tRRD, tBUS).

Proof. This proof is obtained by substituting cond1 = tRRD and cond2 = tBUS in the proof
strategy in subsection 5.3.1. Given that the MC is initially idle, and pr1 arrives at 0 (t1 = 0), the
DDR specifications state that tRRD, tRCD, tCL and tBUS in Table 4.1 (Section 4.2) should
be satisfied before issuing A2 and CAS2. These constraints are shown in Figure 5.3. Suppose
that tRRD ≥ tBUS, then t̂2 = tRRD. There are two cases based on the arrival time of pr2.
Case 1a: When t2 ≥ t̂2, A2 command can be issued immediately and after tRCD cycles the MC
issues CAS2. Then, l1a2 = tRCD + tCL, where tCL cycles are necessary before the starting of
data transfer.
Case 2a: When t2 < t̂2, l2a2 = (t̂2 − t2) + tRCD + tCL.

Now, suppose that tBUS > tRRD such that t̂2 = tBUS. There are again two cases based on
the arrival time of pr2.

105

A1

A2

tRCD

tRRD tBUS + tRTW

D1 D2

tRL

tBUS + tRTW

Command
Bus

Data Bus

pr1

pr2

R1

W2

0 Time

Figure 5.4: A read access followed by a write access targeting different banks in the same rank.

Case 1b: When t2 ≥ t̂2, l1b2 = tRCD + tCL.
Case 2b: When t2 < t̂2, l2b2 = (t̂2 − t2) + tRCD + tCL.

Since l1a2 < l2a2 and l1b2 < l2b2 , the arrival time for pr2 producing the best-case latency occurs when
t2 ≥ t̂2 with t̂2 = MAX(tRRD, tBUS).

Corollary 5.2. The latency of pr2 at any given arrival time t2 when t̂2 = MAX(tRRD, tBUS)
is given by:

l2 = MAX(t̂2 − t2, 0) + tRCD + tCL.

When t2 ≥ t̂2 in Corollary 5.2 will give the best-case latency lBEST2 = tRCD + tCL, while
substituting t2 = 0 will give the worst-case latency lWORST

2 = t̂2 + tRCD + tCL.

5.3.3 Example 2: Two accesses with different access type to two different
banks in the same rank

Figure 5.4 shows a read request pr1 followed by a write request pr2 such that cs1 = [A1,R1] and
cs2 = [A2,W2].

Theorem 5.3. The best-case latency for pr2 occurs when t2 ≥ t̂, where t̂ = MAX(tRRD, tBUS+
tRTW).

Proof. The MC has to reverse the data bus direction from read to write. This adds additional
tRTW cycles between R1 and W2 as shown in Figure 5.4. Suppose that tRRD ≥ (tBUS +
tRTW), then t̂ = tRRD. There are two cases based on the arrival time of pr2.
Case 1a: When t2 ≥ t̂, the tRRD timing constraint is trivially satisfied and A2 can be issued
immediately. Since t2 ≥ tRRD ≥ tBUS + tRTW , t2 + tRCD satisfies the tBUS + tRTW

106

Table 5.1: Best and worst-case latencies.

Latency Equation Configuration Reference t̂2

lWORST
2 = t̂2 + tRCD + tCL

Different Ranks tBUS + tRTRS

Different Banks and RR/WW MAX(tRRD, tBUS)

lBEST2 = tRCD + tCL
Different Banks and RW MAX(tRRD, tBUS + tRTW)

Different Banks WR MAX(tRRD, tWL+ tBUS + tWTR)

lWORST
2 = t̂2 + tCL

OP: Different Columns and RR/WW tRCD + tBUS

lBEST2 = tCL

lWORST
2 = t̂2 + tWL

OP: Different Columns and RW tRCD + tBUS + tRTW

lBEST2 = tWL

lWORST
2 = t̂2 + tRL

OP: Different Columns and WR tRCD + tWL+ tBUS + tWTR

lBEST2 = tRL

lWORST
2 = t̂2 + tRP + tRCD + tCL OP: Different Rows and RR/RW MAX(tRAS, tRCD + tRTP)

lBEST2 = tRP + tRCD + tCL OP: Different Rows and WW/WR MAX(tRRD, tRCD + tWL + tBUS +
tWTR)

lWORST
2 = t̂2 + tRCD + tCL CP: Same Bank and Rank and RR/RW MAX(tRC, tRCD + tRTP + tRP)

lBEST2 = tRCD + tCL CP: Same Bank and Rank and WW/WR MAX(tRC, tRCD + tWL + tBUS +
tWR+ tRP)

constraint between the CAS commands. As a result, the latency of pr2 is l1a2 = tRCD + tWL,
which includes the minimum time between W2 and start of data transfer.
Case 2a: When t2 < t̂, tRRD constraint is unsatisfied; hence, the MC delays A2 by t̂− t2 result-
ing in an access latency of l2a2 = (t̂− t2)+ tRCD+ tWL. Now, suppose that tBUS+ tRTW >
tRRD such that t̂ = tBUS + tRTW . There are again two cases based on the arrival time of
pr2.

Case 1b: When t2 ≥ t̂, then t2 ≥ tBUS + tRTW > tRRD and A2 can be issued immediately.
When tRCD cycles elapse after A2, t2 + tRCD ≥ tRCD+ tBUS + tRTW . Therefore, CAS2
satisfies the tBUS + tRTW constraint after CAS1 and can be issued resulting in a latency of
l1b2 = tRCD + tCL.
Case 2b: When t2 < t̂, the tBUS + tRTW constraint is unsatisfied; hence, the MC delays
CAS2 by t̂− t2 resulting in an access latency of l2b2 = (t̂− t2) + tRCD + tCL. Since l1a2 < l2a2

107

and l1b2 < l2b2 , the arrival time for pr2 producing the best-case latency occurs when t2 ≥ t̂ with
t̂ = MAX(tRRD, tBUS + tRTW).

Corollary 5.3. The latency of pr2 at any given arrival time t2 when t̂2 = MAX(tRRD, tBUS +
tRTW) is given by:

l2 = MAX(t̂2 − t2, 0) + tRCD + tWL.

When t2 ≥ t̂2 in Corollary 5.2 will give the best-case latency lBEST2 = tRCD+ tWL, while
substituting t2 = 0 will give the worst-case latency lWORST

2 = t̂2 + tRCD+ tWL. Similarly, we
calculate the best and worst-case latency suffered by any request accessing the DRAM as well
as the arrival times that cause these latencies. Table 5.1 tabulates these latencies.

5.4 Reverse-Engineering Properties of the MC

The best- and worst-case latencies presented in Section 5.3 allow us to reverse-engineer prop-
erties of the MC. We refer to open- and close-page policies by OP and CP respectively. We
also refer to channels, ranks, banks, rows and columns by chn, rk, bk, rw and cl respectively.
We perform a step-by-step procedure to reverse-engineer MC properties. Figure 5.5 illustrates
this procedure. We first reverse-engineer the page policy. Based on the page-policy, we reverse-
engineer the address mapping implemented by the MC. Finally, using knowledge about both
page policy and address mapping, we reverse-engineer the command arbitration scheme. In the
reverse-engineering process, we use the latency bounds illustrated by Figures 5.6a and 5.6b. Fig-
ure 5.6a presents l2 bounds for the case of two read requests, while Figure 5.6b presents the l2
bounds for a write followed by a read. bj and cj in Figures 5.6a and 5.6b represent the best- and
worst-case bounds for different sequences.

5.4.1 Reverse-engineering page policy and address mapping

We use two tests to reverse-engineer both the page policy, and the address mapping. The first test
performs two consecutive reads, while the second test consists of a write request followed by a
read request.

Both these tests are a sequence of two logical requests, lr1 followed by lr2 (which the MC
will translate to pr1 and pr2, respectively) as shown in Algorithm 5.1. The function flipBit(addr,
bitPos) takes as input a logical/physical address (addr) and a bit position (bitPos), and returns
a logical/physical address that differs from the input logical/physical address by a single bit po-
sition defined by bitPos. Therefore, logical address la2 differs from la1 by a single bit position

108

RR

Step3: Arbitra tion

Step 2. Address Mapping

start

Step1. Page Policy Alg. 1

PP is CP
or HP

PP is OP
or HP

Alg. 2 Alg. 2

PP is HP PP is CPPP is OP

XOR
Mapping

Alg. 3

Alg. 4

Alg. 5

Alg. 6

group bits

FR-FCFS

FR-FCFS

May be FCFS

Write Buffer Depth

threshold

i is col
or rw bit

i is bnk bit

i is rnk bit

i is ch bit

i is col bit

i is rw bit

i is bnk bit

i is rnk bit

i is ch bit

I3 I1 or I2

 i < PW-1

 i < PW-1i++ i++

i=0i=0

I4 I4

I8

I5

I6

I7 I11

I9

I10

I12

I13

I14

exposed information

inference rule

algorithm

Figure 5.5: Reverse-engineering process.

(ith bit). Recall that we use the best-case and worst-case latencies to reverse-engineer the MC
properties. In order to achieve such latencies, some time delay is necessary between the arrival
times of the memory requests to the MC. We achieve this delay by inserting a number of NOP
instructions between the requests (insertNOPs() function). We execute the tests and record the
observed latencies. We repeat this for PW number of times to record the latencies observed
for each bit of the logical address. Based on the latency analysis, we present inference rules for
reverse-engineering the page policy and address mapping.

5.4.1.1 Step 1: Reverse-engineering the page policy

We denote the latency of the second request with the ith bit flipped as li2. Then, the following
inference rules reverse-engineer the page policy.

109

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles
(a) Latency bounds for a sequence with two consecutive reads (test1). b1 = tCL,
b2 = tRCD+tCL, b3 = tRCD+tCL+tBUS, b4 = tRCD+tCL+tBUS+
tRTRS, b5 = tRP + tRCD + tCL, and b6 = tRC + tRCD + tCL.

CP: same bk

OP: diff rwOP: diff cl

diff rk
diff bk

Cycles
(b) Latency bounds for a sequence of two requests: write followed by read
(test2). c1 = tCL, c2 = tRCD+ tCL, c3 = tRCD+ tCL+ tBUS+ tRTRS,
c4 = tRCD+ tCL+ tWL+ tBUS + tWTR, c5 = tRP + tRCD+ tCL and
c6 = tRCD + tWL+ tBUS + tWR+ tRP + tRCD + tCL.

Figure 5.6: Latency bounds for a sequence of two requests.

(I1) ∃i ∈ [0, PW − 1] : b4 < li2 < b5 ⇒ close-page

(I2) ∃i ∈ [0, PW − 1] : b1 ≤ li2 < b2 ⇒ open-page

(I3) ∀i ∈ [0, PW − 1] : li2 = b2 ⇒ close-page

It is clear from Figure 5.6a that the ranges used in I1 and I2 do not overlap with any other range.
Therefore, we can reverse-engineer the page policy. If the observed latencies do not satisfy the
conditions of I1, I2, and I3, we repeat the tests with different number of NOP instructions. One
key observation we make from Figures 5.6a and 5.6b is that the close-page policy has a fixed

110

Algorithm 5.1: Reverse-engineering page policy and address mapping.

1 forall i in [0, PW − 1] do
2 Let test1 = [lr1 = 〈la1, R〉, insertNOPs(),
3 lr2 = 〈flipBit(la1, i), R〉]
4 Let test2 = [lr1 = 〈la1,W 〉, insertNOPs(),
5 lr2 = 〈flipBit(la1, i), R〉]
6 resetMC();
7 runTest(test1);
8 resetMC();
9 runTest(test2);

10 end

best-case latency. I3 states that if the observed l2 is fixed for all bits and equal to tRCD + tCL
cycles, then the page policy is close-page. This case happens when the second request always
arrives after t̂2 for all cases.

Hybrid-page policy. A MC implementing a hybrid-page policy dynamically adapts to either
close-page or open-page behaviour based on the access pattern in order to maintain a standard of
performance [111]. In order to detect hybrid-page policy implementations, an additional test is
necessary, which is shown in Algorithm 5.2. test3 is a sequence of 2n requests where the first n
requests target different rows to the same bank and rank, and the last n requests target different
columns to the same row, bank, and rank. n is a sufficiently large number to influence the row-
hit and miss counters that are checked by the MC to adjust the page policy. As Figure 5.5
shows, we execute Algorithm 5.2 after having an initial decision on the page policy whether it
is open- or close-page. If the MC implements a hybrid-page policy, then on executing the first
n requests of test3, the MC gradually adapts to close-page policy to reduce the DRAM access
latency as they target different rows to the same bank. On the other hand, the MC adapts from
close-page policy to open-page policy on executing the next n requests of test3 to reduce the
access latency of the requests targeting the same row. From Figure 5.6a, it is observed that in
a MC implementing a close-page policy, the minimum access latency of a request is b2. On the
other hand, in a MC implementing open-page policy, the minimum access latency of a request
targeting a row different from the row opened in the row buffer is b5. Hence, if there exists an
observed latency that is below b5 in the first phase of the test, while there is an observed latency
that is below b2 in the second phase, we can deduce that the page-policy implemented is hybrid-
page policy. Inference rule I4 is based on these observations for reverse-engineering hybrid-page

111

Algorithm 5.2: Reverse-engineering hybrid-page policy.

1 Let lrk = 〈lak, R〉, k ∈ [1, n]
2 where:
3 (bnkl = bnkm) ∧ (rwl 6= rwm), ∀l ∀m ∈ [1, n]
4 Let lrj = 〈laj, R〉, j ∈ [n+ 1, 2n]
5 where:
6 (bnkl = bnkm) ∧ (rwl = rwm), ∀l,∀m ∈ [n+ 1, 2n]
7 Let test3 = [lr1, insertNOPs(), ..., lrn, insertNOPs(),
8 lrn+1, insertNOPs(), ..., lr2n]
9 resetMC();

10 runTest(test3);

policy.

(I4) ∃k ∈ [1, n],∃j ∈ [n+ 1, 2n] : (lk < b5) ∧ (lj < b2)⇒ hybrid-page

5.4.1.2 Step 2: Reverse-engineering the address mapping

Open-page or Hybrid-page. Assuming that the page policy inferred is open-page or hybrid-
page, the address mapping scheme is reverse-engineered in the following way.

1. Column and row bits: It can be observed from Figure 5.6a that the access latency range on
executing test1 for column and row bits do not overlap, resulting in the following inferences.

(I5) ∀i ∈ [0, PW − 1] : b1 ≤ li2 < b2 ⇒ i is a column bit.

(I6) ∀i ∈ [0, PW − 1] : b5 ≤ li2 ≤ b6 ⇒ i is a row bit.

2. Rank, bank and channel bits: Rank and bank bits are inferred using test2 of Algorithm 5.1.
A write followed by a read request that target different banks to the same rank causes the
MC to reverse the direction of the shared data bus. This switching overhead distinguishes the
worst-cast access latencies of requests targeting different banks in the same rank from those
targeting different ranks. Inference rules I7 and I8 are based on this observation. The channel
bits are simply the remaining bits.

(I7) ∀i ∈ [0, PW − 1] : (i is not a column bit) ∧ (c3 < li2 ≤ c4) ⇒ i is a bank bit.

(I8) ∀i ∈ [0, PW − 1] : (i is not a column or bank bit) ∧ (c2 < li2 < c3) ⇒ i is a rank bit.

112

Close-page. Suppose the MC implements close-page policy.

1. Column and row bits: From Figure 5.6a, the access latency range between b4 and b5 is unique
to close-page policy and moreover, unique to either a row or column access under close-page
policy. Inference rule I9 uses this observation to reverse-engineer the row or column bits.

(I9) ∀i ∈ [0, PW − 1] : b4 < li2 < b5 ⇒ i is a row or column bit.

This inference implies that under close-page it is not possible to distinguish between row
and column bits if the address mapping scheme places them successively. For instance,
the row and column bits cannot be distinguished for the following address mapping scheme
〈chn, rw, cl, rk, bk〉. However, they are distinguishable for the following address mapping
scheme 〈chn, rw, rk, bk, cl〉. This is because, in general, the number of row bits and the num-
ber of column bits are different, thus distinguishable if they are not successive to each other,
while the bits of each segment (row or column) are contiguous.

2. Rank, bank and channel bits: We use test2 to reverse-engineer the rank, bank and channel
bits for the reason explained in the open-page policy as depicted using inference rules I10 and
I11. The remaining bits are the channel bits.

(I10) ∀i ∈ [0, PW − 1] : (i is not a column or row bit) ∧ (c3 < li2 ≤ c4)⇒ i is a bank bit.

(I11) ∀i ∈ [0, PW − 1] : (i is not a column, row or bank bit) ∧ (c2 < li2 < c3)⇒ i is a rank bit.

XOR address mapping. To reduce high access latencies for requests targeting different
rows to the same bank, some modern MCs employ XOR bank interleaving [112–114] to convert
some of the requests targeting different rows to the same bank to requests targeting different
banks. XOR bank interleaving is achieved by performing an XOR operation between the bank
bits and an equivalent number of row bits. This results in more bank bits exhibiting similar access
latencies on executing test1 and test2 of Algorithm 5.1. Since the number of bits assigned to each
group (channel, rank, bank, row and column) is known from the specifications, the following
inference rule detects an XOR address mapping. Initial bank bits (IBB) refer to the bits detected
by inference rule I7 or I10 as bank bits.

For a MC with XOR address mapping between bank and row bits, it is not possible to detect
which bits of IBB actually map to the bank bits. This is because all IBB bits result in the same
latency. Nonetheless, it is possible to classify IBB into two groups. One of these groups is the
bank bits and the other one is the row bits; however, without being able to decide which group
represents the bank bits. Algorithm 5.3 achieves this classification by issuing two requests, lr1

113

and lr2. lr2 differs from lr1 in only two bits out of IBB, i and j. As Inference I13 highlights, if
the latency of the second request, li,j2 is such that the two requests have a row conflict, then i and
j belong to two different groups, i.e. one of them is a bank bit and the other one is a row bit.
The intuition behind this decision is that XOR(i, j) = XOR(̄i, j̄). Accordingly, flipping i and
j results in mapping lr2 to the same bank; hence, these two bits are XORed together by the MC.
Table 5.2 further illustrates this conclusion by showing some examples.

(I12) ∀i ∈ [0, PW − 1] : IBB ≥ BKW ⇒ XOR mapping

(I13) ∀i, j ∈ IBB : li,j2 > b3 ⇒ (i is a bank bit ∧ j is a row bit) ∨ (i is a row bit ∧ j is a bank bit)

Algorithm 5.3: Reverse-engineering XOR address mapping.

1 forall i, j in IBB do
2 Let test1 = [lr1 = 〈la1, R〉, insertNOPs(),
3 lr2 = 〈flipBit(flipBit(la1, i), j), R〉]
4 where j 6= i
5 resetMC();
6 runTest(test1);
7 resetMC();
8 end

5.4.2 Reverse-engineering the command arbitration scheme

Based on the page policy and address mapping scheme inferred from steps 1 and 2, we reverse-
engineer three common arbitration schemes First-In-First-Out (FIFO), Round Robin (RR) and
First-Ready-First-Come-First-Serve (FR-FCFS) using the following procedure. Algorithm 5.4
uses two tests denoted as test5 and test6 to reverse-engineer the arbitration scheme. In test5,
lr1 and lr3 target the same rank, bank, and row, and lr2 targets a different row to the same rank
and bank. In test6, lr1 and lr2 target different rows to the same rank and bank, and lr3 targets
the same rank, but a different bank. These tests are designed based on the characteristics of the
above mentioned command arbitration schemes, and can be inferred based on the reordering of
data returned by the MC due to these requests. We execute the tests, and record f1, f2 and f3.

114

Table 5.2: Results of XORing different bank and row bits.

req original XORed new access patternrow bank row bank
r1 101 001 101 100 Row conflictr2 100 000 101 100
r1 101 001 101 100 Different bankr2 111 000 111 111
r1 101 001 101 100 Different bankr2 101 010 101 111

1. FR-FCFS and RR: We use the results from the tests to define the following inference rules.

(I14) When using test5, (f3 < f2)⇒ scheme is FR-FCFS.
(I15) When using test6, (f3 < f2)⇒ scheme is RR.

I14 states that if the data transfer for lr3 begins before that of lr2, then the MC implements
FR-FCFS. This is because FR-FCFS favours requests accessing the open row. I15 indicates
that f3 < f2 happens when the MC selects lr3 over lr2 after servicing lr1 because the MC
grants access to a request accessing a bank that is different than that of lr1’s. This shows that
the MC implements RR between banks.

2. FIFO: If the observed finish times are in FIFO order f1 < f2 < f3, then either the MC
implements FIFO arbitration scheme or the requests arrive to the MC command queue such
that the command for the next request arrives after the first command of the previous request is
issued. Therefore, in order to reverse-engineer FIFO command arbitration scheme correctly,
the requests have to access the MC such that request lr3 arrives to the MC before the issuance
of lr2’s first command, and no re-orderings are observed in both tests.

5.4.3 Advanced MC features

5.4.3.1 FR-FCFS threshold

FR-FCFS arbitration scheme prioritizes ready requests (row buffer hits) over non-ready requests
(requests that target different rows). This prioritization decreases the average-case access latency
to the DRAM; nonetheless, it starves the non-ready requests. Therefore, MCs often enforce a
hardware threshold to bound the number of prioritized ready requests that are consecutively

115

Algorithm 5.4: Reverse-engineering arbitration schemes.

1 Let lr1 = 〈la1, o1〉,
2 lr2 = 〈la2, o2〉,
3 lr3 = 〈la3, o3〉
4 Let test5 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]
5 where:
6 (bnk1 = bnk2 = bnk3) ∧ (rw1 = rw3 6= rw2)
7 Let test6 = [lr1, insertNOPs(), lr2, insertNOPs(), lr3]
8 where:
9 (bnk1 = bnk2 6= bnk3) ∧ (rw1 6= rw2 6= rw3)

10 resetMC();
11 runTest(test5);
12 resetMC();
13 runTest(test6);

serviced. On achieving this threshold, a P command is sent to close the row in the row buffer.
We introduce Algorithm 5.5 to reverse-engineer this threshold. We issue a sequence of RDY
requests that target the same rank, bank, and row, and increment RDY until a request with
latency l2 ≥ b2 is observed. This occurs only when the row buffer is precharged by the MC due
to reaching the threshold set by the arbitration scheme on the number of row buffer hits to be
serviced. Hence, the number of requests serviced before this latency is inferred as the FR-FCFS
threshold.

5.4.3.2 Write buffer

Since read accesses are more latency sensitive than write accesses, MCs usually prioritize reads
over writes [28]. This is deployed by queuing write accesses in a write buffer and by designating
a threshold for the maximum possible number of writes backlogged in the buffer. If the number
of writes in the buffer is less than this designated threshold, read accesses can be serviced before
write accesses given that the system’s memory ordering model is preserved. It is important to
reverse-engineer if the MC has a write buffer and the size of this buffer, if there is one, because it
will affect the worst-case latency for different request types. For example, the worst-case access
latency of a write request will increase as read requests will have higher priority. We propose
Algorithm 5.6 to perform this reverse-engineering. We issue a read request, lr1, followed by a
sequence of WQ write requests and finally another read request, lrWQ+1. If WQ is less than the
buffer threshold, then the last read request, lrWQ+1, will be serviced before the first write request

116

Algorithm 5.5: Reverse-engineering FR-FCFS threshold depth.

1 Let RDY = 2 be a counter.
2 repeat
3 Let lri = 〈lai, R〉, ∀i ∈ [1, RDY]
4 Let test7 = [lr1, insertNOPs(), lr2,
5 insertNOPs(),, lrRDY]
6 where:
7 (bnk1 = bnki) ∧ (rw1 = rwi), ∀i ∈ [2, RDY]
8 resetMC();
9 runTest(test7);

10 inc (RDY);
11 until (∃ l2 : l2 ≥ b2)

in the buffer, lr2. We repeat the test and each time increment WQ by 1. When the MC services
lr2 before lrWQ+1, we infer that WQ is equal to the write buffer threshold.

5.4.4 Performance Counters

In order to reverse-engineer the architecture of MCs, we require specific performance counters.
Although there exist certain MC performance monitoring units (PMUs) on conventional archi-
tectures such as the Intel Xeon and Intel Core i7 platforms [115], we believe that these are in-
sufficient for reverse-engineering the architectures of MC. This is because existing PMUs count
the number of a specific type of MC command such as A, CAS, CASp, P, and REF, and do not
capture the time-stamp at which these commands are issued. Therefore, in order to accurately
reverse-engineer the MC, we assume that the considered platform has performance counters that
can track the time-stamps of the requests when they access the MC and are retired by the MC in
real-time.

5.5 Potential Applications

The reverse-engineering procedure we propose exposes implementation details of the main
memory system. In this section, we discuss possible applications that can leverage this infor-
mation.

Architecture Simulators. Architecture simulators are prominently used to validate and eval-

117

Algorithm 5.6: Reverse-engineering write buffer depth.

1 Let WQ = 2.
2 repeat
3 Let lr1 = 〈la1, R〉,
4 lri = 〈lai,W 〉∀i ∈ [2,WQ],
5 lrWQ+1 = 〈laWQ+1, R〉 such that:
6 test8 = [lr1, insertNOPs(), lr2,
7 insertNOPs(), .., lrWQ+1]
8 where ∀i, j ∈ [1,WQ+ 1]:
9 bnki = bnkj , rwi = rwj , and cli 6= clj

10 resetMC();
11 runTest(test8);
12 inc (WQ);
13 until (lWQ+1 > l2)

uate novel policies and compare different approaches. These simulators require a detailed model
of the hardware architecture to be simulated. There exist a set of DRAM simulators that model
state-of-the-art main memory systems [110, 116, 117]. However, these simulators resemble a
subset of the MC policies, merely because the implementation details of other policies are not
publicly available. Accordingly, the more MC policies that can be reverse-engineered, the more
comprehensive and accurate the simulators will become.

Compiler and Source-code Optimizations. Memory latency is a critical bottleneck to
achieve higher performance in modern computing systems. Many approaches addressed this
issue by proposing compiler techniques and source-code modifications to increase the memory
performance [96,97]. The main idea behind these approaches is to layout the data footprint of the
application to increase data locality. Locality is a key factor for memory performance since data
blocks that are close to each other are accessed faster. This is true for caches (e.g. requests to
same cache line), and for DRAMs (e.g. requests targeting same row). However, if the implemen-
tation details of the memory hierarchy are not available, exploiting these locality opportunities
is limited. For instance, the aforementioned approaches [96, 97] focus only on array structures,
since they are placed contiguously in the memory by default.

WCET Analysis. Real-time platforms consist of memory hierarchies with a combination
of on-chip scratchpads, caches, and DRAMs [93]. It is imperative for the memory hierarchy
to be predictable to allow WCET analysis tools to account for latencies incurred during mem-
ory accesses. Unfortunately, manufacturers consider the implementation details of the memory
hierarchy as intellectual property; hence, this information is not publicly available neither for

118

caches [95] nor for DRAMs [98]. Consequently, WCET analysis tools have to consider con-
servative models of the architecture of the memory hierarchy. Unfortunately, this leads to pes-
simistic WCET estimates [29, 95]. Exposing the architecture details of the memory hierarchy
will definitely lead to more realistic and tight WCET estimates for real-time systems platforms.

Hardware Attacks. Exploiting the architecture details of the memory system creates new
vulnerabilities in the memory system, which open the door for hardware attacks. Examples
for these attacks include: Denial-of-Service(DoS) [118], Error Injection [101], Covert- [119],
and Side-channel attacks [99]. Addressing these vulnerabilities is crucial to guarantee system’s
security; though, it is not the focus of this thesis.

5.6 Experimental Evaluation

We use the proposed algorithms and inference rules in Section 5.4 to reverse-engineer the MC
properties of the Xilinx Virtex-5 based XUPV5-LX110T development board with an on-board
DDR2 memory module.

We implement the algorithms into a testbench that executes on the board’s synthesized MC.
The Xilinx development board enables us to prove the ability of the proposed methodology to
reverse-engineer a real commercial platform; however, since its MC deploys a pre-defined subset
of policies, it does not allow for exploring all the capabilities of the proposed methodology.
Therefore, in addition to the board, we use a simulation framework consists of macsim [39],
an X86 simulator integrated with DRAMSim2 [110], a comprehensive DRAM simulator. We
extend DRAMSim2 to integrate state-of-the-art MC’s policies to illustrate the capabilities of the
proposed methodology to reverse-engineer them in a multi-core architecture executing high-level
programs. Section 5.6.1 discusses our findings for the Xilinx board, while Section 5.6.2 discusses
the findings on the simulation framework.

5.6.1 Reverse-engineering MC’s properties of the XUPV5-LX110T plat-
form

5.6.1.1 System specifications

The Xilinx XUPV5-LX110T development system [120] integrates a 256MByte DDR2 memory
[121]. The memory module is organized as a single memory rank with 16 data bits per column.
The memory controller is generated and synthesized on the board using the memory interface
generator (MIG) [122], which is part of the Xilinx toolchain. Table 5.3 tabulates the timing

119

Table 5.3: DDR2 specifications.

Property Value
of row bits 13

of column bits 10
of bank bits 2

Address mapping scheme All possible permutations of pa = 〈bnk, rw, cl〉
(default is rw : bnk : cl)

Page policy Open-page (default) or close-page policy
Command arbitration scheme FIFO
DDR2 operating frequency 267 MHz
Timing constraints in cycles tCL=4, tRCD=4, tRP=4, tRTP=3, tRAS=11, tRRD=3

0
2
4
6
8

10
12
14
16
18

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

CP OP

(a) Default mapping (Map1) and different page policies.

0
2
4
6
8

10
12
14
16
18

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

Map1 Map2 Map3 Map4 Map5 Map6

(b) Default page-policy (OP) and different address map-
pings.

Figure 5.7: Latency plots for test1 stimulating the on-board MC of XUPV5-LX110T. OP: open-
page policy, and CP: close-page policy.

constraints of the DDR2 memory deployed on the board, and the properties of the MC.

5.6.1.2 Methodology

The XUPV5-LX110T board allows us to configure the memory controller. Accordingly, we
configure the memory controller with certain properties. Afterwards, we test if the proposed
methodology can figure them out. We integrate the reverse-engineering algorithms into a syn-
thesizable testbench that is executed on the on-board MC. The testbench generates a sequence
of read and write requests to the MC. These commands are queued into a 32 entry wide FIFO
buffer, from which the MC issues to the DDR2 memory. The board provides a real-time probing
of MC’s interface signals through a tool called ChipScope Pro. We use ChipScope Pro to moni-

120

Table 5.4: Address mapping findings for XUPV5-LX110T.

Map. cl bits bnk bits rw bits
Map1 [6, 9] [10, 11] [12, 24] rw : bnk : cl
Map2 [8, 11] [6, 7] [12, 24] rw : cl : bnk
Map3 [21, 24] [19, 20] [6, 18] cl : bnk : rw
Map4 [19, 22] [23, 24] [6, 18] bnk : cl : rw
Map5 [21, 24] [6, 7] [8, 20] cl : rw : bnk
Map6 [6, 9] [23, 24] [10, 22] bnk : rw : cl

Inference I5 b2 ≤ li ≤ b3 I6

tor the arrival and finish time of memory requests as defined in Section 5.3. Recall that test2 in
Algorithm 5.1 helps in distinguishing between rank and bank bits. Since the on-board DRAM
has a single rank, we execute only test1 and we do not need to run test2.

5.6.1.3 Results

Figure 5.7 delineates the obtained results upon executing test1. Given that the page policy and
the address mapping of the MC are configurable, we first use the default address mapping and
run test1 twice, once with the page policy configured as open-page and the other with close-page.
The observed latencies of these two executions are shown in Figure 5.7a. The CP configuration
in Figure 5.7a has a fixed latency for all bits. From Inference I3, we deduce that it has a close-
page policy. On the other hand, bits [6, 9] of the OP configuration has a latency of 4, which is
less than tRCD + tCL. Accordingly, using Inference I2, we deduce that it has an open-page
policy. Afterwards, to show the ability of the proposed methodology to disclose the address map-
ping bits, we use the MC default settings except for the address mapping, where we experiment
with all allowable permutations of the board. Figure 5.7b illustrates the monitored latencies for
running test1 on each mapping. Table 5.4 summarizes our findings.

To reverse-engineer the command arbitration scheme, we deploy test5 and test6 and observe
the data bus signal. We observe that the order of requests issued by the on-board MC and the
order of data blocks returned by the memory module are identical. Using inferences I13 and
I14, we infer that the command arbitration scheme implemented by the on-board MC is likely
a FIFO. Note that we confirm the correctness of our inferences against reference design guides,
and inspecting the synthesizable MC code design if necessary.

121

5.6.2 Evaluation on simulation framework

5.6.2.1 System specifications

The simulation framework services two purposes in our evaluation. First, it provides a multi-
core architecture executing real C programs. For the Xilinx board, a fine-grained access to the
MC is possible through testbench generators; hence, we can provide our algorithms in the form
of a trace of read and write accesses. Clearly, this situation is not possible in more complex
commercial-of-the-shelf (COTS) systems. Accordingly, the architecture simulator provides an
emulation for these systems. Second, as aforementioned, the simulator is flexible to modify;
thus, we extend it by integrating a wide set of state-of-the-art MC policies. Tables 4.1 (in Sec-
tion 4.2) and 5.5 show the DRAM memory module specifications and processor configurations,
respectively. We deploy the targeted policies into three MC configurations: MC A, MC B, and
MC C. Table 5.6 tabulates the properties of each MC.

Table 5.5: System configuration.

Parameter Configuration
Core specifications 3 GHz, 5 stages out-of-order pipeline, 256-entry reorder buffer

Cache specifications L1 I-cache: 4 KB, 8-way 8-set, 64B line size
L1 D-cache: 16 KB, 4-way 64-set, 64B line size
L2 D-cache: 32 KB, 8-way 64-set, 64B line size

DRAM specifications Single channel, 1600 MHz DDR3, 64-bit data bus
BL=8, 2 ranks, 8 banks per rank, 16 KB row buffer size

5.6.2.2 Methodology

We implement the reverse-engineering algorithms as micro-benchmarks in C with inline assem-
bly code, which are executed by the processing core. We compile the micro-benchmarks with
no optimization flags to ensure that the reverse-engineering requests are not optimized in any
way that might change the order of requests accessing the DRAM. We execute the memory re-
quests intended for reverse-engineering the MC for a sufficiently large number of iterations in
order to offset the effects of DRAM refreshes, and elicit stable latencies of the requests intended
for reverse-engineering. In addition, we have to ensure that these requests access the DRAM
and are not fetched from the cache. This can be achieved by multiple ways. Modern architec-
tures enables bypassing the cache hierarchy through special instructions. For instance, the x86
ISA provides bypass instructions for reads/writes with no temporal locality [123]. The proposed
reverse-engineering methodology also works for architectures that do not support cache bypass-

122

Table 5.6: MC configurations.

Parameter MC A MC B MC C
Address Mapping chn:rw:cl:rk:bk chn:rk:rw:bk:cl chn:rk:rw:cl:bk

Page-policy Close-Page Open-Page Hybrid
Arbitration Round-Robin FR-FCFS FIFO

0

5

10

15

20

25

30

35

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

MC A MC B MC C

(a) Latency plots for test1

0

10

20

30

40

50

60

70

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Address bits

MC A MC B MC C

(b) Latency plots for test2

Figure 5.8: Latency plots for page policy and address mapping inference tests.

ing. For those architectures, we execute a sequence of memory instructions based on the cache
hierarchy on each iteration such that the reverse-engineering requests are evicted from the cache.
We rely on the methods proposed in [95] to determine the cache structure and replacement policy
to generate the cache eviction requests. After ensuring that the reverse-engineering requests ac-
cess the DRAM, we execute the reverse-engineering program and measure the latencies of these
requests. Afterwards, we apply the inference rules proposed in Section 5.4 on these measured
latencies to reverse-engineer the MC properties.

Recall that the algorithms specified in Section 5.4 insert NOP instructions between the re-
quests intended for reverse-engineering to achieve specific access latency ranges necessary to
reverse-engineer the properties of the MC. In addition, we also execute a number of NOP instruc-
tions after performing the cache evict requests in order to ensure that they are completed, and no
requests occupy the store buffer or instruction buffer. The number of NOPs used is determined
based on the frequency scaling factor between the core and MC, the length of instruction/reorder
buffer, and cache miss penalties. In order to avoid any reordering of reverse-engineering requests
by the requestor, we create data dependencies between the reverse-engineering requests.

123

5.6.2.3 Results

Page policy and address mapping. We first reverse-engineer the address mapping and page
policy implemented by the MC. Figures 5.8a and 5.8b show the access latencies for different
MCs on executing test1 and test2 of Algorithm 5.1 respectively. On executing test1, MCs B
and C implement an open-page policy from inference rule I2 as bits 6-12 and bits 9-15 exhibit
latency equivalent to tCL = 10 cycles. Applying inference rule I3, MC A implements a close-
page policy as all the bits have the same latency (tRCD + tCL cycles) on executing test1.
The column and row bits for the MCs implementing an open-page policy are inferred based on
inference rules I5 and I6 respectively. The column bits for MCs B and C are bits 6-12 and 9-
15 respectively, and the row bits are bits 19-29 and bits 16-29 respectively. The bank and rank
bits for all the MCs are identified by executing test2, and applying inference rules I7 and I8 for
open-page policy and I10 and I11 for close-page policy respectively. From Figure 5.8b, the bank
bits for MCs A, B, and C are bits bits 6-8, 13-18, and 6-8 respectively. Note that for MC B,
the bank bits are 13-18 and row bits are 19-29. This contradicts the DRAM memory module
specifications of 8 banks or 3 bank bits, and 16K rows or 14 row bits. Applying inference rule
I12, the 6 bank bits can be inferred as an XOR combination of the three bank bits and three lower
significant row bits.

Hybrid-page policy. Figure 5.9 shows the latencies of the reverse-engineering requests for
one iteration on executing test3 of Algorithm 5.2 for MC C. Note that we execute test3 for all
MC configurations, and show only the MC configuration that exhibited latencies aligning with
the latencies in inference rule I4. Recall that test3 executes a sequence of n requests targeting
different rows in the same bank followed by another sequence of n requests targeting the same
row. It is observed from Figure 5.9 that some of the initial accesses targeting different rows to the
same rank and bank incur a precharge overhead resulting in an access latency of tRP + tRCD+

0

20

40

60

80

100

120

0 50 100 150 200 250

La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Request #

Different row Different column

Figure 5.9: Latency plot for hybrid-page policy.

124

tCL cycles (30 cycles). However, the page policy adapts to the incoming access sequence and
precharges the row buffer soon after the previous request has completed its operation resulting
in subsequent accesses targeting idle row buffers. This is observed in the change in latency
for accesses targeting different rows to the same rank and bank from tRP + tRCD + tCL to
tRCD + tCL cycles (20 cycles). On executing the next access sequence that target different
columns to the same row, bank, and rank, the latency for the requests remains at tRCD + tCL
cycles as the current state of the hybrid-page policy precharges the row buffer soon after a request
has completed it operation. Therefore, despite accesses targeting different columns to the same
rank, bank, and row, each access incurs the latency of activating the row buffer. Again, the
hybrid-page policy adapts to favour the row buffer hits by delaying the precharge to the row
buffer after each access. This is observed in the latency change for requests in the second access
sequence from tRCD + tCL to tCL cycles (10 cycles). On repeating these two sequences, as
Figure 5.9 shows, MC adapts between close- and open-page policies to reduce the DRAM access
latency. Notice that some requests have access latencies higher than the possible access latency,
which is b6 = 54 cycles. It is likely that these requests arrived when the MC was refreshing the
DRAM banks, and therefore stalled until the refresh completed.

Arbitration Scheme. We execute test5 and test6 and infer the command arbitration scheme
by comparing the order of data returned by the MC with the request order issued to the MC. For
MC A, we observe the same order of requests issued and data returned for test5, but a different
order of data returned and request order for test6. In test6, the first and second request target
different rows to the same bank and rank, and the third request targets a different bank. We notice
that the third request to a bank different from the first two requests of test6 completes earlier than
the second request.

From inference I14, we can infer that the command arbitration scheme in MC A is RR.
For MC B, we observe a different order between the returned data and the issued requests for
test5. Recall, that test5 generates three requests to the same bank, with the first and third request
targeting the same row, and the second request targeting a different row. We observe that the third
request is serviced before the second request, which indicates that the MC prioritizes requests to
rows present in the row buffer. This observation aligns with the inference rule I13, and hence MC
B implements FR-FCFS command arbitration scheme. For MC C, the order of data returned by
the MC and the request issue order are the same for both tests. Hence, we infer that the command
arbitration scheme implemented in MC C is FIFO.

FR-FCFS threshold. test7 in Algorithm 5.5 exposes the threshold enforced by the MC to
limit the number of row buffer hits before pre-charging the row buffer for FR-FCFS arbitration
scheme. The latency plot for this test is shown in Figure 5.10. From Figure 5.10, the threshold
enforced by the MC is 4 as after every 4 accesses to the same row, bank, and rank, the row buffer
is pre-charged. This results in every n ∗ 4 + 1th request to incur the penalty of re-activating the

125

0

5

10

15

20

25

0 5 10 15 20La
te

nc
y

(D
R

A
M

 M
C

 c
yc

le
s)

Request #

Latency

Figure 5.10: Latency plot for FR-FCFS threshold test.

row buffer. Write buffer policy. As aforestated, contemporary MCs favor reads over writes
because read instructions stall the pipeline, while write instructions do not. They buffer writes
in a separate buffer and schedule them according to various policies. In order to show the ability
to demystify the write buffer information, we integrate the following write management policy
in DRAMSim2. We split the unified transaction queue into two separate queues, one for reads
and one for writes. The write queue has two watermarks: a high watermark, HI , and a low
watermark, LO. When the write queue size, WQ, exceeds the high watermark, the MC services
writes until the size drops to the lower watermark. In addition, writes are serviced when there
are no pending reads. We experimented with a wide variety of values for the watermarks and the
write queue size. For clarity, we show only the results for the case where WQ = HI = 16, and
LO = 0. In addition, we set the read queue size to 16. In this case, the MC waits for the write
queue to fill up before it starts servicing writes. afterwards, it services writes until the emptiness
of the write queue.

Figure 5.11a shows the histogram of the number of arriving (RdArr), departing (RdDep), and
queued (rdQue) read requests. Figure 5.11b presents the same data but for the write requests.
We calculate the number of queued requested of one type as the difference between the arriving
and departing requests of that type, rdQue = rdArr− rdDep. Clearly, from both figures, we can
infer that both the write queue size and the read queue size are 16. This is because the maximum
value of rdQue and wrQue is 17, which represents the case of 16 queued requests, while an extra
request is being serviced.

We start counting time at stamp 0 , where the first read request arrives. Since the arrival rate
of read requests is higher than the service rate, the read queue fills up quickly at stamp 1 . The
first write request does not arrive until stamp 2 at cycle 526. At stamp 3 , the write queue fills

126

0

5

10

15

20

25

30

35

0 5
0

1
00

1
50

2
00

2
50

3
00

3
50

4
00

4
50

5
00

5
50

6
00

6
50

7
00

7
50

8
00

8
50

9
00

9
50

1
0

0
0

1
0

5
0

1
1

0
0

1
1

5
0

1
2

0
0

1
2

5
0

1
3

0
0

1
3

5
0

1
4

0
0

1
4

5
0

1
5

0
0

1
5

5
0

1
6

0
0

1
6

5
0

1
7

0
0

1
7

5
0

1
8

0
0

1
8

5
0

1
9

0
0

1
9

5
0

2
0

0
0

2
0

5
0

2
1

0
0

2
1

5
0

2
2

0
0

2
2

5
0

2
3

0
0

2
3

5
0

2
4

0
0

2
4

5
0

#
R

e
q

u
e

st
s

Time (cycles)
RdArr RdDep RdQue

30

1

5

(a) Read requests histogram.

0

5

10

15

20

25

30

35

0
5

0
1

00
1

50
2

00
2

50
3

00
3

50
4

00
4

50
5

00
5

50
6

00
6

50
7

00
7

50
8

00
8

50
9

00
9

50
1

0
0

0
1

0
5

0
1

1
0

0
1

1
5

0
1

2
0

0
1

2
5

0
1

3
0

0
1

3
5

0
1

4
0

0
1

4
5

0
1

5
0

0
1

5
5

0
1

6
0

0
1

6
5

0
1

7
0

0
1

7
5

0
1

8
0

0
1

8
5

0
1

9
0

0
1

9
5

0
2

0
0

0
2

0
5

0
2

1
0

0
2

1
5

0
2

2
0

0
2

2
5

0
2

3
0

0
2

3
5

0
2

4
0

0
2

4
5

0

#
R

e
q

u
e

st
s

Time (cycles)
WrArr WrDep WrQue

3 4

2

5

(b) Write requests histogram.

Figure 5.11: Write buffer policy.

up; hence, the MC switches to service writes. As a result, we observe at Figure 5.11a, the RdDep
plot saturates at 17. The 18th read request waits until stamp 5 to get serviced. At stamp 4 , all
the write requests in the program have arrived; hence, WrQue starts decreasing until all writes
are being serviced at stamp 5. At 5, the MC switches back to service requests from the read
queue.

5.7 Summary

In this chapter, we investigated opportunities to reverse-engineer properties of DRAM MCs using
latency-based analysis. The analysis provided us with the best and worst-case bounds on access
requests to the DRAM, on which we based our inference rules for reverse-engineering MC prop-
erties such as the page policy, address mapping scheme, and command arbitration scheme. We
implemented our algorithms for reverse-engineering these properties into a software tool, and
our experimental evaluation confirmed that we can discover the targeted properties of the MCs.
We also showed the effectiveness of the proposed approach by reverse-engineering the imple-
mentation details of the MC deployed in the XUPV5-LX110T platform from Xilinx. Finally, we
highlighted possible applications that can exploit the discovered MC policies.

127

Chapter 6

MCXplore: Automating the Validation
Process of DRAM Memory Controller
Designs

This chapter presents an automated framework for the validation of DRAM MCs called MCX-
plore. In developing this framework, we construct formal models for memory requests and
DRAM command interaction. The framework enables validation engineers to define their test
plans precisely using temporal logic specifications. We use the NuSMV model-checker to gener-
ate counterexamples that serve as test templates. MCXplore uses these test templates to generate
memory tests to validate the correctness properties of the memory controller. We show the effec-
tiveness of MCXplore by validating various state-of-the-art MC features as well as hard-to-detect
timing violations. We also provide a set of predefined test plans, and regression test suites that
validate essential properties of modern DRAM MCs. We release MCXplore as an open-source
framework to allow validation engineers and researchers to extend and use.

6.1 Introduction

While the complexity of computing systems is increasing, their time-to-market is decreasing.
As a consequence, the validation process of computing systems becomes a major challenge that
consumes a considerable portion of the design cycle. Companies spend millions of dollars an-
nually on the validation process of all components of the computing system [124]. Researchers
have proposed methodologies to validate CPU designs [125,126]. However, with the increase in
memory requirement demands from applications, main memory subsystem is a vital component

128

in almost all computing systems. Therefore, the validation of the memory subsystem is as cru-
cial as validating other components. Thus, this chapter focuses specifically on validating the MC
component, which manages requests to the main memory.

There are several techniques to validate computing systems. We consider simulation-based
validation since it is a commonly used approach [125,126]. To validate any new feature or debug
failures in the memory subsystem using the simulation-based approach, validation engineers
adopt a simulation model. They provide stimulus inputs to the model and study its responses.
Consequently, the effectiveness of this approach is heavily dependent on the ability of input tests
to cover necessary execution scenarios to be validated. Different approaches exist for generating
these tests. The straightforward approach is to use available benchmarks as the input stimuli,
which saves time and cost required to develop test suites. This approach is extensively used by
researchers to evaluate and validate their novel MC designs [75, 114, 127–129]; though, it has
shortcomings. First, some of the benchmarks may not be memory intensive. Furthermore, they
may be so complex that they do not have easy-to-analyse memory patterns, which are vital to
diagnose MC responses and to check for correctness. Second, these benchmarks do not explore
the state space of the memory subsystem properties. For instance, they have specific locality
and read/write switching ratios. Exploring this state space is paramount for validating the design
under all possible scenarios. To avoid these shortcomings, validation engineers either manually
develop their own synthetic test suites or use random test generators [124] [125]. Manually-
generated tests are time consuming and prone to human errors. On the other hand, randomly-
generated tests may not cover all necessary test properties.

A MC is a complex component that has to track the state of all memory banks, check over 12
timing constraints obligated by the JEDEC standard [11], and make several dynamic arbitration
decisions. Having the memory as a bottleneck in many computing systems [94], they are becom-
ing even more complex with different performance optimizations such as multiple reordering
levels, adaptive policies, and priority-based arbitration. Therefore, test generation for memory
subsystem validation is becoming an increasing challenge.

6.1.1 Contributions

We address the aforementioned challenge by making the following contributions.

1. We present MCXplore, an automated framework for the validation of MCs. Unlike prior ef-
forts to validate MCs, MCXplore is design independent such that it can be used to validate any
MC design. This is possible because MCXplore instead of following the convention by model-
ing a specific MC design, it models the input stimulus, which is common across different MC
implementations. Further, since MCXplore is design independent, it can be used to validate

129

the MC at different design cycles such as the pre-silicon high-level modeling (e.g. using sim-
ulators), hardware register-transfer level (RTL) implementations, and post-silicon validation.
MCXplore enables validation engineers to precisely specify the properties required in the test
suite in temporal logic specifications. Then, it automatically generates tests with the optimal
number of memory requests that satisfy these properties to validate the correctness of the MC.
We release MCXplore as an open-source framework [130] to allow validation engineers and
researchers to extend and use.

2. We introduce two formal models for the generation process of memory tests. The first model
represents the interrelation amongst memory requests (Section 6.4.1.1) and is used to vali-
date the MC’s frontend (Section 6.5), while the second model resembles interactions between
memory commands (Section 6.4.1.2) and is suitable for validating the MC’s backend (Sec-
tion 6.6). These models allow us to encode the test generation process as a symbolic finite
state machine (FSM), and use model checking techniques to explore the state space for MC
test suites and generate counterexamples that serve as test templates. MCXplore uses these
test templates to generate property-driven test suites.

3. We highlight interesting sequence patterns that a test suite should encompass to test and eval-
uate various MC features. Consequently, we provide a set of predefined test plans as well as
regression tests that validate essential functionalities of modern DRAM MCs.

4. Finally, we show a methodology to use high-level statistics such as bandwidth utilization,
access latency, and aggregated number of committed commands to validate the correctness
of several state-of-the-art MC features and debug for any timing violations. The validated
MC features are just examples to show the capabilities of using MCXplore for validation. The
proposed methodology applies for other features as well.

6.2 Background: Model Checking

Figure 6.1 delineates the basic operation of a model checker. A model checker is a verification
tool that takes two inputs: 1) a system model expressed as an automaton or an FSM, and 2) a
property expressed in a temporal logic statement. It, then, checks whether the system violates
this property or not by exploring the state space of the model. If it detects a violation, it produces
a counterexample. This counterexample is a path of states that falsifies the checked property.
If the property is carefully crafted, this counterexample can be interpreted as a test case for the
system [131]. Since the state space of the system may be exponential, it is useful to bound the
number of searchable states by the checker. This approach is known as bounded model checking

130

System Model
as FSM

TL Specification

Model
checker

Spec.
violated?

counterexample

No

Yes

Figure 6.1: Model checking operation.

(BMC) [132]. In BMC, the checker searches for a counterexample in executions whose length
is bounded by some integer i. Leveraging BMC, MCXplore provides memory tests with optimal
(minimum) number of requests. Optimality is achieved by starting with i = 1 and increasing i
until a counterexample is found. We provide more details about test generation in Section 6.4.

6.3 Related Work

Researchers have proposed several novel features to reduce the large DRAM access latency.
We divide these efforts into two main categories. The first category is providing DRAM sim-
ulation environments to help in the process of evaluating the strengths and weaknesses of new
ideas. Examples include DRAMsim2 [110], USIMM [117], DrSim [133], Ramulator [116],
and DRAMSys [134]. The second category is proposing novel features in all memory con-
troller sub-components such as address mapping [114, 127], page policy [3, 75, 128], and arbi-
tration [129, 135, 136]. Validating DRAM MC designs or simulators is a challenging task for
many reasons. 1) The MC must carefully track the state of each DRAM bank. 2) The DRAM
JEDEC standard specifies more than 12 timing constraints that any MC must satisfy for correct
operation. 3) Many dynamic factors impact the MC operation such as the type of requests in the
queues and which DRAM cell their addresses target.

For these reasons, most of the proposed DRAM simulators do not fully validate their opera-
tion. Ramulator [116] is validated using 10 million memory requests that are a mix of random and
hand-crafted requests. The authors conduct the validation process by providing these requests
to both Ramualtor and a reference Verilog model provided by Micron [137], and comparing the
behaviour of both. This approach has many shortcomings. 1) The used requests do not necessar-
ily exhibit all the possible request and command interactions. Thus, validation coverage is not
guaranteed. 2) The adopted Verilog reference model only validates that there are no violations

131

in the timing parameters. A timing parameter is violated if a corresponding command is issued
earlier than the specified timing constraint. However, it does not test for performance penalties
that may result from issuing the commands later than the specified constraint. 3) It does not
validate all other policies at the MC’s frontend, because these policies are not directly related to
command generation. These policies include the page policy, address mapping, and request arbi-
tration. Developers of DRAMsim2 [110] follow a similar validation procedure; thus, they suffer
from the same aforementioned shortcomings. DRAMSys [134] also uses a similar approach. It
executes testing scripts on the generated commands to check if the timing constraints comply to
the JEDEC standard. To our knowledge, neither USIMM [117] nor DrSim [133] are validated.

In Chapter 6, we propose MCXplore to provide an easy-to-adopt methodology to validate
these simulators to avoid these shortcomings. First, MCXplore provides property-driven tests for
each policy that guarantees coverage of all possible behaviours, as we illustrate in Section 6.4.
Second, the methodology can be used to seamlessly validate both backend and frontend policies
of MCs, as we illustrate in Section 6.5. We intentionally insert bugs into several components of
DRAMsim2 [110] and show that MCXplore is able to detect those bugs.

Upon proposing novel MC policies or features, researchers usually validate them using bench-
marks such as in [75, 114, 127–129], or manually-written directed tests or a combination of both
such as in [3, 135, 136]. Similarly, in industry, pre-silicon validation engineers often use hand-
written directed tests or randomly-generated tests [124]. In Chapter 6, we propose an automated
portable process of validating new features in the DRAM subsystem that can be used both by
researchers and industry. Compared to the aforestated methods used in [3, 75, 114, 124, 127–
129, 135, 136], our proposed framework would achieve better coverage, is less error-prone, and
reduces validation complexity through automation.

6.3.1 Formal Verification of the Memory System

Some prior works incorporate formal models in the design and validation process of memory
systems [138–141]. Authors of MSimDRAM [138] model their MC design as a state machine.
Accordingly, they encode the correct intended behavior of that MC as linear temporal logic (LTL)
specifications and use BMC to verify this behavior. Authors of [139] use a universal verifica-
tion methodology (UVM) environment to verify their proposed generic MC. The environment
consists of a test driver that generates test cases stimulating both the design and a reference trans-
action level modeling (TLM) model. The environment compares results from the design with the
reference results to detect any faults. The methodology in [140] automatically transforms the
timing constraints from the JEDEC standards into system verilog assertions (SVA), which can
be used to verify that the commands generated by the MC comply with these constraints. A timed
automata model for the MC’s backend is proposed in [141]. It uses UPPAAL model checker to

132

verify the correct behaviour of it including the timing constraints. All these approaches target
to validate a particular MC with specific design instance. The approach in [139] requires a ref-
erence TLM model to compare against and hardware probing capabilities to monitor different
signals. In addition, it requires a methodology to generate representative test cases to stress the
MC design. With the increasing complexity of MC designs, industry reports that the test case
generation process is becoming time consuming and requires huge intellectual efforts [142]. The
methodology in [140] requires modifications to the register transfer level (RTL) implementation
of the MC to insert the assertions. In addition, approaches of [140] and [141] focus solely on
MC’s backend.

MCXplore, on the other hand, focuses on modeling the input stimulus of the MC, which
enables MCXplore to be design agnostic and can be used to validate both MC’s frontend and
backend. MCXplore can leverage different levels of mentoring capabilities. For instance, in Sec-
tions 6.5 and 6.6, we utilize high-level metrics such as bandwidth utilization to validate features
from both frontend and backend. MCXplore, similar to these works, adopts model checking in
its framework. However, previous works use model checking to model and validate a specific
design as in [138], or to convert the specifications into RTL assertions as in [140]. In contrast,
MCXplore uses model checking as a test generation engine. Integrating model checking tech-
niques in the test generation process is not a new idea. Model checking has proven its success
as a test generation engine for validating both software [143, 144] and hardware [125, 126]. A
comprehensive survey of using model checking in testing can be found in [145]. Using model
checking set MCXplore as a framework that can generate various type of tests. For instance, it
can generate directed test cases, where the generated test is based on the temporal logic specifi-
cation and can be used to stress certain behavior of the MC. In addition, MCXplore can generate
constrained random test cases, where the generated test is randomized but obeys certain rules.
This is possible because model checking fully explores the state space of the memory test compo-
nents (addresses, transaction types, etc). Accordingly, by specifying the rules as specifications,
the model checker randomly picks one of the valid paths with minimum transitions (which can
be multiple) that satisfies these rules.

Industry solutions. Unfortunately, industrial solutions are intellectual properties (IPs) with
only few information available about them. Synopsys has a verification IP to verify the DRAM
and the memory controller [146]. The IP is implemented in SystemVerilog and uses UVM. This
IP requires access to the native RTL implementation. Further, it requires licensing, which may
be of unaffordable cost. Keysight Technologies and FuturePlus Systems follow a different ap-
proach by using special probes and analyzers to monitor the DRAM signals and verify their cor-
rectness [147]. This approach is suitable after the manufacturing process is finished (post-silicon
validation); however, it requires special hardware tools to conduct the verification process, which
may not be costly effective. MCXplore, contrarily, can also be used for post-silicon validation,

133

Pre-defined
SPECs

New?
Test

TemplateTest Plan

Select
Step3

Counterexample
exist?

Yes

No

Model
checker

Request
Model

Command
Model

New
SPECs

S
TA

R
T

#Tests

Parser

SyntaxAddr.
Mapping

Test Suties

Expected
Behaviour

MC
Under Test

Compare Equal?

Report
Correctness

Report
Bug

More
Diagnosis?

E
n
d

Step1 Step2
Test Template Generation

Test Suite Generation Diagnosis and Report

Figure 6.2: Proposed validation process of MCs.

while it does not require special hardware nor additional costs as it is freely available.

6.4 MCXplore Methodology

Figure 6.2 represents the steps of the methodology we propose. The process consists of three
phases: test template generation, test suite generation, and diagnosis and reporting. Thus, the
process separates the test generation step from the test plan step. This is an important requirement
from validation engineers to simplify the validation process [148].
Phase 1: Test Template Generation– In this phase, MCXplore turns the test plan into a test
template in three steps.

• Step 1: A test plan is a list of behaviours whose correctness needs to be validated. Usually,
design engineers provide this list in a highly-abstracted human language.

• Step 2: The big challenge for validation engineers is to turn the test plan into meticulous rules
that generated tests must follow [149]. We promote leveraging model checking capabilities to
address this challenge. Model checking automates the state-space exploration of the test gen-
eration, and provides a formal methodology to define test properties. We create two abstract
models to express the stimulus test of the MC: a request model, and a command interaction
model. We encode them as FSMs in the NuSMV model checker [150]. Accordingly, valida-
tion engineers are able to encode test properties as specifications expressed in temporal logic

134

formulas. Formulas are negated such that they are true if required test properties do not exist.
We accompany MCXplore with regression suites, and a pre-defined set of temporal logic spec-
ifications that encode most of the basic test properties required to stress MC designs. Table 6.1
tabulates these properties.

• Step 3: The model checker explores the FSM to determine the truth or falsity of the specifica-
tions. For a false specification, it constructs a counterexample, which is a trace of states that
falsifies the specification. This trace represents the test template that encompasses test proper-
ties specified by validation engineers. We use BMC to obtain the trace with minimum number
of states, which results in tests with the optimal (minimum) number of memory requests satis-
fying specified properties. Minimizing the number of requests is necessary to reduce the time
and complexity of the validation process.

Phase 2: Test Suite Generation– We provide a parser script to parse the test template produced
by phase 1, and generate test suites with memory requests. Validation engineers drive this parser
with the address mapping of the MC, number of desired tests in the suite, and test syntax.
Phase 3: Diagnosis and Report– Validation engineers invoke the MC under validation with the
generated test suite and compare responses with the expected behaviour. If results match, then
they report correctness. Otherwise, they report their diagnosis results and conduct more detailed
investigation if required. Section 6.5 provides a methodology to construct test plans with certain
expected behaviours to use as a golden metric to compare the MC response.

6.4.1 Proposed Models

We propose two models that are at different granularities to facilitate the test generation process.

6.4.1.1 Request Interrelation Model

To fully cover the state-space of a test of n memory read/write requests and a 32 bit address,
233 × n tests are needed. Clearly, such a large number of tests is prohibitively time consuming.
We argue that the important factor in the coverage is not the input stream pattern. Instead, it is
the MC’s response to this stream. For instance, if a request to a row rw1 is followed by a request
to rw2 in the same bank and rank, then the MC behaviour depends on whether rw2 = rw1 or
not. This is because the MC decision takes into account whether it is a row hit or a row conflict,
regardless of the actual values of these rows. The same observation holds for banks, ranks and
channels. Hence, a state graph constructing these relationships is sufficient to represent a model

135

Table 6.1: Currently supported configurations.

(a) Indexing Performance

Property Configuration
Address pattern Linear

Random
Customized

Type pattern All reads
All writes
Switching
Random
Switching%
Reads-to-writes%

Address mapping Any
Transaction size Any
Address length 32

(b) Customized Address

Segment Configuration
Row Hit (for any row)

Conflict
Random
Locality%

Bank/ No interleave
Rank/ Fully interleave
Channel Random

Interleave%
Column Same

Successive
Random

for the test template generation step. Based on this observation, we model the interrelation
between memory requests as the Kripke structure in Model 6.1. Recall that a DRAM request has
an address (Addr), and an operation type (ty) where the address consists of 5 segments (row,
column, bank, etc.), and the type is a read or a write operation. We define the proposition
e for each address segment such that e = 1 means that the request has the same segment as
its previous request, and e = 0 otherwise. Similarly, if ty = 1, then the operation is a read,
and a write otherwise. To exhibit all possible relations between successive requests, we have
64 possible states. For instance, for state s39, (s39, 〈1, 0, 0, 1, 1, 1〉) denotes a read request that
targets the same channel, row and column as its previous request, while it targets different rank
and bank. We also maintain a set of counters to track the address pattern such as total number of
requests, row hits, and bank interleavings, which we use to encode the test specifications. Note
that BIN(x, y) returns the yth bit of a positive integer x’s binary equivalent number.

6.4.1.2 Command Interaction Model

Validation engineers can use the request interrelation model to validate properties related to tim-
ing constraints ruling command interactions. However, in this case, MCXplore requires them
to find out the request patterns that expose these timing constraints. This is because, using the
request interrelation model, MCXplore allows specifications to be at the request level and not the
command level. Therefore, we propose the command interaction model to facilitate the valida-

136

Model 6.1: Kripke structure for the MC input.

1 MCin = {Sin, Iin, Rin, Lin} where:
2 Pin = {ty, erw, ech, ernk, ebnk, ecl}
3 Sin = {si : ∀i ∈ [0, 63]} is the set of all possible states.
4 I = {s0} is the set of initial states.
5 R = {(si, sj) : ∀i, j ∈ [0, 63]} is the transition relation between states.
6 L = {(si, 〈ecl, ebnk, ernk, ech, erw, ty〉)} is the labeling function where all the sets cannot

be empty sets, and
7 ty=BIN(i, 0), erw=BIN(i, 1), ech=BIN(i, 2), ernk=BIN(i, 3), ebnk=BIN(i, 4), and ecl=BIN(i, 5).

tion of properties related to MC command generation. This model enables validation engineers
to specify the timing constraints to be validated and MCXplore automatically generates the test
sequence that exercises these constraints. Figure 6.3 depicts the state graph of this model that
we build based on the timing constraints imposed by the JEDEC standard [11]. The vertices
represent DRAM commands and the edges represent timing constraints. For example, the time
between A and a P to the same bank must be at least tRAS. In Section 6.6, we use this model
to generate test suites for validating the correctness of command generation, and checking for
any timing violations. Generally, the request model is better-suited for MC’s frontend validation,
while the command model well-suits the MC’s backend validation. Frontend policies include re-
quest arbitration, address mapping, and page policy. MC’s backend is responsible for command
generation and arbitration.

In the remaining of this chapter, we show case studies on applying the proposed methodology
to validate the correctness of several state-of-the-art MC policies. We use DRAMSim2 [110]
with DDR3-1333 DRAM to conduct the experiments. We use the DDR3-1333 module only as
an example. All the lemmas and proofs in this chapter are independent of the specific values
of the timing constraints; thus, they are applicable to other DRAM modules unless otherwise
specified. We also insert common design bugs in the functionality of these features to determine
whether the proposed methodology can discover them. We use bandwidth utilization defined in
Equation 6.1 as our metric to validate the MC features. The advantage of using Uti for validation
is that it does not require an engineer to observe internals of the MC. Instead, existing inputs and
outputs of the MC are sufficient. In Equation 6.1, the total DRAM access cycles consists of the
data transfer cycles and the overhead due to DRAM timing constraints.

Uti =
Data transfer cycles

Total DRAM access cycles
(6.1)

It is worth noting that a single metric cannot cover all design bugs. Accordingly, we show the

137

AAd,sAd,sAd,s

Rs,s

Rx,sRx,dWx,s

Ws,s
PWx,d

Di De

As,s
tRRD

tFAW

tR
C
D

tCCD

R
K
to
R
K

R
to
W

tRCD

WtoR_B
tCCD

WtoR_RK

tRAS

WtoP

RtoPRtoWRKtoRK

tW
L

tRL

tBUS

tR
P

tRC

Figure 6.3: DRAM commands and timing constraints interaction. Subscripts reflect the targeted
bank and rank, respectively. d: different, s: same, x: do not care. Di: start of the data transfer.
De: end of the data transfer. P is for same bank. Ad,s is an A command to a different bank on the
same rank.

usage of MCXplore with other metrics such as the aggregated numbers of issued commands
(Section 6.6.11), and the memory access latency (Section 6.6.12).

6.5 Validating MC’s Frontend

We validate features from MCs frontend functionalities including address mapping, page policy,
and request arbitration. We show the complete validation process for the XOR address mapping.
For the other policies, to avoid repetition, we discuss the three major components of the valida-
tion process: the test plan, the LTL specifications, and the diagnosis. Since all the policies we
validate in this section are at the MCs frontend, we use the request model.

138

6.5.1 Address Mapping Policies

We validate three features related to the address mapping component: the XOR address map-
ping [114], the address masking [151], and the rank hopping mechanism [78, 152].

6.5.1.1 Permutation-Based Page-Interleaving (XOR) Address Mapping Validation

Modern MCs reduce row conflicts by using a permutation-based page interleaving, where the
bank bits are bitwise XOR-ed with the least significant three row bits [113,114]. We refer to this
technique as simply XOR address mapping.
Test plan. To generate a test suite that represents the optimal memory pattern for the XOR
mapping. It is a stream of read accesses where we change the bank interleaving ratio per test,
intr. In addition, requests targeting the same bank are accessing different rows. SuiteXOR
formally represents this test plan. Each test has an interleaving percentage between 0% and
100%. nbnk is the number of banks per rank (usually 8 for DDR3). The conditions ensure
that intr% of requests in the test interleave across different nbnk banks. They also ensure that in
these intr% requests, each nbnk successive requests target same row, which implies that requests
targeting different banks have same rw segment, while requests to the same bank have different
rw values. Again, the target of this test plan is to achieve the maximum possible utilization of
XOR mapping regardless of the intr value.

Test 6.1: SuiteXOR—Test suite to validate XOR address mapping.

1 SuiteXOR = {Testintr : ∀intr ∈ [0, 100]}
2 Testintr = [Req1, Req2, ..., Reqn], where Reqk = 〈Addrk, R〉, k ∈ [1, n]. ((rwl = rwm) iff

((l MOD nbnk = m MOD nbnk) ∧ (l,m ∈ [1, n×intr
100

]))), and ((bnkl 6= bnkl−1) iff
l ∈ [2, n×intr

100
]).

Specifications. Each test template has its corresponding specification. The LTL in Spec. 6.1
encodes a test plan with intr = 40%, where t x represents the total counts of the event x.
t hit is the total number of row hits, and t bank interleave is the total number of bank
interleavings. The intuition behind the specification is that out of 10 total requests in the test, the
first 6 requests target different rows in the same bank, while the last 4 requests target the same
row but in different banks.

LTL Specification 6.1: XOR mapping.
G ((n u m r e q u e s t s =6 & t h i t =0 & t b a n k i n t e r l e a v e =0)−>

! F (n u m r e q u e s t s =10 & t r e a d s =10 & t h i t =4 & t b a n k i n t e r l e a v e = 4))

139

Test template. MCXplore invokes the NuSMV model checker to explore the state space to find
a counterexample for the specification. The counterexample represents the test template that
exhibits the required test properties. Figure 6.4a delineates the test template for the specifications
in Spec. 6.1.

CH1 :RNK1:BNK1:RW1: CL1 R
CH1 :RNK1:BNK1:RW2: CL1 R
CH1 :RNK1:BNK1:RW3: CL1 R
CH1 :RNK1:BNK1:RW4: CL1 R
CH1 :RNK1:BNK1:RW5: CL1 R
CH1 :RNK1:BNK1:RW6: CL1 R
CH1 :RNK1:BNK2:RW6: CL1 R
CH1 :RNK1:BNK3:RW6: CL1 R
CH1 :RNK1:BNK4:RW6: CL1 R
CH1 :RNK1:BNK5:RW6: CL1 R

(a) Test template.

0 x00000000 R
0 x00080000 R
0 x00100000 R
0 x00180000 R
0 x00200000 R
0 x00280000 R
0 x00290000 R
0 x002a0000 R
0 x002b0000 R
0 x002c0040 R

(b) Final test example.

Figure 6.4: Test generation for validating XOR mapping

Test suite. MCXplore parses each test template and generates a test that complies with the test
plan (step 4). Figure 6.4b shows one test instance generated from the test template.
Diagnosis. For the sake of comparison, we execute SuiteXOR on both the XOR mapping and
the base mapping (no XOR operation is performed). As Figure 6.5 illustrates, increasing the
intr ratio on the test, the base mapping achieves better utilization. This is because requests to
different banks are serviced in parallel. On the other hand, the correct behaviour of the XOR
mapping is to achieve a fixed utilization for all tests in the suite. This is because even for non-
interleaved accesses, the XOR address mapping will map them to different banks because of
the XOR operation between the bank bits and the corresponding row bits. To further check
for correct functionality, this value should be compared to the expected utilization dictated in
Lemma 6.1. Figure 6.5 shows that the XOR mapping achieves a fixed utilization of ∼ 79%,
which coincides with the expected behaviour.

Lemma 6.1. Executing any test in SuiteXOR on a MC with XOR mapping results in a utilization
that can be calculated as: 4·tBUS

tFAW
.

Proof. Since XOR mapping maps successive requests of any test in SuiteXOR to different banks,
the MC under test repeats the behaviour shown in Figure 6.6 every 8 requests. Focusing on one
repetition, the data bus is busy for 8 · tBUS, while the total DRAM latency is 2 · tFAW .

140

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

BW
 U
til
iz
at
io
n
(%

)

Interleave (%)
Bug1 Bug2 Correct Base

Figure 6.5: XOR address mapping.

A1 A2 A3 A4 A5 A6 A7 A8 A1

tFAW tFAW

tBUS tBUS tBUS tBUStBUS tBUS tBUS tBUS

Figure 6.6: Command sequence of SuiteXOR on XOR mapping.

Bug scenario. To illustrate potential design errors, we inject two bugs in the XOR mapping. In
the first one (Bug1 in Figure 6.5), we perform the XOR operation between only the first two bits
of the bank and row segments, while in the second bug (Bug2), we perform the XOR operation
between the least significant bit of row and bank segments. From Figure 6.5, both Bug1 and
Bug2 do not achieve the expected utilization of Lemma 6.1; hence, they are detectable.

6.5.1.2 Address Masking

MCs map logical addresses to physical addresses by using a bit masking operation. Figure 6.7 il-
lustrates the masking operation to extract the row, column and bank segment of an address. Rank
and channel segments are extracted with similar logic. We use MCXplore to generate tests to val-
idate the address mapping operation for a variety of address mappings with different number of

141

rows, ranks and channels, and with various row sizes. Modern memory controllers (such as the
Intel MC hub [151]) rely on configuration registers to select one of possible address mappings.
For clarity, we show one simple example comprising of a single-rank single-channel DRAM
subsystem with three possible address mapping schemes, Scheme1: (rw-cl-bnk), Scheme2:
(bnk-cl-rw), and Scheme3:: (bnk-rw-cl). Figure 6.8 explains these three schemes.
Test plan: To generate three tests: Test1, Test2 and Test3. Each test is a stream of read accesses
targeting the same bank and different rows. Tests differ only in the address mapping, where
Test1, Test2 and Test3 are designed corresponding to Scheme1, Scheme2 and Scheme3, re-
spectively.
Specification: Spec. 6.2 encodes the test plan as an LTL property, where the test comprises of 10
requests.

142

rw cl bnk
...

>> >> >>
cl=576 bnk=3rw=894

input:

DRAM addr: ...

Mask Mask Mask

Figure 6.7: Address masking operation.

0581518252831

cl
cl

rw
rw
cl

bnk

rw
off
off

addr bits:
Scheme1

Scheme2

Scheme3

bnk
bnk off

Figure 6.8: Address masking schemes.

LTL Specification 6.2: Address Masking.
G! ((n u m r e q u e s t s = 10) & (t h i t =0) & (t b a n k i n t e r l e a v e = 0))

Diagnosis. We execute each test on each address scheme and depict the results in Figure 6.9.
Lemma 6.2 calculates the expected utilization upon executing Testi on Schemei. Each test
should result in a utilization of tBUS

tRC
≈ 12% when running on its corresponding scheme and

larger utilization otherwise.

Lemma 6.2. Executing Testi on Schemei for i ∈ {1, 2, 3}, the BW utilization of the DRAM
under test can be calculated as: tBUS

tRC
.

Proof. Executing Testi on Schemei for i ∈ {1, 2, 3}, the DRAM under test repeats the be-
haviour shown in Figure 6.10 every request. Focusing on one request, the data bus is busy for
tBUS cycles. Moreover, the total DRAM latency required to transmit the data of one request is
tRC = tRP + tRAS cycles.

Bug scenario: The masking operation may result in a different mapping than the intended
one by the designer. This can be due to a fault in the masking logic, the configuration registers or

143

11.5

98.18

16.00

97.39

11.53

97.93

59.18

97.93

11.53

0

20

40

60

80

100

B
W

 U
ti

li
z
a
ti

o
n

(%
)

Scheme1 Scheme2 Scheme3

Test1 Test2 Test3

Figure 6.9: Address masking results.

A1 R1

tRCD

D1
tRL

P

RtoP
tRAS

A2

tRP

tRC

Figure 6.10: Command sequence from executing Testi on Schemei, i ∈ {1, 2, 3}.

even a human error when the designer unintentionally sets the wrong address scheme. For exam-
ple, let the intended mapping to be Scheme1, while the masking mistakenly results in a mapping
of Scheme3. Under this scenario, Test3 is the one that will result in the expected utilization
and not Test1; hence, we can discover that there is inconsistency between the masking operation
mapping and the intended mapping. Since the generated tests target different rows in the same
bank, they generate row conflicts and result in a minimum utilization (tBUS

tRC
). Accordingly, if a

bug results in running Testi on Schemej , where i 6= j, the resulting utilization will be higher
than the expected value. Results in Figure 6.9 illustrate this insight.

144

6.5.1.3 Rank Hopping

Some modern memory controllers use rank hopping to force consecutive requests to access dif-
ferent ranks [78,152]. Hence, they will not suffer from the read-write switching required between
accesses of different types accessing the same rank. Instead, requests targeting different ranks
suffer from a lesser delay: the rank-to rank switching, tRTRS.
Test plan. SuiteHOP formally describes the test plan. The target is to generate a test suite, where
each test has a different read-write switching ratio (sw) and all requests are targeting the same
bank and row.

Test 6.2: SuiteHOP— Test suite for rank hopping.

1 SuiteHOP = {Testsw : ∀sw ∈ [0, 100]}
2 Testsw = [Req1, Req2, ..., Reqn], where Reqk = 〈Addrk, ty〉, k ∈ [1, n]. ((rwl = rwl−1)

and (bnkl = bnkl−1) ∀l ∈ [2, n]) , and tyl = tyl−1 iff l ∈ [2, n×sw
100

]

Specifications. Each test template has its corresponding specification. The LTL in Spec. 6.3
encodes a test plan with sw = 40%, (t sw = 40) out of (num requests = 100).

LTL Specification 6.3: Rank hopping.
G! (n u m r e q u e s t s =100 & t h i t =99 &t b a n k i n t e r l e a v e =99 &

t s w =40)

Diagnosis. We test both the rank hopping mapping with a dual-rank DRAM, and a single-rank
DRAM. We delineate results in Figure 6.11. The correct behaviour of rank hopping is to achieve
a fixed utilization regardless the switching ratio while the utilization of the single-rank DRAM
degrades with the increase of the switching ratio due to theRtoW and WtoR B constraints. For
tests with low switching ratio, we expect the single-rank system to have better utilization than
the rank hopping because of the overhead that tRTRS constraint adds. Lemma 6.3 determines
the threshold point.

Lemma 6.3. The rank hopping mapping outperforms the single-rank base mapping if and only
if the switching ratio, sw, satisfies the following condition:

sw >
2tRTRS

tRL+ tWTR + 2tBUS + tRTRS − 2tCCD
.

Proof. For the single-rank base mapping, the DRAM utilization for a test of requests with same
type targeting same row and bank, Testsw=0, can be approximated to Utino sw = tBUS

tCCD
(proof is

in Section 6.6.1). On the other hand, the DRAM utilization for Testsw=100 can be approximated

145

20
30
40
50
60
70
80
90
100

0 10 20 30 40 50 60 70 80 90 100

BW
 U
til
iz
at
io
n

R/W Switching
1RNK RNK‐SW

(%
)

(%)

Figure 6.11: Rank hopping.

to Utisw = 2tBUS
tRL+tWTR+2tBUS+tRTRS

(proof is in Section 6.6.9). Consequently, the utilization
for a test Testsw executing on single rank is calculated in Equation 6.2. Uti1rnk is the weighted
harmonic mean of Utino sw and Utisw with weights (1− sw) and sw, respectively.

Uti1rnk =
1

1−sw
Utino sw

+ sw
Utisw

(6.2)

For the rank hopping mapping, the DRAM utilization can be approximated toUtihop = tBUS
tBUS+tRTRS

.
Hence, the rank hopping outperforms base mapping if: Utihop > 1

1−sw
Utino sw

+ sw
Utisw

. This can occur

only if sw >
Utisw×(Utino sw−Utihop)

Utihop×(Utino sw−Utisw)
. By substituting Utino sw, Utisw and Utihop and conducting

mathematical simplifications, the condition will be: sw > 2tRTRS
tRL+tWTR+2tBUS+tRTRS−2tCCD

.

Figure 6.11 illustrates that for switching ratios that are approximately larger than or equal
to 12.5%, the rank hopping mapping outperforms the single-rank base mapping which coincides
with the conclusion of Lemma 6.3.

146

6.5.2 Page Management Policies

Recall from Section 4.2 that the page policy controls the liveness of the row in the row buffer.
We validate three page policies, which are commonly used in current architectures: close-page,
open-page, and adaptive-page policies. Since DRAMsim2 supports only close- and open-page
policies, we extend it to support the adaptive-page policy. We implement an adaptive-page policy
that models the page policy implemented by Intel [111] and executes the following procedure.
If the number of row hits in a decision window is larger than 50%, the MC executes a open-
page policy; otherwise, it executes a close-page policy. We choose the decision window to be 20
requests; thus, the MC executes open-page if there are at least 10 hits in the last 20 requests.
Test Plan. To generate a test suite, where each test is a stream of read accesses targeting the same
bank such that it has a different locality ratio. SuitePP formally defines this test plan. We define
the locality percentage as: loc = number of row hits×100

total number of requests . Unlike all previous tests, where all requests
of the test are issued back-to-back at cycle 0, Testloc issues a request every 2 · tRC cycles. The
intuition is that it is necessary that each two successive requests be separated by a period larger
than tRC to differentiate between the behaviour of the close-page and that of open-page when it
has a row-conflict.

Test 6.3: SuitePP—Test suite for page policy.

1 SuitePP = {Testloc|∀loc ∈ [0, 100]}
2 Testloc = [Req1, Req2, ..., Reqn], where Reqk = 〈Addrk, R, tk〉, k ∈ [1, n]
3 tk = 2 · (k − 1) · tRC
4 and (bnkl = bnkm) ∀l ∀m ∈ [1, n], and (rwl = rwm) iff l,m ∈ [1, n×loc

100
].

Specifications. Each loc value has its corresponding specification. The LTL in Spec. 6.4 encodes
a test plan with loc = 40%, (t hit = 40) out of (num requests = 100).

LTL Specification 6.4: Page policy.
G! (t r e q u e s t s =100 & t h i t =40 &t b a n k i n t e r l e a v e =0 &

t r e a d s =100)

Diagnosis. We execute SuitePP on DRAMSim2 for each page policy and depict the results
in Figure 6.12. 1) Close-page is expected to have the same DRAM utilization for all tests.
Lemma 6.4 dictates this utilization. We observe that the obtained results of close-page in Fig-
ure 6.12 coincide with the expected utilization from Lemma 6.4. 2) For open-page, the utilization
depends on the loc percentage. Increasing loc, less precharging is required and the DRAM uti-
lization increases accordingly. Lemma 6.4 defines the relation between DRAM utilization and
loc. Figure 6.12 shows that open-page policy outperforms close-page policy for loc > 50%.

147

0.1

0.15

0.2

0.25

0.3

0.35

0 10 20 30 40 50 60 70 80 90 100

BW
 U
til
iz
at
io
n

Locality
Adaptive‐page Close‐page Open‐page

(%
)

(%)

Figure 6.12: Evaluation of page policies.

This value can be directly derived from the utilization values that Lemmas 6.4 and 6.5 calculate.
3) Deploying adaptive-page, the MC executes the close-page policy for low loc values, while it
switches to open-page for high loc values. Figure 6.12 shows that the adaptive-page policy has
the same utilization as the close-page for loc ≤ 50% and the same utilization as the open-page
otherwise.

Lemma 6.4. Executing Testloc on a MC with close-page policy results in the same utilization
for all feasible loc ratios. This utilization can be calculated as: tBUS

tRCD+tRL+tBUS
.

Proof. As Figure 6.13a delineates, each request consumes a total of tRCD + tRL + tBUS
DRAM cycles to transfer on the data bus for only tBUS cycles. The DRAM remains idle for
the remaining of the 2 · tRC period and our utilization metric in Equation 6.1 only considers the
DRAM active cycles.

Lemma 6.5. Executing any test in TestsPP on a MC with open-page policy, the utilization can
be calculated as: tBUS

(1−loc)(tRP+tRCD+tRL+tBUS+loc(tRL+tBUS)
.

Proof. For loc = 0, all requests will incur a row conflict. Each request will have the com-
mand pattern in Figure 6.13b. Therefore, the BW utilization can be calculated as Uticonf =

tBUS
tRP+tRCD+tRL+tBUS

. In contrast, for loc = 100%, all requests will incur a row hit and each

148

A1 R1

tRCD

D1
tRL

P

RtoP
tRAS

A2

(a) Close-page policy.

A1 R1
tRCD

D1
tRL

PP
tRP

(b) Open-page policy (row conflict).

R1

D1
tRL

R1

(c) Open-page policy (row hit).

Figure 6.13: Command arrangement for TestPP .

request has the command pattern in Figure 6.13c. Accordingly, the BW utilization can be calcu-
lated as Utihit = tBUS

tRL+tBUS
. In general, the BW utilization of Testloc with any loc value can be

calculated as the weighted harmonic mean of Uticonf and Utihit as follows: 1
1−loc
Uticonf

+ loc
Utihit

. This

gives the utilization value, which Lemma 6.5 calculates.

6.5.3 Arbitration Schemes

We validate a MC feature that affects both the page policy and the arbitration deployed by the
MC. MCs employing this feature keep the row in the row buffer for a designated number of
row hits, that we call maximum row-hits threshold. Thus, the open-page policy is turned into
a threshold-based page policy in these MCs. In addition, the threshold limits the number of re-
quests that can be reordered with the FR-FCFS arbitration scheme deployed in most conventional
MCs nowadays [136]. MC designers select the threshold value that maximizes the performance
for targeted applications. In this experiment, we assume the intended threshold to be thr = 16.
Though, the procedure is valid for any thr’s value.

Test plan. To generate a set of tests, where each test is a stream of read accesses targeting
the same bank, while we sweep the number of requests targeting an open row (row hits), hit, per
test. We use the request model to generate the test suites. Suitethr formalizes this plan, where
we sweep hit between 0 and 32. The conditions ensure that all requests target the same bank,
while every hit successive requests target the same row.

149

Test 6.4: Suitethr— Test Suite for threshold-based FR-FCFS arbitration.
1 Suitethr = {Testhit : ∀hit ∈ [0, 32]}
2 Testhit = [Req1, Req2, ..., Reqn], where ((bnkl = bnkl−1) and ((rwl = rwm) iff (l MOD

hit = m MOD hit)) ∀l,m ∈ [1, n]).

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

BW
 U
til
iz
at
io
n

#Successive hits in the test
Bug1 Bug2 Correct

(%
)

Figure 6.14: Evaluation of FR-FCFS threshold.

Specifications. The formula in Spec. 6.5 exemplifies the encoding of the test plan with hit = 16
such that the first request opens a row and requests 2 to 16 are hits on that row. Afterwards,
request 17 opens a different row (row conflict), and requests 18 to 32 are hits on the open row.

LTL Specification 6.5: Threshold-based FR-FCFS arbitration.
G((c h i t =15) −> ! F (t r e q u e s t s = 32 & t h i t =30 &
t b a n k i n t e r l e a v e =0 & c h i t = 1 5))

Diagnosis. We execute the generated tests and compare with the expected behaviour. The cor-
rect functionality is to achieve the maximum utilization when hit = thr. Lemma 6.6 calculates
this maximum utilization value. Figure 6.14 shows that the MC under correct functionality (Cor-
rect) achieves a maximum utilization of 73% at hit = 16, which confirms the conclusion of
Lemma 6.6.

Lemma 6.6. Executing Suitethr on a MC that implements a maximum row-hits threshold results
in a maximum utilization for the test Testhit with hit = thr and this utilization can be calculated
as: thr×tBUS

tRCD+(thr−1)tCCD+RtoP+tRP
.

150

Proof. When hit = thr, the DRAM under test repeats the behaviour illustrated in Figure 6.15
every thr requests. During one repetition, the data bus is busy for thr × tBUS, while the total
access latency is tRCD + (thr − 1)tCCD +RtoP + tRP .

A R R R A

tRCD

tBUS

P

tCCD

(thr-1)tCCD

RtoP tRP

tBUS tBUS
tRL

Figure 6.15: Command sequence of Suitethr when hit = thr − 1.

Bug scenario. We embed two bugs to the logic of the row-hits threshold. The first bug (Bug1 in
Figure 6.14) reduces the threshold to 8 instead of the intended value by the designer (16), while
the second bug (Bug2 in Figure 6.14) increases the threshold to 32. From utilization graphs in
Figure 6.14, we directly discover that the maximum utilization value is not the expected value
calculated by Lemma 6.6. In Bug1, the utilization graph repeats a pattern every multiple of 8,
where it achieves the maximum utilization. Consequently, we deduce that the bug causes the
threshold to be 8. A similar conclusion can be reached for Bug2.

6.6 Validating MC’s backend

Using MCXplore, we design property-driven tests to validate the correctness of the timing param-
eter values enforced by the MC. The key novelty here is that each test is designed to maximize
the impact of the timing parameter under test while eliminating or minimizing the effect of all
other parameters. Using the state graph in Figure 6.3, we exhaustively study all possible com-
mand interactions, produce utilization equations to investigate the impact of timing parameters
on utilization. Having these equations, we find that not all parameters can be isolated. As a con-
sequence, we introduce the dependency graph in Figure 6.16. An edge from constraint constr1

to constr2 means that constr1 must be validated before constr2. A bi-directional edge between
two constraints means that they have to be validated together. To avoid repetition, we only show
the complete validation process for the tCCD parameter. For the other parameters, we discuss
the three major components of the validation process: the test plan, the LTL specifications, and
the diagnosis. We summarize our findings in Table 6.4. Since we validate the timing constraints
related to the command interactions, we use the command model.

151

Figure 6.16: Validation dependency graph for timing parameters.

Bug scenarios. For the timing parameter under validation, we randomly set one of these
parameters to a wrong value in the range: [0, standard value + 20], where standard value is the
value dictated by the JEDEC standard.

6.6.1 tCCD

Test plan. TestCCD formalizes this plan. It is a stream of n read accesses targeting the same
bank and row (100% row locality). If n � 10 in Figure 6.17, tCCD will dominate the other
timing constraints as Lemma 6.7 proves.

Test 6.5: TestCCD to validate tCCD.
1 TestCCD = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk, R〉, k ∈ [1, n]
3 and (bnkl = bnkm) ∧ (rwl = rwm), ∀l ∀m ∈ [1, n], n� 10.

Specifications. The LTL in Spec.6.6 specifies a state, where the number of requests is 100 and
the tCCD constraint appeared 99 times on the explored path to reach this state.

LTL Specification 6.6: tCCD.
G ! ((n u m r e q u e s t s =100) & (num tCCD=99)&
((num tRL = 1) | (num tWL =1))&(num tBUS =1)&(num Rx d = 0))

Test template and test generation. MCXplore invokes the NuSMV model checker to explore the
state space to find a counterexample for the specification. The counterexample represents the test
template that exhibits the required test properties. Figure 6.18a delineates the test template for
the specifications in Spec. 6.6. Afterwards, the parser parses this template to generate as many
tests as required, which conforms with the provided address mapping and syntax. Figure 6.18b
shows one test instance for a 64bit address machine.

152

A1 R1

tRCD
tRL

D1

R2 Rn

tCCD
(n-1)tCCD

.....D2 Dn

tBUS

Figure 6.17: Command sequence of TestCCD.

CH1 :RNK1:BNK1:RW1: CL1
CH1 :RNK1:BNK1:RW1: CL2
CH1 :RNK1:BNK1:RW1: CL3

.

.
CH1 :RNK1:BNK1:RW1: CL100

(a) Test template.

0 x0000000000000040
0 x0000000000000080
0 x00000000000000C0

.

.
0 x0000000000001900

(b) Final test example.

Figure 6.18: Test generation for validating tCCD.

Diagnosis. To validate tCCD’s value, we execute the obtained test on the MC under test
(DRAMsim2 in this case) and plot the results for various tCCD values in Figure 6.19. Af-
terwards, we compare the observed utilization (Utio) with the golden-metric utilization calcu-
lated from Lemma 6.7, Utic. Figure 6.19 illustrates that the observed utilization aligns with the
golden metric for tCCD = 4, which is the value specified by the standard. For tCCD > 4,
the optimization is less than the expected value, which implies that the tCCD timing is set to a
non-optimal value. Obviously, this leads to a performance degradation as Figure 6.19 shows. For
tCCD < 4, the optimization exceeds 100% in DRAMsim2 timings, which implies a corruption
in the transferred data.

Lemma 6.7. Executing TestCCD, the BW utilization of the DRAM under test can be approxi-
mated to: tBUS

tCCD
.

Proof. Executing TestCCD, the DRAM under test exhibits the behaviour shown in Figure 6.17.
Since TestCCD has n requests, the data bus is busy for n · tBUS cycles. Using Figure 6.17, the
total DRAM access time can be calculated as: tRCD + (n− 1) · tCCD + tRL + tBUS. As a
result, the BW utilization of the DRAM under test is: n·tBUS

tRCD+(n−1)·tCCD+tRL+tBUS
. If n >> 10,

the BW utilization can be approximated to tBUS
tCCD

.

153

10
20
30
40
50
60
70
80
90
100
110

2 4 6 8 10 12 14 16 18 20 22 24

BW
U
til
iz
at
io
n

tCCD[Cycles]

Non-optimal
St
an

da
rd
-v
io
la
ti
on

(%
)

Figure 6.19: tCCD validation results.

6.6.2 tRC

Test plan. TestRC formalizes the plan to validate tRC. It is a stream of n read accesses targeting
the same bank where each access is targeting a different row than the previous access.

Test 6.6: TestRC to validate tRC.
1 TestRC = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk, R〉, k ∈ [1, n]
3 and (rnkl = rnkm) ∧ (bnkl = bnkm) ∧ (rwl 6= rwm), ∀l ∀m ∈ [1, n].

Specifications. The LTL in Spec.6.7 specifies a state in the FSM, where the number of
requests is 10. The property (num tRC=9) dictates that the explored path has to exhibit the
tRC constraint 9 times. This ensures that all requests target a different row in the same bank.

LTL Specification 6.7: tRC.
G! ((n u m r e q u e s t s = 10) & (num tRC = 9))

Diagnosis. Figure 6.20 depicts the observed utilization for different tRC values. Lemma 6.8
calculates the golden utilization we expect for the ideal tRC value.

Lemma 6.8. Executing TestRC , the BW utilization of the DRAM under test can be calculated
as: tBUS

tRC
.

Proof. Executing TestRC , the DRAM under test repeats the behaviour shown in Figure 6.10 (the
same figure that illustrates command sequence of address masking) every requests. Focusing on

154

7
9
11
13
15
17
19

24 26 28 30 32 34 36 38 40 42 44 46 48 50 52 54

BW
U
til
iz
at
io
n

tRC[Cycles]

Non-optimal
Standard-violation(%

)

Figure 6.20: tRC validation results.

one repetition, the data bus is busy for tBUS cycles. Moreover, the total DRAM latency required
to transmit the data of one request is tRC = tRP + tRAS cycles.

6.6.3 tFAW

Test plan. TestFAW formalizes the plan to validate tFAW . It is a stream of n read accesses
targeting the same rank where each access is targeting a different row and bank than the previous
access.

Test 6.7: TestFAW to validate tFAW .
1 TestFAW = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk, R〉, k ∈ [1, n]
3 and (rnkl = rnkm) ∧ (bnkl 6= bnkm) ∧ (rwl 6= rwm), ∀l ∀m ∈ [1, n].

Specifications. The LTL in Spec.6.8 specifies a state in the FSM, where the number of
requests is 8 and the tFAW constraint appeared twice on the explored path to reach this state.
A test of 8 requests is sufficient because the number of banks in the used DDR3 is 8. Recall that
tFAW is the minimum time to activate four banks in the same rank. If all the eight requests in
the test target different banks, tFAW appears twice.

LTL Specification 6.8: tFAW .
G! ((n u m r e q u e s t s = 8) & (num tFAW = 2))

155

10
20
30
40
50
60
70
80
90
100

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40

BW
U
til
iz
at
io
n

tFAW[Cycles]

Non-optimal

Standard-violation

(%
)

Figure 6.21: tFAW validation results.

Diagnosis. Figure 6.21 delineates the observed utilization for different tFAW values. Lemma 6.9
calculates the golden utilization we expect for the ideal tFAW value.

Lemma 6.9. Executing TestFAW , the BW utilization of the DRAM under test can be calculated
as: 8·tBUS

2·tFAW .

Proof. Executing TestFAW , the DRAM under test repeats the behaviour shown in Figure 6.6
(the same figure that illustrates the command sequence for the XOR address mapping) every 8
requests. Focusing on one repetition, the data bus is busy for 8 · tBUS cycles. In addition, the 8
requests encounter a total DRAM access latency of MAX(2 · tFAW, 8 · tRRD) = 2 · tFAW .

6.6.4 tRTRS

Test plan. TestRTRS formalizes the plan to validate tRTRS. It is a stream of n read accesses
targeting the same row where each access is targeting a different rank than the previous access.

Test 6.8: TestRTRS to validate tRTRS.
1 TestRTRS = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk, R〉, k ∈ [1, n]
3 and (rnkl 6= rnkm) ∧ (rwl = rwm), ∀l ∀m ∈ [1, n].

156

20
30
40
50
60
70
80
90
100

0 1 2 3 4 5 6 7 8 9 10

BW
U
til
iz
at
io
n

tRTRS[Cycles]

Non-optimal
St
an

da
rd
-v
io
la
ti
on

(%
)

Figure 6.22: tRTRS validation results.

Specifications. The LTL in Spec.6.9 specifies a state in the FSM, where the number of
requests is 10 and the tRTRS constraint is exercised 9 times on the explored path to reach this
state. This ensures that every two consecutive requests in the test target different ranks.

LTL Specification 6.9: tRTRS.
G ! ((n u m r e q u e s t s =10)&(num RANK TO RANK DELAY=9)&
((num tRL = 1) | (num tWL = 1)) & (num tBUS = 1))

Diagnosis. Figure 6.22 depicts the observed utilization for different values. Lemma 6.10 calcu-
lates the golden utilization we expect for the ideal tRTRS value.

Lemma 6.10. Executing TestRTRS , the BW utilization of the DRAM under test can be approxi-
mated to: tBUS

tBUS+tRTRS
.

Proof. Since TestRTRS has n requests, the data bus is busy for n · tBUS cycles. Using Fig-
ure 6.23, the total DRAM access time can be calculated as: tRCD+(n−1)·(tBUS+tRTRS)+
tRL+ tBUS. As a result, the BW utilization of the DRAM under test is:

n · tBUS
tRCD + (n− 1) · (tBUS + tRTRS) + tRL+ tBUS

If n >> 10, the BW utilization can be approximated to tBUS
tBUS+tRTRS

.

157

A1 R1

tRCD
tRL

D1

R3 Rn
tCCD+tRTRS

.....

(n-1)(tCCD+tRTRS)

Dn

A2 R4R2
.....tCCD+tRTRS

tRL

RNK0:

RNK1:

Figure 6.23: Command sequence of TestRTRS .

6.6.5 tRTP

Test plan. Studying the state graph in Figure 6.3, a valid command sequence encompassing
tRTP would be an A command followed by one or more R commands then a P command to close
the row followed by an A to a different row. However, this sequence includes the tRCD, tCCD,
and tRP constraints as well. Therefore, as the dependency graph in Figure 6.16 illustrates, these
constraints need to be validated before tRTP . Since we already validated them (tRP is included
in tRC), we are going to validate tRTP . In addition, the number of R commands must be large
enough to dominate the tRAS constraint between A and P.
Specifications. Spec. 6.10 shows the LTL property to validate tRTP , where num tRTP is the
number of occurrences of the tRTP constraint. As Figure 6.24 illustrates, there are two paths
of constraints between the A and the P commands. The first is tRAS and the second consists
of tRCD, a number of tCCD constraints that depends on the number of R requests, and finally
RtoP . Spec. 6.10 ensures that the second path dominates the first one to show the effect of
tRTP constraint on the utilization.

LTL Specification 6.10: tRTP .
G ! (((value READ TO PRE DELAY∗num READ TO PRE DELAY

+num tCCD∗ value tCCD+value tRCD)>(va lue tRAS)) &
(num READ TO PRE DELAY>0) & ((num Rx d =0) & (num Rd s = 0))

Diagnosis. To validate tRTP , we compare the observed utilization (Utio) from executing
TestRTP with the calculated utilization (Utic) from Lemma 6.11. Based on the comparison,
we make the conclusions tabulated in Table 6.2.

Lemma 6.11. Executing TestRTP , the BW utilization of the MC under test is:

4tBUS

tRCD + 3tCCD + tBUS + tRTP + tRP

.

158

A1 R1

tRCD

D1

R3

3tCCD

D4

R4R2

tRL
P

RtoP

A1

tRP

D2 D3

tRAS

Figure 6.24: Command sequence of TestRTP .

Table 6.2: Validating tRTP .

Utio = Utic optimal value Figure 6.25 at tRTP = 5
Utio > Utic violated Figure 6.25 at tRTP < 5
Utio < Utic non-optimal value Figure 6.25 at tRTP > 5

Proof. Executing TestRTP , the MC under test repeats the behaviour shown in Figure 6.24 every
4 requests. Focusing on one repetition, the data bus is busy for 4 ·tBUS cycles. In addition, the 4
requests encounter a total DRAM access latency of tRCD+3tCCD+tBUS+tRTP+tRP .

10
15
20
25
30
35
40
45
50

0 1 3 5 7 9 11 13 15 17 19 21 23 25

BW
U
til
iz
at
io
n

tRTP[Cycles]

Non-optimal

St
an

da
rd
-v
io
la
ti
o
n

(%
)

Figure 6.25: tRTP validation results.

6.6.6 tRCD,tWL, and tRL

Test plan. The target is to validate tRL and tWL parameters, which requires two tests. One
request is a read operation and the other is a write operation.
Specifications. The LTL in Spec.6.11 specifies a state in the FSM, where the explored path

159

encounters an A followed by a R. Similarly, the LTL in Spec. 6.12 describes a state in the FSM,
where the explored path encounters an A followed by a W. Since a read or a write from a DRAM
row requires first to activate that row, it is not possible to exclude the tRCD parameter (between
A and R or W). As a consequence, we validate tRCD, tRL and tWL together.

LTL Specification 6.11: tRCD tRL.
G ! ((n u m r e q u e s t s =1) & (num tRL =1) & (num tBUS = 1))

LTL Specification 6.12: tRCD tWL.
G ! ((n u m r e q u e s t s =1) & (num tWL =1) & (num tBUS = 1))

Diagnosis. To validate the parameters tRCD, tRL and tWL, we investigate the utilization ob-
served (Utio) from running tests Test{tRCD,tRL} and Test{tRCD,tWL}. If the observed utilization
coincides with the calculated utilization (Utic) in Lemma 6.12 for both tests, then all the three
parameters are set to the standard value. For the DDR3 module used in our validation, this sit-
uation is observed in Figures 6.27a, 6.27b and 6.27c at tRCD = 10, tRL = 10 and tWL = 9.
Table 6.3 summarizes our debugging conclusions from the utilization graphs. We assume a single
parameter is possibly violated at a time.

Lemma 6.12. Executing Test{tRCD,tRL}, the utilization of the MC under test is: tBUS
tRCD+tRL+tBUS

.
similarly, executing Test{tRCD,tWL}, the BW utilization of the MC under test is: tBUS

tRCD+tWL+tBUS
.

Proof. The proof can be easily derived from the behaviour in Figures 6.26a and 6.26b for the
read and write requests, respectively.

A1 R1

tRCD

D1
tRL

(a) TesttRCD,tRL.

A1 W1

tRCD

D1
tWL

(b) TesttRCD,tWL.

Figure 6.26: Validating tRCD, tRL, and tWL.

160

10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BW
U
til
iz
at
io
n

tRCD[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(%
)

(a) tRCD

9.0
12.0
15.0
18.0
21.0
24.0
27.0
30.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BW
U
til
iz
at
io
n

tRL[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(%
)

(b) tRL

9.0
12.0
15.0
18.0
21.0
24.0
27.0
30.0

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BW
U
til
iz
at
io
n

tWL[Cycles]
Read Utiliztion% Write Utilization%

Non-optimal

Standard-violation

(%
)

(c) tWL

Figure 6.27: tRCD, tRL, and tWL validation results.

Table 6.3: Validating tRCD, tRL and tWL.

Test{tRCD,tRL} Test{tRCD,tWL} Conclusion Figure
Utio > Utic Utio > Utic tRCD is violated. 6.27a
Utio < Utic Utio < Utic tRCD is not optimal.
Utio > Utic Utio = Utic tRL is violated. 6.27b
Utio < Utic Utio = Utic tRL is not optimal.
Utio = Utic Utio > Utic tWL is violated. 6.27c
Utio = Utic Utio < Utic tWL is not optimal.

6.6.7 tRRD

Test plan. TestRRD formalizes the test plan for validating tRRD. It is a sequence of four read
accesses targeting the same rank where each access is targeting a different bank than the previous
access.
Specifications. The LTL in Spec. 6.13 describes a state, where the path between the initial state
and this state exercises the tRRD constraint 3 times. In addition, this path encountered three R

161

Test 6.9: TestRRD to validate tRRD.
1 TestRRD = [Req1, Req2, Req3, Req4]
2 where Reqk = 〈Addrk, R〉, k ∈ [1, 4]
3 and (rnkl = rnkm) ∧ (bnkl 6= bnkm), ∀l ∀m ∈ [1, 4].

commands to a different bank in the same bank than the first R command.

LTL Specification 6.13: tRRD.
G! ((num tRRD=3)&(num Rd s =3)&(num tRL = 1))

Diagnosis. Figure 6.28 illustrates the observed utilization for different tRRD values. Lemma 6.13
determines the golden utilization expected for the ideal tRRD value.

Lemma 6.13. Executing TestRRD, the BW utilization of the DRAM under test can be calculated
as: 4·tBUS

3·tRRD+tRCD+tRL+tBUS
.

Proof. Executing TestRRD, the DRAM under test shows the behaviour shown in Figure 6.29 for
the 4 requests. The data bus is busy for 4 · tBUS cycles. In addition, the 4 requests encounter a
total DRAM access latency of 3 · tRRD + tRCD + tRL+ tBUS.

10
20
30
40
50
60
70
80

0 2 4 6 8 10 12 14 16 18 20 22 24

BW
U
til
iz
at
io
n

tRRD[Cycles]

Non-optimal

St
an

da
rd
-v
io
la
ti
on

(%
)

Figure 6.28: tRRD validation results.

162

A1 R1

tRCD

D1 D4
tBUS

D2 D3

A2 R2

A3 R3

A4 R4
tRL

tRRD

tRRD

tRRD

BNK0:

BNK3:

BNK2:

BNK1:

Figure 6.29: Command sequence of TestRRD.

6.6.8 tWR

Test plan. TestWR formalizes the plan to validate tWR. It is a stream of n write accesses
targeting the same bank, where each access is targeting a different row than the previous access
(0% row locality).

Test 6.10: TestWR to validate tWR.
1 TestWR = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk,W 〉, k ∈ [1, n]
3 and (bnkl = bnkm) ∧ (rwl 6= rwm), ∀l ∀m ∈ [1, n].

Specifications. The LTL in Spec. 6.14 encodes the test plan to discover any violations in
the tWR constraint. It specifies a state in the FSM where there are 10 requests. The property
(num Wx d=0) & (num Wd s=0) ensures that all requests target the same bank. the property
(num WRITE TO PRE DELAY=9) dictates that, except the first request, each request has to
pre-charge the open row in the row buffer before it activates its own row.

LTL Specification 6.14: tWR.
G ! ((num tRCD = 10) & (num W to P DELAY =9) &

(num Wx d =0) & (num Wd s =0))

Diagnosis. Figure 6.30 shows the observed utilization for different tWR values. Lemma 6.14
calculates the golden utilization we for the ideal tWR value.

Lemma 6.14. Executing TestWR, the BW utilization of the DRAM under test is: tBUS
tRCD+tWL+tBUS+tWR+tRP

.

Proof. Executing TestWR, each DRAM access is translated into the commands shown in Fig-
ure 6.31. Therefore, Each request is serviced in tRCD + tWL + tBUS + tWR + tRP cycles
while it utilizes the data bus for only tBUS cycles.

163

9.5
9.0
8.5
8.0
7.5
7.0
6.5
6.0

10.0
10.5
11.0
11.5
12.0

0 1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

BW
U
til
iz
at
io
n

tWR[Cycles]

Non-optimal

Standard-violation

(%
)

Figure 6.30: tWR validation results.

A1 W1

tRCD

D1
tWL

P
tBUS

A2

tRPtWR
....

Figure 6.31: Command sequence of TestWR.

6.6.9 tWTR

Test plan. TestWTR formally describes the plan to validate tWTR. It is a stream of n accesses
targeting the same bank and row where each access is of different type than the previous access
(100% R/W switching).

Algorithm 6.1: TestWTR: Test to validate tWTR.
1 TestWTR = [Req1, Req2, ..., Reqn]
2 where Reqk = 〈Addrk, T ypek〉, k ∈ [1, n]andnisodd
3 and (bnkl = bnkm) ∧ (rwl = rwm) ∧ (tyl 6= Typel−1), ∀l ∀m ∈ [1, n], n� 10.

Specifications. Spec. 6.15 shows the LTL for validating tWTR. Since each two successive
requests are of different type, 5 requests out of 10 suffers from a WtoRB delay. As a result,
(num W to R DELAY B=5).

164

LTL Specification 6.15: tWTR.
G ! ((n u m r e q u e s t s = 10)&(num tRCD=1)&

(num W to R DELAY B=5)&(num Rx d =0)&(num Rd s = 0))

Diagnosis. Figure 6.32 delineates the observed utilization for different tWTR values. Lemma 6.15
calculates the golden utilization we for the ideal tWR value.

Lemma 6.15. Executing TestWTR, the BW utilization of the DRAM under test can be approxi-
mated to: tBUS

tRL+tWTR+tBUS+tRTRS
.

Proof. Since TestWTR has n requests, the data bus is busy for n · tBUS cycles. Using Fig-
ure 6.33, the total DRAM access time can be calculated as:

tRCD +
n− 1

2
· (tRL+ tWTR + 2tBUS + tRTRS) + tCL+ tBUS.

Where:

tCL =

{
tRL, if Typen = R

tWL, if Typen = W

As a result, the BW utilization of the DRAM under test is:

n · tBUS
tRCD + n−1

2
· (tRL+ tWTR + 2tBUS + tRTRS) + tCL+ tBUS

.

If n >> 10, the BW utilization can be approximated to

2tBUS

tRL+ tWTR + 2tBUS + tRTRS
.

6.6.10 Summary

In summary, to validate a timing parameter we conduct the following procedure. 1) We execute
the corresponding test from Table 6.4. 2) We compare the observed utilization with the calculated
utilization. 3) Based on the comparison, we determine whether the parameter under test is:
3.a) compliant with the standard, 3.b) violated, or 3.c) set to a non-optimal value. We tabulate
calculated utilizations from all tests in Table 6.4. In Table 6.4, unless specified, the number of
requests is n� 10.

165

15.0
20.0
25.0
30.0
35.0
40.0
45.0

0 1 2 4 5 7 9 11 13 15 17 19 21 23 25

BW
U
til
iz
at
io
n

tWTR[Cycles]

Non-optimal

Standard-violation

(%
)

Figure 6.32: tWTR validation results.

A1 R1

tRCD

D1

R3

RtoW

Dn

WnW2
tWL

D2 D3

tWL tBUS

tWTR
.....

.....

Figure 6.33: Command sequence of TestWTR.

Test Conditions (∀l ∈ [1, n]) Utilization
tRC (bnkl = bnkl−1) ∧ (rwl 6= rwl−1) tBUS

tRC

tCCD (bnkl = bnkl−1) ∧ (rwl = rwl−1) tBUS
tCCD

tFAW
(rnkl = rnkl−1) ∧ 8·tBUS

2·tFAW(bnkl 6= bnkl−1) ∧ (rwl 6= rwl−1)
tRTRS (rnkl 6= rnkl−1) ∧ (rwl = rwl−1) tBUS

tBUS+tRTRS

tRRD
(n = 4) ∧ 4·tBUS

3·tRRD+tRCD+tRL+tBUS(rnkl = rnkl−1) ∧ (bnkl 6= bnkl−1)

tWR
(tyl = W) ∧ tBUS

tRCD+tWL+tBUS+tWR+tRP(bnkl = bnkl−1) ∧ (rwl 6= rwl−1)

tWTR
(tyl 6= tyl−1) ∧ tBUS

tRL+tWTR+tBUS+tRTRS(bnkl = bnkl−1) ∧ (rwl = rwl−1)

Table 6.4: Tests of timing parameters.

166

6.6.11 Smart Refresh

In this section, we validate the behaviour of the Smart Refresh technique [153]. This serves three
purposes: 1) validating a feature involving the REF command, 2) validating one of the DRAM
power reduction techniques, and 3) illustrating the usage of a different metric than the bandwidth
utilization with MCXplore. The main observation behind Smart Refresh is that a normal access
to a DRAM row plays the same role as a refresh command from the data restoration standpoint.
Accordingly, Smart Refresh aims to reduce power consumption by skipping refreshing recently
accessed rows. The memory controller maintains a per-row counter and issues a refresh com-
mand to a row when its counter value reaches zero. Upon accessing a row, its corresponding
counter is set to its maximum value. We implement Smart Refresh in DRAMsim2, where the
controller maintains a 2-bit counter per row.

Test Generation. The number of REF commands issued by Smart Refresh is supposed to de-
crease upon increasing the number of accessed rows in the tests. Therefore, we use MCXplore to
generate tests with different number of A commands as Specification 6.16 describes. To capture
a considerable number of refreshes, each test has one million requests, and we run the simulation
for 10 million cycles.

LTL Specification 6.16: Smart Refresh validation (nACT varies from 8 to 1000000 in a step of
8).
G ! ((n u m r e q u e s t s = 1000000)&(num ACT=nACT)

Diagnosis. We use the total aggregated numbers of issued A and REF commands as our
metrics in this experiment. These numbers can be obtained using performance counters such as
those existing in Intel processors [154]. We depict the results for the Smart Refresh technique
along with the baseline refresh mechanism in Figure 6.34. The baseline issues a fixed number of
REF commands agnostically to the access pattern. On the other side, Smart Refresh, as expected,
issues less number of REF commands for tests accessing more rows. Figure 6.34 shows that for
tests with small number of accessed rows, Smart Refresh acts exactly as the baseline refresh
mechanism (until point 1), which validates the worst scenario. Contrarily, for tests accessing
large number of rows (after point 2), Smart Refresh does not need to issue any extra REF
command. This aligns with the ideal scenario represented in [153].

6.6.12 Command Bus Contention

All banks of a DRAM rank share the command and data bus. Accordingly, if more than one
DRAM command are ready at a specific cycle, the MC must have a policy to select only one
command to issue to prevent bus collisions. In this context, a ready command is the command

167

0

20

40

60

80

100

120

10
4.
2

10
7.
5

11
1.
1

11
4.
9

11
9.
0

12
3.
5

12
8.
2

13
3.
3

13
8.
9

14
4.
9

15
1.
5

15
8.
7

16
6.
7

17
5.
4

18
5.
2

19
6.
1

20
8.
3

22
2.
2

23
8.
1

25
6.
4

27
7.
8

30
3.
0

33
3.
3

37
0.
4

41
6.
7

47
6.
2

55
5.
6

66
6.
7

83
3.
3

11
11
.1

16
66
.7

33
33
.3

10
00
0
Re

f/
se
c

(10000 Acts/sec)

baseline
smartRef

baseline: 1024000 Ref/sec
1

2

Figure 6.34: Smart Refresh behaviour with different number of accessed rows.

that satisfies all the corresponding timing constraints and can be issued according to the command
arbitration policy. For example, commands R2 and R3 in Figure 6.35 are ready on the same cycle;
however, only one of them can be issued at one cycle. One possible policy is to favor ready
requests to different banks to increase DRAM parallelism through interleaving (Figure 6.35a).
An alternative policy is to favor ready requests to same bank to increase DRAM locality through
row hits (Figure 6.35b).

Test Generation. The target is to generate a test pattern that exhibit a bus contention, i.e.
having more than one ready command to be issued on the same cycle. We generate a test with
three memory requests, Req1, Req2, and Req3 . Req1 and req3 target the same row in the same
bank, while Req2 targets a different bank. As Figure 6.35 illustrates, both R2 and R3 are ready
on the same cycle. Accordingly, one of the commands is issued on cycle 1 , while the other has
to be delayed tCCD cycles to be issued on cycle 2 .

Diagnosis. There are two possibilities for the test pattern, either R2 is postponed or R3.
To verify the policy resolving the command bus contention, we use the request latency as our
metric since Req2 and Req3 will have different latencies based on the implemented policy. Li in
Figure 6.35 is the latency of Reqi. Bandwidth utilization cannot be used in this case since both
possibilities lead to the same utilization. Based on the monitored latency, we can figure out which
R command is postponed by the MC and compare this to the expected behavior. For instance, in
Figure 6.35a, the MC postpones R3; thus, L3 > L2. On the other hand, in Figure 6.35b, the MC
postpones R2 such that L3 < L2.

168

A1 R1

D1

tBUS

D2 D3

A2 R2

tRL

tRRD
BNK0:

BNK1:

R3

tRCD

tCCD
R3

L1

L2

L3

tCCD
21

(a) Prioritizing accesses to different banks (favor bank interleaving).

A1 R1

D1

tBUS

D3 D2

A2 R2

tRL

tRRD
BNK0:

BNK1:

R3

tRCD

tCCD R2

L1

L3

L2

tCCD1 2

(b) Prioritizing hit accesses to same bank (favor row hits).

Figure 6.35: Policies to resolve command bus contention.

6.7 Extensibility of MCXplore

MCXplore treats extensibility as a first-class citizen. If a designer wants to validate a new policy,
she only needs to identify the properties of that policy and encode them in LTL specifications.
Afterwards, she chooses the suitable model based on whether the policy is at the frontend or
the backend, and MCXplore will generate the desired test suites. Furthermore, leveraging the
modularity of MCXplore, a validation engineer can easily integrate any other model than the
provided two models. She only needs to modify the interface functions that parse the model to
generate the required test. We encourage researchers and validation engineers to extend and use
MCXplore to validate and test their proposed MC’s policies.

169

6.8 Summary

In this chapter, we proposed a framework for validating MC designs. We introduced two models
for the test input of the MC enabling validation engineers and researchers to specify their test
plan as specifications in temporal logic. We used model checking to generate test templates that
satisfy this plan. We implemented this framework and released it open-source as MCXplore,
accompanied with a regression test suite for validating basic MC features. Using MCXplore, we
showed how to validate the correctness of state-of-the-art MC features as well as discover timing
violations in the DRAM subsystem.

170

Chapter 7

Bounding Total Memory Latency in
Multi-Core Real-Time Systems

In Chapter 2, we calculated the WCL incurred by any request upon accessing the shared memory
bus connecting cores to the shared cache. In chapter 3, we derived the WCL incurred by any
request due to the coherence interference amongst cores. In chapter 4, we bounded the WCL
incurred by any request upon accessing the DRAM. All latencies derived in these chapters are per
request. In this chapter, we integrate the outcomes of these chapters to derive the total memory
latency bound incurred by the task. Recall that the total WCET of a task is the summation of
the WC computation time and the WC memory latency of this task. Obtaining the total memory
latency at the task level is necessary to be able to compute this WCET. Conducting the analysis
at the task level, as opposed to the per-request analysis, enables considering different scenarios
of memory requests (such as cache hits vs. cache misses), which is a key to derive more realistic
tighter WCETs. Recall from Chapter 3, the analysis for PMSI assumes a TDM bus arbitration,
we first compute the coherence interference assuming the bus is managed using CArb.

7.1 System Model

Figure 7.1 illustrates the system model considered in this chapter.

• We consider a system with N requestors, a private per-core L1 cache, a shared on-chip L2
cache, and a shared off-chip DRAM amongst requestors.

• Each task is assigned a core, while tasks do not share cores.

171

• The system deploys the CArb arbiter proposed in Chapter 2 to schedule accesses to the
shared L2 cache. The slot width of the CArb schedule is SL2. Similar to Chapter 3, SL2 is
chosen to account for one memory transfer between the core and the L2 in addition to the
overhead resulting from necessary coherence messages.

• At the end of each hyperperiod of CArb’s schedule, one additional slot is granted to each
task. This slot is dedicated to conduct write back operations as a response to other tasks
requesting a cache line that is modified by this task. Figure 7.1 illustrates this modifica-
tion to the CArb’s schedule. Recall that the total number of classes is n, while the total
number of tasks in each class l is Γl. Accordingly, the WC arbitration latency calculated
in Lemma 2.1, can be recalculated as:

WCLarbjl =

((v=Γl∑
v=1,v 6=j

⌈
τWvl

τWjl

⌉)
+

(⌈
τPjl
Zl

⌉
×

∑
∀e|(e 6=l∧
fe∈χl)

(⌈CWe

CWl

⌉
× Ze

))

+

(n∑
l=1

Γl

)
+ 1

)
× SL2 (7.1)

• Data coherence is maintained using the PMSI coherence protocol proposed in Chapter 3.

• Accesses to the DRAM are managed using the PMC memory controller proposed in Chap-
ter 4.

7.2 Timing Analysis of Coherence Interference Assuming CArb’s
Schedule

Lemma 7.1. The WC coherence latency of task τjl in a system deploying CArb’s arbitration is
calculated as follows:

WCLcohjl =

(∑
∀e

∑
∀v

WCLarbve

)
+WCLarbjl where: {e ∈ [1, n], v ∈ [1,Γe]| e 6= l||v 6= j}

Proof. From Lemma 3.2, the WC occurs when the task under analysis, τjl, requests a cache line
that is currently modified or requested to modify by all other tasks. Accordingly, τjl has to wait

172

L1 $

L2 $

c2

CArb Arbiter

PMSIL1 $

c1

PMSIL1 $

c0

PMSI

PMC

DRAM

PMSI

c0 c1 c2

read hit

miss in L1

miss in L1 and L2

write hit

and hit in L2

in L1in L1

............

CArb Request CArb Response
slotsslots

Figure 7.1: An architectural example for the system model used in deriving the total WC memory
aggregated latency. The system has three cores and three tasks, where τ11 is mapped to c0, τ12 is
mapped to c1, and τ13 is mapped to c2.

for each other task to obtain, modify, and write back that line. Each task needs two slots to
perform these operations: a request slot and a response slot. Since each task τve gets these two

slots every WCLarbve cycles, τjl has to wait for a total of
∑
∀e

∑
∀v

WCLarbve before the requested

cache line can be sent to it. Moreover, similar to the proof of Lemma 3.2, when the shared
memory has the updated version that is ready to send to τjl, τjl might have just missed its slot
in the current period. As a consequence, it has to wait for additional WCLarbjl cycles. Finally,
since Equation 7.1 accounts for the latency suffered due to the write back responses (i.e. intra-

core coherence latency), the total coherence latency can be calculated as:
(∑
∀e

∑
∀v

WCLarbve

)
+

WCLarbjl .

173

7.3 Aggregated Memory Latency Analysis

Lemma 7.2. The total aggregated WC memory latency of a task τjl, MALjl, can be computed
as:

MALjl = L1Rhitsjl × L1accL + L1Whits
jl × (WCLarbjl) + L2hitsjl × (WCLarbjl +WCLcohjl)

+ L2missesjl ×WCLDRAMjl .

Where:

• L1Rhitsjl is the number of read requests issued by τjl and are hits in L1 cache.

• L1Whits
jl is the number of write requests issued by τjl and are hits in L1 cache.

• L2hitsjl is the number of requests issued by τjl and are hits in L2 cache.

• L2missesjl is the number of requests issued by τjl and are misses in L2 cache.

• L1accL is the WCL of a read request issued by τjl upon accessing L1, which is the hit
latency of the L1 cache.

• WCLarbjl is the WCL of a write request issued by τjl upon accessing L1, which is calculated
by Equation 7.1.

• WCLcohjl is the WCL of a read or write request issued by τjl upon accessing L2, which is
defined by Lemma 7.1.

• WCLDRAMjl is the WCL of a read or write request issued by τjl upon accessing DRAM,
which is calculated in Equation 4.7.

Proof. As Figure 7.1 illustrates, each memory request by τjl incurs one of four possible situa-
tions: 1) it is a read hit in the L1 private cache, 2) it is a write hit in L1 private cache, 3) it is a
miss in L1 but a hit in the L2 shared cache, or 3) it is a miss in L1 and L2, thus has to access the
DRAM.

We consider each memory level separately as follows:

1. Read hit in L1 private cache. Since L1 cache is private for each core (and hence, for the
task running on that core), accesses to L1 do not encounter interference from other tasks’
accesses. Further, since the request is a read, it does not need to wait for the core slot in the
bus. Accordingly, the access latency to L1 can be considered constant and equals to the L1

174

hit latency specified by the processor datasheet (WCLL1 = L1accL). If task τjl has a total of
L1Rhitsjl requests that are read hits in its L1 private cache, the total WCL of these requests is
L1Rhitsjl × L1accL.

2. Write hit in L1 private cache. Since a write hit request needs to issue coherence messages
on the bus, it has to wait for the designated task slot before it can proceed. Accordingly, in
WC, a write hit has to wait for the WC arbitration latency, WCLarbjl which is calculated by
Equation 7.1. If τjl has a total of L1Whits

jl requests that are write hits in its L1 private cache,
the total WCL of these requests is L1Whits

jl ×WCLarbjl .

3. L2 shared cache. The WCL of any request that is a hit in the shared L2 cache in a system
deploying CArb arbitration and PMSI can be computed as: WCLarbjl + WCLcohjl . Since there
are L2hitsjl requests that are hits in L2 from τjl, the total WC latency that τjl suffers at L2 is:
L2hitsjl × (WCLarbjl +WCLcohjl).

4. Shared DRAM. Since the DRAM accesses are manged using PMC, the WCLDRAMjl is the
PMC’s upper bound latency defined in Equation 4.7. Assuming that requestor i is used to
execute task τjl, the WC DRAM latency is WCLDRAMjl = UBLi.

From 1–4, the MALjl can be calculated as Lemma 7.2 depicts.

175

Chapter 8

Conclusion and Future Work

Using multi-core platforms to implement real-time systems is promising because of their low-
cost and high-performance benefits. Nonetheless, interference amongst cores competing to ac-
cess shared memory resources is a challenge facing the deployment of real-time systems in
multi-core platforms. This thesis presents techniques to bound this interference and provides
predictable shared memory resources. This includes:

1. A predictable shared bus arbitration technique that is aware of each task’s timing require-
ments and criticality.

2. A predictable cache coherence protocol that allows co-running tasks to predictably and
simultaneously share data.

3. A predictable DRAM memory controller that deploys a mixed-page policy and optimal
harmonic distributed TDM arbitration to grant differential services to different tasks based
on their latency and bandwidth requirements.

4. A latency-based analysis that produces best- and worst-case memory latency bounds for
memory accesses to the DRAM. We use this analysis to reverse-engineer architectural de-
tails of embedded memory controllers. Knowing these details helps in developing compiler
and source-code optimizations to achieve predictability in COTS platforms.

5. A timing analysis that integrates the proposed approaches at different levels of the memory
hierarchy to provide bounds for the total aggregated memory latency incurred by a task.

Techniques proposed in this thesis enables multiple future extensions. This includes:

176

1. A full support for tasks with mixed criticalities at all levels of the memory hierarchy.
Currently, the shared bus and the memory controller are both criticality-aware, while the
cache coherence protocol does not support tasks with different criticalities. Since emerging
domains such as automotive industry adopt tasks with different criticalities, it is important
to develop criticality-aware approaches that span the whole memory hierarchy.

2. Developing a framework that integrates all these approaches to provide the real-time com-
munity with a fully predictable memory system that can be incorporated with core schedul-
ing techniques or timing analysis tools. This framework should be modular to allow the
integration of other novel policies (e.g. other memory controllers, bus arbiters, or cache
mechanisms). This framework can also help in developing techniques that involve differ-
ent memory levels together. For example, instead of focusing on achieving tight bounds
at the DRAM level or the cache level separately, techniques that consider the interaction
between both DRAM and LLC cache may be able to provide tighter bounds.

3. Leveraging the exposed memory controller details towards developing software-level tech-
niques to provide predictable memory accessing in COTS memory systems.

Validating the performance of novel memory policies is vital to fairly compare different ap-
proaches and precisely assess their contributions. Moreover, verifying the timing and functional
correctness of these policies is indispensable towards the adoption of these policies in commer-
cial platforms. This thesis presents an open-source framework to automate the validation and
verification process of the DRAM subsystem including the memory controller. Nonetheless,
extending this approach to provide easy-to-adopt techniques to verify and validate other compo-
nents in the memory hierarchy such as the cache coherence protocol is a potential future work.

177

References

[1] M. Hassan and H. Patel, “Criticality-and requirement-aware bus arbitration for multi-core
mixed criticality systems,” in IEEE Real-Time and Embedded Technology and Applica-
tions Symposium (RTAS), 2016, pp. 1–11.

[2] M. Hassan, A. M. Kaushik, and H. Patel, “Predictable cache coherence for multi-core
real-time systems,” in IEEE Real-Time and Embedded Technology and Applications Sym-
posium (RTAS), 2017, to appear.

[3] M. Hassan, H. Patel, and R. Pellizzoni, “A framework for scheduling DRAM memory
accesses for multi-core mixed-time critical systems,” in IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS), 2015, pp. 307–316.

[4] M. Hassan, H. Patel, and R. Pellizoni, “PMC: A requirement-aware DRAM controller
for multi-core mixed criticality systems,” ACM Transactions on Embedded Computing
Systems (TECS), 2016, to appear.

[5] M. Hassan, A. M. Kaushik, and H. Patel, “Reverse-engineering embedded memory con-
trollers through latency-based analysis,” in IEEE Real-Time and Embedded Technology
and Applications Symposium (RTAS), 2015, pp. 297–306.

[6] ——, “Exposing implementation details of embedded dram memory controllers through
latency-based analysis,” IEEE Transactions on Computers (TC), 2016, under review.

[7] M. Hassan and H. Patel, “MCXplore: An automated framework for validating memory
controller designs,” in IEEE Design, Automation & Test in Europe Conference & Exhibi-
tion (DATE), 2016, pp. 1357–1362.

[8] ——, “MCXplore: Automating the validation process of DRAM memory controller de-
signs,” in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), 2016, under review.

178

[9] S. Vestal, “Preemptive scheduling of multi-criticality systems with varying degrees of
execution time assurance,” in IEEE International Real-time Systems Symposium (RTSS),
2007, pp. 239–243.

[10] D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory consistency and cache
coherence,” Synthesis Lectures on Computer Architecture, 2011.

[11] JEDEC, “DDR3 SDRAM Standard.” [Online]. Available: http://jedec.org

[12] J.-E. Kim, T. Abdelzaher, L. Sha, A. Bar-Noy, R. Hobbs, and W. Dron, “On maximizing
quality of information for the internet of things: A real-time scheduling perspective (in-
vited paper),” in IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2016, pp. 202–211.

[13] P. Graydon and I. Bate, “Safety assurance driven problem formulation for mixed-criticality
scheduling,” International Workshop on Mixed Criticality Systems (WMC), RTSS, 2013.

[14] S. Baruah, V. Bonifaci, G. D’Angelo, H. Li, A. Marchetti-Spaccamela, S. Van Der Ster,
and L. Stougie, “The preemptive uniprocessor scheduling of mixed-criticality implicit-
deadline sporadic task systems,” in IEEE Euromicro Conference on Real-Time Systems
(ECRTS), 2012, pp. 145–154.

[15] S. Baruah and S. Vestal, “Schedulability analysis of sporadic tasks with multiple criticality
specifications,” in IEEE Euromicro Conference onReal-Time Systems (ECRTS), 2008, pp.
147–155.

[16] R. M. Pathan, “Schedulability analysis of mixed-criticality systems on multiprocessors,”
in IEEE Euromicro Conference on Real-time Systems (ECRTS), 2012, pp. 309–320.

[17] H. Li and S. Baruah, “Global mixed-criticality scheduling on multiprocessors,” in IEEE
Euromicro Conference on Real-Time Systems (ECRTS), 2012, pp. 166–175.

[18] S. Baruah, B. Chattopadhyay, H. Li, and I. Shin, “Mixed-criticality scheduling on multi-
processors,” Real-Time Systems, vol. 50, no. 1, pp. 142–177, 2014.

[19] I. Bate, A. Burns, and R. I. Davis, “A bailout protocol for mixed criticality systems,” in
IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2015, pp. 259–268.

[20] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele, “Scheduling of mixed-criticality
applications on resource-sharing multicore systems,” in International Conference on Em-
bedded Software (EMSOFT), 2013, pp. 1–15.

179

http://jedec.org

[21] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele, “Worst case delay
analysis for memory interference in multicore systems,” in IEEE International Conference
on Design, Automation and Test in Europe (DATE), 2010, pp. 741–746.

[22] R. Pellizzoni, B. D. Bui, M. Caccamo, and L. Sha, “Coscheduling of cpu and i/o transac-
tions in cots-based embedded systems,” in IEEE Real-Time Systems Symposium (RTSS),
2008, pp. 221–231.

[23] L. Ecco, S. Tobuschat, S. Saidi, and R. Ernst, “A mixed critical memory controller using
bank privatization and fixed priority scheduling,” in IEEE International Conference on
Embedded and Real-Time Computing Systems and Applications (RTCSA), 2014, pp. 1–
10.

[24] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson, “Making shared caches more
predictable on multicore platforms,” in IEEE Euromicro Conference on Real-Time Systems
(ECRTS), 2013, pp. 157–167.

[25] N. Chetan Kumar, S. Vyas, R. K. Cytron, C. D. Gill, J. Zambreno, and P. H. Jones, “Cache
design for mixed criticality real-time systems,” in IEEE International Conference on Com-
puter Design (ICCD), 2014, pp. 513–516.

[26] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha, “Memory access control in mul-
tiprocessor for real-time systems with mixed criticality,” in IEEE Euromicro Conference
on Real-Time System (ECRTS), 2012, pp. 299–308.

[27] A. Burns and R. Davis, “Mixed criticality systems: A review,” Department of Computer
Science, University of York, Tech. Rep, 2013.

[28] H. Kim, D. de Niz, B. Andersson, M. Klein, O. Mutlu, and R. Rajkumar, “Bounding
memory interference delay in cots-based multi-core systems,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014, pp. 145–154.

[29] H. Yun, R. Pellizzon, and P. K. Valsan, “Parallelism-aware memory interference delay
analysis for cots multicore systems,” in IEEE Euromicro Conference on Real-Time Sys-
tems (ECRTS), 2015, pp. 184–195.

[30] P. Ekberg and W. Yi, “Schedulability analysis of a graph-based task model for mixed-
criticality systems,” Real-Time Systems, vol. 52, no. 1, pp. 1–37, 2015.

[31] L. Sha, “Real-time virtual machines for avionics software porting and development,” in
Real-Time and Embedded Computing Systems and Applications (RTCSA). Springer,
2004, pp. 123–135.

180

[32] M. Paolieri, E. Quiñones, F. J. Cazorla, G. Bernat, and M. Valero, “Hardware support
for WCET analysis of hard real-time multicore systems,” in ACM SIGARCH Computer
Architecture News, 2009, pp. 57–68.

[33] M. Katevenis, S. Sidiropoulos, and C. Courcoubetis, “Weighted round-robin cell mul-
tiplexing in a general-purpose ATM switch chip,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 9, no. 8, pp. 1265–1279, 1991.

[34] M.-K. Yoon, J.-E. Kim, and L. Sha, “Optimizing tunable wcet with shared resource al-
location and arbitration in hard real-time multicore systems,” in IEEE Real-Time Systems
Symposium (RTSS), 2011, pp. 227–238.

[35] S. Baruah, H. Li, and L. Stougie, “Towards the design of certifiable mixed-criticality
systems,” in IEEE Real-Time and Embedded Technology and Applications Symposium
(RTAS), 2010, pp. 13–22.

[36] A. Minaeva, P. Sucha, B. Akesson, and Z. Hanzalek, “Scalable and efficient configuration
of time-division multiplexed resources,” Elsevier Journal of Systems and Software, vol.
113, pp. 44–58, 2016.

[37] L. Sigrist, G. Giannopoulou, P. Huang, A. Gomez, and L. Thiele, “Mixed-criticality run-
time mechanisms and evaluation on multicores,” in IEEE Real-Time and Embedded Tech-
nology and Applications Symposium (RTAS), 2015, pp. 194–206.

[38] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens, “Real-time scheduling using
credit-controlled static-priority arbitration,” in IEEE International Conference on Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), 2008, pp. 3–14.

[39] K. Hyesoon, J. Lee, N. B. Laksminarayana, J. Lin, and T. Pho, “Macsim:
A CPU-GPU heterogeneous simulation framework.” [Online]. Available: http:
//code.google.com/p/macsim/

[40] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in a hard-real-
time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61, 1973.

[41] J. Nowotsch and M. Paulitsch, “Leveraging multi-core computing architectures in avion-
ics,” in IEEE Dependable Computing Conference (EDCC), 2012, pp. 132–143.

[42] S. Schliecker, J. Rox, M. Negrean, K. Richter, M. Jersak, and R. Ernst, “System level per-
formance analysis for real-time automotive multicore and network architectures,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
vol. 28, no. 7, pp. 979–992, 2009.

181

http://code.google.com/p/macsim/
http://code.google.com/p/macsim/

[43] G. Gracioli and A. A. Fröhlich, “On the design and evaluation of a real-time operating
system for cache-coherent multicore architectures,” ACM SIGOPS Operating Systems Re-
view, vol. 49, no. 2, pp. 2–16, 2016.

[44] G. Gracioli, A. Alhammad, and R. Mancuso, “A survey on cache management mecha-
nisms for real-time embedded systems,” ACM Computing Surveys (CSUR), vol. 48, no. 2,
pp. 32:1–32:36, 2015.

[45] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET estimates for multi-
core processors with shared instruction caches,” in IEEE Real-Time Systems Symposium
(RTSS), 2009, pp. 68–77.

[46] B. Lesage, D. Hardy, and I. Puaut, “Shared data caches conflicts reduction for WCET
computation in multi-core architectures.” in IEEE International Conference on Real-Time
and Network Systems (RTNS), 2010, p. 2283.

[47] J. M. Calandrino and J. H. Anderson, “On the design and implementation of a cache-aware
multicore real-time scheduler,” in IEEE Euromicro Conference on Real-Time Systems,
(ECRTS), 2009, pp. 194–204.

[48] A. Pyka, M. Rohde, and S. Uhrig, “Extended performance analysis of the time predictable
on-demand coherent data cache for multi-and many-core systems,” in IEEE Embedded
Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIV), 2014, pp.
107–114.

[49] “Predictable cache coherence for multi-core real-time systems.” [Online]. Available:
https://git.uwaterloo.ca/caesr-pub/pmsi

[50] D. Hackenberg, D. Molka, and W. E. Nagel, “Comparing cache architectures and co-
herency protocols on x86-64 multicore smp systems,” in IEEE/ACM International Sym-
posium on microarchitecture (MICRO), 2009, pp. 413–422.

[51] M. E. Thomadakis, “The architecture of the nehalem processor and nehalem-EP SMP
platforms,” Resource, vol. 3, p. 2, 2011.

[52] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” ACM SIGARCH Computer Architure News, vol. 39,
no. 2, pp. 1–7, 2011.

182

https://git.uwaterloo.ca/caesr-pub/pmsi

[53] M. M. Martin, M. D. Hill, and D. A. Wood, “Token coherence: Decoupling performance
and correctness,” in ACM SIGARCH Computer Architecture News, vol. 31, no. 2, 2003,
pp. 182–193.

[54] M. Lis, K. S. Shim, M. H. Cho, and S. Devadas, “Memory coherence in the age of mul-
ticores,” in IEEE 29th International Conference on Computer Design (ICCD), 2011, pp.
1–8.

[55] N. Agarwal, L.-S. Peh, and N. K. Jha, “In-network snoop ordering (inso): Snoopy coher-
ence on unordered interconnects,” in IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2009, pp. 67–78.

[56] M. Galles and E. Williams, “Performance optimizations, implementation, and verification
of the sgi challenge multiprocessor,” in IEEE Hawaii International Conference on System
Sciences, 1994, pp. 134–143.

[57] V. Suhendra and T. Mitra, “Exploring locking & partitioning for predictable shared caches
on multi-cores,” in ACM Design Automation Conference (DAC), 2008, pp. 300–303.

[58] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards time-predictable data caches for chip-
multiprocessors,” in IFIP International Workshop on Software Technolgies for Embedded
and Ubiquitous Systems. Springer, 2009, pp. 180–191.

[59] J. Reineke, I. Liu, H. D. Patel, S. Kim, and E. A. Lee, “PRET DRAM controller: Bank
privatization for predictability and temporal isolation,” in IEEE/ACM international con-
ference on Hardware/software codesign and system synthesis (CODES+ ISSS), 2011, pp.
99–108.

[60] Z. P. Wu, Y. Krish, and R. Pellizzoni, “Worst case analysis of DRAM latency in multi-
requestor systems,” in IEEE Real-Time Systems Symposium (RTSS), 2013, pp. 372–383.

[61] D. B. Kirk, “Smart (strategic memory allocation for real-time) cache design,” in IEEE
Real Time Systems Symposium (RTSS), 1989, pp. 229–237.

[62] B. Lesage, I. Puaut, and A. Seznec, “Preti: Partitioned REal-TIme shared cache for mixed-
criticality real-time systems,” in ACM Real-Time and Network Systems (RTNS), 2012, pp.
171–180.

[63] J. Bin, S. Girbal, D. G. Pérez, A. Grasset, and A. Merigot, “Studying co-running avionic
real-time applications on multi-core COTS architectures,” Embedded real time software
and systems (ERTS), 2014.

183

[64] A. Cortex, “Cortex-A9 MPCore,” Technical Reference Manual, 2009.

[65] N. Kurd, J. Douglas, P. Mosalikanti, and R. Kumar, “Next generation intel R© micro-
architecture (nehalem) clocking architecture,” in IEEE Journal of Solid-State Circuits,
vol. 44, no. 4, 2009, pp. 1121–1129.

[66] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:
Characterization and methodological considerations,” in IEEE International Symposium
on Computer Architecture (ISCA), 1995, pp. 24–36.

[67] M. Schoeberl, “Time-predictable computer architecture,” EURASIP Journal on Embedded
Systems, vol. 2009, no. 1, p. 758480, 2009.

[68] C. W. Mercer, S. Savage, and H. Tokuda, “Processor capacity reserves for multimedia
operating systems,” DTIC Document, Tech. Rep., 1993.

[69] L. Abeni and G. Buttazzo, “Resource reservation in dynamic real-time systems,” Real-
Time Systems, vol. 27, no. 2, pp. 123–167, 2004.

[70] G. Buttazzo, E. Bini, and Y. Wu, “Partitioning real-time applications over multicore reser-
vations,” IEEE Transactions on Industrial Informatics (IES), vol. 7, no. 2, pp. 302–315,
2011.

[71] Y.-S. Chen, H. C. Liao, and T.-H. Tsai, “Online real-time task scheduling in heteroge-
neous multicore system-on-a-chip,” IEEE Transactions on Parallel and Distributed Sys-
tems (TPDS), vol. 24, no. 1, pp. 118–130, 2013.

[72] B. Akesson, K. Goossens, and M. Ringhofer, “Predator: A predictable SDRAM memory
controller,” in IEEE/ACM International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ISSS), 2007, pp. 251–256.

[73] B. Akesson and K. Goossens, “Architectures and modeling of predictable memory con-
trollers for improved system integration,” in IEEE Conference on Design, Automation and
Test in Europe (DATE), 2011, pp. 1–6.

[74] M. Paolieri, E. Quiñones, F. J. Cazorla, and M. Valero, “An analyzable memory controller
for hard real-time cmps,” IEEE Embedded Systems Letters (ESL), vol. 1, no. 4, pp. 86–90,
2009.

[75] S. Goossens, B. Akesson, and K. Goossens, “Conservative open-page policy for mixed
time-criticality memory controllers,” in IEEE Conference on Design, Automation and Test
in Europe (DATE), 2013, pp. 525–530.

184

[76] J. Jalle, E. Quinones, J. Abella, L. Fossati, M. Zulianello, and F. J. Cazorla, “A dual-
criticality memory controller (dcmc): Proposal and evaluation of a space case study,” in
IEEE Real-Time Systems Symposium (RTSS), 2014, pp. 207–217.

[77] H. Kim, D. Broman, E. A. Lee, M. Zimmer, A. Shrivastava, and J. Oh, “A predictable
and command-level priority-based dram controller for mixed-criticality systems,” in IEEE
Real-Time and Embedded Technology and Applications Symposium (RTAS), 2015, pp.
317–326.

[78] Y. Krishnapillai, Z. P. Wu, and R. Pellizzoni, “A rank-switching, open-row DRAM con-
troller for time-predictable systems,” in IEEE Euromicro Conference on Real-Time Sys-
tems (ECRTS), 2014, pp. 27–38.

[79] Y. Li, B. Akesson, and K. Goossens, “Dynamic command scheduling for real-time mem-
ory controllers,” in IEEE Euromicro Conference on Real-Time Systems (ECRTS), 2014,
pp. 3–14.

[80] S. Goossens, T. Kouters, B. Akesson, and K. Goossens, “Memory-map selection for firm
real-time sdram controllers,” in IEEE Conference on Design, Automation and Test in Eu-
rope (DATE), 2012, pp. 828–831.

[81] E. Ipek, O. Mutlu, J. F. Martı́nez, and R. Caruana, “Self-optimizing memory controllers:
A reinforcement learning approach,” in IEEE International Symposium on Computer Ar-
chitecture (ISCA), 2008, pp. 39–50.

[82] S. Goossens, J. Kuijsten, B. Akesson, and K. Goossens, “A reconfigurable real-time sdram
controller for mixed time-criticality systems,” in Hardware/Software Codesign and System
Synthesis (CODES+ ISSS), 2013 International Conference on. IEEE, 2013, pp. 1–10.

[83] M. D. Gomony, B. Akesson, and K. Goossens, “A real-time multichannel memory con-
troller and optimal mapping of memory clients to memory channels,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 14, pp. 25:1–25:27, 2015.

[84] L. Ecco and R. Ernst, “Improved dram timing bounds for real-time dram controllers with
read/write bundling,” in IEEE Real-Time Systems Symposium (RTSS), 2015, pp. 53–64.

[85] L. Ecco, A. Kostrzewa, and R. Ernst, “Minimizing dram rank switching overhead for
improved timing bounds and performance,” in IEEE Euromicro Conference on Real-Time
Systems (ECRTS), 2016, pp. 3–13.

185

[86] P. K. Valsan and H. Yun, “MEDUSA: A predictable and high-performance dram controller
for multicore based embedded systems,” in IEEE International Conference on Cyber-
Physical Systems, Networks, and Applications (CPSNA), 2015, pp. 86–93.

[87] R. Kalla, B. Sinharoy, and J. M. Tendler, “Ibm power5 chip: A dual-core multithreaded
processor,” Micro, IEEE, vol. 24, no. 2, pp. 40–47, 2004.

[88] A. Radulescu, J. Dielissen, S. G. Pestana, O. P. Gangwal, E. Rijpkema, P. Wielage, and
K. Goossens, “An efficient on-chip NI offering guaranteed services, shared-memory ab-
straction, and flexible network configuration,” IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 24, no. 1, pp. 4–17, 2005.

[89] B. Akesson and K. Goossens, Memory Controllers for Real-Time Embedded Systems.
Springer, 2011.

[90] C. R. Houck, J. A. Joines, and M. G. Kay, “A genetic algorithm for function optimization
: a matlab implementation,” NCSU-IE Technical Report, 1995.

[91] J. Poovey, “Characterization of the eembc benchmark suite,” North Carolina State Uni-
versity, Technical Report, 2007.

[92] “JEDEC DDR3 SDRAM specifications JESD79-3D.” [Online]. Available: http:
//www.jedec.org/standards-documents/docs/jesd-79-3d

[93] P. Panda, N. Dutt, and A. Nicolau, “Exploiting off-chip memory access modes in high-
level synthesis,” in IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD), 1997, pp. 333–340.

[94] O. Mutlu and L. Subramanian, “Research problems and opportunities in memory sys-
tems,” Supercomputing frontiers and innovations, vol. 1, no. 3, pp. 19–55, 2014.

[95] A. Abel and J. Reineke, “Measurement-based modeling of the cache replacement policy,”
in IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS), 2013,
pp. 65–74.

[96] W. Ding, J. Liu, M. Kandemir, and M. J. Irwin, “Reshaping cache misses to improve
row-buffer locality in multicore systems,” in IEEE International Conference on Parallel
Architectures and Compilation Techniques (PACT), 2013, pp. 235–244.

[97] Y. Zhang, W. Ding, J. Liu, and M. Kandemir, “Optimizing data layouts for parallel com-
putation on multicores,” in IEEE conference on Parallel Architectures and Compilation
Techniques (PACT), 2011, pp. 143–154.

186

http://www.jedec.org/standards-documents/docs/jesd-79-3d
http://www.jedec.org/standards-documents/docs/jesd-79-3d

[98] H. Yun, R. Mancuso, Z.-P. Wu, and R. Pellizzoni, “PALLOC: DRAM bank-aware mem-
ory allocator for performance isolation on multicore platforms,” in IEEE Real-Time and
Embedded Technology and Applications Symposium (RTAS), 2014, pp. 155–166.

[99] Y. Wang, A. Ferraiuolo, and G. E. Suh, “Timing channel protection for a shared memory
controller,” in IEEE International Symposium on High Performance Computer Architec-
ture (HPCA), 2014, pp. 225–236.

[100] A. Shafiee, A. Gundu, M. Shevgoor, R. Balasubramonian, and M. Tiwari, “Avoiding in-
formation leakage in the memory controller with fixed service policies,” in IEEE/ACM
International Symposium on Microarchitecture (MICRO), 2015, pp. 89–101.

[101] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, and O. Mutlu,
“Flipping bits in memory without accessing them: An experimental study of dram distur-
bance errors,” in ACM SIGARCH Computer Architecture News, vol. 42, no. 3, 2014, pp.
361–372.

[102] T. John and R. Baumgartl, “Exact cache characterization by experimental parameter ex-
traction,” in International Conference on Real-Time and Network Systems (RTNS), 2007,
pp. 65–74.

[103] J. Dongarra, S. Moore, P. Mucci, K. Seymour, and H. You, “Accurate cache and TLB
characterization using hardware counters,” in Springer International Conference on Com-
putational Science (ICCS), 2004, pp. 432–439.

[104] C. L. Coleman and J. W. Davidson, “Automatic memory hierarchy characterization,” in
IEEE International Symposium on Performance Analysis of Systems and Software (IS-
PASS), 2001, pp. 103–110.

[105] H. Wong, M.-M. Papadopoulou, M. Sadooghi-Alvandi, and A. Moshovos, “Demystifying
GPU microarchitecture through microbenchmarking,” in IEEE International Symposium
on Performance Analysis of Systems Software (ISPASS), 2010, pp. 235–246.

[106] K. Yotov, K. Pingali, and P. Stodghill, “Automatic measurement of memory hierarchy
parameters,” ACM SIGMETRICS Performance Evaluation Review, vol. 33, no. 1, pp. 181–
192, 2005.

[107] C. Thomborson and Y. Yu, “Measuring data cache and TLB parameters under Linux,” in
IEEE International Sympoisum on Performance Evaluation of Computer and Telecommu-
nication Systems (SPECTS), 2000, pp. 383–390.

187

[108] H. Park, S. Baek, J. Choi, D. Lee, and S. H. Noh, “Regularities considered harmful: forc-
ing randomness to memory accesses to reduce row buffer conflicts for multi-core, multi-
bank systems,” ACM SIGPLAN Notices, vol. 48, no. 4, pp. 181–192, 2013.

[109] P. Pessl, D. Gruss, C. Maurice, M. Schwarz, and S. Mangard, “Reverse engineering intel
dram addressing and exploitation,” arXiv preprint arXiv:1511.08756, 2015.

[110] P. Rosenfeld, E. Cooper-Balis, and B. Jacob, “DRAMSim2: A cycle accurate memory
system simulator,” Computer Architecture Letters (CAL), vol. 10, no. 1, pp. 16–19, 2011.

[111] Intel, “Intel Xeon Processor X5650.” [Online]. Available: http://ark.intel.com/products/
47922/Intel-Xeon-Processor-X5650-12M-Cache-2 66-GHz-6 40-GTs-Intel-QPI

[112] B. Jacob, S. Ng, and D. Wang, Memory systems: cache, DRAM, disk. Morgan Kaufmann,
2010.

[113] Z. Zhang, Z. Zhu, and X. Zhang, “A permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality,” in ACM/IEEE international symposium on
Microarchitecture (MICRO), 2000, pp. 32–41.

[114] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM latencies with an integrated
memory hierarchy design,” in International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 2001, pp. 301–312.

[115] Intel, “Intel Xeon Processor E7 family Uncore Performance Monitoring programming
guide,” 2011. [Online]. Available: http://www.intel.com/content/www/us/en/processors/
xeon/xeon-e7-family-uncore-performance-programming-guide.html

[116] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A fast and extensible dram simulator,” IEEE
Computer Architecture Letters (CAL), vol. 15, no. 1, pp. 45–49, 2011.

[117] N. Chatterjee, R. Balasubramonian, M. Shevgoor, S. Pugsley, A. Udipi, A. Shafiee, K. Su-
dan, M. Awasthi, and Z. Chishti, “Usimm: the utah simulated memory module,” Univer-
sity of Utah, Tech. Rep, 2012.

[118] T. Moscibroda and O. Mutlu, “Memory performance attacks: Denial of memory service
in multi-core systems,” in USENIX Security Symposium, 2007, pp. 1–18.

[119] J. Millen, “20 years of covert channel modeling and analysis,” in IEEE Symposium on
Security and Privacy (SP), 1999, pp. 113–114.

188

http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://ark.intel.com/products/47922/Intel-Xeon-Processor-X5650-12M-Cache-2_66-GHz-6_40-GTs-Intel-QPI
http://www.intel.com/content/www/us/en/processors/xeon/ xeon-e7-family-uncore-performance-programming-guide.html
http://www.intel.com/content/www/us/en/processors/xeon/ xeon-e7-family-uncore-performance-programming-guide.html

[120] U. Xilinx, “Ml505/506/507 evaluation platform user guide,” Document Revision, vol. 3,
no. 2, 2011.

[121] Micron, “Micron DDR2 SDRAM.”

[122] A. Cosoroaba, “Memory interfaces made easy with xilinx fpgas and the memory interface
generator,” Xilinx Corporation, white paper, vol. 260, 2007.

[123] I. Corporation, “Intel 64 and ia-32 architectures, software developers manual, instruction
set reference, a-z,” 2011.

[124] “Intel platform and component validation , a white paper,” http://download.intel.com/
design/chipsets/labtour/PVPT WhitePaper.pdf, Intel, 2015-08-31.

[125] H.-M. Koo and P. Mishra, “Test generation using sat-based bounded model checking for
validation of pipelined processors,” in ACM Great Lakes symposium on VLSI (GLSVLSI),
2006, pp. 362–365.

[126] M. Katelman, J. Meseguer, and S. Escobar, “Directed-logical testing for functional veri-
fication of microprocessors,” in ACM/IEEE International Conference on Formal Methods
and Models for Co-Design (MEMOCODE), 2008, pp. 89–100.

[127] M. Ghasempour, J. Garside, A. Jaleel, and M. Luján, “Dream: Dynamic re-arrangement
of address mapping to improve the performance of drams,” in International Symposium
on Memory Systems (MEMSYS), 2016, pp. 362–373.

[128] D. Kaseridis, J. Stuecheli, and L. K. John, “Minimalist open-page: a DRAM page-mode
scheduling policy for the many-core era,” in Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, 2011, pp. 24–35.

[129] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, “Fair queuing memory systems,”
in Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 2006, pp.
208–222.

[130] “Mcxplore.” [Online]. Available: https://caesr.uwaterloo.ca/mcxplore/

[131] P. E. Ammann, P. E. Black, and W. Majurski, “Using model checking to generate tests
from specifications,” in IEEE International Conference on Formal Engineering Methods,
1998, pp. 46–54.

[132] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu, “Bounded model checking,”
Advances in computers, vol. 58, pp. 117–148, 2003.

189

http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf
http://download.intel.com/design/chipsets/labtour/PVPT_WhitePaper.pdf
https://caesr.uwaterloo.ca/mcxplore/

[133] M. Jeong, D. Yoon, and M. Erez, “Drsim: A platform for flexible DRAM system re-
search,” Technical Report, 2012.

[134] M. Jung, C. Weis, and N. Wehn, “DRAMSys: A flexible DRAM subsystem design
space exploration framework,” IPSJ Transactions on System LSI Design Methodology (T-
SLDM), vol. 8, pp. 63–74, 2015.

[135] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens, “Memory access
scheduling,” ACM SIGARCH Computer Architecture News, vol. 28, no. 2, pp. 128–138,
2000.

[136] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and O. Mutlu, “Staged
memory scheduling: achieving high performance and scalability in heterogeneous sys-
tems,” ACM SIGARCH Computer Architecture News, vol. 40, no. 3, pp. 416–427, 2012.

[137] Micron, “DDR3 SDRAM Verilog model,” 2012.

[138] D. Sahoo and M. Satpathy, “MSimDRAM: Formal model driven development of a dram
simulator,” in IEEE International Conference on VLSI Design and International Confer-
ence on Embedded Systems (VLSID), 2016, pp. 597–598.

[139] K. Khalifa and K. Salah, “Implementation and verification of a generic universal memory
controller based on uvm,” in IEEE International Conference on Design & Technology of
Integrated Systems in Nanoscale Era (DTIS), 2015, pp. 1–2.

[140] M. O. Kayed, M. Abdelsalam, and R. Guindi, “A novel approach for sva generation of
ddr memory protocols based on tdml,” in IEEE International Microprocessor Test and
Verification Workshop (MTV), 2014, pp. 61–66.

[141] Y. Li, B. Akesson, K. Lampka, and K. Goossens, “Modeling and verification of dynamic
command scheduling for real-time memory controllers,” in IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS), 2016, pp. 1–12.

[142] T. Poddar, N. Ahuja, and N. Ali, “Smart way to memory controller ver-
ification: Synopsys Memory VIP,” https://www.design-reuse.com/articles/38587/
synopsys-memory-controller-verification.html, Synopsys.

[143] J. Callahan, F. Schneider, S. Easterbrook et al., “Automated software testing using model-
checking,” in SPIN workshop, 1996.

190

https://www.design-reuse.com/articles/38587/synopsys-memory-controller-verification.html
https://www.design-reuse.com/articles/38587/synopsys-memory-controller-verification.html

[144] V. Okun, P. E. Black, and Y. Yesha, “Testing with model checker: Insuring fault visibility,”
International conference on system science, applied mathematics & computer science, and
power engineering systems (WSEAS), pp. 1351–1356, 2003.

[145] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model checkers: a survey,” Soft-
ware Testing, Verification and Reliability, vol. 19, no. 3, pp. 215–261, 2009.

[146] “VC Verification IP for DRAM Memory,” https://www.synopsys.com/verification/
verification-ip/dram-memory.html, Synopsys.

[147] “Ddr4 memory protocol analysis and compliance verification,” http://literature.cdn.
keysight.com/litweb/pdf/5991-1827EN.pdf?id=2295381, Keysight Technologies and Fu-
turePlus Systems.

[148] A. Adir, S. Copty, S. Landa, A. Nahir, G. Shurek, A. Ziv, C. Meissner, and J. Schumann,
“A unified methodology for pre-silicon verification and post-silicon validation,” in IEEE
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2011, pp. 1–6.

[149] Y. Naveh, M. Rimon, I. Jaeger, Y. Katz, M. Vinov, E. Marcu, and G. Shurek, “Constraint-
based random stimuli generation for hardware verification,” AI magazine, vol. 28, no. 3,
p. 13, 2007.

[150] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri, R. Sebas-
tiani, and A. Tacchella, “Nusmv 2: An opensource tool for symbolic model checking,” in
Computer Aided Verification. Springer, 2002, pp. 359–364.

[151] Memory Controller Hub (MCH), A datasheet, Intel, 2 2005.

[152] B. Jacob and D. Wang, “System and method for performing multi-rank command schedul-
ing in ddr sdram memory systems,” 2009, US Patent 7,543,102.

[153] M. Ghosh and H.-H. S. Lee, “Smart refresh: An enhanced memory controller design for
reducing energy in conventional and 3d die-stacked drams,” in IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2007, pp. 134–145.

[154] I. X. Processor, “E5-2600 product family uncore performance monitoring guide,” Intel
Corporation, 2012.

191

https://www.synopsys.com/verification/verification-ip/dram-memory.html
https://www.synopsys.com/verification/verification-ip/dram-memory.html
http://literature.cdn.keysight.com/litweb/pdf/5991-1827EN.pdf?id=2295381
http://literature.cdn.keysight.com/litweb/pdf/5991-1827EN.pdf?id=2295381

	List of Tables
	List of Figures
	List of Abbreviations
	List of Symbols
	Introduction
	Criticality- and Requirement-aware Bus Arbitration for Multi-core Mixed Criticality Systems
	Introduction
	Contributions

	Related Work
	System Model
	Execution Time Decomposition
	Illustrative Example

	Applicability of real-time arbiters in MCS
	CArb: Proposed Arbitration Scheme
	Inter-class Arbitration
	Intra-class Arbitration
	Area Overhead

	WC Analysis and Problem Formulation
	WC analysis
	Optimization problem formulation
	(L): The WC number of memory accesses as a function of CL

	Dynamic Re-arbitration
	Motivation
	Proposed Solutions
	Effect of Re-arbitration on Lower-criticality Tasks

	Experimental Evaluation
	Avionics Use-case
	Minimum Achievable Latency
	Synthetic Experiments
	Dynamic Re-arbitration

	Summary

	PMSI: Predictable Cache Coherence for Multi-core Real-time Systems
	Introduction
	Contributions

	Related Work
	Background: Cache Coherence
	Transient Cache Coherence States

	System Model
	Sources of Unpredictability Due to Coherence
	Source 1: Inter-core Coherence Interference on Same Line
	Source 2: Inter-core Coherence Interference on Different Lines
	Source 3: Inter-core Interference Due to Write Hits
	Source 4: Intra-core Coherence Interference

	PMSI: A Predictable Coherence Protocol
	Architectural Modifications
	Coherence Protocol Modifications

	Latency Analysis
	Evaluation
	Verification
	Exp.1: Bounding the Memory Latency
	Exp.2: Comparing Performance with Conventional Protocols and Alternative Predictable Approaches
	Exp.3: Comparing to the Ideal Scenario
	Exp.4: Scalability

	Summary

	PMC: A Requirement-aware DRAM Controller for Multi-core Mixed Criticality Systems
	Introduction
	Contributions

	Background: Main Memory
	Memory Page Policies

	Related Work
	Arbitration Mechanisms
	PMC: The Proposed Solution
	PMC Architecture
	Formulating Bundles
	Dynamic Bank Interleaving
	Rank Interleaving
	Arbitration Logic

	Schedule Generation
	Proposed Implementation
	Schedule parameters
	Schedule Slots

	Timing Analysis
	Problem Formulation

	Experimental Evaluation
	Case-study: Multimedia System
	Synthetic Experiments

	Summary

	Reverse Engineering Embedded DRAM Memory Controllers through Latency-based Analysis
	Introduction
	Contributions

	Related Work
	Memory Latency Analysis
	Proof Strategy
	Example 1: Two accesses with same access type to two different banks in the same rank
	Example 2: Two accesses with different access type to two different banks in the same rank

	Reverse-Engineering Properties of the MC
	Reverse-engineering page policy and address mapping
	Reverse-engineering the command arbitration scheme
	Advanced MC features
	Performance Counters

	Potential Applications
	Experimental Evaluation
	Reverse-engineering MC's properties of the XUPV5-LX110T platform
	Evaluation on simulation framework

	Summary

	MCXplore: Automating the Validation Process of DRAM Memory Controller Designs
	Introduction
	Contributions

	Background: Model Checking
	Related Work
	Formal Verification of the Memory System

	MCXplore Methodology
	Proposed Models

	Validating MC's Frontend
	Address Mapping Policies
	Page Management Policies
	Arbitration Schemes

	Validating MC's backend
	tCCD
	tRC
	tFAW
	tRTRS
	tRTP
	tRCD,tWL, and tRL
	tRRD
	tWR
	tWTR
	Summary
	Smart Refresh
	Command Bus Contention

	Extensibility of MCXplore
	Summary

	Bounding Total Memory Latency in Multi-Core Real-Time Systems
	System Model
	Timing Analysis of Coherence Interference Assuming CArb's Schedule
	Aggregated Memory Latency Analysis

	Conclusion and Future Work
	References

