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University of Waterloo, Waterloo, ON, N2L 3G1, Canada 

and 
David Naylor6 

Ryerson University, Toronto, ON, M5B 2K3, Canada 

Many convection heat transfer problems involve more than two isothermal heat 

sources/sinks. A network of multiple convective resistors connecting temperature nodes 

representing the isothermal sources (walls, inlet flows, etc.) can be used to represent this 

class of problem. However, the convective resistances that characterize this network cannot 

generally be evaluated using energy balances resulting from a solution to the energy 

equation. A technique based on solutions of the energy equation with perturbed boundary 

conditions is developed to overcome this difficulty. The resulting technique is verified by 

comparison with energy-balance results previously obtained for a special symmetric case. 

The technique is also applied to a superposition solution for hydrodynamically-developed 

laminar flow in an annulus and to numerical solutions of simultaneously-developing flow in 

an asymmetrically-heated annulus under both laminar and turbulent flow conditions. This 

work is part of an ongoing research project on the resistor-network modeling and 

characterization of multi-temperature convection problems.  

Nomenclature 

A = surface area [m2] 

Cn = series solution coefficient [-] 

Dh = hydraulic diameter [m] 
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fn = eigenfunction [-] 

H = channel width [m] 

k = thermal conductivity [W/mK] 

Nu  = average Nusselt number [-]  

Pr = Prandtl number [-] 

q = heat flux [W/m2] 

Q = heat transfer rate [W] 

r = radius/radial location [m] 

r̅ = dimensionless radius: r̅=r/r1 [-] 

R = thermal resistance [K/W] 

Re = Reynolds number based on hydraulic diameter [-] 

S = conduction shape factor [m] 

T = temperature [K] 

T(2T) = two-temperature fundamental solution from ref [8] [K] 

x = streamwise coordinate [m] 

X = inverse Graetz number (Eq. 11) [-] 

y�  = dimensionless lateral coordinate: y�=y/H [-] 

Greek Symbols 

θ = dimensionless temperature [-] 

λn  = eigenvalue [-] 

φ = radius ratio: φ=r2/r1 [-] 

Subscripts 

0 = (inlet) fluid 

1 = upper/outer wall 

2 = lower/inner wall 

i = designates heated wall 

ij = paired – from node i to node j 

Superscripts 

* = denotes perturbed condition 



I. Introduction 

eat transfer problems are traditionally formulated in terms of a driving temperature difference and a 

corresponding heat transfer coefficient. In many cases, however, there are more than two temperatures 

involved and, hence, more than one temperature difference driving the heat transfer. Forced convection examples 

include heat transfer in asymmetrically-heated passages and in flow over nearby bodies with isothermal surfaces. In 

these cases, heat transfer between each pair of isothermal “sources” (surfaces and free-stream or inlet flows) is 

driven by the difference between the respective temperatures.  

Nevertheless, characterizing the entire multi-temperature configuration in terms of a single heat transfer 

coefficient requires an “equivalent” or “effective” temperature difference. In flow in an asymmetrically-heated 

channel, for example, heat transfer is governed by three temperatures: the inlet flow temperature and the two wall 

temperatures. But to define a heat transfer coefficient, an effective temperature difference is constructed using the 

mean wall temperature and the bulk fluid temperature. In this case a temperature ratio is defined to specify the 

ordering of the inlet temperature with respective to the wall temperatures. The resulting heat transfer coefficient will 

depend on this temperature ratio. Shortcomings of this approach are discussed in detail in reference [1]. A major 

shortcoming is that it does not give the “split” of heat (transfer) between different sources. While the total heat 

transfer at the walls and the total heat transfer to the fluid can be calculated, it cannot be determined what portion of 

heat transfer at a wall goes to the fluid and what portion to the other wall. This will be demonstrated.  

An alternative to the traditional approach is the use of a thermal-resistor network: multiple thermal resistors 

connecting temperature nodes that represent the isothermal sources. Each resistance corresponds to heat transfer 

between a specific pair of nodes. With the (multiple) paired resistances characterizing the network known, the split 

of heat transfer between the nodes can be readily calculated. This approach has been established for modeling 

convective heat transfer in building energy simulation. The resistor-network approach is computationally 

advantageous in time-step simulations since it provides the opportunity to model heat transfer a high level of detail 

and at a very low computational expense [2,3]. The utility of this approach has also been demonstrated [1] for the 

classical multi-temperature convection problem of fully-developed laminar flow in an asymmetrically-heated 

channel, the asymmetric Graetz problem. The resistor-network formulation has been shown to lead to a simpler 

representation of the solution, while revealing new details about the heat transfer phenomenon. 

H 



In the present paper, the formulation of three-temperature convection problems in terms of a resistor network is 

examined. It is shown that, except for special symmetric cases, the nodal energy balances obtained from solutions to 

the energy equation (or measurements) are not sufficient to yield the paired resistances that characterize the network. 

Nevertheless, an additional equation can be generated from the solution of the energy equation with perturbed 

boundary conditions. This additional equation is used to supplement the nodal energy balances and obtain the 

convective resistances. The proposed technique is verified by comparison with the energy-balance results previously 

obtained for the asymmetric Graetz problem. The technique is then applied to a variation of the asymmetric Graetz 

problem: forced convection in an asymmetrically-heated annulus – another benchmark problem. An existing 

analytical solution for hydrodynamically-developed, laminar flow is first considered. The analysis is then extended 

to CFD solutions of flows, both laminar and turbulent, with simultaneous hydrodynamic and thermal development. 

This work is part of an ongoing research project on the modeling and characterization multi-temperature 

convection problems which are of special interest in building energy simulation. 

II. Methodology – Part 1: The dQdT Technique 

To illustrate the resistor-network formulation, consider a three-temperature convection problem, e.g. 

hydrodynamically-developed flow in an asymmetrically-heated annulus shown schematically in Figure 1. To 

represent this problem a delta network of three resistors (also shown in Figure 1) connecting the three temperature 

nodes representing the two annulus walls and the inlet flow can be used. Note that the fluid flow is represented by 

the inlet temperature – the corresponding independent boundary temperature.  

The set of heat transfer rates, {Qi}, can be calculated for any given set of boundary temperatures, {Ti}. But heat 

transfer at a node, say Q2, is split between the two legs of the network connected to that node. See Equation 1 and 

the delta network of Figure 1. 

   21202 QQQ +=                       (1) 

Following the standard electrical analogy for heat transfer, the two paired heat transfer component on RHS of 

Equation 1 can be written in terms of the corresponding driving temperature difference and paired resistance. The 

term “paired” is used here to emphasize that Rij corresponds to heat transfer between a specific pair of nodes, Ti and 

Tj. See Equation 2. 
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Equation 1 can now be recast in terms of the three nodal temperatures, and the paired resistances connected to 

node 2. See Equation 3. 
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Figure 1: Schematic and resistor network of hydrodynamically-developed flow 

in an asymmetrically-heated annulus. 

Writing an energy balance similar to Equation 3 for the other two nodes, three algebraic equations are obtained 

with the three resistances, {Rij}, unknown. But these equations are not independent; they are interconnected by the 

overall energy balance of the network: Q0+Q1+Q2=0. The system of equations is under-defined with three unknowns 

and only two independent equations. It is therefore not possible to determine the paired convective resistances (and 

thus the split of heat transfer at each node) based on the knowledge of the total heat transfer rates only. An 

additional equation is required. 

If one of the temperatures, say T1, is perturbed by δT1, Q2 will change as a result by some amount δQ2. These 

changes are shown in Equations 4 and 5, where asterisks are introduced to designate the perturbed condition. 
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*
1 δTTT +=                       (4) 

   22
*
2 δQQQ +=                      (5) 

The energy balance (Equation 3) can also be applied to the perturbed condition, as shown in Equation 6. 
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It is important at this stage to recognize that a convective resistance is a function of only geometry, the velocity 

field and the fluid properties. Hence, for any given annulus, a change in T1 could change both R20 and R21 through 

temperature-dependent fluid properties or thermal effects on the velocity field, e.g. buoyancy. Nevertheless, in a 

constant-property forced-convection problem, there is a one-way coupling between the velocity field and the 

temperature field. The convective resistances are thus independent of temperature, i.e. Rij
*=Rij. In other words, δQ2 

is caused by the change in the driving temperature difference solely. Equation 6 can be rewritten as shown in 

Equation 7. 
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Equation 7 is the additional equation that closes the system; {Rij} can now be obtained. Subtracting Equation 3 

from Equation 7, for example, R21 is found as shown in Equation 8. 
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In a constant-property forced-convection problem, the energy equation is linear with respect to temperature. 

Hence Equation 8 can be written in the differential form shown in Equation 9. 
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As will be subsequently demonstrated, this differentiation can be done analytically for simple convection 

problems which have analytical solutions. For more complex flows, where an analytical solution is not at hand, the 

differentiation can be performed by perturbing the temperature boundary conditions in a numerical solution. 

For convenience, the proposed technique which gives a paired resistance as the ratio between δQ and δT is 

dubbed dQdT. The main utility of the dQdT technique is that it provides a means of resolving the split of heat 

transfer in multi-temperature problems. With {Rij} obtained using dQdT, {Qij} as well as {Qi} can be calculated for 

any {Ti}. This is new information which provides insight into the physics of the problem, and is not available in the 

traditional formulation. 



III. Verification: 

Hydrodynamically-Developed Laminar Flow in an Asymmetrically Heated Channel 

Recall that Rij is a function of geometry, the flow field and the fluid properties. In the special case of constant-

property, hydrodynamically-developed, laminar flow in a flat-plate channel, the two wall-to-fluid resistances (R10 

and R20) are equal due to symmetry. The number of the unknowns is therefore reduced to two and the system of 

energy-balance equations can be solved for {Rij}. In a recent paper [1], the analytical solution by Hatton and Turton 

[4] was used to derive expressions for {Rij}. For the purpose of verification, the dQdT technique is applied here to 

obtain {Rij} of the same problem. A schematic of this configuration is shown in Figure 2. Note that this 

configuration is a limiting case of flow in an asymmetrically-heated annulus with a radius ratio approaching one. 

The results obtained in [1] by equating the two wall-to-fluid resistances, R10=R20, and solving the nodal energy 

balances are used here to validate the dQdT results. 

 

Figure 2: Schematic of hydrodynamically-developed flow in an asymmetrically-heated channel [1]. 

To apply dQdT, i.e. perform the partial differentiation of Equation 9 to get {Rij}, the solution by Hatton and 

Turton [4] was used to obtain expressions for {Qi}. Hatton and Turton presented a series solution to the energy 

equation in terms of the dimensionless temperature )T(T)TT(θ wm1wm −−= , in the form of Equation 10.  
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In Equation 10, the first term on RHS is the linear, fully-developed temperature profile, and the summation is the 

series solution to a Sturm-Liouville system, with Cn, fn and λn denoting the coefficients, the eigenfunctions and the 

eigenvalues, respectively. X is the inverse Graetz number, defined in Equation 11, representing streamwise 

coordinate along the channel. 
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With the temperature distribution known heat flux at each wall was obtained by differentiation, resulting in 

Equation 12. 
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Equation 12 was then integrated from the channel entrance to location x, to find the (per-unit-depth) total heat 

transfer rates, Q1 and Q2. See Equation 13. 
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To have the results in terms of X only, the integral can be evaluated using a change of variable as shown in 

Equation 14. 
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The resulting expressions for {Qi} were then differentiated with respect to {Ti} to obtain {Rij} according to 

Equation 9. Average paired Nusselt numbers, defined as shown in Equation 15, are used here to report the results in 

dimensionless form.  
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Equations 16 and 17 are the dQdT results based on the eigenvalues and eigenfunction derivatives reported by 

Hatton and Turton. 
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Comparing Equations 16 and 17, obtained by dQdT, with the expressions reported in [1], found by solving 

equating R10 and R20 and solving the nodal energy balances, it can be seen that they are identical. The dQdT 

technique for calculating the paired resistances is thus verified. 

The two sets of results are plotted in Figure 3. Wall-to-fluid heat transfer is singularly high at the inlet and 

decays to zero well downstream of the channel inlet as the two boundary layers merge and the flow reaches thermal 

development. Wall-to-wall heat transfer is zero at the inlet and grows to the pure-conduction limit at X→∞. See 

reference [1] for a detailed discussion of these results. 

As discussed in reference [1], in addition to the split of heat transfer remaining unknown, the traditional 

formulation based on the bulk fluid temperature has other shortcomings when applied to asymmetrically-heated 

channels. Most notably: i) a non-physical singularity occurs in the distribution of one of the local Nusselt numbers at 

the point where the bulk fluid temperature reaches the temperature of the corresponding wall, and ii) the Nusselt 

numbers depend on temperature ratio, which is inconsistent with the physics of the problem. These problems are 

apparent in the results presented by Hatton and Turton [4] and Mitrovic et al. [5].The same problems are seen in 

results presented for asymmetrically-heated annuli using the traditional formulation, e.g. [6,7]. The resistor-network 

formulation and the corresponding paired convective resistances have been shown to address these shortcomings [1]. 

 



 
Figure 3: Average paired Nusselt numbers of hydrodynamically-developed laminar flow in a flat-plate 

channel obtained from nodal energy balances [1] and by dQdT. 

IV.  Sample Results – Part 1:  

Hydrodynamically-Developed Laminar Flow in an Asymmetrically-Heated Annulus 

In this section, the dQdT technique is applied to an analytical solution for hydrodynamically-developed laminar 

flow in an annulus. In this case, due to asymmetry, the two wall-to-fluid resistances are not equal and the paired 

resistances cannot be found based only on the nodal energy balances. Sample dQdT results are presented and known 

limiting cases are examined to further validate the developed technique. 

Lundberg et al. [8] solved the problem of constant-property, hydrodynamically-developed, laminar flow in 

asymmetrically-heated concentric annuli for the special case where one of the walls is maintained at the same 

temperature as the inlet flow and the other wall is heated to a second temperature. Similar to the solution by Hatton 

and Turton for channel flow, the solution by Lundberg et al. is expressed as the superposition of a one-dimensional 

solution for non-homogeneous boundary conditions (the fully-developed solution, θfd) and a series solution for 

homogeneous boundary conditions. See Equation 18. 
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In Equation 18, )T(T)TT(θ 0i0i −−=  is dimensionless temperature, and X is the inverse Graetz number 

defined similar to Equation 11 but with H/2 replaced with the annulus hydraulic diameter, Dh=2(ro-ri). Cn, fn and λn 

are, respectively, the coefficients, eigenfunctions and eigenvalues of the series solution for the “fundamental 

solution of the first kind,” i.e. for Dirichlet conditions at the boundaries [8]. The subscript i denotes the heated wall: 

θ2, for example, is the fundamental solution of the first kind for the case where the outer wall is at the same 

temperature as the inlet flow (T1=T0), while the inner wall is maintained at a different temperature (T2). The fully-

developed temperature profile, θfd, is given by Equation 19. 
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θ
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Given the linearity of the energy equation and the boundary conditions, a solution to the generic case where the 

walls are at two different temperatures distinct from the inlet flow temperature – the “true” three-temperature 

problem – can be constructed using superposition. See Equation 20, where the solution to the three-temperature 

case, T, is expressed as the sum of the solution to a two-temperature case where the outer wall is heated, T1
(2T), and 

the solution to a two-temperature case where the inner wall is heated, T2
(2T). This is illustrated schematically in 

Figure 4. 
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Figure 4: Generic three-temperature solution as superposition of fundamental two-temperature solutions. 

With Ti
(2T) known in dimensionless form (θi) from the work of Lundberg et al. and noting that superposition 

requires Ti'+Ti''=Ti, the three-temperature solution is obtained as shown in Equation 21. 

  0202101 Tθ)T(Tθ)T(TT +⋅−+⋅−=                (21) 

Differentiating Equation 21, wall heat fluxes are found as shown in Equation 22, where r̅ =r/r1 is dimensionless 

radial location. 
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Differentiating Equation 18, the gradient terms in Equation 22 can be written as shown in Equation 23.  
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To evaluate the paired convective resistances, the wall heat fluxes are integrated to obtain total heat transfer 

rates, {Qi}. The partial differentiation shown in Equation 9 is then performed to obtain the paired convective 

resistances. Results are reported in terms of average paired Nusselt numbers, defined in Equation 24. In this 

definition, a characteristic length of (r1-r2) is used to match the flat-plate channel results (based on H) in the r2/r1→1 

limit. 
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The resulting expressions are shown in Equations 25, 26 and 27 where φ=r2/r1.* 
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Equations 25, 26 and 27 show that {Nuij} does not depend on {Ti} or some temperature ratio, which is consistent 

with the physics of a constant-property forced-convection problem. As discussed in reference [1], however, the 

traditional formulation based on the bulk fluid temperature leads to Nusselt numbers that depend on a temperature 

ratio characterizing the ordering of the wall temperatures and the inlet flow temperature.  

* Note that in reference [8] non-zero values are given for (1-φ)(Cn)i with φ→1.  Therefore, φ=1 does not yield
0(X)Nuij = .  

                                                           



Evaluating Cn, fn and λn for any given φ and substituting the results in Equations 25-27, three universal curves 

are obtained that can be applied to any set of boundary temperatures ({Ti}), any laminar flow rate (Re) and any fluid 

(Pr). Sample results are plotted in Figure 5 for a radius ratio of φ=0.5. The coefficients, eigenvalues and 

eigenfunction derivatives given by Lundberg et al. [8] were used to evaluate }Nu{ ij . Wall-to-fluid heat transfer is 

infinitely large at the annulus inlet, similar to the leading-edge singularity in flow over a flat plate: ∞→
→

i00X
Nulim . 

As the flow develops thermally, with the temperature profile approaching the fully-developed profile of Equation 

19, wall-to-fluid heat transfer decreases, approaching a limiting value of zero at X→∞. The asymmetry in the 

geometry, i.e. the different curvature of the inner and outer walls, leads to a difference between the two wall-to-fluid 

Nusselt numbers. The surface with the lower curvature has a lower wall-to-fluid Nusselt number: 12Nu < 21Nu .  

 
Figure 5: Average paired Nusselt numbers calculated using dQdT (fully-developed laminar flow, φ=0.5). 

Wall-to-wall heat transfer, on the other hand, increases from zero at the inlet and to the pure-conduction limit. 

Note that 12Nu  and 21Nu  are not equal due to the difference between the respective areas; 12Nu / 21Nu =φ=0.5. 

This result is expected since calculating the wall-to-wall heat transfer rate using either wall-to-wall Nusselt number, 



the same result should be obtained: Q21=-Q12. The slight departure of 12Nu  and 21Nu from zero at X=0 is because 

only the first four eigenvalues were used. 

To demonstrate the validity of these results, two limiting cases may be considered. First: in the thermally-

developed limit (X→∞), there is zero heat transfer between the annulus walls and the flow, hence: 

0NulimNulim 20X10X
==

∞→∞→
. Wall-to-wall heat transfer, on the other hand, approaches the pure-conduction limit with 

0.72Nulim 12X
=

∞→
. Using this limiting value, obtained by dQdT, the wall-to-wall heat transfer rate in a portion of 

length L in the thermally-developed region of the flow can be calculated as shown in Equation 28. 
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The same result is obtained using 44.1Nulim 21X
=

∞→
. 

Alternatively, the wall-to-wall heat transfer rate in the pure-conduction limit can be calculated using the 

conduction shape factor of the annulus, S=2πL/ln(1/φ) which yields S=9.065L for φ=0.5. The fully-developed wall-

to-wall heat transfer rate is then obtained as shown in Equation 29. Comparing Equations 28 and 29 demonstrates 

the accuracy of the dQdT results. 

  ( ) )TkL(T9.065)TSk(TQ 2121fd12 −=−=               (29) 

The second case is the limit where the curvature of both annulus walls approaches zero; φ→1. In this limit, the 

solution to the annulus problem must approach the solution to the flat-plate channel problem. In Figure 6, the 

distribution of the dQdT results for the inner-to-fluid paired Nusselt number, 20Nu , is plotted for various radius 

ratios. It can be seen that as φ→1, 20Nu  approaches the wall-to-fluid Nusselt number of the channel problem, 

examined earlier. The slight discrepancy between the φ→1 curve and the channel-flow curve (dashed) is due to the 

difference between the two sets of eigenvalues (from references [4] and [8]) used to generate the respective curves. 



 
Figure 6: Average inner-wall-to-fluid Nusselt number for different radius ratios – φ=r2/r1 

(fully-developed laminar flow). 

V. Methodology – Part 2: Numerical Implementation of dQdT 

In the previous section, an analytical solution for hydrodynamically-developed laminar flow in annuli was used 

to apply dQdT analytically. But analytical solutions are rarely available. No such solution for simultaneously-

developing flow in an annulus was found. Numerical solutions, however, can be obtained relatively easily for 

different configurations and flow conditions. The dQdT technique for obtaining the paired convective resistances 

also can be applied numerically: the partial differentiation of Equation 9 can be evaluated using a numerical solution 

of the governing equations and subsequent solutions of the energy equation with perturbed boundary conditions. 

Numerical implementation of dQdT is demonstrated and verified here using a numerical solution to the energy 

equation for hydrodynamically-developed, laminar flow in two geometries: the flat-plate channel and an annulus 

with φ=0.5. The commercial code ANSYS FLUENT 14.0 [9,10] was used to obtain 2nd-order, constant-property 

solutions to the complete, elliptic energy equation. This “baseline” solution was used to obtain the total heat transfer 

rates, {Qi(x)}. Next, a boundary temperature Tj was changed to Tj+δTj and the energy equation was solved again to 

obtain the new transfer rates, {Qi
*(x)}. {Rij} was then found using Equation 8. Note that due to the linearity of the 



energy equation, the size of the perturbation is of no consequence. δTj need only be large enough that the resulting 

{δQi} can be detected within the numerical accuracy of the solution. 

Results are plotted in Figures 7 and 8 in terms of the average paired Nusselt number defined in Equation 30. 
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Analytical dQdT results presented in the previous sections are reproduced in Figures 7 and 8 for comparison. 

The results are in very close agreement with the largest discrepancy between the numerical and analytical dQdT 

results occurring in the vicinity of the inlet (X≲0.1). This near-inlet discrepancy is more pronounced for the annulus 

results (Figure 8). Note that the numerical results are obtained using a numerical solution to the full energy equation, 

while analytical results are based on a series solution to the simplified energy equation with axial diffusion 

neglected.  Further note that the analytical results are based on only the first few terms of the series solutions.  

 
Figure 7: Average paired Nusselt numbers obtained using analytical and numerical dQdT  

(fully-developed laminar flow in channel). 



 
Figure 8: Average paired Nusselt numbers obtained using analytical and numerical dQdT  

(fully-developed laminar flow in annulus, φ=0.5). 

VI. Sample Results – Part 2:  

Simultaneously-Developing Laminar or Turbulent Flow in an Asymmetrically-Heated Annulus 

To demonstrate the general applicability of the dQdT technique, numerical dQdT was used to obtain the paired 

convective resistances of flows developing hydrodynamically and thermally in an asymmetrically-heated annulus 

with φ=0.5. Both laminar and turbulent flow cases were considered. ANSYS FLUENT 14.0 was used to obtain 2nd-

order, constant-property solutions to the momentum and energy equations in an axisymmetric model of the annulus. 

The SIMPLE scheme was used to handle the pressure-velocity coupling. The shear-stress transport (SST) k-ω 

turbulence model was used for the fully turbulent cases.  

A Richardson-extrapolation-based technique [11] was used to assess grid dependence of the solutions. Using 

three non-uniform rectangular grids with 28000, 53000 and 200000 control volumes, and based on the rate of total 

heat transfer to the fluid, Q0, grid convergence indices of 1% and 2% respectively were found for the Re=50 and 

Re=104 cases. The apparent order of the solutions was found to be 2.  



The baseline CFD solutions were validated against the experimental results of Roberts and Barrow [12] for 

simultaneously-developing flow of air (Pr=0.7) at Re=55000 in an annulus with φ=0.476, while the inner wall was 

heated with a uniform heat flux and the outer wall was insulated. As shown in Figure 9, the present numerical 

solution is in better agreement with the measurements of Roberts and Barrow than the results of an earlier numerical 

study by Malik [13]. Away from the inlet (x>5Dh) the present numerical results are less than 10% higher than the 

experimental data. Unfortunately, the turbulence intensity at the inlet and the uncertainty in the measurements of the 

wall Nusselt number are not reported by Roberts and Barrow [12]. It is stated that the flow is ensured to be fully 

turbulent by the use of tripping devices at the annulus entrance [12], but the inlet turbulence was not quantified, 

merely reported to be “small.” In reference [13] an inlet turbulence intensity of 0.02% has been used. In the present 

CFD solutions inlet turbulence intensities between 0.02% and 1% were tested leading to less than 1% change in the 

average Nusselt number from x=0 to x=15Dh. Results shown in Figure 9 are for an inlet intensity of 1%. 

 
Figure 9: Inner-wall local Nusselt number for turbulent, developing flow in an annulus. Inner wall heated 

with uniform flux, outer wall insulated. (φ=0.476, Re=55000, Pr=0.7). 

CFD-based dQdT can be used to evaluate the paired convective resistances for any fluid, any flow rate and any 

geometry (annulus radius ratio and eccentricity). Sample results of numerical dQdT are shown in Figures 10, 11 and 



12 for the flow of air (Pr=0.7) in a concentric annulus with φ=0.5 at various flow rates, 10≤Re≤104. A relatively 

high inlet turbulent intensity of 15% was used for the fully turbulent cases. Again, no dependence on temperature or 

temperature ratio is observed in the results. 

Average outer-to-inner Nusselt number, plotted in Figure 10, starts from 12Nu =0 at X=0 and approaches the 

pure-conduction limit of 0.72. As the flow rate increases, the thermal development of the flow is delayed and, 

therefore, 12Nu at any given location is decreased. In the fully turbulent cases (dashed curves), wall-to-wall heat 

transfer is enhanced by turbulent mixing. Therefore: 12Nu (Re=104) > 12Nu (Re=5000) > 12Nu (Re=1000). For 

simultaneously-developing flow too, 21Nu / 12Nu =φ=0.5 in keeping with the idea that Q12=-Q21. 

Wall-to-fluid Nusselt numbers, 10Nu  and 20Nu , are plotted in Figures 11 and 12. The general trend is similar to 

the hydrodynamically-developed case, starting from singularly high wall-to-fluid heat transfer at the annulus inlet 

and decaying as the flow develops thermally. Transition to turbulence significantly enhances wall-to-fluid heat 

transfer. Similar to the hydrodynamically-developed case, 10Nu > 20Nu .  

 
Figure 10: Average outer-wall-to-inner-wall Nusselt number in developing flow (φ=0.5, Pr=0.7) 



 
Figure 11: Average outer-wall-to-fluid Nusselt number in developing flow (φ=0.5, Pr=0.7). 

 
Figure 12: Average inner-wall-to-fluid Nusselt number in developing flow (φ=0.5, Pr=0.7). 



VII. Conclusion 

In many convection problems heat transfer occurs between more than two isothermal sources/sinks. In this paper 

the formulation of this class, (constant-property) multi-temperature forced convection problems, in terms of a 

network of thermal resistors was discussed. The most notable advantage of this approach is that it reveals the split of 

heat transfer between the sources – information not available in the traditional formulation. However, the evaluation 

of the paired convective resistances that characterize the resistor network of a multi-temperature problem is in 

general not possible based only on energy balances at the network nodes. A new technique (dQdT) entailing 

solutions of the energy equation with perturbed boundary conditions was developed to overcome this difficulty. The 

validity of the dQdT technique was established based on comparison to previous analytical solutions for special 

symmetric cases, and physical arguments. 

The resistor-network approach and the dQdT technique were demonstrated for two benchmark three-temperature 

forced convection problems with existing analytical solutions: heat transfer in hydrodynamically-developed laminar 

flow in asymmetrically-heated channels and in asymmetrically-heated annuli. Next, numerical dQdT based on 

numerical solutions of the energy equation with perturbed boundary conditions was applied to the problem of 

simultaneously-developing flow in an asymmetrically-heated annulus, under both laminar and turbulent regimes. 

Physical explanations were given for the sample dQdT results presented and the trends observed. Some known 

limits were examined to support the results. 

This work is part of an ongoing research project on the modeling and characterization of multi-temperature 

convection problems in terms of resistor networks. The resistor-network approach is of particular interest and utility 

in the field of building energy simulation. In this paper, only constant-property forced-convection problems were 

considered. However, given the demonstrated advantages of the resistor-network formulation, it is tempting to apply 

this approach to other multi-temperature convection problems. Extension of this work to the general problem of 

multi-temperature convection, including variable properties and free convection, will be presented in future work. 
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