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Resilient Corner Based Vehicle Velocity Estimation
Mohammad Pirani, Ehsan Hashemi, Amir Khajepour, Baris Fidan, Alireza Kasaiezadeh, Shih-Ken Chen, Bakhtiar

Litkouhi

Abstract—This paper presents longitudinal and lateral velocity
estimators by considering the effect of the suspension compliance
at each corner (tire) for ground vehicles. The estimators are
developed to be resilient to sensor measurement inaccuracies,
model and tire parameter uncertainties, switchings in observer
gains, as well as measurement failures. More particularly, the
stability of the observer is investigated, and its robustness to
road condition uncertainties and sensor noises is analyzed. The
sensitivity of the observers’ stability and performance to the
model parameter changes is discussed. Moreover, the stability of
the velocity observers for two cases of arbitrary and stochastic
switching gains is investigated. The stochastic stability of the
observer in the presence of faulty measurements is also studied,
and it is shown that if the probability of a faulty measurement
occurring is less than a certain threshold; the observer error
dynamics will remain stochastically stable. The performance of
the observer and the effect of the suspension compliance are
validated via several road experiments.

Keywords—Resilient velocity estimation, Robustness, Switching
systems, Vehicle dynamics

I. INTRODUCTION

Vehicle velocity, in both longitudinal and lateral directions,
makes major contributions to traction and stability control
systems. It can be measured with the advent of GPS; however,
the insufficient accuracy of the commonly used conventional
GPSs (especially for the lateral direction) and their occasional
loss of reception are primary impediments. Two major ap-
proaches have been developed in the literature for the estima-
tion of longitudinal and lateral velocities. One is the modified
kinematics-based approach, which uses vehicle longitudinal
and lateral accelerations and the yaw rate measurements and
estimates the vehicle states by employing Kalman Filter based
[1] or nonlinear observers [2], [3]. This approach does not
employ a tire model, but instead, sensor bias and noise should
be identified precisely for a reliable estimation. To remove
noises and address the low excitation scenarios, the kinematics-
based approach employs accurate GPS data, which imposes
additional costs on commercial vehicles.

The other estimation method is model-based and implements
tire forces, which requires the road friction and accurate tire
parameters. To deal with the varying tire parameters and model
uncertainties, a nonlinear observer is provided in [4] with si-
multaneous bank angle estimation. An Extended Kalman Filter
(EKF) is employed for both longitudinal and lateral vehicle
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state estimation in [5]–[8] to estimate the vehicle states and
parameters of the tire model. Similarly, when employing an
Unscented Kalman Filter (UKF), [9] estimates the lateral and
longitudinal velocities using knowledge of the road condition
and the LuGre tire model [10], [11], respectively. A direct
virtual sensor moving horizon estimator (MHE) is provided
in [12] for estimation of the vehicle side-slip angles with a
nonlinear finite impulse response filter.

To address the unknown road friction, other literature focus
on state estimation and road identification at the same time
[13]. A nonlinear side slip observer is proposed in [14]
to identify the road condition and estimate vehicle states
simultaneously. In [15], a sliding-mode observer is proposed
to estimate velocities using braking torque, longitudinal/lateral
acceleration measurements, and an EKF for the estimation of
road friction. An adaptive side slip angle estimation based
on the Brush tire model and vehicle aligning moment that
simultaneously identifies the road condition is proposed by
[16]. However, these methods need tire parameters in presence
of tire wear, and inflation pressure changes. Moreover, an
adaptive vehicle estimation and control [17] in the presence
of unknown road friction requires a certain level of excitation
which may not be applicable in reality.

Therefore, reliable velocity estimation robust to road uncer-
tainties and model parameter variations has been underlined
in recent stability control methods. A coupled kinematic and
model-based approach is developed in [18] to estimate lon-
gitudinal relative velocities at each corner. In order to design
a reliable vehicle velocity estimator, a precise vehicle model
is needed. The imprecision of the vehicle dynamics can be
rooted in an inaccurate tire model or by omitting additional
dynamics, such as the effect of the suspension compliance
on the tire kinematics. Hence, in order to reliably design
a velocity estimator, an accurate model augmented by the
suspension compliance is needed, which is addressed in this
article. To accommodate high-slip cases, the observer gains
change accordingly and form a switched system. Stability of
the velocity observers at each corner are also investigated in
this paper. Based on the above discussion, this paper addresses
the following issues:
• A corner-based velocity estimation for both longitudinal

and lateral directions is developed by considering the
effect of the suspension compliance using a coupled
kinematic and model-based method. The performance
of the estimator is also analyzed.

• The stability of the observer for the general time-varying
case and its robustness to road condition uncertainties
and sensor noises are discussed. Moreover, sensitivity
analysis of the observers’ stability and robustness to the
model’s parameter changes is carried out.
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• The stability of the velocity observers under gain switch-
ing for two cases of arbitrary and stochastic switching
and the effect of knowing about the switching policies
are studied.

• Stochastic stability of the observer in presence of faulty
measurements is also analyzed. This provides a measure
for the resilience of the velocity observer to the cascad-
ing failure.

The structure of the paper is as follows. The longitudinal
and lateral velocity estimators are provided in section II. The
suspension compliance effect and its incorporation in the ve-
locity estimators are studied in section III. The stability of the
linear parameter-varying error dynamics, the H∞ robustness,
and sensitivity to tire parameters are investigated in section IV.
Stability analysis of the systems under arbitrary and stochastic
observer gain switchings and a comparison between the two
switching policies are carried out in Section V. Section VI
discusses the stochastic stability of the observer in the presence
of faulty measurements. Experimental results are presented in
section VII to show the performance of the state estimation
approach on various road frictions and in maneuvers with lon-
gitudinal/lateral excitations. Section VIII presents conclusions.

II. VELOCITY ESTIMATION AT EACH CORNER

The vehicle velocity observer in this section is a new design
of the estimator in [18] which has coupled the kinematics-
based (tire-free) approach and the tire’s internal states at each
corner to estimate relative velocities. The selected tire model
is the average lumped LuGre [19] because of the dynamics
in the internal deflection state as described in the following
subsection. The vehicle and tire parameters (with their actual
values used for experiments) are presented in Table (I).

TABLE I: Vehicle Specifications and Tire Parameters/states

Description Parameter/State Unit Value
Rubber stiffness σ0x, σ0y [1/m] 641, 131.5
Rubber damping σ1x, σ1y [s/m] 0.85, 0.82

Relative viscous damping σ2x, σ2y [s/m] 0.0016, 0.001
Load distribution factor κx, κy [s/m] 8.1, 13.4

Vehicle mass m [kg] 2330
Vehicle moment of inertia Iz [kg.m2] 4650
Wheel moment of inertia Iw [kg.m2] 1.65
Front & rear axles to CG Lf , Lr [m] 1.42, 1.43

Effective radius Re [m] 0.33
Vehicle tire center velocity Vxt, Vyt [m/s] −

Vehicle corner velocity Vxc, Vyc [m/s] −
Tire relative velocity Vrx, Vry [m/s] −

Wheel speed ω [rad/s] −
LuGre friction state zx, zy [−] −
Long/Lat tire force Fx, Fy [N ] −

Normalized Coulomb friction µc [−] 0.85
Normalized static friction µs [−] 1.1

Stribeck velocity Vs [m/s] 5
Vehicle yaw rate r [rad/s] −

Vehicle long/lat acceleration ax, ay [m/s2] −
Suspension stiffness Kx, Ky [N/m] 3e5, 7e5
Suspension damping Cx, Cy [Ns/m] 3730

Quarter car unsprung mass Mu [kg] 46
Front/Rear track length Trf

, Trr [m] 1.62, 1.56
CG height hCG [m] 0.65

Front/Rear axles to CG df , dr [m] 1.42, 1.43
Height of the roll center hRC [m] 0.54

A. LuGre Tire Model
The internal longitudinal and lateral states zq (q ∈ {x, y})1.

and the normalized tire forces fnq (i.e. fnx = Fx/Fz, fny =
Fy/Fz) in the pure-slip case are described as follows in the
LuGre model:

żq = Vrq − (κqRe|ω|+
σ0q|Vrq|
θg(Vrq)

)zq, (1)

fnq = σ0qzq + σ1q żq + σ2qVrq, (2)

in which ω is the wheel speed and Vrx = Reω − Vxt, Vry =
−Vyt are the longitudinal/lateral relative velocities. The tires’
center velocities in the tire coordinates are denoted by Vxt,
Vyt. The function, g(Vrq) in the pure-slip model is defined as
g(Vrq) = µc + (µs − µc)e

−|Vrq
Vs
|0.5 . The effect of pure and

combined-slip LuGre tire models in the vehicle stability is
explored in [20]. The parameter θ ∈ [0, 1] in (1) represents
the road condition which is small when the road is slippery
and it is close to 1 otherwise. In the following subsection,
θ is assumed to be unknown which results in unknown term
σ0q|Vrq|
θg(Vrq) zq in (1).

B. Longitudinal velocity estimation

Assuming the unknown road friction term σ0q|vrq|
θg(vrq) zq as the

bounded uncertainty %zx, one can write the LuGre model (1)
as follows at each corner for the longitudinal direction:

żx = Vrx − κxRe|ω|zx + %zx. (3)

The time derivative of the longitudinal relative velocity is
described as:

V̇rx = Reω̇ − V̇xt + %ax, (4)

However the measured signals V̇xt and ω (and particularly its
derivative ω̇) are corrupted due to the sensor noises and bias.
The deviation of the measured relative acceleration Reω̇− V̇xt
from V̇rx at each corner due to the sensor noises is denoted
by %ax. The value of the longitudinal acceleration at CG
(measured by IMU) is projected into the tires’ center V̇xt.

Dynamics of the tire internal states (3) together with relative
velocities (4) are used to develop the following dynamics:

ẋ =

[
−κxRe|ω| 1

0 0

]
x + Bxux + %x, (5)

in which Bx = [0 1]T , uncertainties are denoted by %x =
[%zx %ax]T , the states are x = [zx Vrx]T , and ux =
Reω̇ − V̇xt. Substituting żx from (3) into the normalized
longitudinal force of the pure-slip case (2), one can rewrite
the output equation as:

fnx = [(σ0x − σ1xκxRe|ω|) (σ1x + σ2x)]x + σ1x%zx
= Cx(ω)x + σ1x%zx. (6)

1From now, an index q for tire states or parameters indicates the direction
of interest, i.e. q ∈ {x, y}. Tire forces and velocities in tire coordinates are
shown in Fig. 1 (b).
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By employing the normalized longitudinal force (6) and the
system (5), the following observer is obtained for longitudinal
velocity estimation with the estimated output ŷ = f̂nx =
Cx(ω)x̂ and observer gains Lx = [L1x L2x]T :

˙̂x = Ax(ω)x̂ + Bxux + Lx(fnx − f̂nx), (7)

where fnx = Fx/Fz is the normalized longitudinal tire force.
The bounded time-varying parameter in (7) is the wheel speed
and the parameter varying state transition matrix is Ax(ω) ∈
R2×2. The error dynamics ex = x− x̂ from (5) and (7) yields:

ėx = [Ax(ω)− LxCx]ex − Lxσ1x%zx + %x

= Aex(ω)ex +

[
1− L1xσ1x 0

−L2xσ1x 1

]
%x

= Aex(ω)ex + Bex%x. (8)

The system matrix Ax(ω) in (7) is physically bounded; thus, a
conventional observability test is performed. The observability
matrix for parameter-varying systems like (5) with output (6)
is given by [21] as:

On = [ε1 ε2... εn]T ,

ε1 = Cx, εi+1 = εiAx(ω) + ε̇i. (9)

Observability is confirmed by holding the full rank condition
rank(O2) = 2 at each fixed time span for the operating
regions of the wheel speed and its time derivatives. Thus, the
parameter-varying system (5) with output (6) is observable, and
it is feasible to estimate the longitudinal tire internal states ẑx
and the relative velocity V̂rx by employing the longitudinal
force as the output.

Remark 1: For implementation and the road experiments,
discretization of the continuous-time system (5) with the output
y = Cxx + Dxux is done by the Step-Invariance method
because of its precision and response characteristics. The step-
invariance discretization is the zero-order hold method and
includes constant input signal ux(t) during integration. It
has good accuracy with the platform sampling frequency of
200[Hz]. Moreover the richness of the step signal, in terms
of the frequencies that it carries, makes the step invariance
method very suitable for automotive applications, as there exist
a large amount of uncertainties and disturbances. Input to the
continuous-time system is the hold signal ux[k] = ux[tk]
for a period between tk ≤ t < tk+1 with the sample time
Ts. Then, the discrete-time system x[k + 1] = Ad

x[k]x[k] +
Bd
xux[k], y[k] = Cd

xx[k] + Dd
xux[k] has the output matrices

Cd
x = Cx,D

d
x = Dx and state/input matrices:

Ad
x = eAx(t)Ts , Bd

x =

∫ Ts

0

eAx(t)τBx(t)dτ. (10)

The discretized from of the error dynamics (8), can now be
written as ex[k+1] = Ad

ex [k]ex[k]+Bd
ex%x[k]. The following

subsection focuses on the corner-based velocity observer for
the lateral direction.

C. Lateral velocity estimation
The LuGre output equation (2) for the lateral direction can

be expressed as follows:

fny = [(σ0y − σ1yκyRe|ω|) (σ1y + σ2y)]x̄ + σ1y%zy
= Cy(ω)x̄ + σ1y%zy, (11)

where the states are x̄ = [zy Vry]T . The relative lateral
acceleration V̇ry = −V̇yt + %ay (the projected lateral accel-
eration in the tire coordinate system is denoted by V̇yt) is
combined with the lateral LuGre internal state to form the
lateral velocity estimator. Equation (5) can be rewritten for
the lateral direction as ˙̄x = Ay(ω)x̄ + Byuy + %y using state
and input matrices Ay = [−κyRe|ω| 1; 0 0],By = Bx,
and uy = −v̇yt. Uncertainties in the lateral states are denoted
by %y = [%zy %ay]T . The state estimator can be expressed as
follows for the lateral direction with the output ŷl = f̂ny =
Cy(ω)x̂l:

˙̄̂x = Ay(ω)ˆ̄x + Byuy + Ly(fny − f̂ny), (12)

in which Ly = [L1y L2y]T .
Remark 2: Similar to the longitudinal direction, the observ-

ability of the lateral direction dynamics can be verified by
the observability criterion (9) for the parameter-varying system
with Ay(ω),Cy(ω).
The error dynamics is then derived as follows for the lateral
velocity estimator and represents a linear parameter varying
system:

ėy = Aey (ω)ey +

[
1− L1yσ1y 0

−L2yσ1y 1

]
︸ ︷︷ ︸

Bey

%y, (13)

where Aey = [Ay(ω)−LyCy]. The error dynamics in discrete-
time yields ey[k + 1] = Ad

ey [k]ey[k] + Bd
ey%y[k]. In order to

increase the accuracy of the velocity estimation at each corner,
the effect of the suspension compliance is considered on the
estimators and is discussed in the following section.

III. VELOCITY ESTIMATION WITH SUSPENSION
COMPLIANCE

The corner based velocity estimators presented in the previ-
ous section are based on the coordinate attached to the vehicle
chassis. However, there exists an extra degree of freedom
between the chassis and the tire due to the suspension com-
pliance, which should be taken into account. In this section,
the effect of the suspension compliance in the modification
of the estimated velocities provided in section II is discussed.
The dynamics can be represented by a second-order system
as Muψ̈q(t) + Cqψ̇q(t) + Kqψq(t) = Fq . The displacements
due to the suspension in each direction are denoted by ψq(t).
The suspension dynamics at each corner can be written in the
following state space form:[

ψ̇q(t)

ψ̈q(t)

]
=

[
0 1
−Kq

Mu

−Cq

Mu

][
ψq(t)

ψ̇q(t)

]
+

[
0

1

]
Fq
Mu

. (14)
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The velocity term ψ̇q(t) should be directly added to the
estimated velocity at each corner due to the dynamics (14).
Thus, the objective is to find the state ψ̇q(t) in (14) for
implementation in the velocity estimation at each corner.

The estimated relative velocities V̂rx and V̂ry by (7),
(12) are used for the longitudinal velocity estimation at the
tire coordinates as V̂xt = Reω − V̂rx and V̂yt = −V̂ry.
Afterwards, utilizing the steering angle δ at the front and
rear tracks (i.e. δ = 0 for the rear track of front-steering
vehicles), each corner’s velocity in the vehicle coordinates
yields ˆ̄Vxc = V̂xt cos δ− V̂yt sin δ for the longitudinal direction
and ˆ̄Vyc = V̂xt sin δ + V̂yt cos δ for the lateral direction. The
velocities due to the suspension compliance (14) is then added
to the estimated velocities in the vehicle coordinates as:

V̂xc = ˆ̄Vxc + ψ̇x, V̂yc = ˆ̄Vyc + ψ̇y. (15)

Estimated corner velocities (15) are then used for calculation
of the vehicle’s velocity at CG. The longitudinal velocity of the
vehicle at its CG, V̂x, is calculated by the front axle speed V̂x =
0.5(V̂xcfL

+ V̂xcfR
) or the rear axle speed V̂x = 0.5(V̂xcrL +

V̂xcrR) where fL, fR, rL, rR represent the front-left, front-
right, rear-left, and rear-right tires, respectively.

The lateral velocity at the vehicle’s CG, V̂y , can be cal-
culated from the front axle’s lateral speed V̂y = −rLf +
0.5(V̂yfL

+ V̂yfR
) or the rear axle’s lateral speed V̂y =

rLr + 0.5(V̂yrL + V̂yrR) in which r is the yaw rate and Lf
and Lr are the distances from the front and rear axles to CG.

In order to check the performance of the estimators with
the suspension compliance, the relative velocities (i.e. slip ra-
tio/angle) corrected by the suspension dynamics are employed
in a tire model to calculate the tire forces. The calculated tire
forces are then compared to the measured ones to determine
∆fn, which represents the difference between the measured
and estimated tire forces with (and without) consideration of
the suspension compliance. The experimental validation of
this approach is discussed in Section VII. It will be shown
in the experimental results that the effect of the suspension
compliance is during harsh traction and braking maneuvers
where the applied tire forces are considerable. Such effect in
a tiny time interval plays an important role in detecting tire
slip more accurately and consequently on vehicle traction and
stability control.

The structure of the augmented velocity estimators with the
Suspension Compliance (SC) effect is depicted in Fig. 1. Con-
sidering road friction and measurement noises as uncertainties,
the kinematics-based velocity estimation is combined with the
internal tire states in Long. Velocity Est. and Lat. Velocity Est.
Measured accelerations by the IMU attached to the sprung
mass are corrected with the vehicle’s body pitch and roll angles
to include only the kinematics of the motion. These corrected
values are then used in the velocity estimators. A high-
slip detection algorithm is used for appropriate observer gain
switch to tackle the slippery cases. Estimated corner velocities
are augmented with the suspension effect and mapped onto the
vehicle’s CG in the SC and Mapping module.

Remark 3: Tire forces can be measured by wheel sensors.

However, because of high cost impact on production vehicles,
installation problems, and maintenance issues, tire force esti-
mation has extensively been tried in the literature. Longitudinal
and lateral tire forces at each corner can be estimated using
nonlinear and sliding mode observers [22], [23], unknown
input observers [24], [25], or Kalman Filter based estimators
[26]–[28]. Normalized longitudinal and lateral forces fnx, fny
are assumed to be known from the Kalman Filter based
estimation on wheel and lateral dynamics [28], [29]. Due to
the fact that the vehicle normal force has a significant impact
on normalized longitudinal and lateral tire forces, a detailed
study on tire normal force calculation is done in [29]. The
detailed procedure of normal force calculation is discussed in
Section VII. Since tire forces are used as measurements for
the velocity estimation in this paper, they are referred to as
force measurement and force estimation interchangeably.

Used for VxVy_Susp
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Fig. 1: (a) State estimation structure with SC, (b) Forces and
velocities in the tire coordinates.

IV. ESTIMATOR’S STABILITY, ROBUSTNESS AND
SENSITIVITY ANALYSIS

In this section, the stability of the observer error dynamics
(8) and (13) is analyzed as a linear time varying system.
Moreover, the robustness of the observer dynamics to model
uncertainties will be investigated and the sensitivity of the
stability margin andH∞ robustness to tire parameter variations
will be discussed.

A conventional approach is to study the stability of the
symmetric part of the matrix, which usually results in con-
servative results [30]. In order to tackle the conservativeness
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issue, a similarity transformation is utilized in the following
proposition to show the boundedness of the estimation error.

Proposition 1: Estimation errors in linear time varying error
dynamics (8) and (13) are bounded.

Proof: A similarity transformation in the form of ēq(t) =
Teq(t) is employed on the longitudinal/lateral estimation error
states (8) and (13), which results in Āeq = TAeqT

−1 and
B̄eq = TBeq . Choosing T = diag(γ, 1) with a design
parameter γ > 0, leads to Āeq whose stability margin,
SMq , max

i
λi(Āeq ), is close to the stability margin of its

symmetric part (which will be discussed in Example 1 later).
Moreover, due to the fact that ||T|| and ||T−1|| are bounded,
the transformation matrix T preserves the exponential stability
and the exponent (rate) of the convergence [31], [32]. The Lya-
punov candidate V(ēq(t)) = 1

2 ēq(t)
T ēq(t) is then introduced

to investigate the stability of the error dynamics (8) and (13)2.
The time derivative of the Lyapunov function along the state
trajectories leads to

V̇ =
1

2
˙̄eq(t)

T ēq(t) +
1

2
ēTq (t) ˙̄eq(t),

= ēTq (t)

(
1

2

(
ĀT
eq + Āeq

))
︸ ︷︷ ︸

Ās

ēq(t)

+
1

2

(
%Tq B̄

T
eq ēq(t) + ēTq (t)B̄eq%q

)
≤ λmax(Ās)||ēq(t)||2 +

1

2

(
1

2ε
%Tq B̄

T
eqB̄eq%q +

ε

2
||ēq(t)||2

)
≤
(
λmax(Ās) +

ε

4

)
||ēq(t)||2 + λmax(B̄T

eqB̄eq )||%q||2

= 2
(
λmax(Ās) +

ε

4

)
V + λmax(B̄T

eqB̄eq )||%q||2

≤ η1V + η2, (16)

for some η1 < 0 and η2 > 0. Here ε is chosen such that
0 < ε� |λmax(Ās)| to have λmax(Ās)+ ε

4 < 0; thus, η1 < 0.
The fourth line is due to Young’s inequality and the fifth line is
due to the fact that B̄T

eqB̄eq is a symmetric matrix. Introducing
U(ēq(t)) = V(ēq(t)) + η2

η1
, based on (16) and the Bellman-

Gronwall lemma [33], we have U(ēq(t)) ≤ eη1tU(ēq(0)),
which yields:

0 ≤ V(ēq(t)) ≤ eη1t
(
V(ēq(0)) +

η2

η1

)
− η2

η1
, (17)

which results in;

0 ≤ ||ēq(t)||2 ≤ eη1t
(
||ēq(0)||2 +

2η2

η1

)
− 2η2

η1
. (18)

η2
η1

< 0 proves the exponential stability of the nominal part
of the error dynamics (8) and (13) (without term %q) and the
boundedness of the estimation error eq(t).

As mentioned in Proposition 1, the transformation matrix T
yields a less conservative stability condition for the symmetric

2V(ēq(t)) and V are used interchangeably.

part of Āeq compared to the symmetric part of Aeq . The
following example confirms this claim.

Example 1: Consider error dynamics (8) with the observer
gains Lx = [1.18, 387]T . For a particular angular velocity,
e.g. ω = 40, the largest eigenvalue of matrix Aex and its sym-
metric parts are λmax(Aex) = −327.1 and λmax(0.5(Aex +
AT
ex)) = 108750, respectively. Thus, the symmetric part is

unstable while matrix Aex is Hurwitz. However if we use
the similarity transformation mentioned in Proposition 1 with
T = diag(9000, 1), the largest eigenvalue of the symmetric
part of Āex is λmax(Ās) = −326.8, which is very close
to λmax(Āex). This shows how much the stability of the
symmetric part of a matrix can be conservative and how much
an appropriate choice of a similarity transformation can help
in overcoming this conservativeness.

Proposition 1 shows the boundedness of the estimation
errors. However, in order to come up with tighter bounds,
system H∞ norms, defined as H∞ , sup

ω∈R
||G(jω)||∞, for

both longitudinal and lateral error dynamics are shown in
Figure 2.

0 20 40 60 80 100 120 140
0.9985

0.999

0.9995

1

 H


  -
 L

on
g.

0 20 40 60 80 100 120 140
0.995

1

1.005

 H


  -
 L

at
.

    [rad/s]

Fig. 2: SystemH∞ norm for longitudinal and lateral estimators

It should be noted that the H∞ norm is a conservative
system norm and Fig. 2 reveals that even conservative H∞
norms of error dynamics are non-expansive (H∞ ≤ 1) for the
suggested observers.

Lastly, the sensitivity of the error dynamics stability margin
SMq and system H∞ norms to model parameter uncertainties
is investigated. Figs. 3 and 4 show deviation of the stability
margin of the error dynamics (8) and (13) from their nominal
values due to model parameter deviation of up to 20%.3 Fig.
5 shows the sensitivity of the system H∞ norm of the error
dynamics to the same parameter variations. This figure shows
that the performance of the observer is not very sensitive to
the tire parameter variations.

V. STABILITY OF THE ESTIMATOR UNDER GAIN
SWITCHING

To address the high-slip condition, observer gains are
switched to change the level of reliance on the output (longi-

3Each model parameter X is perturbed as X ± 0.2X .
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tudinal/lateral forces and their uncertainties) and process (road
friction uncertainties and acceleration noises). The stability
of the switched systems has been analyzed extensively under
arbitrary [34], [35] and stochastic switching [36]. Switched
observers are used in vehicle state or parameter estimation
[37].

In this section, the stability of the nominal parts of error
dynamics, in the form of (19), is analyzed when the observer
gains switch between different modes. In this case, the longi-
tudinal and lateral observer gains can attain each of the two
modes to result in:

ėq = Ai
eq (ω)eq, (19)

where Ai
eq belongs to the i-th set of observer gains Liq , and

i = 1, 2 represents switching modes. Since the stability of (19)
is a necessary condition for the stability of (8) and (13), it is
analyzed in the presence of arbitrary gain switching.

A. Stability of the observer under arbitrarily switching gains
A sufficient condition for the quadratic stability of a

switched linear system under arbitrary switching is to have
a common quadratic Lyapunov function for all switching
modes [34]. Similar to the analysis done in Proposition 1,
we introduce the transformed matrix Āi

eq = TAi
eqT

−1 with
the same transformation matrix T used in Proposition 1. By
choosing the Lyapunov function V(ēq) = 1

2 ē
T
q ēq , one can

write:

V̇ =
1

2
˙̄eq(t)

T ēq +
1

2
ēTq (t) ˙̄eq(t)

= ēTq (t)

(
1

2

(
ĀiT

eq + Āi
eq

))
︸ ︷︷ ︸

Āi
s

ēq ≤ λmax(Āi
s)||ēq||2

= 2λmax(Āi
s)V ≤ λ̄V, (20)

where λ̄ = max
i=1,2
{max
t≥0
{2λmax(Āi

s)}}. This shows that the

decaying rate of the switched system is based on the worst
case decaying rate over time and over switching modes. This is
due to the lack of knowledge about the switching policy. In the
following subsection, the stability of the suggested observers
under stochastic gain switching is analyzed, and the results
will be compared with the case of arbitrary switching.

B. Stability of the observer under stochastically switching
gains

In this subsection, switching between the observer gains
is assumed to happen in the form of a particular stochastic
process represented by a Markov chain. The stability of the
Markov jump linear systems has been analyzed vastly [36],
[38], [39]. Similar to the arbitrary switching case mentioned
in the previous section, stochastic switching will introduce a
dynamics that comprises of two sub-dynamics 4. The switch-
ing mechanism is modeled using a Markov chain with the
probability transition matrix:

P =

[
p11 p12

p21 p22

]
, (21)

4Since the switching forms a Markov jump linear system and theoretical
results (e.g. Theorem 1) for such systems are derived for discrete time case,
the discrete version of the estimator with the sampling time T = 5ms is used
in the experiment setup.
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where pij = Pr(L[k + 1] = Ljq|L[k] = Liq). Here, L is a
random vector that takes its values from the sample space
S = {L1

q,L
2
q}, which are the two sets of observer gains. The

following definition is required to investigate the stability of
such switched system.

Definition 1 ( [40]): The linear system eq[k + 1] =
Adi
eqeq[k] (matrix Adi

eq is the discrete version of Ai
eq in the

error dynamics (19), as discussed in Remark 1) is called mean
square stable (MSS) if limk→∞ E(eq[k]Teq[k]) = 0.

Based on Definition 1, the following theorem is used for the
mean square stability of the error dynamics.

Theorem 1 ( [41]): The linear system eq[k+1] = Adi
eqeq[k]

is MSS if and only if the following condition holds.

ρ
[
(PT ⊗ I)diag(Adi

eq ⊗Adi
eq )
]
< 1, (22)

where ⊗ is the matrix Kronecker product, P is the probability
transition matrix between different modes and ρ[.] is the
spectral radius of a matrix.
The spectral radius result provides a necessary and sufficient
condition for stability under Markovian jumps as well as a
measure for the robustness of such stability. In this direction,
the stability margin of the linear Markov jump system is given
by 1−ρ. In the following example, the stability margin of the
observer when the observer gains are switching with a pre-
specified Markovian jump policy is discussed, and it is shown
how that stochastic switching policy between the observer
gains provides tighter results when compared to the arbitrary
switching.

Example 2: Given two high-slip and low-slip cases with
the slip ratio λ = Re|ω|−Vxt

max{Re|ω|,Vxt} and subsequent switching
actions, a probability transition matrix represents switching
policies between two slip conditions. The observer gains
attain either mode L1

x = [1.18, 387] or L2
x = [0.22, 0.1],

corresponding to two sets of slip ratios 0 ≤ |λ| < 0.15,
0.15 ≤ |λ|, respectively. The probability transition matrix is in
the following form:

Pdry =

[
0.9 0.1

1− γ̄ γ̄

]
, (23)

where γ̄ is the probability that the observer stays within the
high slip mode at time step k+1 when it is at high slip mode at
time step k. The stability margin of the switched system with
stochastic gain switching for different values of the angular
velocity is shown in Fig. 6.

In this case, the spectral radius obtained from the arbitrary
switching, which is based on the worst case gain, is 0.9960,
(close to 1). It can be compared to the values plotted for
stochastic switching. This substantiates that having knowledge
on the policy of the switching can help us improve the stability
margin (robustness) for the switched linear system.

VI. RELIABLE VELOCITY ESTIMATOR IN THE PRESENCE
OF FAULTY MEASUREMENTS

Switching in observer gains is performed in order to change
the level of the reliance of the observer to the force mea-
surements. In this section, a robustness measure for velocity
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Fig. 6: Spectral radius ρ with respect to γ̄.

observers to the force measurement (estimation) failure, which
acts in a cascading scheme, is proposed. Taking advantage
of the newly proposed stochastic approach in the previous
section, a metric (namely pcr) is introduced which represents
the robustness of the velocity observer to the unreliable force
estimation.

Suppose that the measurement signal is faulty and does not
reach the observer correctly with some probability p, so it
can not be utilized (it is dropped) by the longitudinal/lateral
observers. It is equivalent to the condition where the observer
gain is Lq = 0 with probability p and nonzero (active observer
gain Lq) with probability 1− p. More formally:

eq[k + 1] =

{
Ad
qeq[k] with probability p

Ad
eqeq[k] with probability 1− p . (24)

Recasting this problem into a Markovian jump analysis, one
can express the probability transition matrix as:

P =

[
1− p p

1− p p

]
, (25)

with pij = Pr(L[k + 1] = Ljq|L[k] = Liq) in which L is a
random vector that takes values from the sample space S =
{Lq,0}. Applying Theorem 1, one can specify how tolerant the
velocity observers are against faulty force measurements. This
leads to the calculation of pcr (namely critical probability),
which is defined as the maximum allowable probability of
faulty measurements occurring such that the velocity observer
remains MSS.

Remark 4: In the case of measurement drop with p <
pcr, the system is no longer observable. However, since the
unobservable modes are MSS, the system is stochastically
detectable [42]. Figure (7) illustrates the value of the critical
probability pcr for different values of the wheel speed for the
longitudinal and lateral velocity estimators. For probabilities
larger than the pcr, the system is not MSS.

Figure (8) depicts the value of the spectral radius ρ for the
longitudinal and lateral velocity estimators and different wheel
speeds. This information can provide a sense of the stability
margin of such systems [36].

In the following example, the stability and robustness of
the system is studied in a case where the measurement signal
drops with a certain probability. The values used in Example
3 are chosen to compare the conservativeness of the stability
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margin of the stochastic and arbitrary switching scenarios and
the value of p is not obtained from road experiment.

Example 3: Given the case where the measurement signal
is dropped with p = 0.2 and reaches the estimator with
probability 1 − p = 0.8 (i.e. Lx = 0 with p = 0.2 and
Lx = [1.18 387]T with 1−p = 0.8), the MSS is investigated.
Applying Theorem 1 in this case leads to a mean square stable
system with the spectral radius ρ = 0.9026. Alternatively, if
the measurement signal loss happens arbitrarily, based on the
arbitrary switching discussed in section V, the system becomes
marginally stable, i.e. ρ = 1.
Therefore, investigating the faulty measurement cases with the
Markovian jump model provides a less conservative criterion
for the mean square stability of the estimators.

VII. RESULTS AND DISCUSSION

This section provides results of the road experiments for the
longitudinal and lateral velocity estimators on a four-wheel-
independent-drive instrumented SUV with the specifications
given in Table I. Different driving conditions were conducted
on surfaces with different friction conditions, and the exper-
imental results of the velocity estimators are presented and
verified with the measurements from the GPS. For the road
experiments, the longitudinal and lateral observer gains are
Lx = [1.18 387]T and Ly = [1.21 16.8]T , respectively.
Before demonstrating the experimental results, we provide the
procedure used in [29] to calculate the tire normal (vertical)
force.

A. Normal force calculation
Normal forces at each corner is calculated in [29] based on

lateral and longitudinal vehicle dynamics and the sprung mass

angles. The longitudinal and normal acceleration components
of the longitudinal dynamics are aθx = ax cos θv + an sin θv
and aθn = an cos θv−ax sin θv where ax, an are the measured
longitudinal and normal accelerations by an IMU attached to
the sprung mass and θv is the vehicle pitch angle. Normal
forces at front and rear axles are calculated as

Fzf = − m

(df + dr)
(hCGaθx − draθn)

Fzr =
m

(df + dr)
(hCGaθx + dfaθn), (26)

where the height of the vehicle’s center of gravity is hCG,
and df , dr are distances from front and rear axles to CG.
Similarly, the lateral and normal acceleration components due
to the lateral dynamics are aφy = ay cosφv + an sinφv and
aφn = an cosφv−ay sinφv in which ay is the measured lateral
acceleration by IMU and φv is the vehicle roll angle. Hence,
via using (26) and introducing mi =

Fzi

g where i ∈ {f, r}
(equivalent masses at front and rear axles), normal forces at
each corner become [29]

FziL =
mi

Tri

[
aφn(

Tri
2
− hRC sinφv)− aφyhCG

]
FziR =

mi

Tri

[
aφn(

Tri
2

+ hRC sinφv) + aφyhCG

]
, (27)

where Tri , i ∈ {f, r} is the length of front and rear tracks,
indexes L,R denote the left and the right sides and hRC
is the height of the roll center. A reliable estimation of
vehicle pitch and roll angles, θv and φv from available sensory
measurements, i.e., θ̇v and φ̇v , is out of the scope of this paper
and we refer to [43] for more information about the procedure.
The values of Trf , Trr , hRC , hCG, df and dr which are used
for the experimental tests are defined in Table I.

B. Case1: Maneuvers with longitudinal excitations

The augmented longitudinal velocity estimator with the
suspension compliance is examined in a harsh launch on a
surface, which has two different friction conditions and the
results are shown in Fig. 9. The left wheels are on ice with
µ ≈ 0.25, the right wheels are on a dry asphalt, and the power-
train configuration is all wheel drive (AWD).

As can be seen in Fig. 9, the longitudinal estimator provides
accurate velocities at each corner. The left tires are on the
slippery surface at which the wheel speed Reω (blue lines)
increases significantly due to extreme slip, while the estimated
wheel center velocities at each corner (red lines) have good
correspondence with the measured GPS data.

To study the effect of suspension compliance in the devel-
oped observer, ∆fn at each corner is depicted in Fig. 10 for
the longitudinal estimator with and without SC.

Figure 10, substantiates that the incorporation of SC and
proper observer gain allocation lead to the observed smooth
and accurate velocity estimation at the CG as well as at each
corner for such maneuvers with longitudinal excitations.
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C. Case2: Maneuvers with lateral and combined lat-
eral/longitudinal excitations

In order to assess the corner based approach in combined-
slip conditions, where the tire capacities are reduced due to
a high slip ratio as well as the high slip angles in each lon-
gitudinal/lateral direction, a harsh acceleration-in-turn (AiT)
maneuver with AWD configuration is done on a dry surface.

Results of the lateral velocity estimator together with the
measured accelerations and the yaw rate are also provided in
Fig. 11 for the same AiT scenario on dry asphalt.

Figure 11 reveals that high oscillations exist in both lateral
and longitudinal accelerations, but the lateral state estimation
methodology handles these situations and exhibits smooth
and accurate outcomes. Similar to the longitudinal case, the
augmented lateral estimation (by the suspension compliance)
and the pure lateral observer are compared to the lateral force
measurement and the difference ∆fn at the front tires are
shown in Fig. 12.

Furthermore, the augmented velocity estimators are exam-
ined in the vehicle with AWD configuration in a harsh lane
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Fig. 12: Lateral force calculation errors with and without SC

change (LC) scenario with acceleration and deceleration on
snow. The experimental results of the lateral velocity estimator
as well as the measured accelerations and the yaw rate are also
depicted in Fig. 13 for this maneuver. Fluctuations of the mea-
sured lateral acceleration and sudden changes of the vehicle
yaw rate in Fig. 13 substantiate the arduous characteristics of
the driving scenario.

Normal force calculation results at each corner are also
shown in Fig. 14 for this harsh LC maneuver on snow
and compared with the measured vertical forces by force
transducers mounted on all four wheels.

As a result, the suggested longitudinal and lateral state esti-
mators with the suspension compliance provide good accuracy
and can be used for traction and stability control systems.

VIII. CONCLUSION

Longitudinal and lateral vehicle’s velocities with considering
suspension compliance at each tire are estimated in this article.
This leads to more accurate velocity estimates (slip ratio/angle)
at each corner. Several road experiments with normal and harsh
driving conditions have been conducted on dry and slippery
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roads to validate the approach. These experiments exhibit
reliable and accurate performance for a pure-slip launch, lane
change maneuvers, as well as the combined-slip acceleration-
in-turn scenarios. As concluded from the road experiments, the
augmented estimators by SC can handle dry as well as slippery
roads with error RMS less than 5.8% for the longitudinal
direction and less than 7.5% for the lateral direction.

The stability of the velocity estimators are studied for
the time-varying case and observer gains’ arbitrary/stochastic
switchings. Sensitivity of the estimators to the model param-
eters are also investigated for the operating regions of the
varying parameter (wheel speed).

A failure in the force estimation can have a cascading effect
on the velocity estimation as well. This paper presented a prob-
abilistic measure for the resilience of the velocity estimation
to such cascading failures. Deterministic and real-time analysis
of such behaviour is an avenue for future studies.
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