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Estimation of Longitudinal Speed Robust to Road
Conditions for Ground Vehicles

Ehsan Hashemi, Alireza Kasaiezadeh, Saeid Khosravani, Amir Khajepour, Nikolai Moshchuk, and Shih-Ken Chen

Abstract—This article seeks to develop a longitudinal vehicle
velocity estimator robust to road conditions by employing a tire
model at each corner. Combining the lumped LuGre tire model
and the vehicle kinematics, the tires internal deflection state is
used to gain an accurate estimation. Conventional kinematic-
based velocity estimators use acceleration measurements, without
correction with the tire forces. However, this results in inaccurate
velocity estimation because of sensor uncertainties which should
be handled with another measurement such as tire forces that de-
pend on unknown road friction. The new Kalman-based observer
in this paper addresses this issue by considering tire nonlinearities
with a minimum number of required tire parameters and the
road condition as uncertainty. Longitudinal forces obtained by
the unscented Kalman filter on the wheel dynamics is employed
as an observation for the Kalman-based velocity estimator at
each corner. The stability of the proposed time-varying estimator
is investigated and its performance is examined experimentally in
several tests and on different road surface frictions. Road exper-
iments and simulation results show the accuracy and robustness
of the proposed approach in estimating longitudinal speed for
ground vehicles.

Keywords—Vehicle state estimation, uncertain dynamics, stability
analysis, parameter estimation, unscented Kalman filter

I. INTRODUCTION

Two major vehicle velocity estimation approaches are used
in recent literature. The first one uses vehicle’s planar kine-
matics, to develop observers [1], [2] that use standard mea-
surements from an inertial measurement unit (IMU) such as
acceleration, the yaw, the pitch, and the roll rates, without
implementing a tire model. This approach is independent from
tire parameters, but instead the sensors bias and noise should
be identified precisely to have a reliable estimation. Employing
accelerations and wheel speed measurements, Imsland et al.
proposed a nonlinear observer in [3], [4] to tackle model
uncertainties. A Kalman observer is employed by Hsu and
Bevly et al. in [5], utilizing the same kinematic-based method
and correction with GPS data, but the poor accuracy of the
mostly practiced conventional GPSs and the loss of reception
are primary concerns. The issue of reliance on a GPS is
addressed with observer development around tire capacities
and using the wheel speed, as investigated by G. Baffet and
A. Charara [6], but this approach is incapable of predicting the
lateral limit before it occurs. This drawback is eliminated in [7]
by implementing a steer-by-wire system to determine the road
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condition, tire limits, and the slip angles of the front and rear
tracks independently. Yoon and Peng [8] utilizes two low-cost
GPS receivers for the lateral state estimation and compensates
the low update rate issue of the conventional GPS receivers by
combining the IMU and GPS data with an extended Kalman
filter (EKF).

Another velocity estimation method uses a tire model to-
gether with vehicle kinematics. However, this approach needs
road condition information and tire parameters, which may
vary significantly. The issue of time-varying tire parameters is
handled with a model scheduling in [9], which again lacks
information on road conditions. An extended Kalman filter
(EKF) is employed for both longitudinal and lateral state
estimation in [10], but the load of computations justifies using
a reliable approach such as an unscented Kalman filter (UKF)
without any need for linearization in the system dynamics. The
UKF [11], [12] and the simplified empirical Magic formula
[13], [14] (as the tire model) is employed in [15] for the
velocity and force estimation at each corner, but road friction
and wheel torques are required for this approach. Alternatively,
a sliding-mode observer is proposed in [16], based on the
LuGre dynamic model [17], to estimate the longitudinal speed,
but the road should be identified simultaneously. Zhang et
al. presented a sliding-mode observer for velocity estimation
in [18], with the wheel torques and an EKF for estimation
of the Burckhardt’s model [19] parameters. However, this
method needs an accurate tire model, which is not possible
due to the presence of tire wear, inflation pressure, and road
friction uncertainties. Vehicle state estimation on a single
track car model is studied for slip angle estimation in [20],
with a Pacejka tire model [14]. The derivatives of the lateral
forces in their approach, however, amplify noise effects in the
lateral/longitudinal state estimates.

In this paper, kinematic equations are combined with the
average lumped LuGre model [21] to estimate the longitudinal
velocity and the tire internal deflection state at each corner
independently, using a Kalman Filter (KF). Advantages of
the developed velocity estimator are its robustness to road
conditions and insensitivity to reasonable changes in tire
parameters. The stability of the time-varying estimator and
boundedness of the error covariances are also addressed in this
article. Furthermore, the stability of the estimator is studied for
deterministic and stochastic initial state vectors.

This paper provides different observers for the vehicle state
estimation on various road conditions with the following con-
tributions: 1) longitudinal and vertical tire-free force estimators
are developed using computationally efficient nonlinear ob-
servers and common measurements without knowing the road
condition and any limiting assumption. 2) a novel observer
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for the velocity estimation, robust to road friction changes is
introduced which treats acceleration measurement noises and
the road condition as uncertainties. 3) the corner-based struc-
ture of the longitudinal/lateral force and velocity estimators
advantageously leads to better performance of the stability
and traction control systems in conditions with different road
friction under each tire.

This article is divided into five sections. The longitudinal
force estimation approach is examined in Section II, as are
corner-based estimation by UKF and unknown input observer
methodologies. Section III proposes a velocity estimator with a
high-slip detection module utilizing the KF. Proof of the error
covariance boundedness and the stability of the linear time-
varying estimator are also provided in Section III. Road test
experiments and simulation results are presented in Section IV,
with discussion on the findings in various maneuvers with
high and low longitudinal excitations. Section V includes
conclusions and future work.

II. LONGITUDINAL FORCE ESTIMATION

Tire forces can be measured at each corner, but their cost
impact, calibration and maintenance are their major drawbacks
to be used for production vehicles. Provided that the longitu-
dinal tire force calculation needs road friction, even accurate
slip ratio information from the GPS will not provide forces
at each corner. Hence, estimation of tire forces independent
of road conditions would be a remedy. Longitudinal force
estimation independent of the road friction may be classified
on the basis of wheel dynamics into the nonlinear and sliding
mode observers [22]–[24], Kalman-based estimation [25], [26],
and unknown input observers [27], [28]. This section provides
two force estimation approaches, an unknown input observer
and a Kalman-based method. The latter is selected in this study
for the velocity estimation as it is less sensitive to the tire’s
effective radius and provides more smooth outcomes for the
transient regions during acceleration and brake. Experimental
and simulation results are presented in Section IV to show the
estimators performance in different maneuvers and on various
road friction conditions.

A. Force estimation with unknown input observer
A corner-based unknown input observer (UIO) method was

proposed by Wang et al. in [28], but the stability of the error
dynamics is explored in this paper. This method considers
longitudinal tire forces Fx as unknown inputs for the wheel
dynamics:

ω̇ =
1

Iw
(Tt −ReFx − Cbω), (1)

where Re is the wheel effective radius, Tt represents the total
effective torque on the wheel at each corner, ω̇ is the wheel’s
angular acceleration, and Cb shows the wheel bearing’s linear
viscous damping. The bearing viscous damping forces are neg-
ligible compared to other terms in (1). This approach provides
a virtual wheel speed using a so-called Proportional, Integral,
Derivative (PID)-type estimator ˙̂ω = 1

Iw
(Tt −Ref0 +Kpω̃)

in which the constant f0 is the nominal value of the longitu-
dinal tire force and can be an arbitrary bounded value. The
difference between the measured and the virtually estimated
wheel speed (ω̃ = ω− ω̂) is used for the force estimation with
the proportional term, as in [28]:

F̂x(s) = f0 −
1

Re
Kpω̃(s). (2)

Matching between the measured (1) and virtually estimated
wheel speed ω̂ means that the control input produces the effect
of unmeasured −ReF̂x. Thus, the estimation error dynamics
for the wheel speed yields:

ė = −Ke− B, (3)

where K =
Kp
Iw

and B = Re(Fx−f0)
Iw

. The stability of error
dynamics (3) is investigated in the following.

Theorem 1: The unknown input observer (2) for longitu-
dinal force estimation is stable and the estimation error is
bounded by b

2K
√
ξ(1−ξ)

where 0 < ξ < 1 and b is the bound

for B in (3).

Proof: To study the stability of the error dynamics (3),
the Lyapunov function V = 1

2e
2 is used. The derivation of the

Lyapunov function yields:

V̇ = −2KV − eB ≤ −2KV + ||e||||B||. (4)

The term B is bounded because of the bounded characteristics
of the real longitudinal force. Therefore, ||B|| < |b|, and the
time derivative of the Lyapunov function is developed again
by introducing 0 < ξ < 1 as:

V̇ ≤ −K||e||2 + b||e||
≤ −K(1− ξ)||e||2 −Kξ||e||2 + b||e||

≤ −2K(1− ξ)V −
(√
Kξ||e|| − b

2
√
Kξ

)2

+
b2

4Kξ

≤ −2K(1− ξ)V +
b2

4Kξ
.

(5)

The term 2K(1− ξ) is replaced with γ, and D stands for b2

4Kξ ;
then:

V̇ + γV ≤ D. (6)

Multiplying both sides of the inequality by eγt and then
integrating results in:

V − V (0)e−γt ≤ D
∫ t

0

eγ(τ−t)dτ. (7)

Substituting the Lyapunov function V = 1
2e

2 in (7) leads to:

1

2
e2 ≤ V (0)e−γt +

D
γ

(
1− e−γt

)
. (8)

Consequently, the bound for the error can be described as:

||e|| ≤ ||e(0)||e−
γt
2 +

√
2D/γ. (9)
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The term
√

2D
γ is simplified to b

2K
√
ξ(1−ξ)

, showing that any

increase in K leads to a decrease in ||e||. As a result, the UIO
for the longitudinal force estimator (2) with the proportional
term has a bounded estimation error and can be utilized
whenever, wheel torques are available.

B. Kalman-based force estimation

Estimation problems can be addressed by UKF for
the discrete-time nonlinear system of the form xk+1 =
F(xk, uk, f, npk), yk = H(xk, f, nmk). Parameters f and
system states xk can be estimated recursively from the noisy
output yk. Uncertainties in the process and measurements are
incorporated into the nonlinear system definition as npk, nmk.
Proper capturing of nonlinearities contributes to the unscented
transformation that defines the Sigma vectors X ∈ RN×2N+1,
(N is the length of the state vector), which are supposed
to propagate through the nonlinear system. With some minor
changes, UKF can also be employed for parameter estimation
instead of state estimation for the vehicle parameter identifica-
tion [29], [30] and for the longitudinal force estimation [26].
For the force estimation with UKF, the effective torque Tt
provides input uk; the wheel speed is assumed to be the state
xk, and the estimated longitudinal force F̂x is denoted by the
estimated parameter f̂ . The discrete-time parameter estimation
problem can be expressed as:

fk+1 = fk + %k, zk = G(xk, fk) + νk, (10)

where zk corresponds to nonlinear observation on fk and
%k, νk represent process and observation noises respectively.
In a parameter estimation problem, the estimated mean
is updated as f̂mk = f̂k−1 and initialized by f̂0 =
E[f ]. The moving sample points i.e. sigma vector Fk|k−1

are generated around the estimated mean f̂mk with the
conventional unscented transformation pattern Fk|k−1 =[
f̂mk f̂mk + τ

√
P̄fk f̂mk − τ

√
P̄fk

]
, where square root

factorization of the covariance matrix P̄fk is obtained by
Cholesky decomposition at each time step k. The error co-
variance matrix of the estimated parameter is initialized with
Pf0 = E

[
(f − f̂0)(f − f̂0)T

]
and updated by P̄fk = Pfk−1

+

Qk−1 with incorporation of the process noise covariance
Qk−1. Furthermore, τ is a scalar and represents the spread
of the sample points far from the mean values of random
variables (states). It is defined in [31] as τ =

√
N + η, where

η is the compound scaling parameter η = ε2N − N . Spread
of the sample points around f̂mk is denoted by ε =

√
3/N .

Afterward, β = 2 is introduced to employ the prior information
on the Gaussian distribution of x. Sample points are supposed
to be propagated within the system (wheel dynamics) as
Zk|k−1 = G(xk, Fk|k−1), and the estimated function output ẑk
is achievable from ẑk =

∑2N
i=0W

m
i Zi,k|k−1. The weighting

parameters are also defined by W c
i = Wm

i = 1
2 (N + η)

for all sets i ∈ {1, 2, . . . , 2N}. These parameters are W c
0 =

η
N+η + 1 − ε2 + β and Wm

0 = η
N+η for i = 0. The updated

covariance matrices are given in (11) using the measurement

noise covariance Rk:

Pzkzk =

2N∑
i=0

W c
i (Zi,k|k−1 − ẑk)(Zi,k|k−1 − ẑk)T +Rk,

Pfkzk =

2N∑
i=0

W c
i (Fi,k|k−1 − f̂mk)(Zi,k|k−1 − ẑk)T . (11)

The Kalman gain is achievable, by implementing these covari-
ance matrices as Kk = PfkzkP

−1
zkzk

. As a result, the updated
parameter and error covariance matrices can be obtained as
follows [31]:

Pfk = P̄fk −KkPzkzkK
T
k ,

f̂k = f̂mk +Kk(zk − ẑk), (12)

where f̂k is the updated longitudinal force estimate F̂xij
at each corner. Outcomes of the UIO and UKF approaches
are compared in Section IV. The UKF moving sigma points
through the wheel dynamics greatly reduce the estimation
fluctuations, even with the presence of major uncertainties
such as the road friction and changes in the effective radius.
Therefore, longitudinal force estimation with UKF is selected
in this study and utilized for the velocity estimation.

Estimated longitudinal forces should be normalized to be
utilized in the velocity estimator, which will be explored
in the next section. In order to normalize the longitudinal
forces, normal (vertical) forces at each corner (tire) should be
calculated using lateral and longitudinal vehicle dynamics. One
can write the vertical and longitudinal acceleration components
of the longitudinal dynamics as āθx = axmcosθv + azmsinθv
and āθz = azmcosθv − axmsinθv in which axm, azm are the
measured longitudinal and vertical accelerations by an IMU
attached to the sprung mass. These measurements are affected
by the kinematics of the vehicle’s CG, vehicle pitch angle θv ,
and the road grade angle θr. The sprung mass roll and pitch
are not achievable by integration over the roll and pitch rate
signals φ̇m, θ̇m because of sensor drift. Rehm provided a linear
observer with low-pass filtering in [32] to estimate the vehicle
body’s roll/pitch angles as ˙̂

φv = φ̇m +Lφeφ,
˙̂
θv = θ̇m +Lθeθ

by compensation over the error between the filtered estimates
and the stationary roll/pitch values i.e. eφ, eθ and the observer
gains Lφ, Lθ. Normal forces at front and rear axles thus can
be calculated by:

F̂zf = − m

Lwb
hCGāθx +

m

Lwb
brāθz,

F̂zr =
m

Lwb
hCGāθx +

m

Lwb
bf āθz, (13)

where the subscripts f, r represent the front and rear axles,
hCG is the height of the vehicle’s center of gravity, and the ve-
hicle’s body pitch is denoted by θv . The wheel base is denoted
by Lwb = bf + br in which bf , br are the distances from the
front and rear axles to CG. Similarly, the vertical and lateral
acceleration components of the lateral dynamics are āφy =
aymcosφv + azmsinφv and āφz = azmcosφv − aymsinφv in
which aym is the measured lateral acceleration by IMU which
contains the kinematics of the vehicle’s CG, vehicle roll φv
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angle, and the road bank angle φr. Therefore, using (13) and
equivalent masses at each axle mf =

Fzf
g ,mr = Fzr

g , normal
forces at each corner are as follows:

F̂ziL =
mi

Ti

[
āφz(

Ti
2
− hrcsinφv)− āφyhCG

]
,

F̂ziR =
mi

Ti

[
āφz(

Ti
2

+ hrcsinφv) + āφyhCG

]
, (14)

in which i ∈ {f, r} (front and rear axles), Tf , Tr represent
the length of front and rear tracks respectively, and hrc is
the height of the roll center. Normalized longitudinal forces at

each tire then can be written as µxij =
F̂xij

F̂zij
where j ∈ {L,R}

shows the left and right tires. The normalized estimated forces
µxij are used for the proposed velocity estimator and will be
described in the next section

III. LONGITUDINAL VELOCITY ESTIMATION

Kinematic-based velocity estimators and their limitations
due to lack of observation are investigated first in this section.
Afterwards, a velocity estimation method that includes obser-
vations on tire forces is provided. However, the performance
of the velocity estimators based on tire forces is practically
limited because of uncertain road friction and tire parameters,
especially for the transient and saturation regions. Conse-
quently, this section proposes a method that assumes road
condition as uncertainty and estimates velocity with a time-
varying Kalman filter. The stability of such linear time-varying
observer with deterministic and stochastic initial conditions is
also shown.

A. Kinematic-based velocity estimation
Because of difficulties in dealing with time-varying

tire parameters and unknown road conditions, conventional
kinematic-based velocity estimators employ acceleration mea-
surement and rely on GPS data intermittently. Linear, Kalman,
or nonlinear observers are used in such kinematic-based meth-
ods [1], [5], [6] without using a tire model. Kinematic-based
estimation structure uses transformed kinematic equations at
each corner with the following dynamics:

u̇x = ax + ruy + axb + Ωx,

u̇y = ay − rux + ayb + Ωy, (15)

where the yaw rate is denoted by r , and the vehicle states
ux, uy are estimated using the measurements of acceleration
and wheel speed. The bias and uncertainties in the acceleration
measurements are represented by axb, ayb and Ωx,Ωy , respec-
tively. Any stochastic estimator may be used for (15) in which
the only reliable and available measurement is the wheel speed
because of the lack of a tire model which could provide tire
forces as an additional measurement.

The integration of acceleration measurement, removing bias
and noises by GPS, and correction with the Kalman observer
would consider providing vehicle states accurately [5], how-
ever, the accurate GPS data may not be available at all time
and on production vehicles due to high costs. Poor accuracy

and low bandwidth of available commercial GPSs, particularly
in the lateral direction, and loss of reception are primary
impediments. Moreover, estimation errors for low-excitation
conditions with continuous high-slip ratio in such kinematic-
based techniques makes the model-based estimation methods
more promising [10], [15], [16]. However, model-based ap-
proaches based on the correction with the tire forces should
deal with the varying model (tire) parameters and unknown
road friction. This issue is tackled in the next subsection using
the lumped LuGre tire model without the road friction term.

B. Corner-based velocity estimation
Implementing a tire model independent of road conditions is

desirable for velocity estimation. Doing so is possible with use
of an observer-based approach, which treats the road friction
as a bounded uncertainty. This method is targeted in this
article and experimentally tested for both dry and slippery road
conditions. The average lumped LuGre model is introduced
in [21] to obtain the tire forces using the force distribution
coefficient κ, rather than by integrating bristle element forces
over the tire patch length. Representing average deflection of
the bristles, the tire internal state z(ζ, t) in the average lumped
LuGre model, has the capability of being used in a velocity
estimator as a state, because of its dynamics:

żl(ζ, t) = Vrl −
(
κlRe|ω|+

σ0l|Vrl|
θg(Vrl)

)
zl(ζ, t), (16)

in which l ∈ {x, y}, ζ is the axis coordinate, σ0l is the rubber
stiffness, Vrl shows the relative velocities. The level of tire
and road adhesion is represented by introducing a so called
”Road Classification Factor”, which may vary between 0 <
θ ≤ 1 according to dry, wet, and icy conditions respectively.
The longitudinal relative velocity can be replaced by Vrx =
Reω−uxt where the longitudinal velocity in the tire coordinate
system is denoted by uxt. The longitudinal relative velocity
in the tire coordinate of the LuGre model resembles the slip
ratio λ = Reω−uxt

max{Reω,uxt} in the mostly used tire models such
as Burckhardt [19] and Pacejka [33]. The parameter κ in the
average lumped model can be a constant, or a function of
time, or may be approximated by an asymmetric trapezoidal
scheme. The suggested value for κ in [34] is κ = 7

6L, where
L is the tire patch length. In addition, g(Vrl) is defined by
g(Vrl) = µc + (µs − µc)e

−|VrlVs |
α

, in which µc, µs are the
normalized Coulomb friction and static friction, respectively.
The Stribeck velocity Vs shows the transition between these
two friction states. The tire parameter α = 0.5 is assumed for
this study.

The final form of the normalized friction force (µl = Fl
Fn

) of
the average lumped LuGre model yields µl = σ0lzl + σ1lżl +
σ2lVrl. In addition, the internal state zl can be expressed using
the two-dimensional combined-slip LuGre model, which con-
siders the effect of longitudinal/lateral slip on the tire capacity
in another direction. The LuGre non-measurable longitudinal
internal state can be written at each corner (wheel) in the
presence of uncertainty Ωz(t) as:

żx(ζ, t) = Vrx − κxRe|ω|zx(ζ, t) + Ωz(t). (17)
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Uncertainty Ωz(t) is replaced with the road friction term
σ0x|Vrx|
θg(Vrx) zx and is bounded because of the passivity of the

LuGre model. Moreover, the derivative of the relative velocity
is also corrupted due to the sensor noise and bias [35]:

V̇rx = Reω̇s − u̇xt + Ωa(t), (18)

in which ω̇s stands for the wheel’s rotational acceleration
and u̇xt represents the projected longitudinal acceleration
in the tire coordinate system. The term Ωa(t) shows the
deviation of the measured relative acceleration Reω̇s − u̇xt
from V̇rx because of the sensor noises. Establishing these
equations allow the development of a Kalman-based observer
to incorporate longitudinal tire deflections (17) and relative
velocities (18) concurrently and to compare the output with
the longitudinal forces µ̂x provided in section II. The general
form of the velocity estimator at each corner ij, which can be
addressed by the KF, with ω > 0 is given as follows in which
Ω = [Ωz Ωa]T :

ẋ = A(t)x+B(t)u+ Ω

= M−1

−κxReω 1 0

0 0 0

−κxReω̇ 0 −κxReω

 zxVrx
żx

+M−1

0

1

0

 (Reω̇s − u̇xt) + Ω,

y = Cx+ Γ = σ0xzx + σ2xVrx + σ1xżx + Γ. (19)

Process and measurement noises are denoted by Ω,Γ re-
spectively, and M = [1 0 0; 0 1 0; 0 − 1 1]. The
linear time-varying system (19) uses a reduced number of tire
parameters: normal force distribution factor κ, rubber stiffness
σ0x, rubber damping σ1x, and relative viscous damping σ2x.
These tire parameters are not related to the road condition and
friction parameters. The bounded error covariance and stability
of linear time-varying estimators for both known zero and
nonzero initial error covariance were explored in [36], [37].

Observability is a sufficient condition for implementation of
an optimal variance filter (such as a Kalman estimator). On the
other hand, the controllability property guarantees asymptotic
stability of such filters for the linear time-invariant case. The
observability and controllability conditions are next studied for
the Linear Time-Varying (LTV) system (19), which has the
discrete-time form:

xk+1 = Akxk +Bkuk + %k,

yk = Ckxk + νk, (20)

with process and measurement uncertainties %k, νk, which
have the covariance Q̄k = E[%k, %k

T ], R̄k = E[νk, νk
T ]

accordingly. Process and measurement noises are assumed to
be uncorrelated E[%k, ν

T
k ] = 0 and have zero mean E[%k] =

E[νk] = 0; ∀k ∈ N.
Discretization of the system is done by the Step-Invariance

method, because of its precision and response characteristics,
which prohibit divergence of the integration of stable dynamic
systems [38]. Input to the continuous-time system is the hold
signal uk = u(tk) for a period between tk ≤ t < tk+1 with the
sample time Ts. Then, the discrete-time system is defined by
xk+1 = Akxk +Bkuk with state transition and input matrices
Ak = eA(t)Ts and Bk =

∫ Ts
0
eA(t)τB(t)dτ .

The discrete-time Kalman observer suggests the following
prediction with correction to estimate the states (tire internal
state z and the longitudinal relative velocity Vrx) defined by
x̂k+1|j , E[xk|yj ] using a sequence of measurements yj :

x̂k+1|k = Akx̂k|k−1 +Bkuk +Kk(yk − Ckx̂k|k−1), (21)

where the optimal Kalman gain is Kk =
AkP̄k|k−1C

T
k (CkP̄k|k−1C

T
k + R̄k)−1 and error covariance

P̄k+1|k , cov(xk+1 − x̂k+1|k) forms a discrete time-varying
Riccati equation (22) for both zero and non-zero state
initialization x̂0|−1 = E[x0] and covariance initialization
P̄0|−1 , cov(x0) = E

[
(x0 − x̂0|−1)(x0 − x̂0|−1)T

]
:

P̄k+1|k = AkP̄k|k−1A
T
k + Q̄k −KkCkP̄k|k−1A

T
k . (22)

The Kalman gain and error covariance do not depend on the
measurements, even for the time-varying case, but only on the
noise statistics. The estimation error is defined by ek+1|j ,
xk+1 − x̂k+1|j , which yields:

ek+1|k = (Ak −KkCk)ek|k−1 −Kkνk + %k. (23)

Stability of the estimator is investigated in the following.

C. Stability of the estimator
Stability of the error dynamics (23) is studied in this section

with known and uncertain initial conditions. The detectability
and stabilizability definitions in (A1) and (A2) are required for
the stability analysis of the suggested discrete-time estimators.
Uniform detectability leads to bounded error covariance. In
addition, stabilizability of the paired state transition matrix and
process noise results in exponential stability of the estimator,
as proved in [39], [40].

The stochastic observability, stability and convergence of
the state mean, and bounds on error covariance of the Kalman
estimator for LTV systems, such as that in (21), were stud-
ied in [39], [41]. These studies were focused on systems
with deterministic parameters and known initial state vectors
and done in terms of uniform complete observability and
controllability grammians. On the other hand, the bounded
error covariance and stability of the Kalman estimator for
systems with completely uncertain initial covariance/states is
investigated in [42].

Uniform detectability and stabilizability conditions are in-
vestigated in this section to check the stability and error
covariance boundedness of the proposed velocity estimator for
two cases: a) known zero/nonzero initial states b) complete
uncertainty of the initial-state statistics.

Proposition 1: There exists a state estimator such as
Kalman (21) having bounded error covariance for time-variant
system (19) with deterministic time-varying parameters and
known initial state/covariance.

Proof: For the system xk+1 = Akxk + %k, yk =
Ckxk + νk with uniform detectability of [Ak, Ck], the known
initial state/covariance, and the process and measurement noise
covariances Q̄k, R̄k, there exists a state estimator such as
the Kalman having bounded error covariance (see Appendix)
[39]. Furthermore, stabilizability of the pair [Ak, Gk] leads to
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exponential stability of the KF, where Gk is an appropriate
matrix obtained by Qk = GkG

T
k . Proof is provided in [39].

Therefore, the detectability condition (A1) should be ex-
amined for the proposed velocity estimator (19). This is ex-
perimentally checked for the deterministic time-varying wheel
speed of the discrete-time systems matrix Ak. The rank of
V(0, N) on several road experiments is shown in Fig. 1, where
N represents the total number of iterations with the sample
time Ts = 0.005[s].
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Launch and brake on dry
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Fig. 1: Observability test: rank of V(0, N) for known initial
state/covariance

Fig. 1 shows that the suggested estimator has full rank on
the observability grammian (A1) for all performed maneuvers,
showing the observability of the system for known initial
covariances. Maneuvers include double lane change (DLC);
acceleration-in-turn (AiT); brake-in-turn (BiT); and launch on
dry, snowy, and icy roads. The launch maneuvers do not
have the full rank condition for t ≤ 2 because the wheel
speed has been zero for that period, which is not the concern
of this study. The stabilizability condition is also required
since states should be affected by the noise such that the
optimal Kalman estimator is forced to utilize measurements.
This condition is also satisfied and the grammian (A2) has
full rank. Additionally, since the system matrix A(t) in (19)
is physically bounded (because of the wheel speed and its
derivative characteristics), a conventional observability test is
performed here. The observability matrix for system (19) is
given by [43]:

On = [τ1 τ2... τn]T ,

τ1 = C, τi+1 = τiA(ω) + τ̇i. (24)

Observability is confirmed by holding the full rank condition
rank(O3) = 3 at each fixed time span for operating regions of
the wheel speed and its time derivatives. Thus, the suggested
parameter-varying corner-based estimator (19) is observable
and it is feasible to observe the longitudinal tire internal
states ẑx and the relative velocity V̂rx with any known initial
covariance matrix and by employing the longitudinal force as
the output.

In the case of complete uncertainty on the initial
state/covariance, the estimated covariance matrices can be
unbounded even if the LTV system satisfies the observability
criteria (A1). The bounded error covariance and stability of the
Kalman filter for the proposed velocity estimator (19) with

completely uncertain initial state/covariance is investigated
here in the following.

Proposition 2: The longitudinal states zx, Vrx of the time-
varying system (19) can be recovered using measurements µxij
and a Kalman estimator with stochastic initial covariance/states
at each corner.

Proof: By definition, the system (20) is stochastically
observable if there exists a finite time tf , such that the state
covariance matrix P̄k is bounded [42]:

λmax(P̄k) < λb, tk ≥ tf , (25)

where λmax(P̄k) shows the largest singular value of the matrix
P̄k and λb is a predefined scalar bound. Assuming initial state
covariance matrix P̄0|−1 = ψI, ψ ∈ R, ψ > 0, one can rewrite
the time-varying Riccati equation (22) as [42]:

P̄k+1|k = ψMk+1 +Nk+1 + Sk+1, (26)

where Nk+1 = Nk+1(Mk,Nk, φk, CkQ̄k, R̄k),
Sk+1 = Sk+1(ψ,Sk,Nk, φk,Mk, Ck, Q̄k, R̄k), and
Mk+1 , φk,0X0,kX

T
0,kφ

T
k,0. The procedure for obtaining

X0,k is provided in the Appendix and φi,j = φi,i−1φi−1,j

are the state transition matrices for i ≥ j with φi+1,i = Ai.
In summary, the following Lemma presents two tests for
observability of the velocity estimator with stochastic initial
conditions.

Lemma 1: [42] The Kalman estimator (21) on the system
(20) with an error covariance matrix (22) and stochastic initial
state P̄0|−1 = ψI, ψ ∈ R+ is stochastically observable if the
condition λmax(Mf ) = 0 (test 1) holds for a finite time tf
and λmax(Nk+1) < λb for tk ≥ tf (test 2) with a predefined
bound λb, whereMk+1 is obtained from the modified Riccati
equation (26) and the procedure provided in (A6), (A7) in
the Appendix. Employing the condition λmax(Mf ) = 0 for a
finite time tf <∞, the modified Riccati equation (26) changes
to P̄k+1|k = Nk+1 + Sk+1 which leads to a simplified form
of Nk+1 as in:

Nk+1 = AkNkATk + Q̄k −AkNkCTk Ξ−1
k Ξ−Tk CkNkATk ,

(27)

where Ξk is expressed in (A7).
Whenever the two criteria on Mf ,Nk+1 in Lemma 1 (so

called test1 and test2) are met, the Kalman observer (21) is sta-
ble even if the scalar ψ has infinite values. These two tests have
been performed on the proposed observer with Q̄ = 2.5e− 3
and R̄ = 1e− 3 and results are depicted as follows. Figure 2
exhibits λmax(Mf ), where Mf is obtained from (26) and
the procedure provided in the Appendix. Different experiments
such as DLC, brake-in-turn (BiT), sharp turn, and steering on
dry and slippery (snow/ice) roads have been performed and
results are illustrated in Fig. 2.

From the plots in Fig. 2, it is apparent that the largest
singular value ofMf converges to zero after tf = 0.03 sec. for
different experiments. The values of λmax(Nk+1) with Nk+1

from (27) are plotted in Fig. 3.
The results on different road conditions and pure/combined

slip maneuvers, as shown in Fig. 3, indicate that the maximum
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Fig. 3: Test2 for different driving scenarios and roads, experi-
mental results

singular value of Nk+1 remains bounded. Thus, the both crite-
ria (test1 and test2) are met and the discretized form of system
(19) with KF estimator (21) is stochastically observable.

Consequently, the presented model-based estimation is sta-
ble, and errors of the state mean have bounded variance for
both known and stochastic initial covariance.

Figure 4 shows the structure of the discussed estimator, in
which subscript ij represents the estimation/measurement at
each corner. The newly proposed longitudinal state estimation
approach, which is independent from the road condition, is
developed using the UKF force estimator (in Section II) and
the Kalman observer on the linear time-varying system (19).

The presented UKF force estimator structure in Fig. 4
depicts the procedure for the sigma points propagation and the
covariance matrix update. The estimated relative longitudinal
velocities V̂rxij at each corner from (21) are used for the
longitudinal velocity estimation at the tire coordinates as
ûxtij = Reωij − V̂rxij . Afterward, each corner’s longitudinal
velocity in the vehicle coordinates ûxij yields:

ûxij = ûxtij cos δ − ûytij sin δij , (28)

in which δij is the steering angle at corners and the estimated
lateral velocity at each corner’s tire coordinates is denoted
by ûytij . Consequently, longitudinal velocity at the vehicle’s
center of gravity can be expressed as ûx = η1ûxf + η2ûxr
in terms of corners’ estimated velocities in which the av-
erage estimated velocities on the front axle are defined by
ûxf = (ûxfL + ûxfR)/2. Front and rear axle gains are denoted

Sensors

‐ Steering angle
‐Wheel speed
‐ Traction/brake 
torques
‐ IMU

Vehicle Angles & 
Normal Force 
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Long. Velocity Est. with KF
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‐ Cov. matrix & output prediction
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, ̅

|
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,

,

Fig. 4: Structure of the longitudinal velocity estimation with
the tire model

by η1, η2. The allocated gains for the road experiments in this
study are η1 = η2 = 0.5, but they can be variable and defined
adaptively based on the level of excitation.

A high-slip detection algorithm is also used to deal with
the noises associated with large slip ratio conditions. Noise
covariance matrices change appropriately upon detection of a
high-slip case to incorporate changing in the level of reliance
on the vehicle kinematics (process) and longitudinal forces
(measurement). Covariance matrices Q̄, R̄ change adaptively
to avoid fluctuations (caused by nonlinearities/disturbances)
during harsh maneuvers on slippery surfaces.

This algorithm needs a slip ratio threshold λ̄th after which
the process and measurement covariance matrices change to
Q̄ = 3.3e−4 and R̄ = 2.1e−1 respectively. Sudden changes in
the slip-ratio (vehicles response) will not be detected in case of
large constant high-slip threshold. This leads to more required
time for the estimated slip-ratio to satisfy the threshold (i.e. it
requires larger excitations). On the other hand, small constant
threshold results in unnecessary detection of the large slip
cases. Thus, in the developed high-slip detection module, the
threshold changes between the predefined upper and lower
bounds λu, λl according to the driving conditions as:

λ̄th = λu −
1

ϕe
√

2π
e
− βeσe

2ϕ2
e , (29)

where ϕe = 1√
2π

(λu − λl) and σe represents variance of the
vehicle’s acceleration ak over a moving window with size Na
i.e. σe = var{||ak||2 : m−Na ≤ k ≤ m},∀m ∈ N,m ≥ Na,
in which ||ak||2 =

√
a2
xk

+ a2
yk

and axk , ayk are measured
longitudinal and lateral accelerations. The rate of transition
between the predefined upper and lower thresholds λu, λl is
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denoted by βe. Thus, for |λ| ≥ λ̄th the covariance matrices
Q̄, R̄ change to the new values.

To use the current measurement and remove the outliers
and detect the large slip scenarios, time derivative of the
wheel speed |ω̇| is also implemented and a threshold |ω̇th|
is introduced as a criteria after which the changes in the
covariance matrices should happen. Finally, the covariance
matrices change when each of the slip-based or wheel speed-
based criteria are met i.e. {|λ| ≥ λ̄th∨|ω̇| ≥ |ω̇th|}. This leads
to the prompt detection and consequently proper covariance
matrix allocation. Simulation and experimental results in the
next section confirm the validity of the algorithm on dry and
slippery roads.

IV. RESULTS AND DISCUSSION

This section includes simulation and experimental tests
for validation of the longitudinal state estimator on a fully
electrified sport utility vehicle (SUV) with four independent
wheel drive, specifications given in Table I, and longitudinal
tire parameters σ0x = 612, σ1x = 0.87, σ2x = 0.0016, κ = 8,
and Re = 0.35.

TABLE I: Vehicle Spec. for Simulation & Experiments

m [kg] 2270 Vehicle mass
Iz [kg.m2] 4650 Vehicle moment of inertia
Iw [kg.m2] 1.68 Wheel moment of inertia
Lwb [m] 2.85 Vehicle wheel base
bf , br [m] 1.42, 1.43 Front & rear axles to CG
Re [m] 0.33 Effective radius
hrc [m] 0.54 Roll axis height
hCG [m] 0.65 CG height
Tf , Tr [m] 1.62, 1.56 Front and rear track width

For the purpose of analysis, road tests are performed,
and results of the longitudinal velocity and force estima-
tors are presented for different road frictions. Measured sig-
nals are communicated using a CAN-bus, a conventional
communication method in production vehicles. Real-time
logging of this sensory information was done using the
dSPACE R©MicroAutobox R©. The dSPACE R©compiles mea-
surements for MATLAB/SIMULINK, and the controller pro-
vides control signals for the dSPACE R©as well. The test
platform SUV and input/output layout are shown in Fig. 5.
To validate the estimated forces, this vehicle is equipped with
additional sensors for direct measurement of tire forces and
moments at each corner.

Several driving scenarios such as acceleration/deceleration,
lane change (LC), double lane change (DLC), acceleration-in-
turn (AiT), brake-in-turn (BiT), harsh steering, and launches
were examined on various roads.

A. Force estimation results
In Fig. 6-a forces estimated by both the UKF and the

unknown input observer (UIO) are compared with the CarSim
tire forces on a slippery road for a maneuver with successive
accelerator and brake pedal requests. The simulation occurs
on a slippery road with µ = 0.3, and the initial longitudinal
velocity of the vehicle is u0x = 30kph.
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Force/Moment 
Measurement
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Wheel 
sensor 
interface

CAN‐bus

dSpace Micro‐
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GPS/IMU

(for Validation)

Wheel Speed, 3‐axis IMU, 
Steering, Wheel Torques

Controller & 
Estimation

(Matlab/Simulink)

Fig. 5: The fully electrified 4WD test platform and I/O layout
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The proposed force estimation methods are independent
of the road condition and The UKF estimator exhibit more
accurate and smooth performance than UIO for such maneuver
with successive sign changes of the slip-ratio. An acceleration-
in-turn (AiT) maneuver on dry and slippery roads is simulated
in the CarSim and results are graphically illustrated in Fig. 6-b.

For the AiT driving scenario, the accelerator is applied
to 100% at t = 2[s] and continues till t = 4[s]. It is
released between 4 and 6[s] and pushed up to 100% again
as a step signal till t = 11[s], then it is linearly reduced
to zero at t = 15[s]. A steering angle δsw = 1[rad] is
imposed between t = 2− 12[s] as well and the steering ratio
is rδ = 16.7. The performed combined-slip AiT maneuver
is harsh, but the suggested UKF for estimator by weighted
averaging of the sigma points’ values handles the oscillations
in the transient regions resulted from imposing and releasing
torques on wheels better than UIO. The fluctuations observed
in the CarSim’s force profile curves are attributed to the
requested acceleration with high magnitude.

The road experiment results of the force estimation at the
rear-left corner in a driving condition with harsh steering on a
wet road (µ ≈ 0.45) are shown in Fig. 7 and compared with
the measurement for the test platform vehicle with the stability
control system, which prevents high side slip angles.
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Fig. 7: Road experiments, harsh steering and lane change on
wet (a) estimated F̂x at rL (b) rear wheel torques (c) rear wheel
speeds (d) steering wheel angle δsw

The Effective torque and the wheel speed of the rear wheels
Ttrj , ωrj are also depicted in Fig. 7. UKF-based and UIO
estimators suggest accurate estimation for such harsh steering
condition. Another test, a double lane change (DLC) maneuver,
with high slip and lateral excitation is conducted on a snowy
surface and force estimation results of UIO and the proposed
UKF approach are compared in Fig. 8 for the rear left wheel.
The force peak values in the DLC maneuver (Fig. 8) on snow
is higher than the wet surface (Fig. 7), which shows that the
driving on the wet road was not very severe.

There is a certain level of correspondence between the out-
comes of the two estimation methods and the measurements,
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Fig. 8: DLC on snow and experimental results (a) estimated F̂x
at rL (b) rear wheel torques (c) rear wheel speeds (d) steering
wheel angle δsw

even with presence of high slips. However, but UKF exhibits
more consistent and smooth results for the DLC on snow from
t = 4.1 to t = 4.5[s] and around t = 5.1, 7.8[s] which are the
sudden drop or increase in the torques at each corner.

Accuracy of the longitudinal force estimators are evalu-
ated in different maneuvers with the normalized root mean

square of the error NRMS defined by ς̄ =

√∑Np
i=1(p̂i−pi)2/Np

pm
where the measured and estimated signals are denoted by
p and p̂ respectively, Np is the number of collected signal
samples during a driving scenario (DLC, AiT, BiT, etc.), and
pm = max

i=1...Np
|pi| shows the maximum value of the measured

signal. The normalized root mean square ς̄ of the estimated
longitudinal and vertical forces and velocities in different
driving scenarios and on various road frictions are listed in
Table II where ς̄1 and ς̄2 represent the NRMS for the UKF and
UIO respectively.

TABLE II: NRMS of the Errors for the Longitudinal Force
Estimator (with ς̄1, ς̄2 for the UKF and UIO) and Vertical Force
Estimator

Estimated
forces

Steer-wet/dry DLC-snow BiT/Accel-snow
ς̄1[%] ς̄2[%] ς̄1[%] ς̄2[%] ς̄1[%] ς̄2[%]

FxfL 3.85 4.05 4.87 6.11 5.04 4.90
FxfR 4.02 3.91 5.32 5.18 6.23 6.28
FxrL 3.97 4.26 4.76 5.22 5.77 6.33
FxrR 4.51 4.71 4.95 5.49 5.64 7.10

ς̄[%] pm[kN ] ς̄[%] pm[kN ] ς̄[%] pm[kN ]
FzfL 3.34 12.77 3.65 9.91 3.88 9.10
FzfR 2.72 12.41 3.01 10.16 3.03 7.06
FzrL 2.15 10.02 2.74 8.37 3.54 7.19
FzrR 1.93 10.14 2.82 8.39 2.92 6.82

Table II substantiates that the NRMS of the estimated
longitudinal forces by UKF is better than the UIO and it is
less than 6.25% for the performed maneuvers on dry, wet,
and snowy roads. Therefore, the UKF approach is selected
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as the longitudinal force estimator for the velocity estimation
in Section III because of its superior performance. The mov-
ing sigma points (in the UKF approach) through the wheel
dynamics (1) reduce estimation fluctuations, especially during
transient regions, even in the presence of uncertainties such
as in road conditions, which may vary from icy to dry (i.e.
0.1 ≤ θ ≤ 0.97) in the tire model, effective radii with ±5%
variation, and corrupted measurements of wheel speed and
torque with variance Rω = 0.18 and RTt = 32 respectively.

The vertical force estimator leads to the normalized error
ε ≤ 3.9% which confirms effectiveness of the algorithm on
dry and slippery roads. Observed errors between the measured
and estimated forces in Table II may have several sources
such as camber angle, which has not been modeled in the
estimation algorithm. Moreover, inaccurate inertial parameters
and uncertainties in the CG location contribute to such errors.

B. Velocity estimation results

The stochastic observability of the suggested velocity esti-
mator (19) was studied in the previous section for both known
and uncertain initial states/covariances, and it is experimentally
concluded that for the case with uncertain initial covariance,
in addition to the observability condition, two supplementary
criteria λmax(Mf ) = 0 (test1) and λmax(Nk+1) < λb (test2)
are met for various maneuvers and road frictions.

To verify the proposed velocity estimator in maneuvers with
lateral excitation, a step steer (SS) scenario is simulated in
CarSim with the initial speed ux0 = 60[kph]. Fig. 9 illustrates
longitudinal velocity estimates for this SS case on a dry
road with steering wheel angle δsw = 2[rad] at t = 2[s].
The simulation confirms that the newly proposed corner-based
velocity estimator provides accurate results in maneuvers with
both longitudinal and lateral slips on dry road conditions.

The second set of analysis on the velocity estimator exam-
ines the suggested approach in CarSim for an AiT maneuver.
Figure 9 also demonstrates an AiT test with the initial ve-
locity of ux0 = 30[kph] and maximum steering wheel angle
δsw = 1[rad] at t = 2[s] on dry and slippery (µ = 0.3) roads.
Accelerator is applied to 100% at t = 5[s] and continues till
t = 10[s].
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Fig. 9: Estimated longitudinal velocity for SS and AiT on dry
and slippery roads

Simulation results reveal that the proposed estimator per-
forms well on various road conditions for maneuvers with
both longitudinal and lateral excitations. Outcomes of the road
experiments on a fully electrified SUV (shown in Fig. 5) are
presented in the followings. One of the main objectives of such
an estimator is to provide reliable longitudinal velocity ûxt at
each corner for traction control systems during launch (or hard
acceleration) on slippery roads. Fig. 10-a shows performance
of the proposed estimator for a launch on a highly slippery
wet surface with µ ≈ 0.3 which ended on a dry surface with
a break. Moreover, an acceleration-in-turn (AiT) maneuver on
the same wet surface with a break on dry was performed and
estimated longitudinal speed results are provided in Fig. 10-a.
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Fig. 10: Launch and AiT on wet and transition to dry (a)
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The input torque from the driver for the launch maneuver
on highly slippery wet surface brings the tire up to their
longitudinal capacity. The measured longitudinal acceleration
shown in Fig. 10-b for this maneuver is bellow 3.3[m/s2]
which confirms slippery conditions according to teh required
accelerator pedal by the driver up to the tires’ limits. For
both tests, the stability and traction controllers were active, but
intentionally set to have a poor performance, which leads to
sudden increase in the wheel speed and subsequently slip ratio
at each corner. Front tire loose grip in launch and acceleration
cases due to the drop in the vertical force on the front track
by the load transfer. Therefore, in such maneuvers high slip
ratio for the front tires is a concern for traction control systems.
Wheel speed for the front tires i.e. fL, fR are shown in Fig. 11
and compared with the estimated velocities and the measured
velocities by GPS.

Results of such maneuvers corroborates that even with pres-
ence of high slips, the proposed estimator provides accurate
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Fig. 11: Wheel speed, measured corner velocities, and esti-
mated velocities at wheel centers (Wheel C.) for (a) launch on
wet then dry (b) AiT on wet then dry

and reliable longitudinal velocity estimates ûxtij at each tire
(Wheel C.) and subsequently at the vehicle CG i.e. ûx.

In order to assess the proposed approach in road experiments
with high lateral excitation (combined-slip characteristics) and
large longitudinal slip, a brake-in-turn (BiT) accompanied by
hard acceleration on snow (with µ ≈ 0.35) is done and
the estimation results are provided in Fig. 12. Measured
accelerations and the yaw rate for such BiT case is provided
in Fig. 12-b that shows the weak grip condition for each tire.

(a)

(b)

Used for Vx_KF

(c)

Steer and BiT on snow/ice and on snow, 20150820, test 41 and 56

0 2 4 6 8 10 12
-2

0

2

4

6

8

10

time [s]

Lo
ng

itu
di

na
l V

el
. [

m
/s

]

 

 

Vx,steer,snow/ice,GPS

Vx,steer,snow/ice,Ets.

Vx,BiT & accel.,snow.,Est.

Vx,BiT & accel.,snow,GPS

0 5 10
-0.5

0

0.5

1

time [s]

r [
ra

d/
s]

 

 

Yaw rate,BiT & Accel. on snow
Yaw rate,steer on snow/ice

0 5 10

-6

-4

-2

0

2

4

time [s]

ac
ce

le
ra

tio
n 

[m
/s

2 ]

 

 

ax,Meas.,BiT & Accel.,snow

ay,Meas.,BiT & Accel.,snow
ay,Meas.,steer on snow/ice

Fig. 12: ûx, BiT and steering on snow/ice

Another experiment with harsh steering on snow and ice
road (with µ ≈ 0.25) was executed to validate the method
and the outcomes are also demonstrated in Fig. 12 together
with the measured accelerations and the yaw rate. As can be
seen from Fig. 12-a, the developed algorithm with the high-

slip detection module provides accurate velocity estimates in
maneuvers with combined-slip characteristics on snowy and
icy roads as well.

Wheel speed of the front tires’ center for the BiT and
steering maneuvers on snow/ice are compared with the esti-
mated and measured velocities in Fig. 13. The estimates by the
proposed corner-based approach have correspondence with the
measurement in spite of the large slip cases around t = 6[s]
and after t = 11[s] for the harsh steer on snow/ice and in
4 ≤ t ≤ 7.8[s] for BiT on snow.
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Fig. 13: Wheel speed, measured corner velocities, and esti-
mated velocities at Wheel C.for (a) steering on snow/ice (b)
BiT and Accel. on snow

The high-slip detection module changes the covariance
matrices of the Kalman-based estimator based on the method-
ology discussed in section III. This significantly improves the
outcomes by defining the level of reliance on the forces for
the velocity estimation correction.

The simulation and experimental results provided in this sec-
tion show that the suggested method with the Kalman observer
can provide longitudinal state estimates, in the absence of road
friction details. This method has been experimentally tested
with aggressive maneuvers such as increasing the longitudinal
speed during cornering, acceleration-in-turn, harsh steering,
and launch on low-friction surfaces.

V. CONCLUSION

A corner-based longitudinal state estimation robust to the
road condition changes is proposed in this article. An unknown
input observer and unscented Kalman filter are investigated
for estimation of longitudinal forces and the stability of the
unknown input observer for longitudinal force estimation is
provided. The important feature of the developed corner-based
force estimator is that it does not implement any tire model
and is independent from changes in the road friction or tire
parameters due to wear, inflation pressure, etc. In addition, the
suggested force estimators can address the cases in which tires
are on surfaces with various road frictions (split-µ).

A Kalman-based velocity estimation method using the av-
erage Lumped LuGre model at each corner is proposed in this
article, and its performance is studied. Taking advantage of
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the dynamics on the internal tire deflection states, the LuGre
model facilitates combination of the vehicle kinematics and tire
forces. Stochastic observability of the proposed Kalman-based
velocity estimator are also investigated. Based on the experi-
mental and simulation results, it is concluded that the proposed
estimator can handle dry/slippery roads with pure/combined-
slip conditions.

One of significant advantages of the suggested Kalman
observer is that the unidirectional lumped LuGre model can
be employed instead of the combined-slip model. This substi-
tution is made possible by denoting the term z σ0|Vr|

θg(Vr) , which
contains the combined friction model, as uncertainty.

The proposed velocity estimation algorithm detects large slip
ratio cases with an adaptive high-slip threshold (29), based on
the excitation level, to allocate adaptive covariance matrices
and tackle the noises associated with harsh maneuvers. The
road experiments show that the corner-based state estimators
can handle dry and slippery roads with the normalized error
RMS ς̄ < 6.25% for the longitudinal force estimation, ς̄ <
3.9% for the vertical (normal) force, and ς̄ < 6.6% for the
longitudinal velocity estimation.

The developed longitudinal estimators can be integrated with
active safety systems (e.g. stability control and traction control)
to enhance the performance of such systems in presence of
road friction changes. Moreover, while preserving the overall
structure of the estimation, one can replace force and velocity
estimators independently because of the modularity of the
provided structure.

Observed inconsistencies in some tests of the proposed
estimation approach are due to the lack of a general chassis
model, a limitation to be addressed in future works, using the
vehicle generalized force model.
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APPENDIX

• Detectability and stabilizability:
Definition 1: The pair [Ak, Ck] in the linear time-
varying discrete-time system with state update xk+1 =
Akxk + Bkuk and output equation yk = Ckxk is
uniformly detectable if ∃0 ≤ c1 ≤ 1, c2 ∈ R+ and
q, k2 ≥ 0, such that in case ||φk1+q,k1ϑ|| ≥ c1||ϑ||
for some ϑ, k1, then ϑTV(k1, k2)ϑ ≥ c2ϑ

Tϑ, which
necessitates the observability grammian V(k1, k2) to be
V(k1, k2) ≥ d1I > 0 for some d1 [39]:

V(k1, k2) =

k2∑
k=k1

φTk,k1C
T
k Ckφk,k1 , (A1)

where φi,j = φi,i−1φi−1,j and φi+1,i = Ai as the
state transition matrices for i ≥ j. In addition, the pair
[Ak, Bk] in the linear time-varying discrete-time system
(20) without process and measurement noise effect is
stabilizable if ∃0 ≤ c1 ≤ 1, c2 ∈ R+ and q, k2 ≥ 0,

such that in case ||φk2,k2−qϑ|| ≥ c1||ϑ|| for some ϑ,
then ϑTW(k1, k2 − 1)ϑ ≥ c2ϑ

Tϑ, which necessitates
the controllability grammian W(k1, k2 − 1) to be full
rank [44]:

W(k1, k2 − 1) =

k2−1∑
k=k1

φk2,k+1BkB
T
k φ

T
k2,k+1, (A2)

• Bounded error covariance for the Kalman filter: this
characteristic for the time-invariant KF has been proved
before, but provided here for convenience. Detectability
condition on (A,C) leads to a linear estimator with
matrix K∗:

x∗k+1|k = Ax∗k|k−1 +K∗(yk − Cx∗k|k−1), (A3)

where (A−K∗C) is stable. Thus, the error covariance
matrix for such estimator is defined by P̄ ∗k+1|k ,

E
[
(xk+1 − x̂∗k+1|k)(xk+1 − x̂∗k+1|k)T

]
that yields::

P̄ ∗k+1|k = (A−K∗C)P̄ ∗k (A−K∗C)T +K∗RK∗T ,
(A4)

which can be written as:

P̄ ∗k+1|k = (A−K∗C)k+1P̄ ∗0|−1

(
(A−K∗C)k+1

)T
+

k∑
i=0

(A−K∗C)i(K∗RK∗T +Q)
(
(A−K∗C)i

)T
(A5)

The first term vanishes and the second term is also
bounded because of the stability of (A − K∗C).
Therefore, the error covariance P̄ ∗k+1|k of such linear
estimator is bounded. This results in bounded error
covariance P̄k for the Kalman estimator because of the
optimality of the KF.

• Defining Mk+1 and Nk+1 for completely uncertain
initial covariance/states [42]: the initial M1,N1 are
attainable by the initial measurement error covariance
R0 as ΞT0 Ξ0 = R̄0, which yields the projector Φ of
a vector onto the orthogonal complement of the range
space Σ :

Σ0 = CT0 Ξ−1
0

Φ0 = I − Σ0(ΣT0 Σ0)∗ΣT0
X0X

T
0 = Φ0

M1 = A0X0X
T
0 A

T
0

N1 = Q̄0 +A0Σ0((ΣT0 Σ0)∗)2ΣT0 A
T
0 , (A6)

where (.)∗ represents pseudo inverse of the matrix (.)
and full rank factorization of Φ0 is denoted by X0. The
matrixMk+1 is then defined using the fresh Ck and the
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measurement noise Rk as the following procedure:

ΞTk Ξk = R̄k + CkNCTk
Σk = XT

0,k−1φ
T
k,0C

T
k Ξ−1

k

Φk = I − Σk(ΣTk Σk)∗ΣTK
XkX

T
k = Φk

Mk+1 = φk,0X0,kX
T
0,kφ

T
k,0 (A7)

in which Xk is the full rank factorization of Φk
and X0,k , X0X1...Xk. Employing the condition
λmax(Mf ) = 0 for a finite time, Nk+1 is related to Nk
as in (27). In addition, the Sk+1 matrix in the simplified
Riccati equation P̄k+1|k = Nk+1 +Sk+1 can be written
as:

Sk+1 = AkSkATk −AkNkCTk Ξ−1
k

(
Tk,1
ψ

+ ...

)
Ξ−Tk CkNkATk

−AkNkCTk Ξ−1
K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkSkATk

−AkSkCTk Ξ−1
K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkNkATk

−AkSkCTk Ξ−1
K

(
I − Tk,1

ψ
+ ...

)
Ξ−Tk CkSkATk

(A8)
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