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ABSTRACT 
Interaction of spherical particles in a fluid flow is 
important in combustion, chemical processes and air 
pollution. In this study, a recently developed 
technique for characterizing multi-temperature 
convective heat transfer is used to investigate 
convection from a pair of spheres with different 
surface temperatures. The technique entails numerical 
solutions of the full set of governing equations and 
subsequent solutions of the energy equation with 
perturbed boundary conditions. Steady-state heat 
transfer in intermediate Reynolds number flows over 
spheres in side-by-side and tandem arrangements in a 
water tunnel is studied. The results are expressed in 
terms of local and total Nusselt numbers. The 
variation of sphere-sphere and sphere-fluid Nusselt 
numbers with flow conditions is examined. 

NOMENCLATURE 
A surface area 
Cd drag coefficient 
D  diameter 
h heat transfer coefficient 
k thermal conductivity 
L center-to-center spacing 
Nu Nusselt number 
Pr Prandtl number 
Q heat transfer rate 
Re Reynolds number 
T  temperature 
δ denotes small change 
Subscripts 
i at source i 
ij from source i to source j 

INTRODUCTION 
Interaction of spherical particles in a fluid flow is 
important in the analysis of particulate and 
multiphase flow systems in such areas as 
combustion, chemical processes and air pollution. In 
many cases, the single sphere data does not provide 
an accurate prediction of the system behaviour [1] 
and interaction of spheres moving in close proximity 
must be examined. This interaction has been studied 
by various authors. Kim et al. [2], for instance, 
numerically studied three-dimensional flow over two 
identical spheres arranged side by side in a uniform 
stream at moderate Reynolds numbers. Tal et al. 
[3,4] studied fluid flow and heat transfer in 
assemblies of spherical particles. Patnaik [5] and 
Raju and Sirignano [6] studied the interactions 
between two moving vaporizing droplets in tandem 
arrangement for Re<200. Yoon and Yang [7] 
studied flow-induced forces on two identical nearby 
spheres in various arrangements at Re=300. Prahl et 
al. [8] further examined the interaction between two 
spheres in tandem at Re=300 using both steady and 
pulsating inflow conditions. Liang et al. [9] studied 
the drag force in various multi-particle arrangements 
for 30<Re<106. The interaction between groups of 
droplets in low to moderate Reynolds numbers is of 
special importance in combustion. A comprehensive 
review of the theory of droplet array combustion has 
been recently published by Sirignano [10]. 
Kleinstreuer et al. [11] computed the transient 
velocity and temperature fields around interacting 
vaporizing fuel droplets for an initial Reynolds 
number of 100. Zhu and Dunn-Rankin [12] used a 
spectroscopy technique to perform temperature 
measurements in a stream of combusting droplets. 
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Juncu [1] has studied unsteady convective heat and 
mass transfer from two spheres in tandem. 
In most of the published studies, e.g. references [3,4], 
the array of spheres has been assumed to be 
isothermal, i.e. no temperature difference between 
individual particles. Based on this assumption, the 
problem of convective heat transfer becomes a two-
temperature problem. Nevertheless, if the particles 
are at different surface temperatures, a multi-
temperature convection problem occurs. The set of 
heat transfer coefficients needed for fully 
characterizing a multi-temperature convection 
problem cannot be obtained using conventional 
methods, e.g. CFD. 
In the present work, the three-temperature problem of 
forced convection from a pair of spheres, with 
different temperatures, is examined using a recently 
developed technique, dQdT. The flow of water, Pr=7, 
in a 1.2m×1.2m×2.4m water tunnel is considered in a 
range of intermediate Reynolds numbers, 0<Re<250. 
The spheres are placed in side-by-side and tandem 
arrangements, with the center-to-center spacing 
between the spheres equal to twice their diameter, 
L/D=2. The present study is conducted as part of a 
feasibility study for the experimental implementation 
of the dQdT technique in a water tunnel. 

METHODOLOGY 
The dQdT technique: A technique for characterizing 
three-temperature convection problems called dQdT 
is used in this study. This technique entails a 
numerical solution of the full set of governing 
equations and consequent solutions of the energy 
equation with perturbed boundary conditions. A 
paired heat transfer coefficient, hij, characterizing the 
influence of the temperature of one heat source, Ti, on 
heat transfer from another source, Qj, is obtained as 
shown in Equation 1. The term paired is used here to 
designate heat transfer between one source and 
another designated heat source, as opposed to overall, 
which is used to designate heat transfer between one 
source and all the other sources. 

hij = −
1
Aj

∂Qj

∂Ti
�|hij=const = −

1
Aj

δQj

δTi
 (1) 

In Equation 1, Aj is the surface area of source j, δQj 
denotes the observed changed in the rate of heat 
transfer at source j as a result of a change, δTi, in the 
temperature of source i. The condition of hij=const is 
satisfied by solving the energy equation while the 
flow field and the fluid properties are fixed, i.e. 

prevented from changing after a perturbation is 
introduced in the temperature boundary conditions. 

A heat transfer coefficient, hij, calculated using 
Equation 1, is converted to dimensionless form, i.e. 
the paired Nusselt number Nuij, using Equation 2. 

 Nuij =
hijD

k
 (2) 

The paired heat transfer coefficients calculated by 
dQdT can also be used to characterize the thermal 
resistor model of three-temperature heat transfer 
problems. Characterizing thermal resistor networks 
in terms of a set of resistances (heat transfer 
coefficients) is significantly beneficial in the 
analysis of thermal systems and in decreasing the 
computational expense of modeling such systems, 
e.g. in building energy simulation. 

Numerical solutions: The commercial CFD code 
ANSYS FLUENT is used to solve the equations of 
continuity, momentum and energy in steady state. 
Constant thermophysical properties are assumed. 
The SIMPLE scheme is used for pressure-velocity 
coupling, along with 2nd order discretization 
schemes for all the governing equations. A 
schematic of the side view of the computational 
domain is shown in Figure 1. Uniform velocity and 
temperature profiles are set at the inlet of the 
domain, while zero gauge pressure is set as the 
boundary condition at the outlet. The domain sides, 
representing the four walls of the water tunnel, are 
modeled as adiabatic impermeable no-slip walls. 
The boundary conditions at the spheres are zero 
velocity and constant temperature. 

 
Figure 1 

Schematic of the computational domain (side view) 

For every Reynolds number, the full set of 
governing equations is first solved to obtain the 
temperature and velocity fields. Heat transfer rates at 
the spheres are then computed by integrating the 
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temperature field. To obtain paired heat transfer 
coefficients defined by Equation 1, the temperature 
boundary condition at one of the isothermal heat 
sources, say one of the spheres, is perturbed. Next, 
the energy equation is solved and the new heat 
transfer rate at the unperturbed source, the other 
sphere, is calculated.  

Verification: The present numerical solutions are 
verified by comparison to previously published 
results. Table 1 provides a comparison of the drag 
coefficient of side-by-side spheres as predicted by the 
current solutions and the numerical results of Kim et 
al. [2]. Note that these results are for a free stream, 
i.e. with the boundary conditions at the sides of the 
domain set as symmetric (zero normal gradient). 

Table 1 
Drag Coefficient of Side-by-Side Spheres (L/D=2) 

Re 
Cd 

Present study Kim et al. [1] 
50 1.67 1.70 

100 1.16 1.18 
200 0.95 0.96 

RESULTS & DISCUSSION 
Side by side arrangement: When two spheres of 
equal diameter are placed side by side, they “see the 
flow” identically. In other words, they are placed 
symmetrically with respect to the flow. Therefore, 
assuming the fluid properties to vary negligibly with 
temperature, heat transfer coefficients of the two 
spheres will be equal, regardless of their surface 
temperatures, TL and TR. Nevertheless, each sphere is 
in thermal communication not only with the fluid, but 
also with the other sphere. Thermal interaction 
between the spheres is function of the driving 
temperature difference, distance between the spheres 
and the thickness of the thermal boundary layer 
developed around each sphere. The latter is itself 
function of flow conditions and fluid properties. If the 
spacing between spheres is small enough, roughly 
smaller than the combined thickness of the two 
thermal boundary layers, the two boundary layers 
interfere. In this situation, a change in the surface 
temperature of one sphere will affect the temperature 
field in the vicinity of the other sphere, and thus the 
rate of heat transfer at the second sphere. On the other 
hand, if the spheres are spaced far apart, i.e. if the 
spacing is larger than the combined boundary layer 
thickness, two independent thermal boundary layers 
develop. In this case, changing the surface 

temperature of one sphere will not alter the heat 
transfer at the other sphere. The sphere-sphere 
Nusselt number, NuLR, characterizes this interaction. 
In Figure 2, NuLR is plotted versus Re. As Re 
increases, the boundary layer thickness decreases 
and thus, at a fixed spacing, the thermal interaction 
between the two spheres becomes weaker. Heat 
transfer between spheres and the fluid, on the other 
hand, is enhanced as Re increases. This is well 
known from the theory of external forced 
convection. This trend is captured by the paired 
sphere-fluid Nusselt number, NuL∞, also shown in 
Figure 2. 

 
Figure 2 

Variation of sphere-sphere and sphere-fluid Nu with 
Re (side-by-side) 

Figure 3 shows the distribution of the overall 
Nusselt number of a sphere in side-by-side 
arrangement as well the local distribution of the 
paired sphere-fluid Nusselt number at Re=100. At 
Re=100, sphere-sphere heat transfer is zero. 
Therefore, heat transfer at a sphere is chiefly 
between the sphere and the fluid. It is therefore 
expected that paired sphere-fluid and overall sphere 
Nusselt numbers, obtained from dQdT and the 
baseline CFD solution respectively, be equal 
(NuL∞=NuL). Maximum and minimum heat transfer 
coefficients are observed at θ=0 and θ=140°, 
stagnation and separation points respectively. 

This three-temperature problem can be represented 
by a thermal resistor network such as the one shown 
in Figure 4. A set of three paired Nusselt numbers, 
Nuij, characterizes this thermal network for any 
given combination of geometry, fluid, flow, and 
temperature boundary conditions. As mentioned 
previously, with constant fluid properties, the two 
sphere-fluid Nusselt numbers are equal and thus the 
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thermal network of Figure 4 is characterized by two 
Nusselt numbers. It is noteworthy that prior to the 
development of the dQdT technique, there were no 
tools, numerical or experimental, available for 
determining the three Nusselt numbers (resistors) of 
this network.  

Figure 3 
Local sphere-fluid and overall Nu 

(side-by-side, Re=100) 

 
Figure 4 

Thermal network of the side-by-side arrangement 

Tandem arrangement: When arranged in tandem, 
the spheres will see the flow differently, i.e. they are 
placed asymmetrically with respect to the flow. Due 
to the blocking effect of the upstream sphere, Qd is 
smaller than Qu. This difference increases with the 
Reynolds number. Moreover, due to their asymmetric 
arrangement, the spheres are expected to have 
asymmetric effects on each other. This asymmetry in 
thermal communication between two heat sources is 
referred to as preferential advection. To demonstrate 
this effect further, sphere-sphere Nusselt numbers are 
plotted against Re in Figure 5. In this figure, Nudu 
corresponds to the heat transfer coefficient obtained 
by perturbing the surface temperature of the 
downstream sphere, Td, and computing the resulting 
change in the heat transfer rate at the upstream 

sphere, Qu, according to Equation 1. Hence, Nudu is a 
measure of the influence of Td on Qu. Similarly, Nuud 
characterizes the influence of Tu on Qd. At Re=0, the 
pure conduction limit, Nuud=Nudu. However, for 
Re>0, the influence of Tu on Qd is much larger than 
that of Td on Qu which is zero for Re<50. For 
50<Re<200, via recirculation between the spheres, 
Td can affect Qu and hence the non-zero values of 
Nudu. Maximum Nuud also occurs in this interval, 
indicating the enhancement of the influence of the Tu 
on Qd by the recirculating zone. 

 
Figure 5 

Variation of sphere-sphere Nu with Re (tandem) 

In Figure 6, sphere-fluid Nusselt numbers are plotted 
versus the Reynolds number. Corresponding to each 
sphere, two distinct Nusselt numbers are obtained: 
one by perturbing the sphere surface temperature 
and observing the resulting change in the total heat 
transfer (from both spheres) to the fluid, and the 
other by perturbing the temperature of the 
approaching free stream and computing the resulting 
change in the heat transfer rate at the sphere of 
interest. See Equation 1. Preferential advection is 
observed between spheres and the fluid too. Note 
that in Figure 6, the sphere-fluid curve of Figure 2 is 
reproduced for comparison. It is seen that with Nudu 
substantially zero, Nu∞u is very close to Nu∞L, which 
is another indication of the small thermal 
communication from the downstream sphere to the 
upstream sphere. Then difference between Nu∞d and 
Nu∞L, on the other hand, is considerable due to 
significant thermal communication from the 
upstream sphere to the downstream sphere, as 
reflected by Nuud values of Figure 5.  

The observed difference between Nuij and Nuji 
indicates that the tandem arrangement cannot be 
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represented by the thermal network of Figure 4. In 
fact, the paired heat transfer coefficients calculated 
through dQdT can be used to determine whether a 

multi-temperature system can be properly modeled 
as a thermal resistor network. 

 
Figure 6 

Variation of sphere-fluid Nu with Re

Local paired heat transfer coefficients on a plane 
parallel to the flow are shown in Figure 7. Note that 
the angular positions on the periphery of the two 
spheres are measured in opposite directions. As 
expected, Nudu, characterizing the influence of Td on 
Qu, is maximum at θu=0, smoothly decaying to zero at 
θu≈60˚. The local effect of Tu on heat transfer at the 
downstream sphere, on the other hand, is more 
complicated. Starting from Nuud≈1 at θd=0, Nuud 
reaches its maximum at θd≈60˚, the counterpart of 
[θu≈60˚; Nudu=0]. Note that θd≈60˚ is also an 
inflection point, beyond which Nudu decreases to its 
minimum at θd≈150˚, the second inflection point, 
where flow separation occurs. 

It is noteworthy that following the convention in heat 
transfer, a temperature ratio must be introduced to 
characterize the temperature arrangement of this 
three-temperature problem. The overall heat transfer 
coefficients, obtained from measurement or a 
numerical solution, will then be a function of this 
temperature ratio. Using dQdT, however, the obtained 
paired heat transfer coefficients are independent of 
the temperature ratio. In other words, the paired 
Nusselt numbers presented in this work can be used 
for any temperature arrangement. This is an important 
advantage of dQdT in characterizing multi-
temperature forced convection. 

 
Figure 7 

Local sphere-sphere Nu (Re=100, tandem) 

Remarks on experimental dQdT: This study was 
conducted to assess the feasibility of implementing 
dQdT in a water tunnel study of flow over nearby 
spheres. To avoid complexities of unsteady flow and 
transition to turbulence, it is preferable to perform an 
experimental dQdT study in the steady laminar 
regime. Moreover, when performing measurements, 
the heat transfer response to a temperature 
perturbation must be at least an order of magnitude 
larger than the associated errors to provide 
meaningful data for calculating paired heat transfer 
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coefficients. Note that dQdT is in essence a 
sensitivity analysis. The presented results indicate 
little thermal communication between the spheres in 
the steady laminar regime. For 0<Re<250, Pr=7 and 
L/D=2, sphere-sphere Nusselt numbers are at least 
one order of magnitude smaller than sphere-fluid 
Nusselt numbers. In side-by-side arrangement, NuLR 
is essentially zero for Re>1. In tandem arrangement, 
spacing and Reynolds number have variable effects 
on sphere-sphere interaction depending on the flow 
structure, especially the size and strength of the 
recirculating zone between the spheres. Nevertheless, 
for 0<Re<250, the obtained sphere-sphere Nusselt 
numbers are very small. Based on the presented 
results, successful implementation of experimental 
dQdT in intermediate Reynolds numbers does not 
seem feasible. 

CONCLUSION 
The three-temperature problem of convection from 
two spheres with the same size but different surface 
temperatures was studied using the dQdT technique. 
Intermediate Reynolds number flow of water over 
spheres in side-by-side and tandem arrangements was 
considered. It has been shown that due to the 
symmetry of the side-by-side arrangement with 
respect to the flow, Nusselt numbers corresponding to 
sphere-fluid heat transfer are the same at the two 
spheres. In tandem arrangement, however, the 
blocking effect of the upstream sphere leads to a large 
difference between heat transfer rates at the two 
spheres. Moreover, considerable difference was 
observed between the Nusselt numbers associated 
with any two of the isothermal sources. This 
difference is due to preferential advection, caused by 
the asymmetric position of the spheres with respect to 
the flow. Sphere-sphere Nusselt numbers are 
significantly smaller than sphere-fluid Nusselt 
numbers. This difference can impose a practical 
barrier to the experimental implementation of dQdT 
in the steady laminar flow regime. It has been shown 
that the side-by-side arrangement can be represented 
by a three-node thermal network, with the associated 
resistors obtained by dQdT. In tandem arrangement, 
since preferential advection is significant, the 
problem cannot be formulated in terms of a thermal 
network. dQdT provides the tool for determining 
whether a multi-temperature convection problem can 
be represented as a thermal network. 
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