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Abstract

Construction work requires more repetitive and highly physical effort than, for example,

office work. Despite technological advancements in construction, the human factor is still

an essential part of the industry. Hence, the need to maintain a healthy work environment

is a shared interest between workers and industry. This thesis addresses the problem of

cumulative injuries among construction workers, with emphasis on masons, and examines

ways to improve safety and productivity simultaneously.

Vision-based motion capture and sensor-based joint angle measurement techniques were

tested against a state-of-the-art Optotrak� system. Results show that the overall error in

joint angle measurements was ±10 deg for vision-based approaches compared to ±3 deg

for optical encoders. Moreover, a noninvasive fatigue detection method was developed by

applying time-delay embedding and phase-space warping (PSW) techniques to a single

joint angle, exerted force, and electromyography (EMG) data. Results indicate that the

method can detect a slowly changing variable, fatigue in a limb, from a single kinematic

signal, limb exerted force, or its EMG signals.

Furthermore, twenty one masons distributed in four experience categories, ranging from

novice to expert, took part in a study to evaluate safety and productivity in masonry work

using inertial measurement units (IMUs). The study hypothesized that masons adopt safer
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and more productive work techniques with experience and that these techniques can be

identified and used to train novice workers. Results indicate that journeymen appear to

develop more productive and safer work techniques compared to other groups. On the other

hand, the three-years experience group was found to sustain the highest joint compression

forces and moments. Results also show that a clear distinction exists between expert and

inexpert mason motion patterns. Support Vector Machine (SVM) classifiers were able to

identify these differences with an accuracy of %92.04 in 13 seconds using a linear kernel.

The thesis findings justify exploration of sensor fusion techniques to combine direct

and indirect motion capture systems. The findings also suggest that PSW can be used

in applications such as rehabilitation to access information about patient status hidden

in the full-chain kinematics using a single kinematic signal. Finally, findings show the

potential for training apprentices to excel in all three aspects: proficiency, productivity,

and ergonomic safety by following the example of experts.
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Chapter 1

Introduction

1.1 Overview

Repetitive and highly physical [3], construction work requires more physical effort than,

for example, office work. A person has to be capable of performing highly physical tasks to

join the construction workforce. However, cumulative musculoskeletal injuries are reducing

the construction labor force. The effects of these injuries extend to workers’ social life and

welfare. The impact also extends to a national level, considering that the number of

construction workers is 1.3 and 11.1 million in Canada and the United States respectively

[4, 5]. Not surprisingly, the construction industry is directly affected by musculoskeletal

injuries as labor costs stand at 30–50 % of total project cost [6].
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There are multiple causes of cumulative musculoskeletal injuries. Kumar [7] presented

four theories for causes of musculoskeletal injuries, two of which are differential fatigue and

cumulative load. These two paths to injuries are initiated by awkward postures and repet-

itive motions, both of which are common in construction trades. Further, in construction,

like all trades, higher productivity is a major goal, which puts even more stress on workers.

All of these factors contribute to the complexity of musculoskeletal injuries.

Best practices for health and safety for trades have emerged since the 1990’s, spear-

headed by organizations such as the Center to Protect Workers’ Rights (CPWR), the

Construction Industry Institute (CII), and the National Institute for Occupational Safety

and Health (NIOSH). These practices include toolbox meetings, structured hazard anal-

ysis, drug testing, and cultural changes to encourage a safer environment. Occupational

work and safety organizations have been addressing the musculoskeletal injury problem

for a long time. Despite these efforts, the industry is still facing a high attrition rate, as

approximately 56 % of craft trainees complete their training program [8].

Studies using advanced technology to address the attrition rate are on the rise. Re-

searchers are using technologies such as motion tracking and machine learning algorithms

to enhance safety in construction. These efforts face many hurdles: systemic (within the

sector), peer pressure (within a project), and lack of awareness about the importance of

musculoskeletal injuries. As a result, these interventions are not broadly implemented in
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construction worksites or training facilities [9, 10]. This issue is partly caused by the per-

ceived cost of adopting these changes in the workplace in terms of productivity loss, lower

quality, and higher maintenance [10]. Thus, the industry is in need for an intervention that

enhances productivity and safety in combination.

1.2 Motivation

Despite technological advancements in the construction sector, the human factor is still an

essential part of the industry. Hence, the need to maintain a healthy work environment is a

shared interest between workers and industry. Two important measures of workplace safety

are the average number of days that a worker spends away from work due to an injury and

the injury incidence rate. Another measure of safety is the average age of workers, which

is an indicator of workers’ longevity.

Construction and manufacturing sectors have one of the highest annual incidence rates

of musculoskeletal injuries at 132.7 and 103.1 per 10,000 workers with an average of 10

days away from work compared to incidence rates of 26.6 and 25.4 with an average of 8

and 7 days away from work in management and technical services [11]. In addition, the

2011 Canadian census showed that the number of workers aged 55 or older is, for the first

time, higher than workers aged 15 to 24 [12].
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Construction trades are essential for national development and the human factor is an

important asset of these trades. This thesis addresses the problem of cumulative injuries

among construction workers and examines ways to improve safety and productivity jointly.

1.3 Objectives

This research aims to enhance construction workers’ safety and productivity and to decrease

their attrition rate. Various motion capture techniques were investigated and different

analysis methods were tested to develop methods applicable in the field. Following is a list

of specific objectives towards that goal:

� Testing the feasibility of direct motion measurement techniques in the field

� Finding noninvasive measures to evaluate muscle fatigue

� Testing the hypothesis that workers’ safety and productivity are enhanced with ex-

perience

� Testing the hypothesis that workers’ experience level can be identified from their

motion patterns

� Creating a database for masons’ motion patterns
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The thesis was structured to examine tools for kinematic data collection in non-structured

environments and to use this data to minimize the number of injuries among construction

workers. Current work health and safety guidelines provide detailed instruction on how

to conduct safe work, however, these guidelines are not often followed which in turn did

not affect the overall workers health status. This thesis compares state-of-the-art data

collection methods and conclude on their suitability for use in construction sites. Then

kinematic signals are used to study on masonry workers with varying levels-of-experience to

extract a motion pattern associated with the expert masons and test whether this pattern

is associated safety and productivity combined.

1.4 Thesis Structure

This dissertation is comprised of seven chapters as shown in Figure 1.1. The first chapter

is an introduction to the thesis topic. The second chapter is a review of relevant literature

on theories of injury causation, musculoskeletal injuries in construction, kinematic data

collection methods, fatigue detection, and current interventions to minimize injuries in

construction and masonry work.

Chapter three, is a report from a collaborative study conducted to compare the per-

formance of a state-of-the-art vision-based motion capture system and electrogoniometers
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in non-structured environments. This chapter is based on papers submitted to the jour-

nal Robotica by Seo, Alwasel, Lee, Abdel-Rahman, and Haas [13] and published in the

30th International Symposium on Automation and Robotics in Construction and Mining

by Alwasel, Elrayes, Abdel-Rahman, and Haas [14]. In this part, the thesis author was

in charge of experimental design, data collection and analysis for the direct measurement

system part.

Chapter four reports on a study conducted to examine the use of a nonlinear system

identification technique to detect muscle fatigue from kinematic and electromyographic

signals. This chapter is based on papers published in the Journal of Biomechanical En-

gineering and the 26th Conference on Mechanical Vibration and Noise by Alwasel, Yung,

Abdel-Rahman, Wells, and Haas [15], Alwasel, Abdel-Rahman, and Haas [16]. In this

part, the thesis author was in charge of data collection of kinematic signals as well as data

analysis for all signals in addition to writing the papers.

Chapter five reports on a study conducted on twenty-one masons with various levels of

expertise to examine the effect of their motion patterns on body joint forces and moments.

This chapter is based on a paper published in the Journal of Construction Engineering

and Management by Alwasel, Abdel-Rahman, Haas, and Lee [17]. In this part, the thesis

author was in charge of data collection and analysis in addition to writing the paper.

Chapter six, deploys a Support Vector Machine-based machine learning algorithm to

6



classify workers’ motion patterns into safe-productive and unsafe-unproductive based on

their level of expertise. This chapter is based on a paper submitted to the Journal of

Automation in Construction by Alwasel, Sabet, Nahangi, Haas, and Abdel-Rahman [18].

In this part, the thesis author was in charge of data collection and analysis in addition to

writing the paper. Chapter seven summarizes the research conducted, presents conclusions,

and suggests future research avenues.

1.5 Thesis Contributions

The data collection comparison study revealed that although indirect measurement meth-

ods have the benefit of being easy to use and cheap, implementing them in construction

sites will result in inaccuracies compared to direct measurement system. Furthermore, for

the first time, time-delay embedding and phase-space warping were used to detect muscles’

fatigue using kinematic and physiological signals. Phase-space warping was, for the first

time, shown to be able to differentiate between load sharing patterns using electromyogra-

phy signals.

Moreover, for the first time, kinematic data from masons with different levels of ex-

perience were used to conduct comprehensive safety and productivity analysis. It was

shown that expert masons adopt a method of work that minimizes the risk and increase
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their productivity. For the first time, novice masons were shown to be safe workers but

not productive and productivity increase with experience The 3-years experience group

show high productivity but were associated with high levels of joint forces and moments.

Furthermore, support vector machine was use, for the first time, to differentiate between

masons with different experience levels. Thereby, the use of SVM on kinematic signals

was shown, for the first time, to be able to detect motion patterns of safe and productive

masons.
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Chapter 2

Literature Review

This chapter is a review of literature relevant to this thesis.

2.1 Theories of Musculoskeletal Injury Causation

Musculoskeletal injuries (MSIs) are defined by the National Institute for Occupational

Safety and Healthy (NIOSH) as those “that involve the nerves, tendons, muscles, and

supporting structures of the body” [19]. The complexity of the MSIs stems from the

multidisciplinary nature of its causes. Many theories have been developed to describe

how MSIs occur. Kumar [7], through evidence published in the literature on workplace

injuries, proposed four theories about how work-related injuries are developed: multivariate
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interaction of musculoskeletal injury perception, differential fatigue, cumulative load, and

overexertion. Each of these theories follows a series of actions leading to the perception of

pain that indicate the existence of injury. The following subsections describe each theory

in detail.

2.1.1 Multivariate Interaction Theory

This theory attributes the MSI precipitation to the interplay between morphological,

biomechanical, psychosocial, and genetic elements. Morphological factors, such as mus-

cle shape and size, are responsible for the ability of the body to withstand other factors

leading to the injury. It explains the variability between individuals facing the same envi-

ronment or performing the same task. For example, if all other factors leading to MSIs are

controlled for two persons and the same type of force is applied on their bodies, different

outcomes will be seen due to the difference in morphological characteristics.

Biomechanical factors change according to how much load is applied, at what angle,

and to which part of the body. Human bodies react differently to applied forces. Even the

same body sometimes reacts differently due to other factors such as fatigue. The inter- and

intra-variability of the human body determines its variations in the ability to withstand

applied forces.
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Psychosocial elements can also decrease or increase the prevalence of injury. Bullying,

racism, job demand, and job control are types of psychosocial factors that escalate or

delay the process of wear and tear leading to MSIs. Hauke et al. [20] reviewed literature

from 2000 to 2009 associating psychosocial factors (such as low social support, low job

control, low decision authority, low job satisfaction) with MSIs. They found that a small

but significant impact of psychosocial factors is causing MSIs. Furthermore, they found

no evidence indicating that specific psychosocial factors are associated with a specific MSI

or parts of the body.

The last element in the multivariate interaction theory is the genetic traits of the body;

in fact, the genetic map of the body can provide information on whether it is susceptible to

injury. Collins [21] reported on the association between some genetic sequences and some

MSIs such as rotator cuff injuries. These genetic sequences are beyond the human control

in the sense that under the same force, some people are more vulnerable to injury than

others due to their genetic map.

The multivariate theory suggests that MSIs are multifactorial where there is no definite

path specified for each injury. To address the problem of MSIs, many factors have to be

monitored and managed, some tangible, such as biomechanical factors, while others are

intangible. Thus, a system approach must be adopted to control the environment inside

the human body, such as genetics, and outside the body, such as the psychosocial factors,
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to eliminate the risk of injury.

2.1.2 Differential Fatigue Theory

The differential fatigue theory bases its assumption on the fact that effective industries rely

on repetitive processes to achieve maximum production. A motion is constituted by mul-

tiple joints and muscles. These muscles are differentially loaded and their proportionality

depends on many factors, such as posture and muscles’ status. Differential loading leads to

two effects. The short-term effect is that different muscles fatigue disproportionately due

to the repeated loading and this fatigue results in distributing the load to other muscles

and therefore lower productivity. In the long-term, when the muscles are continually fa-

tigued due to repetitive forceful tasks, the body starts to change the optimum mechanism

by which it originally was working to lower fatigue, and that response eventually results

in pain.

2.1.3 Cumulative Load Theory

This theory highlights the idea that pain is not simply the result of a single incident of

high load application but the result of accumulative load over a prolonged time, hence

the cumulative fatigue. Muscles undergo damage at the micro level under the influence of
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force. Further, muscles have the ability to self-repair their tissue with the removal of force

for a period of time. Thus, the accumulation of low forces applied to the muscles for long

periods is not the reason for injury. Rather, it is the absence of rest time for the muscles

to repair themselves.

Rohmert [22] introduced a model to calculate the rest allowance required for a worker

to avoid injury in industrial settings [22, 23]. The model calculates the required rest time

based on the maximum exerted force. The effect of rest time pn m suggests that er-

gonomists and job designers must consider the resting allowance to produce an effective

and safe work station. Rest time allows muscle tissue to self-repair itself before the appli-

cation of the next set of forces. The rest allowance method works only if the force does not

exceed the tissue tolerance limit. Whenever the force exceeds the tissue tolerance limit,

the injury source becomes overexertion, which is the next theory.

2.1.4 Overexertion Theory

The last of Kumar’s theories for MSI causation is the overexertion of force, position, motion,

and duration, these four elements required to perform any effective task. Workers apply

force to move an object from one position to another over a period of time. The MSI can

happen due to overexertion of any of the four elements.
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Overexertion of Force

Muscles are designed to produce force in contraction. To move an object, the muscles

exert forces which are transmitted through the body parts through the joints. Muscles and

joints have threshold limits under which they can tolerate forces, whenever the force level

exceeds this threshold, injury happens.

In 2014, overexertion accounted for 33% of all non-fatal injuries reported by the U.S

Department of Labor [11]. The problem with overexertion is that workers do not know that

they are overexerting force until they have the symptom (pain), which is the later stage

that researchers and health institutions are trying to prevent. Many intervention studies

were conducted to lower the force required to perform tasks and the results were positive,

indicating that redesigning the workstation or task lowers the incidence of MSIs [9, 24].

However, the end point is not promising because industries need to run at a certain pace

that can be compromised through redesigned tasks, leading to delays in the production

process.

Overexertion of Duration

Rohmert [25] demonstrated that for each force exertion level, a minimum muscle rest time

is required to prevent MSIs, meaning the muscle threshold decreases with the prolonged
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force exertion, making it easier for the worker to exceed the limit and thereby overexert

force.

Therefore, the key issue is not only how much force is being exerted, but also how

often this force is exerted and if the muscles are being rested. Many studies showed that

repetitive motion is one of the causes of MSIs [19]. The repetitiveness itself is not the

problem it is rather the lack of rest time for the muscles to regain their original shape and

condition before the application of next set of force.

Overexertion of Posture

Joints are designed to work effectively within a defined range of motion. When a person

exceeds this range of motion, muscles are required to produce more force to maintain the

required posture. Kumar [7] demonstrated that the best position for any joint is the mid

position, which requires the minimum amount of force. Any deviation of more than 20%

from this position is going towards the dangerous zone.

For example, Alwasel et al. [26] investigated the risk factors for developing work-related

shoulder MSIs among construction workers. They found that the risk factors are forceful

work and range of motion and that, if workers maintained their upper arms below 90°of

flexion, the number of shoulder MSIs could be decreased.
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Interaction of Force, Duration, and Posture Overexertion

Finally, tissue is more vulnerable to injuries when subjected to the combination of forceful,

prolonged, and awkward posture risk factors. In other words, certain forces may not harm

the tissue in static mode but will injure it if repeated multiple times in a short duration.

This interaction is performed in everyday life, and that is what makes MSIs appear in every

sector. Thus, to decrease the MSIs prevalence, all of these factors have to be included when

designing a task or a workstation, to guarantee that the person will perform the task at a

low force level with repetitions spaced out enough to allow for the minimum rest time.

2.2 Impact of MSIs

Examining MSI risk factors, one can expect that the number of cases will be especially high

among construction workers. MSIs can result from everyday activities in almost all work

environments; furthermore, their impact on society is enormous, especially in countries

such as Canada, where the health care system is socially funded. In this section, two

aspects of MSIs impact are studied:

� Prevalence: using statistical analysis to examine the number of workers affected by

MSIs in North America, the causes, and the cause-effect relationships.
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� Severity: using statistical data to examine time lost due to injury.

2.2.1 Prevalence of MSIs

The many types of MSIs reported in statistical data published by Statistics Canada and

the U.S Department of Labor’s are categorized using two schemes according to the affected

body part and/or the reported cause of injury.

In 2014, the number of MSI cases in the U.S. was 365,580 forming 32% of all injuries

requiring days out of work. Construction cases accounted for 6.4%. Laborers, nursing

assistants, heavy trucks and tractor-trailer drivers, janitors and cleaners, and stock clerks

and registered nurses accounted for 85,830, constituting 7.4% of all injuries requiring days

out of work [11].

In Canada, 51% of all injuries for working age Canadians 20 to 64 years old are sprains

and/or strains out of which 18% are due to work. Thirty-three percent of all work injuries

occur among workers in trade, transport, and equipment operations [27]. The similarity

between Canadian and U.S data are due to the similar types of industry and population

demographics. MSIs are widespread in North America especially, in work environments.

The prevalence of MSIs among workers is due to work conditions which involve all MSIs

risk factors. This claim is supported by the number of cases in the occupations, making
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up 7.4% of all injuries requiring days off work in the U.S and 33% of all work injuries

in Canada. The cases resulting in these numbers are jobs in the same category, namely

trading, transport, and labor.

The reason behind these figures is that workers in these jobs are often working under

conditions that make them prone to the MSI risk factors discussed in 2.1. Generally,

workers are not following the guidelines set by health regulators for their occupations to

avoid injuries. Further, even if workers are working under those guidelines, their work

conditions are not monitored in a way that would allow them to avoid stressful postures,

such as working above head level, lifting heavy weights, or highly repetitive tasks with no

rest time.

Those with jobs in trading, transport, and labor work under high stress, and in low

income, low job security conditions, the worker is under psychosocial stress factors that

may lead to the development of MSIs. Moreover, these jobs require more physical work

compared to other jobs. Also, not enough health resources are available to workers in

these categories. These circumstances meet the definition of an unhealthy environment as

defined by the World Health Organization (WHO) [28].

Sprain, strain and, tears were responsible for 36.3% of all injuries requiring days away

from work in 2014 [11]. These numbers indicate that one-third of injuries in the US were

MSIs and two-thirds had other factors not directly related to MSIs. These numbers provide
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a realistic picture of health conditions for workers, with the proviso that not all incidents

are reported to the statistics bureau for reasons discussed by Kosny et al. [29]. They may

also indicate the severity of injuries caused by non-obvious factors, such as psychosocial,

overexertion of duration, and range of motion, which may contribute to the two-thirds

figure [29].

In Canada, a similar pattern holds. Overexertion accounted for 28% of injuries among

the working age adults 20 to 64 years old, whereas 35% of the injuries involve falling.

Contact with sharp objects and being struck by an object contributed to 12%, and violence

was responsible for 5% of injuries [27, 30].

The guidelines set by health regulators [31–33] provide tools for workers, employers, and

policymakers to avoid MSIs in work sites by eliminating their risk factors. However, some

risk factors are not obvious to workers; thus, avoiding these factors requires attention from

the worker and/or employer. Such risk factors are responsible for the majority of MSIs

in work sites according to statistics. These factors are hard to monitor without special

types of equipment. Examples of these risk factors are force level, repeat frequency, and

duration. Therefore, unlike overexertion in lifting and twisting, sprain/strain injuries are

not controllable by the worker.

Back sprain/strain injuries in the U.S, made the top of the list with 17.3% of injuries

followed by the knee at 9% and the shoulder at 7.7% [11]. In Canada, ankle and foot
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injuries made the top of the list with 21% of all sprain/strain injuries followed by the wrist

and hand at 16%. Back injuries accounted for 15.9% of all sprain/strain injuries and the

knee constituted 15% [27].

The injury distribution by affected body part confirms the causality of some risk factors

reported in the distribution by cause of injury. For example, the fact that back injuries are

the most common result of overexertion in lifting and lowering supports research findings

that confirm unsafe bending and carrying of overloads by overexerting force as risk factors

in back MSI. However, the previous numbers provide an insight into the frequency of injury

and the body part being affected but not into the severity of the problem.

2.2.2 Severity of MSIs

The severity of the MSIs can be measured by the period of time the injury requires for

treatment. Further, the severity of the injury can be measured by examining the financial

compensation provided to workers per injury and/or the total cost of MSIs to the national

health care system.

Statistics Canada, in 2011, revealed that the average length of absence for workers in

building and other support services was 8.6 days [34]. Figure 2.1 shows the average length

of absence for the general work population, construction workers and helpers, and for those
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in building and other support service from 2001 to 2011. The chart shows an ascending

trend in the building and other support services from 6.6 days off work in 2001 to a peak

of 9.1 in 2006. Henceforth, absence length stabilizes around 8.5 days, which is two days

longer than the average absence in 2001. Several factors could underlie this trend: a large

intake of inexperienced workers joining the workforce recently without the proper training

to avoid injuries, a change in construction technology leading to more severe injuries, or

an aging workforce requiring more time to recover. Regardless of the exact underlying

causes, the data indicate that workers face a higher risk of developing severe injuries in the

construction sector compared to 11 years ago.
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Figure 2.1: Number of days away from work due to injury

22



The trend is the same in the U.S.; the number of injured workers is on the rise. Tab-

ulated data on absence rates grouped by the type of work and injured body part indicate

heightened the risk of MSIs. According to the U.S. Bureau of Labor Statistics, the average

number of days required for recovery from an MSI is 13 days [11].

MSIs are present across all occupations because of the existence of MSI risk factors in all

environments, however, the degree to which they impact workers varies across occupations.

Figure 2.2 shows how occupation affects the time required for treatment. Construction

and manufacturing jobs required ten days of away time to recover compared to 5 and 6

for education and health care jobs. These numbers show the variation in the severity of

MSIs by the type of occupation. Each occupation has its risk factors. The severity of MSIs

depends on workers exposure to those risk factors.

There are two types of costs resulting from injury among workers. The first are the

direct costs to treat workers and bring them back to the workforce; the second are the

indirect costs of replacing the worker temporarily or permanently if necessary. The total

cost of MSIs in Canada in 1994 was 3.4% of gross domestic product at 28$ billion CAD.

The direct cost was 7.5$ billion and 18.1$ billion was indirect cost [35]. The direct and

indirect costs of shoulder injuries were investigated by Alwasel [36], who found that when

a worker is injured at the work site, this means that a worker’s musculoskeletal system is

severely worn due to work. Hence, the need to train a new worker to replace the injured
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Figure 2.2: Number of days away from work due to injury, by occupation type

one this result in delays to the work schedule.

In the U.S, the burden of injuries in 2000 was $406 billion USD divided into $326

as indirect costs and $80 billion as direct costs [37]. Furthermore, the indirect costs of

MSIs are not visible to the individual and can only be seen at the macro level. For small

to medium businesses, the effect of injury is neither obvious nor important economically,

however, at the society or large corporation level the economic burden is more clearly seen.

The burden of industrial MSIs and overall injuries could be minimized if policy makers

developed more comprehensive plans to prevent injuries, plans which have been adopted

by other countries and which have proven successful in eliminating the exposure to risk
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factors [38]. Many researchers have tried to limit workers’ exposure to MSI risk factors

leading to injuries in their field. However, there are many challenges to these plans and

their application in real situations.

Lahiri et al. [39] investigated the cost-effectiveness of four plans to decrease the burden

of back pain resulting from work tasks: training, engineering control, training and control,

and a comprehensive plan by the WHO. The authors found that the most cost-effective

prevention method is training; however, the overall effectiveness of the training is low com-

pared to other methods. Further, the study concluded that ergonomic control intervention

and the full ergonomic plan are the most effective in the long term [39].

Morgan and Chow [40] investigated the economic impact of applying an ergonomic

plan to decrease the burden for registered nurses (RN) injuries. They found that the

cost to replace one RN leaving nursing due to back pain is between $25,000 to $38,000.

The authors also found that applying an ergonomic plan that considers training, policy,

and equipment use resulted in decreasing the number of back injuries among RNs and

consequently reducing the economic burden resulting from back pain among RNs [40].

Thus, the financial burden from injuries in work environments is evident. Although

businesses are mainly concerned with direct costs, the society as a whole is largely affected

by an injury’s indirect cost, which is always more significant than direct costs and yet not

as obvious to individuals. These financial burdens do not cover the actual figure of the
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injury for many reasons such as the multifactorial nature of the injury and the system that

determines which injury to include as work-related.

2.3 Safety in Construction

Inspecting the number of injuries reported in the early 1900s compared to current statistics,

one can conclude that construction work can be made safer. Historically, construction work

was regarded as an environment with poor safety, health, and environmental conditions.

For instance, the Golden Gate Bridge (San Francisco, USA), completed in 1937, was well

regarded for its exceptional safety measures. At a cost of 35 million, there were only

11 worker deaths compared to the standard rate of one death for every million dollars

spent [41].

Best practices in construction have emerged since the 1990’s. Studies funded by organi-

zations such as the Center to Protect Workers’ Rights (CPWR), the Construction Industry

Institute (CII), and the National Institute for Occupational Safety and Health (NIOSH),

have developed best practices for all jobs in construction. These best practices include

toolbox meetings, structured hazard analysis process, drug testing, and cultural changes

to encourage a safer environment. These practices have improved work safety as evidenced

by the industry’s Lost Workday Case Incident Rate (LWCIR), which declined from 6.8
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in 1989 to 2.2 in 2008, and the construction industry Total Recordable Incidence Rate

(TRIR), which went from 14.3 in 1989 to 3.8 in 2013 [42].

However, the industry has begun to face a shortage in the workforce as the first baby

boomer reached the age of retirement in 2011 [12]. On the other hand, the number of

injuries in construction reported in the United States during 2014 for workers aged 45 and

54 was less than the younger categories [11]. This indicates that, although the worker

population is aging, fewer injuries are reported among older workers than younger work-

ers. The number of injuries reported vs. length of service with the same employer in

construction provides a clearer picture of the problem. Workers with 3 months service or

less reported 15% of the injuries, and workers with 3 months to 1 year reported 22.5% of

the injuries. The percentage significantly increases for workers with 1 to 5 years to 34.2%

of the injuries and then settles back to 26.5% of the injuries for workers with more than 5

years of service [11].

One of the many efforts to decrease the number of injuries among workers is the inter-

ventions by stakeholders to reduce the impact of MSIs on the industry. These interventions

include regulatory procedures, such as the NIOSH lifting equation, which defines how much

weight is considered safe for carrying [32, 43]. The impact of MSIs and other work-related

injuries is widely seen through the number of studies conducted to investigate the injury

source, assess its severity, and suggest solutions to decrease the injury prevalence. Types of
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research include but are not limited to biomechanical studies to investigate the mechanics

of the injury, epidemiological studies to investigate the nature of the injury, and ergonomic

and management studies to suggest solutions to the injury problems.

There have been more recent attempts to implement ergonomics plans that decrease

MSIs in the worksite and to continuously assess the impact of the solution in-situ. These

studies are referred to as participatory ergonomics (PE). The advantage of intervention

studies over other studies attempting to validate MSI solutions is that they do not need

to mimic the environment in which the solutions will be applied. Thus, there is no effect

of the environment on the study results. The effect of mimicking the environment of the

industrial or crafting jobs was investigated by Moriguchi et al. [44]. The authors found

that, due to lack of tools, researchers tend to neglect the subtasks performed in real settings

when reproducing them in a lab environment. That oversight, in turn, led to the inaccurate

representation of the task risk factors.

Cole et al. [45] investigated four PE studies to check their overall performance and

evaluate the deficit of the theory and then suggest ways to improve the overall perfor-

mance. The study evaluated the four studies and reported a mix of positive and negative

results. In assessing the process, implementation, and effect of the changes on workers’

health the study concluded that changes were limited due to management commitment,

such that researchers had difficulty recruiting employees due to their management stress.
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Authors reported theory deficits that contributed to limiting the outcomes of the four PE

interventions; for example, ergonomic changes made to tools and workstations’ layouts

did not include capital equipment and production lines because of the financial burden on

companies.

Denis et al. [9] divided the participatory ergonomics intervention studies in MSIs into

three categories: complete, shortened, and turnkey. Dividing these studies is based on

their evaluation of the preliminary results of MSIs, then a diagnosis of the problem, and a

proposed solution. Authors found that, depending on the classification of the intervention,

the results vary. Complete studies tend to cover most of the risk factors and work descrip-

tion whereas other classes tend to save time by skipping some of the risk factors and/or

work descriptions.

Although researchers understand the importance of research in developing MSI solu-

tions that are robust, comprehensive, and effective, they face problems when implementing

them in reality, such as lack of funds or lack of management/worker cooperation. Thus,

the impact of the research to develop solutions’ to limit the expansion of MSI cases among

workers is not noticeable.

Management commitment is a major player in the intervention game that determines

whether interventions are successful. Middle management tends not to cooperate if the

intervention does not directly reflect on their personal health or benefits. As a result,
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workers might not be able to give up productivity over health because of the pressure from

management. At the end of the day, supervisors are keeping track of productivity and not

determining whether workers were using the safe technique [46].

The solution to the management commitment lies in developing a solution to MSIs that

is independent and does not require management commitment at a high level. That is,

securing the approval for applying a solution in a given field is not the problem; the problem

lies in further observation of the application of the solutions in-situ. Thus, an independent

solution would eliminate the burden set on management so they are not required to monitor

the application of the solution in addition to their work as production managers.

Another form of interventions to reduce MSIs, job analysis, assesses work conditions

for a given job and identifies potential dangers [47–54]. Results of these two types of

interventions are often procedural guidelines for work with less exposure to risk factors

leading to an increased number of work-related injuries.

Another type of intervention, implementing physical changes in the work environment

by introducing new tools, aims at reducing the workload on workers’ body and increasing

productivity through the use of robotics [55], image-based tracking [56], or inertial mea-

surements [57]. Though proven to have a positive impact on reducing exposure to risk

factors, these interventions are not widely implemented in workplaces [9, 10].
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Moreover, researchers are adopting emerging techniques from other fields and applying

them to construction field, including the use of machine vision to classify human motion.

Particularly, researchers are focusing on classification of workers’ motion when performing

tasks such as climbing a ladder, reaching far to the side of the ladder, standing, stooping,

bending, walking, running, and crawling. They have achieved classification accuracies up

to 99.5% compared to traditional marker-based motion tracking systems [58–62]. Range

cameras, which translate depth information into grayscale images, are used to create a

silhouette of the body, using software such as iPi Desktop Motion Capture and OpenNI,

which encompass a predefined human model. The built-in algorithms can track the motion

of the silhouette in space and time [63–67]. This method, using depth camera such as

Kinect�, can function best in structured environments, such as a laboratory, because of its

sensitivity to subject surroundings, self-occlusion, and short range (approximately 4m).

To overcome the shortcomings od the depth cameras [68], stereo-vision cameras have

been used to collect 3D images outside laboratory environment [56, 69]. The system collects

a point cloud of the body similar to those obtained by laser scanners. Utilizing the iPi

software, the point cloud is tracked in a manner similar to the depth camera technique.

Inertial Measurement Units (IMUs) have been used to track human motion and work

productivity in many environments [70–76] including construction settings [57, 77–84].

IMUs allow for unrestricted motion in non-structured environments. These sensors provide
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translational and rotational accelerations of the body segment attached to them. A model-

based software then uses these accelerations to estimate 3D coordinates of the body joint

centers in space and time. Accuracies up to 80% were achieved in the classification of tasks

compared to traditional motion tracking systems. Furthermore, productivity analyses were

carried out with an accuracy of 85% compared to manual productivity analyses.

Body physical status monitoring (PSM) during tasks has been used to investigate the

relationship between the physical status and productivity [85–87]. Although the use of

PSM combined with location sensors such as UltraWideBand (UWB) trackers enables

combined tracking of health and productivity, its accuracy is limited.

Despite these limitations, the field of automation in biomechanical analysis and safety

training is rapidly advancing. The construction industry is in need of new innovations [88].

Researchers have used more sophisticated methods such as marker-based motion capture

systems to create Cyber-Physical games that train workers in realistic construction set-

tings [89]. Golabchi et al. [90] presented an automated method for job-site ergonomic

safety analysis where they modeled a floor panel production line consisting of four sta-

tions. The proposed method has the advantage of simulating a job-site to investigate the

outcomes of planned safety interventions. Seo et al. [56] proposed a method to perform on-

site biomechanical analysis using Biovison Hierarchy (BVH) motion data extracted from

vision-based approaches. The BVH file was converted into files readable to biomechanical
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analysis tools such as 3DSSPP [91] and Opensim [92]. Using anthropometric parameters,

they generated a multibody model and calculated the forces acting on body joints. This

method is an improvement over traditional ergonomic analysis methods, which are based

on observation and self-reporting and lack in-depth information.

Many complications hamper the application of these interventions in the field, partic-

ularly, at the sector, institution, and implementation levels: systemic sector-wide hurdles,

peer pressure and lack of competition within the sector, and lack of awareness about mus-

culoskeletal injuries across all three levels [93]. The cost of adopting those interventions,

regarding productivity loss, job quality, or costly maintenance, is another major hurdle [10].

Thus, a potential solution to the MSI problem in the industry must be economical

and not impede workers or their work quality. These features allow for overcoming the

sector-wide hurdles. In addition, stakeholders have to be aware of the impact of MSIs and

the benefit of lowering its prevalence.

2.3.1 Investigating Masonry Work

On-site analysis provides analytical and quantitative tools to guide a process of prevention-

through-design. Significant efforts have been devoted to investigating the effects of masonry

work on the human body [10, 47, 49, 94–101]. Faber et al. [97] studied aspects such as
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work height, block mass, and single and dual-handed handling. A total of nine masons

took part in the study. The authors measured the effects of varying block height and

mass on the shoulder and L5/S1 joints and showed that masons are constantly subject to

low back compression forces beyond NIOSH limit of 3.4 kN. Moreover, they found that

working at heights below hip level significantly decreases the loads on the shoulder joint.

They also reported that single-handed handling decreases the net extension moment of the

lower back.

Moreover, the effect of experience level on posture during material handling has been

studied in a laboratory setting [101, 102]. A total 30 material handlers took part in this

study divided evenly between novices and experts. The participants lifted boxes weighing

15 and 32 kg from ground and 32 cm above ground. Researchers found that experts had

significantly different postures from novices with the experts handling the material closer

to their body. However, no significant difference was found between the two groups in the

L5/S1 joint moment, and only minimal differences were found in peak moment, asymmetry,

and cumulative loading at the L5/S1 joint.

Researchers have also investigated the use of different block materials to enhance ma-

sonry work environment. Hess et al. [47] found that using autoclaved aerated concrete

resulted in shoulder and low back pain. However, they found that both concrete masonry

units and autoclaved aerated concrete resulted in low back compression forces beyond the
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NIOSH limit. The mean back compressive force using concrete masonry units was 4.3 kN

while autoclaved aerated concrete has a significantly higher force at 4.9 kN.

U.S. Bureau of Labor Statistics [11] (BLS) data shows that the number of musculoskele-

tal injuries in those who worked five years or more with the same employer is almost equal

to the number of novice worker injuries. This is also in agreement with the outcomes

of Plamondon et al. [102] and Plamondon et al. [101] study. However, BLS statistics also

show that the number of injuries for workers with 1 to 5 years employment with the same

employer is significantly higher than for novice and expert groups. The reason for this

discrepancy is not obvious and is critical to long-term retention of apprentices.

Manual lifting, an integral part of the masonry trade, poses a risk of cumulative stress

injuries exacerbated by the length of exposure time. However, expert masons have been

found to sustain far fewer injuries than less experienced masons. The reasons for this

difference remain a quandary. Literature has analyzed the performance of experts and

novices to draw conclusions about the relationship between experience and injury risks

and productivity independent of each other. However, it has not covered the experience

gap between them, namely the apprenticeship period, nor have the combined relationships

among experience, productivity, and risk of musculoskeletal injury been quantified to date.
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2.4 Data Collection in Construction

Body kinematics can be collected noninvasively by two techniques: vision-based and an-

gular measurement. These two techniques can be categorized as indirect and direct mea-

surement systems. The advantages and disadvantages of each technique determine the

eligibility of a given techniques for use in the field.

2.4.1 Vision-based Techniques

Vision-based approaches aim to extract full-body motion data by processing 2D or 3D

images [103]. Previous research efforts have developed several vision-based techniques,

such as video camera combined with depth sensors (RGB-D) sensor-based[60, 63–65, 67],

stereo-vision camera-based [104, 105], and multiple camera-based [106, 107] approaches.

While RGB-D sensor-based and stereovision camera-based approaches take advantage of

3D imaging sensors that directly provide 3D information on scenes, a multiple cameras-

based approach relies on the photogeometric acquisition of 3D body joint locations (i.e.,

3D reconstruction) from tracked 2D joint locations of multi-view images.
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RGB-D Sensor Technique

Several computer vision algorithms have been developed to estimate human poses by de-

tecting the 3D positions of body joints directly from RGB-D images [63–65, 67]. Recently,

motion capture solutions such as iPi Desktop Motion Capture (www.ipisoft.com) and

OpenNI (www.openni.org) that use a Microsoft Kinect sensor have provided effective so-

lutions for extracting skeleton-based motion data from 3D images obtained by RGB-D

sensors.

The Kinect sensor that was initially developed for video gaming is capable of providing

both depth and color information at a resolution of 640 × 480 and a rate of 30 frames

per second [108]. This sensor is equipped with infrared (IR) projector, color camera,

and IR camera. Using the projected structured IR lights, it measures the objects’ depth,

reconstructing 3D scenes with a point cloud [109]. Combined with the 3D sensing feature

of the Kinect, the iPi Desktop Motion Capture software provides a marker-less solution

for collecting full-body motion data. Figure 2.3 shows an example of an RGB-D image

with a pre-defined body model, and the corresponding motion data. The algorithm is

model-based, which means that motion data can be tracked by matching the surface of

a pre-defined body model with a depth image, shown in Figure 2.3a. Then, the tracked

motion data can be exported into any motion data format such as the Biovision Hierarchy
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(a) RGB-D Image with a body model. (b) Skeleton-based motion data (.BVH).

Figure 2.3: RGB-D Sensor-based motion capture.

(BVH) motion data, shown in Figure 2.3b. This software provides several post-processing

algorithms to refine tracking and filtering algorithms for noise removal and smoothing.

The RGB-D sensor-based motion capture approach does not need markers or sensors

attached to human body, which allows for motion capture without interfering with on-

going work. Moreover, its low cost, approximately 150–250 USD, allows for easy access

to industries, and they are an easy-to-use and easy-to-carry means of in-field motion data

collection [60]. Furthermore, this approach is robust to self-occlusions because the iPi

software provides an inverse kinematics algorithm that can adjust incorrectly tracked body

parts due to occlusions. However, as the Kinect uses IR light, this approach is limited only

to an indoor environment due to its sensitivity to sunlight. Also, the short operating range
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of the Kinect sensor (within 4 m) is one of the disadvantages of this approach.

Stereovision Camera Technique

A stereovision system is designed to extract 3D information from a stereo image pair [110],

works similar to 3D sensing in human vision. It begins with identifying image pixels that

correspond to the same point in a physical scene observed by multiple cameras. The 3D

position of a point can then be established by triangulation using a ray from each camera.

The more corresponding pixels that can be identified, the more 3D points that can be

determined with a single set of images. Correlation stereo methods attempt to obtain

correspondences for every pixel in the stereo image, resulting in tens of thousands of 3D

values generated with every stereo image. The Bumblebee XB3�, manufactured by Point

Grey Technologies (www.ptgrey.com) is one of the widely used stereovision cameras. The

stereo camera measures line-of-sight distance using two lenses with a narrow baseline in a

self-contained unit. This allows for both optical and depth data to be collected with few

environmental restrictions, such as outdoor environments and limited field-of-view.

Starbuck et al. [104] proposed a stereovision camera-based motion capture approach

that addresses the short operating range of an RGB-D sensor. The 3D point cloud data

collected from the stereovision camera was converted into a format used by an existing

kinematic modeling software solution (iPi Motion Capture software) designed for use with
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RGB-D sensors. Then, using the same algorithm used in the RGB-D sensor-based ap-

proach, skeleton-based motion data was extracted from the 3D point cloud data. Through

a laboratory test, the proposed method was shown to be comparable to the traditional

RGB-D sensor-based approach [104].

A stereovision camera-based approach provides additional advantages, beyond the ben-

efits from the RGB-D sensor-based approach. For example, this approach does not depend

on environmental conditions, allowing both indoor and outdoor applications. Also, the

operating range of the stereovision camera is flexible according to lens field-of-view, lens

separation, and image size [68]. However, as computing depth information from two images

is a computationally intensive task, the frame rate relies on the hardware performance [68].

Multiple Camera-based Technique

A multiple camera-based motion capture technique aims to estimate the 3D locations of

body joints by processing 2D images from two different views using multiple video cameras

or a 3D camcorder that has two lenses in one camera. Han and Lee [106] proposed a

motion capture process that consists of 2D pose estimation from one view of images,

correspondence matching of body joints on the other view of images, and 3D reconstruction

of body joints using the corresponding joint locations identified. However, this approach

requires extensive training images to detect joint locations on testing images, and significant
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(a) Initialization.

(b) Body joint tracking.

(c) Correspondance matching.
(d) 3D Reconstruction.

Figure 2.4: An Overview of a Multiple Camera-based Motion Capture Technique

computation time for 2D pose estimation. To address this issue, Liu et al. [107] modified

this approach by proposing body joints tracking that accelerates the 2D pose estimation

process without the prior knowledge (training images for joint detection). Figure 2.4 shows

an overview of the modified approach.

The idea of 2D joint tracking is that continuous tracking of body joints on consecutive

image frames enables fast estimation of 2D skeletons [107]. Once the target joints are

initialized in the first frame, shown in Figure 2.4a, the algorithm tracks the joints in con-

secutive images by detecting the image patch with the most similar color histogram with

that of the initialized target. To reduce computation time, a modified particle filter tracker
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was applied to specify the number of reliable candidates for the targets in the subsequent

frames [111]. The tracking of different body joints is performed independently, resulting in

a 2D skeleton model, shown in Figure 2.4b. The next process is to identify the correspond-

ing body joints on the image from the other viewpoint by comparing the features of a pixel

with the feature descriptors, such as Scale-Invariant Feature Transform (SIFT) [112] and

Speeded Up Robust Features (SURF) [113, 114], shown in Figure 2.4c. To obtain more

reliable corresponding locations of body joints, the search space is constrained by epipolar

geometry [115] and homography [106]. Once pairs of corresponding body joints are de-

tected from two different viewpoints of images, a 3D reconstruction algorithm detects the

3D positions of each joint through triangulation, resulting in 3D full-body skeleton-based

motion data as shown in Figure 2.4d. Camera intrinsic and extrinsic parameters required

for 3D reconstruction are obtained by using Zhang [116] camera calibration technique.

The strength of a multiple camera-based motion capture technique is that we can

use ordinary video cameras to obtain motion data. Thus, this approach is less hardware

dependent than RGB-D sensor-based and stereovision camera-based techniques. Moreover,

it is not only cost effective but also it benefits from zoom lenses that collect video images

from a distance. Even though environmental conditions such as illuminations may affect

the performance of 3D skeleton extraction, post image processing enables us to obtain

clear images even in a noisy environment. From previous studies that investigated the
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accuracy of this approach, about ±10 cm of errors in body length and up to 20 deg of

errors in joint rotation angles have been reported [106, 107]. These errors result from either

incorrectly detected joint locations or inaccurate camera calibration process. Especially,

the performance of this approach is significantly affected by frequent self-occlusions of the

forearm, such as elbows and hands, which led to larger errors.

2.4.2 Angular Measurement Techniques

Angular measurement sensor-based approaches directly measure joint angles using sensors

attached to specific body joints without the need for any mathematical transformation in

space or time. Examples of sensors include goniometers and strain gauges.

Goniometers

Goniometers have been used to measure joints’ range of motion. Traditional goniometers

were made of a mechanical compass that measures the static relative angle between two

body segments [117]. Modern goniometers are made of an electrical compass (potentiometer-

based) which can measure static and dynamic relative angles [16, 117]. The potentiometer

changes its resistance with the rotation of the two body segments connected to it. The

principle of operation is that the voltage drop (V) across the potentiometer due to a con-

stant electric current (I) passing through it will depend on the resistance (R) following
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Ohm’s law:

V = I ×R

Calibration of the potentiometer (goniometer) from 0 deg to a full range of motion

is conducted once to produce a calibration chart that describes the relationship between

the change in joint angle and the measured voltage. The use of potentiometer allows for

detection of rotary motion as well as for placement of the sensor at the center of joint

rotation.

Strain gauges

Strain gauges work on the same principles as goniometers except that the sensing element

in a strain gauge responds to translation (change in length (∆L)) represented as change in

resistance (∆R)

∆R

R
=

∆L

L

Measuring the joint angle depends on the placement of the strain gauge with respect

to the axis of joint rotation [118]. Misalignment can produce significant errors due to the

complexity of placing a translational sensor to detect rotatory motion [119].
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2.5 Fatigue Detection

Muscles serve as the actuators of the neuromusculoskeletal system. In the rehabilitation

process, it is important to monitor the level of fatigue of the musculoskeletal system,

which provides objective feedback to the health professional. In ergonomics, fatigue may

be linked to productivity and quality deficits, as well as musculoskeletal disorders, in the

longer term [120].

The action potential generated by motor units (MU) initiates contraction forces that

form, in aggregate, the muscle force. Indwelling electromyography detects the action poten-

tial of one or a few motor units. Surface EMG aggregates the action potentials contained

in the muscle volume between two electrodes.

Although surface EMG is less invasive than indwelling EMG, the signal obtained using

surface EMG cannot be used directly. Also, the surface EMG signal undergoes filtration

and is subject to artifacts due to the presence of skin tissue and body fat between the

muscle and surface electrodes. It has to go through multiple stages of signal processing

before it can be used to study the muscle condition. Hence, signal processing is essential to

the use of EMG signals [121]. Nevertheless, EMG has been used for the last six decades to

study the relationship between muscle force and action potential. It enables researchers to

investigate the characteristics of the neuromusculoskeletal system including muscle fatigue.
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Indwelling EMG has been used to obtain detailed information about MUs and their

characteristics. It enables researchers to draw conclusions about abnormalities of MUs at

a central level [122]. De Luca [121, 123] used surface EMG to detect fatigue in the lower

back. Gerdle et al. [124] used surface EMG to detect fatigue in thigh muscles; they used

EMG mean frequency (MNF) and amplitude RMS as fatigue indices. Tsai et al. [125]

used joint torque measurement as an indicator of fatigue for the shoulder joint. Ebaugh

et al. [126] used the mean power frequency of raw EMG signal as an indicator of fatigue

in the shoulder muscle. While it is a simpler alternative to indwelling EMG, it measures

more fibers with the resulting signal reflects the average muscle state, since surface EMG

measures the aggregate of action potentials from multiple MUs, the number of muscles

fibers under testing depends on the size, location, and spacing between two electrodes.

A less intrusive alternative to EMG measures the exerted force or torque across a joint

since it does not require the use of electrodes. This method takes into account the sum

of forces exerted by individual muscles recruited to perform a task. It monitors the state

of the dynamic link between two body segments. For example, Bini et al. [127] used this

approach to investigate fatigue effects in the lower limb during cycling. While EMG signals

are not collected explicitly, in this case, it is assumed that the forces they produce serve

as indicator of their states.

At a higher level, the kinematics of body segment motions resulting from those forces
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and torques represent easier and less cumbersome signals to collect and monitor. In this

case, kinematics serve as the output of a dynamic system controlling body segment motions

while muscle forces serve as the input. Therefore, the output kinematics can be used as

an indicator of the state of the input forces and the underlying force producing muscles.
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Chapter 3

Comparison of Direct and Indirect

Motion Measurement Techniques

This chapter describes the result of an experiment to compare the accuracy of three in-

direct measurement techniques (vision-based motion capture techniques) and one direct

measurement technique (angular measurement sensor-based). The techniques are RGB-D

sensor-based, stereovision camera-based, multiple camera-based, and an optical encoder (a

potentiometer-based electrogoniometer).
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3.1 Methodology

Vision-based motion capture and an angular measurement sensor-based techniques were

tested in two independent testing sessions as shown in figure 3.1. An exoskeleton is used

to align the optical encoder with the knee flexion axis of rotation. The straps used to

attach the exoskeleton to the lower limb were indistinguishable from the subject’s clothes

and skin. As a result, they could affect the performance of image processing for the vision-

based approaches, especially the multiple cameras-based approach that tracks body joints

using color information. To avoid this, the angular measurement sensor-based approach

was tested in a separate session from the vision-based approaches.

Figure 3.1 shows experimental conditions for each testing session. In the session for

vision-based approaches, shown in figure 3.1, three image sensors were located in front of

a subject to collect 2D or 3D images from a front view. The Kinect� that has 640 × 480

resolution with 30 fps, Bumblebee XB3� stereovision camera that has 320×240 resolution

with 10 fps, and 3D camcorder that has 1920×1080 resolution with 29 fps were positioned

4, 6 and 8 meters away from the subject, respectively. The positions of the Kinect� and

Bumblebee XB3� were determined based on the optimal operating distance proposed by

their manufacturers. They were placed at the border of their manufacturer’s suggested

distance to allow for a limit test. As the 3D camcorder has zoom lenses, its position was
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(a) Test setup. (b) Types of camera. (c) Reference measure.

Figure 3.1: Test condition for indirect measurement techniques.

(a) Test setup. (b) Optical encoder. (c) Reference measure.

Figure 3.2: Test condition for direct measurement techniques.

Figure 3.3: Experimental setup
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selected to obtain a clear view of the subject’s whole body. Motion data obtained from

Optotrak� system served as a ground truth. The Optotrak� uses active markers attached

on the center of body joints to track body motions. If the markers are captured by at least

one of the cameras, the system can provide accurate 3D positions of the markers with an

accuracy of up to 0.1 mm. The markers were attached to the subject’s trunk and left side

body joints, including neck, low back, shoulder, elbow, wrist, hip, knee and ankle joints.

In addition, the markers’ attachment served in securing the participant’s clothing in place

to minimize signal noise. Two Optotrak� cameras were positioned to the left side of the

subject to prevent possible data loss due to markers’ occlusions.

In the angular measurement sensor-based session test, shown in figure 3.2, the optical

encoder that has 550 samples per second was positioned across the left knee to measure

knee-included angles, the optical encoder was placed using a specially designed exoskeleton

to reduce the effect of soft tissue movements. The system uses an optical encoder placed

noninvasively along the axis of the joint rotation, the knee in joint in this case. The optical

encoder [128] is mounted to an exoskeleton, an off-the-shelf knee brace (Flexlite hinged

knee support). The brace as shown in figure 3.4 has two axes, one aligned with the thigh

and the other is aligned with the shank. The optical encoder is inserted at the intersection

of these two axes. This configuration allows the brace to reduce knee motions to a simple

hinge joint rotation that follows knee flexion. The optical encoder contains a rotating and
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a fixed part. The fixed part is rigidly attached to one of the brace arms, while the moving

part is fixed to the other arm. Figure 3.4 shows the brace configuration.

The sensor system is controlled by a PIC18F46J50 microcontroller from Microchip

Company. The controller receives the two signals from the encoder and saves them tem-

porarily in the buffer before sending them into an SD card attached to the circuit. The

data is stored in the SD card for later processing to obtain the results. The system runs

on 550 sample/s sampling rate. The system runs on a 9V battery with a voltage regulator

to supply the components with 5 and 3 volts.

Data transmission from the sensor to the storage unit is performed in two steps, one

from the sensor to microcontroller the second is from the microcontroller to SD card (stor-

age unit). The system includes a mini USB interface that provides the ability interface the

PC to the sensor system.

With the rotation of the knee, the brace arms follow the motion of the shank and thigh.

Similarly, the encoder rotates mimicking knee flexion and yielding a direct measurement of

the knee flexion angle. To obtain ground truth angles, active markers were attached to the

left hip, left knee and left ankle joints. Two Optotrak� cameras were also positioned to

the left side of the subject. In each session, subjects’ motion was simultaneously recorded

with these devices. For the synchronization of motion data, the subject was asked to hold

a T-pose at the beginning of the recording. Data synchronization was manually performed
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Figure 3.4: Configuration of the sensor system attached to the knee joint

by identifying the T-pose frame across all measurement techniques.

Testing Tasks

To compare the accuracy of motion data for diverse tasks, one male subject simulated three

types of tasks, as shown in figures 3.5, 3.6, and 3.7, they are basic tasks with movements

upper and lower body parts, lifting and placing, and walking. The basic tasks were designed

to test the measurement accuracy for simple motions that involve movements of specific
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(a) Arm extension. (b) Arms abduction. (c) Elbow flexion.

(d) Back bending. (e) Twisting. (f) Knee flexion.

Figure 3.5: Basic motion test.

Figure 3.6: Lifting and placing task

Figure 3.7: Walking task

body parts.
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Those include arm extension and abduction, elbow flexion, back bending, twisting, and

knee flexion, which are also common motions in manual work such as construction. A

lifting and placing task was selected for motions involving coordinated body movements.

Specifically, the subject was asked to simulate the lifting task by lifting an imaginary object

from the ground and placing it to the side. Lastly, a walking task was intended to test

the measurement accuracy for rapid repetitive movements. To perform identical tasks for

two independent sessions, the subject was asked to practice the task in question for several

times before recording two the test sessions.

Accuracy Metrics

As measures of motion data accuracy for vision-based motion capture techniques, previous

studies have used 3D positions of body joints’ centers, body link lengths, or joint rotation

angles [60, 104, 106, 107]. However, due to the difference in body models used in each vision-

based approach, the use of these measures may lead to bias in accuracy comparison. For

example, joint locations and corresponding body link lengths in a multiple cameras-based

technique can be calculated based on the subject’s measured joint center locations. On the

other hand, the RGB-D sensor-based and stereovision camera-based techniques capture

motions by matching 3D point clouds with a pre-defined body model, and thus the body

link length from the captured motion data is affected by the anthropometric mismatch
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between the model and subject. Also, while both RGB-D sensor-based and stereovision

camera-based approaches provide motion data in a BVH file format that defines body

postures using joint rotational angles, these angles are not available in the motion data

from the multiple cameras-based technique used in this test [106, 107].

To address this issue, new body angles were defined, which can be measured by all

vision-based techniques as shown in figure 3.8. Specifically, the body angles of each body

part were defined as the angles between the vector along the body segment and the vertical

vector. For example, the upper arm vector is obtained using 3D shoulder and elbow

locations, thus, the angle between the upper arm vector of and the vertical vector (y-axis)

is calculated as an upper arm (shoulder) angle. The other body angles such as forearm

(elbow), trunk flexion, upper leg (hip) and lower leg (knee) angles are calculated using the

same method. However, the trunk axial rotation angle that indicates the twisting angle

was computed by using shoulder and hip vectors that were projected onto the x− y plane.

As the motion data from the three vision-based techniques and OptotrakTM provides 3D

locations of body joints, all these angles can be calculated using vectors defined by two

selected 3D joint locations, enabling accuracy comparison.

To measure the accuracy of body angles from an angular measurement sensor-based

techniques, knee-included angles directly obtained from the optical encoder were compared

with the angles determined by 3D locations of markers attached to the hip, knee and ankle

56



Figure 3.8: Body Angles to be Compared.

joints. Ground truth body angles were calculated based on 3D marker positions from

Optotrak�. The markers were attached to the skin near the joints, not the centers of

body joints. As a result, body angles from Optotrak�may slightly differ from the angles

from vision-based and angular measurement sensor-based techniques. To adjust possible

discrepancies, the body angles were calibrated using the angles from a T-pose. Also, the

body angles from each approach were smoothed using a Savitzky-Golay filter [129] that

has been widely used for post processing of motion data [130].
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3.2 Results

3.2.1 Vision-based techniques

Figure 3.2.1 shows plots of body angles obtained from vision-based motion capture tech-

niques during one cycle of various basic tasks. Through the visual investigation, it was

found that overall body angles from each approach were closely matched with body angles

from an Optotrak�, while back (flexion and twisting) and hip angles, figures 3.9d,3.9e,

and 3.9f, from a multiple camera-based techniques showed discrepancies during the middle

of the tasks.

For the quantitative assessment during these tasks, mean and standard deviation of

absolute errors (MAEs and S.D. of AEs), and maximum and minimum errors (MAX and

MIN) in body angles between three different techniques and an Optotrak�were calculated

as shown in table 3.1 The RGB-D sensor-based captured the most accurate (4.2 deg of

average MAEs) and reliable (2.8 deg of average S.D.) results for all body angles. The

stereovision camera-based technique also provided relatively accurate motion data, result-

ing in 6.2 deg of MAE, but showed higher variations (4.2 deg of average S.D.) than an

RGB-D sensor-based approach. The least accurate results (11.6 deg of average MAEs)

were obtained from a multiple camera-based approach, especially due to relatively larger

errors in lower arm (16.2 deg of MAEs), truck flexion (12.5 deg of MAEs) and trunk rotation
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(a) Arm extension. (b) Arm abduction.

(c) Elbow flexion. (d) Back flexion.

(e) Back twisitng. (f) Hip flexion.

(g) Knee flexion.

Figure 3.9: Comparison of body angles from different vision-based motion capture tech-
niques during basic tasks.
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Table 3.1: Accuracy of body angles from vision-based techniques during basic tasks

Body Angles Metrics
RGB-D Sensor
(Kinect�)

Stereovision
Camera
(Bumblebee XB3�)

Multiple Camera
(3D Camcorder)

Arm

Extension
MAE 5.9 3 11.3
S.D. of AE 2.5 2.6 6.8
MIN/MAX -9.9 – -0.6 -3.2 – 9.9 -22.0 – 12.0

Abduction
MAE 4.7 8.2 7.6
S.D. of AE 2.3 3.8 4.2
MIN/MAX -11.1 – -1.9 -14.3 – -0.3 -16.8 – 7.6

Elbow

Flexion
MAE 4.9 8.1 16.2
S.D. of AE 3.4 4 4.2
MIN/MAX -9.8 – 8.6 -2.7 – 14.0 10.1 – 24.5

Back

Flexion

MAE 2.5 15.5 12.5
S.D. of AE 2.1 11.2 12.5
MIN/MAX 7.6 0 39
MIN -3.9 -34.3 -19.7

Twisting
MAE 3.1 11 21.9
S.D. of AE 1.9 8.6 18.5
MIN/MAX -6.5 – 4.6 -23.8 – 8.6 -64.6 – 22.5

Leg

Hip flexion
MAE 5.4 4.3 9.8
S.D. of AE 5.5 4.6 12
MIN/MAX -13.7 – 3.3 -14.0 – 9.3 -4.9 – 32.4

Knee flexion
MAE 1 2.4 2.7
S.D. of AE 1.1 2.6 2.8
MIN/MAX -1.7 – 4.1 -6.5 – 7.6 -3.3 – 8.1

Average MAE 4.2 6.2 11.6
Average S.D. 2.8 4.4 8.1

(21.9 deg of MAEs) angles than other body angles.

Figure 3.2.1 shows body angles from vision-based techniques during one cycle of a

lifting and placing task. Even for a complex task that involves simultaneous total body

motion, all the approaches provided robust body angle measurements for all body parts.

Unlike basic tasks, no major discrepancies in body angles from a multiple cameras-based

technique were observed.

Average MAEs during a lifting and placing task were 6.5 (RGB-D sensor-based), 6.6
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(a) Arm extension. (b) Elbow flexion.

(c) Back flexion. (d) Back twisitng.

(e) Knee flexion. (f) Hip flexion.

Figure 3.10: Comparison of body angles from vision-based techniques during lifting and
placing task.

61



Table 3.2: Accuracy of body angles from vision-based techniques during lifting and placing
task

Body Angles Metrics
RGB-D Sensor
(Kinect�)

Stereovision
Camera
(Bumblebee XB3�)

Multiple Camera
(3D Camcorder)

Arm extension
MAE 3.5 4.6 4.4
S.D. of AE 2.4 3.8 3.3
MIN/MAX -6.3 to 4.4 -13.1 to 6.5 0.3 to 10.4

Elbow flexion
MAE 3.6 7.6 7.5
S.D. of AE 1.9 4.7 3.6
MIN/MAX -4.9 to 8.3 -12.1 to 16.2 -19.3 to 11.1

Back Flexion
MAE 10.3 11 22.7
S.D. of AE 5.1 5.2 11.2
MIN/MAX 2.9 to 16.9 3.1 to 18.4 2.2 to 35.5

Back twisting
MAE 8.4 5.5 18.8
S.D. of AE 6.2 5.2 4.8
MIN/MAX -23.4 to 11.3 -20.0 to 7.2 -31.1 to -10.5

Hip flexion
MAE 6.9 7.1 10.3
S.D. of AE 6.2 4.7 2.7
MIN/MAX -19.4 to 1.5 -13.9 to 7.0 4.6 to 14.9

Knee flexion
MAE 6 4 1.5
S.D. of AE 5 1.8 1.4
MIN/MAX -17.5 to 7.2 -6.7 to 4.0 -6.1 to 3.7

Average MAE 6.5 6.6 10.9
Average S.D. 4.5 4.2 4.5

(stereovision camera-based), and 10.9 (multiple camera-based) deg, showing similar errors

in body angles during basic tasks, table 3.2. Both RGB-D sensor- and stereovision camera-

based showed robust results in this task, even though errors in body angles in the RGB-D

sensor-based were slightly high. Again, in motion data from a multiple camera-based,

larger errors in back (torso flexion and rotation) angles were observed while upper arm

angles were relatively accurate.

Finally, the walking task showed higher discrepancies in body angles from all vision-

based as shown in figure 3.2.1. Motion data from the RGB-D sensor- and multiple camera-

based induced similar errors (7.1 and 11.0 deg of average MAEs, respectively) with other
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(a) Arm extension. (b) Elbow flexion.

(c) Back flexion. (d) Back twisting

(e) Knee flexion. (f) Hip flexion.

Figure 3.11: Comparison of body angles from vision-based techniques during walking task.

tasks while a stereovision camera-based approach showed the largest errors (12.6 degrees

of average MAEs) among three tasks, table 3.3.
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Table 3.3: Accuracy of vision-based motion capture techniques during walking task

Body Angles Metrics
RGB-D Sensor
(Kinect�)

Stereovision
Camera
(Bumblebee XB3�)

Multiple Camera
(3D Camcorder)

Upper Arm
MAE 7.1 4.5 10.9
S.D. of AE 4 2.3 5.5
MIN/MAX -13.3 to 1.8 -8.7 to 6.5 -19.3 to -2.0

Lower Arm
MAE 10.7 15.9 15
S.D. of AE 6.3 11.6 7.7
MIN/MAX -20.6 to 1.1 -41.8 to 17.1 -25.4 to 28.0

Back Flexion
MAE 5.4 17.3 3.5
S.D. of AE 1.5 1.4 2.2
MIN/MAX 2.3 to 7.9 15.0 to 20.4 -1.7 to 9.4

Back Axial Rotation
MAE 4.8 21.3 15.3
S.D. of AE 4.8 5.3 8.1
MIN/MAX -24.4 to 8.8 14.6 to 32.0 -18.6 to 27.9

Upper Leg
MAE 8.8 12.1 11.6
S.D. of AE 6.6 7.2 5.5
MIN/MAX -21.2 to 3.8 -27.3 to 4.9 -18.9 to 23.1

Lower Leg
MAE 5.6 4.2 9.7
S.D. of AE 5.1 2.7 8.9
MIN/MAX -4.3 to 16.6 -6.9 to 11.6 -5.0 to 32.5

Average MAE 7.1 12.6 11
Average S.D. 4.7 5.9 6.3

3.2.2 Angular measurement sensor-based technique

Figure 3.12 shows plots of knee-included angles measured using an optical encoder and an

Optotak�during three tasks. Note that among basic tasks; only the knee-bending task was

tested because the sensor was configured to measure knee flexion angle which is constant in

the other basic tasks. Two plots almost matched each other, indicating an accurate angular

measurement of an optical encoder for all three tasks. However, small discrepancies were

observed at the beginning and end of the cycle of knee-bending, and lifting and placing

tasks.

A MAE for knee flexion angles obtained from the optical encoder was 2.9, 3.8 and 3.0
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(a) Walking. (b) Lifting. (c) Knee bending.

Figure 3.12: Comparison of Knee flexion Angles obtained by angular measurement sensor-
based during three tasks.

Table 3.4: Accuracy of an angular measurement sensor-based techniques during three tasks

Body Angles Metrics Basic Task Lifting and Placing Task Walking Task

Knee flexion
MAE 2.9 3.8 3

S.D. of AE 2.7 3.1 2.1
MIN/MAX -10.1 to 2.0 -10.7 to 1.8 -5.6 to 8.8

deg for the three tasks, respectively, table 3.4. Compared with the RGB-D sensor-based

that showed the most accurate measurements for hip and knee angles (1.0–8.8 degrees

of MAEs) among vision-based techniques, this approach provided the most accurate and

reliable angular measurements across all tasks.

3.3 Discussion

Specifications and accuracies of three vision-based motion capture techniques and the op-

tical encoder are summarized in table 3.5. The experimental tests in the previous section
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presented 5.9, 8.5, 11.2 and 3.2 deg of average MAEs for the RGD-D sensor-based, the

stereovision camera-based, the multiple camera-based, and the optical encoder, respec-

tively. The motion capture performance of each approach relies on the specifications of

devices, such as types of raw data, resolution, and fps. For better decisions on appropriate

uses of these approaches in construction, it is important not only to compare the accuracy

but also to understand comparative advantages and limitations.

Among vision-based techniques, the RGB-D sensor-based showed the most accurate and

reliable results for all three tasks as it uses data-rich 3D images and has a high resolution

and frame rate. It is also expected that rapid technological development of this technique

will enable us to collect more accurate and reliable 3D point cloud data, contributing to

the improvement of motion tracking performance. Despite the robust performance of this

approach, its short operating range (less than 4m) and sensitivity to sunlight limit its

application to confined and indoor areas.

Alternatively, the stereovision camera-based can be a practical solution due to its ability

to collect 3D images at both indoor and outdoor conditions and its longer operating range.

The accuracy of body angles from this technique was not significantly different from the

RGB-D sensor-based, excluding the walking task. Considering that walking involves more

rapid movements than other tasks in this test, it was likely that the low frame rate (8-10

fps) of the stereovision resulted in tracking errors of certain body parts (such as upper
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Table 3.5: Comparison of specifications and accuracies of vision-based motion capture
techniques

Performance RGB-D
Sensor
(Kinect�)

Stereovision
Camera
(Bumblebee XB3�)

Multiple
Camera (3D
Camcorder)

Optical
Encoder

Specifications Raw Data 3D images 3D images 2D images Body angles

Operating Range Less than 4m Less than 10 m Unlimited with
zoom lenses

Unlimited

(unlimited with
zoom lenses)

Resolution 640 × 480 320 × 240 1920 × 1080 –
fps 30 8–10 29 550

Accuracy (MAEs) Basic Tasks 4.2 6.2 11.6 2.9
Lifting and Placing 6.5 6.6 10.9 3.8
Walking 7.1 12.6 11.0 3.0

Average 5.9 8.5 11.2 3.2

limbs) that moved quickly. As the frame rate of a stereovision camera is determined by

the computational time for 3D reconstruction and the performance of hardware, the use of

an advanced 3D reconstruction algorithm and a high-performance computer can achieve

a higher frame rate that helps to reduce errors in motion data, particularly during tasks

involving rapid body movements. The operating range of the stereovision camera-based is

recommended to set by Bumblebee XB3�within 10 m as the quality of 3D point clouds is

significantly affected by its distance from the subject. However, a binocular stereovision

system theoretically works with any two 2D cameras that are separated by a short distance,

and are mounted parallel to one another. As a result, this technique is flexible in terms of

operating ranges if zoom lenses are used. Recently, a stereovision system with adjustable

zoom lens control has been introduced [131], enabling more practical application of this
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approach.

The multiple camera-based approach showed larger errors in body angles than the other

two vision-based techniques. Both the RGB-D sensor-based and stereovision camera-based

approaches benefit from 3D imaging hardware that provides richer information, such as,

RGB pixel values and depth information on scenes. However, the multiple camera-based

approach need to extract motion data by processing only 2D images that contain less

information, such as, RGB pixel values. Inaccurate camera calibration process could also

lead to errors in the 3D triangulation of body joints from two images. Considering these

limitations, the multiple camera-based approach with about 10 degrees of error in body

angles is promising. Despite relatively larger errors, a multiple camera-based approach has

several competitive advantages from a practical point of view, compared to the other two

techniques.

For example, as any type of ordinary cameras can be used to collect 2D images, addi-

tional investments in devices are not required. Due to the use of zoom lenses, its operating

range is theoretically unlimited. Less sensitivity to rapid movements is another strength

of this approach. In addition, there is room for further improvement if occlusion issues are

handled. One of the reasons for the least accurate results from a multiple camera-based

is that it showed relatively larger errors in the elbow, back flexion and back twisting an-

gles than other body angles. As shown in figures 3.9c, 3.9d, and 3.9e, an elbow or a hip
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was occluded by a lower arm or a torso (i.e., self-occlusions), which may lead to incorrect

detections of these joints in a multiple camera-based. In these tests, a 3D camcorder was

used to obtain two images from different views. As the distance between two lenses is very

short (3.5 cm), both images are affected by self-occlusions. If two independent cameras are

positioned away from each other, it could be possible to obtain at least one clear view of

images, reducing errors due to self-occlusions.

The optical encoder provided accurate measurements for knee flexion angles across all

types of tasks. Further, as these sensors are attached to body joints to directly measure

joint angles, they can provide robust angular measurements for body joints with one degree

of freedom under any condition. Although angular measurement sensors, such as, the

optical encoder can be used for all body joints, the use of these sensors could be limited

due to the need for straps or exoskeletons that may lead to interfering with on-going work.

Instead, using angular measurement sensor-based for selected body joints can offset the

limitation of vision-based approaches that are sensitive to self-occlusions.

However, soft tissue movements may result in errors in body angles from these sensors.

For example, during the testing of this approach, small differences in knee-included angles

were observed at the beginning and end of cycles, which can be attributed to soft tissue

movements, especially when straps are not firmly secured to the leg. Securing straps firmly

to the body to hold the sensor in position is an important factor to obtain accurate body
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angles from the sensor [132].

3.3.1 Study limitations

The results of this study does not account for the differences in the body mases which

can alter the results of indirect techniques and can increase soft tissue motion in direct

techniques. This study was conducted in a controlled environment, aspect such as lighting

and line-of-sight was controlled. This level of control is not found in construction sites,

hence, these results might be different in a construction site.

3.4 Potential Applications in Construction

Vision and angular measurement sensor-based motion capture techniques investigated in

this study are considered practical means of in-field motion capture, even though about

5–10 degrees of error in body angles from the vision-based and approximately 3 degrees

of error from the angular measurement sensor-based still exist. In construction, tasks are

performed in unstructured and varying environments, and thus work methods and postures

are changing over time. Collecting motion data using these non-invasive and cost-effective

approaches enable us to understand how workers interact with the environment at con-

struction sites and to identify potential safety and health risks under given environments,
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specifically when accuracies would not significantly matter such as rough postural assess-

ment, time and motion study, and trajectory analysis.

These techniques can be used to specify the severity of working postures. Existing

postural ergonomic risk assessment methods determine the level of ergonomic risks based

on pre-classified postures through human observation [133]. Some methods such as Rapid

Upper Limb Assessment (RULA) [51] and Rapid Entire Body Assessment (REBA) [134]

require detailed segmentations of body postures according to body angles. For example,

in RULA, trunk postures are categorized into four groups according to trunk flexion an-

gles (0, 0–20, 20–60 and over 60deg). Body angles obtained from these techniques can be

used for rough posture classification that is needed for postural risk assessments. Also,

as continuously measured workers’ motions during performing tasks is enabled, several

in-depth motion analysis for understanding physical demands can be facilitated. Tradi-

tionally, pre-determined-motion-time-systems have been widely used to identify workloads

during occupational tasks [135]. As these systems rely on human observations to describe

workers’ manual activities, significant human efforts are generally required. However, by

using a time series motion data from the presented techniques, it is possible to accurately

and automatically quantify motion-time values for these systems. In addition, trajectory

analysis through in-field motion measurements helps to evaluate work efficiency, as well as

the risk of ergonomic injuries. For example, shorter trajectories of body movements may
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indicate more efficient movements of a human body, indicating smaller physical demands.

Previous studies on movement patterns during occupational tasks found that a more ‘dy-

namic’ pattern of movements is believed to be associated with a lower incidence of WMSD

development [136, 137]. Analysis of motion patterns and trajectories using vision-based

motion data can broaden our understanding on the job from an ergonomic perspective.

In-field kinematic measurement using vision- and angular measurement sensor-based

motion capture techniques also has great potential to be used for more in-depth analysis

of physical demands such as biomechanical analysis, even though further improvement

of motion data accuracy is required [56]. The biomechanical analysis aims to estimate

musculoskeletal stresses as a function of motion and external force data [138, 139]. Previous

biomechanical studies have relied on laboratory experiments to collect motion data using

marker-based motion capture approaches, which can be replaced by in-field motion capture

approaches that enable on-site biomechanical analysis. As an accurate measurement of all

joint angles is necessary for reliable biomechanical analysis, further accuracy improvement

of vision-based motion capture approaches is required.

However, the sensitivity of biomechanical analysis results to motion errors vary de-

pending on body joints [140]. For example, Chaffin and Erig [140] found that an error of

±10 deg in the limiting joint angles such as, knees and ankles could cause the biomechani-

cal analysis results to vary up to ±12% during lifting, pushing and pulling tasks, whereas
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errors in other joints could have little or no effect. This result indicates that some angular

errors in body joints that do not involve forceful exertions are acceptable for biomechanical

analysis while it is important to obtain accurate body angles for stressful body joints. So,

complemented by relatively accurate angular measurement sensors such as optical encoders

that are applied to the limiting joints, vision-based motion capture techniques enable re-

searchers to perform biomechanical analysis without significantly sacrificing the reliability

of biomechanical analysis.

3.5 Conclusion

This chapter describes the potential of vision-based and angular measurement sensor-based

techniques as a means of measuring workers’ motions. These techniques were compared

through laboratory tests while performing three different types of tasks. The accuracy

of these approaches was computed by comparing body angles from each approach and a

marker-based motion capture. The comparison results indicated that the overall errors

in body angles from vision-based approaches are ±10 deg, while the optical encoder, that

is one example of angular measurement sensors, can provide quite an accurate body an-

gle measurements ±3 deg for specific body joints with one degree of freedom. Moreover,

self-occlusions and rapid movements are major factors that lead to errors in vision-based
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techniques.

From a practical point of view, vision-based and angular measurement sensor-based

have great potential as non-invasive motion data collection methods at construction sites.

Even though several obstacles, such as a limited operating range (RGB-D sensor-based),

low frame rates (stereovision camera) and occlusions (multiple camera-based) remain to

obtain more accurate data from these approaches. Further algorithm refinements and

hardware developments are expected to address these issues. The angular measurement

sensor-based technique can provide robust measurements of specific joint movements, de-

spite a small possibility of discomfort by attached sensors. Furthermore, combined with

vision-based motion capture, the angular measurement sensor-based can enhance the ac-

curacy of in-field motion measurements. Motion data from these techniques can be used

for diverse in-depth analysis without sacrificing its reliability to better understand workers’

physical demands during occupational tasks including construction. Also, understanding

how workers behave under given working environments through kinematics measurements

and analysis helps to ergonomically design automated machines and assistive robots, aim-

ing at both reducing physical demands and enhancing workers’ capabilities.
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Chapter 4

Fatigue Detection Using Phase-Space

Warping

4.1 Introduction

Time delay embedding was introduced in the 80s as a method to reconstruct inaccessi-

ble states of a dynamic system [141–143]. The method uses the time-history of a single

accessible state in a coupled dynamic system to reconstruct the full system states. The

time-history of the available state is delayed by ‘an optimal’ time step to reconstruct the

other states. For example, when using time delay embedding one can measure the thigh

displacement to estimate the other state variable of the lower limb dynamic system, such
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as leg displacement.

Time delay embedding methods analyze the state variable time-history to determine

the minimum system dimension that can describe its dynamics and the time delays cor-

responding to each of them. One method particularly searches for the dimension and

time-delay that maximally fills the phase-space [142].

The reconstructed phase-space can then be used to track damage evolution. An ap-

proach to achieve this is phase-space warping (PSW) [144–146]. PSW uses the healthy

system response to construct local maps in phase-space that describe the characteristics

of the healthy system response. It then compares the actual system response in phase-

space over time to the healthy local maps to extract a tracking metric for a slowly drifting

inaccessible variable in the system.

PSW has been previously used to track changes in walking kinematics [147] and to inves-

tigate local muscle fatigue during sawing tasks using smooth orthogonal decomposition in

upper extremity muscles [148]. A similar approach looked at the local state-space temporal

fluctuation and used these fluctuations as a fatigue index during repetitive tasks [149].

In this chapter, a novel application of PSW to detect fatigue in the musculoskeletal

system using time delay embedding is presented. Since muscle tissue undergoes mechan-

ical degradation, cumulative fatigue, termed by Kumar [7], PSW is used to construct a
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metric to track it. First, time delay embedding is used to reconstruct the dynamics of the

musculoskeletal system. Second, the PSW method is used to extract a fatigue metric in

the time domain. Implementing these methods allow for extracting a fatigue metric out

of three types of signals: an invasive signal (i.e., EMG) and two non-invasive signals (i.e.,

kinematics and force).

4.2 Methodology

4.2.1 Kinematic experiment

Participants

Five male participants (average age 28.8 years±1.3(SD), height 172.82 cm±9.67(SD), weight

95.8 kg ±6.9(SD)), with no injury history were recruited from the University of Waterloo

student population to perform the kinematic experiments of this study.

Procedure

Kinematic signals were collected using a customized instrumented knee brace described in

Chapter 3 and shown in figure 4.1. Participants were asked to walk on a treadmill (Horizon

CT5.4, Horizon Fitness, WI, USA). A treadmill was chosen to provide an external pace
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for the participant walking exercise. This eliminates the tendency of self-pace and self-

regulation from the collected kinematic data.

Figure 4.1: Instrumented knee brace used to measure the knee flexion angle in sagittal
plane

Participants were instructed to come to the laboratory 30 minutes prior to data collec-

tion, allowing for preparation of the knee brace. Each participant’s left knee was fitted with

the instrumented knee brace, figure 4.1, to measure the knee flexion angle in the sagittal

plane. An initial experiment was conducted to measure each participant maximum walk-

ing speed (MWS), defined as the speed beyond which they would start running. It was
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determined by asking the participant to walk on a treadmill while the operator increases

speed gradually until the participant started running and recorded as

MWS = RS − 0.1km/h (4.1)

where RS is the participant running speed. The average maximum walking speed of the

participants was 4.54 km/h±0.61(SD).

During the experiment, the treadmill speed was increased from 0 to MWS instan-

taneously. Once the treadmill speed reached maximum walking speed, data collection

commenced. The participants were asked to walk on the treadmill until they could no

longer keep up with it, at which point the experiment was terminated.

Instrumentation

The knee angle was recorded using an untethered ‘knee angle direct measurement system’

shown in figure 4.1. The system measures the flexion angles using an encoder (Penny &

Giles Company) placed at the intersection of the thigh and shank in the sagittal plane.

The flexion angle is sampled and recorded through a custom made DAQ with an on-board

SD memory card. The sampling rate is set to 500 Hz (Ts = 2ms).
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4.2.2 Physiological experiment

Participants

Five male participants (average age 25 years ±5.59(SD), upper arm circumference 34.38 cm

±2.64(SD), height 176.72 cm ±4.22(SD), weight 74.8 kg ±11.22(SD)), with no injury his-

tory to their elbows, upper arm, and forearm, were recruited from the University of Water-

loo student population to perform the physiological experiments of this study. Twenty-four

hours prior to each test session, each participant was instructed not to consume alcohol

and caffeine and to avoid exercise. Each participant provided informed consent to all

experimental procedures, as approved by the University of Waterloo Office of Research

Ethics.

Procedure

The exercises, shown schematically in figure 4.2, were chosen to cover a wide range of muscle

fatigue processes. For example, a sinusoidal-shaped force profile has a slower rate of change

in force compared to the other stepwise functions [150]. The session’s force magnitude [151–

153], cycle time [150, 154–156], and duty cycle [150, 156] were set in accordance with

previous studies. These settings were selected since they have been demonstrated to induce

fatigue over a 60 minute period [157, 158].
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Figure 4.2: Schematic diagram for the Iso, 7.5–22.5, 1–29, 0–30, and Sine exercises, respec-
tively, performed in the physiological experiment.

Five experimental exercises were performed by each participant. Across all exercises,

participants exerted a mean force of 15 % maximum voluntary contraction (MVC) with a

duty cycle set at 50% of a 6 s cycle time. The five exercises are:

� Iso: uninterrupted isometric elbow extension at 15 % MVC.

� 0–30: a stepwise elbow extension cycling between 0 and 30 % MVC.

� 1–29: a stepwise elbow extension cycling between 1 and 29% MVC.

� 7.5–22.5: a stepwise elbow extension cycling between 7.5 and 22.5 % MVC.

� Sine: a sinusoidal wave form with a peak of 30 % MVC.

The participant was asked to come to the laboratory a day before the data collection

to get familiar with the experimental exercise and to collect an MVC. The MVC was
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calculated as the average force during the middle 3 s of a 5 s exertion. These MVC forces

were used to determine the absolute force required to achieve 15% MVC and 30% MVC

for the five exercise conditions.

Each exercise condition consisted of a 10 minutes baseline activity followed by the

exercise protocol, and then a 60 minute recovery period. The participants were instructed

to exert forces during the exercise protocol for 60 minutes or until the participants could

no longer match the force magnitude (exhaustion).

Continuous electromyography measurement was collected for the medial and lateral

triceps muscles as well as the biceps muscle. At least seven days of rest, between sessions,

was provided to minimize carryover effects between exercise conditions. Laboratory room

temperature was kept between 22− 24◦C. Figure 4.3 shows a participant equipped arm on

the apparatus.

Data were sampled at a frequency of 2048 Hz using NAID Collection software (ver-

sion 1.0.0.10, University of Waterloo 2001). Offline post-processing was conducted using

Chart 4.0 (ADInstruments, Colorado Springs, CO, USA) and Mathematica 9.0 (Wolfram,

Champaign, IL, USA).
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Figure 4.3: Elbow extension and EMG data collection from Triceps and Biceps muscles

Instrumentation

A custom fabricated apparatus, figure 4.3, was designed to support the arm. The apparatus

allowed for modulating the exercise profile for isometric elbow extension. It also allowed

for measurement of MVC and testing of contraction torque without removing the arm.

The system involves a brushless 200 VAC servomotor, custom-designed armrest, servo

amplifier, and encoder. It is controlled by a programmable motion controller (DMC-1417,

Galil Motion Control Inc., California). The servomotor was controlled using position and

torque through Galil software. In addition to proprioceptive feedback, visual feedback was

provided for the participant to maintain a fixed position. Counter-weights were added to
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the apparatus to balance the weight at the beginning of each exercise.

Bipolar surface electrodes were used to collect EMG signals (Ag-AgCl electrodes, Ambu

Blue Sensor N, Denmark). Electrodes were placed at the belly of the lateral triceps,

medial triceps, and biceps brachii. Inter-electrodes distance was 20 mm. Hair was removed

by razor and skin was abraded by ethanol and prepared with NuPrep Gel (Weaver and

Company, CO, USA). EMG signals were collected using an eight channel data system

(Bortec Octopus, Calgary AL; common mode rejection ratio > 115 dB; band-pass filter

10–1000 Hz) amplified with a gain of 1000,±5 V.

Although biceps brachii, unlike the triceps muscles, is not a major contributor to elbow

extension [159], EMG signals were collected for all three muscles. Therefore, EMG signals

for the biceps muscle served as a control case to examine whether the fatigue detection

method proposed here can distinguish between the presence and absence of muscle loading

and fatigue patterns in the EMG signals. DC offset was removed and the instantaneous

root mean square (RMS) amplitude was calculated, normalized to the MVC exerted during

baseline activity of that trial, averaged for a 30s window.
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4.3 Analysis

4.3.1 Time Delay Embedding

Time delay embedding is used to reconstruct the phase-space of a coupled dynamic system

using the sampled time-history of a system state variable y(t), such as the knee flexion

angle. It yields information about the minimum system dimension d◦ required to represent

the coupled dynamic system; the lower limb kinematic chain in this case. The method

calls for the determination of the optimal time delay τ◦ of y required to reconstruct the

state vector as:

y(t) =



y(t)

y(t+ τ)

...

y
(
t+ τ(d− 1)

)


(4.2)

The fill factor algorithm [142] was used to calculate d◦ and τ◦. The algorithm uses the

function

F (τ) =

∑Ns

i=1 |Det[Md]|
Ns(ymax − ymin)d

(4.3)

where Det[Md] is a measure of the hyper-area occupied by the orbit in phase-space, ob-
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tained by calculating the determinant of d randomly selected vectors with the same base

point, Ns is the number of random evaluations of the hyper-area, and ymax and ymin are

the largest and smallest values of the state variable, respectively, recorded in the time

series. It calculates F (τ) as a measure of the area occupied by orbits in the reconstructed

phase-space of dimension d as a function of the delay time τ . The process is repeated as

the number of dimensions d is increased.

The minimum number of dimension do is determined using the F (τ) curves and defined

as the dimension beyond which the F (τ) curves do not add any new significant features as

the dimension increases. In other words, no new maxima or minima in the curve, which is

the F (τ) curves become essentially parallel to each other.

4.3.2 Phase-space Warping

PSW calls for distinction among three time-scales:

1. a sampling (fast) time-scale ∼ Ts.

2. an averaging (intermediate) time-scale ∼ Tm.

3. a tracking (slow) time-scale where muscle fatigue can be observed.
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The initial M cycles of the signal y(t) time-history are used as a reference set utilized to

represent the system’s healthy status. Local linear maps are constructed for populated

areas of the phase-space. Each of the ‘rested’ return maps

yn+1 = P (yn) (4.4)

represents the healthy system return map at that point in phase-space [144]. The reference

set size is chosen to be large enough to average out cycle-to-cycle differences, due to the

stochastic nature of the neuromuscular system and non-stationarity. Moreover, it is chosen

to be not too large to avoid contaminating the reference set with the fatigue onset. The

rest of the time-history is divided into S snapshots each made of M cycles.

It is important to note that in equation (4.4), the map is not accounting for intrinsic

physiological noise. That is because, in this analysis, it is assumed that there is an under-

lying deterministic process existing over the intermediate time-scale and a deterministic

fatigue process existing over the slow time-scale. Also, there are stochastic noise processes

existing in the fast time-scale. Moreover, there may be other un-modeled neuromuscular

processes due to the central nervous system (CNS) that exist across all three time-scales.

However, this analysis assumes that their effects are not dominant compared to those of

the deterministic process.
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The local linear map is composed of a parameter matrix An and a parameter vector an

that describe the kth return of the state variable vector yn according to:

y(n+k) = Anyn + an (4.5)

The map parameters An and an, are calculated following the algorithm described in Che-

lidze et al. [144] from the matrices

Yn = [y1
n y2

n . . . yB
n ]

Yn+k = [y1
n+k y2

n+k . . . yB
n+k] (4.6)

constructed out of the B nearest neighbors of the state variable vectors yn and yn+k in the

reference set.

As muscles fatigue, the measured state variable vector represents a return map:

yn+1 = P̂ (yn, φ) (4.7)

containing information about φ, a parameter representing muscle fatigue. Therefore, fa-

tigue can be estimated as the difference between the rested return map prediction of the
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kth return and the fatigued return map:

en+k = ||P̂ (yn+k−1, φ)− P k(yn)|| (4.8)

Alternatively, a fatigue tracking metric en can be calculated by comparing the kth return

predicted by the rested return map to the reconstructed state variable vector at that point

in time:

en+k = ||yn+k − P k(yn)|| (4.9)

The fatigue metric is averaged out over each snapshot to reduce fast and intermediate

time-scales noise. Therefore, the fatigue metric for snapshot j is evaluated as:

Ej =
1

NM

NM∑
i=0

ei (4.10)

where N = bTm

Ts
e.
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4.4 Results

4.4.1 Kinematic experiment

Data collection sessions lasted an average of 7.41 minutes ±4.7(SD) at which point par-

ticipants could no longer keep up with the treadmill ‘subjective fatigue exhaustion.’ The

average gait cycle was estimated from the reference set as Tm = 1.18s± .044(SD).
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Figure 4.4: Log scale plot of the fill factor F (τ) as a function of the time delay for state
variable vector dimensions in the range of d=2–10.

The time delay τ◦ and minimum system dimension d◦ were determined using the fill

factor algorithm discussed above. The fill factor curves LogF vs. τ for the first participant

are shown in figure 4.4, for state variable vector dimensions from d = 2 to 10 and time
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delays in the range of τ = 1–500Ts. Inspecting the fill factor curves for all participants, we

observe that no new minima or maxima are added beyond d = 5, which indicates that the

minimum dimension required to represent the coupled dynamic system, d◦, of the lower

limb is five. The fill factor curve F vs. τ , shown in figure 4.5, is used to determine the

optimal time delay τ◦. By inspecting the curve, it was found that the first maxima occurs

at τ◦ = 100Ts.
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Figure 4.5: The fill factor F as a function of time delay τ for a state variable vector of
dimension d◦ = 5

.

The reference set was made of 24000 data points representing the first 48 seconds of the

exercise and equivalent to 40 gait cycles. Each snapshot was made of M = 10 gait cycles.

The number of nearest neighbors used to construct the local linear maps was set to B = 15.
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The tracking function ej was calculated for each snapshot including the reference set. The

numerical values of ej represent the average change of the gait orbit in the reconstructed

phase-space.

The tracking metric ej for all five participants is shown in figure 4.6 as a function of the

normalized session time. It represents the lower limb health (fatigue) for each participant.

Indications of fatigue appear progressively over the session time and a large change in the

fatigue metric is observed towards the end of the session. Participants 2, 3, and 4 appear

to temporarily recover in the second half of the session until they can no longer keep up

with the treadmill speed. This may indicate deployment of different muscles to cope with

fatigue. The average change in fatigue metric was 0.34±0.17(SD).

4.4.2 Physiological experiment

All physiological data analysis was carried out on raw data, a sample is shown in figure 4.7,

to avoid distorting the signal spectral content. Some participants were not able to complete

the entire 60 minute exercise.

The reference set for physiological signals was made of the first 50000 data points

representing the first 24 seconds of each exercise and equivalent to 40 exercise cycles. Each

snapshot was made of M = 10 cycles. The number of nearest neighbors used to construct
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Figure 4.6: Fatigue indices of the lower limb Ej as function of normalized session time.

the local linear maps was set to B = 300. The use of a significantly lower number of

nearest neighbors resulted in a singularity in the neighborhood matrices, equation (4.6),

as a result of a loss in diversity of the neighborhood points.

The intermediate time-scale was set equal to exercise cycle period Tm = 6s. For the

case of Iso exercise where no exercise cycle was applied, the intermediate time-scale was

set equal to the average period of individual MU action potential Tm = 1
25

s [160, 161].

The FFT of the EMG signal in the initial 24 s, the reference set, for the five elbow

exercises shows, a dominant peak in the frequency range 60–70 Hz, Table 4.1. This peak
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Figure 4.7: Raw EMG signal obtained during the 0–30 % Sine exercise.

appears to correspond with the Piper rhythm observed in previous studies [162, 163].

Figure 4.8 shows the frequency spectrum of the Iso exercise. The peaks appearing at 60 Hz

and its harmonics are due to the power line electromagnetic radiation.

Table 4.1: Dominant frequency.

Experiment Dominant frequency
Iso 68 Hz

0–30 75 Hz
7.5–22.5 71 Hz

1–29 67 Hz
Sine 68 Hz

Despite the lack of a cyclic process in the Iso exercise, the frequency-domain analysis
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Figure 4.8: The FFT of the EMG signal obtained in the Iso exercise.

revealed the existence of a periodic process with a dominant frequency at 67 Hz. This

periodic process is due to the central nervous system effort to keep the force at a constant

value. In other words, it represents the average firing rate of the muscle as a whole.

The fill factor curves LogF vs. τ were constructed for observable experimental state

vector dimension from 2 to 10 as the time-delay varied in the range τ = 1 − 50 Ts.

The minimum dimensions required to represent the full dynamic system fully was found,

through inspection of the fill factor curves, to be do=5. The optimal time-delay for each

exercise was found by inspecting the corresponding LogF vs. τ curve at do=5 for the first
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Figure 4.9: Fill factor curve for dimension five.

maximum. Figure 4.9 shows that the first maximum for the isometric exercise is happening

at 4 Tm. The time delay for all exercises are listed in Table 4.2.

Table 4.2: Optimal time-delays.

Experiment Delayed time steps
Iso 5 Ts

0–30 4 Ts
1–29 4 Ts

7.5–22.5 3 Ts
Sine 4 Ts

The fatigue detection procedure described above was applied to the force and EMG

signals in each of the physiological experiments except for the Iso exercise where it was
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Figure 4.10: The fatigue tracking metric (red line) and its moving average (blue line) for
the lateral triceps during Iso

applied to EMG signals only due to lack of force variation. The red line in the Fig.4.10

shows the magnitude of the fatigue tracking metric for each snapshot of the EMG signal in

the lateral triceps during the Iso exercise. To overcome the high-frequency cycle-on-cycle

variation observed in the results, a 50-cycle moving average is used to obtain the trend of

the fatigue index over slow-time and shown as the blue line in Fig. 4.10.

The fatigue indices obtained from measurement of the force exerted by elbow extensors

for participant 1 are shown in figure 4.11 In all four exercises where time-varying force

measurements are available, the fatigue index increases indicating progressive fatigue in

the elbow extensor muscle group, the medial triceps, the lateral triceps, and biceps. Fatigue

indices in the 7.5–22.5 and 0–30 exercises were much larger than those for the Sine and 1–29
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Figure 4.11: Fatigue indices obtained from measured force during the four cyclic elbow
exercises

exercises. The fatigue indices for the 1–29 and Sine exercises are nearly indistinguishable.

The fatigue indices for the lateral triceps, medial triceps, and biceps for participant 1

are shown in figures 4.12, 4.13, and 4.14, respectively, as functions of time. These results

were obtained by analyzing the EMG signals collected simultaneously for all three muscles

during the five exercises described above.

The fatigue indices in figures 4.12, 4.13, and 4.14 show that participant 1 lateral and

medial triceps experienced significant fatigue while the biceps muscle demonstrated min-

imal or no fatigue across all experiments. This is in agreement with An et al. [159], who
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Figure 4.12: Fatigue indices obtained from the EMG signal of the lateral triceps during
five elbow exercises.

found that the lateral and medial triceps are major contributors to elbow extension, while

the biceps did not play a major role. Moreover, the results show that the lateral and medial

triceps have different fatigue patterns (slopes) corresponding to differences in their load

sharing patterns during elbow extension.

The muscle fatigue indices were similarly evaluated for each of the four other partici-

pants. Table 4.3 lists the average and standard error (SE) of the change in muscle fatigue

index ∆ej over the course of the exercise period for the five participants. The standard

error is one order-of-magnitude less than the fatigue indices for the medial and lateral
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Figure 4.13: Fatigue indices obtained from the EMG signal of the medial triceps during
five elbow exercises.

triceps confirming the meaningful change in the muscle state over the exercise period.

4.5 Discussion

4.5.1 Method Validation

A standard method of fatigue detection is the observation of a downward shift in the mean

or median frequency of the EMG spectrum during an isometric exercise [121]. The FFT

was obtained for the first and last 50000 points, respectively, of the EMG signal in the
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Figure 4.14: Fatigue indices obtained from the EMG signal of the biceps brachii during
five elbow exercises.
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Figure 4.15: Average change in fatigue metric for muscles and force in all exercises.
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Table 4.3: Average change in fatigue index for the five exercises.

Experiment iso 7.5–22.5 1–29 Sine 0–30

Muscle ∆ej ±SE ∆ej ±SE ∆ej ±SE ∆ej ±SE ∆ej ±SE

Lateral 0.128 0.034 0.077 0.022 0.183 0.098 0.237 0.132 0.172 0.116

Medial 0.166 0.059 0.087 0.029 0.118 0.029 0.224 0.133 0.145 0.063

Biceps 0.02 0.013 0.009 0.004 0.011 0.004 0.024 0.011 0.015 0.011

Force 0.638 0.184 0.482 0.227 0.84 0.605 0.707 0.148

Figure 4.16: Iso signal vs. mean frequency power

lateral triceps muscle during the Iso exercise representing the first and last 24 s of the

exercise. Figure 4.16 shows tenth-order polynomial fits for the frequency spectra of the

two FFTs. Comparing the initial to the final 24 s, an increase in the power level across the

spectrum can be observed. Further, the dominant frequency shifted from 67 to 59 Hz as

the muscle fatigued over the 15 minutes time span of the exercise. These results validate
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our finding of fatigue in the EMG signals of the medial and lateral triceps using PSW,

figures 4.12 and 4.13.

Tracking the frequency shift is shown in Fig. 4.17, the curve represents the change in

fundamental frequency with time in samples. In addition, the controlled physiological lab

Figure 4.17: Iso exercise frequency shift

experiment proved that PSW can discriminate the presence of fatigue in EMG signals.

Specifically, the fatigue detection method proposed here was able to distinguish significant

fatigue in the agonist muscles(i.e., lateral and medial triceps) from the antagonist muscle

(i.e., biceps) during the Iso, 7.5–22.5, 1–29, and 0–30 exercises.

Since participants in the physiological and kinematic experiments were instructed to

complete the tasks until they are no longer able to keep up, our results show qualitative

agreement among fatigue detection indices obtained from EMG signals, force signals, and
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kinematic signals. This indicates that fatigue can be successfully detected using invasive

and non-invasive signals. However, the more invasive EMG signals allow for investigation

of muscle participation in various motion patterns and load sharing relationships among

various muscles during those motion patterns.

4.5.2 Results Interpretation

The fatigue indices obtained from the PSW can be used for qualitative and quantitative

comparison among the states of a muscle (or a muscle group) over time during the same

exercise or different exercises as well as for comparison among the states of different mus-

cles. However, a quantitative comparison can only be carried out for exercises with similar

dynamics, for example, exercises that share a similar time period. In addition, the mea-

sured signal has to be treated with the same signal processing procedure and the same

normalization parameters.

For example, the large changes in the fatigue indices of the lateral and medial triceps

during the Iso exercise, when compared to the cyclic exercises, do not necessarily mean that

those muscles are experiencing greater severity of fatigue. The nature of the exercise and

the lack of an exercise period precludes the quantitative comparison between the isometric

condition and the time-varying exercises. Nonetheless, the fatigue indices of the medial

and lateral triceps during the Iso exercise, figures 4.12 and 4.13, show that the muscles are
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rapidly fatiguing compared to the cyclic exercises.

It is important to note that conclusions about fatigue onset and comparison of fatigue

patterns to study load sharing among muscles are subject to the uncertainty level in the

fatigue index. An estimate of the level of uncertainty can be obtained from the standard

error of the fatigue index as demonstrated in table 4.3 and figure 4.15.

4.5.3 Kinematic Experiment

The kinematic system under investigation in this analysis is an open kinematic chain that

extends from the trunk through the lower extremities to end at the foot. The knee flexion

angles θ data collected provide information about part of the chain. The angle also carries

information about the other state variables of the coupled dynamic system of the lower

limb. Using time delay embedding, the minimum dimension required to represent the

coupled system was found to be d◦ = 5, which is consistent with previous gait studies

using phase-space reconstruction [164, 165].

This result is also consistent with the standard model of the lower limb dynamics in the

sagittal plane which consists of two rigid bodies, the shank and thigh, connected by a hinge

joint, the knee. This model is represented by four independent state variables, knee and

thigh flexion angles θ and α and their angular speeds θ̇ and α̇. The fifth state variable in
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our reconstructed phase-space corresponds to the forcing phase angle β(t) imposed on the

system by the treadmill. Thus, the state variables vector of the dynamic system underlying

the reconstructed phase-space can be written as y(t) = [θ, θ̇, α, α̇, β]T .

The pseudo phase-space, therefore, represents the discrete time evolution of the state

variables vector yn. Orbits of the gait cycle in the pseudo phase-space, projected onto a

plane described by the first two elements of the reconstructed state variables vector fig-

ure 4.18, show qualitative agreement with those measured by Winter 2009 [1] and projected

onto the θ-θ̇ plane of phase-space figure 4.19. The latter figure was obtained by plotting

the measured knee flexion angle θ versus the numerically differentiated angular speed θ̇.
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Figure 4.18: The pseudo phase-portrait of the gait cycle obtained from reconstructed
phase-space.
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Figure 4.19: The phase-portrait of the gait cycle extracted from Winter [1] measurements.

The two orbit projections are in a qualitative agreement establishing the dynamic equiv-

alence between the reconstructed and measured phase-spaces. Specifically, both phase-

portraits show two loops; a large loop corresponding to the leg swing phase and a small

loop corresponding to the heal strike-toe off phase of the human gait cycle.

Examination of the gait cycle orbits in figure 4.18 show significant cycle-on-cycle vari-

ability. There are various possible sources of this variation. Previous tests have shown that

the accuracy of the direct knee angle measurement system is better than 0.3◦ Alwasel et al.

[14] indicating that the contribution of measurement noise to the overall orbit variability

is relatively small. A major source of variability is the input of the central nervous system
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(CNS) to the gait cycle.

Winter [1] suggested that human gait approximates an inverted pendulum supporting

a point mass at the center of body mass. Stabilizing this inherently unstable inverted

pendulum requires continuous intra-cycle feedback by the CNS to the lower limb. Our

finite dimensional model ignores the CNS contribution to the lower limb dynamics which

appears as a cycle-on-cycle variation.

4.5.4 Physiological Experiment

Fatigue indices obtained from EMG signals reveal details about individual muscle experi-

mental observable states that are not available from the fatigue indices obtained from force

signals. For example in the 7.5–22.5, 1–29, and 0–30 exercises, the fatigue indices obtained

from the EMG signals for the medial and lateral triceps, figures 4.12 and 4.13, show load

sharing patterns between the muscles absent from the fatigue index obtained from the force

signal, figure 4.11, which represents the state of the aggregate fatigue in the muscle group

performing the elbow extension.

The lateral and medial triceps fatigue indices shown in figures 4.12 and 4.13, respec-

tively, indicate that these muscles are highly active in elbow extension. The results show

that the presence of a rest time allowance is an important factor in muscle fatigue. It was
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found that the triceps muscles rapidly fatigued during the 7.5–22.5 exercise, where no rest

time was allowed, compared to the of 0–30 and 1–29 exercises, where muscles were allowed

to rest for about half the period of the cyclic exercise. This conclusion is consistent with

the results of Rohmert [22, 23].

4.6 Conclusion

A novel application of PSW to track fatigue on multi-level biological signals was presented.

Kinematic data, represented by the knee angle during fast-walking, and physiological data,

represented by EMG and force from lateral and medial triceps and biceps muscles, were

examined. The method assumes that fatigue is a slowly changing variable in the EMG

signal. Thus, tracking the change in shape and position of the phase space through time

leads to an estimation of the slowly variable changes. Hence, the method of time delay em-

bedding was used to construct the muscle EMG phase-space. Then, the tracking procedure

was carried out using the method of phase-space warping (PSW).

Results showed that the methods used are capable of identifying the slow change vari-

able (fatigue) using kinematic, force, and EMG signals. The fatigue index based on Kine-

matic and force signals revealed information about the health state of the overall coupled

dynamic system under test, the lower limb in this case. The fatigue indices based on EMG
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signals, on the other hand, revealed information of the health states for each muscle.

It has been shown that time delay embedding and PSW methods can examine the

function of the individual muscles. It has also been shown that load sharing patterns

among different muscles can be identified using the fatigue metric.

The combination of time delay embedding and PSW is shown to provide a ‘big picture’

estimator of fatigue in the lower limb using the time-history of a single joint angle. Unlike

state-of-the-art fatigue detection techniques described by Dong et al [166], which uses

cumbersome sensors, this method can supply information about fatigue evolution outside

a laboratory environment. This opens doors to applications such as tracking the physical

state of athletes during competitions, workers in a plant, and patients undergoing in-home

rehabilitation.

The findings show that while fatigue indices derived from non-invasive methods, and

kinematic and force measurements, provide an overall estimate for the state of the mus-

cle group, fatigue indices obtained from more invasive measurement methods, e.g., EMG

signals, provide a more detailed evaluation of the state of individual muscles. As a result,

the latter indices can be used to study muscle participation in motion and load sharing

patterns.
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Chapter 5

Experience, Productivity, and

Musculoskeletal Injury Among

Masonry Workers

5.1 Objectives and Methodology

Different data collection methods were tested for use in non-structured environments in

chapter three. Fatigue level analysis was also tested in chapter four. While promising,

the use of the tested techniques in non-structured environments, worksites, needs further
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study. An example of highly repetitive, highly physical, and non-structured environments

is masonry work, which the subject of the following chapters.

The masonry workforce is composed of two classes: apprentices and journeymen. In

Ontario, Canada the masonry apprenticeship program lasts for three years before a mason

is examined to become a journeymen. Currently, a low retention rate prevails among

masons in the first five years with the same employer combined with an aging workers’

population [11, 12]. Moreover, workers with less than five years of experience have higher

rates of musculoskeletal injuries compared to journeymen with more than five years of

experience.

Throughout the first five years, masons gain proficiency, productivity, and ergonomic

safety. This chapter examines the hypothesis that journeymen with more than five years

of experience are more productive and ergonomically safer than less experienced groups.

Previous studies have used a similar approach to examine the relationships among safety,

efficiency, and experience in sports studies [167, 168] and material handling [99, 101, 102].

Twenty-one right-hand dominant participants were recruited through the Brick and

Stone Mason (Apprenticeship) program, School of Trades & Apprenticeship, Conestoga

College, Waterloo, ON. Participants were recruited into four groups: 5 novices, 4 appren-

tices with one year experience, 7 apprentices with 3 years experience, and 5 journeymen

with more than five years of experience. Table 5.1 shows the participants’ demographics.
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Table 5.1: Participants demographics

# of participants Experience (years) Height(SD) Weight (SD) Skill
5 0 176.6 (8.41) 83.8 (7.6) Novice
4 1 174.7 (8.73) 80.75 (15) Apprentice
7 3 179.7 (4.7) 93.4 (4.75) Apprentice
5 >5 176.8 (8.84) 85.6 (10.5) Journeymen
21 Average 177.3 (7.17) 86.85(9.98) –

The study received ethics approval from Offices of Research Ethics at the University

of Waterloo and Conestoga College. It took place at the masonry workshop, Conestoga

College. Upon arrival to the site, each participant was briefed on the experiment and

instructed to build a 12×6 block wall. No other instructions were given to the participants.

5.1.1 Task

A lead wall, shown in figure 5.1, was built prior to the experiment. Participants used

this 27-blocks-laid frame to complete the wall. As shown in figure 5.1, the participant

performed the task of laying blocks only. Mixing mortar and bringing blocks was done

by a helper. All participants brought their trowels except the novice group where trowels

were given to them. A total of 45 blocks were laid to complete the wall. In the beginning,

the blocks were placed ' 60cm away from the lead wall, arranged in three piles, each pile

5 courses high. Two panels of mortar were placed alongside the blocks. The work space

was controlled, thus, spurious factors such as working on scaffolding and clutters were not
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considered.

Figure 5.1: Lead wall built to guide participants.

5.1.2 Instrumentation and test setup

Motion detection was conducted using a body area network sensors suite [2, 169] and

video cameras. The suite consists of 17 sensors placed at each body segment including

the head. Each sensor is composed of a tri-axial accelerometer, a tri-axial gyroscope,

and a magnetometer. Data from the suite are extracted as BVH files that contain local

3D coordinates of body joints with the hip joint center serving as the origin of the local
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coordinate system.

Three camcorders were set up around the wall to capture the task on video. This

video was used to segment the data in the processing phase. The blocks used are standard

Concrete Masonry Units (CMU) weighing 10kg with dimensions of 390× 190× 100mm.

5.1.3 Data collection and processing

Once the motion suite was calibrated, the participant was asked to start building the wall.

They started by placing an alignment wire to help align the course. Motion and video data

were collected continuously until the participant declared the wall ready. Data collection

was then terminated. On average, the novice group completed the wall in 74 minutes, the

one-year group in 48.5 minutes, the three-years group in 41 minutes, and the journeymen

group in 25.5 minutes.

Biomechanical analysis

Motion data was segmented into blocks resulting in 45 “.BVH” files for each participant

Each file starts when the participant is standing before the block and ends when the

block is finally laid on the wall. Forces on the hands were manually added to those files.

The “.BVH” files were converted into “.loc” input files for 3D Static Strength Prediction
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Program (3D SSPP) [91].

The software was used to carry out full body biomechanical analysis based on the static

strength prediction model described by Chaffin et al. [170]. It uses body anthropometric

parameters, body joint angles, and external forces applied on the body to predict three

dimensional joint forces and moments. Upon identification of whether the worker is using

one or two hands, it was deployed to calculate the joints’ loads and moments listed in

table 5.2. The structure of input and output data is shown in figure 5.2.

Productivity analysis

Masonry jobs are paid by the number of blocks laid per day. Since the experiment pre-

sented in this paper controls for that by tasking participants with building the same wall,

productivity was defined as the time a mason requires to build the wall. Timing was set

to start at picking up the first block and ends by laying the last block. Combining biome-

chanical and productivity analyses for workers with varying levels of experience provides

insight into whether workers are gaining in proficiency and productivity in tandem with

ergonomic safety.
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Figure 5.2: Dataset structure.
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5.2 Results

Using 3D SSPP to analyze the data collected provides a vast amount of in-depth informa-

tion. The results are divided into two sets: joint moments and joint compression forces. In

this chapter, only the major joints, highlighted in bold text, in table 5.2 are reported and

highlighted in figure 5.3. These joints are typically considered in biomechanical analysis

of the human body [140, 171]. The magnitudes of joint moments and forces are used to

study the effects of experience. The normalized joint moments and compression forces are

used to study the effects of course height.

Joint forces and moments allow for quantification of load levels at each joint. Compar-

ing these forces and moments to epidemiologically and biomechanically verified limits set

by National Institute for Occupational Safety and Health (NIOSH) allow for risk assess-

ment [33, 43, 172].

5.2.1 Experience vs. Loads

Lower back (L4-L5) joint compression forces are shown in figure 5.4, each curve represents

the average compression force for each group. At the first course, the group with three years

of experience showed high values of compression with an average ' 6000 N . The three

remaining groups showed relatively similar values. As they are laying the second course,
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Figure 5.3: Major body joints (Designed by Freepik).

all groups showed lower values of compression force compared to first course. However, the

drop in the 3 years of experience group was significantly higher than the other group, 20%

compared to 10%. The third course had the lowest values of compression across all groups,
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Table 5.2: Joints included in the biomechanical analysis

Joint Parameter Anatomical location

L5-S1 XYZ Force Low back
L4-L5 XYZ Force Low back
Wrist XYZ Force Radial to Carpal
Elbow XYZ Force Humerus to Radius and Ulna

Shoulder XYZ Force Clavicle to humerus
C7-T1 XYZ Force Cervical to thoracic
SCJ XYZ Force Sternum to clavicle
Hip XYZ Force Femur to acetabulum

Knee XYZ Force Femur to tibia and fibula
Ankle XYZ Force Tibia and fibula to talus
L5-S1 XYZ Moment Low back
Wrist XYZ Moment Radial to Carpal

Elbow XYZ Moment Humerus to Radius and Ulna
Shoulder XYZ Moment Clavicle to humerus

C7-T1 XYZ Moment Cervical to thoracic
SCJ XYZ Moment Sternum to clavicle
Hip XYZ Moment Femur to acetabulum
Knee XYZ Moment Femur to tibia and fibula
Ankle XYZ Moment Tibia and fibula to talus

moreover, the three years group showed lower forces compared to one year group. Gradual

increase from this minimum is observed across all groups for the fourth and fifth course.

Lower back (L5-S1) joint compression forces show similar patterns to those observed for

L4-L5 but at a reduced level.

Lower back (L5-S1) joint moments are shown in figure 5.5. Similar patterns to those

observed for joint compression, figure 5.4, hold for the (L5-S1) joint moments. Furthermore

the Sternoclavicular joint moment showed similar patterns to L5-S1 moment but with a
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Figure 5.4: L4-L5 joint compression force

drop of ' 10%.

The moments of the left and right shoulder joints are shown in figure 5.6. The group

with three years of experience has the highest moments followed by the group with 1
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Figure 5.5: L5-S1 Joint moment

year and then novice and experts for both joint joints and throughout the five courses.

Furthermore, the non-dominant left shoulder joint experienced higher moments compared

to the right.

Left and right elbow joint moments are shown in figure 5.7. Elbow joints moment

demonstrated similar patterns to those observed for the shoulder. The dominant hand has

less spread among different experience groups than the non-dominant hand. Moreover, the

expert group appears more successful in balancing loads between left and right sides.
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Figure 5.6: Left and right shoulder joint moment
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Figure 5.7: Left and right elbow joint moment
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Figure 5.8: Left and right hip joint moment

Figure 5.8 shows the left and right hip joints moments. The lower limbs carry most

of the load in lifting and material handling. The three years and novice groups have the

highest hip joint moments in both sides across all courses. The expert group has the

least values of moment among all groups in both hips. Moreover, the variation between

experience groups is more apparent on the dominant side.

Knee joint moments experienced by the novice group were the highest among all four

group across the courses as shown in figure 5.9. The experts’ group have the lowest knee

joint moments consistently.
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Figure 5.9: Left and right knee joint moment

5.2.2 Course height vs. Load

The four groups L4-L5 joint compression forces are shown in figure 5.10 normalized with

respect to each group’s average for all blocks. This representation provides an indication

of the forces exerted for each course height compared to average exerted force. The first

course required from 100 − 130% more than the average block. On the other hand, the

second and third courses required compression forces below average. The same force level

pattern is seen in the L5-S1 joint.

The normalized L5-S1 joint moment is shown in figure 5.11. Similar to the low back

compression force the first course required above average joint moment at 110− 135% and
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Figure 5.10: L4-L5 Normalized joint compression forces

115− 135% of the average block. Third and the fourth course required below average joint

moment at 80 − 95% and 85 − 100%. Moreover, Sternoclavicular joint moment followed

the same pattern as low back compression and moment.

The left and right shoulder joint moment requirements for the first three courses were

below average at 75 − 105%. The fifth course required significantly above average joint

moments at 125 − 225% as shown in figure 5.12. Moreover, the expert group showed

significantly higher joint moments in the non-dominant side at the upper courses compared
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Figure 5.11: L5-S1 Normalized joint moment

to all groups.

The normalized elbow joint moment, shown in figure 5.13, showed lower moments in

the first two courses, 70 − 90% of the average, followed by increased values as the course

gets higher. The fifth course required joint moments significantly above average for the

dominant side at 120− 200%. In contrast to the shoulder, the elbow joint moments of the

dominant side showed more variation than the non-dominant side.
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Figure 5.12: Left and right normalized shoulder joint moment
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Figure 5.13: Normalized left and right elbow joint moment
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The lower limb joints exhibited similar patterns. The hip joint moment, shown in

figure 5.14, and knee joint moments in both sides showed small variations from average.

However, the joint moment requirements were clearly below average at courses three and

four.
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Figure 5.14: Normalized left and right hip joint moment

5.2.3 Productivity

Productivity is measured as the number of laid blocks per minute. The build quality was

visually assessed at the end of each session, all walls were in an acceptable state by the

end of the task. Novice group laid an average of 0.67 block per minute. The one-year
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experienced apprentices laid an average of 0.99 blocks per minute. Apprentices with three

years of experience laid an average of 1.23 blocks per minute. Journeymen group laid 1.8

blocks per minute. An association between experience and productivity is apparent from

these results, as blocks laid per minute increase with experience.
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Table 5.3: ANOVA analysis for biomechanical loads and momentsTABLE 3. ANOVA analysis for biomechanical loads and moments
XXXXXXXXXXXXGroup

Parameter L4/L5 Comp L5/S1 Comp L5/S1 Mom SCJ Mom L. Elbow Mom R. Elbow Mom

Novice ∗ ∗ b
1-Year b ∗ ∗
3-Years ∗ ◦∗ ∗ •∗
Journeymen b •b •◦b b◦

XXXXXXXXXXXXGroup
Parameter L. Shlder Mom R. Shlder Mom L. Hip Mom R. Hip Mom L. Knee Mom R. Knee Mom

Novice ∗ b ∗ ◦∗ ◦b∗
1-Year b b • •∗
3-Years ∗ •◦∗ ◦∗ ∗ •∗
Journeymen •b b •b •b •◦b

•Significantly different from Novice group (p-value <0.05)
◦Significantly different from 1-Years group (p-value <0.05)
bSignificantly different from 3-Years group (p-value <0.05)
∗Significantly different from Journeymen group (p-value <0.05)
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5.3 Discussion

An initial goal of this effort is to determine the critical joints in body segments. Trunk

segment analysis resulted in the tracking of four parameters, two compression forces and

two joint moments. The results revealed that two of these parameters are enough to analyze

trunk loads. It was found that the L5-S1 and L4-L5 joints experience the same force profile;

however, the L4-L5 joint experiences higher compression forces. Thus, it is safe to use L4-

L5 joint compression force to analyze low back forces. Similarly, the Sternoclavicular and

L5-S1 joints moments exhibited the same behavior; however, the L5-S1 joint experienced

higher moments, thus it can be used to analyze low back joint moment. Limb joints

demonstrated differences among joints along the same dynamical link, such as shoulder

and elbow. Moreover, differences were found between the dominant and non-dominant

sides of the joint. Hence, all limb joints must be analyzed.

NIOSH equation for the design and evaluation of manual lifting tasks [43] recommends

that the maximum carried load should not exceed 23kg because it will generate a disk

compression force over the safe action limit (AL) set at 3.4kN. Compression forces lower

than the action limit can be carried with low risk of injury by 99% of men and 75% of

women [172]. However, only 1% of women and 25% of men are capable of carrying loads

above the maximum permissible limit (MPL) of 6.4kN. The range between AL and MPL
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is considered a high-risk zone for low back injuries, hence, workers should minimize the

time spent in this region, if avoiding it prove unrealistic.

In the case of masonry, carried loads are lower than 23kg; however, the average low

back compression forces shown in figure 5.4 indicate that workers consistently experience

forces in excess of AL, which is in agreement with Faber et al. [97]. Although the com-

pression forces do not exceed MPL, the risk of developing low back injuries is significant.

Chaffin and Park [49] conclude that high stresses must be avoided in low back because

they increase the risk of disc degeneration and that repetitive work at lower stresses is a

potential hazard. Masonry work is repetitive, hence, lowering the stresses on the low back

must be an objective to decrease the incidence rates of injury. In conclusion, while the

loads carried by masons are safe, material handling techniques are not.

Comparing the four experience groups in figures 5.4 and 5.5, journeymen past the five

years experience mark seem to adopt safer techniques and achieve the lowest compression

forces and joint moments. In agreement with Plamondon et al. [102] and Plamondon et al.

[101], novice workers experience similar low back joint compression forces and moments

to those of journeymen. On the other hand, apprentices with three years of experience

undergo elevated joint compression forces and moments compared to other groups. We

note that lower joint moments indicate lower energy expenditure to complete a task.

Apprentices with three years of experience also undergo significantly higher shoulder
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joint moments, figure 5.6, than journeymen. Novice workers exert higher moments in the

non-dominant hand, which indicates that they are carrying the loads non-isometrically.

Journeymen, on the other hand, have similar values for both shoulders. They are also the

group with the least moments.

The elbow joint, figure 5.7, undergoes increased levels of moment with course height

but lower values than the shoulder joint due to the shorter moment arm of the elbow joint.

Journeymen experience significantly lower elbow joint moments compared to all groups

which indicates that journeymen are shortening the moment arm further by carrying the

loads closer to the body. Apprentices with three years of experience show the highest

dominant arm joint moments among all groups.

Lower limbs joint moments show more variation among the experience groups compared

to trunk and upper limbs, which indicates that experience affects the way masons load their

hips and knees. Hip joint moments, figure 5.8, indicate that all groups maintain a similar

level of activity in the non-dominant side while significant variations occur on the dominant

side. The journeymen group has the least hip joint moment. On the other hand, the knee

joint moment patterns, figure 5.9, show no clear distinction between the dominant and

non-dominant sides.

In conclusion, apprentices with three years of experience underwent higher joint forces

and moments than all other groups while journeymen experienced the least forces and
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moments. The one-year apprentice group had the second highest loads followed by the

novice group. It appears that journeymen have developed techniques to minimize energy

expenditure and maximize safety.

The similarity between loads of expert and novice groups comes at the cost of lower

novice productivity. Although novices work safely, they produce less than half the experts.

A novice mason is not yet trained to handle blocks. Fear, anxiety, and inexperience make

novices more careful in handling blocks than 1 and 3 years apprentices. This explains the

safer method of work novices adopt compared to 1 and 3 years apprentices. However, it is

important to note that novice techniques are not a desirable outcome.

We hypothesize that workers tend to prioritize safety early in their career. As their skills

improve and they become more proficient and efficient, they do not maintain ergonomic

safety. During the experiments, apprentice participants appeared to be in competition

with their peers and more experienced mason to show that they can complete the task in a

similar time frame. Verbal communications with participants showed that peer pressure on

the job leads them to exert more effort to match the seniors’ production level. In turn, it

leads apprentices to manage loads in ergonomically unsafe manners increasing compression

forces and joint moments.

The effect of course height was examined by normalizing each participant’s joint com-

pression forces and moments with respect to the participant’s average across all 45 blocks.
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This representation was adopted to elucidate variations in the body force profile across

different courses. The lower back joints and the sternoclavicular joint showed similar pat-

terns, figures 5.10 and 5.11, where the first course required masons to exert up to 35%

more forces and moments except for the journeymen group who exerted average force and

moments indicating that this group utilizes a squatting technique.

Shoulder and elbow joint moments increase with course height, figures 5.12 and 5.13,

in tune with other studies that reported elevated muscles activity with the increase of

work height [94, 173, 174] and associated shoulder injuries with elevated work height [19].

Moreover, the non-dominant shoulder joint moment showed significantly higher excursions

away from average compared to the dominant side for the upper courses. This result is in

agreement with Anton et al. [94] results who showed that non-dominant upper trapezius

muscle exhibited 40 − 50% more muscles activity compared to the dominant side for the

higher courses.

The dominant side of the elbow showed significantly higher values compared to the

non-dominant side. The load distribution between the dominant and non-dominant sides

of the shoulder and elbow joints appear related to block carrying technique. Participants

utilized the dominant arm to support the bottom of the block while guiding it using the

non-dominant arm. This was most pronounced for journeymen as shown in figures 5.12

and 5.13.
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Lower courses requirements were below average while higher courses were significantly

above average which suggests a need to limit the work height to hip level. In particular,

the fact that the normalized dominant elbow and non-dominant shoulder in journeymen

showed larger excursions from average for the higher courses indicate that there work

techniques were optimized for lower courses.

Knee and hip joint moments, figure 5.14, did not significantly change among all groups

in all courses. This indicates that course height has limited effect on the lower limbs.

Moreover, although it is not significantly different journeymen exerted less than average in

almost all course except the fifth course.

In conclusion, journeymen do not only experience the minimum amount of forces and

moments in the lower back, but they also maintain similar levels of forces across different

courses. This indicates that journeymen are adopting techniques that offsets the effect of

course height. Moreover, all groups were found to exert minimum forces and moments in

the third course indicating that working above the knee and below hip level is the desirable.

The differences among the mean joints’ loads in different experience groups were ex-

amined for statistical significance using analysis of variance (ANOVA) test. A confidence

interval of 95% was used as a measure of statistical significance. The results are shown in

table 5.3. The analysis confirms that experienced group is significantly different (p-value

< 0.05) than at least one of the less experienced groups for all joint loads except for L5/S1
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and SCJ moments. In particular, the L4/L5 joint compression forces in journeymen were

significantly different from those of the 3-years group only. Furthermore, L5/S1 compres-

sion force in the journeymen group was significantly different from both novices and 3-years

group.

As expected journeymen laid more blocks per minute than all other groups, followed

by three-year apprentices. However, as the experience increases, figure 5.15, the increase

in productivity is accompanied by an increase in three other parameters: the number of

injuries reported, with the same employer, and low back joint compression and moment.

While the increase in production is a desired outcome, the other three parameters are not.

Ideally, it is desirable that apprentices gain proficiency, safety, and productivity over the

course of their training while lowering joint loads and injury rates. However, this is not

the case.

Instead, injury rate increase with experience reaching a peak apex at three-years expe-

rience, after that injury rate decreases [11, 12]. The increase in injury rate is accompanied

by an increase in low back forces and moments up to three years experience which then

decreases for journeymen. The relationship between experience and low back compression

forces and moments takes an inverted U-shape following Yerkes and Dodson law [175]. It

states that variation of stimulus on a subject is highly related to change in behavioral

task performance, where the apex performance is achieved at the right amount of stim-
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Figure 5.15: Productivity, injuries, and low back joint force and moment as functions of
experience

ulus. Moreover, under or over stimulus lead to a decrease in performance. The stimulus

of peer pressure on apprentices during their five-years training leads some apprentices to

sacrifice ergonomic safety to achieve productivity and proficiency. Apprentices who survive

this apex tend to learn, in the process, work techniques that allow them to cope with the

stimulus and achieve the objective of increased productivity while maintaining ergonomic
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safety. This supports the hypothesis that at the five years mark, journeymen adopt work

techniques that decrease the forces on their body segment and increase productivity; hence

they remain active on the job.

When masons first enter the workforce, they intuitively adopt postures that generate

similar levels of joint forces and moments to journeymen. As a result, ergonomic safety

levels for novices and journeymen are approximately the same. However, productivity is a

key parameter in the industry and must be considered when designing interventions [176,

177]. Journeymen lay more than twice as much blocks per minute as novices. Although

novice are working safe, their method of work is not an objective target. Apprentices

who learn to mimic the journeymen group to work with minimal forces and moments

will potentially achieve proficiency and ergonomic safety and, thereby, productivity and

longevity in the workforce.

It is feasible to develop tools to automatically detect the ways journeymen perform

their tasks and train novices how to mimic them. Current technology allow for online mea-

surement of body segment inertial properties such as rotational acceleration and velocities.

These parameters can be used to create classifiers that can detect, on-site, whether a novice

is performing the job like a journeyman and alert them, if not.
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5.4 Conclusion

A controlled experiment involving the building a 12 × 6 blocks wall was carried out to

examine the relationships among masons’ experience, safety, and productivity. Twenty-

one participants distributed in four groups with different experience levels ranging from

novice to more than five years of masonry work took part of the study. A combined

biomechanical-productivity analysis was conducted to evaluate stresses on masons’ major

body joints and to assess productivity.

Results show that experience has a significant effect on productivity as journeymen laid

more than twice the blocks per minute as novice masons. Novice and experienced jour-

neymen bear lower joint forces and moments compared to one and three-years experience

groups. Moreover, in agreement with Plamondon et al. [102] joint compression forces and

moments were the lowest in journeymen group. Journeymen appear to develop a tech-

nique which allow them to be more productive and safe compared to other groups. The

three-years experience group sustained the highest joint compression forces and moments.

This correlates well with the U.S. Bureau of Labor Statistics [11] finding that workers with

three-years experience with the same employer sustained the highest injury rate.

Unlike less experienced groups, journeymen appear to adopt a method of work that

maintains similar joint forces and moments across all course heights. Furthermore, in
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agreement with Faber et al. [97], the analysis on the effect of course height showed that

working on the third course, approximately hip level, generated the least joint forces and

moments among all experience groups. This suggests that improvements can be made in

bricklaying systems to reduce stresses experienced by masons.

Comparing the performance of masons at all four experience levels suggests that workers

who learn to manipulate blocks in an ergonomically safe and productive manner by the five

years experience mark enjoy a long-term career. On the other hand, during their first five

years workers gain proficiency and productivity at the cost of safety leading to increased

rate of injury and lower retention rates.

There is potential for training apprentices to excel in all three aspects: proficiency,

productivity, and ergonomic safety. This will help improve workers’ welfare and retention

rates. More studies are needed to develop those training methods and to extend the use

of combined safety-productivity analysis in masonry and other trades. Furthermore, it is

recommend to recruit of more participant with a view to improving the confidence level of

the results.
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Chapter 6

Identifying Safe and Productive

Masons Using Machine Learning

This chapter describes the results of implementing machine learning algorithms to classify

masons’ kinematics based on their level-of-experience.
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6.1 Machine learning applications for motion classifi-

cation

On-site kinematic data collection allows researchers to implement automated systems to

track workers’ motion for training and safety. The use of machine learning algorithms

and data analytics is on the rise for such applications. Machine learning and data mining

techniques call for defining features that differentiate and separate actions from each other

to create a classifier. The uniqueness of these features determines the accuracy of the

classifier. The input to these classifiers is extracted from either IMU or image-based data

collection methods.

Examples of using machine learning are found in the literature for various applications.

Reddy et al. [178] used a decision tree and the discrete hidden Markov model (DHMM) to

classify the transportation mode using GPS and acceleration data extracted from a smart-

phone. They achieved an accuracy of 93.6%. Akhavian and Behzadan [179] used accel-

eration data from a smartphone to perform activity classification of construction workers,

such as sawing, hammering, and turning a wrench, in a controlled environment. They

compared the use of artificial neural network (ANN), a decision tree, K-nearest neighbor,

logistic regression, and support vector machine (SVM) classifiers. They demonstrated an

ANN algorithm able to classify activities with an accuracy up to 97% [179].
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Joshua and Varghese [78] used a wired accelerometer mounted on a masons’ waist to

perform masonry activity tracking. They were able to classify three activities: (1) fetch

and spread mortar, (2) fetch and lay brick, and (3) filling joints with an accuracy up to

80%. Ryu et al. [84] used a wristband equipped with an accelerometer to perform activity

classification in masonry work. They compared the use of K-nearest neighbor, multi-

layer perceptron neural network, and support vector machine classifiers, and achieved an

accuracy of more than 97% using a multi-layer perceptron neural network.

Machine learning and data analytics are also used in the other fields in order to classify

actions. For instance, Namal et al. [180] used 12 accelerometers to detect, analyze, and

classify soccer players gait. Senanayake et al. [181] used neural network to assess the

rehabilitation process of the Anterior Cruciate Ligament (ACL) injury. Ahn et al. [182]

used K-nearest neighbor, naive bayes, decision tree, and multi-layer perceptron classifiers

to measure the operational efficiency of construction equipment using accelerometers. They

achieved a classification accuracy of more than 93% for all classifiers except naive bayes.

SVM classifiers have been found efficient and accurate for classification, in general, and

for binary classification, in particular [183]. SVM finds the boundaries among classes in the

form of hyperplanes to separate various classes. They overcome the overfitting problem

that typically encountered when using other classification techniques, such as artificial

neural networks
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Machine learning has been widely used in construction recently. The applications of

machine learning and data analytics in construction settings tend to be activity recognition,

automation, and productivity analysis. Unprecedented opportunities have materialized to

create real-time classifiers for safety applications. To date, no study has explored the effect

of experience on workers’ motion kinematics and its relations to safety and productivity.

However, studies that compare different levels of experience are found in sport and gaming

literature [167, 168, 184–186]. Expert players are shown to have better motion execution

skills [185]. Moreover, Karimi et al. [187] showed the importance of experienced workers in

lowering the number of injuries in workplaces. Their analysis revealed that methods have

to be developed to solve the shortage in craft workers to limit the number of injuries. Fur-

thermore, in Chapter 5, it was shown that indeed journeymen workers are more productive

and safe than novice and apprentices [17]. Thus, this chapter uses SVM to classify masonry

work into (1) expert (safe and productive) and (2) inexpert (less safe and productive).

6.2 Methodology

The framework identifying expert vs. inexpert operations of masons is illustrated in fig-

ure 6.1. The proposed methodology for masons’ classification consists of four steps: (1)

data collection using an IMU-based sensor suit, (2) pre-processing to filter out noise and
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prepare the dataset as input for generating the classification model, (3) pose codebook

generation to represent activity sequences in a comparable form, and (4) training engine

development to generate SVM supervised learning algorithm. The framework is used to

categorize sequences, the process of laying a block, based on the level of expertise. The

set of sequences comprising the building of a wall is termed an activity. Data collection is

explained in Chapter 5.

Sensor-based 

data collection
Pre-processing

Pose codebook 

generation

Training 

engine

Expertise 

classification

Test and 

analysis

 Expert  vs  inexpert  

classification
Yes Acceptable

No

Figure 6.1: Overview of the proposed methodology for safety and productivity classification
of masons.

6.2.1 Body Model

The data is exported from the suit to create a body skeleton estimate at discrete time in-

crements using the algorithm described in Chapter 5. The sensor fusion scheme, therefore,

allows the calculation of the position, velocity, acceleration, orientation, angular velocity

and acceleration of each joint with respect to a global reference coordinate system. A

147



subset of body joints was selected, based on heuristic analysis to fully represent masonry

activities and to decrease dimensionality, shown in figure 6.2.

C7-T1

(a) IMU suit.

C7-T1

(b) Full body model.

C7-T1

(c) Simplified body model.

Figure 6.2: Sensor-based body suit for data collection [2].

The global reference coordinate system is a right-handed Cartesian coordinate system.

The local joint coordinate systems follow the International Society of Biomechanics (ISB)

standard [188, 189]. The classification methodology uses posture data from each sequence

as its feature set and hands’ force data to aid in isolating activity sequences relevant to

bricklaying during the pre-processing and conversion of raw data to postures suitable for

codebook generation and classifier training.
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6.2.2 Pre-processing

A major challenge in the analysis of 3D motion data is the sheer variation in motion types

and gestures that participants perform during a task. The pre-processing phase reduces

the dimensionality of the dataset, converts joint absolute motion into relative motion to

make activity sequences more comparable, and segments the dataset to include only data

strictly belonging to bricklaying.

The sequence of joint position data collected by the motion suit represents the trajectory

of joint features through space and time. This trajectory is approximated using a Kalman.

It averages out irregularities due to sensor error (drift). To efficiently train the learning

algorithm, the data dimensionality is reduced by selecting a representative subset of joint

features, key joints. The selected key joints meaningfully capture worker posture (pose) at

each frame, shown in figure 6.2c. Hand force data is used as an additional input feature to

trigger start and end of activities. Segmentation is carried out by using the presence of non-

zero hand force to indicate the beginning and end bricklaying. Thus, the pre-processing

step prepares the data set for the codebook generation.
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6.2.3 Pose Codebook Generation

The pose codebook is composed of the set of dominant poses, most frequent, within the

entire activity dataset. These dominant poses are determined using the simplified key-joints

data in the activity sequence. The simplified pose graph is comprised of the locations of the

knee and wrist joint centers with respect to mid-hip point as shown in 6.3. This simplified

stick figure is able to capture relevant masonry postures such as bending and kneeling.

For illustration, a hypothetical example of codebook generation for an activity dataset is

shown in figure 6.3. It consists of two steps: pose segmentation using k-means clustering

and histogram creation as the codebook for activity representation. In figure 6.3, simplified

poses are clustered into k clusters using k-means clustering approach. Blue poses are the

original poses, while colored poses represent the cluster statistical centroids corresponding

to the k bins of the histogram generated as the codebook.

Pose Segmentation

Each sequence is categorized into a number of clusters for segmenting various poses. In this

analysis, k-means clustering [190] is used for pose segmentation. The number of clusters (k)

used to segment poses identifies the number of dominant poses for the construction activity.

For example, the dominant tasks in bricklaying include: walking, picking, carrying, placing,

spreading mortar, etc. A typical example for pose segmentation using k-means clustering
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joints diagram

K-means clustering Codebook

Figure 6.3: Codebook generation for a set of poses.

is shown in figure 6.3. In this example, the number of clusters is set to (k=6). While pose

segmentation is carried out on the simplified key joints diagram, figure 6.3 is visualized

using the full joint body diagram. Once clustering is performed, the statistical centroid

of each cluster represents the exact dominant pose being segmented. Poses in figure 6.3

represent the centroid of the clusters that correspond to the dominant poses.

In the pose segmentation step, activity analysis resolution is directly related to the

number of clusters. In other words, if more clusters, bins, are forced to be detected, the

sequence will be represented by more dominant poses and it is analyzed more comprehen-
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sively. This value is one of the effective variants on the final training results, which is

further investigated in this analysis. The output of the pose segmentation step is fed as

an input for the codebook generation step.

Histogram Creation

Once each frame is clustered and the dominant poses are segmented, a histogram is gen-

erated as the codebook for each sequence 6.3. The number of bins used for creating the

codebook equals the number of dominant poses used in the previous step. Instead of

representing a sequence with a volume or a trajectory, the algorithm represents it as a

set of features extracted from the volume and the trajectory. 3D volumes are viewed as

rigid objects; common patterns are extracted to represent them. For filling the bins in

the histogram, each pose is assigned to its nearest dominant pose, centroid. This step is

performed by calculating the Euclidean distance of each pose to each dominant pose in

pose space. The pose is then assigned to the bin of its nearest centroid. This histogram is

used as a codebook representing a sequence in terms of an arbitrary number of dominant

poses. The pseudocode for codebook and sequence representation is summarized in 1. The

histogram generated in this step is used to train a classifier. The training engine and its

components are explained in the following section.
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1: Input: Sequence S = p, where p are the measured poses.
2: Output: Codebook (H): histogram for sequence S representation.
3: Null H ← ∅
4: k ← user input
5: Cluster: S into k clusters using k-means and Euclidean distance
6: Such that: S =

⋃k
i=1 Si and

⋂k
i=1 Si = ∅

7: For i = 1 to k
8: Assign the clusters to bins: Hi = ||Si||
9: Populate the histogram: H = H

⋃
Hi

10: End For
11: Report H

Algorithm 1: Codebook generation for sequence representation.

6.2.4 Training Engine

The codebook is the key metric for training a safety, productivity, and expertise classifier.

The codebooks, one for each sequence, are imported as inputs to the training engine.

As shown in figure 6.4, the training engine tested in this analysis includes the following

sub-processes: (1) sampling and labeling, and (2) support vector machine (SVM) training.

Expert

Non-expert
Codebook 

generation

Train

T
e
s
t

Sampling 

and 

Labelling

Training

(Figure 5)

T
e
s
t

Train

Analysis 

and test

Codebook Training engine

Figure 6.4: Overview of the training engine with the codebook inputs.

153



Sampling and Labeling

The sequences are grouped and labeled as expert and inexpert. Then, the data is sampled

from these groups and a codebook is generated for each sample as illustrated in figure 6.4.

Typically, a large proportion of the data (e.g. 70-80%) is sampled for training the classifier,

while the remaining samples are used for testing the accuracy of the trained classifier.

Support Vector Machine (SVM) -based Classification

A hypothetical example of the SVM-based classification is shown in figure 6.5. In simple

words, samples used for training are used to identify the separating boundary between

the two classes (i.e. expert vs. inexpert). The testing samples are then used in order to

measure the accuracy and the error of the trained classifier.

6.3 Results and Discussion

In order to measure the performance of the proposed framework for classifying the level

of expertise, and to verify the effective variants on the classification results, a set of ex-

periments was carried out. The proposed methodology for expertise classification was

implemented in a MATLAB-based environment. Time-related aspects of the proposed
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Figure 6.5: Overview of the training engine for a binary classification.

methodology were conducted on a machine with a 2.4 × 8 GHz processing unit and a 16

GB RAM.

6.3.1 Performance Metrics

Two parameters were used to verify the efficiency of the proposed methodology and to

measure its performance: classification accuracy and processing time required for training.

These metrics are investigated and compared under various circumstances.
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6.3.2 Classifier Performance

At the training stage, we used annotated and labeled data consisting of sequences of body

joint feature vectors which capture the frame-by-frame state of workers during bricklaying.

These input sequence can vary in length. The joint feature vector comprises the set of

key joints described in figure 6.2. Two scenarios were considered for the level of expertise

classification. The structure and architecture of the training engine used in classification

are illustrated in figure 6.6. Following a description of the two scenarios.

Group 1 Group 2 Group 3 Group 4

Pre-processing

Codebook generation

Labelling and sampling

Group 1 Group 2 Group 3 Group 4

Group 1

Group 2

Group 3
Group 4

Inexpert Expert

Scenario I

Scenario II

(a) (b)

(c)

(d)
Inexpert

Expert

Figure 6.6: Database structure and architecture of the SVM-based classifier for the two
scenarios.

156



Scenario 1: Multi-class Classification

A multi-class SVM classifier is trained for identifying the boundaries between the four

groups as different classes. First, the preprocessed data is classified into four classes using

a multi-class SVM-based classifier, shown in figure 6.6b. The first three classes are then

merged into the inexpert class, and Class 4 is considered as the expert class as shown in

figure 6.6d. Results of the classification step are then tested and analyzed in terms of

accuracy and error.

Scenario 2: Merged Classifier

Group 1, 2, and 3 are merged and annotated as inexpert for binary classification. The

groups are proportionally sampled and merged into the inexpert group, while Group 4

represents the expert group. A binary SVM-based classification is then performed to

identify the boundary between the two classes. In this scenario, the classification results

may be impacted by the uneven (imbalanced) sampling resulting from the skewed dataset

of the expert vs. inexpert group. Results of the classification steps using the two scenarios

explained here, are provided in table 6.1.

Table 6.1: Summary of the results using the two scenarios

Scenario Number of clusters Dataset % for training SVM kernel Accuracy (%) Processing time (s)
I 50 70% Linear 91.23 524
II 50 70% Linear 92.04 13
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Figure 6.7: Confusion matrices for the classification scenarios.

As seen in table 6.1 and figure 6.7, both scenarios are similar in terms of the classification

accuracy. However, Scenario 1 is computationally more expensive and requires longer

processing time. Another notable observation is the poor classification results for the

novice masons, Group 1, in training the SVM classifier, shown in figure 6.7a. The reason

of the poor training is that the novice masons do not inherently follow a specific pattern,

and this phenomenon results in a scattered pattern in their codebooks. Also, one of the

novices had significant experience in other forms of physical labor. Therefore, the classifier

is unsuccessful in identifying a distinctive boundary for such random and unstructured

patterns.

To compare the classifiers’ performance trained in Scenario 1, their receiver operating

characteristic (ROC) curves are reported in figure 6.8. ROC is a measure for the trade-off

between true and false-positive classification [191]. A ROC curve that passes throw the
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point where the true positive rate is 1 and false positive rate is zero is considered ideal.

The classifier trained for Group 4 outperforms the other classifiers. This is because of the

distinctive pattern Group 4 adopts in performing tasks. On the other hand, ROC also

confirms the poor performance of the classifier for the novice group due to their random

and unstructured patterns, as previously discussed .

Figure 6.8: Receiver operating characteristic (ROC) curves for the classifiers trained in
Scenario 1.

6.3.3 Effective Variants on Classification Results

Two parameters that affect the classification accuracy and processing time are evaluated:

the number of clusters used for codebook generation is and the SVM kernel used for the
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classification step. In both cases, the verification metrics are recorded for comparison. A

summary of the results is presented.

Number of Clusters for Codebook Generation

The number of bins used for clustering is varied in a range between 10 to 100. The accuracy

of the classifier and the required processing time for training and classification are reported

in table 6.2. Confusion matrices are also reported in figure 6.9, in order to compare the

performance of the SVM classifiers.

Table 6.2: Effect of number of clusters on the verification metrics for Scenario 2 and linear
kernel for SVM classification.

Number of clusters (bins) Accuracy of the classifier Processing time (s)
10 84.79 2
25 85.55 4
50 92.04 13
75 92.63 26
100 92.11 32

As shown in table 6.2 and figure 6.9, 10 and 25 clusters achieve poor classification accu-

racy compared to 50, 75, and 100 clusters. Moreover, when the number of cluster is > 50

no significant difference in accuracy is observed. A larger number of clusters improves the

accuracy of the classifier as a result of increasing the resolution of dominant poses in the

sequences. On the other hand, the process of calculating more clusters (bins) is computa-

tionally expensive, since it requires calculating more cluster centroids and therefore more
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Figure 6.9: Confusion matrices vs. number of clusters for Scenario 2 using a linear kernel.

distances for each step. In order to investigate the overall performance of the classifiers

and the time-related aspects of the classification step, ROC curves and processing times

for various numbers of clusters are shown in figure 6.10 and figure 12.

The use of 100 clusters for codebook generation offers the best performance, figure 6.10,

among the numbers of clusters tested. Nonetheless, the use of 75, 50, and 25 clusters in

classification offers similar performances with a slight decrease as the resolution of the

activity representation decreases. However, the overall accuracy reported in figure 6.11

is slightly improved using 50 clusters compared to 75 clusters, 92.04% to 92.63%, while

taking twice as much time for classification, 13 sec to 26 sec. To balance accuracy and

computation cost, the default value for codebook generation was set to 50 bins.
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Figure 6.10: ROC curves vs. number of clusters of linear kernel.
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Figure 6.11: Classification accuracy vs. number of clusters vs. processing time of linear
kernel.
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Figure 6.12: Confusion matrices for the classification with different kernels.

Effect of Kernels vs. Accuracy

For refining and tuning the classifier, three kernels were used in the SVM-based classifica-

tion step: linear, Gaussian, and polynomial. Verification metrics are recorded and listed in

table 6.3 for comparison of the kernels’ performance. Confusion matrices are shown in 6.12

and ROC curves are reported in figure 6.13.

Table 6.3: Verification metrics for the three SVM kernel used for classification, Scenario 2
with 50 clusters.

SVM kernel used for classification Accuracy of the classifier Processing time (sec)
Linear 92.04 13

Gaussian 89.07 8
Polynomial 92.11 276

Figures 6.12 and 6.13 and table 6.3, the linear and polynomial kernels outperform the

Gaussian kernel in overall accuracy. However, the required processing time for classification

using a polynomial kernel is 276 sec, which is significantly higher than that for the linear

kernel, 13 sec.
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Figure 6.13: ROC curves vs. kernel.

Moreover, figure 6.13 signifies that the Gaussian kernel is less accurate than linear and

polynomial kernels for classifying the masons, and the latter two kernels are similar in

terms of overall accuracy. However, taking into account processing time table 6.3, the

linear kernel appears to be the most effective choice for this classification.

6.4 Expert vs. Inexpert Poses

Classification histogram results showed that expert masons work in a structured fashion

compared to inexpert masons as manifested by using fewer bins in the histogram shown

in figure 6.14. The use of fewer bins indicates that experts move in an efficient way
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that minimizes their energy expenditure compared to novices and apprentices. Moreover,

inexpert masons have frequent poses that filled all bins. Keeping in mind that expert

masons laid twice the number of blocks per minute as novices, the histograms indicate

that inexpert masons are frequently taking poses that are not productive and potentially

unsafe.

Figure 6.14: Frequency of dominant poses in all experience groups.

The dominant pose in each experience category is shown in 6.15. Expert poses represent

the masons carrying a block close to the torso which decreases the loads on the lower back.
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Further, poses assumed by experts tend to shift of most load carrying to the hips. The

3-year apprentice group is found to bend their back more than expert workers, which

increases their lower back moment.

Figure 6.15: Frequency of dominant poses in all experience groups.

Since it has been shown in Chapter 5 that on average expert masons bear lower joint

forces and moments than inexpert masons and produce more blocks per minute, these

histograms can be used as guides to potentially alert masons whenever they perform a pose
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that is not typically performed by an expert mason. With the use of simple IMUs on body

segments, ergonomists can assess whether a task is conducted along the lines of an expert

mason. Trade-specific expert pose histograms have to be generated to allow users to create

an active learning system that can be used by workers to be informed when they perform

inexpert posture. A full-list of all dominant posture is shown in figures 7.10, 7.11, 7.12,

and 7.13.

6.5 Conclusion

This chapter reports on the use of a support vector machine (SVM) supervised machine

learning algorithm to classify masonry workers’ kinematics based on level-of-expertise.

Chapter 5 established the link between expertise and improved safety and productivity.

Understanding why experts are safer and more productive is the next step in this research.

The classifier helps in that analysis by identifying sets of poses that result in safer and more

productive work. A full-scale experiment involving masons was carried out. Twenty-one

masons with varying levels of expertise were recruited into four groups: (1) novice (no

related experience), (2) one-year of experience, (3) three-years of experience, and (4) more

than 5 years of experience. Each participant built a 72-blocks, 6-course high, concrete

masonry unit wall. Data collection was conducted using an inertial measurement unit

167



(IMU) suit with 17 trackers. Three video-cameras recorded all data collection sessions.

The kinematic data obtained from the IMU suit was comprised of 28 joint center lo-

cations and the corresponding joint angles, constituting a full human body model. These

joint center locations were transformed from the global reference frame to a local reference

frame located at the mid-point of the hip joints. A subset of body joints was selected

to form a simplified model representative of masonry activities. The simplified model re-

moves data unrelated to masonry activities. Using the video records, the kinematics data

was manually augmented with hand force data and segmented to remove data unrelated

to masonry activities. Data was clustered using different numbers of k-means clusters to

identify the dominant postures masons assumed during the experiment. A histogram was

then created to represent the frequency of each dominant posture in each sequence.

The segmented data was sampled and labeled into expert and inexpert groups for the

SVM classifier training. For each group, 70% of the data was used as a training set and

the remaining 30% comprised the test set. Accuracy and processing time were used as

performance metrics in this study. Two classification scenarios were implemented: multi-

class SVM and binary SVM. Furthermore, three SVM kernels were compared: linear,

Gaussian, and polynomial.

Results show that a clear distinction exists between expert and inexpert masons motion

patterns. SVM classifiers were able to identify these differences with reasonable accuracy.
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The k value used in the k-means clustering was shown to have a direct relationship with

the classification accuracy and computational cost. The optimal number of clusters was

found to be k = 50, as it offers a sufficiently accurate classification and a reasonably ac-

ceptable processing time. Furthermore, the Gaussian kernel was found to perform less

accurately than the linear and polynomial kernels, which had approximately similar ac-

curacies. Therefore, the linear kernel was determined to have the most suitable balance

between the accuracy and computational cost. These results show that an objective dif-

ference exists between expert and inexpert masons’ kinematics that can be classified using

a subset of the human posture model.

Future work includes exploring the classification performance and whether it can be

further enhanced with larger numbers of participants. Furthermore, it is worth exploring

the direct use of IMU raw acceleration data and whether it can enhance the classification

framework. A potential application is an extension of this study’s experimental design and

methodology into other construction trades. The study results show a potential for using

SVM classifiers on experienced workers’ motion to identify safe and productive motion

patterns that can then be used to train apprentice and novice workers.
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Chapter 7

Conclusions, Recommendations, and

Future Work

This thesis investigated the use of human body kinematics to improve workers’ ergonomics

with an emphasis on the masonry trade. It reported the findings of four studies: (1) a

comparison of motion capture techniques, (2) a novel application of time delay embedding,

(3) a biomechanical analysis of masonry work, and (4) an application of machine learning

algorithms to identify masons’ level-of-experience.
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7.1 Direct and Indirect Motion Measurement Tech-

niques

Two categories of motion capture techniques were compared for accuracy and usability

in non-structured environments: (1) direct (electrogoniometers) and (2) indirect (vision-

based). Two participants took part in this study. They performed static and dynamic

tasks. The accuracy of each technique was compared to a state-of-the-art motion capture

technique (Optotrak�) in terms of mean and standard deviation of absolute errors; as well

as maximum and minimum errors.

The results indicate that direct measurement techniques offer higher measurement ac-

curacy for dynamic and static postures, which can be summarized as ±3 deg in planar

motions compared to ±10 deg for vision-based techniques. Furthermore, vision-based tech-

niques require preparation of the environment, such as direct line-of-sight to subject and

lighting conditions. These requirements are not needed for direct measurement techniques.

However, direct measurement techniques become cumbersome when used for more than

one degree-of-freedom.
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7.2 Fatigue Detection

A novel application of time-delay embedding and phase-space warping (PSW) was deployed

to detect fatigue in the lower limbs. Ten participants took part in this study. Knee flexion

angle data were collected using an electrogoniometer and upper arm muscle EMG, and force

data were collected using surface electrodes and force transducers. The method compares

the muscle state (fatigue) to a local map of its healthy state and over time.

Results show that the PSW is capable of detecting muscle fatigue at all three signal

levels: (1) kinematics, (2) force, and (3) EMG. Moreover, it showed that muscle loading

patterns can be investigated using PSW. The findings show that while fatigue indices

derived from non-invasive methods, kinematic and force measurements, provide an overall

estimate for the state of the muscle group, fatigue indices obtained from more invasive

measurement methods, EMG signals, provide a more detailed evaluation of the state of

individual muscles. As a result, the latter indices can be used to study muscle participation

in motion and load sharing patterns.
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7.3 Relationships Among Experience, Safety, and Pro-

ductivity of Workers

A combined biomechanical-productivity analysis was conducted using IMUs and vision-

based motion capture techniques on masonry workers. Twenty-one subjects were classified

into four masonry experience categories. Each participant laid a 12× 6 blocks wall.

Results show that journeymen laid more than twice the blocks per minute as novice ma-

sons. Novice and experienced journeymen bore lower joint forces and moments compared

to the one-year and three-years experience groups. Moreover, the three-years experience

group sustained the highest joint compression forces and moments. This correlates well

with the U.S. Bureau of Labor Statistics [11] finding that workers with three-years expe-

rience with the same employer sustained the highest injury rates. Journeymen appear to

adopt a method of work that maintains similar joint forces and moments across all course

heights. Furthermore, working on the third course, at approximately hip level, generated

the least joint forces and moments across all experience groups.
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7.4 Identifying Safe and Productive Work Using Ma-

chine Learning

A classifier was built using support vector machine (SVM) supervised machine learning

algorithms applied to data collected using IMUs to capture the motion of masonry workers.

Twenty-one subjects were grouped in four categories based on their masonry experience

level. Each participant laid a 12× 6 blocks wall.

Results show that a clear distinction exists between expert and inexpert masons’ motion

patterns. The k value used in the k-means clustering was shown to have a direct relationship

with the classification accuracy and computational cost. The optimal number of clusters

was found to be k = 50. Furthermore, the Gaussian kernel was found to perform less

accurately than linear and polynomial kernels, which had approximately similar accuracies.

Therefore, the linear kernel was determined to have the most suitable balance between

accuracy and computational cost. These results show that an objective difference exists

between expert and inexpert masons’ kinematics that can be classified using a subset of

the human posture model.
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7.5 Future Work

The thesis findings justify exploration of sensor fusion techniques to combine direct and

indirect motion capture systems. Just like a magnetometer functions in Inertial Measure-

ment Units (IMUs), direct measurement techniques can be selectively used to overcome

line-of-sight issues within an indirect-measurement framework.

The findings also recommend the use of PSW for applications such as rehabilitation to

access hidden information about the full kinematic chain using a single kinematic signal.

This approach can overcome the cumbersomeness of other techniques that require excessive

subject preparation. The use of PSW can be applied to study muscle synergy to better

understand the effect of fatigue of muscle recruitment using kinematic signals.

Furthermore, findings show the potential for training apprentices to excel in all three

aspects: proficiency, productivity, and ergonomic safety. This will help improve workers’

welfare and retention rates. More studies are needed to develop those training methods and

to extend the use of combined safety-productivity analysis in masonry and other trades.

The biomechanical analysis conducted in this thesis is static analysis, further dynamic

analysis should be carried out to better understand the effect of motion patterns on body

joint’s forces and moments.

Future work should also investigate the performance of workers’ classifiers and whether
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they can be enhanced with larger numbers of participants. Furthermore, it should explore

direct use of IMU’s raw acceleration data in classification and whether it can enhance the

classification framework. A potential application is an extension of this study experimental

design and methodology into other construction trades. The thesis results show a potential

for using SVM classifiers on experienced workers’ motion in other trades to identify safe

and productive motion patterns that can then be used to train apprentice and novice

workers. Furthermore, the SVM training can be expanded to include all data and not only

bricklaying activity.
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APPENDICES

Appendix: A

Participants

The study recruited participants from 4 different masonry experience levels, table 7.1. The

hypothesis is that masons with more than five years of experience are performing the job

have adopted a technique of work that minimize their exposure to MSDs risk factors which

led to maximizing their work-life expectancy.

Furthermore, workers learn to mitigate the painful work gradually with experience,

this learning process can be shown if the workers from different experience groups are

monitored. Hence, novice masons were recruited as baseline, 1 & 2 years experienced

workers to show progress, and experts to compare and learn the way they work.
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Group Number Group Experience Number of Participants

1 No experience 5
2 1 Year 4
3 3 Years 7
4 > 5 Years 5

Table 7.1: Participants distribution in groups

Recruitment Process

This study was reviewed and approved by the office of research ethics in University of

Waterloo, Waterloo, Canada and was assigned to ORE#: 20023. The study took place

inside the workshop in masonry building at Conestoga College (Waterloo Campus).

Participants were recruited by contacting the chair of trades and apprenticeship pro-

gram in Conestoga college and brick and stone program coordinator. For the first three

groups, the instructor posted an advertisement for the study around the masonry build-

ing. The advertisement stated that a research group from the University of Waterloo is

looking for participants to take part in a bricklaying study, and that the study is looking

for participants with different experience levels. The reason this advertisement was posted

in masonry building is that the brick & stone program in Conestoga college is a three year

program. The first students have no experience in bricklaying, the second year students

have one year experience, and by the end of third year students have 3 years of experience

which matches the requirements of our participants. The fourth group participants were
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approached by the instructor and agreed to take part in the study.

Participants Anthropometry

Participants’ anthropometrics were collected before each participant started the experi-

ment. Anthropometric data collected were: gender, height (in centimeters), and weight (in

kilograms).Anthropometric data are shown in table 7.2. The average height of participant

was 177.61 cm with a standard deviation of ±7.42. The average weight of participant was

88.44 kg with a standard deviation of ±9.69. Although no gender requirement was posted

to potential participants, all participants were males.

Participants Coding System

Participants are identified in this guide by their sequence and group number. No names

were collected to maintain participants privacy.

The convention used in the identification is also used in data files names for ease use.

For example, a file with a title (1 1) indicates that it belongs to the first novice participant.
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Participant Group Participant Number Gender Height Weight
1 1 Male 170 83
1 2 Male 189 93
1 3 Male 176 85
1 4 Male 180 86
1 5 Male 168 72
2 1 Male 175 76
2 2 Male 169 74
2 3 Male 168 103
2 4 Male 187 95
3 1 Male 180 94
3 2 Male 183 96
3 3 Male 170 86
3 4 Male 185 95
3 5 Male 180 90
3 6 Male 180 101
3 7 Male 180 92
4 1 Male 168 73
4 2 Male 189 98
4 3 Male 183 85
4 4 Male 171 78
4 5 Male 173 94

Table 7.2: Participants anthropometric data

Methodology

The methodology of this study was designed to target the hypothesis that a healthy ex-

perienced mason has adopted a technique of work that can be extracted and taught to

novice workers to increase their work-life expectancy. Moreover, current masonry working

conditions can be altered to increase safety and decrease accumulative stresses on masons

body. Therefore, participants were not provided with any instructions on how to perform
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the work.

Participants came to the workshop, where the data collection took place, and were

provided with information about the study. The information included what research teams

are involved, why is this study being conducted, and where this study was reviewed and

approved. Then, participants signed the form indicating their consent to participate.

The participant then put the xsens motion capture suite with 19 trackers on the body.

Following this, a calibration session for the suit began. The calibration consisted of 3 parts:

participant stood straight with their arms parallel to their body for 5 seconds as shown in

fig 7.1.

The second calibration part was a T-pose where the participant stood straight and

spread their arms in a T shape as shown in fig 7.2 for 5 second while the system was

collecting data and relating each tracker.

The third calibration part was done by asking the participant to stand still and put

their hands together with the palms touching each other and then start making a figure 8

shape in the space as shown in fig 7.3

Once the calibration is done, participant was asked to prepare themselves and build

the wall. Each participant came with their own trowel and work gloves. At least three

cameras were used in conjunction with the motion suit to record the participant while
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Figure 7.1: Standing pose calibration

working. One camera was placed on each side of the wall parallel to the participant with

a lateral point of view (side view), another camera was recording the participant from the

back side.

184



Figure 7.2: T-pose calibration

The Wall

The task conducted by participant is building a wall that is 12 blocks wide and 6 courses

high. The blocks used in building the wall were a standard CMU with dimension of

390× 190× 100mm. The weight of the CMU is 10 kg.

The leads for the wall were built prior to the participant coming to the site, as shown

in fig7.4. The participant started with placing a fine robe (alignment wire) to indicate the

height of the course for alignment purposes.

All material that a mason needs to build a wall are brought to the participant by a

journeyman. The blocks are placed ' 60cm from the leads. The blocks are placed in three

groups along the length of the wall. Two panels of mortar were also placed along the wall

185



Figure 7.3: Waiving pose calibration

between the piles of blocks.

Once the wall built, the motion suit was stopped collecting data and the video cameras

stopped recording. The suit was removed and the session finished.
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Figure 7.4: Lead wall

Data Storage and Handling

Two types of raw data was obtained: motion and videogrammetry. The video data was

saved as “.avi” files that run on most video programs. The motion data was saved as

“.mvnx” files, which is a type of files that only works with the xsens software called “MVN

studio”.

Each session recorded by the xsens motion suit is stored in one “.mvnx” file. This

file contains the types of data shown in table 7.3. Depending on the application, certain

information can be exported from the “.mvnx” file into one of the following file formats:

ASCII (XML), C3D, and BVH.
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Data Type
Displacement Linear

Velocity Linear
Acceleration Linear
Displacement Angular

Velocity Angular
Acceleration Angular
Orientation Quaternions/Matrix/Euler angles

Earth magnetic field 3D
Relative joint angles 3D Anatomical
Body center of mass coordinates

Table 7.3: Types of output data from xsens motion suit

Data Analysis

This section* discusses how the data was exported and available file formats and naming

conventions. It also discusses how different results were obtained.

Export files

First, for each session, the “.mvnx” file was exported using “MVN studio” into “.BVH”

file. The “.BVH” file contains all the data in table 7.3. The exportation procedure is:

1. Open the “.mvnx” file using “MVN studio”.

2. Go to file → Export → Export file, as shown in fig 7.5.

3. In the opened box select the file format required from the exporter and click export,
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as shown in fig 7.6.

Figure 7.5: Export a file

Figure 7.6: Choose extension of exported file

Data collection frame rate was set to 100 frames/s, however, this frame rate can be

changed during file exportation. To change this rate you have to:

1. Go to Options tab.
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2. Select Preferences.

3. Select Exporter → extension that you want to manipulate.

4. change the exporter frame skip for downsampling and units if needed, as shown in

fig 7.7

Figure 7.7: Change the sampling rate for the exported file

BVH format

“BVH” stands for Biovision Hierarchy. It is a file format used initially by animation movie

industry to create characters. This format divides the data into two sections: header,

describes the initial pose, hierarchy, and initial pose; the second section is a data section

containing the motion data frame by frame. The hierarchy is divided into several “root”
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describing the segments of the body, each root starts with a keyword “OFFSET” that

carry information about the offset of the “child” ROOT from its “parents”. The offset will

be given in X,Y, and Z directions. The file also carries information about the location of

joint centers under header “JOINTS”.

To interpret the data from a BVH file, a BVH viewer is used. However, in principle it

is possible to calculate the position of the segments from the BVH file. To do so, a rotation

matrix must be created from the local translation and rotational information into parent

segment coordinate system. This rotation matrix has to be 3 rotation matrices; one for

each axis.

In this study a BVH viewer called “BVHViewer”, which has the ability to export 3D

joint information from the BVH files into “.txt” file, was used to view BVH files and export

the 3D joint center information. A sample picture from the software is shown in fig 7.8.

This “.txt” file is to be used in creating a file containing the motion data to be uploaded

to “3DSSPP” program for analysis eventually. To create the “.txt” file containing the 3D

joint locations from the “BVH” file you first opent he “BVH” file in the “BVH Viewer”

software as shown in fig 7.8. Then click on the button labeled as “3D”, circled in the figure

and choose where to save it.
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Figure 7.8: Creating 3D location file

Data segmentation

Segmenting the data is the most important task in this analysis, it must be consistent

for the analysis to be reliable. Therefore, the data was segmented initially to four tasks

tasks: lifting a block, walking/carrying the block, laying a block, and spreading mortar.

However, for biomechanical analysis with 3DSSPP analysis, discussed in section 7.6.2, the

motion were segmented by block. The block motion for biomechanical analysis starts

from the frame where a participant is standing adjacent to a block and finishes when the

participant lay the block on the wall. The key frame in this segmentation is the frame where

the participant starts lifting the block, it is when the loads are applied in the analysis.
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Creating “.loc” files for 3DSSPP

3D Static Strength Prediction Program (3DSSPP) is a software developed by University

of Michigan research group to analyze the effect of loads on the body joints statically. It

requires the user to input the joint center location information of the motion to be analyzed.

In addition, the amount of force that the participant is carrying must be identified. The

software requires the data for the input to be in a file with extension “.loc”. To create

this type of files, a Matlab code was written to convert the 3D joint center location file

exported from BVH file into “.loc” file. This code exports a “.loc”a file consisting of 90

columns. the last six columns represent the force applied on the hands of the participant

and their orientation.

To create this “.loc” file, first the “.txt” file containing the 3D joint center location

must be opened using “Excel” software. Along with this guide document, is an “.xlsx”

file titled “ JointLocation(BVH) format (including handloads)”. The first row of this file

contains the headers arranged according to the “.txt” file arrangement from BVH file. It

contains 90 columns, of which the last six columns are empty, it must be filled with the

forces (loads on hands in N). Of the last six columns, the first three are for the left hand

and the last three for the right hand. In each hand, the first column is for the amount of

load, the second for the vertical orientation, and the last is for the horizontal orientation, as
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shown in table 7.4, in this example a 10N loan is applied to the left hand directed upwards

↑ and 10N load is applied to the right hand direct up to right ↗. In the second row in

table 7.4, the same loads but oriented downwards as it should be direct in this experiment,

so it becomes 10N ↓ and 10N ↙.

Left hand Right hand
N Vertical ◦ Horizontal ◦ N Vertical ◦ Horizontal ◦

10 90 0 10 0 45
10 -90 0 10 0 -45

Table 7.4: Joint location and hand loads for “.xlsx” file

Hand forces are determined from the video that was captured of the participants build-

ing the wall. The frame numbers from when the participant carried the block until he laid

it on the wall were put as 98 N on the “.xlsx” file with −90◦ vertically on both hands.

After completing the “.xlsx” file with hand forces, the file is to be saved as “.xls”

file to be imported into Matlab for creating the “.loc” file. The Matlab code (found in

appendix 7.6.2) will import the “.xls” file and process it to export a file with the same

name but with “.loc” extension. This file is to be used by 3DSSPP.

3DSSPP analysis

The biomechanical analysis of the task was conducted using 3DSSPP. It contains informa-

tion about the biomechanical and static strength capabilities of the employee in relation to
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the physical demands of the work environment. Moreover, The strengths and capabilities

in the software have a strong correlation the average population (r = 0.8).

3DSSPP default settings are set to calculated everything in English units, this must be

changed to metric units. The analysis process starts with identifying the anthropometric

information of the participant in the software. For each participant this anthropometric

data are different so it has to be done every time. The anthropometric data changed from

the software home screen by:

1. Task-Input → Set metric units.

2. Click on Anthropometry.

3. From the opened box→ Set participant height (cm) and weight (kg), shown in fig 7.9.

4. Go to file → Click on set startup Task to current.

The last step mentioned above is to set the current anthropometric information throughout

the session.

After setting up the session, the analysis can start by:

1. Go to Animation tab → Import Loc file.

2. From the box choose the “.loc” file to be imported.
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After that, the report containing the biomechanical analysis can be accessed from “Re-

port” tab. Moreover, the overall information can be exported as a “.txt” file by:

Figure 7.9: Setting anthropometry data for participant

1. Go to Report tab.

2. Click on Export output summary.

This “.txt” file containing the biomechanical analysis is to be pasted to Excel or any

other graphing software to make a graphical representation of the results. Attached with

this guide is an “Excel” file named “Results from 3DSSPP format”. This file is setup

with its two rows arranged according to the format generated from the summary output

of 3DSSPP, this way the results from 3DSSPP can be directly pasted on “Excel” for graph

generation or further analysis.
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Files Naming Convention

Since the experiment is conducted with 20 participants divided into four categories, the

file naming convention was set accordingly. First, a folder called “Conestoga” contains all

the data, it contains 4 folders: Group 1, 2, 3, and 4.

Each one of these folders contains folder named “p*” where * indicates the partici-

pant sequence number in this group. The sequence number indicates which participant

performed the experiment first. For Example P1 indicates participant number 1 in this

category.

Each folder “P*” contains several file with the same name but different extension. The

file name is unique for each participant, the uniqueness is the name consists of three parts:

participant initials, group number, and participant number. After these three parts, some

of the files have three numbers following, which indicates the number of files coming from

the “.mvnx” file from the suit. It comes in a “-00*” format where * indicates the file

number. Table 7.5 lists all file extension types with their explanation.

Along with these files, are three folders names: Lay block, Report, and Results. Lay

block folder contains the segmented data files for each block. The files are named according

to their sequence from 1–45. Each block has two kinds of files: “.loc” file to be used in

3DSSPP and “.xls” file to be used in MATLAB to generate the “.loc” file.
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Table 7.5: File extensions

Extension Use with
mvna initiation file from MVN studio
mvnx data file from xsens original format

3d any 3D software for manipulation
bvh bvh viewer
c3d another file type to manipulate 3d files
loc 3DSSPP
xls MATLAB
xlsx Excel to apply loads
txt reports generated from 3DSSPP

Report folder contains files with same naming convention as lay block folder from 1–

45. It contains the reports generated by 3DSSPP for each block. Results folder contains

one “.xlsx” file called results, this file is where all the graphs are generated for all joints

forces and moments. It consists of 52 sheets number from 1–45 and then each sheet named

after its description. For example, sheet “back compression” contains the graphs of back

compression for all blocks.

Matlab Code to create “.loc” file from a “.3D” file

1 (* ::Package:: *)

2

3 clear all;

198



4 close all;

5 clc

6

7 Rawdata=xlsread('JointLocation (BVH).xlsx');

8 Joints=Rawdata(:,1:84);

9 HandLoads=Rawdata(:,85:90);

10 %% inch to mm

11

12 Joints=Joints*25.4;

13 [n m]=size(Joints);

14

15 %% Translation

16

17 Hip=repmat(Joints(:,1:3),1,28);

18 Joints T = Joints − Hip;

19

20 %% Rotation

21

22 % Matching coordinate systems between BVH and 3DSSPP

23 X=90;

24 Z=180;

25

26 RX=[1 0 0;0 cosd(X) −sind(X);0 sind(X) cosd(X)];
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27 RZ=[cosd(Z) −sind(Z) 0;sind(Z) cosd(Z) 0;0 0 1];

28

29 Joints R = zeros(n,m);

30

31 for i=1:28

32 Joints R(:,3*(i−1)+1:3*(i−1)+3) = (RZ*RX*Joints T (:,3*(i−1)+1:3*(i−1)

+3)')';

33 end

34

35

36 % Rotation of torso to face front (+Y)

37

38 R Hip = Joints R(:,56:58);

39 L Hip = Joints R(:,70:72);

40

41 TorsoV=R Hip − L Hip;

42 TorsoV(:,3)=0;

43

44 Joints converted = zeros(n,m);

45 Joints converted=Joints R;

46

47 %% Create Loc data

48
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49 Loc = zeros(n,123);

50

51 % find forward vector

52

53 for i=1:n

54 Shoulder(i,:)=Joints converted(i,28:30)−Joints converted(i,43:45);

55 NecktoHead(i,:)=Joints converted(i,22:24)−Joints converted(i,16:18);

56 F Vector(i,:)=cross(NecktoHead(i,:),Shoulder(i,:));

57 N Vector(i)=norm(F Vector(i,:));

58 U Vector(i,:) = F Vector (i,:)/N Vector(i);

59 end

60

61 % find forearm vector

62 for i=1:n

63 LeftUA(i,:)=Joints converted(i,49:51)−Joints converted(i,46:48);% Vector

from elbow to wrist(left)

64 U LeftUA(i,:) = LeftUA (i,:)/norm(LeftUA(i,:));% Unit vector

65

66 RightUA(i,:)=Joints converted(i,34:36)−Joints converted(i,31:33);% Vector

from elbow to wrist (right)

67 U RightUA(i,:) = RightUA (i,:)/norm(RightUA(i,:));% Unit vector

68 end

69
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70 Loc(:,10:12)=Joints converted(:,19:21);% 10 − 12 Head origin !!

71 Loc(:,13:15)=Joints converted(:,19:21)+100*U Vector;% 13 − 15 Nasion !!

72 Loc(:,19:21)=Joints converted(:,16:18);% 19 − 21 C7/T1

73 Loc(:,22:24)=Joints converted(:,13:15)+100*U Vector;% 22 − 24

Sternoclavicular Joint!!

74 Loc(:,28:30)=Joints converted(:,4:6);% 28 − 30 L5/S1

75 Loc(:,34:36)=Joints converted(:,43:45);% 34 − 36 L. Shoulder

76 Loc(:,40:42)=Joints converted(:,46:48);% 40 − 42 L. Elbow

77 Loc(:,46:48)=Joints converted(:,49:51);% 46 − 48 L. Wrist

78 Loc(:,49:51)=Joints converted(:,52:54);% 49 − 51 L. Grip Center (virtual)

79 Loc(:,52:54)=Joints converted(:,49:51)+100*U LeftUA;% 52 − 54 L. Hand

80

81

82 Loc(:,55:57)=Joints converted(:,28:30);% 55 − 57 R. Shoulder

83 Loc(:,61:63)=Joints converted(:,31:33);% 61 − 63 R. Elbow

84 Loc(:,67:69)=Joints converted(:,34:36);% 67 − 69 R. Wrist

85 Loc(:,70:72)=Joints converted(:,37:39);% 70 − 72 R. Grip Center (virtual)

86 Loc(:,73:75)=Joints converted(:,34:36)+100*U RightUA;% 73 − 75 R. Hand

87

88 Loc(:,76:78)=Joints converted(:,70:72);% 76 − 78 L. Hip

89 Loc(:,79:81)=Joints converted(:,73:75);% 79 − 81 L. Kne

90 Loc(:,85:87)=Joints converted(:,76:78);% 85 − 87 L. Ankle

91 Loc(:,91:93)=Joints converted(:,79:81);% 91 − 93 L. Ball of Foot
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92 Loc(:,97:99)=Joints converted(:,55:57);% 97 − 99 R. Hip

93 Loc(:,100:102)=Joints converted(:,58:60);% 100 − 102 R. Knee

94 Loc(:,106:108)=Joints converted(:,61:63);% 106 − 108 R. Ankle

95 Loc(:,112:114)=Joints converted(:,64:66);% 112 − 114 R. Ball of Foot

96

97 Loc(:,118:123)=HandLoads;

98

99 save('test9.loc','Loc','−ascii')
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Appendix: B
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Figure 7.10: Frequent poses from 1- 12
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Figure 7.11: Frequent poses from 13- 24
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Figure 7.12: Frequent poses from 25- 37
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