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Droplet formation in microfluidic T-junction generators operating
in the transitional regime. II. Modeling
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This is the second part of a two-part study on the generation of droplets at a microfluidic T-junction operating
in the transition regime. In the preceding paper [Phys. Rev. E 85, 016322 (2012)], we presented our experimental
observations of droplet formation and decomposed the process into three sequential stages defined as the lag,
filling, and necking stages. Here we develop a model that describes the performance of microfluidic T-junction
generators working in the squeezing to transition regimes where confinement of the droplet dominates the
formation process. The model incorporates a detailed geometric description of the drop shape during the formation
process combined with a force balance and necking criteria to define the droplet size, production rate, and spacing.
The model inherently captures the influence of the intersection geometry, including the channel width ratio and
height-to-width ratio, capillary number, and flow ratio, on the performance of the generator. The model is validated
by comparing it to speed videos of the formation process for several T-junction geometries across a range of
capillary numbers and viscosity ratios.
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I. INTRODUCTION

In the preceding paper we presented our experimental
observations on the operation of T-junction generators in
the transitional regime [1]. The T-junction configuration is
one of the most versatile designs for generating droplets
in microfluidic devices [2]. The T-junction geometries are
characterized by the width ratio �∗ = wd/wc of the dispersed
and continuous phase channels and the height-to-width ratio of
the microchannels h∗ = h/wc (refer to Fig. 1). The operational
mode of the generator is characterized by the capillary number
Ca = μU/γ (with U and μ the average velocity and viscosity
of the continuous phase, respectively, and γ the interfacial
tension), which expresses the relative importance of viscous
and capillary forces. At modest Ca, T-junction generators
operate in a transitional regime where confinement of the
emerging interface creates a buildup of pressure that shears off
droplets [3]. Our analysis of high-speed videos indicated that
the formation process could be divided into three sequential
stages: (i) a lag stage immediately after detachment of the
previous droplet where the interface recedes back into the side
channel, (ii) a filling stage where the droplet penetrates into
the cross-flowing stream and hydrodynamic forces deform the
droplet, and (iii) a necking stage where forces overwhelm the
droplet, leading to pinchoff of the droplet (see Fig. 1). We
identified several key parameters that describe the evolution
of the droplet including the lag distance Llag after detachment,
the penetration depth at the end of the filling stage bfill, the
necking stage bpinch, and the critical neck thickness at pinchoff
2rpinch. In the preceding paper we analyzed the dependence of
these parameters on geometric (�∗, h∗) and flow conditions
(Ca and the flow ratio ϕ = Qd/Qc).

In this paper we seek to develop a robust model that
describes the entire operation of a T-junction generator in the
transition regime so that one can predict the size of droplets
formed, the spacing between droplets, and the frequency of
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formation. An analysis of the three stages suggests that the
scaling law that describes the size of the droplets has the form

Vdrop

w2
ch

= αlag + αfill + βϕ, (1)

where the volume is normalized by w2
ch, αlag is the volume

added during the lag stage, αfill is the filling stage, and β is the
dimensionless necking time. These parameters are generally
obtained through empirical fitting; however, our goal in this
study is to develop mathematical expressions for these three
parameters based on theoretical arguments.

The model formulation begins with a general geometric
description of the three-dimensional (3D) shape of the droplet
throughout the formation process. This geometric description
is used to calculate the evolution of the volume of the
droplet during the three stages of the formation process. First,
the contribution of the lag stage αlag is calculated as the
volume added as the interface recovers in the side channel.
Second, the filling volume αfill is calculated, which includes a
different force balance that predicts the penetration depth and
includes viscosity and geometric influences. Third, the necking
parameter is calculated using a control volume analysis, which
also includes an alternative criterion for pinchoff based on
our own experimental observations in the transition regime.
In addition to the droplet volume, equations are derived for
the spacing and frequency so that the entire operation of the
generator is defined. The predictive capabilities of the model
are verified by performing a detailed experimental analysis to
validate the model across several different T-junction designs
and flow conditions.

II. MODEL DEVELOPMENT

A. Model limits and constraints

The model developed herein applies to droplet formation in
the squeezing-to-transition regime where the breakup process
is governed by the squeezing pressure generated as the
interface extends into the cross-flowing stream [3–5]. Fluid
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FIG. 1. Shown on top is the droplet formation cycle in the T-
junction generator consisting of three stages: the lag, filling, and
necking periods. Shown on bottom is the global overview of the T-
junction generator with the respective geometric and flow parameters
identified. Definitions include the flow rates Q, pressures P , and
widths w of the continuous, dispersed, and main channels and the
height h, which is uniform throughout the network. Droplets are
formed with a length Ld and volume Vd , at a frequency f and spacing
λ, and are transported along the channel at a velocity ud . The space
between the droplets occupied by the continuous fluid is Lc and
has a volume Vc. Several dimensionless terms define the operation
of the generator, including the width ratio �∗ = wd/wc, height-to-
width ratio h∗ = h/wc, flow ratio ϕ = Qd/Qc, and viscosity ratio
η = μd/μc.

flow is laminar and creeping with Re < 1 so that inertia forces
are negligible and buoyancy forces may also be ignored.

Droplets grow large enough to fill the entire cross section
of the channel and form plugs that are longer than the channel
width. Droplets are nonwetting and their shape is assumed to
be in a state of quasiequilibrium that attempts to minimize the
surface energy throughout the formation process. Marangoni
stresses and dynamic interfacial effects are neglected in the
following analysis, so it is assumed that the interfacial tension
does not change during the formation process and is equal to
the equilibrium value. This is valid when surfactants are absent
from the system, as is the case for the experiments performed
in this study, or when adsorption kinetics are fast compared to
the formation process [6,7].

The confined geometry stabilizes the neck filament against
perturbations such that the mechanism for pinchoff is not the
growth of capillary instabilities, as is the case for unconfined
geometries [8], but the reversal of flow around the drop due to
Laplace pressure changes as the droplet shape evolves [9,10].
Only the condition where the two flow rates are relatively
steady during the entire formation process is considered, thus
the following model is applicable to both syringe pump and
pressure driven flow as long as this condition is met. The
geometry we consider is limited to cases where h � wd and
wc. In the following discussions, we denote dimensionless
values by an asterisk, where lengths are normalized by wc and
volumes by w2

ch.

B. Geometric description of droplet

The general description of the shape of the droplet during
the formation cycle is shown in Fig. 2, which follows the
description provided by van Steijn et al. but modified into a
more general form applicable to the transition regime [11].

FIG. 2. (Color online) Geometric reconstruction of the droplet
shape as it is being formed in the transition regime.

From the 2D planar view of the droplet, the 3D shape is
reconstructed by assuming that the interface is confined by
the upper and bottom walls and that it attempts to minimize
surface energy so that the out-of-plane curvature is h/2.
The interface penetrates a distance b into the main channel.
The difference between the far channel wall and the interface
is the gap width wgap = (wc – b). A half circle of diameter b

defines the front half of the droplet, while the back is defined
by a circle of radius Rn. The shortest distance from the corner
of the T-junction to the back of the droplet is the neck thickness
given as 2rn.

The nondimensionalized volume of the droplet can be
estimated from the 2D shape by projecting the area Ap

∗
through the channel depth and then including the out-of-plane
curvature along the perimeter l∗ = l/wc:

V ∗ = A∗
p ±

(
h∗

2

) (
1 − π

4

)
l∗. (2)

A negative sign is used in the second term for the dispersed
phase, while a positive sign is used for the continuous phase.
This geometric description serves as the basis for deriving
expressions for the droplet volume and neck shape during the
formation process.

1. Lag stage

Immediately after a drop detaches the interface recedes
back into the side channel to a distance Llag. Once the interface
recovers it proceeds forward until it reaches the entrance of the
channel (see Fig. 1). The volume of this recovery represents
the portion of the total volume that is contributed by the lag
stage.

Based on the geometric representation presented in Fig. 3
and the application of Eq. (2), the dimensionless lag volume
is given by

V ∗
lag = αlag = L∗

lag�
∗ + 1

2

(
1 − π

4

) (
(�∗)2 + π�∗h∗

2

)
,

(3)

where �∗ = wd/wc is the width ratio and h∗ = h/wc is the
height aspect ratio. Experimental observations showed that
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FIG. 3. (Color online) Interface shape immediately after detach-
ment where it recedes back into the dispersed phase inlet. The position
of the interface relative to the main channel is defined by the lag length
Llag and the volume is defined by Vlag.

Llag is a complicated relationship between the flow conditions
and geometry [1]. An adequate description is not available at
the moment for Llag; thus, in the present model, Llag is taken
directly from experimental measurements and substituted into
Eq. (3).

2. Filling stage

The filling stage ends when forces on the droplet balance
and the neck of the droplet starts to collapse toward the inner
corner of the T-junction. In concurrence with observations
made by Christopher et al. and van Steijn et al., our own
interpretation of the experimental evidence also advocates that
the final size of the droplet at the end of the filling stage has the
characteristic shape described in Fig. 4 [3,11]. Again, the front
half of the droplet is defined by a half circle of diameter bfill and

FIG. 4. (Color online) Droplet shape at the end of the filling
stage for two cases where wd � bfill and wd > bfill. The drops are
characterized by the extent of the protrusion bfill and the neck radius
at the filling stage Rfill. For the circular segment, the height is given
by b and the radius of the circle is wd .

the back half is defined by a quarter circle of diameter Rfill. Two
cases exist depending on the geometry of the T-junction: the
neck radius is confined (i) by a virtual channel wall created by
the interface at bfill or (ii) by the inlet channel. This condition
is defined as Rfill = max(wd ,bfill).

The final volume at the end of the filling stage can
be calculated by applying Eq. (2) to the two shapes. For
wd � bfill the result is

αfill = 3

8
π (b∗

fill)
2 − h∗

2

(
1 − π

4

)
[πb∗

fill + (b∗
fill − �∗)]. (4a)

For wd > bfill, the calculation is slightly different as the back
part is defined by a half circular segment [12]:

αfill = π

8
(b∗

fill)
2 + 1

4
(�∗)2(θ − sin θ)

− h∗

4

(
1 − π

4

)
(πb∗

fill + �∗θ ), (4b)

θ = 2 arccos

(
1 − b∗

fill

�∗

)
.

The remaining unknown in the preceding equations is b∗
fill,

which is determined by a force balance on the droplet presented
in Sec. II.

3. Necking

During the necking period additional fluid is being pumped
into the droplet as the neck collapses. The increase in size of
the droplet during this stage is related to the time that the neck
remains open and the flow rate of the dispersed phase. Only
a portion of the continuous phase flow collapses the neck and
this depends on this correlates with the fraction of the flow that
is blocked by the interface [1].

The factor β essentially represents the dimensionless
necking time β = �t∗sq = �tsqw

2
ch/Qc. To determine �t∗sq,

van Steijn et al. applied conservation of mass to the continuous
phase in order to describe the changing shape of the neck in
terms of the radius Rn [11]. As the neck collapses the radius
becomes larger and the neck approaches the inside corner of
the T-junction; once it reaches a critical distance 2rpinch, the
rate of collapse increases exponentially. Therefore, the shape
of the neck at the point of collapse needs to be known to
calculate β.

Consider the deformable control volume consisting of the
continuous phase surrounding the neck as shown in Fig. 5. The
change in shape of the control volume during the squeezing
process is related to the relative inflow and outflow of the
continuous phase across any boundary, which in this case
reduces to [13]

dVCV

dt
= Qc

(
1 − A∗

bp

h∗

)
. (5)

The dimensionless bypass area is given as

A∗
bp = A∗

gap = (1 − b̄∗)h∗ +
(

1 − π

4

)
(h∗)2

2
, (6)

where b̄∗ is the average penetration depth during the necking
stage b̄∗ = (b∗

fill + b∗
pinch). Nondimensionalizing Eq. (5) and

integrating with respect to time from the initial filling volume
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FIG. 5. (Color online) Sequence of traces showing the boundary of the droplet as it evolves during the squeezing stage. At first the neck
shape follows a quarter circle until it becomes pinned within the dispersed phase channel at a distance wd ; it then follows the shape of a circular
segment. The control volume around the neck is highlighted in light gray (green). At the bottom, the detailed geometry and flow parameters of
the control volume are shown.

V ∗
cfill

to the final pinch volume V ∗
cpinch

, the factor β can be
recovered:

β = (
V ∗

cpinch
− V ∗

cfill

) (
1 − A∗

bp

h∗

)−1

. (7)

Here the assumption is made that 1 − A∗
bp/h

∗ represents the
fraction of the continuous phase actually squeezing the neck
and not bypassing it through the gap [1].

Applying Eq. (2) to the 2D area of the control volume at
the end of the filing period we obtain

V ∗
cfill

= (1 − b∗)R∗
fill +

(
1 − π

4

)
(R∗

fill)
2 + πh∗

4

(
1 − π

4

)
R∗

fill.

(8)

To describe the evolution of neck shape, van Steijn et al.
used a quarter circle to approximate the shape of the neck
throughout the necking process. However, we found that this
approximation consistently underestimated the necking time
in the transition regime. At first the neck does in fact follow
a quarter-circle shape; however, once the continuous phase
penetrates into the side channel a distance wd it remains
pinned at this distance while the neck radius continues to grow,
resulting in a longer necking period (refer to Fig. 5). At this
point, a better description of the neck shape is a half-circular

segment [12]. Using the definition of variables in Fig. 5, the
back of the droplet is described by

d∗ = b∗
pinch + �∗,

a∗ =
√

d∗(2R∗
pinch − d∗),

(9)

θ = 2 arccos

(
1 − b∗

pinch + �∗

R∗
pinch

)
,

2r∗
pinch − ε∗ = R∗

pinch −
√

(R∗
pinch − b∗

pinch)2 + (a∗ − �∗)2,

where R∗
pinch is calculated for a specific 2r∗

pinch by iterating
the set of equations above. The final pinch volume for the
half-circular segment is then given as

V ∗
cpinch

= (1 − b∗
pinch)a∗ + (1 + �∗)a∗

− (R∗
pinch)2

4
(θ − sin θ ) + h∗θ

4

(
1 − π

4

)
R∗

pinch. (10)

Experimental observations showed that for the geometries
considered in this study b∗

pinch increases by approximately
20% after the filling stage to the end of necking, capped
by the far wall (b∗

pinch � 1). Therefore, in the following
calculations involving the second stage of formation the
following expression is used: b∗

pinch = min(1.2b∗
fill,1).
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FIG. 6. (Color online) Diagram indicating the forces acting on the
emerging droplet in the filling stage. As the droplet grows it obstructs
the continuous phase, resulting in a pressure difference across the
droplet as well as shear stress on the interface. These two forces are
countered by the interfacial tension force, which resists deformation.
At some point the droplet reaches a maximum size characterized
by the dimension b, where the pressure and shear forces exceed the
surface tension force and the neck begins to thin.

Once V ∗
cpinch

is known it is substituted into Eq. (6) to
determine the necking factor β. So far the two factors α and
β have been defined; however, there are still two unknown
quantities b∗

fill and 2rpinch that need to be defined.

C. Force balance on the emerging droplet

Following the estimates put forth by Garstecki et al.
and Christopher et al., three primary forces govern droplet
formation: the interfacial tension resisting deformation, the
tangential shear acting on the interface, and the squeezing
pressure across the droplet (refer to Fig. 6) [3,4]. Necking
begins once the stabilizing capillary force is overwhelmed
by the shear and pressure forces. The penetration depth bfill

defines this point.
The capillary force is associated with the Laplace pressure

difference between the upstream and downstream ends of
the emerging droplet interface. Based on the droplet shape
at the end of the filling phase (refer to Fig. 4), the upstream
interface has a curvature kd = 2/b + 2/h, while the
downstream curvature is ku = 1/Rn + 2/h. The sum of
these two Laplace pressures, multiplied by the area over which
the force is applied, A ∼ bh, gives the resulting capillary force
Fγ ≈ –γ h. The viscous shear force acting on the droplet
may be estimated as the average shear stress on the interface
multiplied by the exposed area A ∼ bh and is given as Fτ ≈
τ intbh. The partial blockage of the continuous phase flow by the
emerging interface creates a pressure drop across the droplet.
The resultant force is the difference between the upstream and
downstream pressures multiplied by the exposed area A ∼ bh:
Fp ≈ �Pu−dbh. The filling stage ends when the three forces
sum to zero:

Fτ + FP + Fγ = 0. (11)

Initial models by Garstecki et al. and Christopher et al.
estimated the pressure drop through a simple scaling analysis
based on the Hagen-Poiseuille relation in a thin gap [3,4]. Here
the same approach is taken to quickly estimate the relative

magnitude of the shear and pressure forces. Approximating
the shear rate on the droplets as the average velocity through
the gap wgap = (wc– bfill) divided by the height τint ≈ μcugap/h,
the resulting shear force becomes

Fτ ≈ μcbfill

wgaph
Qc. (12)

The pressure drop can be approximated using the lubri-
cation analysis for pressure drop between two parallel
plates�Pu−d ≈ 12Qcμcbfill/(wgaph)2 resulting in a pressure
force give by [13]

FP ≈ 12μcb
2
fill

w2
gaph

Qc. (13)

Taking the ratio of the two forces in order to estimate their
importance we obtain

Fτ

FP

≈ wgap

12bfill
= (wc − bfill)

12bfill
. (14)

Under typical conditions for droplet generation in the T-
junction (Ca = 0.0001–0.02 and b∗ = 0.6–1), the shear stress
force is only 0–5% of the pressure force. Therefore, it is safe to
neglect the contribution of shear stress from the force balance
on the emerging interface.

To accurately predict bfill the remaining issue is to develop
a model that captures the pressure drop across the droplet
correctly. This is not straightforward as the flow profile through
the gap is quite complex since the region is comprised of
three walls obeying the no-slip conditions and the fourth is the
interface where the shear and velocity between the two phases
must be continuous. In addition, the shape of the interface
creates a curved boundary in both the out-of-plane and in-plane
orientations, resulting in a 3D flow profile throughout the gap,
which does not lend itself to a simple analytical solution. For
this reason, a semianalytical solution was developed based on
asymptotic limits to the flow profile using the assistance of
numerical simulations.

III. PRESSURE DROP CALCULATION

Tchikanda et al. numerically modeled pressure and shear
driven flow in open rectangular microchannels with one
boundary being a curved interface. Their intended application
was the design of evaporative microfluidic cooling devices
with parallel liquid-vapor flows [14]. The authors performed
2D numerical simulations to obtain the flow field for various
gap shapes and then developed analytical solutions by blending
asymptotic results for limits of channel aspect ratio and
interface curvature. For example, when the gap is large and the
interface is flat, the flow resembles that between two parallel
plates. If the interface is curved and the gap is small then flow
is primarily through the two disjoint corners (see Fig. 7).

Tchikanda et al. provide separate solutions for shear and
pressure driven flow that may be combined due to the linearity
of the Navier-Stokes equations in the lubrication limit [14].
The analytical solutions are easy to apply and are accurate
to within a few percent compared to the numerical solutions.
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FIG. 7. (Color online) Geometry of the gap where the fluid
bypasses the droplet for flow fluid flow model of Tchikanda et al.
Examples of the limits of corner flow and parallel plate flow are also
illustrated.

The authors provide solutions in terms of the dimensionless
average velocity in the area occupied by the fluid:

ū∗ = Qcμc

Ah2(−∂P/∂z)
(15)

where h is the height of the channel, A is the area of the
conduit, μ is the viscosity, Q is the flow rate, and −∂P/∂z is
the pressure gradient. Integrating the pressure gradient over a
uniform conduit of length L, the equation can be rearranged
into a format similar to the Hagen-Poiseuille law [13]:

�P

Q
= Rhyd = L

ū∗Ah2
μ, (16)

where Rhyd is the hydrodynamic resistance and L/ū∗Ah2is the
geometric component.

Using the notation of Tchikanda et al., the geometry of the
gap corresponds to an interface with a contact angle of 0◦ [14].
The relevant dimensions for the gap geometry are shown in
Fig. 7. The nondimensional area is then given as

A∗
gap = (1 − b∗)h∗ + 1

2
(h∗)2

(
1 − π

4

)
. (17)

The average dimensionless velocity is provided as a blend
of asymptotic solutions u∗

1 and u∗
2, given by the following

expression:

ū∗ =
[

(u∗
1u

∗
2)m1

(u∗
1)m1 + (u∗

2)m1

]1/m1

. (18)

The expression approaches u∗
1 in the limit of u∗

1 � u∗
2 and

u∗
2 in the opposite limit of u∗

1 � u∗
2. The shape of the blend

is controlled by the fitting parameter m1. The first asymptote
u∗

1 corresponds to a wide aspect ratio gap λgap = h∗/(1 − b∗)
or flow between two infinite plates (top and bottom of the
microchannel) u∗

1 = 1/12. The second asymptote approaches
two limits. The first is when the gap is very shallow and the
interface is flat; the second is when the crest of the meniscus is
in contact with the wall and flow is only through the corners:

u∗
2 =

[(
1

aλgap + 3λ2
gap

)m2

+ (u∗
co)m2

]1/m2

, (19)

where u∗
co = 0.0027 is the corner asymptotic limit.

FIG. 8. Dimensionless mean velocity as a function of the gap
aspect ratio with the two limits of parallel plate flow and corner flow
identified.

We repeated the numerical simulations and found different
optimum fitting parameters m1 = 1.25, m2 = 0.90, m3 = 1.88,
and a = 7.90 for our geometry. With this curve fit the average
error compared to the numerical results is less than 1.5%. The
shape of the average mean velocity function including the two
asymptotes is shown in Fig. 8.

Two additional effects are absent in the approximation
by Tchinkada et al. that are present in the situation of the
bypassing flow. First, the solutions correspond to a conduit
with a uniform cross section. Curvature of the droplet in
the x-z plane creates a nonuniform gap profile. Second, the
analysis assumes a zero-shear boundary at the interface, which
is appropriate for conditions where the continuous phase
viscosity is much greater than the dispersed phase viscosity
(η→0). Higher viscosity ratios act to modify the shear stress
condition on the interface, resulting in an increase in resistance
to flow through the gap. We performed numerical simulations
and developed additional factors Leff for the curvature and
g(η,λgap) for the viscosity contrast that modify Eq. (16).

A. Effective pressure drop length

The interface curvature in the x-z plane creates a constantly
varying gap profile along the length of the droplet. The pressure
drop generally scales with the cube root of the smallest
dimension; therefore, one expects that the effective length
over which the majority of the pressure drop occurs in the gap
will vary with the penetration depth b∗. Such a dependence
was derived by Stone in his study of lubrication flow through
shallow curved gaps [15]. Because of the complex shape of
the droplet, a solution to the pressure drop requires a full 3D
analysis of the flow field. For this reason a numerical study of
the flow field through the gap was performed using COMSOL

Multiphysics 4.1.
Simulations were performed for different droplet sizes

b∗ = 0.5–1 and channel heights h∗ = 0.2, 0.35, and 0.5. Only
one half of the droplet was simulated due to symmetry along
the x-z plane as shown in Fig. 9. Five channel lengths were
added before and after the droplet to ensure that the flow field
is properly realigned at the entrance and exit.
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FIG. 9. Simulation domain of the 3D numerical model. Calcu-
lations were performed only for the continuous phase. Boundary
conditions are no slip at all the channel walls and no shear at the
droplet interface.

No-slip conditions were applied to all microchannel walls
and a no-shear condition was applied to the interface of
the droplet. A symmetry boundary condition (no shear) was
applied at the plane of symmetry. At the entrance and exit
pressures were fixed. For each simulation the pressure drop
was measured at two planes just before and after the droplet
(the total distance between planes is 1.5b). Additionally, the
average velocity in the channel was measured to calculate the
total flow rate and determine ū∗.

The goal here is to still utilize the curve fits provided
by Tchiknada et al. because of their inherent simplicity
and accuracy while adding the influence of the out-of-plane
curvature. This is accomplished by calculating the equivalent
length of channel of the uniform cross section for the minimum
gap, which will produce the same pressure drop as the
3D numerical simulation. Mathematically this relationship is
given as the ratio of the pressure drop from the 3D numerical
simulations to the pressure drop from the asymptotic model
(L∗

eff =Leff/wc = 1.5b∗�P3D/�Pasy). Figure 10 plots the ratio
�P3D/�Pasy as a function of b∗ for a range of h∗ for droplets
following the shape of wd � bfill. Normalizing the 3D result
by the asymptotic model causes all of the data to collapse onto

FIG. 10. Effective pressure drop length L∗
eff . Data correspond to

h∗ = 0.2 (♦), 0.35 (�), and 0.5 (◦).

a single curve. The relationship for L∗
eff can be described by a

blend of limiting solutions consisting of a linear relationship
L∗

1 = −2.66b∗ + 2.88 and an asymptoteL∗
2:

L∗
eff = L∗

drop

[
(L∗

1L
∗
2)k

(L∗
1)k + (L∗

2)k

]1/k

. (20)

For the case wd � bfill the coefficients are L∗
2 = 1.3, k = 6,

and L∗
drop = 1.5b∗

fill; for wd > bfill, L∗
2 = 1, k = 3, and L∗

drop =
�∗ + b∗

fill.

B. Viscosity contrast effect

Simulations were performed in two dimensions emulating
the cross-sectional view of the microchannel at the minimum
gap point. A pressure gradient was applied in the continuous
phase while no pressure gradient was applied in the portion of
the dispersed phase. Thus flow in the dispersed phase is caused
by the drag at the interface created by the bypassing contin-
uous flow. This situation approximates the actual conditions
prevalent in the gap during droplet formation. Generally, Qc >

Qd and the continuous phase must flow through a smaller area
∼(1 − b∗) then the dispersed phase ∼b∗. Thus the average
velocity in the gap region is typically an order of magnitude
higher than the velocity within the droplet, so that as an
approximation, one can consider the flow in the drop to be
stagnant in comparison. For the boundary conditions, no slip
is applied along all the microchannel walls and continuity at
the interface boundary.

Simulations were performed for gaps varying between
b∗ = 0.6 and 1 and viscosity contrasts between η = 1/100
and 1. Figure 11 plots the relative change in resistance to
flow as compared to the no-shear case for different viscosity
contrasts. The trend is a nonmonotonic function that generally
increases as the gap closes (b∗ = 0.5–1). Peculiarly, a
small decrease in the relative pressure drop occurs around
b∗ = 0.95 presumably due to the unique geometry and com-
peting boundary conditions on the flow within the gap region.
A two-step fit is applied to the function approximating the first
part λgap < 2 with a linear curve fit g(η,λgap) = a(η)λgap + 1

FIG. 11. Effect of viscosity contrast on the pressure drop from
the 2D numerical simulations. Data correspond to η = 0.1 (♦),
0.2 (�), 0.33 (�), 0.5 (+), and η = 1 (∗).
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and the second λgap � 2 as a constant. The slope of the linear
function scales proportionally with the viscosity contrast and
has the form a(η) = 0.1η (R2 = 0.96). The piecewise function
that defines the effect of the viscosity contrast is thus given by

g(η,λgap) =
{

0.1ηλgap + 1, λgap < 2

0.2η + 1, λgap � 2.
(21)

This relationship is used to modify the pressure drop
calculation provided by Tchinkada et al. and account for the
effect of viscosity contrast.

C. Reconstituted force balance

By integrating Eq. (16) the pressure difference over the
droplet can be calculated as

�Pu−d = LeffQcgapμc

h2(Agapū∗
gap)

g(η,λgap). (22)

Substituting into Eq. (11) and neglecting the shear stress con-
tribution, the force balance in dimensionless terms becomes

h∗

Ca
= 1

2

L∗
effg(η,λgap)

(A∗
gapū

∗
gap)

b∗
fill

(2 − b∗
fill/R

∗
n)

. (23)

For the case wd � bfill, Rn = bfill; for wd > bfill, Rn = wd when
calculating the force balance. This shows that the controlling
parameter for the fill volume is h∗/Ca. Equation (23) is iterated
until a convergent solution for b∗

fill is found. Once b∗
fill is known

it is substituted back into Eq. (4a) or (4b) to calculate αfill. A
comparison with experiment indicates that a prefactor of C =
1/2 fits well—a peculiar value as it suggests that the surface
tension force is underestimated by a factor of 2 or the pressure
force is overestimated by a factor of 2. The reason for this is
not quite known, but there are several explanations that can be
suggested. First, the force balance in the streamwise direction
is not the only contribution to the deformation of the emerging
interface as a force in the cross-stream direction also exists.
This force is caused by the pressure difference within the
droplet and the average pressure in the gap Fpx ∝ �Pu−d/2,
where the factor 1/2 appears. A second explanation is that
the pressure drop is reduced because the continuous phase is
also able to bypass the emerging interface through additional
conduits such as the top and bottom films or the near channel
wall. Third, the surface tension force may be underestimated
as we assumed that the out-of-plane curvature ∼2/h remained
the same for the front and back of the droplet, resulting in
the cancellation of out-of-plane curvature effects. It is well
known that the curvature of the front cap increases relative to
the back cap when droplets travel in microchannels [16]. If
we presume that this effect also occurs during drop formation
then it would contribute to an increase in the surface tension
force. Most likely a combination of these effects produce the
prefactor of 1/2 and untangling them would require a detailed
numerical study, which is beyond the scope of this current
work. Nevertheless, the penetration depth is well described by
Eq. (23) when a prefactor of 1/2 is used, as will be shown
later on.

From the force balance a criterion can also be found for the
point where the system changes from purely squeezing into

the transition regime. Considering the limit for the squeezing
regime to be when the interface reaches the far wall during the
first stage, Eq. (23) may be rearranged to determine the critical
Ca for the squeezing regime:

Casq � 1.7e−3 (h∗)3

g(η,λgap)
. (24)

This result shows that the critical limit for squeezing is very
sensitive to the height of the microchannel. Furthermore,
squeezing occurs for very low Casq = 2.05e−4 values (h∗ = 0.5
and η = 0), suggesting that, in practice, T-junction generators
always operate in the transition regime to some degree.

IV. CALCULATION OF THE PINCHOFF POINT

In order to incorporate the observed Ca and viscosity
dependence on 2r∗

pinch an alternative approach was taken.
The idea is that pinchoff occurs when the Laplace pressure
difference between the front and back of the droplet generates
a backward flow that exceeds some multiple m of the bypassing
flow QcA

∗
bp/h

∗. The Laplace pressure driven fluid flow around
the drop may be approximated by

�PLP = γ

(
1

Rn

+ 1

rn

)
− γ

(
2

bpinch
+ 2

h

)
, (25)

where the pressure created by the bypassing flow is given as

�PLP = Leffμcg(η,λgap)

h2(Agapū∗
gap)

mQc

A∗
bp

h∗ . (26)

Ignoring the smaller term of 1/Rn and rearranging Eqs. (25)
and (26), the critical neck thickness is given as

2r∗
pinch = h∗

1 + h∗
b∗

pinch
+ m

2
Ca
h∗

L∗
effg(η,λgap)

ū∗
gap

. (27)

In the case of Ca → 0, then b∗ → 1 and the limit from van Steijn
et al. is recovered for the squeezing regime [10]. Comparisons
with experiments show that the optimum fitting parameter is
m = 1. This means that the sudden collapse of the neck occurs
when the back pressure matches the hydrodynamic pressure
from the bypassing flow. Overall the alternative model for the
neck is more robust since it includes the interfacial tension and
viscosity in Ca as well as the resistance to fluid flow through
the gutters around the drop through ū∗.

V. OPERATIONAL PARAMTERS

In this section the other important operational parameters
are calculated, including the volume of oil injected between
the droplets, droplet spacing, and the frequency of formation.
The total volume of oil injected can be broken down into
three contributions: (a) oil that bypasses the droplet during the
lag stage when the interface is inside the dispersed channel,
(b) oil that bypasses the emerging interface during the drop
filling stage, and (c) oil that continues to bypass the droplet
during the squeezing stage:

Vc = Vclag
+ Vcfill + Vcneck . (28)
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FIG. 12. Plot of b∗
fill with respect to h∗/Ca for two different

channel aspect ratios and viscosity ratios.

The volume is related to the length of each stage and the
oil flow rate, which is assumed to remain constant throughout
the three stages:

Vc = �tlagQc + �tfillQc + �tneckQc. (29)

Note that during the necking stage Qc is used because all of
the flow either collapses the neck or bypasses the droplet and
thus eventually contributes to the spacing. The length of each
stage is given as �tlag = αlagw

2
ch/Qd , �tfill = αfillw

2
ch/Qd ,

and �tneck = βw2
ch/Qc. The nondimensional form becomes

V ∗
c = αlag + αfill

φ
+ β. (30)

The rate of production and droplet spacing are additional
parameters that are important in the design of a droplet
generator and can be derived using arguments similar to those
that were employed in the calculation of the droplet volume.

FIG. 13. Calculations of the new critical neck thickness for h∗ =
0.2, 0.35, and 0.5.

FIG. 14. Plot of α with respect to b∗
fill for various T-junction

geometries with a base value of h∗ = 0.5 and ε∗ = 0.

The spacing λ = Ldrop +Lc may be approximated by assuming
V ∗ ∼ L∗:

λ∗ = (αlag + αfill)

(
φ + 1

φ

)
+ β(φ + 1). (31)

The total time for droplet production is the sum of the three
stages: tdrop = �tlag + �tfill + �tsq. The period over which a
droplet forms is

t∗drop = αlag + αfill

φ
+ β. (32)

The normalized frequency is then the reciprocal of this
equation:

f ∗ = φ

αlag + αfill + φβ
. (33)

For the reader’s benefit, the complete set of equations is
concisely presented in Ref. [17].

VI. MODEL SUMMARY

Plots for the parameters b∗
fill, 2r∗

pinch, αfill, and β for various
conditions and T-junction designs are provided Figs. 12–15.

FIG. 15. Plot of β with respect to b∗
fill for various T-junction

geometries with a base value of h∗ = 0.5 and ε∗ = 0.

016323-9



TOMASZ GLAWDEL, CAGLAR ELBUKEN, AND CAROLYN L. REN PHYSICAL REVIEW E 85, 016323 (2012)

FIG. 16. Variation droplet generation for a T-junction geometry
of h∗ = 0.5 and �∗ = 0.5 for a fixed flow rate ϕ = 0.25 against the
capillary number.

The most important parameters governing droplet formation
are the T-junction geometry (wc,wd h) and the term h∗/Ca as
it governs b∗

fill and 2r∗
pinch.

Consider Fig. 12, which shows the calculation for b∗
fill for

different h∗ and two different viscosity ratios η = 0 and 1.
The plot shows that the relationship between b∗

fill and h∗/Ca
is nonlinear and as well as a modest dependence on h∗ and a
weak dependence on viscosity contrast. Overall, b∗

fill increases
with h∗/Ca until it becomes capped at the wall b∗

fill = 1. Often
this critical point is associated with the transition into the
purely squeezing regime of droplet formation, as predicted by
Eq. (24).

Figure 13 plots the ratio of critical neck thickness against
b∗

fill. The profile is nonlinear with an inflection point at b∗
fill =

0.833, which is caused by the relation b∗
pinch = 1.2b∗

fill and the
limit b∗

pinch � 1. To the left of the inflection point b∗
fill is still

free and the critical neck thickness increases; however, it then
decreases towards the inflection point because the gap closes,
thus increasing the resistance to flow around the droplet. To the
right of the inflection point b∗

pinch is capped at b∗
pinch = 1 and

all of the variables in Eq. (27) are constant, except for the Ca
term, which continues to decrease so that Eq. (27) approaches
the limit 2r∗

pinch → h∗/(1 + h∗).

FIG. 17. Parity plot of b∗
fill for all experiments. The solid line is

perfect parity and the dashed lines are ±10%.

FIG. 18. Parity plot of b∗
fill for experiments with L∗

eff and
g(η, λgap): silicone oil (◦) and with a constant L∗

eff = 0.25 (•). The
solid line represents the perfect parity and the dashed lines are ±10%.

Both αfill and β are primarily governed by the geometry
of the T-junction generator, with the width ratio �∗ having a
stronger influence than the height-to-width ratio h∗, as shown
in Figs. 14 and 15. As expected, the fill volume αfill decreases
with b∗

fill, which corresponds to higher Ca. What may be a
surprise is that the dimensionless necking time β actually
increases with higher Ca (seen in the plot as decreasing b∗

fill).
There are two contributions to this effect: (i) the emerging
interface blocks less of the crossflow, so a smaller fraction of
the continuous phase is directed to collapsing the neck and
(ii) higher Ca results in a lower 2r∗

pinch value, which means the
neck is open longer.

To illustrate the changing performance of a T-junction
generator with higher operational speeds (i.e., higher Ca), the
variation in V ∗

d , V ∗
c , andf ∗ is plotted in Fig. 16 for a standard

generator design (�∗ = 0.5 and h∗ = 0.3) while keeping the
flow ratio constant ϕ = 0.3. At lower speeds (Ca → 0) droplets
are larger and spaced farther apart, which also means that they
are produced at a comparatively lower rate. As Ca increases
smaller droplets are formed closer together and the rate of
production increases accordingly. This example clearly shows
the complex operational behavior of a T-junction generator
within the squeezing-to transitional regimes.

FIG. 19. (Color online) Parity plot of 2r∗
pinch for all experimental

measurements.
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FIG. 20. Parity plot of the droplet volume for all experimental
measurements.

VII. MODEL VALIDATION

The theoretical model was validated by comparing it to
experimental data for T-junctions with �∗ = 0.34–1 and
h∗ = 0.3–0.6 under conditions ranging from η = 0.12 to 1.7 and
Ca = 0.001 to 0.008. Details on the experimental procedures
were presented in the preceding paper [1]. This set of data
covers a wide range of conditions that are typically associated
with the transition between squeezing and dripping (b∗

fill =
0.7 − 1). All data that are presented were first screened to
verify that the flow rates are constant during the formation
process. This was accomplished by the tracking droplet
velocity ud as it is directly proportional to the total flow rate
Qc + Qd and by monitoring oscillations in droplet size Vd

and spacing λ as these two metrics are sensitive to the relative
flow rate ϕ. During the screening process we included only
data with <5% variance in all three metrics. Therefore, we
are confident that the condition of relatively constant flow is
satisfied.

The effectiveness of the model is measured by a series
of parity plots that compare the predicted penetration depth,
droplet volume, oil volume, and production frequency pro-
duced by the model to that measured in the experiments.
Perfect parity exists when the data fall along the solid black
line in the following figures.

FIG. 21. Parity plot of the continuous phase volume for all
experimental data points.

FIG. 22. Parity plot for the generation frequency for all
experimental data.

Figure 17 presents the overall accuracy for the calculation
b∗

fill from the new force balance for all the experiments.
Generally, the predictions are very good as most of the
data fall within an error range of ±10%, which is deemed
acceptable given the potential errors involved in measuring
all the parameters from the videos. Figure 18 demonstrates
the importance of including L∗

eff and g(η, λgap) in the force
balance. One could see that the omission of these two effects
results in a systematic overestimation of the penetration depth.

Figure 19 presents a comparison between predicted and
measured pinchoff. Good agreement is found, although there
is some scatter due to the difficulties measuring the exact
moment of collapse. Predictions for V ∗

d , V ∗
c , and f ∗ are

provided in Figs. 20–22, with an excellent correlation between
the experimental and model results as all data fall within
±10% of parity. This suggests that the model developed
herein is successful in predicting the performance of the
T-junction generator in the squeezing-to-transition regime
without excessive use of correlations. These results verify
that the alternative model is able to accurately predict the
performance of the T-junction generator in the squeezing-to-
transition regime.

VIII. CONCLUSION

In this paper II of our two-part series [1], we presented a
physical model for the formation of droplets in a microfluidic
T-junction generator operating in the squeezing-to-transition
regime. The model consists of three parts. The first is a
geometric description of the droplet shape and neck during the
formation process in the transition regime. This was followed
by an alternative force balance to calculate the initial fill
volume that includes hydrodynamic resistance of the gap by
incorporating the analytical approximations of Tchikanda et al.
[14]. Additional modifications to the resistance calculation
were developed that account for the 3D shape of the droplet
and the effect of the viscosity contrast between the two fluids.
Finally, a modified pinchoff criterion was developed based
on experimental observations that includes the shape of the
gap and the strength of the Laplace pressure driven flow. The
model captures the strong influence of the flow ratio, Ca, and
geometry on droplet formation.
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Good agreement was found between the model and
experiments for the droplet size, frequency, and spacing
across all the conditions considered, with most data falling
within 10% of the predicted values. Additionally, h∗/Ca was
identified as an important parameter for defining the flow
in the squeezing-to-transition regime as it determines the
degree of squeezing pressure created on the emerging droplet
interface. Although the current model was validated with
only liquid-liquid systems, it should translate just as well to
gas-liquid systems.

Despite the success, more testing is required to define
the applicability of the model. This includes extending the
range of experiments into �∗ > 1, Ca > 0.005, and η � 1
to determine the limits of the assumptions that were applied.
Future extensions of the model into the dripping regime must
include the shear stress in the force balance. Still, in its current

form, the model is sufficiently robust to enable the efficient
design of T-junction generators without the ambiguity of trial
and error methods. Other applications for the model may also
include direct integration into real-time control systems or
as a subroutine in a larger droplet network trafficking model
[18,19].
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