
Abstract
The analysis of nickel metal hydride (Ni-MH) battery 
performance is very important for automotive researchers and 
manufacturers. The performance of a battery can be described 
as a direct consequence of various chemical and physical 
phenomena taking place inside the container. In this paper, a 
physics-based model of a Ni-MH battery will be presented. To 
analyze its performance, the efficiency of the battery is chosen 
as the performance measure, which is defined as the ratio of 
the energy output from the battery and the energy input to the 
battery while charging.

Parametric sensitivity analysis will be used to generate 
sensitivity information for the state variables of the model. The 
generated information will be used to showcase how sensitivity 
information can be used to identify unique model behavior and 
how it can be used to optimize the capacity of the battery. The 
results will be validated using a finite difference formulation.

Introduction
There are several different approaches that are used to model 
car batteries. Most of them can be separated in two main 
categories. The first approach, also known as the circuit-based 
approach, tries to model the behavior of the battery as an 
electric circuit, (Salameh et al. [6], Chen and Rinćon-Mora [11] 
and Seaman and McPhee [8]). This results in a conceptually 
simple model. However in this approach, the actual physical 
parameters stay hidden and there is no explicit relationship 
between the model parameters and the battery parameters. 
This is precisely the point where the benefit of using a 
chemistry-based approach becomes apparent. In this second 
approach, the actual chemical reactions and other 
electrochemical processes inside the battery are captured 
(Newman et al. [2], [3], [4], Dao et al. [7], Wu et al. [5], and 

Banerjee et al. [9]). Due to its dominance in hybrid vehicles, a 
Ni-MH battery has been chosen for analysis in this paper. The 
main objective of this work is to perform analytical sensitivity 
analysis on a physics-based model of a nickel metal hydride 
battery. The Ni-MH battery model presented here is based on 
the battery model presented in Wu et al. [5] and Banerjee et al. 
[9]. This chemistry-based battery model allows users to access 
physical parameters of the battery directly, which makes this 
model suitable for design optimization.

Direct differentiation is used to generate the sensitivity 
equations from the governing equations, which are then solved 
to evaluate the sensitivities of the state variables with respect 
to the model parameters. In this paper, the feasibility of the use 
of sensitivity information for the optimization of NiMH battery 
model has been discussed.

Modelling of NI-MH Batteries
To capture the electro-chemical phenomenon inside the 
battery, one needs to start from the basic chemical reactions 
taking place at the individual electrodes. For this model the 
following chemical reactions are considered.

Main reaction on positive electrode:

(1)

Side reaction on positive electrode:

(2)

Physics-Based Models, Sensitivity Analysis, and 
Optimization of Automotive Batteries

2014-01-1865

Published 04/01/2014

Joydeep Banerjee and John McPhee
Univ. of Waterloo

Paul Goossens and Thanh-Son Dao
Maplesoft

CITATION: Banerjee, J., McPhee, J., Goossens, P., and Dao, T., "Physics-Based Models, Sensitivity Analysis, and 
Optimization of Automotive Batteries," SAE Technical Paper 2014-01-1865, 2014, doi:10.4271/2014-01-1865.

Copyright © 2014 SAE International

Downloaded from SAE International by University of Waterloo, Tuesday, March 14, 2017



Main reaction on negative electrode:

(3)

Side reaction on negative electrode:

(4)

The metal M in the negative electrode is an inter-metallic 
compound, usually a rare earth compound.

Governing Equations
To model these reactions the effects of two important 
quantities, that define the generation of the electromotive 
forces, must be captured properly. The first quantity is known 
as the open circuit potential difference and is given by the 
Nernst equation, Equations (5), (6), (7). The quantity ϕ denotes 
the thermodynamically predicted potential difference of the 
corresponding Red-ox reactions.

(5)

(6)

(7)

The quantities used in the equations (5), (6), (7) are 
summarized in Table 1 and 2. Detailed description of the terms 
can be found in Banerjee et al. [9].

Apart from the thermodynamically predicted potential 
difference, the other important quantity in this context is the 
over potential, which can be directly related to the rate of 
chemical reactions using the Butler-Volmer equations.

(8)

where i = 1,2,3 are for the reactions given in equations (1), (2), 
(3). The quantities i0,i are the exchange current densities that 
are functions of the reactant concentrations and the operating 
temperature. The exchange current densities are defined at a 
reference concentration and temperature. But for the purpose 
of the model, it must be adjusted dynamically to reflect the 
effects of changing temperature and reactant concentration. 
The following equations are used for this purpose.

(9)

(10)

(11)

For the oxygen reduction reaction on the negative electrode, 
i.e. the reaction shown in equation (4), the expression shown in 
equation (12) is used for the current density. This acts as a 
limiting current equation. The model parameters used in these 
equations are summarized in Table 2.

(12)

The battery current can be calculated from the current 
densities of the reactions at the electrodes.

(13)
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The mass balance equations for the cell are

(14)

(15)

The closed circuit voltage available from the cell can be 
calculated as

(16)

Where vpos and vneg are the net potential difference between 
the electrode and the electrolyte solution for the positive and 
negative electrodes respectively and can be calculated from 
the open circuit potential differences, i.e. equations (5), (6), (7), 
and the over-potentials, i.e. equations (8), (12).

(17)

The energy balance of the whole cell is described by the 
equation given below.

(18)

For the purpose of analysis it is also useful to define an 
additional state variable which would represent the state of 
charge (SOC) of the battery. Mathematically it can be 
expressed as a function of the concentration of Ni(OH)2.

(19)

As mentioned before the current work is based on the model 
by Wu et al. [5] and Banerjee et al. [9]. The model presented 
here has the following differences:

• The hysteresis potential behavior is excluded 
• Corrected expressions are used for the cell voltage and the 

over voltages. 
• Equations shown in (17) are added to define the relationship 

of the over voltages. 
• In equation (18), only the absolute value of icell × vcell is 

considered to rule out the possibility of negative values of 
the resistive thermal losses.

The state variables used in the equations presented above are 
given in Table 1. The various model parameters used in the 
equations were measured from a 3.9 Amp-h VARTA Ni-MH 
battery at the Ford Motor Company Scientific Research 
Laboratory (Wu et al. [5]), and are summarized in Table 2. 
Further details can be found in Banerjee et al. [9].

Structure of the Model
At this point it is necessary to identify the nature and structure 
of the system of governing equations in order to simulate and 
analyze the model. In this model there are 21 time-dependent 
entities, i.e. states denoted by {x(t)}. They are described and 
listed in Table 1. Equations (14) - (15) and (18) are first-order 
differential equations and the rest are algebraic, together 
comprising a system of first-order differential algebraic 
equations (DAEs). The structure of the system can be 
expressed as

(20)

where Φ is the vector of algebraic constraint equations, i.e. 
functions of {x(t)} and the model parameters {b}. The 
differential variables {q(t)}are a subset of the generalized 
states as shown in equation (21).

(21)

To solve the system using numerical methods, consistent initial 
values of all the generalized states need to be specified.
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Table 1. List of generalized states 

For a DAE system, the initial conditions must be properly 
specified so that they satisfy all the constraint equations of the 
system. However, the four differential variables are 
independent and can be assigned arbitrarily. Table 3 shows the 
initial conditions used for the simulation used in this paper. The 
rest of the initial values can be obtained by solving the 
algebraic constraints.

Table 2. List of Battery parameters 
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Simulation
The input to the model is the current passing through the 
battery. Positive values of icell denote the discharging process, 
where negative values denote the charging phase. Although 
the quantity icell can be a function of time, for this study we 
have assumed a constant value for both charging and 
discharging processes.

The choice of initial conditions reflects the type of physical 
scenario being simulated. Table 3 lists the values used as initial 
conditions for the charging process.

Table 3. Initial values used to simulate the charging process

For this study, the initial values of the concentrations are 
chosen to correspond to an initial state of charge of 0.01. The 
integration is continued until a state of charge of 0.99 is 
achieved and the subsequent simulation of discharge is 
continued until the state of charge comes down to the initial 
value of 0.01.

At this point, it is necessary to provide a brief description of the 
simulation environment used in this study.

Maple
Maple is a general-purpose computer algebra system 
developed and marketed by Waterloo Maple Inc. It 
incorporates a dynamically-typed programming language that 
resembles Pascal. There are provisions for interfacing with C, 
Fortran, Java and Matlab. The heart of Maple is a kernel 
written in C. This provides the Maple language. Most 
mathematical functionalities are provided by libraries. The 
usual user interface is written in Java.

The main feature of Maple is the ability to manipulate symbolic 
equations and expressions. It contains a very large library of 
symbolic operations. Simplification and modification of 
symbolic expression are routinely done by Maple. Apart from 
the symbolic capabilities, Maple can also be used for numerical 
simulations. Advanced numerical routines allow users to solve 
complicated large systems of ODEs and DAEs using a variety 
of different algorithms.

Because of its excellent symbolic and numeric capabilities, 
Maple can be used to simulate dynamic models of electro-
chemical systems. In this study, Maple has been used to 
perform sensitivity analysis and design optimization on the 
presented model.

MapleSim
MapleSim is a multi-domain modeling and simulation tool 
developed by Maplesoft Inc. It is capable of simulating 
electrical, electronic, mechanical, hydraulic and magnetic 
systems. The input to the software is the description of the 
system using components from a central library that can be 
drag-dropped on to a worksheet to build an acausal system 
model.
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MapleSim is built upon Maple, which enables it to perform very 
effective symbolic simplifications of the generated equations. 
Also, using Maple's DAE and ODE solvers, it can simulate and 
plot the output of the models in an interactive three-
dimensional environment. It can also perform post-processing 
on the generated data using predefined templates.

Apart from the built-in library of standard components, 
MapleSim allows users to create custom components for user 
specific implementation. These custom components are based 
on the Maple language and can be readily included in models 
created using MapleSim's standard components. It is also 
possible to create custom components based on Modelica 
code.

The model presented here has been implemented in 
MapleSim™ as a custom component. In this way the model 
can be used as a sub-system for various applications.

Organization of Computation
The model implemented in MapleSim is first simulated with 
different values of constant currents to simulate charging and 
discharging operations. Figures 1 and 2 shows the resulting 
plots where the variation of vcell is plotted against time for both 
charging and discharging scenarios.

Figure 1. Variation of vcell for different values of charging current 
(Charging operation SOC = 0.01 to 0.99)

For the validation of the model behavior, the charging and 
discharging characteristics were compared to that obtained by 
experiments. The experimental data was measured at A & D 
Technology in Ann Arbor, Michigan, USA. Figure 3 shows the 
comparison of the experimental and simulated behavior of the 
system. It illustrates the congruity of the simulated charge 
discharge behavior and the experimentally obtained data. The 
plot shown in this figure is obtained by simulating the model 
using a constant icell = 0.2 A. The plots clearly show that the 
model is able to capture the dynamic behavior of a NiMH 
battery with reasonable amount of accuracy.

Figure 2. Variation of vcell for different values of discharging current 
(SOC 0.99..0.01)

Figure 3. Comparison of model behavior with experimental data for 
validation purposes

Please note that the model parameters shown in table 2 do not 
correspond to the battery used for the experimental validation 
in the earlier paper. The parameters used for the model 
validation as shown in figure 3 were obtained using parameter 
identification procedures. The purpose of figure 3 is to 
demonstrate that the model has indeed been validated 
previously for actual batteries.

Figure 3 also demonstrates the effect of the internal resistance 
of the battery. By close observation of figure 3, it can be clearly 
seen that the final value of vcell achieved after the charging 
process is slightly higher than the initial value of vcell at the 
beginning of the discharge phase. This drop in potential 
difference is caused by the potential drop across the internal 
resistance that is inherent to the system.
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Figure 4. Differences between the charging and discharging curves for 
different values of current icell.

The losses incurred in the simulated process of charging and 
discharging of the cell are illustrated in figure 4, where the 
charging and discharging characteristics are plotted on each 
other for different values of charging/discharging currents. The 
differences in the curves clearly identify the amount of energy 
that is lost in the process.

Sensitivity Analysis
To evaluate the sensitivity of any objective function with respect 
to the model parameters, one needs to evaluate the 
sensitivities of the state variables with respect to the model 
parameters first. These quantities can be evaluated by solving 
the sensitivity system which can be readily obtained from the 
governing equation (20) through direct differentiation.

By differentiating equation (20) with respect to an arbitrary 
scalar model parameter bj and using the chain rule of 
differentiation equation (22) is obtained.

(22)

In the above expression, the subscripts represent partial 

differentiation and the symbol  refers to the vector  being 
kept constant during the differentiation.

From equations (14), (15) and (18) it is apparent that M is an 
identity matrix. From this it follows that

(23)

Substituting (23)|into equation (22) a simplified set of DAEs for 
the sensitivity system is obtained.

(24)

By combining equations (24) and (20) a combined set of DAE 
is obtained

(25)

Where

(26)

Equation|(25), when solved yields the values of all the state 
variables and their sensitivities with respect to the model 
parameter bj.

Figure 5. The variation of the sensitivity of vcell with respect to different 
model parameters

In this study, the combined set of DAE illustrated in equation 
(25) is solved numerically in Maple to evaluate the sensitivities 
of the state variables. The current icell is kept constant at 2A for 
both charging and discharging phases and the simulation is 
continued from SOC = 0.01 to SOC = 0.99 and back.
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The dsolve[numeric] routine from Maple 16 is used for the 
simulation. The stiff rosenbrock_dae solver was used with 
maximum function evaluation set at maxfun=300000 with 
default error tolerance of ε = 10−6. It was observed that the 
value of maxfun is important for the successful completion of 
the simulation. Figure 5 shows the variation of the sensitivity of 
vcell with respect to different model parameters for a charging 
process from SOC = 0.01 to SOC = 0.99.

The plots shown in figure 5 illustrate the relative effects of the 
model parameters on the battery behavior. It clearly identifies 
the wall thickness of the cell to have the least effect on the 
variation of vcell. On the other hand the ambient temperature Ta 
is shown to have a larger albeit a fluctuating effect on vcell.

Design Optimization
Design optimization requires the minimization or maximization 
of an objective function that is usually a function of the 
generalized states and the model parameters. For example, 
the total available energy of the battery during a discharge 
process is considered here as the objective function.

(27)

The total available energy from the battery depends on many 
factors. To ensure standardization, in this analysis it is 
assumed that the battery is being discharged from the state of 
charge SOC = 0.99 to a state of charge SOC = 0.01. The 
objective of the optimization process is to find the set of model 
parameters that enables the user to harness the maximum 
amount of energy from the battery given an initial state of full 
charge.

Gradient-based algorithms can be used to perform the 
optimization. These methods require the derivatives of the 
objective function to be optimized. This derivative is evaluated 
by differentiating the objective function with respect to the 
model parameter under study. Equation (28) shows the 
differentiated expression of the objective function shown in 
equation (27).

(28)

Numerical solution of equation (25) yields the values of vcell 
and its sensitivity as functions of time. Using numerical 
integration, equation (28) can be evaluated to yield the 
sensitivity of the objective function, which can subsequently be 
used in the optimization procedure.

It should be noted that, for a general situation where the model 
parameters do affect the integration limits, equation (28) is 
bound to give erroneous results for the sensitivity data. 
However, for specific problems and model parameters, these 

effects might be numerically negligible. Therefore to ensure 
accuracy, the results of the optimization must be carefully 
examined to rule out any inconsistencies introduced by this 
approximation.

Example Problem
To illustrate the process, a sample optimization problem will be 
presented in this section: to maximize the amount of energy 
that can be harnessed from a NiMH battery in a state of full 
charge.

The model parameters chosen for the optimization are the 
surface areas of the positive and negative electrodes (Apos and 
Aneg), and the concentration of the electrolyte, denoted by ce.

The purpose of the optimization is to identify optimal values of 
the model parameters Apos, Aneg, and ce that maximize the 
objective function given in equation (27), and satisfy the 
following constraints.

(29)

The optimization was performed in Maple, using a first-order 
gradient descent algorithm. At every step, the gradient of the 
objective function is evaluated using equation (28) and the 
corresponding system is simulated by numerically solving 
equation (25). The results of the optimization process are 
presented below.

Optimization Results
During the optimization iterations, the values of the selected 
model parameters were found to settle towards the boundaries 
of the constraint limits. This fact can be clearly illustrated by 
plotting the sensitivities of the objective function with respect to 
the model parameters.

Figure 6. The variation of the sensitivity of Edischarge with respect to the 
model parameter Aneg
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Figure 6 shows the variation of the sensitivity of the objective 
function with respect to the model parameter Aneg, which 
represents the area of the negative electrode.

The plot clearly identifies a decrease in the objective function 
with an increase in the model parameter's value. Also since the 
curve never crosses the x-axis, a stationary point is not 
obtained in this case. This is the reason why the parameter 
values were found to settle near the lower limit of the imposed 
constraints. This fact can be demonstrated by plotting the 
objective function for different values of Aneg in figure 7.

Figure 7. Variation of the objective function with different values of the 
model parameter Aneg

A similar trend is observed for the model parameter ce. Figure 
8 shows the variation of the sensitivity of the objective function 
with respect to the concentration of the electrolyte,

Figure 8. The variation of the sensitivity of Edischarge with respect to the 
model parameter ce

The sensitivity of the objective function with respect to ce is 
found to be an order of magnitude greater than that found in 
figure 6. This is partly due to the differences in the amount of 
influences the model parameters have on the objective function 

and partly due to the fact that these quantities are absolute 
sensitivity values and they represent changes in the objective 
function for unit changes in the model parameters.

Figure 9. The values of the objective function for different values of the 
parameter ce

The optimization results in the set of values for the selected 
model parameters as shown in equation (30), where the 

symbols , , and  represent the optimized values. 
The corresponding value of the objective function is given in 
equation (31). For the sake of comparison, the initial value of 
the objective function is also shown in equation (31).

(30)

(31)

Figure 10. Variation of the objective function with different values of the 
model parameter Apos
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The set of model parameters affect the discharge curve in a 
few ways. First it increases the total time of discharge from an 
initial 3.07 hours to an optimized 3.78 hours. It also increases 
the average value of the quantity vcell, which results in an 
overall increase in the total amount of energy harnessed from 
the system. These are clearly illustrated in figure 11, which 
shows the discharge curves for the original and optimized 
system.

As mentioned before, a source of possible error for this 
formulation is the expression shown in equation (28). For this 
example, the results were numerically tested using a finite 
difference formulation.

For the model parameters Aneg and ce the effects of ignoring 
the changes in the limits of integration were found to be 
numerically negligible. For the parameter Apos however, the 
effect was found to be more prominent. This was caused by 
the influence of the positive electrode towards the increase of 
the discharge time. However, the overall effect of this 
approximation was determined to be insignificant for the 
outcome of the optimization process.

Figure 11. Discharge curves for the optimized and the original system

Conclusions
In an attempt to capture a part of the underlying physics 
governing a Ni-MH battery, a math-based model is presented 
in this paper. The model is based on the actual electro-
chemical process and it captures the charging discharging 
characteristics of a typical Ni-MH battery along with the effects 
of side reactions taking place at the electrodes. The charging-
discharging characteristics were found to be consistent with 
experimental data. The physics-based approach ensures a 
direct access to the actual physical parameters of the battery. 
The model has been implemented in MapleSim as a custom 
component and as such can be used as a sub-system to model 
various complicated system like hybrid vehicles.

Analytical sensitivity analysis was performed on the model to 
illustrate the application of sensitivity information for design 
optimization. An optimization problem was set up to maximize 
the total amount of energy that can be extracted from a battery 
at a state of full charge.

This study has used Maple for the simulations and analyses, 
due to its symbolic capabilities. This model is completely 
analytical and takes full advantage of symbolic formulation, 
which in turn permits the use of analytical methods for 
sensitivity analysis and related studies. Direct differentiation 
method is being used to obtain sensitivity information from the 
governing equations.

Currently the model does not account for some features of 
Ni-MH batteries. These batteries tend to self-discharge at a 
rate higher than that of alkaline batteries. Each charging / 
discharging cycle sheds active material from the electrodes, 
resulting in a decrease in the available energy. Also the internal 
resistance increases gradually over time, eventually making 
the battery unusable. These features limit the usable life of a 
battery. Future work on this subject would be focused on 
modeling these degradation phenomena. This model is 
expected to be acceptably accurate for low and moderate 
charging discharging currents. Temporal changes like change 
in concentration and potential within the electrodes are ignored 
in this model. Also the model presented here does not account 
for the hysteresis phenomenon.

One important shortcoming of this model is the assumption of 
a constant value of the internal resistance. The internal 
resistance of a NiMH battery is a complex quantity that is 
affected by many factors like battery temperature, battery 
geometry, state of charge, even shelf time [11, 10].

Under normal simulations, this assumption of constant value of 
internal resistance does not cause any inaccuracies. However 
when a design optimization is attempted to adjust the model 
parameters that affect the internal resistance, the deviations 
become more and more apparent. Therefore, to ensure that 
the model is suitable for optimization, proper modeling of the 
internal resistance is essential.

The use of MapleSim to model the effect of varying internal 
resistance is a current topic of research. As a multi-domain 
modeling tool, MapleSim is suitable for the use of experimental 
data in conjunction with the existing analytical model of the 
battery. Future research efforts will be directed toward 
experimental validation of the model of the internal resistance.
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