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Abstract

This work presents the implementation of an in-memory graph database management
system called Gromit. This graph database represents large and complex networks using
labelled property graphs, and encodes semantic information in property lists of the vertices
and edges. Gromit uses a vertex-edge graph model and represent both vertices and edges
as entities of the graph. Edges are stored in a doubly linked list manner in main memory.
We implement breadth-first traversal and depth-first traversal to retrieve data for queries.
This database supports concurrency and implements locking mechanisms for transaction
management. We deploy two benchmark suites from social network domain to evaluate
our implementation. These are GDBench and LDBC.
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Chapter 1

Introduction

Graph data structures are commonly used to represent complex relationships. They are
used in software frameworks for developing modern applications such as in social networks,
recommendation systems, and fraud detection. These applications not only involve in vari-
ous entities, but also requires perspective on connections between data. Therefore, graph is
a generic data structure to represent information in these applications. Graph computing,
therefore, involves bringing linked data into main memory and analyzing entities and their
connections. Applications such as social networks have large volume of data, frequent data
accesses and updates, and various data sources and types, which resemble that of big data.
There have been a lot of computing models proposed to process large scale of data, such as
Bulk Synchronous Parallel [36] model for parallel computing, and MapReduce [26] model
for distributed parallel computing. However, how to store and process dynamic graphs
with relationships between data efficiently captured is still a problem to explore.

One approach to implement support for graphs involves using existing technology such
as those offered by Relational database management systems (RDBMSs). These are con-
ventional databases to deal with graph analytics workloads. RDBMSs are ubiquitous in
enterprise systems for their robust and mature technology that has been developed over
decades [29]. They hold structured data in tables with references to connected data in
predetermined columns. Those references are key attributes of the referred records. To ex-
plore relationships between data, one has to do JOIN operations: retrieving related tables
for each reference present in data entries. If data are strongly connected, one has to retrieve
multiple tables from storage and then search and match references from each table. This
operation is memory-intensive and can add exponential cost in terms of processing time.
A response to this observation has been to develop native stored graph databases (GDBs).
Graph databases are database systems that build connections into data structures and
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represent information in the form of graphs. GDBs allow direct accesses from one piece
of data to its related ones since each node of the graph stores relationships itself. This
reduces performance overhead of the JOIN operation. Modern GDBs such as Neo4j [13],
Titan [16], and Sparksee [14] have emerged to process complex relationships in graphs.
These database systems usually support a flexible data model that can manage a variety
of domains. To respond to graph analytics queries such as social network recommendation,
GDBs usually need execute graph algorithms to retrieve information. These algorithms
include general traversals such as breadth-first search (BFS), depth-first search (DFS) and
other specific algorithms such as single-source shortest path (SSSP) and strongly connected
component (SCC).

In-memory GDBs are designed to shorten response times by avoiding expensive, but
frequent input/output operations during graph processing. Those GDBs use main memory
to store the data, and usually support higher transaction rates [33] compared with disk-
based ones. To allow large graph datasets to fit entirely in main memory, one can enlarge
the size of main memory or distribute datasets into multiple computing nodes. Since
memory prices continue to decline, it is practical to store data in computing systems with
terabytes of memory [33]. Distributed GDBs such as Titan [16] have been implemented
and incorporated in enterprises in order to process large volume of graph data.

GDBs usually execute multiple queries concurrently using multithreading to support
high transaction rate. Traditional locking has been implemented as the concurrency control
method in database systems such as Neo4j [13, 28]. Locks can be applied to different
granularities of the graph such as graph level, component level, and vertex level. Some
GDBs have locks on vertex and relationship level, such as Neo4j, and this provides the
opportunity for optimization with finer granularity of locks.

It is also noticeable that most graph databases have backends implemented in Java
[13,16]. These databases run on Java Virtual Machine with garbage collection, which makes
it difficult to run applications on simulators. However, there has been increasing amount
of research work on hardware designs to accelerate graph processing, such as hardware
prefetcher design [27] and processor architecture design [18]. These works require a graph
database as the application to run on top of simulators, such as Sniper [23], that allows
for micro-architecture exploration. A simulator-friendly graph database is demanded to
fill the role of memory-intensive application for simulation.

We design and implement a graph database backend written in C++ to serve as the
purpose of simulation. We present this in-memory graph database called Gromit that
stores social networks graphs. This GDB treats both vertices and edges as entities and
stores semantic information as attributes in each entity. Gromit uses two-phase locking as
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the concurrency control method and sets locks on a finer-grained level: fields of vertices and
edges. We implement benchmarks from GDBench [20] and LDBC [9] using both storage
and processing engines from Gromit . Gromit is implemented in C++ and hence allows
memory manipulation and management.The key reason to build this graph database is to
allow for micro-architecture exploration and hardware designs. This backend is accessible
online [8] for researchers to do hardware exploration.
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Chapter 2

Background

This chapter introduces a general database management system (DBMS) first and then
focuses on graph DBMSs. This chapter also describes transaction management (TM) and
widely used concurrency control mechanisms (CCMs) in database systems.

2.1 Database Management Systems

A database is an integrated collection of data. A DBMS is a software package that manages
this data. The relational model of data is the most commonly used one today. This model
stores relation in the form of table with a set of rows and columns. A DBMS employs
storage engines to create, read, update or delete this collection of tables while maintaining
relation between data. Although called relational DBMS (RDBMS), this model of database
does not store relationships explicitly. If one wants to retrieve information involving more
than one type of relation, several tables have to be searched for this inquiry, known as
query in DBMS. An example is shown in Table 2.1. Table 2.1 has records of two students
Sam and John who study at the University of Waterloo. To answer the query from Sam
that Who have been to UK and currently study at Univeristy of Waterloo, we have to search
Table 2.1 for records of persons and join this Table with table of University (Table 2.2)
and table of Country (Table 2.3) to see if this person’s country and university both satisfy
the criteria. When a query involves more relationships, database has to join more tables
for information. For each table, there may be thousands of records that meet one of the
requirements, therefore millions of records may have to be scanned for one query.

To simplify this type of search, graph DBMS is implemented for data with complicated
relationships. We focus on introducing graph DBMS in section 2.2.
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ID Name Age Gender Country University
0 Sam 19 Male 4 2
1 John 21 Male 3 2

Table 2.1: Person Table

ID Name City Country
2 University of Waterloo Waterloo Canada

Table 2.2: University Table

ID Name Capital City
3 Canada Ottawa
4 UK London

Table 2.3: Country Table

2.2 Graph Database Management Systems

Graph processing frameworks such as Pregel and Graph500 are well-known for their high
performance. These frameworks process large volumes of data in parallel and therefore,
have high throughput. They do analytical computation on graphs and are mostly optimized
for read operation. When we have complicated queries with more than read operation, we
need a management system such as TM (section 2.3) to support transactional processing.
We call a graph processing framework with such a management system a graph DBMS.

In a graph DBMS, the core engine includes designs of graph representation (section
2.2.1), graph structure (section 2.2.2), graph storage (section 2.2.3), and method of oper-
ating on data called graph traversal (section 2.2.4)

2.2.1 Property Graph

A graph is a collection of vertices and edges. Vertex is an entity that has incoming and
outgoing edges; edge is an object with a head and a tail vertex. We use G(V ,E) to denote
a graph where V represents the set of vertices and E ⊆ V ×V represents edges. Vertex and
edge illustrate basic relation between data but not all semantic information. We can use a
property graph to represent such information as well as basic relation. A property graph is
a graph whose vertices and edges are associated with attributes, also known as properties.
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In addition to properties, vertices and edges can be attached with labels. An example of
a property graph with three vertices and four edges is shown in Figure 2.1. This figure
converts information in Table 2.1, 2.2 and 2.3 into a property graph. Only properties of
vertex 0 are shown in the figure as an example.

4
0 1

32

:Country

:Person :Person

:University :Country

:Come_from

:Locate_in

:Follow

:Come_from

:Study_in

:Travel_to

:Study_in

1 3
2

0
4 5

6 7
Name:   Sam
Age:      19
Gender: Male

Notes: E7:V 0 → V 1

Figure 2.1: A Property Graph Example

Vertex In Figure 2.1, circles with id 0, 1 and 2 are vertices. Person and University are
vertex labels. Name, Age, Gender are vertex properties.

Edge Lines between circles are edges, e.g. edge 1 between vertex 0 and 4. They usually
represent relationships between two vertices, such as the edge Come from between vertex
0 and 4. Usually the connection has a direction indicating which vertex is the source and
which is destination. It is also noticeable that there may be multiple relationships between
two objects, for example, vertex 0 and 1 follow each other.

2.2.2 Graph Representation

There are several ways to represent a graph. Here are four common representations.
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Adjacency list Adjacency list is the most common graph representation. It consists of
an array of vertices, each contains a list of adjacent vertices in an arbitrary order. The
number of adjacent vertices for each vertex may not be fixed.

Adjacency matrix Adjacency matrix stores the adjacency information in a matrix.
Each value in the matrix indicates whether two given vertices are connected to each other.
Adjacency matrices require the same amount of memory space regardless of graph connec-
tivity.

Edge list Adjacency list and adjacency matrix are both vertex-centric representations.
As an alternative, we can use edge-centric model, which means edges are also entities in
the graph. In this case, graph is represented with a list of all edges. Each edge in the list
is a pair of vertices that are connected to each other.

Vertex-edge model Both vertices and edges can be entities in a vertex-edge model.
Usually each vertex keeps a record of its incoming or outgoing edges and each edge contains
references to head and tail vertices. In this way, all vertices and edges are linked to represent
the whole graph.

2.2.3 Data Storage

There are two major media for graph data storage: disk and main-memory.

Disk-based storage Traditionally, databases are stored on disk drives for their large
space and low price. Data is formatted in blocks to be read or modified, therefore disk
input/output (I/O) time is required to move data from disk to main-memory. With work-
loads where data are frequently accessed, I/O latency can be a bottleneck for performance.
However the benefit is that data is persistent in presence of power failure.

In-memory storage An in-memory database is stored in a computer’s main memory
and also managed by an in-memory management system. Since this storage avoids data
transfer overhead, database performance benefits from fast data access. The problem with
in-memory storage is that it suffers from data loss with machine failure or power failure.
Besides, the whole dataset has to fit completely in main memory, which is a limit to
main-memory storage.
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2.2.4 Graph Traversal

The key idea of graph traversals is to explore the graph starting from a given vertex and
visit its neighbors via edges. Based on the order of visiting vertices, traditional graph
traversals can be classified as breadth-first search (BFS) or depth-first search (DFS). BFS
visits all vertices of the same depth before exploring further distance while DFS always
explores vertices of the next depth first till leaf nodes (vertices without outgoing edges).

In a practical database, graph traversals tend to not explore the entire graph. Traversals
terminate with certain conditions, for example, the explored depth or the amount of visited
vertices are satisfied by the queries or certain data objects are retrieved. Therefore, we
define the terms breadth-first traversal (BFT) and depth-first traversal (DFT) to generalize
graph traversals in a practical graph DBMS. Several graph analytics algorithms are based
on BFT and DFT, such as the shortest path between two given vertices, the strongly
connected components of a graph.

2.3 Transaction Management

A transaction is a set of operations executed on data such as reading or deleting. Trans-
action management (TM) includes registering transactions in a global transaction table,
allocating resources to transactions, checking transaction status, and deciding if they suc-
ceed or not. If a transaction succeeds, it gives back all resources, changes its status, and
retires. This set of actions is usually called commit in DBMS. If a transaction does not suc-
ceed, it has to revert the database into previous state as if this transaction never happens.
This is called abort.

A database needs TM if it allows more than one transactions to read data or make
changes to a database simultaneously. This is because TM can guarantee desired properties
required by a database. These properties includes atomicity, consistency, isolation, and
durability, which constitute the data consistency model ACID. TM employs a variety
of CCMs to guarantee such properties and each method comes with its advantages and
disadvantages. Section 2.3.1 introduces various properties and a data consistency model.
Section 2.3.2 explains different CCMs and focus on one of them. Section 2.3.2 discusses
databases implementing a specific mechanism.
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2.3.1 Data Consistency Model

ACID is a known technique to provide databases with data safety. ACID transactions
guarantee the following properties:

• Atomicity: All actions in one transaction happen, or none happen.

• Consistency: If each transaction is consistent, and the database starts in a consistent
state, it ends up in a consistent state.

• Isolation: Execution of one transaction is isolated from that of other transactions.

• Durability: If a transaction commits, its effects persist.

Above properties can also be interpreted as rules for TM to safely execute operations.
Performance is often compromised under these constraints. Besides, for some domains and
use cases, ACID is more strict than a database really needs to be. Some compromises
are made for performance purpose. For example, data can be less consistent and more
available. A selection from data consistency models is specific to applications and usually
on a case-by-case basis.

2.3.2 Concurrency Control Mechanism

CCMs manage transactions in the way that desired outcome can be generated and op-
timized performance can be achieved. Two typical CCMs are lock-based protocol and
timestamp-based protocol. Lock-based protocol is a commonly used concurrency control
method and section 2.3.2 describes the details.

Lock-based Protocol

A database system usually guards data with read and write locks (R-W locks). Read
locks, or shared (S) locks, allow multiple transactions to read the same data concurrently
and write locks, or exclusive (X) locks, can be acquired by only one transaction at a time.
Various locking mechanisms in terms of lock granularity and lock protocol are implemented
for TM.
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Lock granularity In a graph DBMS, one instance of database includes a graph and
a graph can contain one or more graph components. Each component consists of vertex
and edge objects and both have multiple fields such as property and label. Locks can be
applied to different levels of data: those to a higher level such as graph level are regarded
as coarse-grained locks and those in lower level such as property level are fine-grained.
With coarse-grained locks, one transaction may obtain X lock on graph, but only make
changes to one vertex in a component. In this way, this transaction blocks others that
intend to read other graph components, therefore compromising overall performance. If
the database set locks on individual vertices, it needs a complicated locking protocol since
graph objects are related to each other, and changes to one object may affect another.
In brief, coarse-grained locking mechanism is beneficial for its simplicity and a finer one
requires more memory space and a complicated strategy, but allows larger concurrency
and potential performance gains.

Lock protocol Two-phase locking (2PL) is a widely used lock-based protocol. 2PL, as
the name indicates, has two phases: expanding and shrinking phase. Locks are acquired
only in expanding phase, and released one by one in shrinking phase. Once a transaction
releases any lock it acquires in expanding phase, it cannot request any additional lock.
This protocol guarantees serializability, which means the outcome of all transactions is
equal to that of all transactions executed sequentially without overlap in time.

Many variants of 2PL exist with various lock semantics to achieve better performance
without compromising serializability, including multiple granularity locking as mentioned
in section 2.3.2.

Deadlock detection Deadlock happens when two transactions request locks that are
held by the other. Figure 2.2 shows a possible deadlock with two transactions and two X
locks: transaction i (Ti) acquires X lock 1 (X1) and transaction j (Tj) acquires X lock 2
(X2). Now Ti requests X2 and Tj requests X1 and a deadlock is incurred in this situation.

Deadlock can be detected with a wait-for graph [19]. A wait-for graph records all
transactions that one lock is held by and all locks that trasactions are waiting for. In a
wait-for graph, transactions are denoted as nodes. If transaction Ti waits for a lock that
another transaction Tj is holding, there is an edge from the node Ti to node Tj. A deadlock
exists if any cycle is found in this wait-for graph. In case of a deadlock, a database system
stops one transaction from waiting for the lock it requires therefore breaks the cycle.

10



Ti X2
Tj

X1

Figure 2.2: A Deadlock

Other Protocols

Lock-based protocol is a pessimistic method because a transaction is blocked until certain
condition (for example, lock is free) is satisfied. A deadlock can cause larger performance
regression. Timestamp is a method designed to eliminate blocking and deadlock. One
classic timestamp-based protocol is timestamp ordering (TO). Each transaction obtains
a timestamp that records its starting time. The idea is to allow multiple transactions to
proceed until violations of timestamp are detected at the end of any transaction. These
transactions have to be aborted and then restarted in case of violations, which incurs an
overhead to database systems.

Since both blocking and aborting cause performance regression, other concurrency con-
trol mechanisms are explored and utilized in DBMS. Multiversion-concurrency-control
(MVCC) is a method used in many databases such as mongoDB [12]. The main idea
of MVCC is to create a new version of a database object once the object is modified by a
transaction while other transactions can read last relevant versions of this object according
to its scheduling rules. This method requires a large amount of extra memory besides those
needed to build database systems initially.

A database management system usually implements one or mixed methods from above
as a transaction management tool to achieve different performance goals. MongoDB, as
mentioned above, is an example that utilizes both MVCC and locking mechanisms at
different levels. At the global, database or collection (a group defined by mongoDB) level,
mongoDB implements multiple granularity locking. Fo individual storage engines, it allows
for MVCC on document-level. This mixed concurrency control mechanism helps mongoDB
achieve optimal performance at each level.
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Chapter 3

Related Work

3.1 Graph Database Management System

Graph database management systems have been the focus of research in recent years with
the increasing popularity of social graphs and web applications. Instances of graph DBMSs
including Neo4j [13], Titan [16], Giraph [6], and Sparksee [14] have been widely used for
product recommendation systems, fraud detection platforms, and social network systems.
To deal with the dramatically increasing workloads and provide high performance, re-
searchers investigate on different aspects of graph DBMSs, such as data structure, memory
layouts, and concurrency control mechanisms.

3.1.1 Graph Storage

In this section, I introduce various media that have been utilized to store graph data
objects. Traditionally, data objects are spread over disks for the persistence, low price and
large space. Neo4j [13] is a disk-based graph database and it saves vertices, edges, and
properties in separate files as native stores. Neo4j keeps linked lists of fixed size records
and these records are divided evenly into different files. The file system information such
as the region of vertex files is stored in a table for fast access.

Similar to Neo4j, System G [15] also stores the vertices and edges separately into two
sets of native stores and each store is saved in several disk files. Each vertex is assigned with
a unique internal sequential identity (ID) and stored in a table as the key. The value for
the corresponding key is the timestamp for the latest version of properties associated with
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the vertex. When the database is created, the table is loaded into memory for accessing
and querying.

Titan [16] also has a disk-based storage backend. It leverages adjacency list format
representation on disk: edges are co-located with the adjacent vertex and can be sorted
and maintained in the order customized by applications. Incident edges can be retrieved
from the same page on the disk or consecutive pages, which reduces random read from
disk.

Researchers observe that workloads of graph DBMSs are data intensive and DBMSs
spend a significant amount of time on reading from or writing to file system. Thus disk
I/O cost can be a bottleneck for graph DBMS performance and optimization has to be
done to reduce data access latency. One simple solution without altering data structures
is to cache the most frequently used data objects in main memory.

Neo4j caches file system information and part of graph objects in main-memory. Every
disk file is split into several regions and a table recording region addresses is cached.
Besides, simplified version of vertex and edge objects are also cached for accelerating graph
traversals.

Titan also creates and maintains in-memory caching. Main memory stores hotspots
of global adjacency lists and locally traversed subgraphs for reuse in further traversals.
Most likely, reusing graph objects can also increases cache hit rate, therefore improving
the overall performance.

3.1.2 Graph Data Layout

Data layout is another important factor that can be optimized for high performance. This
is because data layout affects the distance of two sequenctial data accesses in memory and
shorter distance results in smaller access latency. “Distance” is defined as number of blocks
between two data locations. Graph traversals explore the relationship between linked data
and decide the order of graph object accesses. Databases attempt to arrange data in the
way to shorten distance of two sequential accesses during traversals.

In order to follow graph traversals, Neo4j implements the most generic solution of
constructing edge-centric graphs with pointer-chasing pattern on vertices and edges, which
are known as nodes and relationships in Neo4j. Each node or relationship record has a
fixed length and pre-defined fields. Each node record in the graph model contains a list
of “pointers” to the relationship records and properties. The “pointers” are actually the
offsets of the address for that data object. Each relationship record also has “pointers”
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indicating the source and destination nodes, properties, the next relationship that shares
the same endpoint. For example, an relationship with label “follow” has an ID field, one
pointer to the source vertex and one to the destination vertex, one pointer to the next
relationship that share the source vertex and one for the destination vertex, one pointer to
the previous relationship that shares the source vertex and one for the destination vertex,
respectively. In addition, these is one field for the property ID, which stores the index to
the file to retrieve associated semantic information such as “creation date”. In this way,
whenever users use traversals, Neo4j uses the addresses encoded in the record to retrieve
other connected entities directly instead of looking for data in another data structure. In
RDBMS, the traversal is equivalent to JOIN operation, which involves retrieving records
from other data storage with operations such as sequential scan. In brief, the direct access
in Neo4j eliminates the need of joining two or more tables for RDBMS, which involves long
disk I/O latency and expensive search-and-match computations. Therefore, compared with
the pure index-based approach in RDBMS, Neo4j gains better performance.

Titan has a different data layout from Neo4j. It deploys the Bigtable [25] data model
on a disk-based storage backend. This table is a collection of rows and each row contains
the adjacency list and properties of current vertex in the form of cell array. Each cell has a
column and value field. For properties, columns record key ID of properties and the value
fields store the real value corresponding to the key. For each incident edge, each column
stores label ID, direction, a sort key, edge ID and the value stores the real value and other
properties. This layout of clustered edges is for efficient retrievals of a subset of edges
with a specific type or range in the list. The cell array is identified and sorted by the key,
which is the unique ID of each vertex assigned by Titan. The sorted order of vertices helps
partition graphs in distributed systems. However, it is noticeable that the number of cells
in each row is limited, which means Titan only deals with limited outedges for each vertex.

GraphChi [7] implements a method called parallel sliding windows (PSW) [32] to do
parallel computations. Inspired by compressed sparse row (CSR) storage format, which
stores the outedges consecutively as an adjacency list in the file for each vertex, GraphChi
implemented a similar storage format called compressed sparse column (CSC). CSC stores
all incoming and outgoing edges for each vertex in different files. In other word, each edge
is stored twice with the source and destination node, respectively. Vertices in the graph
are split into disjoint intervals, and edges that share the same destination are sorted by the
source vertex and stored in a shard (a partition of data) associated with each interval. The
outgoing edges are store in consecutive chunks. Each shard is fully loaded into memory
so that the in-memory subgraph can be created. In this way, when PSW moves from
one interval to the next one, it slides a window over each of the shard. There are only
limited accesses made to these intervals on disk, and data accesses to the same interval are
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sequential since the edges are in a sorted order of the source node. There is performance
gain with this data layout, however, the limit of PSW is that it only supports asynchronous
model computing.

System G [37] also evaluates the effect of different graph data layouts on performance.
In order to maximize graph data locality, System G proposes and implements a compact
graph representation with compressed vertex storage (CVS) format. The CVS uses a few
long arrays to represent the vertex index, neighbor index, and edge weight information.
This format can be partitioned into segments, therefore, when updates are applied to the
graph, only some segments encounter changes and the others remain the same. Data
locality for these unchanged segments will remain in cache. System G also exploits data
locality with vector-like and list-like layouts, respectively. Results from experiments show
that list-like layout has better cache hits and better performance.

3.2 Transactions

A transaction symbolizes a unit of work performed against a database and is treated as
independent of other transactions. Multiple transactions can be performed at the same
time to achieve concurrency, which helps improve throughput and achieve better perfor-
mance. Concurrency control strategies have to be implemented to ensure DBMS safety.
Locking is the predominate method among traditional RDBMS. Neo4j borrows locking
semantics from RDBMS and applies locks to graph data object to ensure atomic update
operations. As demonstrated in section 3.1.1, Neo4j mainly has two types of graph data:
vertex and relationship. Locks are acquired at vertex and relationship level. Neo4j sup-
ports READ COMMITTED as the default isolation level, which means updates to data
are not visible to other transactions until current transction succeeds.

Cong Yan et al. [38] proposes a method to leverage lock contention and improve perfor-
mance of online transaction processing (OLTP) application. In this paper, authors propose
QURO as a tool to compile and reorder transaction codes. Operations in a transaction are
reordered in the way that least lock conflicts are encountered while the isolation level can
also be guaranteed. They also use other techniques to reduce reordering time and overheads
of reordering can be minimized. Experiments show up to 6.53x improvement in through-
put. Although not specific to main-memory graph databases, this paper demonstrates that
reordering queries shows benefits to database performance.

Based on Shore-MT [31] system, authors of the paper [30] propose an optimized lock-
ing method called Speculative Lock Inheritance. According to their observation, locking
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manager has the most contention when processing transactions for a locking-based DBMS.
Authors focus on reducing this manager bottleneck and implement the “lock carry-over”
optimization: instead of releasing the locks when the transaction is finished, keep the locks
until other transactions request them. The successive transaction requests locks from the
predecessor transaction, instead of the centralized lock manager. The method is based on
the assumption that there exist hotspots in data, which is one of the characteristics of
graph DBMS workloads.

Researchers investigate and evaluate various concurrency control algorithms on a main-
memory DBMS. Paper [39] claims that concurrency control problem is a bottleneck to
scalability of multicore on the same chip for main-memory databases. Authors implements
seven concurrency control algorithms including two-phase locking and MVCC and run
OLTP workloads with 1024 cores. The results show that all seven algorithms fail to
scale to this magnitude for different reasons. Authors propose mixed concurrency control
algorithms and software-hardware co-design solutions as future work to this problem.

There have been lots of research activities on optimizing concurrency control mecha-
nisms for databases [33] [38] [30]. Authors of the paper [33] propose multiversioning as a
concurrency control mechanism for main-memory databases. They design and implement
two MVCC methods, one is optimistic using validation and the other is pessimistic using
locking. They also compare the performance of these two methods with that of single ver-
sion with locking. Experiments show that MVCC schemes achieve better throughput than
the single version in the following two scenarios: 1. There exist contentious accesses to
data in a small area of storage (hotspot). 2. Transactions only have read operation on data
and one single transaction involves a large number of reads (long read-only transaction).
However, usually MVCC encounters larger overheads due to assignment of timestamp and
existence of multiple versions. Comparison between the optimistic and pessimistic MVCC
mechanisms show that the optimistic MVCC method retains higher throughput than the
pessimistic one in the same cases.
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Chapter 4

Gromit

Gromit is a database that employs a graph as both data structure and computation model.
We use Figure 2.1 from the background chapter as an example to illustrate how data are
stored in Gromit. Section 4.2 describes how information is retrieved through traversals and
visitors.

4.1 Graph

Graph is the most generic data structure to represent social networks. Gromit uses vertex-
edge model to store property graphs of social networks. According to the model, both
vertices and edges are entities of a graph. We use individual objects to represent a ver-
tex and an edge and refer to other entities with a pointer instead of index in relational
databases. Vertices and edges are created and linked in a doubly linked list manner, which
means each object keeps references to its previous and next object that are directly con-
nected. Each vertex and edge contain a property list that encodes semantic information of
the graph.

The vertex-edge graph model enables flexible representation of social graphs. Since
there is no constraint on either type or number of connections of each entity, or pre-
determined field in property lists, Gromit is able to store dynamic graphs. one can make
changes to graph entities such as changing vertex labels, removing relationships, and up-
dating vertex properties. Those operations are mapped to searching and updating data or
pointers in a linked list in underlying storage, without consulting or upgrading schema as
in relational databases.
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In this section, we describe the classes implemented in Gromit to storage graphs and
the diagram is shown in Figure 4.1. We also introduce the memory allocation method
implemented for graph storage called Fixalloc in section 4.1.4. We represent vertex and
edge in Figure 4.2 and 4.4 using Figure 2.1 and information from table 2.1, 2.2 and 2.3.

FixString

char*   String
int  Size

ListNode
FixString   Key
FixString   Value
ListNode*   Next

PropertyList

LinkedList  List
int  Maxsize

Vertex

int   VertexId
Edge*  NextEdge
FixString   Label
PropertyList  Properties

Edge

int  EdgeId
Vertex*  FirstVertex
Vertex*  SecondVertex
Edge*   FirstNextEdge
Edge*   FirstPreviousEdge
Edge*   SecondNextEdge
Edge*   SecondPreviousEdge
FixString   Label
PropertyList   Properties

LinkedList

ListNode*  Head
int  Maxsize

Figure 4.1: Graph Diagram

4.1.1 PropertyList

PropertyList encodes properties of a graph in key-value pairs. Data type of key and value
can be dynamically allocated string or the customized type called FixString. FixString is
a limited size of char array designed for Gromit . Each key-value pair is stored in a node
called ListNode and nodes are chained in linked list manner. This linked list is also limited
by Maxsize, which is the number of nodes allowed for a property list. One can update
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properties by adding, deleting, and changing values of a node within the size limit. Each
property list can keep customized key-value pairs. If a value is absent from a pair, the key
can be deleted from the list to save space and shorten searching latency.

4.1.2 Vertex

A vertex object has four fields: ID, NextEdge, Label and PropertyList. ID is an integer
value assigned by the database. NextEdge stores reference to the first edge that is connected
to current vertex. Label is initialized when the vertex is created. It keeps information in
string format and can be used for filtering vertices from a certain domain. PropertyList
is a list of key-value pairs, which expressively encode semantic information such as Name
and Age. Vertex with ID 0 and 2 in Figure 2.1 is shown in Figure 4.2. Pointers in figures
are represented with $(ID) and prefix V represents vertex, E for pointer to edge and P
for reference to property list, e.g.$(V 1) represents the pointer to vertex with ID 1, $(E0)
represents the pointer to edge with ID 0 and $(Pv0) is the reference to property list (Figure
4.3) of vertex 0.

ID NextEdge Label PropertyList
0 $(E1) Person $(Pv0)
2 $(E0) Person $(Pv2)

Figure 4.2: Vertex

Key Value
Name Sam
Age 19
Gender Male

Figure 4.3: PropertyList

ID FirstVertex SecondVertex FirstNextEdge FirstPreviousEdge

SecondNextEdge SecondPreviousEdge Label PropertyList

0 $(V 2) $(V 3) $(E4) NULL $(E2) NULL Locate in $(Pe0)

Figure 4.4: Edge

4.1.3 Edge

In Gromit , each edge has nine fields and these fields are shown in Figure 4.4. ID is an
integer value. FirstVertex is a pointer to the head vertex of this edge and SecondVertex is a
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pointer to the tail vertex. If there is no direction associated with this edge, these two fields
just indicate which vertex shows up first when this edge is created. FirstPreviousEdge
and FirstNextEdge point to the previous and the next edge that are connected to this
FirstVertex, and SecondPreviousEdge and SecondNextEdge point to the previous and the
next edge that are connected to SecondVertex. Label field stores edge type in a string
format and is used in the same way as that of a vertex. PropertyList may keep information
such as creation date of this edge. We show an example of edge 0 in Figure 4.4. NULL in
the figure represents no reference.

Edges are linked with pointers to allow direct accesses to the next entities. Once can
refer to the SecondVertex pointer for the destination vertex of an edge without checking
tables with an index. Information is available once the object is accessed by referring to
a pointer. Edges are chained in doubly linked list manner to facilitate deletion in Gromit .
After deleting an edge, one can rechain edges without traversing the whole list by referring
to FirstPreviousEdge and SecondPreviousEdge pointers.

4.1.4 Fixalloc

In a program, constructed objects with operator new are placed in unused memory blocks
and usually these blocks are not contiguous in memory. Fixalloc is the method that allocate
sequential memory blocks for vertices and edges before constructing graphs. The Table 4.1
shows the main variables and functions used in Fixalloc technique.

Variables
char* VertexStartAddr
char* EdgeStartAddr
char* VertexNextAddr
char* EdgeNextAddr
Functions
bool allocVertexMemory(int numberOfVertices)
bool allocEdgeMemory(int numberOfEdges)
Vertex* new(VertexNextAddr) Vertex()
Edge* new(EdgeNextAddr) Edge()

Table 4.1: Variables and Functions for Fixalloc

Before building a graph, Fixalloc asks for the total number of vertices and edges from
the input readers. To allow for insertions of new vertices and edges, the parameters of total
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numbers can be enlarged with ratio range from 1.1 to 1.3. Fixalloc allocates two memory
regions and then place newly created objects sequentially within the regions. In this way,
all vertices and edges are next to each other in underlying storage. When one cache
block is replaced with memory from vertex region, more vertex objects are brought into
cache.Processors encounter cache hits when asking for accesses to those vertex objects.
The same logics applies to edge objects as well. Therefore, Fixalloc can improve cache
performance and accelerate graph processing. Besides, Fixalloc is pluggable to graph
storage and it can be turned off if not required.

4.2 Traversal

Algorithms such as breadth-first search and depth-first search terminate when every vertex
in a connected graph component is explored. However, in real applications, it is not nec-
essary to traverse each vertex in a graph. For example, social network recommandation
may terminate visiting once it retrieves friends of your friends and only recommands you
those “close” friends. In Gromit, traversals realize this “termination-on-demand” by check-
ing termination conditions at different points of traversals, which are called event points.
These termination conditions are set up in one or a set of filters in traversals. Those filters
have functions that check properties, labels or directions of vertices and edges and return
boolean values to indicate whether current object satisfy conditions. To allow traversals
to terminate at various points, we have an instance of visitor class to check termination
flags during traversals. The diagram for traversals are shown in Figure 4.5. Section 4.2.1
and 4.2.2 introduce these two traversal methods separately and section 4.2.3 describe how
termination check works during traversals.

4.2.1 Breadth-First Traversal

The main idea of Breadth-First traversal (BFT) is to visit vertices of the same depth
before it moves to the next level and store the next vertex to be visited in the queue. BFT
uses two data structures for traversing: a queue and a map. The queue in BFT is called
VertexQueue and it stores vertices to be visited. The map is called VisitedMap and it
records if a vertex is visited or not. BFT always picks the first vertex in this queue and
starts visiting from this vertex till the queue is empty or other conditions are satisfied. In
default, BFT traverses each vertex only once. Since each vertex can have more than one
vertices connecting to it, it is possible for BFT to enter a loop and visit vertices more than
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BFTGraph  graphVisitor  visitor
CustomizedVisitorvoid setFilter(Filter)virtual bool  visitVertex(Vertex* )virtual bool  visitEdge(Edge*)virtual bool  visitDirection(Vertex*, Edge* )virtual bool  visitBranch(Vertex*, Edge*, Vertex*)Baseclass

Derivedclass

Filterbool  filterDepth(int )bool  filterProperty(Key, Value)bool  filterDirection(DirectionType)bool  filterLabel(string)

Visitorvirtual bool  visitVertex(Vertex* )virtual bool  visitEdge(Edge*)virtual bool  visitDirection(Vertex*, Edge* )virtual bool  visitBranch(Vertex*, Edge*, Vertex*)
GraphDFTGraph  graphVisitor  visitor

Figure 4.5: Traversal Diagram
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once. BFT checks against this map whether the vertex has been visited before it is pushed
into the queue. List 4.1 shows part of BFT function in Gromit.

1 ... ... ...

2 /// Variables declarations are not shown

3 VertexQueue.push(StartVertex );

4 VisitedMap.insert(StartVertex , false );

5 while (! VertexQueue.empty ()) {

6 CurrentVertex = VertexQueue.front ();

7 VertexQueue.pop();

8 /// Set to visited.

9 VisitedMap[CurrentVertex] = true;

10 auto NextEdge = CurrentVertex ->getNextEdge ();

11 while (NextEdge != nullptr) {

12 /// Get the target node.

13 NextVertex = NextEdge ->getTarget(CurrentVertex );

14 if (VisitedMap.find(NextVertex) == VisitedMap.end ()) {

15 /// Queue up the target for visitation

16 VertexQueue.push(NextVertex );

17 VisitedMap.insert(NextVertex ,false );

18 }

19 NextEdge = NextEdge ->getNextEdge(CurrentVertex );

20 }

21 }

22 ... ... ...

Listing 4.1: Function BFT

4.2.2 Depth-First Traversal

Depth-First traversal (DFT) implements a recursive function to visit graphs. It starts
with a given vertex and visits the first adjacent vertex. DFT keeps visiting the undiscov-
ered neighbor of current vertex till a leaf node or till other requirements are met. These
requirements may include that current vertex has been visited once or path depth is sat-
isfied. Then, DFT backtracks to the last vertex it visited and traverse other undiscovered
paths via that vertex. Since DFT goes back to the last vertex once the recursive functions
returns, there is no need to record the to-be-visited vertices in a queue. It is necessary
to implement visitedMap the same way as that of BFT to avoid infinite loops. In DFT
function, the start vertex is visited first and then a recursive DFT function is called on
adjacent vertices of this vertex. DFT returns when all reachable vertices are visited in the
graph. List 4.2 shows the recursiveDFT used in DFT function.
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1 void recursiveDFS(GraphType & Graph

2 , VertexType & Vertex

3 , map VisitedMap) {

4 ... ... ...

5 /// Variables declariations are not shown.

6 VisitedMap.insert(Vertex , true);

7 while (NextEdge != nullptr) {

8 NextVertex = NextEdge ->getTarget(Vertex );

9 /// Check if this vertex is visited.

10 if (VisitedMap.find(NextVertex) == VisitedMap.end ()) {

11 recursiveDFS(Graph , NextVertex , VisitedMap );

12 }

13 NextEdge = NextEdge ->getNextEdge(Vertex );

14 }

15 }

Listing 4.2: Function recursiveDFS

4.2.3 Visitor

Gromit implement a class called Visitor to walk into the graphs, collect graph information,
and terminate visiting at some point of traversals. Each visitor object contains a list of
functions that can be inserted into traversers such as BFT and DFT. Traversers check
return values of those functions to decide whether to finish visiting. List 4.3 shows how a
visitor inserts termination functions at different points of BFT.

As shown in List 4.3, most of these functions in visitor class return a boolean value,
which indicates if traversals should be terminated or if current object (vertex or edge)
should be visited again. For example, function visitDirection() checks if the next edge is
incident to current vertex and decides to traverse in this direction or not. Some functions
may just collect information about vertex or edge of this point. For example, function
visitStartVertex() is inserted when the starting vertex is given to traversals. Visitors can
mark this vertex e.g. as the source node for shortest path. Other functions employ similar
ideas as these two function examples.
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1 ... ... ...

2 VertexQueue.push(StartVertex );

3 Visitor.visitStartVertex(StartVertex );

4 VisitedMap.insert(StartVertex , false );

5 while (! VertexQueue.empty ()) {

6 CurrentVertex = VertexQueue.front (); VertexQueue.pop();

7 bool VertexMatch = Visitor.visitVertex(CurrentVertex );

8 if (VertexMatch) return;

9 VisitedMap[CurrentVertex] = true;

10 auto NextEdge = CurrentVertex ->getNextEdge ();

11 while (NextEdge != nullptr) {

12 NextVertex = NextEdge ->getTarget(CurrentVertex );

13 bool RevisitFlag = Visitor.discoverVertex(NextVertex );

14 bool BranchMatch = Visitor.scheduleBranch(CurrentVertex ,

15 NextEdge , NextVertex );

16 bool TypeMatch = Visitor.scheduleEdge(NextEdge );

17 bool DirecMatch= Visitor.visitDirection(NextVertex , NextEdge );

18 if (BranchMatch) return;

19 if (VisitedMap.find(NextVertex) == VisitedMap.end()

20 || RevisitFlag) {

21 GraphVisitor.scheduleTree(CurrentVertex , NextEdge , NextVertex );

22 if (TypeMatch && DirectionMatch) {

23 VertexQueue.push(NextVertex );

24 }

25 ... ... ...

Listing 4.3: BFT with Visitor functions

Gromit implements Filter class to accept different termination conditions and provide
feedback to the visitor that employs the filter. Part of filter functions is listed in diagram
4.5. As shown in the diagram, one can configure directions, properties, labels, and other
limits to instruct the visitor where to terminate. For example, for the query asking for
webpages that friends of person P like, one can set the parameters as in Table 4.2 as below.

Filter 1 filterLabel(”Friend”); filterDirection(OUT);
Filter 2 filterLabel(”Like”); filterDirection(OUT);
Filter 3 filterDepth(2)

Table 4.2: A Filter Example

Once the visitor set all filters, it uses the information from each filter to check depth
of each vertex, label and direction of each edge that BFT or DFT traverses. In this way,
traversers avoid unnecessary visits to other graph objects and return as soon as the depth
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reaches the limit. Since visitor class is extendable, one can have customized visitor class
descended from the base and override functions for different types of work.

4.3 Query

A query is an inquiry into the database that asks for specific information about the
database. Usually queries are requests from users that retrieve data such as “the most
popular games that my friends like”. A query may involved in operations such as creation,
reading, updating, and deletion (CRUD). Those operations are operated on data or in
certain positions of a database. In Gromit , data can be retrieved through traversals. As
introduced in 4.2.3, one can provide different parameters to filters and customize visitors
for traversals to reach specific goals. Gromit also has utility functions that processing
information during traversals. These functions include checking creation date of an edge,
checking label of a vertex, checking direction of an edge and other functions.

Besides traversals, another way to retrieve data in Gromit is to use index. Gromit
provides a pluggable and extendable class called Index that collects, builds, and manages
indices on graph objects such as vertices and edges. Index class implements functions to
group vertices by their labels and build index on semantic identification of vertices. For
example, to answer the query that asks for deletion of webpage with URL, this index checks
vertex map with “Label=Webpage; Key=URL” and return the vertex that has the URL
satisfying the query.

To answer queries with different goals and limits, one can also customize query class
to utilize traversals or indices. Each query can decide on traversal methods, keys to build
index, and other details. We show the diagram of query classes in Figure 4.6. We show
how to customize queries with an example in Table 4.3.

First we can choose to use breadth-first traversal and set person P as the start vertex
for BFT. Then we set three filters with the same configurations shown in Table 4.2 and
pass them to a visitor named WebVisitor. The next step is to customize this WebVisitor.
Function visitVertex()1 checks current depth and returns true once BFT passes depth limit,
which is three in this case. In function discoverVertex(), we set the return value as false
in base class of visitor. Therefore, vertices can only be visited once in BFT with help of
VisitedMap and there is no need to override this function. Function scheduleEdge() checks
edge labels and return true if current edge has label “Friend” at depth 1 and “Like” at

1Parameters in functions are ignored for simplicity. This applies to all functions metioned in this
paragraph.
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CustomizedQuery
Baseclass

Derivedclass

Direction  checkDirection(Vertex*, Edge*)bool  checkDateRange(Date, Date)FixString  checkLabel(Vertex*)int  checkDepth(VertexList)
Queryvoid  setEndVertex(Vertex*)virtual bool  getExecTime()virtual bool  getReturnList()virtual bool  runQuery(Graph, Traversal)

Utility Functions
Traversal

void  setStartVertex(Vertex* )virtual bool  getExecTime()virtual bool  getReturnList()virtual bool  runQuery(Graph, Traversal) void  buildVertexIndex(Label, Key)void  buildEdgeIndex(Label, Key)Vertex* getVertex(Label, Key, Value)Edge*  getEdge(Label, Key, Value)
IndexOptional

Figure 4.6: Query Diagram

Goal Retriev all webpages liked by friends of a given person P
Input Vertex of Person P , Graph G
Output List of Webpage URLs
Variable Function
Traverser BFT(G, P, WebVisitor)
Filters Table 4.2

WebVisitor

void setFilter(Filters);
bool visitVertex(Vertex*);
bool scheduleEdge(Edge*);
bool visitDirection(Vertex*, Edge*);

Table 4.3: A Query Example

depth 2. Functions visitDirection() works in a similar way but checks directions instead of
edge labels. Those return values from above two functions are used to decide if we should
visit the adjacent vertices or not. If both label and direction of current edge satisfy the
conditions, the NextVertex is pushed to the queue to be visited later. Otherwise, we skip
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this vertex and visit the next neighbor. This statement can be seen from line 22 in List
4.3. For other functions such as visitStartVertex(), we can use the default settings.

With the help of filters, visitors and traversals, query class can be extended to accom-
modate different inquiries to Gromit . We describe the queries that have been implemented
in Gromit in chapter 6.

28



Chapter 5

Transaction Management

In this chapter, we will introduce the concept of a transaction in section 5.1 and the locking
mechanism implemented in Gromit for transaction management. We will focus on details
of locking storage in section 5.2.1, locking protocol in section 5.2.2, locking behavior in
section 5.2.3, and how to solve deadlock problem associated with locking in section 5.3. In
section 5.4, we describe the transaction management implementation in Gromit .

5.1 Transaction

A transaction is a logical unit of operations executed on a database. An example is shown
in Table 5.1. ti is a transaction that updates data X1 to 20 first, and then reads data
X2. Each transaction in Gromit has a unique identifier TID. Once a transaction begins, it
may have status of either Processing or Rollback. If a transaction succeeds, it Commits;
otherwise, it Aborts.

The effect of a transaction is either all or none, which means a transaction finishes
all its operations or changes nothing. In other words, a transaction has to be atomic in a
database. Table 5.1 shows an example of two transactions and each executes two operations
on the same database. The initial value of X1 is 0 and X2 is 10. If ti has to abort, its
effect of updating X1 into 20 has to be removed, which means X1 has to rollback to initial
value of 0.

A modern design of databases support multiple transactions at a time. When two
transactions overlap in both data set and execution time, they may operate on the same
data without notifying each other. One transaction may update the data based on its own
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X1 = 0, X2 = 0

ti tj
W(X1) ← 20

W(X2) ← 0
R(X2)

R(X1)

Table 5.1: Transactions Table

local state while the other transaction changes the data into another state. In the above
example, tj will read X1 as 0 instead of 20, even though tj reads the data later than the
update according to timeline. Therefore, transaction management is required to prevent a
database from the above situation.

5.2 Lock

Locking is a conventional method used in transaction management. This section introduces
lock storage and lock behaviors implemented in Gromit .

5.2.1 Granularity

In Gromit , lock storage is optional for a graph. Once locking is enabled by setting the
flags in configurations, lock pointers are embedded in vertex and edge storage. Locks can
be constructed and placed in memory either during or after building graphs. Those lock
pointers can be directed to where locks are stored.

Locks are acquired on field level in Gromit . Figure 4.2 and 4.4 show that each vertex
and edge has several fields. Lock of one field may not cause conflict of another. For
example, if the NextEdge lock in a vertex is held by one transaction, other transactions
can acquire lock on PropertyList in the same vertex if they are not violating any rules
introduced in section 5.2.3.

Since vertices and edges have both common and identical fields, Gromit has a base
class of Lock to process shared fields and descended classes VertexLock and EdgeLock for
different fields. The diagram of lock is shown in Figure 5.1.
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Storage

VertexLock

Lock* NextEdge
bool    try_lock(Lock*)
void    try_unlock(Lock*) 

Lock

Lock* Id
Lock* Label
Lock* Property
virtual bool try_lock(Lock*)
virtual void try_unlock(Lock*)

EdgeLock

Lock* FirstVertex
Lock* SecondVertex
Lock* FirstNextEdge
Lock* SecondNextEdge
Lock* FirstPrevEdge
Lock* SecondPrevEdge
virtual bool try_lock(Lock*)
virtual void try_unlock(Lock*)

Figure 5.1: Lock Diagram

5.2.2 Protocol

Two-phase locking is used as the protocol in Gromit . In expanding phase, a transaction
has to acquire a read lock on an object before reading it and a write lock before modifying
it. Once a transaction releases a lock, it enters the shrinking phase and no more locks can
be acquired. In Gromit , a transaction modifies data only after expanding phase and this
transaction is not allowed to abort after it finishes requesting locks.

5.2.3 Behavior

There are four types of possible operations on a graph database, Create, Read, Update,
and Delete. Each of these operations can be executed on a vertex or an edge. Specifically,
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Read and Update can be executed on any field of a vertex and an edge; Create and Delete
can be executed only on vertex and edge level. This is because all fields are reserved when
Gromit creates a vertex or an edge. If there is no information associated with that field,
Gromit keeps the field and stores a NULL pointer in it. We use Figure 5.2 to show an
example of Create and Delete. Note that Figure 5.2 is the same as the one from section 2.

4
0 1

32

:Country

:Person :Person

:University :Country

:Come_from

:Locate_in

:Follow

:Come_from

:Study_in

:Travel_to

:Study_in

1 3
2

0
4 5

6 7
Name:   Sam
Age:      19
Gender: Male

Notes: E7:V 0 → V 1

Figure 5.2: A Property Graph Example

In this example, we create vertex V4 and add its edges E1 and E3. Next we create
edge E7 and add it to graph. Then we delete edge E7 and vertex V4 in reverse order of
creating. Table 5.2 and 5.3 show storage of edges and vertices in the graph example before
add V4. In Table 5.2, “Step” in the first column indicates the order these vertices/edges
are created. In Table 5.3, cells store changes in NextEdge field of corresponding vertex
after each step. An empty cell simply means no change in that field. We do not show
Label and PropertyList fields in either vertices or edges in this example. For simplicity,
we use NE for NextEdge, FNE for FirstNextEdge, FPE for FirstPreviousEdge, SNE for
SecondNextEdge, and SPE for SecondPreviousEdge in following tables.

In order to Create and Delete, a transaction has to acquire certain write locks on that
object. Table 5.4 shows what locks to request when operating on vertex V4 and edge E7.
Notice that edge E7 has been deleted from the graph when we delete Vertex V4.

If a transaction is unable to acquire a lock for an object, it is forced to wait until this
lock becomes available. However, there is no guarantee that this transaction can get the
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Step Edge ID FNE FPE SNE SPE
1 6 NULL E5 NULL E4

2 4 E6 NULL NULL E5

3 5 E6 E2 E4 E0

4 2 E5 NULL NULL E0

5 0 E5 NULL E2 NULL

Table 5.2: Changes in Fields of Edges

Vertex ID 1 2 3 4 5
0 E6 E4

1 E6 E5 E2

2 NULL E4 E5 E0

3 NULL E2 E0

Table 5.3: Changes in NextEdge of Vertices

Create Delete

Vertex (V4) V4 :ID

V4: ID
E3: ID
E1: ID
E2, E1: FPE
SPE

Edge (E7)

E7: ID E7: ID
V0: NE V0: NE
V1: NE V1: NE
E1, E3: FPE E1, E3: FPE
SPE SPE

Table 5.4: Locking Behaviors in Gromit

lock eventually. This is because this database system may incur a deadlock, as shown in
Figure 2.2. In section 5.3, we will introduce the methods implemented in Gromit to solve
deadlock problems.
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5.3 Deadlock

In Gromit , we have three methods [21] to resolve a deadlock, and they are No-Wait, Wait-
Die, and Wait-With-Deadlock-Detection.

5.3.1 No-Wait

As the name suggests, a transaction never waits for a lock. Once a transaction fails to
acquire a lock, it aborts right away and then restarts, even if waiting may not result in a
deadlock. Therefore, this is a deadlock prevention technique. This “cautious” scheme is
easy to understand and also simple to implement in Gromit . No-Wait method is expensive
in the following scenario: If multiple transactions request lock on the same object, it may
cause data contention in this database system. One transaction may not be able to obtain
the lock if there is conflict in locking behaviors. Transactions abort whenever they come
to this “hot spot” of data. It is worse if this transaction involves a large volume of data
and has to restart several times.

Gromit implements NoWait with shared time mutex from C++ standard library. There
is no guarantee that one transaction can get a lock even if this lock is available. Therefore,
in implementation of No-Wait, we allow more than one locking attempt for each lock to
compensate for this locking uncertainty.

5.3.2 Wait-Die

This method assigns priority to each transaction. Younger transactions have larger TID
values but lower priority. If a younger transaction is waiting for a lock that is held by
an older one, this younger transaction has to abort. Otherwise, it waits until this lock
becomes available. In Gromit , an aborted transaction restarts with the original TID to
ensure that new transactions have the chance to get all locks [33]. Similar to No-Wait, this
method may abort transactions that do not form a deadlock, therefore causing performance
degression. We also have limited locking attempt for the same reason stated in 5.3.1.

5.3.3 Wait-With-Deadlock-Detection

Both No-Wait and Wait-Die are deadlock prevention schemes. They “assume” deadlocks
exist without a confirmation whenever a transaction fails in first few attempts to acquire a

34



lock. Deadlock-detection is the scheme to check and confirm a deadlock. Gromit constructs
a wait-for graph [19] of transactions to check for cycles (i.e. deadlocks). Each node in the
graph represents a transaction and each edge represents “wait-for” relationship between
two transactions. If transaction ti is waiting for a lock held by transaction tj, we draw an
edge from ti to tj. In this way, if transactions form a circular wait, which is a cause of
deadlocks, a cycle can be detected from this wait-for graph. When a deadlock is found,
the system chooses one transaction to abort and then restart it. In Gromit , the deadlock
detector chooses to abort the last transaction whose request results in the deadlock. In
this way, the system never miss-predicts a deadlock, therefore avoids unnecessary aborts.

Deadlock detection also comes with disadvantages. First, this method is timeconsuming
since it has to periodically check the wait-for graph for cycles. Second, since deadlock
detector is processing a dynamic wait-for graph in a database, it may restart a transaction
after the circle has been broken by any transaction in this previously formed loop.

All three methods described above have their own advantages and disadvantages. One
can choose the best method by analyzing length of queries and the amount of resources
needed by queries.

5.4 Transaction Management

In Gromit , each transaction records Id, status of current transaction, list of locks acquired,
and other information needed to execute a transaction. TransactionManager class stores
all transactions in a table for deadlock detection. LockManager is the class that imple-
ments deadlock detection techniques. LockManager has access to transaction table from
TransactionManager and executes detection functions such as checking priorities of trans-
actions and detecting deadlocks. Figure 5.3 shows the diagram of classes implemented for
transaction management.
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Transaction

Query

int  TranxId
StatusType  Status
CustomizedQuery  Query
vector<VertexLock*> VertexLockList
vector<EdgeLock*> EdgeLockList

Lock

TransactionManager

int TransactionNumber
map<int, Tranaction*> TransactionTable
int assignId()
void addTransaction(Id)

LockManager

bool getLock(Vertex*, Type)
bool getLock(Edge*, Type)
bool checkPriority(Id1, Id2)
bool checkWait(Lock)
bool detectDeadlock()

Figure 5.3: TransactionManagement Diagram
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Chapter 6

Benchmark

This chapter describes two widely used benchmark suites from social network domain:
GDBench and LDBC. They both are representative of social network in datasets and
query workloads.

6.1 GDBench

GDBench is a micro-benchmark [20] that synthetically generates graphs. It contains a set
of low-level atomic queries that model part of social network users. This section presents
details on graph data schema, query set, and data generator.

Data schema There are two types of vertices defined in GDBench: person and webpage.
persons are connected to each other via relationship of friend and they are connected to
webpages via like. Each person has the attributes (i.e. property) of a person identifier
(pid), name and two optional fields: age and location. A webpage has the attributes of a
webpage identifier (wpid), URL, and optionally creation date. Figure 6.1 shows the data
schema [4]. Overall, there are two types of vertices (person, webpage) and edges (person
→ person, person → webpage) in a graph defined by GDBench.

Query set Query selection in GDBench is based on the user interaction with Facebook
to identify atomic actions. GDBench evaluates individual performance of these operations,
such as join and aggregation in relational DBMSs, rather than more complex queries.
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Figure 6.1: GDBench schema

These operations on social network graphs are mapped to five groups of queries: selection,
adjacency, reachability, pattern matching and summarization. Query mix is shown in Table
6.1.

Q Description Type
1 Get all persons who have a name N. Selection
2 Get all persons who like a given webpage W. Adjacency
3 Get all webpages that person P likes. Adjacency
4 Get the name of the person with a given pid. Selection
5 Get the friends of the friends of a given person P. Reachability
6 Get the webpages liked by the friends of a given person P. Reachability
7 Get the persons that like a webpage which a person P likes. Reachability
8 Is there a connection (path) between persons P1 and P2? Reachability
9 Get the shortest path between persons P1 and P2. Reachability
10 Get the common friends between persons P1 and P2. Pattern Matching
11 Get the common webpages that persons P1 and P2 both like. Pattern Matching
12 Get the number of friends of a person P. Summarization

13
Get the friends of the friends of the friends
of a given person P.

Reachability

Table 6.1: Query Set in GDBench

Table 6.1 shows five types of operations in a social network. Query 1 and 4 check the
attributes of a person or a webpage. Query 2 and 3 test the efficiency of getting adjacency
nodes for a database. Query 5, 6, 7 and 13 are supposed to evaluate the support of simple
path expression with limited and fixed path length. This evaluation is also influenced by
direction of edges the degree of vertices. Query 8 and 9 are recursive queries that involve
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multiple join operations, which are both time-consuming and memory intensive. Query 10
and 11 are looking for simple graph patterns and query 12 involves a common aggregation
operation.

Data generator This micro-benchmark employs the basic idea of Recursive Matrix (R-
Mat) [24] and develop a more general-purpose method. R-Mat recursively add edges to
the adjacency matrix of a graph until the given number of edges have been added. Nodes
in a graph are partitioned into four groups and selection of a group follows a probability.
Based on the strategy of R-Mat, GDBench data generator stores the distribution of edges
in an array and construct graphs using such distribution. GDBench models social network
graphs by following power-law distribution and using information published by current
social network applications such as Facebook. Thus, data generator produces synthetic
data with characteristics present in real-life social network. GDBench provides configurable
parameters to generate graphs: the number of nodes in the graph (N) and the statistical
distribution of edges friend/like (power law or normal). Users can specify these parameters
to create graphs with different connectivity.

6.2 LDBC

We use LDBC-SNB (Linked Data Benchmark Council-Social Network Benchmark) [9] as a
benchmark suite for Gromit . SNB is the interactive workload set based on social network
from LDBC. LDBC-SNB also models a real-life social network, which includes people and
their activities during a period of time. This section introduces graph data schema, query
set and data generator of LDBC-SNB.

Data Schema LDBC-SNB generates graphs with thirteen types of vertices, such as
person, university and comment, and relationships between vertices, such as (person) likes
(post) and (university) isLocatedIn (city). Figure 6.2 shows the data schema [10]. This
schema specifies attributes of both vertices and edges such as joinDate of a person to a
forum. Note that schema from LDBC-SNB contains hierarchy in vertices. For example,
university is a sub-class of organization and city is a sub-class of place. Besides, one class
can be sub-class of itself, such as tagClass. This makes LDBC a more realistic and complex
benchmark suite to execute. This is because, for example, for query that is searching post
with a tag in a given tagClass or its descendent tagClass, we have limited but not fixed
hops to explore, which makes both querying and executing more difficult.
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Figure 6.2: LDBC-SNB schema

Query Set Query set from LDBC-SNB includes both complex read queries and update
queries. Essentially these queries capture critical operations that people use for interac-
tions in a social network. These operations include aggregation, depth-oriented search,
computation of conditional expressions, and indexing. We have a query example for each
of these operations and they are listed in Table 6.2.

Query 1 from Table 6.2 involves aggregate operation that counts the number of replies of
comments to each other’s posts or comments between every two persons in a path of friends.
Query 2 explores multi-hop of the graph with a criteria on tag co-occurrence, which can
map to join operation in a RDBMS. Query 3 is more complex for it not only searches the
graph with a specific path pattern ({person}1 workAt {company} isLocatedIn {country}),

1Obejct in braces represents a vertex.
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Q Description Type

1

Given two persons, find all (unweighted) shortest paths
between these two persons in the sub-graph induced by
Knows relationship. Then for each path calculate a weight
based on the sum of comments replying a post or comment.

Aggregation

2

Given a start person and some tag, find the other tags
that occur together with this tag on posts that were
created by start person’s friends and friends of friends
(excluding start person).

Search

3

Given a start person, find that person’s friends and
friends of friends (excluding start person) who started
working in some company in some company in a given
country before a given date (year).

Expression
Calculation

4 Add a like between a given person and post. Indexing

Table 6.2: Query Set in LDBC-SNB

but also does selection on paths after calculating the property of workFrom (year). This
conditional expression calculation is very common and representative in LDBC-SNB. Query
4 is a query that updates the graph. It basically asks for indices of two existing vertices
and modifies some of the fields, NextEdge for example. There are other types of queries, for
example adjacency, which overlap with that from GDBench and are not discussed again.

Data Generator LDBC-SNB mimics the characteristics of social networks by following
edge distribution from Facebook and using real data from DBpedia [3], which extracts
information from Wikipedia. Data generator first generates all person nodes in the graph
and their properties. And then, it determines the number of friends of each person based on
a degree distribution similar to that from Facebook. The materialized edges are determined
and generated by calculating correlations between two persons with similarity functions.
Other activities are created and linked based on the number of friends. Data generator
in LDBC is able to generate graphs of difference sizes and the size is measured by scale
factors. One can choose to configure the number of persons, the number of years and start
year of all activities for a graph.
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6.3 Gromit on Micro-architectural Simulators

Micro-architectural simulations can be conducted on a variety of simulators such as sniper
[23] and graphite [34]. We evaluate whether Gromit executes on a subset of the commonly
used simulators. For our evaluation, we select sniper, gem5 [22], and zsim [35] as simulators
since they are known to support multithreaded applications. Table 6.3 shows information
about the system configurations, versions of each simulator, and required tools.

System Configurations
Linux 3.13.0, Ubuntu 14.04
Thread model posix, GCC-4.9.4

sniper sniper-6.1, PIN-2.14

gem5
SE: gem5 [5], m5thread [11]
FS: Linux kernel 2.6.22.9

zsim
zsim [17], libconfig-1.5-0.3
hdf5-1.10.0 , PIN-2.14

Table 6.3: Simulation Configurations and Tool Versions

gem5 provides both system call emulation (SE) and full system (FS) simulations.
Gem5-SE supports simulations with statically compiled binary files; therefore, it requires
static linking to a given thread library called m5thread [11]. The m5thread library is a spe-
cific emulation library for a subset of threading primitives. On the other hand, Gem5-FS
provides an operating system based environment for simulations, and one has to provide a
Linux kernel to simulate the complete system. Gromit supports single threaded execution
(Gromit), and multithreaded (Gromit-MT ) execution versions for simulations. The results
are shown in Table 6.4. In this table, Yes indicates that Gromit can run and yield correct
results and No indicates the simulator or application crashes.

In the above evaluation experiments, sniper works with both versions of Gromit . Sniper
can simulate multithreaded applications in a trace-driven manner, and it works with C++
standard thread library, which is used by Gromit . The thread library, m5thread, from gem5
supports limited number of functions and features about thread and Gromit is unable
to link with this library. Therefore, Gromit-MT is not supported by gem5-SE or zsim,
which expect static linking to this thread library. Gem5-FS supports simulations under
different computer architectures, such as X86 and ALPHA. However, gem5-FS has problem
in simulating Gromit with both architectures. The X86 one complains about Linux kernels
and the cross-compilation fails in compiling Gromit for this ALPHA architecture. We
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Simulator Gromit Gromit-MT

sniper Yes Yes

gem5-SE Yes No

gem5-FS No No

zsim Yes No

Table 6.4: Simulation Result

believe the thread library support from m5thread need to be improved and the tool set
from gem5 needs to be updated to support full system simulations.
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Chapter 7

Summary and Future Work

In this thesis, we introduced Gromit as an in-memory graph database management system
specially designed for social network applications. Gromit used vertex-edge graph model
and represented both vertices and edges as entities in labeled property graphs. Vertices and
edges were stored in a doubly linked list manner in main memory for direct accesses. We
implemented breadth-first traversal and depth-first traversal as graph traversal methods to
retrieve information encoded in graphs. This graph database employed locking mechanisms
for concurrency controls. To solve the deadlock problem associated with two-phase locking,
we implemented three different methods and they are No-Wait, Wait-Die, and Deadlock-
detection. The diagram of Gromit architecture is shown in Figure 7.1. It is noticeable that
Gromit is implemented in C++, which allows for low-level memory management. This direct
manipulation of memory provides the opportunity to explore hardware facility designs, such
as hardware prefetcher and branch predictor.

To explore the full potential of an in-memory graph database management system, we
believe there are some future work to do. First, to thoroughly evaluate the performance
of locking mechanisms, we need deletion operation extended to the query range. Although
benchmark suite LDBC tends to evaluate a database in lots of different aspects, it lacks in
deletion of graph objects, which is common and frequent in social networks. To our beliefs,
deletion is important in evaluating the efficiency of graph structure design and locking
behaviour. Second, some optimization can be done in terms of vertex or edge grouping.
We observed that queries from social networks are usually limited in specific domains for
each hop of vertices, thus, it is feasible to group vertices with labels and organize edges
accordingly. This can accelerate traversals by avoiding unnecessary enquiring of vertices or
edges and alleviate locking contention by unlocking irrelevant connections. Third, we need
to explore different concurrency control method such as multi-version concurrency control
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Figure 7.1: Architecture Diagram

(MVCC). It is noticeable that there have been lots of research on optimizing MVCC in
databases other than RDBMSs and they achieve excellent performance. We believe Gromit
can achieve comparable performance with MVCC.
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