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Self-healing metal coordinated hydrogels using nucleotide ligands 

Hao Liang,*a,b Zijie Zhang,b Qipeng Yuana and Juewen Liu*b

A supramolecular gel formed by Zn2+ coordination with adenosine 

monophosphate (AMP) is reported. The adenine base, the monophosphate, 

and Zn2+ are all important for gel formation. Mechanically disrupted gels can 

re-form upon centrifugation; applications of this gel for guest molecule 

entrapment are explored.  

Supramolecular gels have received considerable attention in recent 

years both as intriguing examples of self-assembly and as a means of 

creating smart materials.1-5 These gels are formed by noncovalent 

interactions to assemble supramolecular networks that trap solvent.6 

Among the various types of supramolecular gels, those crosslinked by 

metal coordination are particular interesting. A few types of ligands 

have been developed for this purpose. For example, Craig and co-

workers reported organopalladium−pyridine coordination.7,8 

Bipyridine and pyridine-based hydrogels crosslinked by Co2+, Cu2+ 

and Fe2+ were developed by Lewis and Miller.9,10 Chujo et al also 

employed the bipyridine chemistry to include polyoxazoline into the 

gel matrix.11,12 Cu2+/carboxyl,13  Fe3+/catechol,14,15 and Ni2+/histidine 

interactions were also employed.16,17 Self-healing is a very interesting 

and useful feature of metal-coordinated gels; broken gel pieces can 

seal together with a mild mechanical force. 

    Most of previously reported gels have to use specially designed 

ligands (e.g. incorporating a segment of PEG chain in addition to the 

metal ligand) to facilitate solvent trapping and gelation. Few reports 

are based on pure small molecule ligands. We reason that small 

molecule ligands will allow a higher metal density and thus may 

display different properties.  

    Adenine, a purine nucleobase, is an important ligand in 

supramolecular chemistry. Adenine and its derivatives can form many 

complexes by coordination (with metal ions) and hydrogen bonding 

(with organic molecules).18-20 With metal ions, it may form metal-

organic frameworks,21 and nanoparticles.22-25 Recently, the gelation 

of adenine with tricarboxylic acid compounds was reported based on 

hydrogen bonding and π-π stacking.26,27 We are interested in 

exploring whether it is possible to achieve gelation by metal 

coordination with adenine derivatives. Guanine and its derivatives 

have been mixed with monovalent metal ions to form gels based on 

quadruplex formation.28-31 However, little has been done on adenine 

derivatives. Nanoparticles are the most common products.22-25 

Compared to nanoparticles, hydrogels are more attractive materials 

for making stimuli-responsible materials.32-39 In this work, we 

communicate such an example, its property in guest molecule 

encapsulation, and healing. 

    Since most previous work focused on adenine nucleobase and 

nucleoside as ligands, we started with nucleotide coordination in this 

work. Zn2+ was chosen as the metal because it is a good Lewis acid 

that can be coordinated by a diverse range of ligands. In addition, it is 

a relatively biocompatible metal with low toxicity. We first studied 

the reaction between Zn2+ and three kinds of nucleotides (AMP, GMP 

and CMP). TMP was not included since thymine has very weak 

coordination ability at neutral pH. Zn2+ was respectively titrated into 

the solutions of AMP, GMP and CMP, and the UV-vis extinction at 

550 nm was recorded. Since none of the products are colored, the 

growth of light extinction at 550 nm is an indication of light scattering 

and thus formation of precipitation. The UV-vis results (Figure 1A) 

indicate that all the three samples formed particles that strongly 

scattered light. With increasing Zn2+ concentration, scattering became 

stronger and saturated signal was observed at high Zn2+ concentrations. 

AMP saturated at ~1:1 ratio between AMP and Zn2+, suggesting the 

stoichiometry of coordination. Binding of Zn2+ by AMP is stronger 

than that by the other two nucleotides since much more Zn2+ is 

required to saturate the binding of GMP and CMP.   

To study the property of these coordination complexes, we 

prepared samples using a ratio of 1:1 between Zn2+ and each 

nucleotide. The samples all turned cloudy, which is consistent with 

the UV-vis results. All the samples were centrifuged to collect the 

precipitated products. White solid materials of Zn/GMP and Zn/CMP 

were obtained, while very interestingly a gel was observed with Zn2+ 

and AMP (Figure 1C). To understand this gel, the precipitated 

samples were re-dispersed in pure water by vortex mixing, and the 

suspensions were used for DLS measurement to obtain the 

hydrodynamic size and ζ-potential information. After vortexing, the 

Zn/AMP gel is broken into small pieces, showing an average size of 

a few micrometers (Figure 1B). The hydrodynamic sizes of Zn/CMP 

and Zn/GMP complexes are relatively smaller (<300 nm). The surface 
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charge of Zn/AMP is close to zero, while the other two are more 

negatively charged. This could explain the formation of large gel 

pieces by Zn/AMP due to a lack of strong charge repulsion. 

Considering the differences of nucleobase structure in GMP, CMP 

and AMP, the coordination of Zn2+ with adenine is likely to be critical 

for the formation of the gel complex. For example, our UV-vis data 

indicated the Zn/AMP binding is the strongest of the three (Figure 1A). 

 

Figure 1. (A) UV-vis extinction monitored at 550 nm as a function of 

Zn2+ concentration. The volume of the reaction was 1 mL and the 

nucleotide concentration was fixed. (B) Particle sizes and -potential 

of the complexes formed by Zn2+ and the three nucleotides after re-

dispersing the precipitated complexes in water. (C) A photograph of 

the products formed with different nucleotides after centrifugation 

and flipping the microcentrifuge tubes. A hydrogel was formed with 

the Zn-AMP system in the red box. (D) A photograph showing the 

reaction products between Zn2+ and adenine and its derivatives. Gel 

was formed only in the AMP tube. (E) Effect of metal ions in forming 

gels with AMP. Only Zn2+ produces the gel. 

 

The above comparison has highlighted the importance of the 

nucleobase. To further understand gel formation, we next tested the 

phosphate part of the nucleotide by reacting Zn2+ with adenine and its 

other derivatives. After centrifugation, no precipitant was formed in 

the adenosine or ATP samples (Figure 1D). Therefore, it is important 

to have just one phosphate linked to the nucleotide. Only a small 

amount of white solid sediment was found in the Zn/adenine sample. 

DLS analysis indicates that the Zn/adenine complex is also relatively 

large (~2.5 µm). Thus, both base structure and the monophosphate are 

important in the formation of Zn/AMP gelatinous complex.  

Finally we varied the metal (Figure 1E). In addition to Zn2+, a few 

other divalent and trivalent metal ions were tested. We did not include 

lanthanides, which are known to form nanoparticles instead of gels 

with AMP.22 Among the tested metals, only Zn2+ induced gel 

formation. This might be explained that Zn2+ can interact with both 

the phosphate and adenine base with similarly high affinity. Other 

metals may interact with mainly with the base (e.g. the transition 

metals), or mainly with phosphate (alkaline earth metals), but not 

both.40 Cd2+ is a softer metal and do not interact with phosphate 

strongly, which can be seen from phosphorothioate modification 

studies.41 This leaves Zn2+ a unique metal for this purpose. This study 

also suggests a design principle for making metal coordinated gels, 

where the ligand should have appropriate affinities for at least two 

binding sites. 

     While carrying out the above experiment, an interesting 

observation is the mechanical disrupted gels can be easily re-formed. 

For example, with mechanical agitation by a vortex mixer, the 

Zn/AMP gel was transformed into small gel pieces (like a sol phase), 

yielding a turbid suspension. Upon centrifugation, the gel is formed 

again. This mechanically induced gel transition can be repeated many 

times. Since nucleotide-coordinated nanoparticles have been observed 

before, we focused this study on the gel system.  

To quantitatively understand the property of this new gel, Zn2+ was 

mixed with an equal mole of AMP at different concentrations (Figure 

2A). Below 1 mM, no gel was formed. Therefore, 1 mM is the 

minimal gelation concentration. The mass of the resulting gels were 

measured (Figure 2A). The gel weight reached the maximum at 5 mM 

of Zn2+ and AMP (Figure 2B, black trace). Further increase of their 

concentrations deceased the gel weight, and the gels also became 

more opaque. Therefore, the amount of entrapped water decreased 

significantly when the monomer concentrations were too high. It 

needs to be noted that although the 5 mM sample has the highest gel 

mass, the normalized gel mass is the highest for the 1 mM sample 

(normalized by the monomer mass, blue trace in Figure 2B). With 1 

mM Zn2+ and AMP, and assuming all these monomers went into the 

gel, the monomer mass is 0.41 mg and the gel can trap 68.6±6.4 mg 

of water, reaching a swelling ratio of ~156. This swelling ratio is 

comparable with many other types of gels. The percentage of this 1 

mM gel is ~0.6%. 

 

 
 

Figure 2. (A) A photograph showing the gels formed by the 1:1 

Zn2+:AMP mixture at different monomer concentrations. No gel 

formed below 1 mM Zn2+/AMP. (B) The final gel weight and 

normalized gel weight of the Zn/AMP gels prepared with different 

concentration of Zn2+ and AMP. 

 

     To further characterize the property of this new gel, we also 

measured the stability of the Zn/AMP gel at different ionic strength, 

pH and temperature. First, the Zn/AMP gels were firstly prepared in 
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HEPES buffer (pH 7.4, 10 mM). Then, the buffer was replaced to our 

designated conditions and the formed gels were broken mechanically 

by vortex. Then the tube was centrifuged again and the amount of the 

gel was quantified by weighing. Figure 3A shows an example of such 

a process. It can also be noticed that the solution became turbid after 

disrupting the gel since small gel pieces are now suspended at the 

bottom of the tube. Figure 3B shows the effect of ionic strength, and 

we repeated the above washing process three times. Most of the gels 

lost ~30% weight after three washes, and the amount of loss is 

independent of the salt concentration. Thus, the Zn/AMP gel stability 

is not affected by ionic strength.  

    Next the effect of pH was tested. The sol-gel transition occurred at 

~pH 4 and pH 13 (Figure 3D). The gel stability is the highest around 

neutral pH. This experiment also suggests that the N7 position of 

adenine might be a coordination site since only this position can be 

protonated at lower pH (pKa = 3.5). At very high pH, Zn2+ might be 

extensively hydrolyzed/precipitated and are not available to AMP. A 

proposed structure of the Zn/AMP complex is shown in Figure 3C. 

Overall, this gel has excellent stability at physiological conditions. 

Finally, the effect of temperature was studied and the gel was stable 

at even 100 C (Figure S1). The rheology property of the gel was also 

measured (Figure S2). In the frequency sweep experiment, the storage 

modulus (G') values were much higher than the loss modulus (G''). A 

linear response was observed over a wide range of frequencies (0.03-

30 Hz), confirming its elastic property typical for supramolecular gels. 

 

 
Figure 3. (A) Photographs showing disrupting the Zn/AMP gels after 

vortexing and re-forming after centrifugation. After disrupting the gel, 

the solution phase becomes cloudy. (B) Changes of gel weights in 

different salt concentrations and as a function of 

washing/centrifugation cycles. (C) A scheme of AMP reacting with 

Zn2+; both phosphate and base participate in bonding. (D) Yield of gel 

formation at various pH values. 

 

     To further study the coordination materials, we have taken their 

TEM micrographs. The Zn/AMP complexes appears to be inter-

connected fibrils (Figure 4A, B), which is consistent with gel 

networks capable of trapping water. On the other hand, the Zn/GMP 

(Figure 4C) and Zn/CMP (Figure 4D) samples are consist of 

aggregated nanoparticles that appear more electron dense. The 

different microstructures between Zn/AMP and the other two also 

supports gel formation for the Zn/AMP system.  

     The fact that the Zn/AMP gel can form reversibly by mechanic 

agitation indicates the property metal coordination. Metal 

coordination is not as strong as covalent bonds and can be disrupted 

more easily. On the other hand, it is a reversible interaction and under 

the mechanic stress of centrifugation, the sol particles can re-connect 

to form gels.   

 

 
Figure 4. TEM micrographs of the coordination complexes formed 

by mixing Zn2+ with AMP (A, B), GMP (C) and CMP (D). 

 

     After understanding the physical property of this Zn/AMP gel, we 

next studied its molecular encapsulation property. Three kinds of 

water soluble dyes (fluorescein, rhodamine 6G and rhodamine B) and 

a protein (fluorescein-labeled bovine serum albumin, F-BSA, pI=4.7) 

were employed as guest molecules. The reaction solutions of guest 

molecules (0.01 mM dyes or 50 μg/mL protein) and AMP (5 mM) in 

10 mM HEPES (pH 7.4) were mixed with aqueous ZnCl2 (5 mM), and 

then centrifuged to induce the gel formation. The amounts of guest 

molecules incorporated into gels were calculated by the absorption 

intensities of the supernatant solutions. It was found that incorporation 

of the protein was the most effective compared with the three dye 

molecules (Figure 5A). The Zn/AMP gel carries almost no charge and 

it can interact with guest molecules mainly via hydrogen bonding, 

aromatic stacking and van der Waals force. In this case, it appears that 

BSA has the strongest interaction and can be efficiently trapped. 

     Finally, we tested the healing property of the gels by adding a F-

BSA trapped gel to a rhodamine B trapped gel (Figure 5B). The F-

BSA gel was first disrupted and then centrifuged on top of the 

rhodamine B gel. When taken out, a whole piece was formed, 

indicating that the broken gels can heal. We also showed that two gel 

pieces can re-joint after a gentle press (Figure S3). 
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Figure 5. (A) Incorporation of guest molecules into the Zn/AMP gel. 

Inset: photographs of the different guest molecules entrapped into the 

gels. The tubes follow the same order as listed in the x-axis of the 

figure. The BSA sample showed high encapsulation efficiency. (B) 

Sealing two gels by centrifugation. Gel1 traps rhodamine B and gel2 

traps fluorescein-labeled BSA. They can form a whole piece after 

centrifugation. 

 

In conclusion, we reported a supramolecular gel formed by 

mixing AMP and Zn2+ coordination, which has the property of 

mechanically induced gel formation. The base structure, 

monophosphate, and Zn2+ are all critical for the gel formation and 

replacing any of them by other structures of ions inhibited gelation. 

The Zn/AMP gel is stable in the neutral, basic and high ionic 

conditions, but less stable at acidic pH. An advantage of this 

supramolecular gel is that it can be prepared at a low molecule 

concentrations and large scale gelation can be triggered simply by 

centrifugation. Broken gel pieces can also re-form into a large 

monolithic gel by centrifugation. This property might be useful for 

entrapping guest molecules in the gels and remove them from water. 
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