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Abstract 

Introduction: Some individuals are able to avoid reaching the threshold for clinical dementia 

despite the presence of Alzheimer neuropathology. This disparity between the neuropathologic 

and clinical symptoms required for a diagnosis of AD is often attributed to cognitive resilience, 

defined in the current study as the combined influence of brain reserve and cognitive reserve. 

This study assessed how educational attainment (a common measure of cognitive reserve), as 

well as brain weight and cortical atrophy (measures of brain reserve), may influence the outcome 

of cognitive resilience independently or through interactions with each other. 

Methods: Analyses were based on the Nun Study, a longitudinal study of aging in 678 

participants aged 75+ years at baseline. Educational attainment data were available through 

convent archives while brain weight and cortical atrophy data were collected through post 

mortem autopsies. Alzheimer neuropathology was assessed through post mortem autopsies and 

was defined using the Consortium to Establish a Registry for Alzheimer’s Disease (CERAD) and 

National Institute on Aging and Reagan Institute (NIA-RI) neuropathologic criteria. Finally, 

dementia status was determined through annual cognitive testing using DSM-IV criteria. Logistic 

regression analyses were conducted to assess all associations between exposures (educational 

attainment, brain weight and cortical atrophy) and the outcome (cognitive resilience), controlling 

for participant age at the time of death and the presence of apolipoprotein E-ε4.  

Results: Higher educational attainment and brain weight, and the absence of cortical atrophy 

were all positively associated with cognitive resilience defined using both CERAD and NIA-RI 

neuropathologic criteria. However, the negative association between cortical atrophy and 

cognitive resilience was significant only when brain weights were high. When brain weight and 

educational attainment were assessed in the same models, the influence of educational attainment 
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fell below statistical significance. Finally, when educational attainment was assessed in models 

stratified by cortical atrophy status, it remained significant only in the presence of mild atrophy. 

Discussion: It was hypothesized that higher educational attainment, higher brain weight and the 

absence of cortical atrophy would all be positively associated with cognitive resilience. These 

hypotheses were supported by findings in the study. Further, it was hypothesized that the impacts 

of mild atrophy would be more significant among individuals with lower brain weights than 

among those with higher brain weights, as higher brain weight would act as a buffer against mild 

atrophy. However, findings were contrary to this hypothesis, with results suggesting that atrophy 

was only significant when brain weights were high. This non-significant effect is likely partially 

related to low statistical power in the low brain weight strata. However, this result may 

additionally be the result of a floor effect whereby low brain weight depletes brain reserve to 

such an extent that further loss in tissue (through cortical atrophy) is unlikely to result in further 

impairment. Finally, it was hypothesized that educational attainment would be most strongly 

associated with cognitive resilience when brain reserve was low (i.e., in the presence of cortical 

atrophy or low brain weight). This hypothesis was partially supported by findings indicating that 

when mild atrophy was present, low educational attainment was associated with reduced odds of 

resilience.  Overall, it appears that cognitive reserve factors (educational attainment) are 

important in reducing the clinical symptoms of AD in late life; however, these positive effects 

were only found when threats to brain reserve (cortical atrophy, low brain weight) were absent or 

of mild severity.  

Conclusion: Higher levels of education can improve cognitive reserve and help reduce the risk 

of dementia symptoms despite AD brain changes. These benefits are only realized, however, 

when low brain weight and cortical atrophy are avoided. This study and future efforts aimed at 
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better understanding how late-life cognitive resilience is influenced by factors from across the 

lifespan could inform applications of cognitive resilience theory to clinical and community 

settings with the goal of offsetting the devastating impacts of AD. 
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1. Introduction 
The rapid aging of the global population represents one of the most significant processes 

shaping health, social and economic systems around the world. By 2026, over one-fifth of the 

Canadian population will be over the age of 65 (Schellenburg & Turcotte, 2007), and it is 

predicted that the majority of babies born in developed countries since 2000 will live past their 

hundredth birthday (Christensen et al., 2009). In 2013, it was reported that 45 percent of 

Canadian healthcare expenditures were attributable to those over the age of 65 (Health Canada, 

2013), with this number projected to rise as the population continues to age. Thus, the projected 

aging of the population in the coming decades could pose a considerable liability to Canada’s 

healthcare system (Prince et al., 2013). While some recent research has indicated that healthcare 

costs associated with population aging may be manageable within the context of a growing 

economy (Health Canada, 2013), this may largely be dependent on effective management of 

chronic diseases and compressed morbidity in the last years of life (Canadian Institute for Health 

Information, 2011).   

Of all of the chronic diseases associated with an aging population, dementias are among 

the most debilitating. Dementing disorders reduce quality and duration of life, negatively impact 

caregivers and consume a high percentage of healthcare resources (Markesbery, 1998; Prince et 

al., 2013), making them a primary concern for policy makers and healthcare agencies as the 

population ages.  

Dementia refers to a category of disorders characterized by the deterioration of cognitive 

abilities (Alzheimer Society of Canada, 2010). Among the dementing disorders, Alzheimer’s 

disease (AD) is the most common, accounting for over half of prevalent cases (Tyas & 

Gutmanis, 2015).   
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Presently there is no cure for AD and available pharmaceutical treatments function only to 

temporarily delay the progression of symptoms (Alzheimer’s Association, 2014). However, 

roughly one-third of all AD cases may be preventable through lifestyle modifications (Norton et 

al., 2014). Therefore, research has focused on identifying modifiable risk factors for AD with an 

aim to develop interventions that prevent or delay the onset of symptoms.  

A number of lifestyle and socio-economic factors such as education, occupation, physical 

activity (Hamer & Chida, 2009), and tobacco use (Tyas, White, Petrovich, et al., 2003) may play 

a role in the development of AD. Of the modifiable factors linked to AD, education has 

consistently been one of the most important, with evidence indicating that lower levels of 

educational attainment or fewer years of formal schooling are related to higher risk of dementia 

in later life (Stern et al., 1994; Fritsch et al., 2002; Tyas, Manfreda, Strain & Mongomery, 2001). 

 One particular area of interest for research seeking to reduce the burden of dementia is 

cognitive resilience. Cognitive resilience, comprising two components (brain reserve and 

cognitive reserve), is a concept that has been used to explain the maintenance of cognitive 

function despite the development of pathology that would normally be associated with a 

reduction in cognitive abilities, such as damage indicative of AD (Stern, 2002; Stern, 2009; 

Stern, 2012).  Evidence indicates that among older adults without dementia, as many as 12% 

show neuropathology consistent with AD (SantaCruz et al., 2011). Although many of these 

individuals may still exhibit mild cognitive symptoms (SantaCruz et al., 2011), the maintenance 

of functional ability and independence provided by cognitive resilience significantly improves 

the quality of life of individuals and reduces the burden placed on families and dementia care 

resources. A number of factors known to be protective against AD, such as education and 

occupation, may partially function by promoting higher levels of resilience (Stern, 2012).  
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Alternatively, several factors are known to reduce cognitive resilience and thus the brain’s ability 

to overcome Alzheimer neuropathology. Cerebral cortical atrophy is suggested to increase the 

likelihood of dementia symptoms among participants with Alzheimer neuropathology by 

reducing the brain’s level of resilience (Tyas et al., 2008), and this relationship may be 

particularly strong among individuals with smaller brains (Guo et al., 2013). However, it remains 

unclear if atrophy interacts with early-life factors, such as education, in the development of 

cognitive resilience. Better understanding of cognitive resilience, and the factors associated with 

it, could inform strategies aimed at reducing the personal, social and economic burden associated 

with AD.  

The first aim of the present study was to clarify the relationship between education and 

cognitive resilience. The second and third aims were to assess the associations of cortical atrophy 

and brain weight with cognitive resilience. The fourth aim of the study was to assess if the 

impacts of atrophy on cognitive resilience are modified by brain weight and the final aim of the 

study was to assess if the effects of education on cognitive resilience were modified by brain 

weight or cortical atrophy. 

Analyses were conducted using secondary data from the Nun Study, a longitudinal study of 

aging and AD in 678 nuns aged 75+ living in the United States (Snowdon, et al. 1996). 

Educational attainment data were retrieved through archival records and measured by the highest 

degree attained. Cognitive status was determined through annual cognitive assessments. 

Alzheimer neuropathology and cortical atrophy were assessed during post-mortem examination 

by a pathologist. This study also accounted for a number of confounding variables including age 

at death and apolipoprotein E-ε4 (APOE-ε4). 
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Success in treating AD with existing pharmaceutical treatments is limited. Thus, the 

importance of primary AD prevention cannot be overstated. Understanding the impact of factors 

from across the life-course on cognitive outcomes in older adulthood could inform interventions 

that may reduce the dementia burden decades later. 
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2. Literature Review 

2.1 Alzheimer’s Disease 

 2.1.1 Epidemiology and Public Health Impact 

Dementia refers to a class of symptoms in which individuals experience a loss in 

cognitive ability and independence in their daily lives (Khachaturian, 1985).  Dementing 

disorders can be broken down broadly into two domains, reversible and irreversible (Alzheimer 

Society of Canada, 2008). Reversible dementias are usually secondary symptoms of disorders 

such as thyroid disease, kidney disease or depression. These forms of dementia are treatable 

through available medical therapies (Alzheimer Society of Canada, 2008). The major concern 

therefore lies in the irreversible forms of dementia, such as AD.    

AD is not a part of normal aging (Alzheimer Society of Canada, 2010). It is, however, a 

leading cause of morbidity among older adults and is a major driving force in the need for formal 

institutional care (Wimo, Jönsson, Bond, Prince, & Winblad, 2010).  The estimated global 

prevalence of AD and related dementias was 26.6 million people in 2006, and this number is 

expected to exceed 100 million by the year 2050 (Brookmeyer et al., 2007).  In 2010, the global 

economic costs of dementia were an estimated 604 billion US dollars (Wimo et al., 2010).  If 

dementia care were a country it would represent the 18th largest global economy, ranking 

between Turkey and Indonesia (Alzheimer’s Disease International, 2010). The largest share of 

this economic burden impacts North America and Western Europe because of the heavier use of 

formal institutional care in these regions (Wimo et al., 2010).  

Canada is projected to be impacted severely by the growing number of dementia cases. 

An estimated 1 in 11 Canadians over age 65 are thought to have some form of dementia, with 

AD responsible for over half of these cases (Alzheimer Society of Canada, 2008; Lindsay, 

Sykes, McDowell, Verreault, & Laurin, 2004; Tyas & Gutmanis, 2015). Although recent 

evidence suggests that the incidence rates of dementia may be lower than was previously 
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projected as a result of improved management of cardiovascular risk factors (Satizabal, Beiser et 

al., 2016), the aging of the population will still drive the incidence of dementia in Canada, which 

has been esimated to rise to nearly double current levels to over 250,000 new cases per year by 

2038 (Alzheimer Society of Canada, 2008).  

  Beyond the tremendous societal impact, the impact of AD on those diagnosed, as well as 

their caregivers, is devastating. While improved symptom management is expected to increase 

survival among individuals with AD (Jacqmin-Gadda et al., 2013), life expectancy following 

symptom onset is shortened considerably. Most studies indicate a reduction in lifespan of 

between three and ten years (Zanetti, Solerte, & Contini, 2009), with evidence that mortality 

following a diagnosis may be hastened among individuals who are older at the time of diagnosis 

as well as among males (Todd et al., 2013). In addition to the years of life lost to AD, quality of 

life is substantially reduced. While some individuals are able to maintain a good quality of life, 

primarily in the early stages of the disease (Whitehouse, Patterson, & Sami, 2003), advanced AD 

is associated with a profound decrease in the quality of life among individuals with AD and their 

families (Logsdon, Gibbons, McCurry & Terry, 1999).  

Unfortunately, treatments for AD are limited. Current pharmaceutical treatments serve 

only to temporarily slow symptom progression, but do not effectively treat the underlying 

disease (Sink, Holden, & Yaffe, 2005; Small et al., 1997). Canada, therefore, has both a social 

and economic incentive to invest in interventions that may prevent or delay the onset of AD.  

2.1.2 Etiology 

 Although AD was first described in the early 20th century by Dr. Alois Alzheimer 

following the autopsy of a patient with memory impairments, a consensus etiologic theory has 

remained elusive. The first etiologic theory for the development of AD was the cholinergic 

hypothesis (Francis, Palmer, Snape, & Wilcock, 1999). This theory argues that AD symptoms 
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develop as a result of reduced acetylcholine signal transmission in the brain. This hypothesis was 

supported by findings that the brains of individuals with AD showed reduced acetylcholine 

activity compared to age-matched controls (Perry, Gibson, Blessed, Perry, & Tomlinson, 1977), 

as well as reduced acetylcholine reuptake (Rylett, Ball, & Colhoun, 1983) and release (Nilsson, 

Nordberg, Hardy, Wester, & Winblad, 1986). Despite more recent evidence indicating that 

deficits beyond the cholinergic system underlie the development of AD, the cholinergic 

hypothesis remains the basis for most common pharmaceuticals used in the treatment of AD.  

More recent etiologic theories consider the influence of the hallmark pathologic signs of 

AD: neuritic plaque (NP) deposits and neurofibrillary tangles (NFT) (Carillo, Thies, & Bain, 

2012).  NPs are toxic deposits of beta-amyloid protein that occur outside of neurons (Hyman et 

al., 2012). According to the amyloid hypothesis, these plaques are thought to directly cause 

synaptic and neuronal damage resulting in a disruption of intercellular communication and are 

also linked to inflammation that may exacerbate neuronal damage. However, the amyloid 

hypothesis has several limitations. For example, the number of observed plaques does not 

strongly correlate with the degree of observed cell death or with the degree of cognitive 

impairment (Irizarry et al., 1997), and the removal of plaques from brain tissue does not improve 

clinical symptoms (Holmes et al., 2008). NFTs, the other hallmark Alzheimer neuropathology, 

are intracellular aggregates of the hyper-phosphorylated tau protein (Grundke-Iqbal et al., 1986), 

which may underlie the development of AD symptoms. The development of NFTs within 

neurons results in disruptions in the intracellular transport of molecules. This disruption in cell 

metabolism ultimately contributes to the loss of neuronal tissue, resulting in cortical atrophy and 

cognitive symptoms (Hyman et al., 2012). However, despite evidence suggesting that NFT 

density may better predict cognitive outcomes than NP density (Giannakopoulos et al., 2003), the 
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theory that tau pathology is the root of AD is limited by a lack of specificity to AD. Despite the 

limitations of NPs and NFTs as etiologic factors, both remain hallmark neuropathologic markers 

for AD. 

 While NPs and NFTs are well established indicators of AD, recent research has suggested 

that these pathologic changes may develop as a result of vascular damage (de la Torre, 2010). 

The vascular hypothesis asserts that cardiovascular pathology is the instigator of NP and NFT 

development (de la Torre, 2010). This hypothesis is supported by a growing body of evidence 

suggesting that cerebrovascular disease is present in a large number of individuals with AD 

(Breteler, 2000; Roher et al., 2011), and that comorbid vascular pathology may substantially 

increase the rate of decline (Snowdon et al., 1997; Mielke et al., 2007). Epidemiological findings 

that cardiovascular factors (e.g., hypertension, obesity) are strong risk factors for the 

development of AD (see section 2.1.2.2) further enhance the plausibility of an upstream vascular 

mechanism initiating AD development. While vascular factors remain important in the study of 

AD, substantially more evidence is needed to elucidate the precise role these factors play in 

precipitating symptom onset. While vascular research is ongoing, the presence of NFT and NP 

remain the most important markers of AD pathogenesis and form the basis of AD 

neuropathologic evaluation (see section 2.1.3).   

2.1.3 Risk Factors for Alzheimer’s Disease 

 Risk factors for AD can be broadly broken down into two types: modifiable and non-

modifiable. Non-modifiable risk factors include factors such as age, genetics/family history, and 

sex. Modifiable risk factors include lifestyle factors, cardiovascular risk factors, educational 

attainment and occupation.  
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2.1.3.1 Non-modifiable risk factors 

By far the most significant risk factor for dementia and AD is age. The risk of developing 

dementia grows exponentially with age, with prevalence rates doubling every five years between 

the ages of 65 and 90 (Jorm, Korten & Henderson, 1987). In fact, the prevalence of dementia 

reaches as high as 41 percent among centenarians (Carillo, Thies, & Bain, 2012). The strong 

relationship between increased age and the development of dementia may therefore suggest that 

dementia is the result of accumulated insults to the brain over time (von Strauss et al., 1999; 

Selkoe, 2000). The importance of this particular risk factor will continue to rise as the population 

ages (Alzheimer Society of Canada, 2008).  

Genetics and family history represent another major non-modifiable risk factor for 

development of AD. AD can be classified as either a sporadic form or an autosomal dominant 

form (Bekris, Yu, Bird & Tsuang, 2010). In sporadic AD, the development of the disease has not 

been linked to a single causative gene. While several genes may play a role in the development 

of sporadic AD (see: Bird, 2008), most require further research to determine their true 

association with AD. Currently, only the apolipoprotein E gene (ε4 allele, APOE-ε4) has shown 

robust consistent associations with AD development (Coon et al., 2007; Schellenberg, 1995; 

Roses et al., 1995; Selkoe, 2001). While the ε4 allele has a frequency of 20% in the general 

population, in clinical AD samples as many as 60% of individuals possess this variant (Saunders 

et al., 1993). The odds of developing AD among Caucasian individuals with 1 or 2 ε4 alleles are 

3.2 and 14 times higher respectively versus individuals with no ε4 alleles (Farrar et al., 1997). 

Although the exact mechanism through which APOE-ε4 contributes to AD is not well 

established, the ε4 allele increases Alzheimer neuropathology by promoting the development of 

beta-amyloid plaques, ε4-mediated phosphorylation of the tau protein, isoform-specific neural 

toxicity, and increased tangle formation (Bekris, Yu, Bird, & Tsuang, 2010). Although the 
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APOE-ε4 allele confers susceptibility to AD, it is not necessary nor sufficient for the 

development of symptoms. Previous findings have indicated that the presence of an APOE-ε4 

allele is related to faster cognitive decline, particularly in more educated samples (Seeman et al., 

2005). Further, as many as 50% of individuals with APOE-ε4 alleles live well into their nineties 

dementia free, while many individuals without the variant are diagnosed with sporadic AD 

(Bekris, Yu, Bird, & Tsuang, 2010). This suggests that APOE-ε4 may interact with a plethora of 

lifestyle and environmental factors to produce disease outcomes. 

While the vast majority of AD cases are of the sporadic form (Bertram and Tanzi, 2004), 

three genes have been implicated in the development of autosomal dominant AD. Autosomal 

dominant AD is a subtype of AD directly linked to particular causal genes. These genes include 

Presenilin 1 (PSEN1), Presenilin 2 (PSEN2) and amyloid precursor protein (APP) (Bekris, Yu, 

Bird, & Tsuang, 2010). While these genetic risk factors occur in several hundred families, only 1 

percent of AD cases are autosomal dominant. The major distinguishing factor between sporadic 

and autosomal dominant forms of AD is the age of onset. Where sporadic AD symptoms tend to 

appear in later life, the first symptoms of autosomal dominant AD typically occur between the 

ages of 30 and 60 (Bateman et al., 2011). 

Some evidence indicates that sex may be a risk factor for AD, as there are far more cases 

of AD among women than men (Janicki & Schupf, 2010). While this perceived gap between 

sexes has been explained in terms of its biological plausibility due to hormonal changes in 

women after menopause (Janicki & Schupf, 2010) and reductions in brain volume among women 

in late life (Carr, Goate, Phil, & Morris, 1997), it has also been suggested that this difference 

may be an artifact of women living longer lives and the strong association between age and AD 

(Dal Forno et al., 2002). In a recent meta-analysis of over 60 studies (including 14 that assessed 
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incidence rates), while women showed a slightly higher incidence rate of dementia, this was not 

statistically significant (Fiest et al., 2016). However, despite these non-significant findings, many 

studies continue to control for sex in their analyses. 

2.1.3.2 Modifiable risk factors 

 While non-modifiable factors are important to the development of AD, a number of 

modifiable factors in early and mid-life also present significant risk for AD. More than one-third 

of AD cases can be attributed to modifiable lifestyle factors (Norton et al., 2014), including 

cardiovascular risk factors (Whitmer et al., 2003), cognitive inactivity (Flicker, 2010), education 

(Katzman, 1993), and socioeconomic status (SES) (Stern, 1994).  

 Cardiovascular risk factors such as tobacco use, alcohol consumption, high fat diet and 

physical inactivity are important to the development of AD. A meta-analysis of 19 studies 

including over 26 000 participants revealed that tobacco use increased the risk of dementia with 

tobacco users showing greater yearly declines in MMSE scores versus non-tobacco users 

(Anstey, von Sanden, Salim, & O’Kearney, 2007). Tobacco use has also been associated with 

greater NP pathology (Tyas et al., 2003). Norton et al (2014) estimate that 14% of the global AD 

prevalence is directly related to tobacco use.  

 Similarly, literature suggesting that physical activity is related to cognitive function and 

AD continues to grow (Flicker, 2010), with some evidence indicating regular physical activity 

could reverse symptoms among individuals with early memory complaints (Lautenschlager et al, 

2008). It is estimated that as high as 13% of AD cases globally are linked to physical inactivity, 

with this number climbing to 21% of cases in the USA (Norton et al., 2014).  

 While some findings show an association between alcohol and AD, such that low levels 

(1 drink/day) of alcohol consumption are protective against the development of AD (Peters et al., 

2008) with potentially deleterious effects at higher levels of intake, the true nature of these 
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effects is unclear (Panza et al., 2008). Findings on the relationship between alcohol and AD are 

inconsistent, potentially due to methodological limitations such as confounding by smoking 

status, selective mortality of heavy alcohol users, and misdiagnosis of alcoholic dementia versus 

AD (Tyas, 2001).   

 Dietary factors likely contribute to AD development through cardiovascular pathways. A 

developing body of literature has indicated a protective influence of the Mediterranean diet 

(Scarmeas et al., 2006), and decreased consumption of saturated fat (Gillette-Guyonette et al., 

2007). However, these findings have tended to be inconsistent or unreplicated (Flicker, 2010).  

 Finally, medical cardiovascular risk factors from early- and mid-life, such as 

hypertension, Type 2 diabetes, and obesity, are examples of risk factors that may promote the 

development of AD through vascular mechanisms (Flicker, 2010). In a systematic review, 

hypertension in midlife was consistently associated with increased incidence of dementia and 

AD in late life (Kennelly, Lawlor & Kenny, 2009). This relationship was strengthened by 

findings indicating that pharmaceutical treatments for hypertension were effective in reducing 

incidence of dementia (Ligthart et al., 2010). Similarly, diabetes (Lu, Lin & Kuo, 2009) and 

obesity (Beydoun, Beydoun, & Wang, 2010) are established risk factors for AD that are believed 

to act through vascular mechanisms (Flicker, 2010). Norton et al. (2014) estimate that if 

hypertension, diabetes, and obesity were eliminated as risk factors, the global burden of AD 

would be reduced by 5.1%, 2.9% and 2%, respectively. Fortunately, recent evidence suggests 

there has been a marked improvement in the management of cardiovascular risk factors, and thus 

projected incidence rates may begin to decline (Satizabal, et al., 2016). 

 The most established non-genetic risk factor for AD is the level of educational 

attainment. Consistent findings have shown that lower levels of educational attainment are 
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related to higher rates of dementia and AD (Katzman, 1993; Stern, 1994; Fritsch et al., 2002; 

Tyas, Manfreda, Strain, & Montgomery, 2001). Furthermore, more recent work has found that in 

addition to low educational attainment, lower academic performance (measured through grades 

during school) has been associated with increased incidence of AD (Bezerra et al., 2012). 

Although the literature on these relationships continues to grow, the mechanism underlying the 

link between educational variables and AD development remains unclear. Some researchers 

theorize that the protective effect of education is achieved by promoting structural features of the 

brain that protect against cognitive decline, such as increased brain weight (Coffey et al., 1999), 

while other research has emphasized educational attainment’s association with cognitive 

flexibility and improved processing that may provide resistance to brain pathology (see Stern, 

2012). It has also been suggested that the link between educational success and AD may be 

confounded by innate intelligence/cognitive ability (Whalley, Dick & McNeill, 2006), such that 

individuals with better cognitive flexibility and higher functioning throughout the life-course 

experience increased educational success and reduced risk of dementia. While the mechanism 

remains unclear, the role of education in cognitive resilience will be discussed further in section 

2.2. 

 Finally, AD incidence is modified by SES (Stern et al., 1994). While higher educational 

attainment and higher SES are correlated, and this may explain some of the association between 

SES and dementia (Qiu et al., 2003), SES is also independently predictive of AD with lower SES 

individuals showing higher levels of exposure to environmental contaminants (Santibanez, 

Bolumar, & Garcia, 2007), decreased cognitive stimulation at work (Andel et al., 2005), and 

reduced access to medical resources (Weissman, Stern, Fielding & Epstein, 1991), which limits 

access to treatment for various vascular AD risk factors such as high blood pressure and diabetes. 
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2.1.4 Alzheimer’s Disease Diagnosis 

The gold-standard diagnosis of AD is based on two sets of diagnostic criteria: clinical 

evaluation during life and neuropathologic assessment after death. Thus, any AD diagnosis given 

during life is presumptive until confirmed by congruent post-mortem evaluation. Clinical 

evaluations are used to identify the nature and severity of cognitive and behavioural changes 

associated with AD. Commonly used clinical criteria include that of the National Institute of 

Neurological Disorders and Stroke-Alzheimer’s Disease and Related Disorders Association 

(NINCDS-ADRDA) (McKhann et al., 2011), the Consortium to Establish a Registry for 

Alzheimer’s Disease (CERAD) (Morris, Heyman, Mohs & Hughes, 1989), and the American 

Psychiatric Association’s Diagnostic and Statistical Manual of Mental Disorders, now in its fifth 

edition (DSM-V) (American Psychiatric Association, 2013). Neuropathologic evaluations are 

conducted through autopsy to identify physical signs of AD in brain tissues. Common examples 

of neuropathologic criteria are CERAD (Mirra, Heyman, McKeel, et al., 1991) and the National 

Institute of Aging and Reagan Institute (NIA-RI) criteria (Hyman et al., 2012). More recent 

neuropathologic criteria have aimed to assess preclinical evidence of AD in the brain (Jicha et 

al., 2012; Hyman et al., 2012). 

2.1.4.1 Clinical Criteria for the Diagnosis of AD  

Clinical assessments during life are used to identify cognitive deficits associated with AD 

as well as to identify the nature and extent of behavioural changes. While each criterion has 

unique characteristics, there are a number of common features. DSM-V, CERAD clinical criteria 

and NINCDS-ADRDA criteria each require a clinical interview including the individual’s 

history of AD symptoms, a physical and neurological exam used to rule out alternative disorders, 

and a battery of tests assessing multiple domains of cognition.  
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 The NINCDS-ADRDA clinical criterion results in one of three classifications: possible 

AD, probable AD and definite AD (McKhann et al., 1984; McKhann et al., 2011).  Possible AD 

is used to describe individuals with atypical onset of symptoms, but where AD remains the most 

plausible explanation.  Probable AD is characterized by typical onset of dementia symptoms with 

the exclusion of alternative explanations for the symptoms.  Finally, a classification of definite 

AD is made when a probable AD label is confirmed by neuropathologic evaluations (McKhann, 

et al., 2011). 

 In the DSM-IV and DSM-V criteria, dementia (referred to as a neurocognitive disorder in 

the DSM-V) is defined by a decline in cognition resulting in the loss of independence (American 

Psychological Association, 2013). Similar to other clinical criteria, the DSM-IV stipulates that 

the dementia symptoms cannot be better explained by another disorder. To meet clinical criteria, 

the individual must show progressive decline in memory in addition to declines in at least one of 

the following cognitive domains: executive function, agnosia, apraxia, or aphasia (American 

Psychological Association, 2013).  

 Finally, the CERAD clinical criteria rely upon demographic, clinical, neurological, and 

neuropsychological information to confer a diagnosis of possible or probable AD. AD 

classification is clinically defined by cognitive impairment in any domain severe enough to 

impact activities of daily living (Morris et al., 1989). The CERAD clinical criteria measure 

language, memory, praxis and general intellectual status. CERAD neuropathologic measures will 

be discussed below. 

2.1.3.2 Neuropathologic Criteria for the Diagnosis of AD 

Similar to clinical assessments, there are a number of evaluative criteria to identify 

neuropathologic evidence of AD.  While a number of non-AD pathological markers may be 

assessed at autopsy, such as Lewy bodies and vascular damage (Hyman et al., 2012), standard 
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neuropathologic features assessed in the diagnosis of AD include NFTs and NPs.  Two of the 

major criteria used in the assessment of AD neuropathology, the CERAD neuropathologic 

criteria and NIA-RI criteria, are discussed. 

 The CERAD neuropathologic criteria assess NPs through three steps. Step one involves a 

count of NPs in areas of the neocortex with the highest plaque density. The plaques are then 

labelled “none”, “sparse”, “moderate”, or “frequent”.  In step two, this information is integrated 

with a patient’s age at death to derive an age-related plaque score. Finally, because AD diagnosis 

is based on the combination of both clinical and neuropathologic findings, step three combines 

plaque scores with results from the clinical battery to determine a diagnostic certainty of 

“definite AD”, “probable AD” or “possible AD” (Mirra, Heyman, McKeel, et al., 1991).  

While the CERAD criteria are effective at classifying AD likelihood based on NPs, it 

fails to consider NFT pathology and therefore does not assess the full spectrum of AD-related 

changes in the brain. To remedy this limitation, the NIA-RI criteria assess both NP and NFT 

pathology (NIA-RI Working Group, 1997; Hyman et al., 2012). NP pathology is assessed using a 

modified CERAD criteria into one of four categories: “no neuritic plaque”, “CERAD sparse”, 

“CERAD score moderate” and “CERAD score frequent”. NFT severity is assessed through the 

use of a modified version of the Braak staging method (Braak and Braak, 1991). This method of 

assessing the severity of NFT pathology is based on observations finding that NFT pathology 

typically follows a predictable pattern of development. The pathology is graded on one of four 

levels: 1. no NFTs, 2. NFTs in the entorhinal cortex and related areas (indicative of early NFT 

development), 3. NFTs abundant in the hippocampus and amygdala and surrounding tissues 

(indicative of intermediate NFT development) and 4. NFTs distributed widely throughout the 

cortex (indicative of severe tangle pathology).  The scores on NP and NFT pathology are then 
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combined and an individual is given an AD likelihood of “not”, “low”, “intermediate”, or “high” 

(Hyman et al., 2012).  

While the inclusion of both NP and NFT pathology in the NIA-RI criteria is a major 

strength, this also presents some challenges to researchers and clinicians. The NIA-RI criteria 

were developed based on the idea that NP and NFT pathology levels are highly correlated. While 

this tends to be true (Nelson, Kukull, & Frosch, 2010), in cases where the degree of NP and NFT 

pathology are incongruent, the subject is unclassifiable. This “unclassified” status may represent 

as many as 18% of individuals with AD, with most falling into one of two categories: “tangle 

intensive patients” (those with high NFT density but only moderate NP development) and 

“plaque intensive patients” (those with high NP density but only moderate NFT development) 

(Nelson, Kukull, & Frosch, 2010). Presently, no consensus has been reached on how to deal with 

unclassifiable subjects. This lack of consensus is problematic for both researchers and clinicians 

faced with making decisions regarding these individuals.  

2.2 Cognitive Resilience 

The evidence that neuropathology in the brain is related to cognitive function is 

exceptionally robust. However, the relationship between clinical disease symptoms and 

neuropathology varies considerably between individuals (SantaCruz et al., 2011). Many older 

adults have avoided reaching the threshold for clinical dementia, with some managing to avoid 

any cognitive changes, despite the presence of profound brain pathology (Stern, 2012). The 

hypothetical construct most commonly employed to explain this disparity between brain 

pathology and cognitive ability is the reserve hypothesis (Stern, 2012).  

Reserve is broadly categorized into two major types: brain reserve and cognitive reserve.  

The brain reserve hypothesis (Katzman, 1993) considers certain physical features of the brain to 

be protective entities. This passive model asserts that quantitative structural features of the brain, 
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such as synaptic density and brain mass, allow an individual to overcome greater levels of brain 

pathology before reaching the threshold at which cognition begins to decline (Stern, 2012).  

Active models of reserve, or cognitive reserve, are not based upon the structural 

components of the brain but instead emphasize the brain’s ability to effectively recruit and utilize 

existing neuronal networks to maximize cognitive function and compensate for neuropathologic 

insults. Cognitive reserve is hypothesized by Stern (2002) to take two distinct forms: neural 

reserve and neural compensation (Stern, 2002).     

Individuals with high neural reserve resist the impact of brain pathology as a result of 

highly efficient neural networks. Evidence has shown between-individual differences in regard to 

the amount of brain activation required to complete cognitive tasks. Individuals requiring less 

brain activation to meet a particular demand (i.e., those with more efficient neural networks) may 

display cognitive reserve as they are able to maintain function with a reduced amount of intact 

neuronal tissue (Stern, 2012).  

Alternatively, neural compensation increases reserve capacity by successfully recruiting 

new neural networks to compensate for damage in other areas. If neuropathology damages an 

existing neuronal network, the brain with higher neural compensation can effectively recruit a 

new network to complete the required task (Stern, 2012). Neural compensation, therefore, 

equates to increased cognitive flexibility to overcome brain pathology. 

The present study considered the impacts of educational attainment, brain weight and 

cortical atrophy, thus incorporating aspects of both cognitive reserve and brain reserve as defined 

by Stern (2012). Therefore, the term “cognitive resilience” will be used to capture the influences 

of both brain reserve and cognitive reserve when resisting the negative impacts of Alzheimer 

neuropathology. 
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2.2.1 Cognitive Resilience and Alzheimer’s Disease  

  Perhaps the most studied impact of cognitive resilience is on the clinical expression of 

AD. Because brain reserve and cognitive reserve may modulate the expression of AD, it can be 

assumed that promoting the factors that increase cognitive resilience may aid in delaying—or 

preventing—the onset of AD symptoms. While some patients may experience complete 

cognitive resilience against AD, where their brains are able to overcome Alzheimer 

neuropathology to maintain intact cognition, the majority of patients who exhibit resilience show 

only partial cognitive resilience in that they do not reach the threshold for clinical dementia but 

may experience some sub-clinical deficits (Santa-Cruz et al., 2011). However, even this partial 

cognitive resilience may allow individuals to maintain their independence and quality of life (at 

least temporarily), as well as reducing the negative impacts of dementia on care partners and 

social systems.   

While the underlying mechanism allowing cognitive resilience to confer resistance to AD 

is not well understood, a number of lifestyle and demographic factors from across the lifespan 

have been identified as contributors to cognitive resilience in older adulthood. Although lower 

SES often presents a major barrier to optimizing factors commonly associated with cognitive 

resilience (such as education and occupational attainment) due to reduced opportunity, given 

appropriate societal supports these factors are good targets for public health interventions aimed 

at increasing resilience and reducing the burden of AD decades later.  

2.2.1.2 Early-Life Factors Contributing to Resilience Against Dementia  

Unlike brain reserve, the emphasis of cognitive reserve is on the brain’s processing 

systems rather than size and density of structures. It is therefore difficult to measure cognitive 

reserve directly (Jones et al., 2011). Instead, the study of cognitive reserve has largely been 

conducted by measuring exposure to factors believed to predict cognitive reserve. Factors 
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considered to be important to cognitive reserve are those linked to an increase in cognitive or 

intellectual engagement such as multilingualism (Bialystok et al., 2008; Bialystok et al., 2007; 

Chertkow et al., 2010; Yeung et al., 2014; Hack et al., 2012), written language skills (Riley et al., 

2005; Tyas, Snowdon, Desrosiers, Riley, & Markesbery, 2009), education (Stern, 2012), 

occupation, and social engagement (Stern, 2006). These factors are theoretically linked to the 

development of complex and robust neural networks that are protective throughout older 

adulthood (Fillit et al., 2002). The following section addresses the factor most relevant to the 

current study: education. 

2.2.1.3 Educational Factors and Cognitive Resilience  

Educational attainment (most commonly measured in years of education or highest level of 

education achieved) is the most common factor linked to cognitive resilience, with a range of 

studies finding associations between education and cognitive status in older adulthood (Hall et 

al., 2007; Stern, 1994; Fritsch et al., 2002; Meng & D’Arcy, 2012). In a recent meta-analysis of 

69 studies, low education was found to be linked to a substantial increase in the odds of dementia 

(pooled Odds Ratio (OR)=2.61, 95% Confidence Interval (CI): 2.10-3.07) (Meng & D’Arcy, 

2012).  While it is unclear exactly how education modifies the expression of dementia 

symptoms, three explanations are commonly proposed. First, education may lead to the 

development of more complex neuronal networks early in life that persist throughout the life-

course. Second, education may lead to more cognitive stimulation throughout the life-course via 

occupational and recreational activities. Third, higher education reduces the risk of detrimental 

environmental exposures over the life-course (such as smoking, occupational hazards, etc.) 

(Mortimer & Graves, 1993).  
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In an effort to directly address the cognitive reserve theory, four studies assessed the role 

of education in predicting cognitive outcomes while controlling for proxies of brain pathology, 

using decreased blood flow to the parieto-temporal cortex (Stern et al., 1992; Liao et al., 2005), 

or decreased glucose metabolism in the parieto-temporal cortex (Garibotto et al., 2008; 

Kemppainen et al., 2008) to indicate greater brain damage. In all four of these studies, 

individuals with higher educational attainment showed similar scores on cognitive assessments 

compared to their less educated counterparts, despite showing vascular or metabolic differences 

reflecting significantly greater brain damage (Stern et al.,1992; Liao et al., 2005; Garibotto et al., 

2008; Kemppainen et al., 2008). These findings provide support for the reserve hypothesis as 

they indicate that educated individuals are able to maintain their cognitive abilities despite more 

severe damage. A subsequent study assessed brain damage through the assessment of amyloid 

deposits in the precuneus region of the brain and compared neuropsychological performance 

among individuals with varying years of education (Rentz et al., 2010). This study had similar 

findings to previous work, indicating that while amyloid deposits were strongly related to 

decreases in cognitive performance, the impact was largely offset by increasing years of 

education (Rentz et al., 2010). While these findings show consistent links between education and 

the ability to resist the impacts of brain damage, all five studies were limited by emphasis on a 

single brain area and lack of gold-standard autopsy data to validate their assessments. 

 Hall et al. (2007) assessed education’s role in cognitive reserve by examining how the 

development of cognitive deficits varied based on years of education. The results revealed that 

individuals experienced later onset of symptoms with each additional year of education. 

Furthermore, it was found that once the onset of symptoms began, individuals with higher 

education showed more rapid decline in their memory scores than those with less education (Hall 



22 
 

et al., 2007), providing conceptual support for cognitive reserve. While it is counter-intuitive that 

a protective exposure, such as higher education, would result in faster cognitive decline, 

educated participants maintain their cognition despite increased evidence of neuropathology. 

Therefore, when an educated individual’s reserve capacity is exhausted and symptoms begin to 

appear, they are already at a more advanced stage of the disease and thus experience faster 

deterioration. Indeed, more recent findings have provided marginally significant support for this 

finding (Cadar, Stephan, Jagger, et al., 2015). Unfortunately, the Hall et al. (2007) study lacked 

neuropathological data to validate these findings and it is unknown how neuropathology and 

education interacted to produce cognitive outcomes within the sample.  

 Finally, educational attainment was tested as a predictor of cognitive reserve by 

comparing education and dementia status among individuals who posthumously showed 

neuropathology consistent with AD (Roe, Xiong, Miller & Morris, 2007).  This study found that 

higher education was associated with decreased incidence of dementia in the last year of life, 

despite evidence of NFT and NP upon autopsy. This study provides robust evidence that 

education is related to cognitive reserve as it showed that despite the presence of Alzheimer 

pathology identified using gold-standard diagnostic protocols, educated participants were able to 

resist showing cognitive symptoms of AD.    

 While evidence suggests that educational attainment is consistently associated with 

cognitive reserve, there are a number of limitations to the literature in this field. Most previous 

findings were conducted on a population in which receiving higher education was less common 

(Sorlie et al., 1995). Educational attainment among these participants may have been reflective 

of factors such as SES or geographic location rather than a reflection of cognitive development 
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and innate intelligence (Stern, 2006). To address this gap in the literature, recent work has 

assessed the role of academic performance on outcomes of cognitive reserve.  

 Dekhtyar, Wang, Fratiglioni and Herlitz (2016) assessed rates of incident dementia rates 

among individuals aged 75+, comparing grades in school at age 9 and 10 and revealing a 

significant impact of early-life academic performance (based on school archives). Individuals 

scoring in the lowest quintile for academic performance showed a risk of incident dementia 1.54 

times higher than the upper four quintiles. In 2009, a study was published by Mehta et al. to 

determine whether an individual’s perceptions of their school performance were linked to late-

life cognitive outcomes. The rates of incident dementia among those who rated their academic 

performance as “below average” “average” and “above average” were 26%, 12% and 11%, 

respectively (Mehta et al., 2009). It is important to note that this study is limited by the use of 

self-report for the measure of academic performance. A later study assessed the association 

between academic performance and dementia using objective measures of academic 

performance. This study assessed grades on Portuguese, mathematics and geography tests as 

indicators of academic performance (Bezerra et al., 2012).  The study revealed that even after 

controlling for a range of lifestyle and socioeconomic factors, high academic performance was 

related to a decrease in incident dementia (Bezerra et al., 2012). In contrast to the previous work 

by Mehta et al. (2009) where no gradient between academic performance and dementia was 

observed, this study revealed some evidence of a gradient between school performance and 

decreased incidence of dementia. The study showed that each half-point increase in math or 

Portuguese resulted in decreased dementia risk (Bezerra et al., 2012).  However, no such 

relationship was found for geography grades, indicating that increased abilities in math and 

language may be particularly protective against dementia.  
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 All of the aforementioned articles considering the influence of academic performance on 

late-life cognitive outcomes have been limited by their measures of cognitive impairment, which 

were based on clinical measures and neuropsychological exams. Thus, because AD requires the 

presence of both clinical and neuropathologic criteria, these studies should not be used to draw 

conclusions regarding the link between academic performance and cognitive resilience against 

Alzheimer’s disease. However, recent work in the Nun Study has provided some initial insight 

into this relationship using neuropathologically confirmed AD (Tyas et al., 2016). In this study, 

individuals with lower grades in high school algebra and English courses were more likely to be 

diagnosed with neuropathologically confirmed AD compared to those students with higher 

grades, even when controlling for educational attainment (Tyas et al., 2016). This finding 

provides initial validation of previous studies on academic performance and AD. 

 As previously stated, the mechanism underlying education’s protective effect on late-life 

cognition is not well understood. It has been suggested that education may promote cognitive 

resilience through improved cognitive stimulation through the life-course into older adulthood. 

In an effort to assess the role of education across the life-course, a recent study assessed whether 

pursuing higher education in late life could improve cognitive outcomes (Lenehan, Summers, et 

al., 2016). This interventional study followed adults between 50 and 79 over four years 

comparing participants assigned to a minimum of 12 months of part-time university study to 

individuals with no later-life university study. This study found that individuals exposed to 

additional post-secondary university in the later years of life showed an increase in cognitive 

performance on neuropsychological testing (Lenehan, Summers, et al., 2016). This study did not 

assess whether this resulted in decreased rates of dementia and AD further into older adulthood.  
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Another educational variable that may be linked to cognitive resilience is the educational 

level of one’s parents. While limited, evidence suggests that parental education, particularly 

maternal education, may be related to late-life cognitive outcomes. A nested case-control study 

examined the role that parental education played in the development of dementia (Rogers et al., 

2009). The study revealed that after controlling for paternal education, individuals whose 

mothers had less than eight years of formal education were twice as likely to be diagnosed with 

cognitive impairment or dementia (Rogers et al., 2009).  

 The role of parental education theoretically could contribute to the promotion of 

cognitive resilience as highly educated parents may be better equipped to provide the type of 

stimulation during childhood that improves neuronal network complexity (Guo & Harris, 2000). 

This early exposure appears to set the framework for continued cognitive stimulation throughout 

the lifespan (Dollaghan et al., 1999; Flouri & Buchanan, 2004). Higher maternal education has 

also been found to be associated with larger birth weight, which is a strong predictor of fetal 

brain development (Shmueli & Cullen, 1999). Lower birth weight was associated with a decrease 

in gray matter volume in the frontal, temporal and occipital regions at birth (Kessler et al., 2004) 

that persists throughout the life-course (Walhovd et al., 2012). However, high concordance 

between parental education and an individual’s educational attainment makes it difficult to detect 

an independent influence of paternal education on reserve outcomes (Rogers et al., 2009). 

Therefore, individual education and academic performance remain the most relevant educational 

variables linked to late-life cognitive outcomes. 

2.2.2 Cognitive Resilience and Cortical Atrophy 

While educational factors from early life are believed to promote cognitive resilience, 

one’s level of resilience is not fixed over time (Stern, 2012). Rather, resilience is likely the 
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cumulative result of multiple exposures over the life-course. Thus, factors from late life remain 

critical in the expression of AD symptoms among older adults. One particularly important late-

life factor that may be linked to cognitive resilience is cortical atrophy. Cortical atrophy is the 

loss of neuronal tissue in the cerebral cortex (Fox, Freebourough, & Rossor, 1996). Since NFT 

pathology is linked to the disruption of cell metabolism and ultimately to neuronal cell death 

(Hymen et al., 2012), there are causal mechanisms through which Alzheimer neuropathology can 

directly lead to cortical atrophy (DeCarli, Murphy, McIntosh, Teichberg, Schapiro, & Horwitz, 

1995). However, atrophy can also impact individuals through various other disease mechanisms 

and through the aging process independent of Alzheimer neuropathology (Fox, Freebourough, & 

Rossor, 1996).  

Atrophy may theoretically reduce cognitive resilience as a function of reduced brain 

reserve. According to brain reserve theory, an individual’s level of cognitive resilience should be 

negatively impacted by cortical atrophy because of decreases in neuronal networks used to 

overcome Alzheimer neuropathology (Katzman, 1993). This assumption is supported by 

previous work suggesting that lower brain volume (Stern, 2012; Schofield, Logroscino, Andrews 

Albert, & Stern, 1997; Katzman et al., 1988) and smaller head circumference (Mortimer, 

Snowdon & Markesbery, 2003; Bickel et al., 2006; Kim et al. 2008) are associated with higher 

risk for dementia and AD.  

While little research has assessed the impact of cerebral cortical atrophy within the 

context of cognitive resilience against AD, preliminary evidence suggests the presence of 

atrophy is strongly and negatively associated with levels of resilience (Tyas et al., 2008). These 

findings suggest that the presence of atrophy results in a four-fold decrease in the likelihood of 
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displaying cognitive resilience, with increased severity of atrophy resulting in a reduced 

likelihood of resilience (Tyas et al., 2008).  

Findings providing additional support for the inverse association between cortical atrophy 

and cognitive resilience were reported in a study by Guo et al. (2013). In this study, cortical 

atrophy was associated with a reduction in reserve capacity as evidenced by a decrease in 

cognitive function (Guo et al., 2013). However, brain reserve theory was further supported by the 

study’s finding that larger pre-morbid brain size (measured using intracranial volume as a proxy 

measure of brain size) was associated with increased reserve in the early stages of atrophy (Guo 

et al., 2013). An earlier study using head circumference as a proxy measure of premorbid brain 

size showed similar results (Perneczky et al., 2010). In this study, atrophy was once again 

strongly linked to cognitive deterioration. However, this relationship was stronger among 

individuals with smaller head circumferences (Perneczky et al., 2010). These findings indicate 

that the presence of atrophy is a substantial threat to cognitive resilience and that atrophy may 

have more severe consequences among individuals with smaller premorbid brains due to their 

limited initial brain reserve capacity. It is important to note that the protective effects of a large 

brain were, however, diminished in more advanced atrophy.  

One major limitation to these findings was the limited availability of neuropathologic 

data. Both of these studies (Perneczky et al., 2010; Guo et al., 2013) assessed cortical atrophy as 

a proxy variable for AD-related neuropathology and did not possess data on the accumulation of 

hallmark Alzheimer neuropathology (NFTs and NPs). Therefore, the studies were primarily 

assessing reserve against atrophy itself, rather than reserve against Alzheimer neuropathology.  

Addressing this issue, Negash et al. (2013) assessed a biochemical proxy measure for 

Alzheimer neuropathology (abnormal levels of total tau protein, phosphorylated tau protein and 



28 
 

beta amyloid plaque in cerebrospinal fluid) as well as using imaging to assess cortical atrophy. 

Similar to Guo et al. (2013), the study also assessed premorbid intracranial volume as a proxy for 

brain reserve (Negash et al., 2013). While exposure to increased cortical atrophy and amyloid 

beta plaques were both related to a decrease in cognitive resilience (i.e., led to dementia 

symptoms), the study also confirmed that higher intracranial volume promoted cognitive 

resilience (Negash et al., 2013).  By including a molecular biochemical proxy measure of 

Alzheimer neuropathology in the analysis, this study provides a first step in understanding the 

interacting influences of Alzheimer neuropathology, cortical atrophy and resilience. However, 

the lack of gold-standard neuropathologic data remains a limitation to be addressed. 

In addition to the growing literature on the influence of cortical atrophy on cognitive 

resilience in AD, research regarding the impact of cortical atrophy within related clinical 

populations has yielded similar results. In a study of individuals with multiple sclerosis, the 

degree of cognitive reserve (measured using IQ and level of education) modified the relationship 

between brain pathology and cognitive function allowing highly educated participants to offset 

the influence of atrophy (Amato et al., 2013). However, as the severity of atrophy increased, 

levels of cognitive resilience declined despite high levels of cognitive reserve (Amato et al., 

2013).   

Research assessing the effects of brain weight, cortical atrophy and educational 

attainment on cognitive resilience suggests a number of potential interactions. Aforementioned 

studies suggest that the influence of mild atrophy may be offset by higher pre-morbid brain 

weight due to higher baseline levels of resilience. Further, evidence suggests that while factors 

that promote cognitive reserve (such as education) can play a vital role in maintaining cognitive 
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ability, this impact may be contingent on the maintenance of brain reserve (e.g., avoiding cortical 

atrophy). 

2.2.3 Summary  

 The concept of cognitive resilience provides a number of opportunities for public health 

interventions aimed at maintaining cognition broadly, and preventing AD specifically. However, 

most studies lack gold-standard neuropathologic data required to assess predictors of cognitive 

resilience. Therefore, further research is required to understand the mechanism through which 

the plethora of contributing factors may interact to promote positive outcomes. Future efforts 

aimed at better understanding how factors from across the lifespan interact to influence cognitive 

resilience could inform applications of cognitive resilience theory to clinical and community 

settings.  
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3. Study Rationale 

 The aims of the present study were to assess the influence of both cognitive reserve 

(through educational attainment) and brain reserve (through cortical atrophy and brain reserve) 

on cognitive outcomes in a sample of individuals with autopsy-confirmed neuropathologic 

evidence of AD. Further, this study assessed how brain reserve and cognitive reserve factors may 

interact to produce these cognitive outcomes.  

 The project was completed using data from a population-based cohort with annual 

clinical assessments as well as post-mortem neuropathologic assessments. The study also 

included information regarding the educational attainment of its participants as well as data 

regarding covariates such as APOE-ε4, occupation and country of origin. Further, all members of 

the study were women who had similar lifestyles including similar reproductive histories, access 

to medical resources, and levels of alcohol and tobacco use. This similarity in participant 

lifestyles reduces confounding and increases internal validity of the results.  

 Finally, cognitive resilience is a relatively new concept that has only recently begun to 

garner attention from the research community. Due to the emerging nature of this research field 

and the difficulties associated with assessing these outcomes, there are a number of gaps in the 

field of resilience against AD that the present study addresses, such as the interacting influence 

of brain reserve (through atrophy and brain weight) and cognitive reserve (through education), as 

well as including a neuropathologically-derived definition of cognitive resilience providing 

validation of previous findings. 

3.1  Research Questions  

1a. Is educational attainment related to cognitive resilience? 

1b. Does this relationship persist when controlling for age and APOE-ε4 status? 

2 a. Is the presence or severity of cortical atrophy related to cognitive resilience? 
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2b. Do these relationships persist when controlling for age and APOE-ε4 status? 

3a. Is brain weight related to cognitive resilience? 

 3b. Does this relationship persist when controlling for age and APOE-ε4 status? 

4. Is the effect of the presence or severity of cortical atrophy on cognitive resilience modified by 

brain weight? 

 

5.  Is the effect of education on cognitive resilience modified by atrophy or brain weight? 

 

3.2 Hypotheses 

Based on previous literature, it was hypothesized that:  

 

1.  Higher levels of educational attainment would be associated with cognitive resilience 

because of greater cognitive reserve.    
 

2. Both the presence, and increasing severity, of cortical atrophy would be negatively 

associated with cognitive resilience because of a reduction in brain reserve. 

 

3. Lower brain weight would be associated with decreased cognitive resilience as a 

result of a reduction in brain reserve. 

 

4. When stratified by brain weight, individuals with larger brains would be better able to 

resist the deleterious effects of mild atrophy than those with lower brain weights 

because higher baseline brain reserve capacity would allow individuals with larger 

brains to compensate for reductions in brain reserve resulting from mild cortical 

atrophy.  

 

5. The positive effects of educational attainment would be more strongly associated with 

cognitive resilience when brain weights were low or atrophy was present, as those 

with higher brain weights may have reached a ceiling effect for cognitive resilience, 

and thus the positive influence of education would not be required to maintain 

cognitive function. 
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4. Methods 

4.1 Literature Search 

A literature search on the relationship between educational factors and cognitive 

resilience was conducted in December 2014 using the PubMed Medline database. A full 

literature search template can be found in Appendix A. The literature search was restricted to 

peer reviewed articles written in English or French and included the search terms “educational 

attainment” or “years of education” or “education level” AND “cognitive reserve [MeSH]” OR 

“cognitive reserve [all fields]” or “cognitive resilience [all fields]” or “Alzheimer disease 

[MeSH]” or “Alzheimer’s disease [all fields]” or “dementia” or “cognitive impairment[TIAB]” 

AND “Aged [MeSH]” or “older adult[TIAB]”. The search returned 824 results before 

exclusions. Articles were excluded if:  i) cognitive resilience was not the outcome of interest; ii) 

education was not the primary exposure assessed; iii) they did not use participants aged 65 or 

over; or iv) education was only incorporated into the analysis as part of a composite measure of 

SES.  Subsequent searches were conducted in October 2015 and September 2016 to identify 

more recently published articles. After exclusion criteria were applied, no additional studies were 

retrieved in the October 2015 search. However, one review article was identified. The reference 

list of the review article was searched manually but did not yield any previously unidentified 

results. The September 2016 search yielded two additional articles. 

A second literature search was conducted using the PsycINFO database in January 2015. 

A full literature search template can be found in Appendix A. This search used the index terms 

“education” or “academic achievement” and descriptor terms “educational attainment” or 

“education” or “level of education” in conjunction with the index term “Alzheimer’s disease” 

and the descriptor terms “Alzheimer disease” or “dementia” or “cognitive impairment” or 

“cognitive reserve” or “cognitive resilience”. This search was restricted to articles written in 
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English or French and using human participants. This search returned 34 articles and the same 

exclusion criteria were applied to searches in this database. Once again subsequent identical 

searches were conducted in October 2015 and September 2016. No additional articles were 

retrieved from either of these searches. 

Overall, ten articles were retrieved from PubMed Medline and five articles were retrieved 

from PsycINFO. After duplicates were deleted, nine articles remained for full review. A 

summary of the nine reviewed articles can be found in Appendix B. 

Following extraction of the relevant articles, reference lists were searched manually for 

relevant citations. While no additional articles were added to the formal literature search, several 

background articles were retrieved.  

An additional review was conducted on the role of education in relation to Alzheimer’s 

disease more broadly, using PubMed Medline and PsycINFO databases. This search was 

conducted using title and abstract searches for the search terms “educational attainment” or 

“years of education” as well as “dementia” or “Alzheimer* disease” using “all fields” searches. 

This review was used to provide information more generally on education’s influences on late-

life cognition, and was not intended to be comprehensive. Rather, this search was used to 

supplement the literature review to provide a framework for how education may be related to 

late-life cognition.  

A subsequent review was conducted on the relationship between cortical atrophy and 

cognitive resilience. The literature search was conducted in November of 2015 using the 

PubMed Medline database.  The literature search was restricted to peer reviewed articles written 

in English or French and included the search terms “cortical atrophy” or “brain atrophy [all 

fields]” or “Brain tissue loss [all fields]” and “cognitive reserve [MeSH]” or “cognitive reserve 
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[all fields]” and “Alzheimer’s Disease” [MeSH]. This search returned 71 articles. Articles were 

excluded if i) cognitive resilience was not the outcome of interest; ii) atrophy was not the 

primary exposure assessed; iii) they did not use participants aged 65 or over. Following 

exclusions, five articles remained for full review. Summaries of the five articles can be found in 

Appendix B.  

4.2 The Nun Study 

The Nun Study is a longitudinal study of aging aimed at investigating risk factors and 

underlying mechanisms involved in the development of AD.  The study originally began in 1986 

as a pilot study of aging assessing members of the Minnesota-based School Sisters of Notre 

Dame. The study was expanded between 1991 and 1993 to include members of the School 

Sisters of Notre Dame religious congregation from other areas of the United States.  

4.2.1 Sample 

The Nun Study recruited members of the School Sisters of Notre Dame aged 75 years or 

older. Of the 1031 eligible members of the School Sisters of Notre Dame, 678 (66%) agreed to 

participate in all aspects of the study. This included consent to a review of medical and archival 

records, annual cognitive and physical assessments, and brain donation upon death (Snowdon et 

al., 1996). Participants and non-participants did not differ significantly by mean age, country of 

birth, annual mortality rate or race (Snowdon et al., 1996). 

The Nun Study participants were exposed to similar lifestyle and environmental risk 

factors throughout their adult lives, which greatly minimizes common confounding variables that 

impact many epidemiological studies (Tyas et al., 2007). All participants had consistent social 

support, did not smoke or drink heavily, had equal access to medical resources and had the same 

marital and reproductive histories. Additionally, participants had similar occupations, with the 
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majority working as teachers and most of the remaining participants working as house sisters 

(with one sister who worked as a nurse’s aide). The impact of occupation on analyses was likely 

modest because little variance in occupation existed and, in addition, would likely be of smaller 

magnitude than among the general population as economic outcomes were identical regardless of 

occupation. However, because those sisters with higher levels of education were more likely to 

be teachers than house sisters, occupational status may partially mediate the association between 

education and late-life cognition as an effect of cognitive stimulation over the life course. 

4.2.2 Data Collection 

Cognitive and physical assessment data were collected from Nun Study participants 

annually following study enrollment. Cognitive function was assessed using the CERAD battery 

of neuropsychological tests (including the Mini Mental State Exam (MMSE), Boston Naming, 

Word List Memory, Word List Recall, Word Recognition, constructional praxis and Verbal 

Fluency tests) (Morris et al., 1998) and standard Activities of Daily Living (ADL) measures. 

ADL measures (e.g., feeding and dressing) were assessed using performance measures 

(Kuriansky & Gurland, 1976), reducing biases associated with self-reported ADL measures 

(Riley et al., 2002; Tyas et al., 2007). 

Nun Study neuropathologic evaluations of Alzheimer neuropathology, brain weight and 

cortical atrophy were conducted by a neuropathologist who was blinded to the cognitive status of 

participants (Riley et al., 2002). Brain areas were cut into sections that were 8 microns thick to 

quantify the plaques and tangles. The assessments of APOE genotypes were conducted on brain 

tissue for deceased participants and on buccal cells for living participants (Mortimer, Snowdon, 

& Markesbery, 2009). Laboratory methods were previously discussed in Saunders, Hullette et 

al.(1996).  
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Additional data were collected through archival records. Archival records included level 

of educational attainment, birth certificates, hand-written autobiographies, and high school 

transcripts (Patzwald & Wildt, 2004).   

4.3 The Analytic Sample 

 Because the study required neuropathological data, the analytic sample was restricted to 

deceased participants with completed neuropathologic assessments. Participants were excluded 

from the analytic sample if they were missing data on educational attainment (n=0), age at death 

(n=0), APOE-ε4 status (n=8), brain weight (n=21), and cerebral cortical atrophy status (n=21) 

(see Figure 1). Finally, because the study assessed factors that predict the ability to overcome the 

deleterious effects of Alzheimer neuropathology, only participants showing evidence of 

Alzheimer neuropathology based on post-mortem evaluations were included in the analytic 

sample. This resulted in the further exclusion of living participants (n=72), individuals for whom 

an autopsy had not been completed (n=217), and individuals whose autopsies did not result in a 

classification of “probable AD” for the CERAD sample (n= 126) or a classification of 

“intermediate” or “high” likelihood of AD for the NIA-RI sample (n=179) . This left a total 

analytic sample of 213 for the CERAD sample and 160 for the NIA-RI sample. When non-

response bias was assessed to determine the impact of the reduced sample size for the analytic 

sample, differences between groups were identified; however, these differences were predictable 

and were unlikely to influence the internal validity of the study. See Appendix C for further 

information regarding the assessment of non-response.     
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Figure 1. Flowchart of analytic sample 

Full Nun Study Population 

N=678 

Excluded: 

- Did not meet CERAD Alzheimer 

neuropathology criteria 

(n=126) 
 

Analytic Sample (NIA-RI) 

(n=160) 

Analytic Sample (CERAD) 

(n=213) 

Excluded: 

- Did not meet NIA-RI Alzheimer 

neuropathology criteria 

(n=179) 
 

Excluded: 

- Living participants (n=72) 

- Missing autopsy data 

(n=217) 

- Missing data on educational 

attainment (n=0), APOE 

(n=8), cortical atrophy 

(n=21), or brain weight 

(n=21) 

- Missing cognitive 

assessment before death 

(n=0) 
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Figure 2. Timeline of data collection

 

APOE 

Genotype 

Cognitive 

Assessments 
Death 

Post-mortem 

Neuropathologic 

Evaluations 

Nun Study 

Enrollment 

(1990-1993) 

Educational 

Attainment 

 

These exposures occurred prior to the 

beginning of the Nun Study, but data on 

these were collected or retrieved during 

the course of the Nun Study. 

 
 

Annual cognitive assessments began at 

enrollment (age 65 or older) with follow-

up until death. 

AD neuropathology, brain 

weight and cortical 

atrophy data were 

retrieved from post-

mortem evaluations. 

evaluations 
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4.4 Measures 

4.4.1 Exposures  
 The exposure variable, educational attainment, was self-reported through a survey 

conducted in 1983 and was previously coded. Highest level of educational attainment was 

categorized as less than high school, high school, Bachelor’s degree, and Master’s degree or 

higher. 

Cortical atrophy data were collected during neuropathologic evaluations, which were 

conducted by a single senior board-certified neuropathologist. These data were then coded for 

the presence and severity of atrophy. The coding for cortical atrophy presence was a simple yes 

or no response indicating if cortical atrophy was identified. A second set of analyses assessed the 

severity of atrophy by coding atrophy into four groups: no atrophy, mild atrophy, moderate 

atrophy or severe atrophy. The severity of atrophy was noted by brain regions, and for the 

purpose of the present study, the classification of severity was based on the most severely 

impacted brain region. Although the severity of atrophy was initially categorized into four 

categories with moderate and severe atrophy representing distinct groups, these groups were 

collapsed to provide sufficient sample sizes in this stratum. 

Formalin-fixed brain weight, measured in grams, was collected during autopsy 

assessments. These data were not coded prior to the current study. Data were retrieved from 

autopsy narrative dictations and entered into a data base as a continuous measure based on 

weight in grams, which was later categorized into quartiles and tertiles.  

4.4.2 Outcomes  

 The outcome of interest in the proposed investigation was the presence of cognitive 

resilience. Cognitive resilience was defined as avoiding dementia despite the presence of 

Alzheimer neuropathology. This outcome was operationalized as not reaching the threshold of 
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clinical dementia using DSM-IV criteria at the last assessment before death, despite 

neuropathologic assessments of “probable” AD on the CERAD neuropathologic criteria. (Those 

with a diagnosis of “definite” AD on the CERAD criteria could not, by definition, be included in 

this definition as they would have been diagnosed with clinical dementia) (Mirra, Heyman, 

McKeel, et al., 1991). Because evidence of “possible” AD equates to neuropathologic 

uncertainty underlying disease processes, and thus would result in a significantly increased risk 

of measurement error, “possible” AD cases were not included in the sample. The outcome of 

cognitive resilience was also assessed using NIA-RI neuropathologic criteria of “intermediate” 

or “high” likelihood of AD (Hyman et al., 2012). 

4.4.3 Covariates  

APOE-ε4 status was treated as a dichotomous variable: APOE-ε4 present (1 or 2 ε4 

alleles) and APOE-ε4 absent (0 ε4 alleles). Age was restricted as a function of the study design 

as individuals under the age of 75 were excluded from the Nun Study sample.  Additionally, 

multivariate regression models adjusted for the participant’s age at death. As a function of the 

study population, gender was restricted to females only.   

4.5. Analysis 

A description of the general analytic method is provided below. The analyses were 

conducted using SAS 9.4 statistical software (SAS Institute Inc., Cary, North Carolina).  

4.5.1. Descriptive Analyses  

Univariate and bivariate analyses were conducted to summarize and describe the analytic 

sample. Univariate analyses evaluated the central tendency and frequency distributions of 

individual variables in the project. Bivariate analyses, which included t-tests and chi-square tests, 

were performed to evaluate the relationship between pairs of variables in the project. The t-tests 

assessed the relationship between continuous and dichotomous variables. Chi-square tests 
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assessed the relationship between sets of categorical variables, with Fisher’s exact test used when 

necessary due to low cell sizes in stratified samples in question 4.  

4.5.2 Multivariable Analyses 

Logistic regression analyses were used to assess the five research questions under 

investigation. Models were adjusted for APOE-ε4 and age at death. All first-order interactions 

between covariates and the exposure were assessed and when significant interactions were 

found, models were stratified. When models failed to run due to incomplete separation of data 

points, exact logistic regression models were run. 

 The Hosmer-Lemeshow goodness of fit test (LACKFIT command in PROC LOGISTIC) 

was used to determine if observed values matched those expected based on the model. Models 

that had a p-value of less than 0.05 on the Hosmer-Lemeshow goodness of fit test were 

determined to have poor fit and were investigated. All final models were additionally subjected 

to diagnostic testing, including assessment of values for C, CBAR, and DFBETA. DFBETA is 

the standardized difference in the parameter estimate when an observation is deleted from the 

model. C and CBAR values assess the displacement of the confidence interval after an 

observation is deleted. Observations with DFBETA, C, and CBAR values exceeding ±1.96 

(p=0.05) were considered to be influential outliers. However, no significantly influential 

observations were identified in final models. 

 To identify issues with multicollinearity, variance inflation factors (VIF command in 

PROC REG) were assessed in all final models. Models with VIFs ≥ 10 were considered to be 

impacted by multicollinearity (Belsley, Kuh, & Welsch, 1980). No significant multicollinearity 

was identified in final models. 
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5.0 Results 

5.1 Descriptive Analyses 

A summary of the descriptive characteristics for the analytic sample by the outcome, 

cognitive resilience, defined using CERAD criteria (n=213) is found in Table 1a and using NIA-

RI criteria (n=160) in Table 1b. In the CERAD analytic sample, the mean age at the time of 

death was 91.5 years and 39.9% of participants (n=85) were cognitively resilient prior to death. 

The NIA-RI sample, with a mean age of 91.7 years, showed lower rates of cognitive resilience, 

with only 28.8% of participants (n=46) displaying cognitive resilience. 

Both samples were highly educated. Within the CERAD sample only 15.5% of 

participants were in the “low education” group receiving a high school diploma or less, 45.1% of 

participants were in the “moderate education” group receiving a Bachelor’s degree, and 40.4% of 

participants were in the “high education” group receiving a Master’s degree or higher. These 

numbers were similar in the NIA-RI sample where 15.6% of participants were in the low 

education group, 46.9% in the moderate education group and 37.5% of participants in the high 

education group.  

In both the CERAD and NIA-RI samples, the majority of the participants did not possess 

any APOE-ε4 alleles. However, approximately three-quarters of the participants possessed some 

level of cortical atrophy, with approximately half of both samples showing mild atrophy.  

Bivariate analyses were conducted between each variable and the outcome, cognitive 

resilience. Within both samples, chi-square tests revealed a significant positive association 

between higher educational attainment and cognitive resilience (CERAD: p=0.036, NIA-RI: 

p=0.029). Chi-square tests also revealed significant negative relationships between cognitive 

resilience and both the presence of atrophy (p<0.001) and the severity of atrophy (p<0.001) for 

both samples. Brain weights were, on average, significantly higher among those with cognitive 
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resilience than those without resilience (CERAD: 1139g vs 1068g, p<0.001; NIA-RI: 1138g vs. 

1060g, p<0.001). When brain weight was categorized in tertiles, Pearson chi-square tests again 

showed a statistically significant association with cognitive resilience in both samples (CERAD: 

p=0.001; NIA-RI: p<0.003).  

 Marginally significant associations with cognitive resilience were found for APOE-ε4 

status (p=0.055) and age at death (p=0.077) among the CERAD sample, with no significant 

associations identified in the NIA-RI sample (APOE-ε4: p=0.47; age at death: p=0.11).  
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Table 1a. Descriptive characteristics of the analytic sample by cognitive resilience status 

(CERAD criteria) 

                                                          Cognitive Resilience (CERAD) 

Characteristic Yes 

(n=85) 

No 

(n=128) 

Total 

(n=213) 

Exposures    

Educational attainment*     

 High school or less  

 

          7.1%  19.5% 15.5% 

 Bachelor’s degree  

 

47.1% 43.8% 45.1% 

 Master’s degree or higher  45.9% 36.7% 40.4% 

     

Brain weight (grams), mean (SD) ** 1139 (96.04) 1068  (115.00) 1097 (113.11) 

     

Brain weight (quartiles)**    

 Tertile 1  20.0% 43.0% 33.8% 

 Tertile 2 38.8% 32.8% 35.2% 

 Tertile 3  41.2% 24.2% 31.0% 

     

Presence of atrophy **    

 No  37.7% 13.3% 23.0% 

 Yes  62.3% 86.7% 77.0% 

     

Severity of atrophy**    

 None  37.7% 13.3% 23.0% 

 Mild  52.9% 50.8% 51.6% 

 Moderate  8.2% 23.4% 17.4% 

 Severe  1.2% 12.5% 8.0% 

Covariates    

Age at death in years, mean (SD) 90.80 (4.87) 92.05 (5.11) 91.55 (5.04) 

     

APOE-ε4 status    

 No ε4 alleles 76.5% 64.1% 69.0% 

 1+ ε4 alleles 23.5% 35.9% 31.0% 

* significantly associated with cognitive resilience at p<0.05 

** significantly associated with cognitive resilience at p<0.01 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s 

Disease neuropathologic criteria; SD = standard deviation 
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Table 1b. Descriptive characteristics of the analytic sample by cognitive resilience status (NIA-

RI criteria) 

                                                    Cognitive Resilience (NIA-RI) 

Characteristic Yes 

(n=46) 

No 

(n=114) 

Total 

(n=160) 

Exposures    

Educational attainment*    

 High school or less  4.4% 20.2% 15.6% 

 Bachelor’s degree  47.8% 46.5% 46.9% 

 Master’s degree or higher 45.8% 33.3% 37.5% 

     

Brain weight in grams, mean (SD) ** 1138 (92.98) 1060 (116.50) 1083 (115.54) 

     

Brain weight quartile**    

 Tertile 1    15.2% 41.2% 33.8% 

 Tertile 2  39.1% 30.7% 33.1% 

 Tertile 3  45.7% 28.1% 33.1% 

     

Presence of atrophy **    

 No  41.3% 14.1% 22.5% 

 Yes  58.7% 85.1% 77.5% 

     

Severity of atrophy**    

 None  41.3% 14.9% 22.5% 

 Mild  52.2% 44.7% 46.9% 

 Moderate    6.5% 26.3% 20.6% 

 Severe    0.0% 14.0% 10.0% 

Covariates    

Age at death in years, mean (SD)    

  90.76 (4.19) 92.06 (4.81) 91.69 (4.67) 

APOE-ε4 status    

 No ε4 alleles 67.4% 61.4% 63.1% 

 1+ ε4 alleles 32.6% 38.6% 36.9% 
* significantly associated with cognitive resilience at the p<0.05 level 

 ** significantly associated with cognitive resilience at the p<0.01 level 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; NIA-RI = National Institute on Aging-Reagan Institute 

neuropathologic criteria; SD = standard deviation 
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5.2 Question 1:  The influence of educational attainment on cognitive resilience 

Table 2 presents the results of the logistic regression analyses assessing the association 

between educational attainment and cognitive resilience for both the CERAD and NIA-RI 

samples. Within the CERAD sample, logistic regression analyses revealed that individuals with 

low education (high school or less) were significantly less likely to be cognitively resilient 

compared to those with high education (Master’s degree or higher) in unadjusted models 

(OR=0.29, 95% CI=0.10-0.74). This relationship remained significant after adjusting for 

covariates age at death and APOE-ε4 (OR=0.30, 95% CI=0.10-0.81). There was no statistically 

significant impact of moderate education (Bachelor’s degree) versus high education in 

unadjusted or adjusted models.  

Logistic regression analyses revealed significant effects of education on cognitive 

resilience in the NIA-RI sample. Low (versus high education) was significantly associated with 

cognitive resilience in unadjusted (OR=0.15, 95% CI=0.02-0.57) and adjusted models (OR=0.16, 

95% CI=0.02-0.65). No statistically significant differences existed between moderate and high 

education on the outcome of cognitive resilience, nor was there a relationship between age at 

death and cognitive resilience. The effect of APOE-ε4 on cognitive resilience also fell below 

significance in the adjusted model, likely as a result of reduced power.
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Table 2. The association between level of education and cognitive resilience 

 CERAD Criteria (n=213) NIA-RI Criteria (n=160) 

Variables Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Exposure   

Education ( vs. ≥ Master’s degree)   

≤ High school 0.29 (0.10-0.74) 0.30 (0.10-0.81) 0.15 (0.02-0.57) 0.16 (0.02-0.65) 

Bachelor’s degree 0.86 (0.48-1.55) 0.96 (0.51-1.79) 0.72 (0.35-1.48) 0.78 (0.36-1.69) 

Covariates  

Age at death - 0.95 (0.89-1.01) - 0.96 (0.88-1.04) 

1+ APOE-ε4 allele  - 0.46 (0.24-0.86) - 0.62 (0.29-1.31) 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio 

Note: Bold font represents statistically significant result 



48 
 

5.3 Question 2: The influence of cortical atrophy on cognitive resilience 

Table 3 presents the results of the logistic regression analyses for the association between 

the presence of cortical atrophy and cognitive resilience for both the CERAD and NIA-RI 

samples. In these models, the presence of atrophy was consistently negatively associated with 

cognitive resilience in both unadjusted (OR=0.25, 95% CI=0.13-0.49) and adjusted (OR=0.28, 

95% CI=0.14-0.54) models for the CERAD sample. Similarly, in the NIA-RI sample, the 

presence of atrophy was negatively associated with cognitive resilience in both unadjusted 

(OR=0.25, 95% CI=0.11-0.54) and adjusted models (OR=0.24, 95% CI=0.10-0.53).  

Table 4a presents the results of logistic regression analyses for the association between 

the severity of cortical atrophy and cognitive resilience in the CERAD sample. In unadjusted 

models, compared to those with no atrophy, both mild atrophy (OR= 0.36, 95% CI=0.18-0.73) 

and moderate to severe atrophy (OR= 0.09, 95% CI=0.03-0.23) were significantly negatively 

associated with cognitive resilience.  

Because model diagnostics identified a significant interaction between the severity of 

atrophy and APOE-ε4 status, adjusted models are presented stratified by APOE-ε4 status. When 

adjusted for age at death and stratified by APOE-ε4, mild atrophy was significantly negatively 

associated with cognitive resilience only among APOE-ε4 carriers (OR=0.14, 95% CI=0.02-

0.71). Among non-carriers, this association fell short of significance (OR=0.51, 95% CI=0.23-

1.11). Moderate/severe atrophy was significantly negatively associated with cognitive resilience 

regardless of APOE-ε4 status. 

 In the NIA-RI sample, both mild and moderate to severe atrophy were strongly 

associated with cognitive resilience in both unadjusted and adjusted models (Table 4b).  
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Table 3. The association between the presence of cortical atrophy and cognitive resilience 

 CERAD Criteria (n=213) NIA-RI Criteria (n=160) 

Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Exposure     

Presence of atrophy (vs. ‘No atrophy’)   

Atrophy present 0.25 (0.13-0.49) 0.28 (0.14-0.54) 0.25 (0.11-0.54) 0.24 (0.10-0.53) 

Covariates  

Age at death - 0.95 (0.89-1.01) - 0.92 (0.85-1.00) 

1+ APOE-ε4 allele - 0.56 (0.29-1.07) - 0.89 (0.40-1.94) 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table 4a. The association between severity of cortical atrophy and cognitive resilience, using 

CERAD criteria 

 CERAD Criteria (n=213) 

  Adjusted 

Variables Unadjusted  

OR (95% CI) 
APOE-ε4 Non-carrier 

OR (95% CI) 

APOE-ε4 Carrier 

OR (95% CI) 

Exposures    

Severity of atrophy  (vs. ‘No atrophy’)   

Mild atrophy 0.36 (0.18-0.73) 0.51 (0.23-1.11) 0.14 (0.02-0.71) 

Moderate/severe atrophy 0.09 (0.03-0.23) 0.19 (0.06-0.54) 0.01 (<0.01-0.08) 

Covariates  

Age at death - 0.95 (0.89-1.02) 0.87 (0.73-1.02) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s 

Disease neuropathologic criteria; CI = confidence interval; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table 4b. The association between severity of cortical atrophy and cognitive resilience, using 

NIA-RI criteria   

                                  NIA-RI Criteria (n=160) 
Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Exposure   

Severity of atrophy ( vs. ‘No atrophy’)  
Mild atrophy 0.42 (0.18-0.95) 0.40 (0.17-0.93) 

Moderate/severe atrophy 0.06 (0.01-0.20) 0.04 (0.01-0.16) 

Covariates 

Age at death - 0.89 (0.80-0.98) 

1+ APOE-ε4 allele - 1.03 (0.45-2.35) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CI = confidence interval; NIA-RI = National Institute on Aging-

Reagan Institute neuropathologic criteria; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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5.4 Question 3: The influence of brain weight on cognitive resilience 

Tests of the association between brain weight and cognitive resilience are presented with 

brain weight assessed as a continuous variable in Table 5 and in tertiles in Tables 6 and 7. When 

considered as a continuous variable, individuals with higher brain weight (measured in grams) 

were significantly more likely to be cognitively resilient in both adjusted and unadjusted models. 

This finding was consistent for both the CERAD and NIA-RI samples.  

When brain weight was categorized into tertiles, compared to the highest tertile, 

individuals in the lowest brain weight tertile were significantly less likely to be cognitively 

resilient in both unadjusted and adjusted models for both NIA-RI and CERAD samples. No 

significant association was found between brain weight tertile 2 (versus tertile 3) and cognitive 

resilience for either sample (CERAD: adjusted OR=0.72, 95% CI=0.37-1.42; NIA-RI: adjusted 

OR=0.83, 95% CI=0.37-1.72), suggesting that much of the association between brain weight and 

cognitive resilience was driven by reduced odds of resilience among those with lower brain 

weight rather than higher odds of resilience in the top tertile. Therefore, to improve statistical 

power, analyses were also completed comparing low brain weight (lowest brain weight tertile) 

versus higher brain weight (the upper two tertiles). Results of these analyses are summarized in 

Table 7. Consistent with previous results, individuals with low brain weight were significantly 

less likely to be cognitively resilient in both unadjusted and adjusted models among both 

CERAD (adjusted OR=0.21, 95% CI=0.09-0.45) and NIA-RI (adjusted OR=0.07, 95% CI=0.01-

0.24) samples. 
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Table 5. The association between brain weight as a continuous variable and cognitive resilience 

 CERAD Criteria (n=213) NIA-RI Criteria (n=160) 

Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Exposure     

Brain weight (in grams) 1.006 (1.004-1.009) 1.006 (1.004-1.009) 1.007 (1.003-1.01) 1.007 (1.003-1.01) 

Covariates  

Age at death - 0.94 (0.89-1.01) - 0.92 (0.84-1.00) 

1+ APOE-ε4 allele - 0.52 (0.26-0.99) - 0.76 (0.34-1.64) 
Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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Table 6. The association between brain weight tertile and cognitive resilience 

 CERAD Criteria (n=213) NIA-RI Criteria (n=160) 

Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Exposures     

Brain Weight Tertile (vs. Tertile 3)     

Tertile 1 0.27 (0.13-0.56) 0.28 (0.13-0.59) 0.23 (0.08-0.57) 0.22 (0.08-0.56) 

Tertile 2 0.70 (0.36-1.35) 0.72 (0.37-1.42) 0.78 (0.35-1.73) 0.83 (0.37-1.72) 

Covariates  

Age at death - 0.94 (0.87-0.99) - 0.92 (0.84-0.99) 

1+ APOE-ε4 allele - 0.51 (0.26-0.96) - 0.80 (0.37-1.72) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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Table 7. The association between low brain weight and cognitive resilience 

 CERAD Criteria (n=213) NIA-RI Criteria (n=160) 

Variables Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Exposure     

Low Brain Weight (tertile 1 vs. 2 and 3)  

Low brain weight 0.23 (0.10-0.47) 0.21 (0.09-0.45) 0.09 (0.01-0.31) 0.07 (0.01-0.24) 

Covariates  

Age at death - 0.93 (0.87-0.99) - 0.90 (0.81-0.98) 

1+ APOE-ε4 allele - 0.50 (0.26-0.96) - 0.63 (0.28-1.37) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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5.5 Question 4: The influence of cortical atrophy on cognitive resilience, stratified by brain 

weight 

 

5.5.1 The influence of the presence of atrophy on cognitive resilience, stratified by brain weight 

To assess the a priori hypothesis that the effects of cortical atrophy would be modified by 

brain weight, models were developed including the interaction term presence of cortical atrophy 

by brain weight [higher brain weight (upper two tertiles) versus low brain weight (lowest 

tertile)]. While the interaction between cortical atrophy and brain weight fell short of 

significance in models predicting cognitive resilience (CERAD: p=0.39; NIA-RI: p=0.41), to 

fully explore potential effect modification by brain weight, subsequent analyses were conducted 

on models stratified into low and higher brain weight groups. The results of these analyses are 

summarized in Table 8a for the CERAD sample and Table 8b for the NIA-RI sample. 

Within the CERAD sample, low brain weight and the presence of atrophy were 

significantly negatively associated with cognitive resilience in both unadjusted and adjusted 

models. When these models were stratified, the presence of atrophy only remained significantly 

negatively associated with cognitive resilience when brain weights were higher (OR= 0.27, 95% 

CI= 0.12-0.60). When brain weights were low, this effect did not reach statistical significance 

(OR=0.75, 95% CI=0.14-5.72).  

While the non-significant finding among those with lower brain weights may in part be 

due to low power in the models, bivariate analyses were used to investigate this relationship 

further. Among participants with higher brain weights, cognitive resilience was present in 71.4% 

of those without cortical atrophy and only 38.4% of individuals with cortical atrophy (p<0.01) 

(see Fig. 3). These data suggest that when brain weights are high, the influence of atrophy is 

substantial. Conversely, among those with low brain weights, 28.5% of individuals without 

atrophy were resilient versus 23.1% of individuals with atrophy (p=0.53). This suggests that 
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when brain weight is low, the odds of cognitive resilience are reduced regardless of atrophy 

status. 

Within the NIA-RI sample, low brain weight and the presence of atrophy were 

significantly negatively associated with cognitive resilience in both adjusted and unadjusted 

models. In stratified models, the presence of atrophy remained significantly associated with 

cognitive resilience when brain weights were in the upper two tertiles only (OR=0.26, 95% CI= 

0.10-0.64), with models in the lower strata failing to run. 

Similar to the CERAD sample, bivariate analyses were used to investigate the stratified 

relationships further. Among participants with higher brain weights, cognitive resilience was 

present in 59.3% of those without cortical atrophy and only 27.2% of individuals with cortical 

atrophy (p<0.01) (see Fig. 4).   However, within the low brain weight stratum (n=54), only seven 

individuals were cognitively resilient, none of whom were in the “no atrophy” group. Thus, 

logistic regression analyses failed to run due to complete separation of data points, and this issue 

persisted when using exact logistic regression models. When bivariate analyses were conducted 

to test for an association between atrophy and cognitive resilience in this sample, no statistically 

significant relationship was revealed using Fisher’s exact test (p=0.56) in this stratum, likely due 

to the low number of participants with low brain weight who did not have atrophy (n=4).  
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Table 8a. The effects of brain weight on the association between the presence of atrophy and cognitive resilience (CERAD criteria) 

 CERAD Criteria (n=213) 

Variables Unstratified 

OR (95% CI) 

Unstratified, Adjusted  

OR (95% CI) 

Adjusted, Stratified 

Low Brain Weight 

OR (95% CI) 

(n=72) 

Adjusted, Stratified 

Higher Brain Weight 

OR (95% CI) 

(n=141) 

Exposures     

Low brain weight 

(tertile 1 vs tertiles 2 and 3) 
0.41 (0.21-0.78) 0.41 (0.21-0.78) -- -- 

     

Presence of atrophy 0.30 (0.15-0.60) 0.33 (0.16-0.66) 0.75 (0.14-5.72) 0.27 (0.12-0.60) 

     

Covariates  

Age at death - 0.95 (0.89-1.01) 0.94 (0.83-1.05) 0.95 (0.88-1.02) 

APOE-ε4 status  - 0. 56 (0.29-1.09) 0.67 (0.18-2.18) 0.51 (0.23-1.13) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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Figure 3. The percentage of participants who were cognitively resilient by brain weight and atrophy status in the CERAD sample
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Table 8b. The effect of brain weight on the association between the presence of atrophy and cognitive resilience (NIA-RI criteria) 

 NIA Criteria (n=160) 

Variables Unstratified 

OR (95% CI) 

Unstratified, Adjusted  

OR (95% CI) 

Adjusted, Stratified 

low brain weight 

OR (95% CI) 

(n=54) 

Adjusted, Stratified 

higher brain weight 

OR (95% CI) 

(n=106) 

Exposures     

Low brain weight 

(tertile 1 vs 2 and 3) 
0.33 (0.14-0.71) 0.30 (0.11-0.73) -- -- 

     

Presence of Atrophy 0.32 (0.12-0.79) 0.30 (0.13-0.69) ## 0.26 (0.10-0.64) 

     

Covariates  

Age at death - 0.91 (0.83-0.99) ## 0.90 (0.80-0.99) 

APOE-ε4 status  - 0. 97 (0.43-2.15) ## 0.53 (0.19-1.37) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio  

## = model unable to run due to quasi complete separation of data points 

Note: Bold font represents statistically significant result 
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Figure 4. The percentage of participants who were cognitively resilient by brain weight and atrophy status in the NIA-RI sample 
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5.5.2 The influence of the severity of atrophy on cognitive resilience, stratified by brain weight 

The results of multivariate analyses assessing the impact of brain weight on the 

relationship between the severity of atrophy and cognitive resilience are summarized in Table 9a 

for the CERAD sample and Table 9b for the NIA-RI sample. Within the CERAD sample in 

unstratified models, low brain weight, mild atrophy (vs. no atrophy) and moderate to severe 

atrophy (vs. no atrophy) were all significantly negatively associated with cognitive resilience in 

both unadjusted and adjusted models.    

When brain weights were high, individuals with either mild or moderate to severe cortical 

atrophy (versus no atrophy) were significantly less likely to display cognitive resilience (Table 

9a). Among individuals with low brain weights, no significant associations were found. 

However, this non-significant finding for the effect of severe atrophy may be related to low 

power in the models, as confidence intervals were wide (mild atrophy vs no atrophy: OR=1.33, 

95% CI=0.24-10.50; moderate/severe atrophy vs no atrophy: OR=0.26, 95% CI=0.03-2.41).  

In the NIA-RI sample, when brain weight and the severity of atrophy were considered 

together in models, moderate to severe cortical atrophy remained significantly negatively 

associated with cognitive resilience in both unadjusted (OR=0.08, 95% CI=0.02-0.28) and 

adjusted models (OR=0.14, 95% CI= 0.06-0.22) (Table 9b). However, the effects of mild 

atrophy on cognitive resilience fell short of statistical significance in both the unadjusted and 

adjusted models, as did the effect of low brain weight, although this may be the result of low 

statistical power. 

When NIA-RI models were stratified by brain weight, both mild and moderate/severe 

cortical atrophy were significantly negatively associated with cognitive resilience among the 

higher brain weight tertiles. Within the lowest brain weight tertile, logistic regression models did 



63 
 

not run due to small cell sizes, and this issue persisted when using exact logistic regression.  

While this was an issue for model convergence, it likely reflects the strength of the relationship 

between brain weight and cognitive resilience as so few individuals with low brain weight were 

able to display cognitive resilience. In an effort to understand the effects within brain weight 

strata, bivariate analyses were conducted. Within the low brain weight tertile, Fisher’s exact tests 

revealed that there was a significant increase in the chances of cognitive resilience among 

individuals with mild atrophy (where 27% of individuals displayed cognitive resilience) versus 

those with moderate to severe atrophy (where only 3.6% showed cognitive resilience) (p=0.046). 
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Table 9a. The impact of brain weight on the association between the severity of atrophy and cognitive resilience (CERAD criteria) 

 CERAD Criteria (n=213) 
Variables Unstratified 

OR (95% CI) 

Unstratified, Adjusted 

OR (95% CI) 

Adjusted, Stratified 

Low Brain Weight 

OR (95% CI) 

(n=72) 

Adjusted, Stratified 

Higher Brain Weight 

OR (9B5% CI) 

(n=141) 

Exposures     

Lower brain weight (tertile 1 vs 

tertiles 2 and 3) 
0.49 (0.25-0.96) 0.49 (0.24-0.97) -- -- 

Severity of Atrophy (vs. none)     

           Mild 0.41 (0.20-0.82) 0.44 (0.21-0.89) 1.33 (0.24-10.50) 0.33 (0.14-0.74) 

           Moderate 0.12 (0.04-0.31) 0.14 (0.05-0.34) 0.26 (0.03-2.41) 0.13 (0.03-0.40) 

Covariates  

Age at death - 0.94 (0.88-1.00) 0.94 (0.82-1.05) 0.95 (0.88-1.02) 

APOE-ε4 status  - 0. 62 (0.31-1.23) 0.75 (0.20-2.54) 0.57 (0.25-1.26) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = confidence 

interval; OR = Odds ratio  

Note: Bold font represents statistically significant result 
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Table 9b. The impact of brain weight on the association between the severity of atrophy on cognitive resilience (NIA-RI criteria) 

 NIA-RI Criteria (n=160) 
Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Adjusted, Stratified 

Low Brain Weight 

OR (95% CI) 

(n=54) 

Adjusted, Stratified 

Higher Brain Weight 

OR (95% CI) 

(n=106) 

Exposures     

Lower brain weight (tertile 1 vs 

tertiles 2 and 3) 

0.44 (0.16-1.09) 0.39 (0.14-1.03)  -- 

Severity of Atrophy (vs. None)     

           Mild 0.48 (0.21-1.09) 0.45 (0.19-1.07) ## 0.33 (0.14-0.74) 

           Moderate 0.08 (0.02-0.28) 0.14 (0.06-0.22) ## 0.13 (0.03-0.40) 

Covariates  

Age at death - 0.88 (0.80-0.97) ## 0.95 (0.88-1.02) 

APOE-ε4 status  - 1.15 (0.49-2.69) ## 0.57 (0.25-1.26) 
## = model unable to run due to quasi- complete separation of data points 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CI = confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = 

Odds ratio 

Note: Bold font represents statistically significant result
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5.6.1 Question 5A: The effect of brain weight on the association between education and 

cognitive resilience 

To assess if the effects of education on cognitive resilience were modified by brain 

weight, logistic regression analyses were conducted assessing education in a model either 

adjusted for or stratified by brain weight. Summaries of these results are presented in Table 10a 

(CERAD sample) and Table 10b (NIA-RI sample).  

Within the CERAD sample, individuals with moderate educational attainment were not 

significantly less likely to display cognitive resilience in either unadjusted or adjusted models 

than those with high educational attainment, nor were individuals with low versus high 

educational attainment. However, the effect of low educational attainment approached a 

significant negative association with cognitive resilience in both unadjusted (OR=0.39, 95% 

CI=0.13-1.03) and adjusted (OR=0.42, 95% CI=0.13-1.16) models. When stratified by brain 

weight, no significant impacts of educational attainment were identified in either the high brain 

weight or low brain weight strata.  However, the effects of low educational attainment (versus 

high educational attainment) approached significance among those with higher brain weights 

(OR=0.33, 95% CI=0.07-1.29).  

Within the NIA-RI sample, in unadjusted models the effect of low versus high education 

was significantly negatively associated with cognitive resilience (OR=0.20, 95% CI= 0.03-0.78) 

(Table 10b). After adjusting for covariates, the effect of low versus high education remained 

marginally significant (OR=0.23, 95% CI=0.03-1.00). Within the upper two brain weight tertiles, 

the impact of education on cognitive resilience was not statistically significant. In the lowest 

tertile of brain weight, models assessing the impact of education on cognitive resilience failed to 

run due to complete separation of data points. While this does reflect low sample size in this 

stratum (n=54), it is also related to the strength of the association between education and 
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cognitive resilience in this sample as zero participants with low educational attainment achieved 

cognitive resilience, while 15% of those with moderate educational attainment and 22% of those 

with high educational attainment displayed cognitive resilience.  Although no significant 

association was found between educational attainment and cognitive resilience using Fisher’s 

exact test (p=0.15), the relationship between educational attainment and cognitive resilience ran 

in the expected direction.  
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Table 10a. The impact of brain weight on the association between education and cognitive resilience (CERAD criteria) 

 CERAD Criteria (n=213) 

Variables Unstratified 

OR (95% CI) 

Unstratified, Adjusted  

OR (95% CI) 

Adjusted, Stratified 

Low Brain Weight 

OR (95% CI) 

(n=72) 

Adjusted, Stratified 

Higher Brain Weight 

OR (95% CI) 

(n=141) 

Exposures     

Lower brain weight 

(tertile 1 vs tertiles 2 and 3) 
0.38 (0.19-0.72) 0.38 (0.19-0.73)  -- 

Level of Education 

 (vs ≥ Master’s degree) 
    

        ≤ High school 0.39 (0.13-1.03) 0.42 (0.13-1.16) 0.53 (0.09-2.64) 0.33 (0.07-1.29) 

        Bachelor’s degree 0.91 (0.50-1.66) 1.04 (0.55-1.98) 0.90 (0.26-3.28) 1.14 (0.54-2.46) 

     

Covariates  

Age at death - 0.95 (0.89-1.01) 0.95 (0.84-1.07) 0.94 (0.87-1.01) 

APOE-ε4 status  - 0. 48 (0.24-0.91) 0.61 (0.16-1.99) 0.43 (0.19-0.92) 
Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table 10b. The impact of brain weight on the association between education and cognitive resilience (NIA-RI criteria) 

 NIA-RI Criteria (n=160) 

Variables Unstratified 

OR (95% CI) 

Unstratified, Adjusted 

OR (95% CI) 

Adjusted, Stratified 

Low Brain Weight 

OR (95% CI) 

(n=54) 

Adjusted, Stratified 

Higher Brain Weight 

OR (95% CI) 

(n=106) 

Lower brain weight 

(tertile 1 vs tertiles 2 and 3) 
0.30 (0.11-0.70) 0.28 (0.10-0.68) - - 

Level of Education 

 (vs ≥ Master’s degree) 

    

        ≤ High school 0.20 (0.03-0.78) 0.23 (0.03-1.00) ## 0.37 (0.05-1.86) 

        Bachelor’s degree 0.69 (0.33-1.45) 0.81 (0.36-1.80) ## 0.84 (0.34-2.12) 

     

Covariates  

Age at death - 0.94 (0.85-1.02) ## 0.92 (0.82-1.01) 

APOE-ε4 status  - 0.73 (0.33-1.57) ## 0.41 (0.15-1.01) 
## Model failed to run: Quasi-complete separation of data 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CI = confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = 

Odds ratio 

Note: Bold font represents statistically significant result 
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5.6.2 Question 5B: The influence of cortical atrophy on the association between 

education and cognitive resilience 

To assess if the effects of education on cognitive resilience were modified by cortical 

atrophy, logistic regression analyses were conducted assessing education in models adjusting for 

and stratifying by cortical atrophy. The results of these analyses assessing the presence of 

cortical atrophy are found in Tables 11a (CERAD sample) and 11b (NIA-RI sample), and results 

of analyses assessing the severity of atrophy are found in Tables 12a (CERAD) and 12b (NIA-

RI). 

The presence of atrophy and low (vs high) educational attainment were significantly 

negatively associated with cognitive resilience in both unadjusted and adjusted models for both 

the CERAD and NIA-RI samples. Moderate educational attainment was not significantly 

associated with cognitive resilience in either CERAD or NIA-RI samples.  

When stratified by the presence of atrophy, the impact of low education was only 

significant when atrophy was present for both the CERAD and NIA-RI samples. The lack of a 

significant association among those without cortical atrophy may be reflective of weak statistical 

power due to the smaller number of participants without any cortical atrophy.  

Similar trends were identified when assessing the severity of atrophy. Within both the 

CERAD (Table 12a) and NIA-RI samples (Table 12b), significant negative associations were 

identified between low educational attainment and cognitive resilience, with no association 

found for moderate versus high educational attainment. For both samples, the negative influence 

of a low education only remained significant among individuals with mild atrophy, although 

once again this may be partially explained by lower sample sizes in “no atrophy” and “moderate 

to severe atrophy” strata. 
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Table 11a. The impact of cortical atrophy status on the association between education and cognitive resilience (CERAD criteria) 

 CERAD Criteria (n=213) 

Variables Unadjusted 

OR (95% CI) 

Adjusted  

OR (95% CI) 

Adjusted, Stratified 

No Atrophy 

OR (95% CI) 

(n=49) 

Adjusted, Stratified 

Atrophy Present 

OR (95% CI) 

(n=164) 

Exposures     

Cortical Atrophy Present  0.25 (0.12-0.49) 0.27 (0.13-0.54)  -- 

Level of Education 

 (vs ≥ Master’s degree) 
    

        ≤ High school 0.27 (0.09-0.72) 0.28 (0.09-0.78) 0.35 (0.03-3.08) 0.29 (0.08-0.91) 

        Bachelor’s degree 0.81 (0.44-1.50) 0.89 (0.46-1.70) 0.95 (0.21-4.24) 0.82 (0.39-1.73) 

     

Covariates  

Age at death - 0.96 (0.90-1.02) 0.89 (0.74-1.04) 0.98 (0.91-1.05) 

APOE-ε4 status  - 0. 51 (0.26-0.99) 1.85 (0.35-14.34) 0.39 (0.17-0.82) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table 11b. The impact of cortical atrophy status on the association between education and cognitive resilience (NIA-RI criteria) 

 NIA-RI Criteria (n=160) 

Variables Unadjusted 

OR (95% CI) 

Adjusted 

OR (95% CI) 

Adjusted, Stratified 

No Atrophy 

OR (95% CI) 

(n=36) 

Adjusted, Stratified 

Atrophy Present 

OR (95% CI) 

(N=124) 

Exposures     

Cortical Atrophy Present  0.24 (0.10-0.53) 0.24 (0.10-0.55) -- -- 

Level of Education 

 (vs ≥ Master’s degree) 
    

        ≤ High school 0.14 (0.02-0.57) 0.17 (0.02-0.71) 0.28 (0.01-3.83) 0.13 (0.01-0.75) 

        Bachelor’s degree 0.62 (0.29-1.33) 0.71 (0.31-1.60) 0.63 (0.10-3.61) 0.71 (0.27-1.82) 

     

Covariates  

Age at death - 0.95 (0.87-1.04) 0.92 (0.73-1.14) 0.96 (0.87-1.05) 

APOE-ε4 status  - 0.80 (0.36-1.76) 2.28 (0.37-19.41) 0.61 (0.24-1.51) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CI = confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = 

Odds ratio 

Note: Bold font represents statistically significant result 
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Table 12a. The impact of the severity of atrophy on the association between education and cognitive resilience (CERAD criteria) 

 CERAD Criteria (n=213)  

Variables Unadjusted 

OR (95% CI) 

Adjusted  

OR (95% CI) 

Adjusted, 

Stratified 

No Atrophy 

(n=49) 

Adjusted, 

Stratified  

Mild Atrophy 

(n=110) 

Adjusted, 

Stratified 

Moderate to 

Severe Atrophy 

(n=54) 

Exposures      

Cortical Atrophy Status 

 (vs No atrophy)  
          

         Mild atrophy 0.36 (0.17-0.72) 0.38 (0.18-0.79) -- -- -- 
         Moderate/severe atrophy 0.09 (0.03-0.23) 0.10 (0.04-0.25 -- -- -- 
Level of Education 

 (vs ≥ Master’s degree) 
     

        ≤ High school 0.27 (0.09-0.72) 0.28 (0.09-0.78) 0.35 (0.03-3.08) 0.26 (0.05-0.99) 0.54 (0.02-5.92) 
        Bachelor’s degree 0.74 (0.39-1.39) 0.83 (0.43-1.61) 0.95 (0.21-4.24) 0.87 (0.37-2.04) 0.31 (0.04-1.92) 
      

Covariates   

Age at death - 0.96 (0.90-1.02) 0.89 (0.74-1.04) 0.99 (0.90-1.07) 0.89 (0.73-1.05) 

APOE-ε4 status  - 0.56 (0.28-1.11) 1.85 (0.35-14.34) 0.55 (0.23-1.30) 0.07 (0.01-0.56) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table 12b. The impact of the severity of atrophy on the association between education and cognitive resilience (NIA-RI criteria) 

 NIA-RI Criteria (n=160)  

Variables Unadjusted 

OR (95% CI) 

Adjusted for Age at 

death and APOE 

OR (95% CI) 

Adjusted, 

Stratified 

 No Atrophy 

(n=36) 

Adjusted, 

Stratified 

Mild Atrophy 

(n=75) 

Adjusted, 

Stratified 

Moderate to 

Severe Atrophy 

(n=49) 

Exposures      

Cortical Atrophy Status 

 (vs No atrophy)  
          

         Mild atrophy 0.41 (0.17-0.94) 0.41 (0.17-0.98) -- -- -- 
         Moderate/severe atrophy 0.05 (0.01-0.18) 0.04 (0.01-0.16) -- -- -- 
Level of Education 

 (vs ≥ Master’s degree) 
     

        ≤ High school 0.13 (0.02-0.53) 0.16 (0.02-0.70) 0.28 (0.01-3.83) 0.12 (0.01-0.81) ** 
        Bachelor’s degree 0.49 (0.22-1.10) 0.62 (0.26-1.45) 0.63 (0.10-3.61) 0.54 (0.18-1.59) ** 
      

Covariates   

Age at death - 0.96 (0.90-1.02) 0.92 (0.73-1.14) 0.93 (0.82-1.04) ** 

APOE-ε4 status  - 0.89 (0.38-2.06) 2.28 (0.37-19.41) 0.76 (0.26-2.15) ** 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CI = confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = 

Odds ratio 

Note: Bold font represents statistically significant result 
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5.7 Sensitivity Analysis 

 Several results from the present study were impacted by small sample sizes resulting in 

non-significant effects and wide confidence intervals. One major problem area was in the “no 

cortical atrophy” strata in models for research questions 4 and 5b. In an effort to address this 

issue, the coding of cortical atrophy variables was reconsidered.  

 Nun Study cortical atrophy data were collected through autopsy reports, with notes 

indicating the presence and severity of cortical atrophy used to inform coding within the project. 

In an effort to avoid information bias, the analytic sample excluded participants whose autopsy 

reports did not explicitly state cortical atrophy information. However, as autopsy reports are 

intended to include all relevant pathologic information, the absence of explicit cortical atrophy 

information might be reasonably interpreted as an indication that no evidence of cortical atrophy 

was identified. Therefore, in an effort to improve sample sizes, several key relationships were 

reassessed with participant autopsy reports that did not mention cortical atrophy coded as “no 

atrophy present”.  The analytic samples with the new coding increased in size from 213 to 226 

participants in models using CERAD neuropathologic criteria and from 160 to 167 participants 

in models using NIA-RI neuropathologic criteria. Tables of results from these analyses are 

included in Appendix D.  

 This sensitivity analysis was undertaken with three research questions. These included 

the assessments of the association between education and cognitive resilience (Question 1), the 

association between cortical atrophy (both presence and severity) and cognitive resilience 

(Question 2), and the impact of brain weight on the relationship between cortical atrophy and 

cognitive resilience (Question 4). Sensitivity analyses were not relevant for Question 3 as there 

was no issue with statistical power for this question. For each of the three research questions 
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analyzed using the new coding, results were consistent with those from the primary analysis for 

both the CERAD and NIA-RI analytic samples.  

 However, despite similar results to the primary analysis, there was a consistent widening 

of confidence intervals for both CERAD and NIA-RI samples across all analyses, in both 

unadjusted and adjusted models. This suggested that the new coding may have introduced some 

degree of measurement error to the sample. Furthermore, despite contributing to a marginal 

increase in sample sizes for both samples, the modified coding of atrophy data did not improve 

sample sizes in the low brain weight strata and thus did not address the major limitations of low 

model power and model failure to converge in stratified samples.  As a result, the original coding 

was used for the primary analyses. 
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6.0 Discussion 

Based on previous research and the theory of cognitive reserve (Stern, 2011), it was 

hypothesized that individuals with higher educational attainment would be more likely to display 

cognitive resilience (Stern, 2011). In addition, it was hypothesized that individuals with cortical 

atrophy and lower brain weight would experience decreased odds of cognitive resilience due to 

reduced brain reserve capacity (Katzman, 1993). Further, we hypothesized that when the 

influence of cortical atrophy was assessed in models stratified by brain weight, individuals with 

higher brain weight might be able to resist the negative influences of mild cortical atrophy, 

because higher baseline brain reserve capacity would allow individuals with larger brains to 

compensate for reductions in brain reserve resulting from mild cortical atrophy.  Finally, it was 

hypothesized that the influence of education on cognitive resilience would be stronger among 

individuals with lower brain weights and those with cortical atrophy. The rationale for this 

hypothesis was based on the interaction between cognitive reserve and brain reserve, where 

when brain reserve was high, the positive influence of higher education (and higher cognitive 

reserve) may not be additionally beneficial (i.e., a ceiling effect). Alternatively, as brain reserve 

declines (due to low brain weight or the presence of cortical atrophy), the presence of higher 

cognitive reserve (reflected by higher educational attainment) may effectively differentiate 

between those who are resilient versus those who showed dementia symptoms.  

6.1 Summary of Findings  

The present study sought to examine the independent and interacting effects of education, 

brain weight and cortical atrophy on the outcome of cognitive resilience. While existing 

literature has examined many of these relationships, it has often relied on proxy measures of 

resilience (such as time to dementia) with neuropathologic definitions of cognitive resilience 

being comparatively rare and typically using less well validated measures, such as glucose 
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metabolism (Garibotto et al., 2008), in place of gold-standard autopsy data. This project’s ability 

to use gold-standard neuropathologic data from autopsy to measure the outcome was a key asset 

that allowed this study to validate previous findings and provide support for the theory of 

cognitive resilience. Further, previous studies did not have direct measures of exposure variables 

including brain weight and cortical atrophy. Reliance on proxy measures for brain weight (such 

as head circumference or intracranial volume) and imaging for the presence of atrophy was a 

major limitation to the literature that this study sought to address. 

  While several hypotheses were confirmed, findings were mixed. A brief summary of 

findings from each research question is included in Table 13 below. 
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Table 13. Summary of findings on the association between exposures of interest and cognitive 

resilience using CERAD and NIA-RI criteria 

Question # Associated 

Results Table 

Exposure Model Type Results 

CERAD NIA-RI 

1 Table 2 High school 

education or less 

(vs. Master’s 

degree or higher) 

Unadjusted   
Adjusted   

Bachelor’s degree 

(vs. Master’s 

degree or higher) 

Unadjusted   
Adjusted   

2a Table 3 Presence of 

cortical atrophy 

Unadjusted   

Adjusted   
2b CERAD: 

Table 4a 

 

NIA-RI: 

Table 4b 

Mild cortical 

atrophy 

Unadjusted   
Adjusted --  

Stratified: APOE-ε4 present  -- 
Stratified: APOE-ε4 absent  -- 

Moderate to 

severe cortical 

atrophy 

Unadjusted   
Adjusted --  

Stratified:  APOE-ε4 present  -- 
Stratified: APOE-ε4 absent  -- 

3a Table 5 Brain weight  

(continuous) 

Unadjusted   

Adjusted   
3b Table 7 Low brain weight 

(lowest versus 

upper two tertiles) 

Unadjusted   

Adjusted   

4a CERAD: 

 Table 8a 

 

NIA-RI:  

Table 8b 

Low brain weight Unadjusted   

Adjusted   
Presence of 

atrophy 

Unadjusted   

Adjusted   

Stratified: Low brain weight -- -- 
Stratified: High brain weight   

4b CERAD: 

Table 9a 

 

NIA-RI: 

 Table 9b 

Low brain weight Unadjusted   
Adjusted   

Mild atrophy Unadjusted   
Adjusted   
Stratified: Low brain weight -- -- 
Stratified: High brain weight   

Moderate to 

severe atrophy 

Unadjusted   
Adjusted   
Stratified: Low brain weight -- -- 
Stratified: High brain weight   

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s 

Disease neuropathologic criteria; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria 

“--” indicates that the model was not run in that sub-sample 

Note: Arrows indicating direction of significant association (upward arrows indicating a positive association; 

downward facing arrows indicating a negative association); X indicates a non-significant finding 
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Question # Associated 

Results Table 

Exposure: Model Type: Statistically Significant? 

CERAD1 NIA-RI2 

5A CERAD:  

Table 10a 

 

NIA-RI: 

Table 10b 

Low brain weight Unadjusted   
  Adjusted   

High school or less 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: low brain weight   
Stratified: high brain weight   

Bachelor’s degree 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: low brain weight   
Stratified: high brain weight   

5B-1 CERAD:  

Table 11a 

 

NIA-RI: 

Table 11b 

Presence of 

Atrophy 

Unadjusted   
Adjusted   

High school or less 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: no atrophy   
Stratified: atrophy present   

Bachelor’s degree 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: no atrophy   
Stratified: atrophy present   

5B-2 CERAD:  

Table 12a 

 

NIA-RI: 

Table 12b 

Mild cortical 

atrophy 

Unadjusted   
Adjusted   

Moderate to severe 

cortical atrophy 

Unadjusted   
Adjusted   

High school or less 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: no atrophy   
Stratified: mild atrophy   
Stratified: moderate to 

severe atrophy 
-- -- 

Bachelor’s degree 

(versus Masters 

degree or Higher) 

Unadjusted   
Adjusted   
Stratified: no atrophy   
Stratified: mild atrophy   
Stratified: moderate to 

severe atrophy 
 -- 

Abbreviations: APOE-ε4 = Apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s 

Disease neuropathologic criteria; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria 

“--” indicates that the model was not run in that sub-sample  

Note: Arrows indicating direction of significant association (upward arrows indicating a positive association; 

downward facing arrows indicating a negative association); X indicates a non-significant finding 
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6.1.1 Question 1: Education and cognitive resilience 

  Results from the project supported the hypothesis that lower educational attainment 

would be linked with decreased odds of cognitive resilience. The association between education 

and cognitive resilience was found when comparing the highest (Master’s degree or higher) 

versus lowest educational level (high school diploma or less) and this effect was consistent 

across both samples (CERAD and NIA-RI). However, the findings did not reach statistical 

significance when comparing moderate educational attainment (Bachelor’s degree) to high 

educational attainment.  While this lack of a significant dose-response relationship is partially 

inconsistent with previous research on the link between education and AD that found additional 

years of education are beneficial, even among the highly educated (see Xu, Tan, Wang, et al., 

2015), this non-significant finding may be related to the exceptionally high levels of education 

within the sample overall. Because one of the primary missions of the School Sisters of Notre 

Dame is education, roughly 85% of the analytic sample had received a university degree. Due to 

this high level of education, “moderate educational attainment” reflected receiving an 

undergraduate degree, a level far beyond the average educational attainment in previous studies. 

Therefore, it is possible that individuals in the moderate and high educational attainment groups 

were approaching a ceiling effect whereby the additional benefit of continued education was 

modest.   

Results from the current project supported findings from several previous studies. While 

earlier research found that education may mitigate the impacts of brain damage on cognition 

during the life-course (Garibotto et al., 2008; Liao et al., 2005), it was unclear if these 

relationships persisted up to the time of death or if they delayed symptom onset only temporarily. 

The current finding that education was positively associated with cognitive resilience at the last 

cognitive assessment prior to death provided additional support for the potentially life-long 
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importance of education in cognition. This finding is consistent with research using autopsy data 

showing that the impacts of NFT and NP on cognition may be reduced by higher education (Roe, 

Xiong, Miller & Morris, 2007).  

Further, this study expands on previous work by providing some initial insight into how 

education may function to predict cognitive resilience, through improved cognitive reserve. 

Previous work on the impact of education has resulted in a number of hypotheses regarding the 

mechanism through which education may be protective against AD. These include educational 

attainment’s contribution to more complex neuronal networks in early life, more intellectual 

stimulation over the life-course, less exposure to dangerous work conditions less educated 

individuals may be subjected to, and higher SES throughout one’s adult life (Mortimer & 

Graves, 1993). One of the unique aspects of the Nun Study population is that the study subjects 

lived as members of a religious order for nearly the entirety of their adult lives. This 

homogeneity of the Nun Study sample during their adult lives uniquely positions the present 

study to provide insight into the mechanism through which education may promote cognitive 

resilience. Unlike previous epidemiologic studies on the link between early-life education and 

late-life cognitive outcomes, this project is free of several major confounds. All study 

participants experienced equivalent economic status (similar living conditions, access to food, 

access to health care, etc.). Therefore, the presence of significant relationships between 

educational attainment and cognitive resilience suggests cognitive resilience is not solely the 

result of improved socio-economic conditions. 

In contrast, the study design in the current project supports the hypothesis that the 

association between educational attainment and cognitive resilience is related to cognitive 

development in early life or education laying the foundation for continued cognitive stimulation 
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over the life-course, either by contributing to life-long learning, or promoting a more cognitively 

stimulating occupation (such as teaching at a higher learning institution versus working in 

domestic labor), even when controlling for the economic differences usually associated with 

these levels of employment. Further research attempting to unpack the mechanism(s) through 

which education contributes to cognitive resilience is warranted, including conducting analyses 

on the association between education and cognitive resilience that control for measures of 

cognitive stimulation throughout adult life. 

6.1.2 Question 2: Cortical atrophy and cognitive resilience 

 Findings from the project (summarized in Table 13) provided support for the hypothesis 

that the presence of cortical atrophy would be negatively associated with cognitive resilience, 

with increased severity further reducing the odds of cognitive resilience. These findings, coupled 

with previous research on the impact of cortical atrophy on cognitive outcomes (Tyas et al., 

2008; Guo et al., 2013; Perneczky et al., 2010; Negash et al., 2013), provide strong support for 

the presence of cortical atrophy being a critical predictor of brain reserve. With the exception of 

one preliminary analysis, derived from the same data set as the current project (Tyas et al., 

2008), no prior assessment of cortical atrophy’s influence on cognitive resilience has used gold-

standard diagnostic criteria (autopsy data) for both the exposure and outcome variable. Thus, the 

present study provides both support for previous findings and brain reserve theory.   

 One interesting finding revealed by the present study was that the severity of atrophy 

significantly interacted with APOE-ε4 within the CERAD sample. Within this sample, the effects 

of mild atrophy were only significant among APOE-ε4 carriers. The cause of this effect 

modification may lie in differences of the location of cortical atrophy between APOE-ε4 carriers 

and non-carriers. Mixed findings have found that APOE-ε4 carriers (versus noncarriers) tend to 
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develop atrophy in the medial temporal lobe/ hippocampal region, an area associated with 

memory and thus strongly associated with our outcome of cognitive resilience (Lehtovirta et al., 

1995; Agosta et al., 2009; Pievani et al., 2011). While some conflicting evidence has been found 

(Jack et al., 1998; Basso et al., 2006), it remains plausible that when mild loss of brain tissue 

occurs, this impact may be more likely to affect critical memory structures among those with 

APOE-ε4, and thus may be more strongly associated with an increase in clinical symptoms of 

dementia. APOE-ε4 non-carriers, conversely, may be impacted by mild atrophy in areas of the 

brain less directly related to memory. Therefore, while the impact of mild atrophy among APOE-

ε4 non-carriers may still result in cognitive deficits, these deficits may not present as clinical 

dementia as commonly and thus were not captured by the definition of cognitive resilience in the 

present study. Alternatively, the interaction between mild atrophy and APOE-ε4 may be 

explained as the cumulative impact of the two exposures, whereby the brain is able to overcome 

either exposure on its own, but when both are present the resilience levels may fall below the 

threshold where dementia occurs. The interaction between APOE-ε4 status and the location of 

cortical atrophy may represent a potential area of future research efforts. 

6.1.3 Question 3: Brain weight and cognitive resilience 

The hypothesis that brain weight would be positively associated with cognitive resilience 

was supported in the present study. While consistent evidence has indicated that smaller brain 

size may be related to increased risk of AD, fewer studies had directly assessed brain weight as a 

predictor of reserve capacity specifically. Findings from the current study (summarized in Table 

13) were consistent with previous cognitive resilience literature suggesting that low brain weight 

represents a limitation to brain reserve capacity and thus is linked to decreased odds of cognitive 

resilience (Mori, Hirono, Yamashita et al., 1997). Within the present study, when brain weight 
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was categorized as a continuous variable, each one-gram increase in brain weight was associated 

with a significant increase in the odds of cognitive resilience. However, when brain weight was 

categorized into tertiles, the effects of brain weight on cognitive resilience were largely centered 

on risk among those with low brain weight rather than a protective influence of higher brain 

weight. This finding provides support for the brain reserve hypothesis. According to the brain 

reserve hypothesis (Katzman, 1993), individuals with lower brain weights possess less surplus 

brain tissue available to be drawn upon when compensating for Alzheimer neuropathology and 

therefore would be at increased risk of developing AD symptoms.   

6.1.4 Question 4: Cortical atrophy, brain weight and cognitive resilience 

 Findings from the project reveal some support for the hypothesis that the association 

between cortical atrophy and cognitive resilience would be modified by brain weight. However, 

evidence of effect modification was minimal and did not occur in the expected direction. It was 

hypothesized that the influence of cortical atrophy, particularly mild cortical atrophy, may be 

offset among individuals with larger brains due to an abundance of brain reserve in these 

individuals, as was found in previous studies (Perneczky et al., 2010; Guo et al., 2013).  Instead, 

in the CERAD sample, negative impacts of cortical atrophy (both mild and severe) were found 

among those with higher brain weights with no significant impact among those with lower brain 

weights. However, conclusions based on these findings are questionable due to low statistical 

power resulting in wide confidence intervals. In an effort to better understand this relationship, 

additional bivariate analyses were conducted to assess the nature of the relationship between 

cortical atrophy and cognitive resilience when stratified by brain weight. These analyses revealed 

that among those with low brain weights, the odds of cognitive resilience were extremely low 

and did not vary substantially based on atrophy status. While increasing severity of atrophy led 

to a decreased likelihood of resilience among those with lower brain weight, the added risk of 
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severe versus mild atrophy was reduced among the low brain weight strata. One hypothesis for 

this effect was that there was a floor effect for cognitive resilience where brain weight is of 

primary importance. Low brain weight appeared to diminish brain reserve to such an extent that 

any further reductions in brain reserve (through atrophy) were unlikely to result in additional 

detrimental effects. While this was not the expected relationship, this finding is consistent with 

the theory of brain reserve as it suggests that low brain weight, regardless of cortical atrophy 

status, results in inadequate brain reserve to overcome the effects of Alzheimer neuropathology.  

6.1.5.1 Question 5A: The influence of brain weight on the association between education and 

cognitive resilience 

The hypothesis that education would be more highly associated with cognitive resilience 

among those with lower brain weights was not supported by findings in the current study. 

Rather, results from the study (summarized in Table 13) revealed that when brain weight and 

educational attainment were considered simultaneously, the effect of educational attainment on 

cognitive resilience fell below significance, despite no significant interaction between the two 

variables.  While it is worth noting that there was a suggestion of a dose-response relationship 

between increasing educational attainment and increased brain weight, the lack of a significant 

relationship suggests that the maintenance of brain reserve factors (in this case brain weight) is 

independently associated with resilience and is likely of primary importance in promoting 

cognitive resilience, with cognitive factors (such as education) supporting these benefits. Thus, 

this finding provides some insight into the importance of higher brain weights in maintaining 

cognitive function. 

However, the lack of significant findings for education when controlling for brain weight 

is likely due to a reduction in power resulting from the inclusion of an additional variable, 

although the point estimates reflect a strong protective effect (e.g., high school education or less: 
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OR=0.23, 95% CI=0.23-1.00, Table 10b). This lack of power becomes evident in the stratified 

models in which confidence intervals widened substantially, particularly among the low brain 

weight tertile. Even though the hypothesis was not supported in the present study, the interacting 

influence of predictors of cognitive reserve (such as education) and brain reserve (such as brain 

weight) remain an interesting area for research and warrant continued research with larger data 

sets. 

6.1.5.2 Question 5B: The influence of cortical atrophy on the association between education and 

cognitive resilience 

The hypothesis that education would be more highly associated with cognitive resilience 

in the presence of cortical atrophy was not confirmed in the present study. In both the NIA-RI 

and CERAD samples, the impact of education only remained significant in the presence of mild 

atrophy. When cortical atrophy was absent or moderate/severe atrophy was present, this effect 

fell below significance. It was predicted that when high levels of brain reserve were present (as 

reflected by the absence of cortical atrophy), the cognitive reserve conferred by educational 

attainment would not be additionally beneficial in promoting cognitive resilience. Further, it was 

predicted that when insults to brain reserve were severe (as reflected by moderate/severe cortical 

atrophy), the resilience capacity of the brain would be profoundly reduced to the point where 

even significant cognitive reserve (through high levels of education) would be unable to prevent 

the emergence of dementia symptoms. While, as predicted, the impact of education on cognitive 

resilience was most significant in the presence of mild atrophy, evidence in support of this 

hypothesis was limited by insufficient power in ‘no atrophy’ and ‘moderate/severe atrophy’ 

strata.  Due to this low power, confidence intervals were too wide to provide meaningful support 

for the hypothesis. To clarify these relationships, subsequent studies should assess the impact of 



88 
 

cortical atrophy on the relationship between education and cognitive resilience using larger 

databases with greater numbers of participants in non-atrophic and severely atrophic subgroups. 

6.2 Limitations 

 While there are several strengths of the proposed study, a few limitations must be 

addressed. Firstly, because early-life data from the study were retrospectively collected, several 

factors that may be relevant to the present study were not available. For example, several 

measures indicative of early-life advantage, such as childhood nutrition and SES, were not 

assessed. These could confound the relationship between educational attainment and cognition in 

late life through various mechanisms and would have been useful in assessing the nature of the 

relationship between education and cognitive resilience. For example, participants with higher 

parental SES (particularly higher education) may have been exposed to more early-life cognitive 

stimulation and better nutrition, which may have improved brain and cognitive development and 

increased the likelihood of higher educational attainment as well as improved cognitive health 

outcomes in older adulthood. 

 Secondly, there are limitations in assessing Alzheimer neuropathology. The CERAD 

neuropathologic criterion used in the study does not assess the development of neurofibrillary 

tangle pathology in AD. Therefore, this criterion used only one of the two hallmark biomarkers 

for AD, and may be assessing cognitive resilience against neuritic plaque pathology rather than 

against Alzheimer neuropathology more broadly. While caution should therefore be used when 

generalizing findings from the CERAD sample to individuals with AD, the study did attempt to 

address this limitation by re-running all analyses with cognitive resilience defined using the 

NIA-RI criterion (which considers both NFT and NP pathologies). While the analytic sample 

using NIA-RI criteria is considerably smaller due to several participants being unclassifiable 

because of atypical Alzheimer pathology development (see section 2.1.4), using this second 
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analytic sample was integral to validating conclusions from the CERAD sample. Throughout the 

project, the general associations between exposure variables and cognitive resilience were 

consistent across the two samples. Where minor differences were found, the inconsistent results 

could largely be explained by the lower sample size and corresponding reduction in statistical 

power in the NIA-RI sample.  A more general limitation of the criterion used in the assessment 

of Alzheimer neuropathology is that this association between AD neuropathology and dementia 

is less robust among older individuals where the presence of non-Alzheimer neuropathology is 

much higher. This is because an older sample would have accumulated significantly more insults 

to the brain than a younger sample, and thus the impact of non-Alzheimer neuropathology may 

indeed be causing the cognitive impairments more than the Alzheimer pathology. This may 

contribute to a conclusion that Alzheimer neuropathology led to a reduction in cognitive 

resilience directly, when this influence was in fact due to non-Alzheimer brain pathology.   

Non-response was also a limitation of the present study. From the School Sisters of Notre 

Dame religious congregation, 678 of the 1031 eligible sisters agreed to participate in the study. 

While this may have introduced selection biases to the study, participants and non-participants 

did not differ significantly on mortality, age, country of birth or race. The Nun Study sample was 

further reduced from 678 participants to the analytic sample of 213 participants for the CERAD 

sample and 160 participants in the NIA-RI sample. Participants were excluded if they did not 

have Alzheimer neuropathology or were missing covariates of interest. An assessment of non-

response bias was conducted to assess if excluded participants differed from the participants in 

the analytic samples with respect to the study covariates. While there were some significant 

differences between the excluded participants and analytic sample, these differences were 
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predictable and followed a logical pattern (see Section 4.3.1.2) and were unlikely to explain the 

findings in the study. 

Another key limitation of the project was that the sample was somewhat homogeneous on 

key covariates making it difficult to accurately test associations of interest in multivariable 

models. This limitation impacted models assessing education and cortical atrophy in particular. 

Within the educational attainment exposure, few participants received only a high school 

diploma or less (<16% of participants in both samples). The implication of this highly educated 

sample was that low statistical power resulted in wide confidence intervals for measures 

assessing the impact of low education. However, despite the reduced statistical power, the effects 

of low education still reached statistical significance, suggesting that the true effect of education 

on cognitive resilience is large.  Similarly, in models incorporating cortical atrophy, less than 

25% of participants were free from atrophy at the time of death. However, this was not surprising 

as individuals of advanced age and those with Alzheimer neuropathology are at heightened risk 

for atrophy. Because of this lack of variability in atrophy, there are concerns that when education 

predicted cognitive resilience in models that did not control for atrophy, this effect could be 

driven largely by the mild atrophy strata. However, in stratified models, the impact of education 

appeared to remain important in all strata and consistently trended in the same direction. 

Ultimately, the low numbers of participants in the “no atrophy” strata resulted in reductions in 

statistical power and may have led to a type II error where the true impact of education on 

resilience in the no atrophy strata was not identified.   

While the use of brain weight at autopsy was used to help validate previous findings 

using MRI (Mori, Hirono, Yamashita et al., 1997), head circumference (Graves, Mortimer, 

Larson, et al., 1996) and intracranial volume (Guo et al., 2013), this measure is not without 
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limitations. Because brain weights were collected after death, these measures were not 

independent from cortical atrophy. In fact, only 22% of the NIA-RI sample and 23% of the 

CERAD sample were free from cortical atrophy, and thus the measured brain weight of 

participants at autopsy did not reflect the pre-morbid brain weight (or baseline brain reserve). 

This is problematic as brain weights at death likely would have been systematically lower among 

those with more advanced atrophy, another known risk factor for dementia, but not for 

participants without atrophy.  Therefore, brain weight measurements may have partially reflected 

loss of tissue due to cortical atrophy. However, models assessing both brain weight and cortical 

atrophy simultaneously found that these factors were independently associated with cognitive 

resilience. There was no statistically significant interaction between brain weight and the 

presence or severity of cortical atrophy, or evidence of multicollinearity between these exposures 

in model diagnostics. Therefore, the effects of these variables in the study are likely valid. 

However, subsequent studies would benefit from the inclusion of a valid estimate of pre-morbid 

brain weight. 

 The Nun Study population differs from the general population in a number of ways that 

may impact generalizability. First, because the sample is female only, generalizability of findings 

to males may be limited. While there is no compelling evidence in the literature suggesting 

Alzheimer neuropathology and cortical atrophy impact males and females differentially, 

consistent findings from the literature indicate that males have higher brain weights, and thus the 

impact of atrophy and low brain weight may have impacted our sample more severely than it 

would the general population. Additionally, because the sample is from a religious order, 

participants differ from the general public in a number of ways, including marital status, tobacco 
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use, and alcohol consumption that may impact outcomes of interest. These differences, while 

contributing to higher internal validity, decrease the generalizability of the findings. 

 Lastly, this study began follow up at age 75. While this minimum age at baseline is a 

methodological strength as it filtered out the majority of the cases of early-onset forms of AD, 

this could potentially introduce survivor bias as individuals with higher susceptibility to 

outcomes of interest (AD, dementia) may have died before reaching age 75.  

6.3 Strengths 

 Despite the limitations, the proposed research possesses several important strengths for 

the study of cognitive resilience. Participants in the Nun Study are largely free from many factors 

that confound other epidemiologic studies, including tobacco use, heavy alcohol consumption, 

and unequal access to medical resources throughout adulthood. Several of these factors were 

major confounding variables that were not adjusted for in previous studies on the link between 

education and cognitive resilience. By largely controlling for these variables through sample 

selection, the present study was able to present a clearer relationship between the exposure 

variables and cognitive resilience. 

While the vast majority of studies assessing cognitive resilience have been conducted on 

clinic samples, the Nun Study is a population-based cohort. The use of a population sample 

provides a number of strengths to the current study. Because the focus of the current 

investigation is to identify factors that promote cognitive resilience, the use of a clinic sample 

would not be feasible as clinic samples by definition would only include symptomatic cases. 

Additionally, the Nun Study is longitudinal. The availability of archived early-life data coupled 

with follow up over 12 annual cognitive assessments allows for temporal relationships to be 

clearly established. This is a distinct advantage over previous research on cognitive resilience 

which, due to practical considerations, typically relied upon cross-sectional data. 
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 Finally, the present study used assessments of cortical atrophy, brain weight, Alzheimer 

neuropathology, and cognitive resilience that were based on neuropathologic assessment via 

autopsy. Although the measures of neuropathology are imperfect (as noted in the limitations), the 

use of autopsy data is the gold-standard diagnostic methodology. While previous studies have 

approximated neuropathologic data through glucose metabolism assessments, cerebral blood 

flow measurements, and imaging, little research in this area has been conducted using the 

definitive gold-standard criteria utilized in the Nun Study. The availability of APOE-ε4 genotype 

data was also a critical advantage over previous studies that were unable to control for this 

potential effect modifier. 

6.4 Implications and Future Directions   

To conclude, the body of literature attempting to understand how variables from across 

the life-course can predict cognitive resilience in late life remains in its infancy. While several 

studies have assessed how early-life factors may promote cognitive resilience, the literature 

largely lacked robust methodologic assessments and findings were unclear. This project 

addressed this issue by using a neuropathologically-derived definition of cognitive resilience to 

support previous findings.  

The study was also among the first of its kind to assess brain reserve factors (brain weight 

and cortical atrophy) on cognitive resilience in late life using gold-standard autopsy data instead 

of proxy measures. While there are limitations of the autopsy data (see section 6.2), this study 

provided validation of earlier work on both the direct relationships between brain reserve factors 

and cognitive resilience as well as providing new insights into how different brain reserve factors 

from across the life-course may interact to produce cognitive outcomes. However, due to 

limitations of the present study, subsequent cohort studies assessing late-life cognition would 
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benefit strongly from the inclusion of measures of premorbid brain weight through the use of 

MRI data or validated head size measurements. 

Finally, findings from this study suggested the potential for interacting effects of 

cognitive reserve and brain reserve in the development of late-life cognitive resilience. The 

availability of both early- and late-life data provided the unique opportunity to assess how 

education from early life interacted with later-life brain weight and cortical atrophy to impact 

cognition among individuals with Alzheimer neuropathology. This study provided a critical first 

step in understanding the link between these life-course factors and the development of cognitive 

resilience. 

These contributions to the cognitive resilience literature have a number of practical and 

theoretical implications. Primarily, these findings will lay the groundwork for future research in 

this area. Results indicating that variables from across the life-course may interact to produce 

cognitive resilience provide a critical step in untangling the complex life-course development of 

cognitive resilience. Future research is needed to clarify several potential relationships revealed 

in the present study, including the interaction between APOE-ε4 status and cortical atrophy, the 

potential interacting effects of brain weight and cortical atrophy, and the relative importance of 

brain reserve and cognitive reserve. 

One contribution of these findings is the potential to prioritize intervention strategies. For 

example, because there was some evidence that insults to brain reserve capacity may offset the 

cognitive reserve benefits of education, prioritizing research and interventions focused on the 

maintenance of brain reserve may successfully maximize cognitive resilience. Some previous 

literature has suggested that there are nutritional interventions that can maximize brain weight 

across the life-course and improve cognitive outcomes (see: Alzheimer’s Disease International, 
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2014; Wang et al., 2012). Further, improved control over cardiovascular risk factors, such as 

hypertension (Salerno, Murphy et al., 1992) and diabetes (Knopman, Mosley et al., 2005), may 

reduce late-life cortical atrophy. Indeed, reductions in incident cases of AD that have been 

attributed to better control of cardiovascular risk factors (Satizabal, Beiser et al., 2016) may 

partially contribute to reduced incident AD through heightened brain reserve.  

Finally, because this study found that education was associated with cognitive resilience 

in a population largely free from differences in SES, housing, and health care access, these 

findings support the continued investment in education as a fundamental determinant of health 

that functions beyond improved access to the aforementioned variables.  
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Appendix A 

Literature search strategy 

 

Table A1. Literature Search Strategy 

Data Base Education Cognitive Reserve Age 

PubMed/Medline education [MeSH] 

educational attainment 

[tiab] OR education 

level [tiab] OR years of 

education 

cognitive reserve [MeSH] 

OR cognitive reserve [all 

fields] OR brain reserve 

[all fields] OR cognitive 

resilience [Tiab] OR 

Alzheimer disease 

[MeSH] OR Alzheimer's 

disease [tiab]  

aged [MeSH] OR 

older adult [all fields] 

OR elderly [all fields] 

OR seniors [all fields] 

PsycINFO Index: education OR 

academic achievement 

Title and Any Field: 
{education} OR 

{educational 

attainment} OR 

{education level} OR 

{educational level} 

Index: {Alzheimer’s 

Disease} 

Title or Any Field: 

{cognitive reserve} OR 

{brain reserve} OR 

{Alzheimer disease} OR 

{Alzheimer's disease}  
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Appendix B 

Summary of literature search articles 

Table B1. Summary findings on the association between education and cognitive resilience. 
Study Measure of 

education 

Assessment of brain 

damage 

Assessment of 

cognitive ability 

Findings 

Bezerra et al., 

2012 

Academic 

performance (high 

school grades in 

Portuguese, 

mathematics and 

geography) 

None Incidence of 

dementia 

Higher academic 

performance was linked to 

decreased incident 

dementia 

Dekhtyar et al., 

2016 

Archival records of 

school grades at 

age 9 and 10 

Not done Incidence rates of 

dementia 

(comprehensive 

clinical exam) 

Low school performance 

at ages 9/10 was associated 

with increased incidence 

of dementia independent 

of educational attainment 

and occupational 

attainment 

Garibotto et al., 

2008 

Years of education Glucose metabolism in 

parietotemporal cortex 

and cognitive testing 

Neuropsychological 

test performance 

Education was related to 

higher cognitive 

performance despite 

increased brain damage 

Hall et al., 

2007 

Years of education None Incidence of 

dementia 

Higher education delayed 

the onset of symptoms, led 

to faster deterioration upon 

symptom onset 

(compression of 

morbidity) 

Kemppainen et 

al, 2008 

High education vs. 

low education 

Glucose metabolism in 

parietotemporal cortex 

Neuropsychological 

test performance 

Education was related to 

higher cognitive 

performance despite 

increased damage 

Liao et al, 2005 Years of education Blood flow in 

parietotemporal cortex  

Neuropsychological 

test performance 

Education was related to 

decreased AD symptoms 

despite increased brain 

damage 

Mehta et al. 

2009 

Self-reported 

academic 

performance in 

high school 

(“below average”, 

“average”, “above 

average”) 

None Incidence of 

dementia 

Lower rates of dementia 

among those with higher 

self-reported academic 

performance 

Rentz et al., 

2010 

Years of education Amyloid deposits in 

the precuneus 

Neuropsychological 

test performance 

The relationship between 

amyloid deposits and 

decreased cognitive ability 

was reduced in highly 

educated participants 

Roe et al., 2007   Years of education Autopsy assessment of 

Alzheimer 

neuropathology 

Incidence of 

dementia 

Education was protective 

against dementia despite 

the presence of Alzheimer 

neuropathology, regardless 

of neuropathologic criteria  

Stern et al., Years of education Blood flow in Neuropsychological Despite more severe brain 
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1992 parietotemporal cortex  test performance damage, highly educated 

participants experienced 

the same clinical severity 

as their less educated 

counterparts. 

 

Table B2. Summary of findings on the association between cortical atrophy and cognitive resilience. 

Study Measures of 

atrophy 

Covariates 

assessed 

Measure of 

cognition 

Main findings 

Amato et al., 2013 MRI scan of 

normalized total 

brain volume and 

cortical brain 

volume  

Level of 

cognitive 

reserve (IQ and 

education) 

Neuropsychological test 

scores (Rao’s brief 

repeatable battery) 

Cognitive reserve 

modified the 

relationship between 

atrophy and 

cognition: High 

cognitive reserve 

provided resistance 

to cognitive impacts 

of atrophy in mild 

but not severe 

atrophy 

Guo et al., 2013 MRI scan of brain 

volume 

 

Intracranial volume 

APOE-ε4 Dementia status (Intact, 

MCI, AD) 

Neuropsychological 

performance (MMSE) 

Atrophy was 

inversely associated 

with cognitive 

performance.  

Larger intracranial 

volume was 

associated with 

preservation of 

cognitive ability 

Negash et al., 2013 MRI scan of cortical 

volume 

 

Intracranial volume 

Cerebral spinal 

fluid test of 

amyloid beta 

plaque (AD 

marker), 

 

Clinical Dementia Rating 

score (measures of 

Intra-cranial volume 

was associated with 

the ability to resist 

the impacts of  

atrophy and amyloid 

beta 

Perneczky et al., 

2010 

MRI scan of cortical 

volume 

Head 

circumference, 

APOE-ε4 

MMSE performance, 

Dementia status (DSM-

IV) 

 

Inverse association 

between atrophy and 

cognitive ability.  

Larger head 

circumference was 

protective against 

the effects of mild 

atrophy 

Tyas et al., 2008 Autopsy evidence of 

cortical atrophy 

Pathologic 

evidence of AD 

Dementia status (DSM-

IV) 

Those with cortical 

atrophy were 4 

times less likely to 

resist AD-related 

brain changes and 

avoid dementia 
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Appendix C 

Assessment of Non-Response Bias 

Sensitivity analyses included an assessment of non-response bias. In this assessment, the 

analytic sample using CERAD criteria (n=213) was compared to the following samples of 

excluded participants: participants who were excluded as they were still living (n=72), deceased 

participants who did not meet neuropathologic criteria for AD based on CERAD criteria (n=126) 

and individuals excluded due to missing data (n=50). For a summary comparison of these groups 

see Table C1. The sample defined using the NIA-RI neuropathologic criteria (n=160) was also 

compared to a group of individuals who were still living (n=72), a group of participants who 

were deceased but did not meet neuropathologic criteria for AD based on NIA-RI criteria 

(n=184), and participants who were excluded due to missing exposure or covariate data (n=32). 

For a summary comparison of these groups see Table C2. 

The results of the assessment of non-response showed that living participants were 

significantly less likely to be demented at their last cognitive assessment than participants in the 

analytic sample for both NIA-RI (p<0.001) and CERAD samples (p<0.001), and were less likely 

to possess APOE-ε4 alleles (p=0.002). Because the analytic sample was limited to those 

individuals with AD neuropathology, these significant impacts were expected. Further, 

participants who were living differed significantly from our sample on measures of education in 

the NIA-RI sample (p=0.03), and showed a marginally significant difference in the CERAD 

sample (p=0.06).  Again, given the relationship between educational attainment and longevity, it 

was not surprising that living participants would be more highly educated. Finally, no 

statistically significant differences were found between the analytic sample and living 

participants on age at the last cognitive assessment (CERAD: p=0.21, NIA-RI: p=0.36).   
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Comparisons between the analytic sample and deceased participants who were excluded 

because they did not show evidence of AD neuropathology upon autopsy examination showed 

several predictable differences. Individuals without AD neuropathology had larger brains 

(CERAD: p<0.032, NIA-RI: p<0.001), were less likely to possess APOE-ε4 alleles (CERAD: 

p<0.001, NIA-RI: p<0.001), and were less likely to be demented at their last cognitive 

assessment (CERAD: p<0.001, NIA-RI: p<0.001). Further, participants without AD 

neuropathology were also younger at the time of their last cognitive assessment before death.   

No significant differences were found on educational attainment (CERAD: p=0.44, NIA-RI: 

p=0.40).  

Finally, comparisons between our sample and participants who, despite meeting the AD 

neuropathology criteria, were excluded from our sample due to missing data indicated that the 

loss of these participants did not likely systematically alter our analyses. No differences between 

our sample and participants with missing data existed for cognitive status at the last assessment 

(CERAD: p=0.79), NIA-RI: p=0.94), educational attainment (CERAD: p=0.97, NIA-RI: p= 

0.21), APOE- ε4 status (CERAD: p<0.54, NIA-RI: p=0.81), brain weight (CERAD: p=0.09, 

NIA-RI: p=0.13) or age at the last cognitive assessment before death (CERAD: p<0.21, NIA-RI: 

p=0.60). 

Because the outcome measure and analytic samples were based on a definition of 

cognitive resilience requiring the presence of AD neuropathology, differences between the 

analytic samples and those without AD neuropathology are neither surprising, nor would they 

impact our ability to generalize our findings to the broader target population (those with AD 

neuropathology). The lack of significant differences between the analytic sample and those who 
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were excluded strictly due to missing data indicates that non-response likely did not 

systematically influence our analyses.
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Table C1.  Test of non-response bias for analytic sample (CERAD) vs. excluded participants. 

  Excluded Participants 

Variable CERAD 

analytic 

sample 

(n=213) 

Living 

participants 

(n=72) 

Deceased, 

without AD 

pathology 

(n=126) 

Missing 

covariate data 

(n=50) 

Educational attainment      

 High school or less  

 

15.5% 8.3% 13.5% 14.0% 

 Bachelor’s degree  

 

45.1% 36.1% 41.3% 44.0% 

 Master’s degree or higher  40.4% 55.6% 45.2% 42.0% 

      

Dementia status at last assessment     

 Yes 60.1% 16.7%** 33.3%** 58.0% 

 No 39.9% 83.3%** 66.7%** 42.0% 

     

Age at last cognitive assessment 90.80 (5.13) 91.59 89.11 (5.24)** 91.78 (3.85) 

     

APOE-ε4 alleles present 31.0% 10.4%** 10.5%** 26.2%1 

     

     

Brain weight in grams [Mean (SD)] 1097.20 

(113.10) 

-- 1125.3 (113.6)* 1142.10 (96.84)2 

*significant differences from the Analytic sample at the p<0.05 level 

** significant differences from the analytic sample at the p<0.01 level 
1 Analysis of the influence of non-response on APOE-ε4 status was based on a value of n=42 for “missing covariate data” group 
2 Analysis of the influence of non-response on brain weight was based on a sample of n=20 for the “missing covariate data” group. 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; SD = standard 

deviation 

 

 

 



123 
 

 

 

Table C2.  Test of non-response bias for analytic sample (NIA-RI) vs. excluded participants. 

  Excluded Participants 

Variable NIA-RI 

analytic 

sample 

(n=160) 

Living 

participants 

(n=72) 

Deceased, 

without 

Alzheimer 

neuropathology 

(n=126) 

Missing 

covariate data 

(n=50) 

Educational attainment      

 High school or less  

 

15.6% 8.3%* 13.0% 15.6% 

 Bachelor’s degree  

 

46.9% 36.1%* 42.4% 31.3% 

 Master’s degree or higher  37.5% 55.6%* 44.6% 53.1.0% 

      

Dementia status at last assessment     

 Yes 71.3%  16.7% ** 23.3%** 71.9% 

 No 28.7% 83.3%** 70.7%** 28.1% 

     

Age at last cognitive assessment 90.95 (4.72) 91.59 (5.30) 89.39 (5.30)** 91.41 (4.04) 

     

1+ APOE-ε4 allele 36.9% 10.8%** 9.5%** 39.3%1 

     

     

Brain weight in grams [Mean (SD)] 1082.9 (115.5) -- 1130.5 

(107.9)** 

1136.80 

(109.00)2 
*significant differences from the analytic sample at the p<0.05 level 

** significant differences from the analytic sample at the p<0.01 level 
1 Analysis of the influence of non-response on APOE status was based on a value of n=28 for “missing covariate data” group 
2 Analysis of the influence of non-response on brain weight was based on a sample of n=11 for the “missing covariate data” group 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; SD = standard deviation 
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Appendix D  

Results for sensitivity analysis: ‘No atrophy information’ coded as no atrophy 

 As addressed in section 5.7, Nun Study cortical atrophy data were collected through 

autopsy reports, with notes indicating the presence and severity of cortical atrophy used to 

inform coding within the project. In an effort to avoid information bias, the analytic sample 

excluded participants whose autopsy reports did not explicitly state cortical atrophy information. 

However, it is reasonable to interpret the absence of explicit cortical atrophy information as an 

indication that no evidence of cortical atrophy was identified in assessments of participant brain 

tissues. Therefore, key relationships were reassessed with participants whose autopsy reports did 

not mention cortical atrophy coded as “no atrophy present”.  The analytic samples with the new 

coding increased from 213 to 226 participants in models using CERAD neuropathologic criteria 

and from 160 to 167 participants in models using NIA-RI neuropathologic criteria.  As 

previously alluded to in section 5.7, the results for models assessing educational attainment and 

its impact on cognitive resilience (Table D1), models assessing the role of atrophy presence on 

cognitive resilience (Table D2), and models assessing the influence of the severity of atrophy on 

cognitive resilience (Table D3a and Table D3b) revealed trends identical to those in the primary 

analysis. However, these results showed consistent widening of confidence intervals versus the 

primary analysis despite larger sample sizes. This suggested the potential introduction of error 

and thus the primary analysis was maintained. 
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Table D1. The association between level of education and cognitive resilience among CERAD and NIA-RI samples, recoded to 

include the absence of cortical atrophy data as “no atrophy present”. 

 CERAD Criteria (n=226) NIA-RI Criteria (n=167) 

Variables Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Exposure   
Education ( vs. ≥ Master’s degree)   

≤ High school 0.28 (0.10-0.71) 0.29 (0.10-0.75) 0.26 (0.06-0.84) 0.26 (0.06-0.92) 

Bachelor’s degree 0.96 (0.54-1.70) 1.06 (0.58-1.94) 0.80 (0.39-1.63) 0.84 (0.39-1.82) 

Covariates  

Age at death - 0.95 (0.89-1.01) - 0.96 (0.88-1.04) 

APOE-ε4 status - 0.45 (0.24-0.83) - 0.58 (0.27-1.20) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio 

Note: Bold font represents statistically significant result 

 

  

 

 

 

 

 

 

 

 

 



126 
 

Table D2. The association between the presence of cortical atrophy and cognitive resilience among CERAD and NIA-RI samples, 

recoded to include the absence of cortical atrophy data as “no atrophy present”. 

 CERAD Criteria (n=226) NIA-RI Criteria (n=167) 

Variables Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Unadjusted  

OR (95% CI) 

Adjusted  

OR (95% CI) 

Exposure   

Presence of atrophy ( vs. ‘no atrophy’)   

Atrophy present 0.32 (0.18-0.59) 0.35 (0.19-0.65) 0.32 (0.15-0.67) 0.33 (0.15-0.70) 

Covariates  

Age at death - 0.95 (0.89-1.01) - 0.94 (0.87-1.02) 

APOE-ε4 status - 0.55 (0.29-1.01) - 0.73 (0.34-1.54) 

Abbreviations: APOE-ε4 = apolipoprotein E-ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s Disease neuropathologic criteria; CI = 

confidence interval; NIA-RI = National Institute on Aging-Reagan Institute neuropathologic criteria; OR = Odds ratio 

Note: Bold font represents statistically significant result 
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Table D3a. The association between severity of cortical atrophy and cognitive resilience, using 

CERAD criteria, recoded to include the absence of cortical atrophy data as “no atrophy present”. 

CERAD Criteria (n=226) 

  Adjusted 

Variables Unadjusted  

OR (95% CI) 

APOE-ε4 non-carrier 

OR (95% CI)* 

APOE-ε4 carrier 

OR (95% CI)* 

Exposures    

Severity of atrophy  ( vs. ‘no atrophy’)   

Mild atrophy 0.47 (0.25-0.88) 0.59 (0.28-1.21) 0.30 (0.07-1.14) 

Moderate/severe atrophy 0.12 (0.05-0.28) 0.22 (0.08-0.60) 0.01 (<0.01-0.15) 

Covariates  

Age at death - 0.96 (0.89-1.02) 0.88 (0.74-1.01) 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CERAD = Consortium to Establish a Registry for Alzheimer’s 

Disease neuropathologic criteria; CI = confidence interval; OR = Odds ratio 

Note: Bold font represents statistically significant result 

*Stratified by APOE-ε4 status due to a significant interaction between severity of atrophy and APOE-ε4 in model 

diagnostics 

 

Table D3b. The association between severity of cortical atrophy and cognitive resilience, using 

NIA-RI criteria, recoded to include the absence of cortical atrophy data as “no atrophy present”. 

  

NIA-RI Criteria (n=167) 
Variables Unadjusted  

OR (95% CI) 

Adjusted 

OR (95% CI) 

Exposure   
Severity of atrophy (vs. ‘no atrophy’)  
Mild atrophy 0.54 (0.25-1.10) 0.57 (0.26-0.1.26) 

Moderate/severe atrophy 0.08 (0.02-0.25) 0.07 (0.01-0.23) 

Covariates 

Age at death - 0.91 (0.84-0.99) 

APOE-ε4 status - 0.80 (0.36-1.75) 

Abbreviations: APOE-ε4 = apolipoprotein E- ε4; CI = confidence interval; NIA-RI = National Institute on Aging-

Reagan Institute neuropathologic criteria; OR = Odds ratio 

Note: Bold font represents statistically significant result 

 

 


