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Abstract 

In this study, the Janus droplet is an oil droplet covered with aluminum oxide nanoparticles on 

one side of the droplet surface under applied DC electrical field. The vortices around Janus 

droplets fixed on a horizontal surface were studied in this paper. A numerical model was set up 

to simulate the vortices around the Janus droplet in electric field. The simulation results illustrate 

that the electric field determines the strength of the vortices around a fixed Janus droplet and the 

surface coverage of the positively charged nanoparticles on a Janus droplet affects the size and 

location of the vortices. The numerically predicted results were further validated experimentally 

by visualizing the vortices around Janus droplets in an externally applied DC electric field. 

Furthermore, as the Janus droplets are generated in electric field, the surface coverage by the 

nanoparticles depends on the strength of the electric field; therefore, the effect of the electric 

field on the nanoparticle covered surface area of a Janus droplet and the vortices was analyzed. 
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1. Introduction 

For a polarizable sphere immersed in an electrolyte solution, when a DC electrical field is 

applied, electric charges will be induced along the surface of the sphere. The induced charges 

have opposite signs on the two hemispheres: the hemisphere facing the applied electric field is 

negatively charged; the other hemisphere is positively charged. Consequently, the induced 

electric double layer field around the sphere is dipolar; the electroosmotic flows from the two 

sides of the sphere are in the opposite directions. This will result in vortices around the sphere. 

Induced charge electroosmotic flows around ideally polarizable objects such as a metal cylinder 

or sphere have been studied extensively (Levich 1962; Dukhin and Murtsovkin 1986; Dukhin 

1986; Bazant and Squires 2004; Yariv 2005; Saintillan et al. 2006a; Saintillan et al. 2006b; 

Yossifon et al. 2007; Gangwal et al. 2008; Wu et al. 2009; Wu and Li 2009; Bazant and Squires 

2010). On the theoretical side, an analytical formulation which can be used to calculate the 

induced zeta potential along the surface of a 2D metal cylinder of circular cross-section was 

derived (Bazant and Squires 2004). Wu and Li (2008a) presented a numerical method of 

evaluating the induced zeta potential on an arbitrary shaped surface of a fully polarizable object. 

Among experimental studies, Daghighi et al. (2013) investigated the induced charge 

electroosmotic flow field surrounding a carbon-steel sphere in water and used fluorescent 

particles to show the flow patterns. Under externally applied DC electric field, four vortices were 

observed in the vicinity of the metal sphere; the size and the strength of the vortices increase 

with the electric field. Peng et al. (2014) experimentally studied the induced charge 

electroosmotic flow around an Au sphere under AC electric field. It was demonstrated that four 

vortices can also be generated around the Au sphere in AC electric field. The induced vortices 

around conducting surfaces can be used for many applications: mixing and controlling flow 

regulating inside microchannels (Wu and Li 2008a)(Wu and Li 2008b)(Zhang et al. 2011), 

pumping liquid(Kim et al. 2011), separating particles(Zhang and Li 2014) and trapping cells(Ren 

et al. 2015). 

The induced charge electroosmotic flow and vortices were also studied for Janus particles 

consisting of two halves: one is an electrically conducting metal (i.e., fully polarizable material), 

the other is electrically non-conducting material (i.e., dielectric). Daghighi and Li (2011) 

numerically studied the electrical induced vortices around Janus particles. Under DC electric 
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field, the induced charges on the metal side of the Janus particle generate two major vortices. 

They also analyzed the influence of the vortices on the motion of Janus particles in microchannel, 

and it was found that the vortices may act as the “vortex engine” for the particle’s motion. This 

finding was verified experimentally by measuring the velocities of Janus particles and 

homogeneous dielectric particles with the same size in externally applied DC electric field 

(Daghighi et al. 2013). Later on, Peng et al. (2014) experimentally studied the induced vortices 

around a Janus Au-SiO2 particle under AC electric field. Their experimental results indicated that 

the vortices can always be generated no matter the electric field was parallel or perpendicular to 

the interface of the two hemispheres of the Janus particle.  

For a Janus droplet composed of a negatively charged surface on one side and a positively 

charged surface on the other side, vortices around the Janus droplet may be expected, similar to a 

solid Janus particle, under applied electric field. The vortices around Janus droplets have many 

potential applications. Mixing inside microchannels is a challenge due to small Reynolds number, 

and the vortices around Janus droplets can enhance the mixing and the Janus droplets may be 

regarded as micromixers. Furthermore, vortices around Janus droplets may act as “vortex 

engine”, which will affect the motion of Janus droplets. Therefore, the vortices around Janus 

droplets can be utilized to control the motion and separation of Janus droplets based on surface 

coverage of different charges and size. However, no paper has been published to report any 

studies of the electroosmotic flow and the vortices around Janus droplets. One of the reasons is 

that it is difficult to produce a Janus droplet with opposite signs of surface charges on the two 

sides. Currently, two main techniques have been developed to generate Janus droplets, the one-

step high energy mixing method (Torza and Mason 1970; Hasinovic et al. 2011; Hasinovic and 

Friberg 2011; Friberg et al. 2013; Ge et al. 2014; Zarzar et al. 2015) and the microfluidic method 

(Utada et al. 2005; Nie et al. 2006; Pannacci et al. 2008; Guzowski et al. 2012). Janus droplets 

formed with high energy mixing method are composed of two immiscible oils. As the oil-water 

interfaces generally carry negative charges, the Janus droplet generated by this method cannot 

have one side with positive surface charges and the other side with negative surface charges. In 

the microfluidic method, the Janus droplets are generated inside microchannels. The properties 

of the two parts of the Janus droplet depend on that of the two immiscible liquid monomers. 

Generally, the monomers are organic solutions, their interfaces with an aqueous solution all carry 
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negative charges; therefore, this method is also not suitable for generating Janus droplets with a 

positively charged hemisphere and a negatively charged hemisphere.  

In this paper, a new method for generating Janus droplets with one positively charged side and 

one negatively charged side is introduced. Such Janus droplet is formed by covering one side of 

an oil droplet with positively charged aluminum oxide nanoparticle in an externally applied 

electric field. The factors that affected the vortices around Janus droplets were studied. A 

numerical model was built, and the simulations were conducted to investigate the electroosmotic 

flow and vortices around a Janus droplet. The vortices were studied experimentally and the 

experimental observation was compared with the numerical simulation results. 

2. Experiments 

The purpose of the experiments was to study the electro-osmotic flow and vortices around Janus 

droplets. The Janus droplets used in this study were generated by partially covering oil droplets 

with positively charged aluminum oxide nanoparticles under externally applied electric field. 

Furthermore, to avoid the unwanted effect of the droplet motion, we conducted the experiments 

with sessile Janus droplets which were anchored on a solid surface in the aqueous solution, as 

illustrated in Figure 1.  

2.1 Janus droplet preparation 

To generate a sessile Janus droplet partially covered with aluminum oxide nanoparticles, the 

aluminum oxide nanoparticle suspension was prepared first. The aluminum oxide nanoparticles 

of 5 nm in diameter (US Research Nanomaterials, Inc., Houston, TX, USA) were dispersed into 

deionized water by using ultrasonic wave: a) Add nanoparticles into deionized water in a beaker; 

b) Place the beaker into an ultrasonic cleaner for a period of time (approximately 8 minutes) and 

the nanoparticles can be dispersed under ultrasonic wave. The concentration of the aluminum 

oxide nanoparticle suspension used in this study is 50 mg/mL. 

The sessile oil droplet immersed in water can be generated by following these procedures: a) 

Pour deionized filtered water into a plastic petri dish; b) Place a piece of cover glass on the 

surface of water, which wouldn’t sink due to the surface tension of water; c) Deposit certain 

volume of the mineral oil (Sigma-Aldrich, Canada Ltd.) with the viscosity of around 15 cSt at 40℃ 



6 

 

on the floating cover glass slide; d) Push the glass slide into water, sitting at the bottom of the 

petri dish, and a sessile oil droplet attaching on the glass slide formed. 

After the sessile oil droplet was generated in water, a certain amount of aluminum oxide 

nanoparticle suspension prepared before was deposited onto the oil droplet with a digital micro-

pipette. As the aluminum oxide nanoparticles and the oil-water interface carried opposite signs of 

charges, the particles adhered on the oil droplet and distributed uniformly. If an external DC 

electric field is applied to the droplet through water at this time, the positively charged 

nanoparticles at the oil-water interface will be forced to accumulate to one side of the oil droplet 

and leave a pure oil-water interface on the other side without the presence of nanoparticles. A 

Janus droplet is formed in this way. 

2.2 Experimental setup 

In order to visualize the fluid flow around the sessile Janus droplet, 1µ spherical polystyrene 

particles (Bangs Laboratories Inc., IN, USA) were used as the tracing particles. The experimental 

system are shown in Figure 2: a petri dish to hold a sessile oil droplet covered with aluminum 

oxide nanoparticles in water, a DC power supply (CSI12001X, Circuit Specialist Inc., USA), a 

microscope imaging system (Ti-E, Nikon, Japan). During the experiment, the petri dish was put 

on the stage of the microscope. The electric field was applied by the DC power supply through 

two electrodes immersed in the aqueous solution. The strength of the electric field can be 

adjusted by controlling the output voltage of the DC power supply. The microscope with a digital 

camera (DS-Qi1Mc, Nikon) was taken to visualize the trace particles’ motion around the Janus 

droplet. The images can be captured by the digital camera and sent to a computer to be saved and 

analyzed. 

3. Theoretical Model and Numerical Simulation 

Consider an oil Janus droplet, one side with positive surface charges, the other side with negative 

surface charges, immersed in an infinitely large aqueous solution, electroosmotic flow will be 

generated around the droplet under electric field. Due to the opposite signs of zeta potentials on 

different sides of the Janus droplet, vortices will be produced in vicinity of the droplet because of 

the opposite directions of electroosmotic flow on the two sides of the Janus droplet. A multi-
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physics model is employed to simulate the electric field and flow field of the system, as 

described in the following sections. 

Furthermore, it should be noted that the electroosmotic flow at the liquid-liquid interface has 

been studied in some papers and the electric double layer plus surface charges (EDL+SC) model 

was derived to estimate the electroosmotic flow at the liquid-liquid interface (Gao et al. 2005; 

Lee et al. 2006; Lee and Li 2006; Movahed et al. 2012). The electroosmotic flow near the 

charged oil-water interface can be described with this model, and the results indicate that the 

electro-osmotic velocity of water near the interface is similar to that on solid surface if the zeta 

potentials of the interface and solid surface are the same. In this study, we focused on the electro-

osmosis of water around sessile Janus droplets; therefore, to simplify the model, the motion 

inside droplet is neglected and the Janus droplets are regarded as solid particles. 

3.1 Electric field 

After applying the electric field to the system as shown in Figure 2, the electrical potential 𝜙𝑒 in 

the liquid can be determined by solving the Laplace’s equation: 

 ∇2𝜙𝑒 = 0 (1) 

The corresponding boundary conditions are: 

 𝑛⃗ ∙ ∇ 𝜙𝑒 = 0 at the oil droplet surface (2) 

 𝜙𝑒 = 𝜙0 at the electric field inlet (3) 

 𝜙𝑒 = 0 at the electric field outlet (4) 

where 𝑛⃗  is the unit vector normal to the boundary. 

3.2 Flow field 

The Navier-Stokes equation 

 𝜌 [
𝜕𝑢⃗⃗ 

𝜕𝑡
+ 𝑢⃗ ∙ ∇ 𝑢⃗ ] = −∇𝑃 + 𝜇∇2 𝑢⃗  (5) 

and the continuity equation 

 ∇ ∙  𝑢⃗ = 0 (6) 
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are the governing equations of the incompressible liquid flow around the droplet. 

Here, 𝜇 is the viscosity of the aqueous solution, 𝜌 is the density of the solution, 𝑢⃗  is the velocity 

vector and ∇𝑃 is the pressure gradient. 𝜕𝑢⃗ 𝜕𝑡⁄  is the transient term, which can be neglected from 

Eq. (5) by considering the steady-state flow. 

The boundary conditions for the flow field are: 

 𝑢⃗ = −
𝜀𝜀0𝜁𝑑

𝜇
𝐸⃗   

 𝑛⃗ ∙ ∇ 𝑃 = 0 at the droplet surface (7) 

 𝑛⃗ ∙ ∇ 𝑢⃗ = 0  

 𝑃 = 0 at far field boundaries (8) 

𝐸⃗ = −∇ 𝜙𝑒 is the local applied electric field, which can be obtained by solving the electric field 

as described by Eq.(1). 𝜀0  and 𝜀  are the dielectric constant of the vacuum and the aqueous 

solution, respectively. 𝜁𝑑 is the zeta potential of the Janus droplet, which has different values on 

different sides of Janus droplets. 

3.3 Numerical simulation 

As mentioned above, electroosmotic flow can be generated around the droplet under electric 

field. Due to the opposite signs of zeta potential on the opposite sides of the Janus droplet, 

electroosmotic flows are in opposite directions from different sides of the droplet. Thus, vortices 

will form in vicinity of the Janus droplet. It is easy to understand that the size, location and 

strength of the vortices depend on the applied electric field as well as the surface coverage of the 

Janus droplet by the nanoparticles.  

In this study, the effects of the surface coverage of the Janus droplet by the nanoparticles and the 

externally applied electric field on the vortices were investigated. As shown in Figure 3, a sessile 

droplet of 𝑑 = 200𝜇𝑚 in diameter is placed in the center of the computation domain. The length 

and width of the computation domain are 𝐿 = 𝑊 = 20𝑑. The theoretical model shown above 

was solved with the commercial software COMSOL 4.3b. The total number of unstructured 

elements used for calculation was 100,494. As this study considers the Janus droplet that is 
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generated by covering one side of the oil droplet with positively charged aluminum oxide 

nanoparticles in externally applied DC field. The zeta potential on the pure oil-water interface 𝜁𝑛 

is set to be 40mV (Graciaa et al. 2002), and the zeta potential on the surface of the 

nanoparticles 𝜁𝑝  is +60mV(Hunter 1981; Rezwan et al. 2004; Timofeeva et al. 2007). Other 

parameter values used in the simulations are shown in Table 1.  

4 Results and Discussion 

For a Janus droplet with one side carrying positive surface charges and the other side carrying 

negative surface charges, vortices can be formed in the neighborhood of the Janus droplet under 

externally applied electrical field. Figure 4(a) shows the typical flow stream patterns around a 

Janus droplet of 200 µm in diameter under applied electric field 40V/cm. In this case, the 

positive surface charges are on the right-hand side of the droplet; and the negative surface 

charges are on the left-hand side of the droplet. As one can see in this figure, two vortices were 

generated around the droplet because of the zeta potential difference between the two sides of the 

droplet. Because the absolute value of zeta potential on the right hemisphere (+60mV) is larger 

than that on the left hemisphere (40mV), the electroosmotic flow on the right hemisphere 

dominates the flow and hence the two vortices stay on the left side. Verification experiment was 

conducted at the same electric field of 40V/cm. A Janus droplet with the diameter of 170 µm was 

generated by following the procedures described above. As shown in Figure 4(b), two vortices 

formed on the left side of the Janus droplet. The comparison of Figures 4(a) and 4(b) indicates 

that the numerical prediction agrees well with the experimental observation. 

4.1 Effect of the applied electrical field 

It is well known that electroosmotic velocity is directly proportional to the applied electric field. 

To study how the vortices vary with electrical field, the numerical simulations for three different 

strengths of electric fields were conducted. Figure 5 shows the flow fields around the same Janus 

droplet under three different electric fields, 40V/cm, 50V/cm and 60V/cm. It can be seen from 

Figure 5 that two vortices were formed on the left-hand side (negatively charged surface) of the 

Janus droplet under different applied electrical fields. Comparison of the three cases in Figure 5 

clearly shows that when the surface coverage of the Janus droplet by the nanoparticles is fixed, 

50% in this case, the externally applied electrical field has no appreciable effect on the location 
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and size of the vortices. As the electric field increases, the velocity of the two opposite 

electroosmotic flows from the two hemisphere surfaces all increases. Therefore, the locations of 

the vortices remain the same. However, the rotation speed of the vortices becomes larger.  

In order to experimentally verify the prediction of the above numerical simulations, an oil 

droplet covered with aluminum oxide nanoparticles was generated in a plastic petri dish. To 

make the accumulation area of the nanoparticles unchanged under different externally applied 

electrical fields, the electric field of 60V/cm was applied from left to right for a period of 2~3 

minutes. This electrical field was strong enough to push the nanoparticles to accumulate to the 

right hemisphere of the oil droplet and make them tightly packed with each other; so that, when 

the external electrical field was reduced to 50 V/cm or 40 V/cm, the aggregated nanoparticles 

were kept in the original area (the right hemisphere). In this way, a Janus droplet with a fixed 

surface coverage by the nanoparticles under different applied electric fields can be studied. 

Figure 6 shows the vortices around the Janus droplet of 170 µm in diameter under different 

applied electrical fields. In order to see the vortices clearly, only the vortices near the up-left 

quarter of the droplet were shown. All of the three pictures presented in Figure 6 were taken with 

the same exposure time of 200 ms. Therefore, the strength of the vortices under different applied 

electric field can be obtained by comparing the length of the streak lines of the tracing particles. 

By comparing the three pictures in this figure, the same conclusion can be obtained: as the 

electrical field increases, the strength of the vortices increases while the location and size of the 

vortices remains unchanged. 

4.2 Effect of the surface coverage of the Janus droplet by the nanoparticles under the same 

electrical field 

The surface coverage of the Janus droplet by the nanoparticles is another factor that will affect 

the vortices. As mentioned above, when the nanoparticle surface coverage of the Janus droplet is 

50%, because the absolute value of the zeta potential on the surface of aluminum oxide 

nanoparticles is larger than the zeta potential of the oil-water interface, the electroosmotic flow 

on this hemisphere covered with nanoparticles will dominate the flow around the droplet, and 

two vortices will be generated on the other hemisphere of the droplet. When the accumulation 

area of the nanoparticles is larger, the electroosmotic flow on the positively charged surface 

becomes dominant over the opposite electroosmotic flow generated on the negatively charged 
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surface. This results in vortices on the negatively charged side of the droplet. However, when the 

accumulation area of the positively charged nanoparticles is small enough, the electroosmotic 

flow on the negatively charged surface will dominate the flow field around the droplet and the 

two vortices will be positioned on the positively charged side of the droplet. Figure 7 shows the 

vortices around Janus droplets with different surface coverage by the positively charged 

nanoparticles. As shown in Figure 7(a), when the positively charged section (blue area) is larger 

than the negatively charged section (red area), the electroosmotic flow from the blue area is 

stronger which forced two vortices to be formed on the other side of the oil droplet. However, 

the vortices will occur on the positively charged side when the surface coverage by the positively 

charged nanoparticles becomes sufficiently small and the electroosmotic flow from the 

negatively charged section becomes dominant, as shown in Figure 7(b). 

Figure 8 shows the experimentally observed change of the vortices position with the surface 

coverage of the droplet by positively charged nanoparticles. The Janus droplets with different 

surface coverages were generated by depositing different volumes of nanoparticle suspension 

over the oil droplet. Applying a larger volume of the nanoparticle suspension results in a larger 

number of nanoparticles on the droplet surface. With the externally applied electric field 

unchanged, at the final state, the larger number of nanoparticles leads to a larger accumulation 

area on the droplet surface. As can be seen in Figure 8(a), when 𝜃 ≈ 110°, i.e., the positively 

charged nanoparticles cover the majority of the droplet surface, vortices form on the side of the 

pure oil-water interface. However, when 𝜃 ≈ 60°, i.e., the positively charged nanoparticles cover 

only a small fraction of the droplet surface on the right-hand side, vortices occur on the side of 

the droplet facing the negative electrode, as shown in Figure 8(b). In order to show the vortices 

clearly, only one vortex and one quarter of the droplet were shown in Figure 8. Clearly, the 

predicted results by numerical simulation (Figure 7) and the experimental observation (Figure 8) 

are in good agreement. 

4.3 Effect of the electrical field on the surface coverage of Janus droplets and 

vortices 

In section 4.1, to analyze the influence of applied electric field on the vortices, we kept the 

surface coverage of the Janus droplet unchanged by making the nanoparticles tightly packed with 

each other under high electric field. However, under relative low electrical field for limited time, 
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the nanoparticles and cluster won’t aggregate with each other, and the nanoparticle surface 

coverage of the Janus droplet is dependent on the applied electric field. When the external 

electrical field is applied, the positively charged nanoparticles move at the interface under the 

external electrical field force and accumulate to one polar of the oil droplet. As the accumulation 

of these nanoparticles, the electrostatic repulsive force between the particles gets larger. At final 

state, the two forces acting on the nanoparticles, external electrical field force and repulsive force, 

are balanced, and the surface coverage by nanoparticles of the Janus droplet remains unchanged. 

However, once the strength of the electric field changes, the electrical field force acting on the 

nanoparticles changes, which will result in the variation of the nanoparticle surface coverage. For 

example, when the electric field increases, the electrical field force will increase and the distance 

between the nanoparticles will decrease; therefore, the nanoparticle surface coverage decreases 

finally. 

Figure 9 shows the variation of the surface coverage by nanoparticles and vortices around the 

same Janus droplet under different electric fields, 40V/cm and 60V/cm. As shown in Figure 9(a), 

under the electric field 40V/cm, the nanoparticles are pushed to accumulate to the right side of 

the oil droplet and leave the pure oil-water interface on the left side. Small vortex forms on the 

side of the pure oil-water interface. When the electric field increases to 60V/cm (Figure 9(b)), 

the accumulation area of the nanoparticles decreases and leave a larger blank area on the other 

side; therefore, the vortex get larger and stronger. 

5. Conclusion 

Vortices around Janus droplets are studied in this paper. The results of the numerical simulations 

show that two vortices can be generated in the surrounding area of the Janus droplet under 

externally applied electrical field. By comparing the numerical results under different 

circumstances, the following two conclusions can be drawn: 1) If the surface coverage of the 

Janus droplet by the positively charged nanoparticles is the same, the strength of the vortices 

increases with the applied electric field; 2) The variation of the surface coverage of the droplet 

by the positively charged nanoparticles will result in the change of the size and the location of 

the vortices. These findings are validated experimentally by visualizing the vortices around Janus 

droplets that are partially covered with positively charged aluminum oxide nanoparticles.   
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Furthermore, as this type Janus droplets are generated under electrical field, the strength of the 

externally applied electric field affects the accumulation area of the particles on the droplet (the 

surface coverage) within a certain range of the electrical field. Generally, the accumulation area 

of positively charged particles decreases as the increase of the strength of the electric field. 

Therefore, the size, position and strength of vortices vary with the electric field, which has been 

validated through experiment. The findings in this paper are important which can be used to 

develop novel technology for sorting and separation Janus droplets. 
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Table 1. Parameter values used in the simulations 

Dielectric constant of the vacuum 𝜀0 (𝐶 𝑉𝑚⁄ )  8.854 × 10−12  

Dielectric constant of the aqueous solution 𝜀  80 

Viscosity of the aqueous solution 𝜇 (𝑘𝑔 𝑚 𝑠⁄ )  0.9 × 10−3  

Density of the aqueous solution 𝜌 (𝑘𝑔 𝑚3⁄ )  998 

Zeta potential on positively charged surface of the Janus 

droplet 𝜁𝑝 (𝑚𝑉) 

 60 

Zeta potential on negatively charged surface of the Janus 

droplet 𝜁𝑛 (𝑚𝑉) 

 40 

Droplet diameter 𝑑 (𝜇𝑚)  200 

Length of the simulation domain 𝐿 (𝜇𝑚)  4000 

Width of the simulation domain 𝑊 (𝜇𝑚)  4000 
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Figure Legends 

Figure 1. Schematic of a sessile Janus droplet which is anchored on a solid surface in an aqueous 

solution. 

Figure 2. Schematic diagram of the experimental system for studying electroosmotic flow field 

around a Janus droplet. 

Figure 3. Schematic of the simulation domain for studying the fluid flow around a Janus droplet. 

L=W=20d. 

Figure 4. Flow field around a Janus droplet under the electrical field of 40V/cm. (a) numerical 

result with the red section carries negative charges and the blue section carries 

positive charges ( 𝜁𝑛 = −40𝑚𝑉  , 𝜁𝑝 = 60𝑚𝑉 , d=200µm); (b) experimental 

observation of a sessile Janus droplet partially covered with positively charged 

aluminum oxide nanoparticles under the same electric field (the diameter of the 

droplet d=170µm). 

Figure 5. Vortices around a Janus droplet under different applied electrical fields as predicted by 

numerical simulation. The red hemisphere carries negative surface charges and the 

blue hemisphere carries positive surface charges ( 𝜁𝑛 = −40𝑚𝑉 , 𝜁𝑝 = 60𝑚𝑉 , 

d=200um). (a) E=40V/cm; (b) E=50V/cm; (c) E=60V/cm. (The direction of red 

arrows represents that of the fluid flow, and the length of red arrows is proportional to 

logarithmic flow velocity of the fluid.) 

Figure 6. Experimentally observed vortices around the Janus droplet with the diameter of 

170µm under different applied electric fields. (a) E=40V/cm; (b) E=50V/cm; (c) 

E=60V/cm. 

Figure 7. Vortices around Janus droplets with different surface areas covered by positive surface 

charges under electrical field 60V/cm. The red section carries negative surface 

charges and the blue section carries positive surface charges (𝜁𝑛 = −40𝑚𝑉 , 𝜁𝑝 =

60𝑚𝑉, droplet diameter d=200um). The surface coverage is indicated by the angle . 

(a) 𝜃 = 110°; (b) 𝜃 = 60°. 
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Figure 8. Experimentally observed vortices around Janus droplets with different surface 

coverages by the positively charged nanoparticles under electrical field 60V/cm. The 

surface coverage is indicated by the angle  as shown in Figure 7. (a) 𝜃 ≈ 110°, 

droplet diameter d=190µm; (b) 𝜃 ≈ 60°, droplet diameter d=170µm. 

Figure 9. The variation of the surface coverage of the Janus droplet and vortices around it with 

different strengths of externally applied electrical fields (droplet diameter d=215µm). 

(a) E=40V/cm; (b) E=60V/cm. 
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