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Abstract

In this thesis we studied the estimation bias of the least squares estimate of the mean rever-

sion parameter, when the underlying dynamics is governed by fractional Brownian motions.

Fractional Brownian motion is a continuous-time model with long-range dependency fea-

tures. Least squares estimate for the mean reversion parameter under standard Brownian

motion framework has been shown to be positively biased. Using an approximate bias for-

mula, we show that the estimation bias in the fractional Brownian case behaves differently

from the standard Brownian motion case, and in fact can be negative depending on the Hurst

parameter and the true value of the mean reversion. We conclude the thesis by looking into

the implication of these results from the perspective of risk management.
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Chapter 1

Introduction

Mean reversion is a key feature in many financial assets. Interest rates and historical volatil-

ity of a stock return tend to be mean-reverting, in the sense that each of these quantities

has a tendency to revert to its unconditional mean in the long run. A mean-reverting time

series is more likely to correct any deviation from this fixed value.

The Ornstein-Uhlenbeck (OU) process is one of the processes that captures the behaviour

of mean reversion. Such a process can be represented by the following stochastic differential

equation (SDE):

dSt = k(µ− St)dt+ σdBt,

where k > 0 is the mean reversion speed, µ ∈ R is the long term mean, σ > 0 is the

instantaneous standard deviation (sometimes called volatility) and {Bt}t∈R is the standard

Brownian motion.

Solving this SDE over the time interval [ti−1, ti] for some i ∈ N yields the following process:

Si = e−khSi−1 + µ(1− e−kh) + σ

√
1− e−2kh

2k
εi,

where h := ti − ti−1
1, Si := Sti and εi ∼ N(0, 1) i.i.d. for each i. In this thesis we focus on

the case where the parameter µ is assumed to be known. Under this circumstance we can

1By assuming that the time intervals are equally spaced.
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assume for simplicity that µ = 0 without loss of generality. As a result, given a time series

{Si}i∈N which is known to follow an Ornstein-Uhlenbeck process (and which can also be

viewed as a continuous version of an autoregressive process of order 1, i.e. AR(1) process), it

is natural to consider using the method of ordinary least square (OLS) to estimate its mean

reversion parameter yielding the following OLS estimator:

k̂ := −1

h
ln

∑
1≤i≤n Si−1Si∑

1≤i≤n S
2
i

. (1.1)

It is known that for a simple linear regression model where the explanatory variable is un-

correlated with the regression error terms, the OLS estimator for this slope coefficient is

unbiased. However, in a time series {Si}i∈N, the covariates in the AR(1) regression are typi-

cally lagged dependent variables, and such dependence makes the OLS estimate of the mean

reversion parameter to be biased when the residuals of this regression are not independently

distributed.

Indeed, it has long been known that the OLS estimate as prescribed in (1.1) is positively

biased, i.e. the mean reversion paramter is over-estimated by the OLS method. However,

using the bias estimation formula developed in [7], it is possible to derive a bias formula

which takes into account the fact that the bias tends to 0 as the true value k tends to 0,

despite the fact that such a bias is still significant relative to the magnitude of the true value

[11].

Meanwhile, it has also long been observed that time series observed in the financial market

are not driven by a standard Brownian motion. For instance, historical data from major

equity indices such as Dow Jones Industrial Index reveal that the returns are much more

peaked and have fatter tails compared to the tails of a normal distribution (Figure 1.1).

Moreover, historical returns usually also present persistence, i.e. a large return on one trad-

ing day is often followed by large returns, and so do small returns. Such clustering of returns

cannot be explained by the standard Brownian motion model, since it assumes that returns

are independent of each other.

Similar concerns also arise when modeling volatility by standard Brownian motions. For

instance, viewing the absolute daily return as a proxy to the volatility of the underlying, we

can conclude that the volatility of commonly traded equity indices is serially correlated. The

2



Figure 1.1: Histogram of Annualized Log Returns of DJI Index, 1/1/2000 - 1/1/2016, with

Overlay by Density Function of Normal Distribution.

autocorrelation does not decay quickly enough as its lag increases (Figure 1.2). This evidence

supports the argument that the volatility is not driven by standard Brownian motions ei-

ther, for if otherwise we should have observed little autocorrelations in the return time series.

There are many different models which try to capture the autocorrelation feature of the

return time series. One such attempt is fractional Brownian motion (fBm). Under the fBm

framework, the stochastic process is still driven by some normally distributed random vari-

ables, but the increments can now be correlated with each other. The degree of correlation is

governed by the so-called Hurst parameter H ∈ (0, 1), with the increments being positively

correlated when H > 1
2
, and negatively correlated when H < 1

2
. Such process nests the

standard Brownian motion as a special case, when H = 1
2
.

There are several common features shared by standard and fractional Brownian motions. For

instance, integrating a deterministic function with respect to fBm still leads to some nor-

mally distributed variable, and Ito isometry still holds under fBm. Nevertheless, applying
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Figure 1.2: Autocorrelation of Absolute Annualized Historical Log Returns of DJI Index,

1/1/2000 - 1/1/2016.

the usual definition of a stochastic integral2 under fBm allows for arbitrage opportunities[8],

and to remedy this, it is suggested that the integral should be defined by a so-called Wick’s

product. The development of Ito-Wick’s integrals and their applications in finance can be

found for instance in [4] and [2].

In this thesis, we will generalize the results on the bias formula as presented in [11] by

focusing on the estimation of the mean reversion parameter for the fractional Ornstein-

2In [4] and [2], such integrals are called (fractional) pathwise integrals.
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Uhlenbeck (fOU) process, i.e. the mean-recersion parameter k in the following stochastic

differential equation:

dSt = k(µ− St)dt+ σdBH
t ,

where BH
t is a fBm with constant H ∈ (1

2
, 1). The result developed in this thesis covers the

case in [11] by placing H = 1
2
. To develop the corresponding bias formula for the fOU case,

we essentially need two pieces of information: (1) The bias formula for general nonlinear

estimator, and (2) the moments for integrals driven by fBm.

In Chapter 2, we will review the formulation of the so-called second-order bias formula of a

nonlinear estimator, based on the work by [7]. The derivation of this bias formula essentially

involves a Taylor series expansion up to second order of a given stochastic expression.

In Chapter 3, we will review the theoretical background of the fractional Brownian motion.

We will first briefly provide the mathematical setting for defining a fractional Brownian mo-

tion properly. Such a definition leads directly to the fact that the integral of deterministic

functions with respect to fBm is also normally distributed. This normality result is essential

to the later development of the thesis, for if otherwise the calculation of higher moments

could be quite tedious. We will also quickly review some results regarding Wick-Ito’s inte-

gration and the fBm version of Ito’s lemma.

Based on the background information in the previous chapters, we will develop a new second-

order bias formula for the fOU case in Chapter 4.
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Chapter 2

Bias Term for a Nonlinear Estimator

Suppose that the parameter of interest is θ and its estimator is given by θ̂ which is dependent

on the observed data. Then, to quantify how good this estimator is, we can consider an

estimator bias, defined as

B(θ̂) := E[θ̂]− θ,

where the expectation is based on the expectation of the underlying random process. In

other words, the bias of an estimator is simply the expected error of using this estimator θ̂

to estimate the true value θ. An estimator is unbiased if the bias is zero.

This chapter is divided into three parts. In the first part the bias formula for a general

nonlinear estimator is briefly revisited, based on [7]. In the second part, this bias formula

is applied to the case of standard Ornstein-Uhlenbeck process, following [11], where the

mean reversion of such process is estimated by the least-square estimates based on the finite

sample generated from the stochastic process. In the last part, some properties regarding

this estimator are discussed, together with numerical simulations to illustrate the general

behaviour of the estimator bias.
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2.1 Bias Formula

The class of estimators to be considered are those which are the solution to the follwing

estimating equations of the form

ψn(θ̂) =
1

n

∑
i

q(θ̂) = 0, (2.1)

given a finite sample of non-i.i.d. random variables Z1, · · · , Zn of size n. Here, q(θ) := q(Zi; θ)

is a known scalar function dependent on Zi and θ ∈ R.1 Usually, it is also assumed that the

implied estimating functions will be unbiased in the sense that

E[ψn(θ)] = 0 (2.2)

holds only when θ is the true value θ0. Nevertheless, it should be emphasized that the con-

dition that E[ψn(θ0)] = 0 does not necessarily hold for some estimators.

The class of estimators satisfied by (2.1) include maximum likelihood (ML) and ordinary

least-square (OLS) estimators. We call such estimators nonlinear in the sense that unlike

a multiple linear regression model, it is a general fitting procedure which encompasses both

linear and nonlinear relationships among the parameter(s) to be estimated and the (inde-

pendent, dependent) random variables, as long as (2.1) and some regularity conditions are

satisfied.

We first recall some definitions regarding the order of magnitude in probability sense:

Definition 2.1.1 A sequence of random variables {Xn} is said to be

• at most of order nk in probability, denoted by OP (nk) if for each ε > 0, there exists

some positive constant c(ε) <∞ and integer N(ε), such that

P
(
n−k|Xn| ≤ c(ε)

)
≥ 1− ε, ∀n ≥ N(ε).

1In [7], a more general setting of multi-variate random vectors is considered instead. Since this the-

sis focuses on one parameter only (namely, the mean reversion parameter), we do not adopt this general

framework.
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• of order smaller than nk in probability, denoted by oP (nk) if

n−kXn
P→ 0,

or equivalently, limn→∞ P [|n−kXn| > ε] = 0 for all ε > 0.

By definition, Xn ∈ OP (n0) is equivalent to saying that Xn is bounded in probability.

Based on [7], we state the following assumptions for the nonlinear estimator:

Assumption A

The s-th order derivative
∂sqi
∂θs

exists in a neighborhood of θ0 and E

[∣∣∣∣∂sqi∂θs
(θ0)

∣∣∣∣2
]
<∞.

Assumption B

For some neighborhood of θ0,

(
∂ψn
∂θ

)−1

∈ OP (1).

Assumption C

For some neighborhood of θ0, we have∣∣∣∣∂sqi∂θs
(θ)− ∂sqi

∂θs
(θ0)

∣∣∣∣ ≤Mi|θ − θ0|,

where E|Mi| ≤ C <∞ for each i.

One of the objectives of [7] is to derive a stochastic expansion of second order for θ

θ̂ − θ = A−1/2 + A−1 + oP (n−1),

where for each integer s, A−s/2 represents terms of order OP (n−s/2), so that we have a

second-order approximation for the estimation bias:

E[θ̂]− θ ≈ a−1/2 + a−1,

with a−s/2 := E[A−s/2]. Hence, by “bias formula” we mean the expression a−1/2 + a−1. To

derive this second-order (approximated) bias, we need the above assumptions to hold for

s ≥ 2. The derivation is simply based on a Taylor series expansion, while taking care of the

order of magnitude for all residual terms.
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Lemma 2.1.2 ([7]) Suppose that Assumptions A - C hold for some s ≥ 1, then θ̂ has an

asymptotic normal distribution.

Lemma 2.1.3 ([7]) Suppose that Assumptions A - C hold for s = 2, then

θ̂ − θ = A−1/2 +OP (n−1),

where A−1/2 = −
(
∂ψn
∂θ

(θ0)

)−1

ψn(θ0).

Proof See [7] for details. �

Lemma 2.1.4 ([7]) Suppose that Assumptions A - C hold for s = 2, and that

ψn(θ̂) = ψn(θ0) +
∂ψn
∂θ

(θ0)(θ̂ − θ0) +
1

2

∂2ψn
∂θ2

(θ0)(θ̂ − θ0)2 +OP (n−3/2),

then

θ̂ − θ0 = −
(
∂ψn
∂θ

(θ0)

)−1

ψn(θ0)− 1

2

(
∂ψn
∂θ

(θ0)

)−1
∂2ψn
∂θ2

(θ0)
(
A−1/2

)2
+OP (n−3/2).

Proof See [7] for details. �

Lemma 2.1.5 ([7]) Suppose Assumptions A - C hold for some s ≥ 2, then

E[θ̂]− θ0 = a−1/2 + a−1 +OP (n−3/2), (2.3)

where a−1/2 and a−1 are defined by

a−1/2 = − ψn(θ0)

E [ψ′n(θ0)]

a−1 = −ψ
′
n(θ0)− E [ψ′n(θ0)]

E [ψ′n(θ0)]
a−1/2 −

1

2

E [ψ′′n(θ0)]

E [ψ′n(θ0)]

(
a−1/2

)2
,

where ψ′n and ψ′′n are usual partials with respect to θ.

Proof See [7] for details. �

Remark: As mentioned in [1], the proof of the above bias formula is valid for both i.i.d.

and non-i.i.d. sequences of random variables {Zi}ni=1. Indeed, in the i.i.d. case, the bias

formula can be further simplified, as stated in Proposition 3.2 in [7].
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2.2 Estimating the Mean Reversion Parameter for an

Ornstein-Uhlenbeck (OU) Process

In this section, we directly apply the bias formula (2.3) to derive the corresponding bias for-

mula for the mean reversion parameter for the standard Ornstein-Uhlenbeck process. This

bias formula will reveal a nonlinear relationship between the bias and the true mean rever-

sion speed. The treatment here is based on [11].

A standard Ornstein-Uhlenbeck process is governed by the following stochastic differential

equation:

dSt = k(µ− St)dt+ σdBt, (2.4)

where k ≥ 0 is the mean reversion parameter, σ > 0 is the volatility and Bt is the standard

Brownian motion. In reality, finite sample can be extracted from a given stochastic process.

We can denote such time series as

S0, S1, · · · , Sn

for a sample of size n, sampled at time 0 = t0 < t1 < · · · < tn. For simplicity, we will assume

that the sampling times are equally spaced, i.e. ti = i ·h, i = 0, 1, · · · , n for some fixed h > 0.

As in the setting in [11], we assume that the initial datum is also randomly driven:

S0 ∼ N

(
µ,
σ2

2k

)
.

Note that σ2

2k
is the unconditional variance of S0. We can further assume that µ = 0.2

Solving the SDE (2.4) over the interval [ti−1, ti] gives

Si = e−khSi−1 + σ

√
1− e−2kh

2k
εi, (2.5)

where εi ∼ N(0, 1).

2The assumptions of S0 to be random and µ is known are the setting used in [11]. Following the same

setup allows us to directly compare the bias behavior under standard OU and fOU processes.
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Given a finite sample {Si}ni=1, the OLS estimator of k, denoted as k̂ is defined by

k̂ = argmin
k

n∑
i=1

(Si − e−khSi−1)2.

By simple calculus, we arrive at the following equivalent expression satisfied by this k̂:

n∑
i=1

Si−1(Si − e−k̂hSi−1) = 0. (2.6)

Under the standard OU process, it can be shown that the OLS estimator coincides with the

maximum likelihood (ML) estimator k̂ML, with the latter being as

k̂ML = argmax
k

ln(pdf(Si|Si−1)),

where pdf is the probability density function of Si given Si−1. From (2.5), we have

Si|Si−1 ∼ N

(
e−khSi−1, σ

2 1− e−2kh

2k

)
.

The objective of this section is to derive a bias formula of second order from (2.6). Let

S = [S0, S1, · · · , Sn]T

Un =
1

n
STC1S

Vn =
1

n
STC2S

C1 =
1

2



0 1 0 · · · 0 0 0

1 0 1 · · · 0 0 0

0 1 0 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · 0 1 0

0 0 0 · · · 1 0 1

0 0 0 · · · 0 1 0


C2 =

In×n 0n×1

0Tn×1 0


11



where In×n is the n-dimensional identity matrix and 0n×1 is the n-dimensional zero (column)

vector. Then we can rewrite (2.6) as

Un − e−k̂hVn = 0.

To apply (2.3), we need to compute the expected values of some functions of the quadratic

forms Un and Vn.

Lemma 2.2.1 ([10]) Suppose that S ∼ N(0,Σ), and A,A1, A2 are symmetric matrices,

then we have

E(STAS) = tr(AΣ) (2.7)

E[(STAS)2] = (tr(AΣ))2 + 2 tr(AΣAΣ) (2.8)

E[STA1SS
TA2S] = tr(A1Σ) tr(A2Σ) + 2 tr(A1ΣA2Σ) (2.9)

Remark: This lemma essentially states that expectations of quadratic forms are all

dependent up to the second moment (Σ). However, it is important to note that this is not

always true for random vectors with a non-normal distribution (e.g. (2.8) and (2.9) involve

co-kurtosis terms). Hence, the normality assumption is crucial for the validity of this lemma.

The proof of this lemma relies on a trick used in [10] regarding quadratic forms of normally

distributed random variables.

Lemma 2.2.2 ([10]) Let f be the pdf of a n-dimensional normally distributed random vec-

tor y:

f(y) =
1

(2π)
n
2

√
|Σ|

exp

(
−1

2
(y − µ)TΣ−1(y − µ)

)
Define a differential operator

d = µ+ Σ
∂

∂µ
.

Then for any given analytic function h : Rn → R, we have

h(y)f(y) = h(d)f(y).

12



Remark: It should be noted that any higher orders of d should be interpreted as

recursive differential operators. For instance,

d2f(y) = d(df(y)) = d

(
µ+ Σ

∂

∂µ

)
f(y) 6=

(
µ2 + 2Σ

∂

∂µ
+ 2

(
Σ
∂

∂µ

)2
)
f(y).

Moreover, the shorthand h(d) should be interpreted as a differential operator in the sense

that if h(y) =
∑

α aαy
α where α is an multi-index, then h(d) =

∑
α aαd

α.

Proof of Lemma 2.2.2 Here, we adopt a “less operator” approach compared to the one

shown in [10]. We can start from a one-dimensional case: y,Σ ∈ R. By definition of the

differential operator d, we can easily check that

dmf(y) = ymf(y), m = 1, 2, 3, · · · . (2.10)

Then by a componentwise consideration, we can deduce that (2.10) also holds for y ∈ Rn

and any multi-index m = (m1, · · · ,mn). Since every real-valued analytic function h takes

the form h(y) =
∑∞

m=0 amy
m, the result follows immediately. �

Corollary 2.2.3 ([10]) For any analytic function h : Rn → R and any Y ∼ N(µ,Σ), we

have

E[h(Y )] = h(d) · 1.

In particular, we have E[Y ] = d · 1 = µ and E[Y TY ] = dTd · 1 = dTµ = µTµ+ Σ.

Proof By Lemma 2.2.2, h(y)f(y) = h(d)f(y) and hence

E[h(Y )] =

∫
h(y)f(y)dy =

∫
h(d)f(y)dy = h(d) ·

∫
f(y)dy = h(d) · 1. �

It is also handy to have some simple results regarding differentiating quadratic forms:

Lemma 2.2.4 For a constant n× n symmetric matrix M , we have(
∂

∂µ

)T
(Mµ) = tr(M)

∂

∂µ
(µTMµ) = 2Mµ

13



Proof This involves a straightforward calculus exercise once we recall ∂
∂µ

=
[

∂
∂µ1

, · · · ∂
∂µn

]T
.

�

Proof of Lemma 2.2.1 By Lemmas 2.2.3 and 2.2.4, we have

E
[
STAS

]
= dTAd · 1 =

(
µ+ Σ

∂

∂µ

)T
A

(
µ+ Σ

∂

∂µ

)
· 1 =

(
µ+ Σ

∂

∂µ

)T
Aµ

= µTAµ+

(
∂

∂µ

)T
ΣTAµ = µTAµ+ tr(ΣTA)

= µTAµ+ tr(AΣ),

where the last equality holds because Σ is symmetric and it is always true that tr(AB) =

tr(BA) whenever both matrix products are well-defined. Next, we have

E
[
STA1SS

TA2S
]

= (dTA1d)(dTA2d) · 1 = (dTA1d)
(
µTA2µ+ tr(A2Σ)

)
= (dTA1d)(µTA2µ) + tr(A2Σ)(dTA1d) · 1
= (dTA1d)(µTA2µ)︸ ︷︷ ︸

Expr1

+ tr(A2Σ)(µTA1µ+ tr(A1Σ))

Expr1 = dTA1

(
µ+ Σ

∂

∂µ

)
(µTA2µ) = dTA1(µµTA2µ+ Σ(2A2µ))

=

(
µ+ Σ

∂

∂µ

)T
(A1µµ

TA2µ+ 2A1ΣA2µ)

= (µTA1µ)(µTA2µ) + 2µTA1ΣA2µ+

(
∂

∂µ

)T
(ΣA1µµ

TA2µ+ 2ΣA1ΣA2µ)︸ ︷︷ ︸
Expr2

Note that since µTA2µ is a scalar, we have ΣA1µµ
TA2µ = µTA2µΣA1µ. Now, apply the

product rule of differentiation,

Expr2 = (µTA2µ)

(
∂

∂µ

)T
(ΣA1µ) +

(
∂

∂µ

)T
(µTA2µ)(ΣA1µ) + 2 tr(ΣA1ΣA2)

= (µTA2µ) tr(ΣA1) + (2A2µ)T (ΣA1µ) + 2 tr(ΣA1ΣA2)

⇒ E
[
STA1SS

TA2S
]

= (µTA1µ)(µTA2µ) + 2µTA1ΣA2µ+ (µTA2µ) tr(ΣA1)

+ (2A2µ)T (ΣA1µ) + 2 tr(ΣA1ΣA2) + tr(A2Σ)(µTA1µ+ tr(A1Σ)).
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Finally, substituting µ = 0 will give (2.7) and (2.9). (2.8) is then a special case of (2.9) with

A1 = A2 = A. �

Remark: Since the differential operator d involves a partial derivative with respect to µ,

we cannot directly substitute µ = 0 before any differentiation takes place.

With Lemma 2.2.1 in hand we can reduce the computations of E[Un], E[Vn], E[U2
n] and

E[V 2
n ] to some manipulations of traces. Computing these traces requires some algebraic

identities:

Lemma 2.2.5 For any φ ∈ R, we have

n−1∑
i=1

(n− i)φ2i =
nφ2

1− φ2
− φ2(1− φ2n)

(1− φ2)2

n∑
α,β=1

φ2|α−β| = n+ 2
n−1∑
i=1

(n− i)φ2i = n+
2nφ2

1− φ2
− 2φ2(1− φ2n)

(1− φ2)2

n∑
α,β=1

φ|α−β+1|+|α−β−1| = nφ2 + 2
n−1∑
i=1

(n− i)φ2i = nφ2 +
2nφ2

1− φ2
− 2φ2(1− φ2n)

(1− φ2)2

Proof Deriving the first equation is a standard exercise for an arithmetico-geometric

series. The remaining two equations can be obtained by counting the number of φ2i for each

integer i. �

Lemma 2.2.6 ([11]) Denote φ = e−kh and Σ = [cαβ]1≤α,β≤n+1. Then we have

cαβ = E[Sα−1 · Sβ−1] =
σ2

2k
φ|α−β|

E[Un] =
σ2

2k
φ

E[Vn] =
σ2

2k

E[U2
n] =

σ4

4k2

[
φ2 +

1 + 4φ2 − φ4

n(1− φ2)
− 4φ2(1− φ2n)

n2(1− φ2)2

]
E[V 2

n ] =
σ4

4k2

[
1 +

2(1 + φ2)

n(1− φ2)
− 4φ2(1− φ2n)

n2(1− φ2)2

]
,

where Sn, Un and Vn are defined at the beginning of this section, preceding Lemma 2.2.1.
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Proof We first compute the covariance terms for Si, i = 0, 1, · · · , n. By Ito’s isometry,

we have

E[SiSj] = E

[
σe−kti

∫ ti

−∞
etsdBs · σe−ktj

∫ tj

−∞
etsdBs

]
= σ2e−k(ti+tj)

∫ min(ti,tj)

−∞
e2ksds

=
σ2

2k
ek|ti−tj | =

σ2

2k
φ|i−j|.

We then compute the following traces (note that due to symmetry cαβ = cβα. Also, we adopt

the shorthand notation that c0β = cα0 = 0):

tr(C1ΣC1Σ) =
n+1∑
α=1

n+1∑
β=1

(C1Σ)αβ(C1Σ)βα =
1

4

n+1∑
α=1

n+1∑
β=1

(cα−1,β + cα+1,β) (cβ−1,α + cβ+1,α)

=
1

4

[
n∑

α=1

n∑
β=1

cα+1,βcα,β+1 +
n+1∑
α=2

n+1∑
β=2

cα−1,βcα,β−1 +
n+1∑
α=2

n∑
β=1

cα−1,βcα,β+1

+
n∑

α=1

n+1∑
β=2

cα+1,βcα,β−1

]

=
1

4

n∑
α,β=1

[cα+1,βcα,β+1 + cα,β+1cα+1,β + cα,βcα+1,β+1 + cα+1,β+1cα,β]

=
1

2
· σ

4

4k2

n∑
α,β=1

(
φ|α−β+1|+|α−β−1| + φ2|α−β|)

=
1

2
· σ

4

4k2

[
n

1− φ4 + 4φ2

1− φ2
− 4φ2(1− φ2n)

(1− φ2)2

]
The last equality is due to Lemma 2.2.5. In a similar fashion, we can obtain

tr(C1Σ) = n · φσ
2

2k

tr(C2Σ) = n · σ
2

2k

tr(C2ΣC2Σ) =
σ2

4k2

(
n+

2nφ2

1− φ2
− 2φ2(1− φ2n)

(1− φ2)2

)
.

Afterwards, a direct application of Lemma 2.2.1 yield E[Un], E[Vn], E[U2
n] and E[V 2

n ]. �
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Theorem 2.2.7 ([11]) The second order bias for the OLS estimator of the mean reversion

parameter is given by

E(k̂)− k ≈ 1

2T
(3 + e2kh)− 2(1− e−2nkh)

Tn(1− e−2kh)
, (2.11)

where T = n · h.

Proof This involves a direct application of Lemma 2.1.5 with ψn(k) = Un − e−khVn. It

turns out that in this case E[a−1/2] = 0 and E[a−1] =
(

2k
σ2

)2 E[U2
n]−φ2E[V 2

n ]
2hφ2

. See [11] for details.

�

2.3 Properties of Bias of Mean Reversion Parameter

and Simulations

Based on the bias formula (2.11), we can deduce the following properties regarding the OLS

estimator of the mean reversion parameter:

Corollary 2.3.1 The estimation bias for parameter k is always positive.

Corollary 2.3.2 The OLS estimator is T -consistent, i.e. as T →∞, E[k̂]− k → 0.

Corollary 2.3.3 ([11]) As k → 0, The bias for the OLS estimator tends to 0.

Proof By L’Hospital’s rule, we have lim
k→0

1− e−2nkh

n(1− e−2kh)
= 1 and hence lim

k→0
E[a−1] = 0. �

Corollary 2.3.3 is crucial in the sense that it was thought that the bias would be linear with

the true value k, and is non-zero even when k is small, prior to the results by [11].

Corollary 2.3.4 ([11]) The estimation bias for h does not vanish by increasing the sam-

pling frequency. In particular, when T is kept fixed, we have

lim
h→0

E[k̂]− k =
1

T

[
2− 1− e−2Tk

Tk

]
6= 0.
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Proof Rewrite the bias formula in terms of T and n:

E[k̂]− k =
1

2T

(
3 + e

2kT
n

)
− 2(1− e−2kT )

n(1− e− 2kT
n )

.

Then, by L’Hospital rule, n(1− e− 2kT
n ) = −2kT . The rest of the proof is straightforward. �

To understand the actual bias as well as to compare this actual bias against the theoretical

bias derived in previous sections, we adopt a simulation approach as described in [11]. We

first fix a time horizon T and a time interval h > 0. This fixes the number of time steps n

if we take n = dT/he, for example. Then, 10000 simulation paths {Si}i=0,··· ,n are generated

based on the discrete formula (2.5). For each of these paths, the mean reversion parameter

estimate k̂ is computed using (2.6). Finally, the expected value of the estimate is obtained

by averaging these estimates over all paths. This process is repeated for a range of values of

k ∈ (0, 3].

Several plots of these empirical and theoretical biases are shown in Figures 2.1-2.3. The time

horizon is fixed at T = 3, 5 or 10 years in each of the figures, with h = 1/252, 1/52 and 1/12

corresponding to daily, weekly and monthly sampling. The estimation bias is shown to be

always positive and nonlinear, with diminishing bias as k decreases to 0. In particular, the

relative error (E[k̂] − k)/k is significant even when k is small. These results confirm that

an adjustment based on bias formula such as (2.11) becomes necessary in order to obtain a

correct estimate of the mean reversion parameter for the standard OU process.
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Figure 2.1: Empirical and Theoretical Bias for k, with T = 3 and h = 1/252.

Figure 2.2: Empirical and Theoretical Bias for k, with T = 5 and h = 1/52.
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Figure 2.3: Empirical and Theoretical Bias for k, with T = 10 and h = 1/12.
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Chapter 3

A Fractional Brownian Motion

In this thesis, we focus on the estimation bias of the mean reversion parameter. In last

chapter, we have reviewed the bias formula when the underlying dynamic is the standard

OU process. From now on, we consider the estimation bias under the fractional Ornstein-

Uhlenbeck (fOU) process, i.e. estimating the parameter k in the following stochastic differ-

ential equation:

dSt = k(µ− St)dt+ σdBH
t ,

where St = S(t) is the underlying asset (such as interest rate, volatility, etc.), and BH
t with

H ∈ (0, 1) represents the fractional Brownian motion (fBm) with Hurst parameter H at time

t. This is a Gaussian process satisfying

E(BH
t ) = 0 (3.1)

E[BH
t B

H
s ] =

1

2
{|t|2H + |s|2H − |s− t|2H}, ∀s, t ∈ R. (3.2)

The above covariance requirement is equivalent to the fact the random increments are serially

correlated unless H = 1/2:

Lemma 3.0.1 Given 0 ≤ s1 ≤ t1 ≤ s2 ≤ t2, the covariance of fBm increments is given by

E
(
(BH

t1
−BH

s1
) · (BH

t2
−BH

s2
)
)

=
1

2
{|t1 − s2|2H + |t2 − s1|2H − |t1 − t2|2H − |s1 − s2|2H}.

(3.3)

In particular, when H = 1/2, the fBm increments are uncorrelated, which reduces to the

standard Brownian framework.
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Proof Straightforward computation. �

In later discussion, we will focus on uniform time steps {ti = i ·h|i = 0, · · · , n} (where h > 0

is fixed) and hence it is convenient to rewrite (3.3) into the following form:

γ(n) := E
(
(BH

kh −BH
(k+1)h) · (BH

(k+n)h −BH
(k+n+1)h)

)
=
h2H

2
{|n+ 1|2H + |n− 1|2H − 2|n|2H}.

(3.4)

Note that the above covariance expression is independent of k.

The general behaviour of the fBm process is somehow different from their standard Brownian

motion counterpart. Figure 3.1 shows some simulated mean-reverting paths under different

values of H. First, a sequence of i.i.d. normally distributed random numbers are generated

to produce the sample path for the case H = 0.5. These random numbers are then adjusted

based on a Cholesky decomposition to produce sample paths for H = 0.3 and H = 0.7. It

is obvious from Figure 3.1 that the higher the value of H, the smoother the sample path is.

The increased smoothness is due to a higher level of persistence in the time series, as the

time series at different time spots are more positively correlated when H increases.

In what follows, we will only consider the case where H > 1
2
. In such a case, it is known

that the fBm exhibits long-range dependency:

Lemma 3.0.2 A fractional Brownian motion with H > 1/2 exhibits long range dependence,

i.e. the autovariance function γ(n) satisfies the following asymptotic relation:

lim
n→∞

γ(n)

cn−α
= 1,

for some constants c and α ∈ (0, 1). In addition, the autocovariance decays slowly as n→∞
and

∞∑
n=1

γ(n) =∞.

Proof Using L’Hopital’s rule, the following equality holds:

lim
n→∞

(n+ 1)2H+2 + (n− 1)2H+2 − 2n2H+2

n2H
= lim

n→∞

(2H + 2)(2H + 1)

2H(2H − 1)
· γ(n)
h2H

2
n2H−2

.
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Figure 3.1: Simulation of Fractional Ornstein-Uhlenbeck process with µ = 0, T = 5, k =

1, σ = 0.1 and H = 0.3 (Top), 0.5 (Middle) and 0.7 (Bottom).

Thus, we can take c = h2H

2
· 2H(2H−1)

(2H+2)(2H+1)
and α = 2 − 2H, the latter of which lies within

(0, 1) when H ∈ (1
2
, 1). Using a comparison test, it is easy to conclude that the infinite sum∑

γ(n) diverges since
∑
n−α for α ∈ (0, 1) does. �
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3.1 A Theoretical Setup

In this section, we briefly summarize the setup for the fractional Brownian process. The de-

velopment is mainly based on the materials in [2] and [4], with some sporadic ideas borrowed

from harmonic analysis (see [6]).

Given a fixed H ∈ (1
2
, 1), define

φ(s, t) = H(2H − 1)|s− t|2H−2, ∀s, t ∈ R. (3.5)

A measurable function f : R→ R is said to be in L2
φ(R) if

|f |2φ :=

∫
R

∫
R
f(s)f(t)φ(s, t)dsdt <∞. (3.6)

We can equip this space with an inner product: for all f, g ∈ L2
φ(R),

(f, g)φ :=

∫
R

∫
R
f(s)g(t)φ(s, t)dsdt. (3.7)

Now, we want to construct a Gaussian process satisfying (3.1) and (3.2). This in turns

requires us to define properly the probability measure µφ so that the expectations in (3.1)-

(3.2) make sense. To achieve this purpose we need Bochner-Minlos theorem. Before we state

the theorem, it is worthwhile to note a number of facts regarding a class of functions:

Definition 3.1.1 A Schwarz space S(R) is the space of all rapidly decreasing smooth func-

tions on R. More precisely,

S(R) :=

{
f : R→ R|f ∈ C∞(R), lim

|x|→∞
|xnf (k)(x)| = 0,∀n, k = 0, 1, 2, · · ·

}
.

Moreover, we can define a family of semi-norms | · |n,k over S(R):

|f |n,k :=

(∫
R
|xnf (k)(x)|2dx

) 1
2

.

This Schwarz space has the following nice property:

Theorem 3.1.2 (S(R), | · |n,k) is a nuclear space, i.e. a topological vector space V whose

topology is defined by a family of Hilbert semi-norms {|·|α}α∈I , such that for any Hilbert semi-

norm p we can find a larger Hilbert semi-norm q such that the inclusion map ιq,p : Vq ↪→ Vp
is Hilbert-Schmidt, where Vα stands for the completion of V using | · |α.
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To avoid going astray, we refer to [6] for the proof of the above theorem. At this moment,

however, it should be emphasized that the Schwarz space being a nuclear space ensures that

the probability measure to be constructed is countably additive [6]. We can now state the

Bochner-Minlos theorem below:

Theorem 3.1.3 Given a nuclear space S, any continuous positive definite linear functional

Λ on S satisfying Λ(0) = 1 is the Fourier transform of a countably additive positive normal-

ized measure µ on the dual space S ′ of S, i.e.

Λ(f) =

∫
S′
ei(F,f)dµ(F ), ∀f ∈ S,

where (F, f) is the natural pairing of S and S ′.

We are now ready to apply Bochner-Minlos theorem to construct our desired probability

measure. Take S = S(R). Its dual Ω := S(R)′ is the space of tempered distribution ω on R.

Consider a linear functional

Λ(f) := exp

(
−1

2
|f |2φ

)
, ∀f ∈ S(R).

Then it is straightforward to observe that Λ(0) = 1, and Λ is continuous and positive definite.

Hence, by Bochner-Minlos theorem, there exists a probability measure µφ on Ω such that∫
Ω

ei(ω,f)dµφ(ω) = exp

(
−1

2
|f |2φ

)
, ∀f ∈ S(R). (3.8)

Now, by replacing all f in (3.8) by t ·f where t ∈ R is a dummy variable, and by considering

the resulting Taylor series expansion of (3.8), we can obtain

Eµφ [(·, f)] = 0 (3.9)

Eµφ [(·, f)2] = |f |2φ, (3.10)

where it is emphasized that the expectation is taken with respect to µφ. This allows us to

define

BH(t) = BH(t, ω) = (ω, χ[0,t](·)) (3.11)
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as an element of L2(µφ) 1for each t ∈ R where χA : R → {0, 1} for a given set A stands for

the usual indicator function such that

χ[0,t](s) =


1 0 ≤ s ≤ t

−1 t ≤ s ≤ 0 except t = s = 0

0 otherwise.

Now, the picture becomes clearer if we substitute (3.11) into (3.8):∫
Ω

eiBH(t)dµφ(ω) = exp

(
−1

2
|χ[0,t](·)|2φ

)
= exp

(
−1

2
|t|2H

)
, (3.12)

where the second equality can be computed directly based on the definition of | · |φ and χ[0,t].

Observe that LHS of (3.12) is the characteristic function of BH(t). This means that BH(t)

by construction is a Gaussian process (with mean = 0 and variance = |t|2H) for each t ∈ R.

By a polarization argument, we can also obtain

Eµφ [BH(s)BH(t)] =
1

2

{
Eµφ

[
(BH(s) +BH(t))2 −B2

H(s)−B2

H(t)
]}

=
1

2

{
Eµφ

[
(·, χ[0,s] + χ[0,t])

2 − (·, χ[0,s])
2 − (·, χ[0,t])

2
]}

=
1

2

{
|χ[0,s] + χ[0,t]|2φ − |χ[0,s]|2φ − |χ[0,t]|2φ

}
= (χ[0,s], χ[0,t])φ

=
1

2

{
|s|2H + |t|2H − |s− t|2H

}
,

where the second last equality is due to the definition of norms induced by the inner product

(|f |2φ = (f, f)φ) and the last equality relies on straightforward computation of (χ[0,s], χ[0,t])φ
based on the definition of χ[0,α] for different values of s and t. In other words, the require-

ment for being qualified as a fractional Brownian motion (equations (3.1)-(3.2)) is fulfilled

by BH(t).

Note that, however, BH(t) constructed so far is not continuous in t. We can apply the

classical Kolmogorov argument to modify it to a continuous process:

1It should be reminded that L2(µφ) is L2 space with respect to µφ, which is different from L2
φ(R).
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Theorem 3.1.4 (Kolmogorov Continuity Theorem) Let (B, || · ||) be a Banach space

equipped with norm || · ||, and (xt, t ∈ R) be a stochastic process such that xt ∈ B. Suppose

that there exist positive p, δ, C, such that

E [||xt − xs||p] ≤ C|t− s|1+δ, ∀s, t ∈ R,

then there is a continuous modification (x̂t, t ∈ R) of (xt, t ∈ R) which is locally Hölder

continuous with exponent α ∈ (0, δ/p), i.e.

P (xt = x̂t) = 1, ∀t ∈ R

sup
s 6=t,s,t∈[a,b]

||x̂(t)− x̂(s)||
|t− s|α

<∞,

where the supremum is taken over all compact subintervals [a, b] ⊆ R.

Proof See for example, [9]. �

Theorem 3.1.5 There exists a continuous modification BH
t for BH(t) such that BH

t is Gaus-

sian and (3.1)-(3.2) hold, i.e. BH
t is a fractional Brownian motion.

Proof Essentially we only need to check if the Kolmogorov criterion is satisfied. Indeed,

since (3.1)-(3.2) hold for BH(t), a direct computation shows that

Eµφ
[
(BH(s)−BH(t))2

]
= |s− t|2H .

With H ∈ (1
2
, 1), we can take p = 2, C = 1 and δ = 2H − 1(> 0) to satisfy the criterion. �

We are at the stage of defining the integrals with respect to a fBm:

Definition 3.1.6 Given a non-random function f ∈ L2
φ(R), we can define the integral∫

R f(t)dBH
t by passing the limit to the integrals

∫
R fn(t)dBH

t , with fn(t) → f(t) being a

sequence of functions constructed from the following step functions:

fn(t) =
∑
i

a
(n)
i χ[ti,ti+1)(t),

and setting ∫
R
fn(t)dBH

t :=
∑
i

a
(n)
i (BH

ti+1
−BH

ti
)

27



∫
R
f(t)dBH

t := lim
n→∞

∫
R
fn(t)dBH

t .

In this sense, the dual pairing is the integral of such an f :

(ω, f) =

∫
R
f(t)dBH

t .

3.2 Integrals with respect to the fBm Process

Here we present some preliminary facts about
∫
R f(t)dBH

t , where f is non-random, which

are useful for a later discussion about the solutions for a fOU process.

Lemma 3.2.1 (Ito’s Isometry) Given deterministic f ∈ L2
φ(R), we have

Eµφ

[(∫
R
f(t)dBH

t

)2
]

= |f |2φ.

Proof This is a result that can be obtained immediately from the definition of the

probability measure µφ, i.e. (3.10) after passing the limit to a sequence of simple functions

fn → f . �

Lemma 3.2.2 Given f, g ∈ L2
φ(R), the covariance of integrals

∫
R f(t)dBH

t and
∫
R g(t)dBH

t

is given by

Eµφ

[∫
R
f(t)dBH

t ·
∫
R
g(t)dBH

t

]
=

∫∫
R2

f(s)g(t)φ(s, t)dsdt = (f, g)φ. (3.13)

Proof Since the LHS of (3.13) is simply Eµφ [(ω, f)·(ω, g)], the result follows immediately

by a polarization argument again:

Eµφ [(ω, f) · (ω, g)] =
1

2
Eµφ [((ω, f + g)2 − (ω, f)2 − (ω, g)2]

=
1

2

[
|f + g|2φ − |f |2φ − |g|2φ

]
= (f, g)φ.

�

Recall that Ito’s integrals with deterministic integrands under a standard Brownian motion

are still normally distributed. Usually this is proved by checking if the characteristic functions

of the integrals match with that of a normal distribution with a zero mean. The same logic

can apply to the integrals under the fBm process:
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Lemma 3.2.3 Given a deterministic function f ∈ L2
φ(R), the Ito’s integral

∫
R f(t)dBH

t

with respect to a fBm process, as defined in Definition 3.1.6, is normally distributed with

zero mean and variance |f |2φ.

Proof Since (3.8) holds for (ω, f) =
∫
R f(t)dBH

t (by passing the limit for a sequence of

functions fn → f), we can conclude that the characteristic function of
∫
R f(t)dBH

t is simply

exp(−1
2
|f |2φ), the latter of which corresponds to the characteristic function of N(0, |f |2φ). �

The normality feature saves us a lot of work for the bias estimation calculation, for if oth-

erwise we would need to calculate higher order multi-variate moments including co-kurtosis

terms.

3.3 A Brief Note on Ito-Wick Calculus

The mathematical treatment becomes delicate when it comes to integrating a stochastic

function with respect to a general fBm. Under a standard Brownian motion, an Ito integral,

say
∫
F (t)dBt, can be defined using the following Riemann sum:∑

i

F (ti) · (B(ti+1)−B(ti))

and such definition will lead to the properties such as

E

[∫
F (t)dBt

]
= 0.

However, it is known that under a general fBm, the expected value E
[∫
F (t)dBH

t

]
is usually

NOT equal to zero if we simply copy the definition of the standard Brownian motion based

on some Riemann sums. Moreover, it is proved in [2] that such a definition is equivalent to

the Stratonovich integrals2 for a large class of functions F .

To ensure that the zero expectation property is still preserved for stochastic integrals under

fBm, [2] introduces the so-called Wick-Ito integrals whose definition is based on Riemann

sums of some Wick’s products.

2This is a stochastic integral defined using the following Riemann sum:
∑
i
F (ti)+F (ti+1)

2 ·(B(ti+1)−B(ti)).
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Consider a probability space (Ω,F , PH) for a fixed Hurst parameter H ∈ (1/2, 1). We can

define the space of random variables F : Ω→ R by

Lp := Lp(Ω,F , PH) = {F : Ω→ R|(E|F |p)1/p <∞}

for each fixed p ≥ 1. Define the exponential functions ε : L2
φ → L1(Ω,F , P ) by

ε(f) := exp

{∫ ∞
0

ftdB
H
t −

1

2

∫ ∞
0

∫ ∞
0

fsftφ(s, t)dsdt

}
for any f ∈ L2

φ. It can be proved that (see [2]) the linear span E of these exponentials is

a dense set of Lp(Ω,F , P ) for each p ≥ 1. This fact is crucial for the development of the

Wick-Ito integrals.

After that, [2] borrows the idea of Malliavin derivative to define the φ-derivative as follows:

Definition 3.3.1 ([2]) 1. For any g ∈ L2
φ, define Φg by

(Φg)(t) :=

∫ ∞
0

φ(t, u)gudu.

2. The φ-derivative of F ∈ Lp(Ω,F , P ) in the direction of Φg is defined as

DΦgF (ω) = lim
δ→0

1

δ

{
F

(
ω + δ

∫ ∞
0

∫ ∞
0

φ(u, v)g(v)dvdu

)
− f(ω)

}
if such a limit exists in Lp(Ω,F , P ). Furthermore, if there is a process fs such that

DΦgF =

∫ ∞
0

fsgsds a.s., ∀g ∈ L2
φ,

then F is said to be φ-differentiable, DφF is said to exist and fs is denoted by Dφ
sF ,

i.e.

DΦgF (ω) =

∫ ∞
0

Dφ
sF (ω)gsds.

Here comes the definition of Wick product �. First, we define Wick product for two arbitrary

exponentials:

ε(f) � ε(g) := ε(f + g). (3.14)
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Since exponentials span the linear space E , (3.14) can be easily extended to the definition of

F �G for any F,G ∈ E .

In general,
∫∞

0
gsdB

H
s does not belong to E . As a result, further extension to (3.14) is

required in order to define Wick products on general integrals of the form
∫∞

0
gsdB

H
s for

g ∈ L2
φ.

Lemma 3.3.2 ([2]) If f, g ∈ L2
φ, then

ε(f) �
∫ ∞

0

gsdB
H
s = ε(f)

∫ ∞
0

gsdB
H
s −DΦgε(f). (3.15)

Proof The lemma follows by differentiating ε(f) � ε(δg) = ε(f + δg) with respect to δ

and evaluating the equality at δ = 0. Notice that by the definition of φ-derivative, we have

DΦgε(f) = ε(f)
∫∞

0

∫∞
0
φ(s, t)fsgtdsdt. �

Theorem 3.3.3 (Proposition 3.4 in [2]) If g ∈ L2
φ, and suppose F,DΦgF ∈ L2(Ω,F , P ),

then

F �
∫ ∞

0

gsdB
H
s = F

∫ ∞
0

gsdB
H
s −DΦgF. (3.16)

Proof Extend the result in Theorem 3.3.2 to any F ∈ E , then the extension to F ∈
L2(Ω,F , P ) follows by a continuity argument. �

An extension of Ito’s isometry can be obtained for F �
∫∞

0
gsdB

H
s :

Theorem 3.3.4 ([2]) Assume that g ∈ L2
φ and F ∈ E. Then

E

(
F �

∫ ∞
0

gsdB
H
s

)2

= E
[
(DΦgF )2 + F 2|g|2φ

]
. (3.17)

Proof As before, we can derive the equality for the case when F = ε(f), then extend to

F ∈ E . �

We can now give the definition of
∫ T

0
FsδB

H
s in the Wick-Ito’s sense:
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Definition 3.3.5 ([2]) Let F ∈ L2(Ω,F , P ) and consider an arbitrary partition π of [0, T ]

with 0 < t0 < t1 < · · · < tn = T . Define the Riemann sum

Sπ =
n−1∑
i=0

Fti � (BH
ti+1
−BH

ti
).

Denote |π| = maxi(ti+1 − ti) and F π
t := Fti for t ∈ [ti, ti+1). Suppose that as |π| → 0, we

have E|F π − F |2φ → 0 and

n−1∑
i=0

E

[∫ ti+1

ti

|Dφ
sFti −Dφ

sFs|ds
]2

→ 0 in L2,

then the Riemann sum has a limit in L2(Ω,F , P ) and is denoted as
∫ T

0
FsδB

H
s , i.e.∫ T

0

FsδB
H
s = lim

|π|→0

n−1∑
i=0

F π
ti
� (BH

ti+1
−BH

ti
).

Denote L(0, T ) as the set of stochastic processes F on [0, T ] such that
∫ T

0
FsδB

H
s is well-

defined.

The Wick-Ito integral as defined above preserves several nice properties in the standard

Brownian motion:

E

[∫ T

0

FSδB
H
s

]
= 0 (3.18)

E

[∫ T

0

FSδB
H
s

]2

= E

[(∫ T

0

Dφ
sFsds

)2

+ |F |2φ

]
(3.19)

By (3.19), if F is deterministic or F satisfies Dφ
sFsds = 0 for s ∈ [0, T ], then

E

[∫ T

0

FSδB
H
s

]2

= |F |2φ,

which resembles the Ito’s isometry in standard Ito’s integral.

The relation between Wick-Ito and Stratonovich integrals is given by Theorem 3.9 in [2],

retrieved here:
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Theorem 3.3.6 If F ∈ L(0, T ), then∫ T

0

FsdB
H
s =

∫ T

0

FsδB
H
s +

∫ T

0

Dφ
sFsds a.s.

where
∫ T

0
FsdB

H
s denotes the Stratonovich integral.

Note that when F is deterministic, then the two types of integrals coincide. In next chapter,

we will solely deal with integrals of deterministic functions, and hence we will not distinguish

these two types of integrals unless ambiguity arises.

Finally, we state without proof the Ito’s lemma for a general fBm:

Theorem 3.3.7 ([2]) Suppose that Fu, u ∈ [0, T ] is a stochastic process in L(0, T ) satisfying

the following regularity conditions:

• There exists α > 1−H and δ > 0, such that for all u, v such that |u− v| ≤ δ,

E|Fu − Fv|2 ≤ C|u− v|2α.

• lim
0≤u,v≤t,|u−v|→0

E|Dφ
u(Fu − Fv)|2 = 0.

Also suppose that E[sups∈[0,T ] |Gs|] <∞ and denote ηt = ξ+
∫ t

0
Gudu+

∫ t
0
FuδB

H
u with ξ ∈ R

and ∂f
∂x

(s, ηs)Fs ∈ L(0, T ). Then for all t ∈ [0, T ],

f(t, ηt) = f(0, ξ) +

∫ t

0

∂f

∂s
(s, ηs)ds+

∫ t

0

∂f

∂x
(s, ηs)Gsds∫ t

0

∂f

∂x
(s, ηs)FsδB

H
s +

∫ t

0

∂2f

∂x2
(s, ηs)FsD

φ
s ηsds a.s. (3.20)

The proof of Ito’s lemma can be found in [2]. Here, we consider only an application to

this lemma to a particular function: f(t, ηt) := ektηt, k ∈ R, which is relevant to the next

Chapter. Since
∂f

∂t
= kektηt,

∂f

∂x
= ekt and

∂2f

∂x2
= 0, a direct application to the Ito’s lemma

gives

f(t, ηt) = η0 +

∫ t

0

keksηsds+

∫ t

0

eksGsds+

∫ t

0

eksFsδB
H
s + 0.

33



In particular, if Ft is a deterministic function, then
∫ t

0
eksFsδB

H
s =

∫ t
0
eksFsdB

H
s and hence

f(t, ηt) = η0 +

∫ t

0

keksηsds+

∫ t

0

eksGsds+

∫ t

0

eksFsdB
H
s .

It is in this sense that we can, with some abuse of notation, write the above equality in

differential form:

df(t, ηt) = kektηtdt+ ekt(Gtdt+ FtdB
H
t ) = ηtke

ktdt+ ektdηt

= ηtd(ekt) + ektdηt,

which retrieves the usual product rule. It should be reminded that such a formulation holds

only for some specific cases, such as when Ft (i.e. the coefficient of the volatility term in ηt)

is deterministic.
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Chapter 4

Bias Estimation for a Fractional

Ornstein-Uhlenbeck Process

In this chapter, we derive the second order bias for the OLS estimate of the mean reversion

parameter for the fractional Brownian process with 1
2
< H < 1. It turns out that most part

of the work rests on computation of covariance of fractional Ito’s integrals.

This chapter is divided into several sections. First, the covariance matrix involved in the

bias calculation will be derived. Then, the theoretical bias formula is compared against the

actual bias obtained from Monte-Carlo simulation. Afterwards, some observations, as well

as the implications from the perspective of risk modeling, related to the estimate of mean

reversion parameter for a fOU process are given.

4.1 Introduction

Recall the stochastic differential equation for a fractional Ornstein-Uhlenbeck process:

dSt = k(µ− St)dt+ σdBH
t . (4.1)

As mentioned in Chapter 3, the solution to the above SDE can be obtained in a similar

(formally speaking) as in the standard OU process. First, Ito’s product rule states that

d(ektSt) = ektdSt + kektStdt and hence we can multiply the integrating factor ekt to (4.1) to

get

dSt + kStdt = kµdt+ σdBH
t
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⇒ d
(
ektSt

)
= kµektdt+ σektdBH

t .

In practice data are collected at discrete time steps. As a result, we can assume that these

data are recorded in evenly spaced time intervals, i.e. Si := S(ti), i = 0, 1, · · · , n, with

ti = i · h where h > 0 is fixed. Integrating the above SDE over [ti−1, ti] gives

ektiSi − ekti−1Si−1 = µ
(
ekti − ekti−1

)
+ σ

∫ ti

ti−1

eksdBH
s

or Si = e−khSi−1 + µ(1− e−kh) + σe−kh
∫ ti

ti−1

eksdBH
s . (4.2)

Without loss of generality, we can from now on assume that µ = 0 and consider the following

solution to (4.1):

Si = e−khSi−1 + σe−kh
∫ ti

ti−1

eksdBH
s . (4.3)

It should be emphasized that the error terms

εi :=

∫ ti

ti−1

eksdBH
s

are in general serially correlated for H 6= 1
2
. However, as mentioned in Chapter 3, they are

still normally distributed. As a result, even in this generalized situation of fOU process,

we are still free from the concern of computing co-kurtosis terms. In particular, by Lemma

2.2.1, the quadratic terms involved in the computation of the (second order) bias formula

depends only on the covariance matrix. This reduces our calculation to the computations of

the covariance of Si and Sj, where i, j = 1, · · · , n.

4.2 Computation of the Covariance Terms

If we compute the covariance terms directly from (4.3), we can only arrive at an iterative

expression defining these covariances because under the general fBm framework, Si−1 is cor-

related with the error term εi. Correlation occurs because Si−1 also contains other error

terms (which are εi−1, and other ε’s implicitly implied in the recursive formula (4.3)) and as

mentioned above, all of these error terms are correlated with εi.
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Hence, unlike the treatment in [11], it is more convenient to express Sti by integrating (4.1)

over [−∞, ti], i.e. ∫ ti

−∞
d(eksSs) = σ

∫ ti

−∞
eksdBH

s

Si = σe−kih
∫ ih

−∞
eksdBH

s . (4.4)

It suffices to compute

ci,j := Eµφ

[
σe−kih

∫ ih

−∞
eksdBH

s · σe−kjh
∫ jh

−∞
ektdBH

t

]
or equivalently, the following expression

I(α, β) := Eµφ

[∫ α

−∞
eksdBH

s

∫ β

−∞
ektdBH

t

]
, α, β ≥ 0.

By Lemma 3.2.2, I(α, β) in turn reduces to

I(α, β) =

∫ α

−∞

∫ β

−∞
ek(u+v)φ(u, v)dvdu = H(2H − 1)

∫ α

−∞

∫ β

−∞
ek(u+v)|u− v|2H−2dvdu.

Simplifying ι(α, β) :=
∫ α
−∞

∫ β
−∞ e

k(u+v)|u− v|2H−2dvdu is straightforward but tedious. First,

due to symmetry we can assume α ≥ β(> 0) without loss of generality. Then, apply the

following change of variables: {
s = u+ v

t = u− v

so that dudv = 1
2
dsdt and ι becomes

ι(α, β) =
1

2

∫∫
A

eks|t|2H−2dsdt =
1

2

[∫∫
A+

ekst2H−2dsdt+

∫∫
A−

eks|t|2H−2dsdt

]
,

where A := A+ ∪ A− and A+, A− are 2-dimensional regions defined as in Figure 4.1.

Lemma 4.2.1 For any fixed k > 0, H ∈ (1
2
, 1) and α ≥ β ≥ 0, we have∫∫

A+

ekst2H−2dsdt =
1

2H − 1

[
e2kα

∫ ∞
α−β

e−ktt2H−1dt− e2kβ

∫ α−β

0

ektt2H−1dt

]
∫∫

A−

eks|t|2H−2dsdt =
e2kβ

2H − 1

∫ ∞
0

e−ktt2H−1dt.
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Figure 4.1: Region of integration, with A+ in pale green and A− in bright green.

Proof The basic idea is to simplify the innermost integral with respect to s, followed by

an integration by part so as to raise the power of t from 2H − 2 to 2H − 1:∫∫
A+

ekst2H−2dsdt =

∫ ∞
α−β

∫ 2α−t

−∞
ekst2H−2dsdt+

∫ α−β

0

∫ 2β+t

−∞
ekst2H−2dsdt

=
1

k

[∫ ∞
α−β

t2H−2ek(2α−t)dt+

∫ α−β

0

t2H−2ek(2β+t)dt

]
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=
1

k(2H − 1)

[∫ ∞
α−β

ek(2α−t)d(t2H−1) +

∫ α−β

0

ek(2β+t)d(t2H−1)

]
=

1

k(2H − 1)

[
ek(2α−t)t2H−1

∣∣∣∞
α−β

+ k

∫ ∞
α−β

ek(2α−t)t2H−1dt

+ek(2β+t)t2H−1
∣∣∣α−β
0
− k

∫ α−β

0

ek(2β+t)t2H−1dt

]
=

1

2H − 1

[
e2kα

∫ ∞
α−β

e−ktt2H−1dt− e2kβ

∫ α−β

0

ektt2H−1dt

]
∫∫

A−

eks|t|2H−2dsdt =

∫ 0

−∞

∫ 2β+t

−∞
eks|t|2H−2dsdt

=
1

k

∫ 0

−∞
eks
∣∣∣2β+t

−∞
|t|2H−2dt =

1

k

∫ 0

−∞
ek(2β+t)|t|2H−2dt.

Now to eliminate the absolute sign in the above integral, we introduce a dummy variable

τ = −t so that |t| = −t = τ and∫∫
A−

eks|t|2H−2dsdt =
1

k

∫ 0

∞
ek(2β−τ)τ 2H−2(−dτ) =

1

k

∫ ∞
0

ek(2β−τ)τ 2H−2dτ

=
1

k(2H − 1)

∫ ∞
0

ek(2β−τ)d(τ 2H−1)

=
1

k(2H − 1)

[
ek(2β−τ)τ 2H−1

∣∣∣∞
0

+ k

∫ ∞
0

ek(2β−τ)τ 2H−1dτ

]
=

e2kβ

2H − 1

∫ ∞
0

e−kττ 2H−1dτ.

It should be noted that in the valuation of upper and lower limits it is necessary to employ

the fact that e−t decays at a much faster rate than the rate at which t2H−1 increases. �

Remark: By raising the power of t from 2H − 2 to 2H − 1 by integration by part, it

helps avoid the 0 · ∞ indeterminate form when we consider the behaviour of the covariance

terms I(α, β) when H → 1
2

+
, and provide some numerical stability when we develop numer-

ical schemes based on the above expressions.1

1It should be reminded that if integration by part is not done here, it is incorrect to directly substitute

H = 1
2 to obtain the covariance terms under the standard Brownian motion case; indeed by so doing we will

erroneously get 0 for all covariance terms because they have a 2H − 1 factor, which is zero when H = 1/2.
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From the above lemma, it becomes clear that the covariance terms are related to incomplete

gamma functions:

Definition 4.2.2 Given any fixed s, x ∈ R, the upper and lower incomplete gamma functions

are defined as

γ(s, x) =

∫ x

0

ts−1e−tdt,

Γ(s, x) =

∫ ∞
x

ts−1e−tdt.

In particular, we always have γ(s, x) + Γ(s, x) = Γ(s), where Γ(s)(= Γ(s, 0)) is the gamma

function.

Lemma 4.2.3 For k > 0, H ∈ (1
2
, 1), x ∈ R, we have∫ ∞

x

e−ktt2H−1dt =
1

k2H
Γ(2H, kx)∫ x

0

ektt2H−1dt =
1

(−k)2H
γ(2H,−kx).

Proof Straightforward exercise. �

Theorem 4.2.4 For α ≥ β ≥ 0,

I(α, β) =
H

2k2H

[
e2kαΓ(2H, k(α− β)) + e2kβ

(
Γ(2H)− γ(2H,−k(α− β))

(−1)2H

)]
Moreover, we have Eµφ [Sα · Sβ] = σ2e−k(α+β)I(α, β), leading to

Eµφ [Sα · Sβ] =
Hσ2

2k2H

[
ek(α−β)Γ(2H, k(α− β)) + e−k(α−β)

(
Γ(2H)− γ(2H,−k(α− β))

(−1)2H

)]
(4.5)

When α = β, the variance term is given by

Eµφ [S2
α] =

Hσ2Γ(2H)

k2H
. (4.6)

The reason why this is incorrect is because, one of the integrals, namely
∫ α−β
0

t2H−2ek(2β+t)dt, will blow up

when H → 1
2

+
, leading to a 0 · ∞ indeterminate form when it is multiplied by the 2H − 1 factor.
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Thus, the correlation term is given by

corr(Sα, Sβ) =
Eµφ [Sα · Sβ]√
Eµφ [S2

α]Eµφ [S2
β]

=
1

2Γ(2H)

[
ek(α−β)Γ(2H, k(α− β)) + e−k(α−β)

(
Γ(2H)− γ(2H,−k(α− β))

(−1)2H

)]
.

Remark:

1. By exchanging α and β, (4.5) implies that the covariance terms is always a function of

|α− β|. We can write

Eµφ [Sα · Sβ] = C(|α− β|), ∀α, β ≥ 0,

where C(|α− β|) is the RHS of (4.5), with α− β replaced by |α− β|.

2. As a check, it is worthwhile to consider the case when H → 1
2

+
. Since by definition

Γ(1, x) = e−x and γ(1, x) = 1− e−x, (4.5) and (4.6) will be reduced to

E[Sα · Sβ]→ σ2

4k

[
ek(α−β)e−k(α−β) + e−k(α−β)

(
1− 1− ek(α−β)

−1

)]
=
σ2

2k
e−k(α−β)

E[S2
α]→ σ2

2k
,

which matches with the facts regarding the standard Ornstein-Uhlenbeck process.

3. From (4.5) and (4.6), when k → 0+, all variance and covariance terms will tend to

infinity because of the presence of k2H in the denominator of the equations (while the

numerator is still bounded).

4. Using L’Hospital’rule, both ek(α−β)Γ(2H, k(α − β)) and e−k(α−β) γ(2H,−k(α−β))
(−1)2H

will ap-

proach (k(α− β))2H−1 as k →∞ and α > β. Hence, E[Sα ·Sβ]→ Hσ2

2k2H
e−k(α−β)Γ(2H),

i.e. exponentially decaying when k →∞. In other words, from the perspective of the

covariance of St, the behaviour of fOU process will look more “alike” to that of the

standard OU process when k is large.

5. As to the computational aspect, many programming languages have library support to

compute the incomplete gamma functions numerically. For instance, MATLAB has a
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gammainc() function callto calculate the “normalized” incomplete gamma functions,

i.e.

Γn(s, x) := Γ(s, x)/Γ(s)

γn(s, x) := γ(s, x)/Γ(s)

The C++ Boost package also includes a gamma.hpp to calculate these special func-

tions.

6. Recall that we have defined

ci,j := Eµφ [Sih · Sjh] = Eµφ

[
σe−kih

∫ ih

−∞
eksdBH

s · σe−kjh
∫ jh

−∞
ektdBH

t

]
By (4.5), we have ci,j = C(h|i− j|), where

C(x) :=
Hσ2

2k2H

[
ekxΓ(2H, kx) + e−kx

(
Γ(2H)− γ(2H,−kx)

(−1)2H

)]
. (4.7)

4.3 Expectation of Stochastic Quadratic Forms

From Chapter 2, we know that in order to arrive at the estimation bias formula for the mean

reverting parameter of the fOu process, we need to compute E(Un), E(Vn), E(U2
n) and E(V 2

n )

where

Un =
1

n

n∑
i=1

Si−1Si, Vn =
1

n

n∑
i=1

S2
i−1.

Using (4.5) and (4.6), the following results are immediate:

Theorem 4.3.1 Define C(x) as in (4.7), then

Eµφ [Un] =
1

n

n∑
i=1

ci,i−1 = C(h)

Eµφ [Vn] =
1

n

n∑
i=1

ci−1,i−1 = C(0)

(
=
Hσ2Γ(2H)

k2H

)
.
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The above theorem immediately implies that for general H 6= 1
2
,

E[Un]− e−khE[Vn] 6= 0,

since C(h)/C(0) 6= e−kh. In other words, E[a− 1
2
] is never zero for a general fOU process.

Nevertheless, for k ≈ 0, we can still have the following asymptotic result:

Lemma 4.3.2 When k → 0, we have

E[Un]

E[Vn]
=
C(h)

C(0)
=

1

2

[
ekhΓn(2H, kh) + e−kh

(
1− γn(2H,−kh)

(−1)2H

)]
→ e−kh.

for H > 1
2
.

Proof The result is immediate when we go back to the definition of the incomplete

gamma functions. First,

ekhΓ(2H, kh) = ekh
∫ ∞
kh

t2H−1e−tdt = ekh
∫ ∞

0

(y + kh)2H−1e−y−khdy,

by a change of variable y := t− kh. As a result,

ekhΓ(2H, kh) =

∫ ∞
0

(y + kh)2H−1e−ydy ≈
∫ ∞

y2H−1e−ydy = Γ(2H),

as kh→ 0. Thus, ekhΓn(2H, kh)→ 1.

For γn(2H,−kh), observe that

γ(2H,−kh)

(−1)2H
=

∫ −kh
0

t2H−1e−tdt

(−1)2H
=

∫ kh

τ 2H−1eτdτ,

by a change of variable τ := −t. Now, when k ≈ 0, τ 2H−1eτ ≈ eτ for all τ ∈ [0, kh] and

H > 1
2
, hence

γ(2H,−kh)

(−1)2H
→
∫ kh

0

eτdτ = ekh − 1

⇒ C(h)

C(0)
→ 1

2

[
1 + e−kh

(
1− (ekh − 1)

)]
= e−kh. �
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Computation of the quadratic forms E(U2
n) and E(V 2

n ) is more involved but still straight-

forward. We start with the characteristic function of fBm integrals with deterministic inte-

grands, as discussed in Chapter 3:

Eµφ

[
ei

∫
R F (s)dBHs

]
= e−

1
2
|F |2φ (4.8)

Theorem 4.3.3 For any deterministic f, g, p, q ∈ L2
φ(R), we have

1. Eµφ

[(∫
R f(s)dBH

s

)4
]

= 3|f |4φ.

2. Eµφ

[(∫
R f(s)dBH

s

)2 (∫
R g(s)dBH

s

)2
]

= |f |2φ|g|2φ + 2(f, g)2
φ.

3. Eµφ
[∫

R f(s)dBH
s

∫
R g(s)dBH

s

∫
R p(s)dB

H
s

∫
R q(s)dB

H
s

]
= (f, g)φ(p, q)φ + (g, p)φ(f, q)φ +

(f, p)φ(g, q)φ.

Proof

1. Substitute F (s) = tf(s) for some fixed t ∈ R in (3.12). Then the t4-term of the Taylor

series expansion of both sides of (4.8) gives 1
24
E
[(∫

R f(s)dBH
s

)4
]

= 1
2

(
−1

2
|f |2φ

)2
, hence

the results.

2. Based on the result in the 1st bullet, for any fixed t ∈ R, we have

E

[(∫
R
(f(s) + tg(s))dBH

s

)4
]

= 3|f + tg|4φ.

Considering the t2-terms of both sides of the equation will give the results.

3. The 2nd bullet implies that

E

[(∫
(f + sg)dB

)2(∫
(p+ tq)dB

)2
]

= |f + sg|2|p+ tq|2 + 2(f + sg, p+ tq)2,

for any fixed s, t ∈ R, and subscripts/superscripts/arguments are omitted whenever

understood without causing any confusion. Then comparison of the st-terms of both

sides will give the results. Notice that by definition and linearity (f + sg, p + tq)2 =

((f, p) + s(g, p) + t(f, q) + st(g, q))2. �
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Remark: The above theorem essentially states that due to the Gaussian nature of fBm,

any higher order moments can always be expressed in terms of the second order moment. If

this Gaussian nature was not present (e.g. in CEV process), the above computation of the

quadratic forms would become much more tedious.

Theorem 4.3.4 Define C(x) as in (4.7), then

E[U2
n] = C(h)2 +

1

n2

(
nC(0)2 + nC(h)2 + 2

n−1∑
i=1

(n− i)
[
C((i+ 1)h)C((i− 1)h) + C(ih)2

])

E[V 2
n ] = C(0)2 +

2

n2

(
nC(0)2 + 2

n−1∑
i=1

(n− i)C(ih)2

)
.

Proof We first calculate E[V 2
n ]. Based on the 2nd bullet of Theorem 4.3.3, we have

E[V 2
n ] =

1

n2
E

( n∑
i=1

S2
i−1

)2


=
1

n2

n∑
i,j=1

E
[
S2
i−1S

2
j−1

]
=

1

n2

n∑
i,j=1

[
E
[
S2
i−1

]
E
[
S2
j−1

]
+ 2E [Si−1 · Sj−1]

]
=

1

n2

n∑
i,j=1

[
ci−1,i−1cj−1,j−1 + 2c2

i−1,j−1

]
=

1

n2

n∑
i,j=1

[
C(0)2 + 2C(h|i− j|)2

]
= C(0)2 +

2

n2

n∑
i,j=1

C(h|i− j|)2.

By counting the number of (i, j), such that |i − j| = 0, 1, 2, 3, · · · , the last summation is

equal to n · C(0)2 + 2(n − 1)C(h)2 + 2(n − 2)C(2h)2 + · · · + 2C((n − 1)h)2, and hence the

result.

Now we apply the 3rd bullet to compute E[U2
n]:

E[U2
n] =

1

n2
E

( n∑
i=1

SiSi−1

)2
 =

1

n2

n∑
i,j=1

E [SiSi−1SjSj−1]

=
1

n2

n∑
i,j=1

[ci,i−1cj,j−1 + ci−1,jci,j−1 + ci,jci−1,j−1]
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=
1

n2

n∑
i,j=1

[
C(h)2 + C(h|i− j − 1|)C(h|i− j + 1|) + C(h|i− j|)2

]
= C(h)2 +

1

n2

[ n∑
i,j=1

C(h|i− j − 1|)C(h|i− j + 1|)︸ ︷︷ ︸
denoted as Expr1

+
n∑

i,j=1

C(h|i− j|)2

︸ ︷︷ ︸
denoted as Expr2

]

From above, we know that Expr2 = nC(0)2 + 2
∑n−1

i=1 (n− i)C(ih)2 while a similar counting

argument for Expr1 will give Expr1 = nC(1)2 + 2
∑n−1

i=1 (n− i)C((i− 1)h)C((i+ 1)h). �

Now, based on a similar calculation as described in Chapter 2, we can present the bias

formula for the fractional Ornstein-Uhlenbeck process:

Theorem 4.3.5 Given a time series {Si}0≤i≤n (equally spaced by h > 0) whose dynamics

is governed by a fractional Ornstein-Uhlenbeck process dSt = −kStdt + σdBH
t (k > 0), the

second-order bias formula of using OLS estimate for k is given by

Bias(k) = E[k̂]− k ≈ a−1/2 + a−1,

where a−1/2 and a−1 are defined by

a−1/2 = −E[Un]− e−khE[Vn]

he−khE[Vn]
,

a−1 =
E[U2

n]− e−2khE[V 2
n ]

2he−kh(E[Vn])2
+ a−1/2,

with the expectations E[Un], E[Vn], E[U2
n], E[V 2

n ] being calculated using Theorem 4.3.1 and

4.3.4.

4.4 Monte Carlo Simulation

To confirm our theoretical results, we compare the bias formula as described in Theorem

4.3.5 against the empirical bias we would get from the OLS estimate from some simulated

fOU paths. In particular, our work here is an extension of [11], and includes it as a special

case (by setting Hurst parameter to be H = 1
2
).
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We adopt the same simulation scheme as described in [11]. In particular, for each fixed

H ∈ (1
2
, 1) and true mean reversion parameter k > 0, we simulate 10000 paths based on

the solutions as shown in (4.4) for the fractional Ornstein-Uhlenbeck process, and compute

for each path the difference between the OLS estimate and k. The (empirical) estimation

bias is then obtained by averaging these differences over each path. This bias is also com-

pared against the “theoretical” bias calculated by using the formulas shown in Theorem 4.3.5.

The comparison is shown graphically in Figures 4.2-4.5. In each of these figures the horizon-

tal axis is the true mean reversion parameter k while the vertical axis is the estimation bias.

The empirical biases obtained by Monte-Carlo simulation are shown in red circles while the

theoretical biases are shown in blue lines. In each of the four figures a confidence interval of

2 standard deviation is indicated with green dash lines for each fixed k that are tested.

Figure 4.2: Theoretical and Empirical Bias when T = 3, h = 1/252, H = 0.51.

Several observations can be drawn by comparing the biases shown in these figures against

those in the standard OU case, i.e. Figure 2.1-2.3.
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Figure 4.3: Theoretical and Empirical Bias when T = 10, h = 1/252, H = 0.51.

When H approaches 1
2
, e.g. when H = 0.51 as in Figure 4.2, the behavior of the bias is

similar to that in the case of standard OU process, i.e. the bias approaches 0 when k ap-

proaches 0, and is positively biased for most values of k. However, when bias tends to be

positively sloped in the standard OU case, the bias under the fOU process can be decreasing

with increasing k, for k larger than 1.

When H is further away from 1
2
, the bias can decrease into negative values as k increases

(Figures 4.4 and 4.5). This is contrary to the case of the standard OU process where the

bias is always positive. The bias when H = 0.6 as shown in Figure 4.5 tends to be more

negative compared to the corresponding case in Figure 4.4, when H = 0.53. Indeed, similar

simulations also point to the fact the higher the value of H, the more negative the estimation

bias can be.

The negative biasedness of the OLS estimate can be explained by taking a closer look at the

stochastic differential equation governing the fOU process. In particular, as H increases, the

stochastic process will become more persistent, i.e. a shock at time t will have an impact for
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Figure 4.4: Theoretical and Empirical Bias when T = 10, h = 1/252, H = 0.53.

a longer range of future time. As a result, given the same shock at that initial time, a fOU

with H > 1
2

will tend to propagate this shock for a longer time than a usual OU process

does, and heuristically speaking this implies that more time is required in order to revert to

the long term mean, and hence, the mean reversion speed will appear to be smaller if we

look at the fOU process through the lens as if it were still standard OU. Recall that the OLS

estimate is usually positively biased in the standard OU case. The negative biasedness for

some of the fOU examples we present here means that the “drag” due to the persistence of

the fractional noise can sometime be so large that it outweighs the intrinsic over-estimation

of the OLS estimator.

The negative biasedness of the OLS estimate under a fOU process raises some concern from

the perspective of risk management. Suppose that we have different bias curves for various

Hurst parameters H, such as those in Figure 4.6 showing how the estimated mean reversion

changes with the actual mean reversion. Suppose also that there exists a time series of fi-

nancial data which is known to follow a fOU process with H = 0.6 and the mean reversion is

calibrated to be 1.5 using OLS on 3-year data. Then, according to the bias relation in Figure

4.6, its true mean reversion should be approximately 2. However, if initially we did not know
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Figure 4.5: Theoretical and Empirical Bias when T = 10, h = 1/252, H = 0.6.

that the data are driven by fOU but instead assume the bias formula under the standard OU

framework, then we would reach a conclusion that the true mean reversion should be around

1, a 50% reduction from the true value of k. In this sense, the OLS estimate without any

bias adjustment appears to be a better estimate compared to the adjusted value assuming a

standard OU process.

In reality, risk models tend not to capture persistence to avoid unnecessary computation

effort. Instead, risk factors are assumed to follow standard Brownian processes. The above

discussion reveals that under such a simplification the speed of a mean-reverting factor will

be greatly under-estimated. In other words, while historical data tend to support that many

time series have small mean reversion, it might be the case that these mean reversion speeds

are small just because we apply the wrong model.

Moreover, since the calibration of the mean reversion parameter by OLS is sensitive to the

persistence (or equivalently, the auto-correlation) of the time series in question, it is advisable

to investigate the persistence property of the time series to be calibrated before applying
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any bias formula.

Figure 4.6: Plot of Estimated versus Actual Mean Reversion under Different Hurst Param-

eters.
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Chapter 5

Conclusion

In this thesis, we have extended the previous work of [11] to investigate the behaviour of

the bias when applying the OLS to estimate the mean reversion parameter under the frac-

tional Brownian motion framework. The fractional Brownian motion model is chosen as an

example to study the effect of persistence in the time series on the bias of the estimate of

the mean reversion parameter.

It turns out that unlike the situation where the stochastic process is driven by standard

Brownian noises, the OLS estimate for the mean reversion parameter can be negatively bi-

ased when the Hurst parameter H and/or the true mean reversion parameter is high. The

autocorrelation present in the time series drags the underlying from reverting to its long term

mean, and hence if we measure the mean reversion as if there were no persistence behaviour,

the mean reversion speed would be under-estimated.

This result highlights an important model risk when one tries to calibrate mean reversion by

the usual OLS method. Very often the model developer applies the OLS estimate without

taking the persistence of the time series to be calibrated into consideration. The resulting

estimate will almost certainly rendered to be biased. If one further naively applies the bias

formula developed in [11] to this time series, the “adjusted” estimate can under-estimate the

true mean reversion parameter considerably.

One may argue that one can resort to a generalized least square approach, which transformw

the original question into bias estimation of the standard Ornstein-Uhlenbeck process. How-
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ever, to achieve this, one still needs the information regarding the persistence of the time

series in question, as we need the covariance matrix of the error terms in order to transform

these error terms into approximately uncorrelated ones. One can define some estimates for

the covariance matrix (a natural candidate is the empirical covariance matrix based on the

available historical data), but how the estimation bias on the covariance matrix impacts the

final bias of estimating mean reversion will require a further study in the future.
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