
Tracking Events in Social Media

by

Luchen Tan

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Waterloo, Ontario, Canada, 2017

c© Luchen Tan 2017

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including
any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Tracking topical events in social media streams, such as Twitter, provides a means for users
to keep up-to-date on topics of interest to them. This tracking may last a period of days, or even
weeks. These events and topics might be provided by users explicitly, or generated for users
from selected news articles. Push notification from social media provides a method to push the
updates directly to the users on their mobile devices or desktops.

In this thesis, we start with a lexical comparison between carefully edited prose and social
media posts, providing an improved understanding of word usage within social media. Compared
with carefully edited prose, such as news articles and Wikipedia articles, the language of social
media is informal in the extreme. By using word embeddings, we identify words whose usage
differs greatly between a Wikipedia corpus and a Twitter corpus.

Following from this work, we explore a general method for developing succinct queries,
reflecting the topic of a given news article, for the purpose of tracking the associated news event
within a social media stream. A series of probe queries are generated from an initial set of
candidate keywords extracted from the article. By analyzing the results of these probes, we rank
and trim the candidate set to create a succinct query. The method can also be used for linking
and searching among different collections.

Given a query for topical events, push notification to users directly from social media streams
provides a method for them to keep up-to-date on topics of personal interest. We determine that
the key to effective notification lies in controlling of update volume, by establishing and main-
taining appropriate thresholds for pushing updates. We explore and evaluate multiple threshold
setting strategies. Push notifications should be relevant to the personal interest, and timely, with
pushes occurring as soon as after the actual event occurrence as possible and novel for providing
non-duplicate information. An analysis of existing evaluation metrics for push notification re-
flects different assumptions regarding user requirements. This analysis leads to a framework that
places different weights and penalties on different behaviours and can guide the future develop-
ment of a family of evaluation metrics that more accurately models user needs.

Throughout the thesis, rank similarity measures are applied to compare rankings generated by
various experiments. As a final component, we develop a family of rank similarity metrics based

iii

on maximized effectiveness difference, each derived from a traditional information retrieval eval-
uation measure. Computing this maximized effectiveness difference (MED) requires the solution
of an optimization problem that varies in difficulty, depending on the associated measure. We
present solutions for several standard effectiveness measures, including nDCG, MAP, and ERR.
Through experimental validation, we show that MED reveals meaningful differences between
retrieval runs. Mathematically, MED is a metric, regardless of the associated measure. Prior
work has established a number of other desiderata for rank similarity in the context of search,
and we demonstrate that MED satisfies these requirements. Unlike previous proposals, MED al-
lows us to directly translate assumptions about user behavior from any established effectiveness
measure to create a corresponding rank similarity measure. In addition, MED cleanly accommo-
dates partial relevance judgments, and if complete relevance information is available, it reduces
to a simple difference between effectiveness values.

iv

Acknowledgements

First of all, I would like to express my sincere gratitude and immeasurable appreciation to
my supervisor, Prof. Charles L. A. Clarke, a leading Information Retrieval scientist and a great
mentor during my doctoral program life at the University of Waterloo. I have been extremely
lucky to have a supervisor who provides instructive guidance and tremendous support throughout
these years. His critical thinking, insightful academic advice, extensive knowledge and positive
attitude towards work and life consistently inspired and motivated me.

I would also like to thank Prof. Jimmy Lin for his knowledge, inspiration, and encourage-
ment. He provided a lot of valuable comments, insightful discussions and collaborations in part
of this work.

My deepest gratitude also goes to Prof. Jimmy Huang from the York University for serving as
my external examiner and providing many valuable suggestions. I would also like to express my
appreciation to my other thesis examining committee members, Prof. Jimmy Lin, Prof. Gordon
V. Cormack, and Prof. Mark D. Smucker for taking their time and effort to participate in my
committee and giving their instrumental comments.

Many thanks to my great and lovely colleagues in the IR/PLG group for making such a
wonderful environment in the lab. In particular, I would like to thank Adam Roegiest, Haotian
Zhang, Bahareh Sarrafzadeh, Adriel Dean-Hall, Alexandra Vtyurina, Amira Ghenai, Dr. Gaurav
Baruah, Dr. Ashif Harji, Dr. Aiman Al-Harbi and Dr. Matt Crane. I hereby want to thank my
friends in the University of Waterloo, Cong Guo, Pei Pei, Yahui Chen and Lanjun Wang for their
enormous support during my PhD program.

I want to thank my beloved family for their unconditional and endless love and support. My
love and gratitude goes to my parents for always supporting me and taking good care of me. My
most and deepest appreciation goes to my husband, the forever love of my life, Dr. Teng Wu.
He always stands on my side, respects and understands me. Without his love, I cannot finish
this work. I would also like to thank my lovely, sweet daughter Tanya, for all the happiness she
brought to me and all the moving, warm moments she spent with me.

Last but not the least, I would like to acknowledge the Cheriton School of Computer Science
and Dr. David R. Cheriton for the David R. Cheriton Graduate Scholarship, and the Government
of Ontario and Bell Emergis for the Go-Bell Scholarship.

v

Dedication

I would like to dedicate my thesis to

my husband Dr. Teng Wu,

my parents Mr. Ming Tan and Ms. Li Song,

and my lovely daughter Tanya Wu.

vi

Table of Contents

List of Tables xii

List of Figures xiv

1 Introduction 1

1.1 Problem Statement . 2

1.2 Research Tasks and Contributions . 4

1.2.1 Improved Understanding of Word Usage in Social Media 4

1.2.2 Succinct Query for Linking Different Resources 5

1.2.3 Live Tracking and Pushing Notifications 5

1.2.4 Ranking Push Notification Systems by Metrics 6

1.2.5 Maximized Effectiveness Difference of Different Rankings 7

2 Background and Related Work 8

2.1 Topic Detection and Tracking . 8

2.1.1 TDT Tasks . 9

2.1.2 TDT Corpora . 10

2.1.3 Successful Techniques for Topic Tracking 11

vii

2.2 Topic Tracking and Filtering in Microblog Stream 15

2.2.1 TREC Microblog Track . 15

2.2.2 Topic Tracking and Filtering in Twitter Streams(Beyond TREC) 22

2.3 Evaluation Methodology of Tracking and Filtering Tasks 27

2.3.1 TDT Evaluation . 27

2.3.2 TREC 2012 Microblog Filtering Task Evaluation 28

2.3.3 TREC 2015 Microblog Filtering Task Evaluation 29

3 Data Collections 31

3.1 Collections . 31

3.1.1 TREC 2015 Microblog Collection . 31

3.1.2 Reuters News Collection . 32

3.1.3 Tweet Collection . 33

3.1.4 Wikipedia Collection . 33

3.2 Lexical Comparison Between Wikipedia and Twitter Corpora 34

3.2.1 Background . 34

3.2.2 Methods of Lexical Comparison . 35

3.2.3 Experiments . 36

3.2.4 Validation . 41

3.2.5 Conclusion . 42

4 Succinct Query Generation for Tracking News 44

4.1 Extracting Candidate Terms . 48

4.1.1 Pointwise Kullback-Leibler Divergence 49

4.1.2 TextRank . 49

viii

4.1.3 Evaluation of Candidate Term Extraction 51

4.1.4 Key Phrases Extraction . 53

4.2 Selecting probe queries . 57

4.3 Executing probes . 57

4.4 Computing similarities . 58

4.4.1 SIM1+SIM2 . 59

4.4.2 Learning to Rank . 60

4.4.3 Evaluation of similarity computation . 64

4.5 Ranking candidate terms . 68

4.5.1 PageRank-like . 68

4.5.2 Linear System . 69

4.5.3 Average Scores . 69

4.5.4 Comparison of Re-Ranking Methods 70

4.6 Evaluation . 71

4.6.1 Data . 71

4.6.2 Methods and the Baseline . 71

4.6.3 In-house Assessment . 72

4.6.4 CrowdSourcing Assessment . 72

4.6.5 Results and Discussion . 79

4.7 Summary . 81

5 Real-time Tracking and Push Notification 83

5.1 TREC 2015 Microblog Track . 85

5.2 Relevance between User Interest Profiles and Tweets 89

ix

5.2.1 User Interest Profiles . 89

5.2.2 Pre-processing Tweets . 91

5.2.3 Relevance Scoring . 94

5.2.4 Novelty . 94

5.2.5 Thresholding . 95

5.3 Pushing Notification Strategies . 95

5.3.1 Automatic Pushing Strategies . 97

5.3.2 Push with Relevance Feedback . 98

5.4 Results . 103

5.5 Summary . 104

6 Evaluation of Real-time Tracking in Social Media 105

6.1 TREC 2015 Microblog track Metrics . 106

6.2 Analysis of “Silent Days” . 108

6.3 Gain and Pain . 112

6.4 Effects of the Delay Penalty . 115

6.5 Toward A General Framework . 121

7 Ranking Similarity Measurement 125

7.1 Basic Notation and Properties . 129

7.2 Simple Dot Product Measures . 131

7.2.1 Computing MED-RBP . 133

7.2.2 Computing MED-DCG and MED-nDCG 134

7.2.3 Normalization for MED-nDCG . 135

7.3 Computing MED-AP . 136

x

7.4 Computing MED-ERR . 137

7.5 Validation . 142

7.6 Comparison with Prior Work . 147

7.7 Beyond the Ranked List . 152

8 Conclusion and Future Directions 155

8.1 Improving Understanding of Word Usage in Social Media 156

8.2 Succinct Query for Linking Different Resources 156

8.3 Real-Time Tracking in Social Media and Push Notification 157

8.4 Ranking Similarity Measurement . 158

References 160

xi

List of Tables

2.1 Summary of the TDT Corpora . 10

2.2 Contingency matrix of detection system responses 27

3.1 Corpora sizes . 37

4.1 An example of key word ranking list of different methods. 51

4.2 A noun phrase extraction example. 55

4.3 The estimated probabilities of matching terms in each tweet. 60

4.4 Feature set description for learning to rank methods. 62

4.5 Feature set description for learning to rank methods(Continue). 63

4.6 Kendall’s τB values between methods and human judgements. 67

4.7 Comparison of the predictions on all the probe queries with SIM1+SIM2 method. 68

4.8 Rank Biased Overla between each pair of the re-ranking methods. 70

4.9 Statistical results of CrowdFlower jobs. 76

4.10 Number of agreed judgements obtained among news articles and tweets. 77

4.11 Percentage agreement among the crowdsourcing workers. 78

4.12 Majority agreement on relevant and non-relevant judgements. 78

4.13 Agreement and disagreement between the crowdsourcing assessor and in-house
assessor. 81

xii

5.1 Comparisons among Secretary problem, hiring problem and pushing problem . . 85

5.2 Term ranking of narrative and description fields of Topic MB235. 90

5.3 Exemplar tweets from topic MB243 on July 20th for Scenario B for the UWater-
looBTEK system. Note that scores based using the proposed relevance function
fall into “blocks”. 101

5.4 Dynamic emission strategies (p-values are generated from a paired sign test with
GT = 5 (baseline)). 103

5.5 Results for Scenario A (push notification) for submitted runs with 95% confi-
dence intervals. † denotes p < 0.01 in a paired t-test with run UWaterlooATDK. . 103

5.6 Results for Scenarion B (email digest) for submitted runs with 95% Confidence
Intervals. 104

6.1 The total number of clusters and singleton clusters for each interest profile. . . . 121

6.2 The contingency table for a general evaluation framework for push notifications. . 121

xiii

List of Figures

1.1 A news article example. 3

2.1 A tweet example. 16

3.1 Word representations in Wikipedia, Twitter and transformed vectors after map-
ping from Wikipedia to Twitter. 38

3.2 T2W transformated similarity curves. 39

3.3 W2T transformated similarity curves. 40

3.4 T2W and W2T negative correlation between adjusted distance and RBO. 43

4.1 Generating succinct queries. Any prefix of Q may be used as a succinct query. . 46

4.2 Overview of the succinct query generation system. 48

4.3 Average F1 scores of different depth of ranked lists. 52

4.4 Parameter sweep on α1 of SIM1 + SIM2. 66

4.5 The instruction of CrowdFlower assessment jobs. 73

4.6 The instruction of CrowdFlower assessment jobs.(Continued) 74

4.7 An example of the task page of CrowdFlower workders. 75

4.8 Relevance percentage agreement of CrowdSourcing Judgements. 79

4.9 Non-relevance percentage agreement of CrowdSourcing Judgements. 80

xiv

4.10 Experimental results. All improvements over the baseline are significant (two-
sided paired t-test, p < .01). 81

5.1 TREC 2015 Microblog Track Topic MB235 . 86

5.2 ELG for different global thresholds and oracle run. 96

5.3 Sweep of fix time window size on ELG score. 98

6.1 ELG-1 (official metric) vs. nCG. 109

6.2 ELG-1 vs. ELG-0 for all submitted runs. 110

6.3 Characterizing the effects of “silent days”: Silence precision vs. ELG-1 111

6.4 Characterizing the effects of “silent days”: Silence recall vs. ELG-1 111

6.5 Characterizing the effects of “silent days”: Silence precision vs. silence recall . . 112

6.6 T11U vs. ELG-1. 114

6.7 Kendall’s τ between T11U and ELG-1 as a function of α. 114

6.8 ELG-1(top) and ELG-0(bottom) of all runs submitted to TREC 2015, comparing
the official latency penalty definition with removing the latency penalty alto-
gether. Green circles indicate empty runs. 116

6.9 ELG-1 (top) and ELG-0 (bottom) of all runs submitted to TREC 2015, com-
paring the official latency penalty definition with computing the latency penalty
with respect to the first tweet in each cluster. Green circles indicate empty runs. . 118

6.10 Quantifying the delay of each run in pushing tweets, with respect to the posted
tweet. Runs are sorted in descending order of ELG-1. 119

6.11 Quantifying the delay of each run in pushing tweets, with respect to the first
tweet in each cluster. Runs are sorted in descending order of ELG-1. 122

6.12 The push volume of each system, showing the number of relevant tweets pushed
and the fraction that contributed to gain, in descending order of ELG-1. 123

6.13 The push volume of each system, showing the number of relevant tweets pushed
and the fraction that contributed to gain, in descending order of ELG-0. 123

xv

7.1 Intra-group MED-nDCG@20 values for selected TREC 2005 Robust Retrieval
Track participants. 141

7.2 Actual nDCG differences vs. MED-nDCG@20 across all pairs of runs from the
TREC 2005 Robust Retrieval Track. 143

7.3 Actual nDCG differences vs. MED-nDCG@20 across all pairs of runs from the
TREC 2005 Robust Retrieval Track.(Continued) 144

7.4 RBO vs. MED-RBP across all pairs of runs. 146

7.5 Comparisons between RBO, MED-nDCG, MED-RBP, MED-AP and MED-ERR
for all runs from the TREC 2005 Robust Retrieval Track. 148

7.6 Actual U-measure differences vs. MED-U@12000 across pairs of passage-oriented
runs on passage-oriented topics from the TREC 2004 HARD Track. We plot a
20% sample, randomly selected, for visual clarity. 151

xvi

Chapter 1

Introduction

Topic tracking in news streams became a hot research topic about twenty years ago [5, 8, 54].
Automatic algorithms were developed for discovering new topics in a stream of broadcast news
or newswire. These topics were then used to follow the news events over time [55]. At that time,
social media had not yet been created, but many of the issues exposed by the original research
continue today.

Social media provides a platform for the general public to publish real-time news and com-
ments on topics of personal and general interest. Social media is currently one of the most
attention-attracting aspects of the internet. For example, it provides a way to learn opinions from
other people about a given news event.

An important feature of social media is recency, with most information flowing through the
social media closely related to the time when it is posted. For example, when someone reads
an interesting news article on a website, he or she may want to follow this news event on social
media for a period of time, perhaps learning about the progress of the event, receiving reports
from different media sources, and reading comments from other people. Although it is possible to
follow specific hashtags, for example, many of the most popular social media platforms currently
do not generally support the continuous and real-time tracking of specific events and topics.

1

1.1 Problem Statement

Twitter1, which started in 2006, is currently one of the most popular online social networking
service. Users on Twitter can send and read short messages which are accessible all over the
world. It has been reported that a large partition of tweets (short messages created by Twitter
users) posted everyday are related to news events. Moreover, Twitter provides a friendly stream-
ing API to external developers, which means that obtaining tweet data is fairly straightforward.
Thus, tracking news topics obtained from news articles in Twitter stream becomes an interesting
research problem.

Unfortunately, due to the length limitation of tweets, which can be a maximum of 140 char-
acters, tracking news events in the Twitter stream is more difficult than tracking them in general
news streams, where full articles are available. Figure 1.1 is an example of news article. If we
wish to generate a query to follow the topic of this article we have several choices, such as: the
title of the news article, the content of the news article, key phrases extracted from the article, etc.
However, if we wish to query Twitter (or some other services) to follow this topic, even the title
may be inappropriate or too long for use with the commercial Twitter search engine, or another
search engine. Ideally we would simply be able to indicate that we wish to follow the topic, and
then begin to receive updates.

Once we have obtained a query, or some other indication of topical interest, from a user, we
can monitor streams of social media posts, and discover posts that the user may care about. These
updates might be sent to the user periodically, perhaps through email, or pushed immediately and
directly to the user through notifications on his or her mobile device or desktop. For example, a
user might be interested in poll results for the 2016 U.S. presidential elections and wishes to be
notified whenever new results are published. In the following discussion, we define the problems
in terms of five tasks. By solving these tasks, we are able to address the overall problem of
tracking news events in social media streams.

According to the problems stated above, the following research contributions are reported in
this thesis:

• C1: Improved understanding of word usage in social media.
1https://twitter.com

2

https://twitter.com

Figure 1.1: A news article example.

3

• C2: Succinct query generation for linking different resources.

• C3: Real-time tracking social media stream and push notification algorithms.

• C4: Evaluation of push notification systems to mobile devices.

• C5: Maximized effectiveness difference rankings.

1.2 Research Tasks and Contributions

1.2.1 Improved Understanding of Word Usage in Social Media

The first task is research on an improved understanding of word usage within social media.
Social media posts are created and edited by individual users. Thus, the language employed by
users of social media tends to be highly informal. It includes slang, jargon, acronyms, typos,
deliberate misspellings, abbreviation and interjections. These nonstandard usage of language
brings problems when applying standard NLP tools and text retrieval techniques (Chapter 3).

We compare lexical usage between carefully edited prose and social media posts by using
word embeddings. Mikolov et al. [115] proposed a novel neural network model to train continu-
ous vector representation for words. The high-quality word vectors obtained from large data sets
achieve high accuracy in both semantic and syntactic relationships [57]. The word embeddings
are applied in this task to translate between the formal English of carefully edited texts, such as
articles in Wikipedia, and the informal English of social media posts, specifically tweets.

The translation is achieved by generating a transformation matrix between two vector spaces
representing two different language usage corpora. We identify the most different used words
between the two corpora by computing the distances in the transformed spaces. Meanwhile, a
rank overlapping method is applied as a validation method to verify the distance of most similar
words ranking lists in two corpora.

4

1.2.2 Succinct Query for Linking Different Resources

The second task is given a news article of interest or a similar source document, a succinct query
representing the content of the source document is expected to be generated. Furthermore, the
query is intended to be able to find related material in a target resource such as social media. A
specific and straightforward application of this succinct query method is to track a news article,
news story in social media streams over a period of days, or even weeks (Chapter 4).

The problem is similar to a prior research problem: Query by Document [165]. However,
the case of our second task is different from either traditional topic tracking task or query by
document problem. In a traditional topic tracking task, an explicit query or a set of terms are
provide for the tracking task. The tracking is produced in a fixed tracking platform without any
change as time going on. The existing solutions for query by document problem extract key
words and phrases from the source document, forming queries from these extracted terms. But
they tend to produce large and complex queries.

We present an alternative approach for generating succinct queries from a candidate set of
extracted key words. The succinct query comprises perhaps four or five terms. Starting with the
candidate terms, we execute a series of probe queries over a sample of contemporaneous social
media. By analyzing the results of the probes, and comparing them to the language of the source
document, we rank the terms according to their ability to retrieve related material.

1.2.3 Live Tracking and Pushing Notifications

The third task assumes that an explicit user interest profile or a set of topic terms expressing user’s
information needs is provided, e.g., as created by the succinct query generation method above.
A system that monitors the live social media stream (e.g., the live Twitter stream) automatically
pushes updates to the user through notifications on mobile devices or desktops. The push notifi-
cation system should control the frequency and volume of updates, avoiding indiscriminate and
unwanted notifications to the users (Chapter 5).

The push notification problem is not strictly an information retrieval problem or an infor-
mation filtering problem. Such systems should be able to identify relevant content from the

5

streaming data. Moreover, they should avoid pushing duplicate contents to users, as well as
controlling the frequency and time that they deliver the notifications.

We approach this problem by following the scenario settings of the TREC 2015 Microblog
Track. This track provides pre-defined user interest profiles and an evaluation platform for partic-
ipating systems. We demonstrate the crucial importance of controlling the volume of pushes and
the need to avoid pushing non-relevant information. Through experiments over various strate-
gies for establishing and maintaining thresholds for pushing, we achieve the best known results
reported in the literature.

1.2.4 Ranking Push Notification Systems by Metrics

The forth task is a straightforward follow-up research problem to the third task. When comparing
different systems for live stream tracking and push notification, what is a good metric for eval-
uating these different systems? We determine three significant components for evaluating these
systems from the settings of the pushing notification scenario: relevant to the person’s interests;
timely, with pushes occurring as soon as possible after the actual event occurrence; and novel,
providing non-duplicate information (Chapter 6).

The official evaluation metrics of TREC 2015 Microblog track were adapted from those of the
TREC Temporal Summarization track. The major metric was expected latency-discounted gain
(ELG) and the secondary metric was normalized cumulative gain (NCG). The gain of each push
was determined by the three components discussed above: relevance to the user’s information
need, redundancy to the other tweets from the same “content cluster”, and the time elapsed
between a tweet’s creation time and the time the tweet is delivered.

We analyze the official metrics, modify them with by making different assumptions about
the user and then re-assess submitted systems. We present the novel and surprising finding that
any number of reasonable evaluation metrics give rise to significantly different system rankings.
We discuss and analyze why, tracing the issue to the handling of days for which there are no
relevant tweets. We then examine the effects of latency penalties by considering the impact
of different metric variants on runs submitted. Finally, we generate a framework of evaluation
metrics using the same underlying contingency table,but placing different weights and penalties
based on different user models.

6

1.2.5 Maximized Effectiveness Difference of Different Rankings

The fifth task concerns ranking similarity measurement which is used throughout this thesis
work. We realize the unfortunate truth that most computation of information retrieval measures
depends on the existence of explicit relevance judgement. It is said that, to measure the retrieved
ranking list of a given query, we must know for each document in the list, whether or not it is
relevant to the query. Creation of these judgements involves either substantial effort on the part
of assessors or large volumes of interaction data, which limits the number of queries over which
the measures may be computed (Chapter 7).

To compare different ranking results, we might also use standard rank correlation coefficient
methods, such as Kendall’s τ . In prior works focusing on the problem of comparing search result
lists, Webber et al. [157] defined rank biased overlap (RBO) as a measurement for indefinite and
incomplete ranked lists. However, we may want to measure differences between ranked lists
under the assumptions of specified information retrieval effectiveness measure. We propose a
family of distance measures, each directly derived from an associate information retrieval effec-
tiveness measure, including RBP, nDCG, MAP and ERR.

This family of measures, called maximized effectiveness difference measures (MED), mea-
sures the maximum difference of two ranked lists in their effectiveness scores possible under
a specified effectiveness measure. Computing this maximized effectiveness difference (MED)
requires the solution of an optimization problem that varies in difficulty, depending on the as-
sociated measure. We present solutions for several standard effectiveness measures, including
nDCG, MAP, and ERR. Through experimental validation, we show that MED reveals mean-
ingful differences between retrieval runs. Mathematically, MED is a metric, regardless of the
associated measure. Prior work has established a number of other desiderata for rank similarity
in the context of search, and we demonstrate that MED satisfies these requirements. Unlike pre-
vious proposals, MED allows us to directly translate assumptions about user behavior from any
established effectiveness measure to create a corresponding rank similarity measure. In addition,
MED cleanly accommodates partial relevance judgments, and if complete relevance information
is available, it reduces to a simple difference between effectiveness values.

7

Chapter 2

Background and Related Work

2.1 Topic Detection and Tracking

Topic Detection and Tracking (TDT) research develops automatic algorithms for discovering
new topics in a stream of broadcast news or newswire, and then following these topics over time.
The notion of a topic in TDT is defined as “a specific event or activity, along with all directly
related events and activities” [55], where an event means “some special thing happening at some
special time and special place”. An article in newswire is called a story, which is defined by
the community as “a topically cohesive segment of news that includes two or more declarative
independent clauses about a single event”. For example, the disappearance of Malaysia Airlines
Flight 370(MH370) while flying from Kuala Lumpur International Airport to Beijing Capital
International Airport on March 8th, 2014 is considered to be an event, whereas the investigation
and search for wreckage that followed is considered to be the topic.

The TDT research program started from a pilot study between September 1996 and October
1997. The U.S. National Institute of Standards and Technology (NIST) provided an evaluation
platform and ran a workshop every year between 1998 and 2004. The pilot study was designed
and conducted by researchers from DARPA, Carnegie Mellon University (CMU), Dragon Sys-
tems, and the University of Massachusetts at Amherst (UMass). The purpose of the pilot study
was to advance and assess state of art technologies in Information Retrieval (IR) and Information

8

Filtering (IF) for exploitation by TDT. Although the detection and tracking task are similar to
standard IR and IF tasks respectively, IR and IF technologies can not solve all the TDT prob-
lems [168]. For the topic detection task, TDT systems lack any knowledge or understanding
about topics. The systems have to automatically identify and detect new topics. However, IR
systems usually have some kinds of initial user information need, or at least a query. For topic
tracking task, topics are indicated by one to four sampled related news stories which contains
implicit queries. While explicit profiles should be given for IF problems. The TDT systems were
restricted to make online decisions, i.e. systems must decide about one story before looking at
any subsequent stories [8] without any supervised feedback.

2.1.1 TDT Tasks

Under this program, TDT research was factored into five technical tasks [156]:

• Story Segmentation Task: Segment a continuous stream of text into its constituent stories

• Topic Detection Task: Detect and thread new topics, with no knowledge of the topics to
be detected

• Topic Tracking Task: Follow topics to find additional stories about them

• First-Story Detection Task: Identify the first story of unknown topics in a stream of
stories

• Link Detection Task: Determine whether two stories are topically linked

These tasks are not independent. For example, the link detection task is the foundation of the
detection and tracking tasks. Indirect evaluation of the segmentation task is measured by topic
tracking performance. In this section, we will focus on technologies for the topic tracking task
only, which is closely related to our work.

9

2.1.2 TDT Corpora

Five corpora were used for the TDT research project: the TDT Pilot study corpus (TDT-Pilot), the
TDT Phase 2 corpus (TDT2) for TDT 1998 Workshop, the TDT Phase 3 corpus (TDT3) for TDT
1999-2001 Workshop, the TDT Phase 4 (TDT4) corpus for TDT 2002 and 2003 Workshops, and
the TDT Phase 5 corpus (TDT5) for TDT 2004 Workshop1. Some characteristics and statistical
information for these corpora are provided in Table 2.1.

Corpora Story Period Languages(#Stories) Broadcast News
TDT Pilot Jul, 1994 to Jun, 1995 ENG(16K) Transcripts

TDT2 Jan, 1998 to Jun, 1998 ENG(53.6K), MAN(18.7K) Audio and Text
TDT3 Oct, 1998 to Dec, 1998 ENG(31.2K), MAN(12.8K) Audio and Text
TDT4 Oct, 2000 to Jan, 2001 ENG(28.4K) ,MAN(27.1K), ARB(42.7K) Audio and Text
TDT5 Apr, 2003 to Sep, 2003 ENG(278K), MAN(56.5K), ARB(72.9K) None

Table 2.1: Summary of the TDT Corpora

The first TDT Pilot Corpora was created by the pilot study researchers. It contains approx-
imately 16K of English news stories, which were either taken from the Reuters news service or
manual transcriptions of broadcast news from CNN. The stories span a time period from July
1994 to June 1995. 25 events of different types were manually labelled as annotated topics for
detection and tracking. Each story in the corpus was flagged YES/NO/BRIEF for each event.

The TDT2 corpus and TDT3 corpus were collected daily from six news sources, including
two newswires services, two radio news programs and two television news programs, such as
New York Times News service, VOA world news and CNN Headline News [54]. Both corpora
contain news stories in two languages: American English (ENG) and Mandarin Chinese (MAN).
For TDT2, 100 English topics were completely annotated, and 20 of them were also labelled as
Mandarin topics; for TDT3, 240 topics were annotated. All English broadcast transcripts were
created manually or through automatic speech recognition (ASR), and all Mandarin stories were
automatically translated by machine translation tools.

The TDT4 corpora and TDT5 corpora were collected daily from 20 news sources and 15
news sources, respectively. They contain stories in three languages: American English, Man-

1All data can be obtained from the Linguistic Data Consortium (https://catalog.ldc.upenn.edu)

10

darin Chinese and Modern Standard Arabic (ARB). A total number of 100 topics were manually
labelled for TDT4, and 250 topics for TDT5.

2.1.3 Successful Techniques for Topic Tracking

For the topic tracking task, researchers were interested in the following key research issues:

• Topic representation models

• News story representation models

• Similarity between news stories and topics

• Threshold setting for detection and filtering

Pilot Study

In the pilot study, the notion of a topic was narrowed down to an event, which was defined
by Nt stories that discuss the event [5], where Nt = 1, 2, 4, 8, 16 were considered. Different
participating groups attempted different approaches. It had been shown from the evaluation that
simple IR techniques could achieve high quality results, although to reduce errors, more work
was needed.

The UMass group used methods based on Information Filtering [5, 8]. Nt positive and 100Nt

negative training stories were exploited to generate a short query for representing the event and a
threshold for comparison between story and that query. The queries constructed in this way were
represented by a tf-idf weighted vectors. Dimensions in these vectors were either the top 10 to
100 most commonly occurring words or extracted nouns and noun phrases appearing in positive
training stories. Adaptive tracking was first tested by UMass to handle drifting queries using
methods similar to pseudo-relevance feedback. If a story was selected for tracking, it would be
added to training story set and queries would be regenerated.

CMU treated the task as a binary classification problem. Two classifiers k-Nearest Neighbour
(kNN) and Decision-Tree Induction were developed. They converted each story (including train-
ing stories) into a vector and compared vectors by cosine similarity. An incoming story would be

11

voted YES/NO by k nearest training vectors or by one positive and one negative nearest training
vector. The voting decision was made by a pre-trained threshold. Features for Decision Tree
classifiers were selected with maximal information gain (IG).

Dragon’s event tracker was derived from their segmentation algorithm, which preformed seg-
mentation and topic assignment simultaneously [161]. One hundred background topic models
were build from an external corpus, by clustering the corpus using k-means algorithm and uni-
gram statistics. An event language model was built from Nt training stories. Additionally, it was
smoothed by the mixture of the best approximated background topic models. A Hidden Markov
Model (HMM) approach was utilized to model probabilities of transition or duration of topics.

Between 1998 and 2004

During the evaluation years for 1998 to 2004, many research groups exploited different tech-
nologies to achieve better performance, some of them reduced costs, while the others brought
occasional improvements, or even harmed the total detection and tracking. As in traditional IR
applications, news stories were mainly represented by two types of models: vector space models
(VSM) and language models (LM).

Although there are some limitations of the vector space model, it performed better than other
alternate techniques like language modelling and machine learning. With the vector space model,
each document was represented by a vector of weighted features. These features can be single
terms, phrases or entities. The weights can be either statistical TF-IDF family weights or binary
weighting (one of terms present and zero for terms absent). UMass systems [6, 7, 36] persisted
with a vector model for representing stories and topics. Each dimension in the vector was a
single stemmed word, and the weighting scheme was raw term frequency value multiplying the
InQuery engine’s IDF component value, which was:

idfcomp =
log(N/df)

log(N + 1)
(2.1)

The IDF component was the logarithm of the inverse probability of the term in a collection,
where N denotes the total number of documents in the collection. The dimension of each vector
was chosen to be 1000, which contained almost the full story. Similarly, CMU [24, 163, 164]

12

defined their vector space model weights to be:

w(t, ~d) =
(1 + log2 tf(t, ~d)) ∗ log2 (N/nt)

‖~d‖
(2.2)

where, w(t, ~d) is the weight of term t in document ~d; tf(t, ~d) is the within document term fre-
quency; N is the number of documents in training set and nt is the number of documents in
training set which contains t; log2 (N/nt) is the inverse document frequency (IDF); and ‖~d‖ is
the L2-norm of document vector ~d. In this model, topics were also represented by vectors, where
each topic’s vector was an average of the vectors of the stories about that topic (i.e. cluster cen-
troid). If there were both possitive and negative examples of each topic, the Rocchio relevance
feedback algorithm(formula 2.3) was also applied [36, 163].

~c(D, γ) =
1

|R|
∑
~y∈R

~y + γ
1

|Sn|
∑
~z∈Sn

~z (2.3)

where ~c(D, γ) is the representation of the topic, D is the entire training set, R is the positive
examples in training set D, S = D − R is the negative examples in D, and Sn contains n most
similar negative examples, γ is the weight for negative component.

Cosine similarity shown to be stable and provided substantial benefits when measuring simi-
larity under vector space model. Other functions like weighted sum, cross-entropy and Kullbach-
Leiblar divergence were tested and found to be worse and less stable [7]. Thus, cosine similarity
was widely used by those groups applying vector space models.

Like the vector space model, language models represent another popular information retrieval
model. Some groups participating in TDT developed language model approaches. Dragon’s
tracking system [160, 162] built language models for each topic, each story, and the background
material. When comparing the tracking score of an incoming story to a topic, they defined it as
the log ratio between the probability that the story was generated from the topic and the prob-
ability that the story was generated by the background model. UMass extended their relevance
model, which was a modified language model technique to achieve success in TDT tasks [87].
Relevance models were first defined by Lavrenko and Croft [88] to estimate the probability of
observing a word in a document that was relevant to the query in a collection of documents.
Without any relevance judgement, typically the probability was approximated by co-occurrence

13

between the query and the word. Suppose Q is a query, and each d is a document in collection
C, the relevance model for estimating a word w relevant to Q is :

P (w|Q) =
∑
d∈C

P (w|d)P (d|Q) (2.4)

where P (w|d) denotes the probability of word w in document d, and P (d|Q) denotes the poste-
rior probability of producing the query, which is computed as:

P (d|Q) =
P (d)

∏
q∈Q P (q|d)∑

d′∈C P (d′)
∏

q∈Q P (q|d′)
(2.5)

In the TDT task, a story was used as a query, i.e., S = q1q2...qk, where each qi was a word in the
story. Training documents for each topic was considered as a collection. Thus, tracking score
between a topic and a story can be computed using equation 2.4.

Adaptive Tracking was also tested in the pilot study. Stories in the stream that had been
considered as track-able with respect to the topics were added to adapt the representation of the
topics. However, since no relevance judgement were provided, this approach would bring risks
of false alarms. If immediate relevance feedback was assumed to provide by users, there would
be no danger of adapting.

Since three different language sources were provided by TDT corpora, multilingual topic
tracking was also a popular research area. Larkey et al. [86] built a language model for each
language and proved by experiments that building language-specific topic models separately for
each language performed more effectively than only training English topic models with machine
translated scripts.

After 2004

After 2004, NIST ended the TDT evaluation project. Some groups, although not as many as
during the evaluation period, are still working on solving TDT problems. Utilizing more news
specific features, such as temporal information [75, 90] and location information [69] has been
proved to help TDT tasks. New models such as probabilistic topic modelling, online LDA [9]
were applied to track topics over time. TDT technologies were transferred and modified to other

14

domains, such as email [38], web video [100], and news web pages [119]. Also social media,
especially website Twitter has become an emerging news media platform. Thus moving TDT to
social media platform is a straight forward research trend [17, 99].

2.2 Topic Tracking and Filtering in Microblog Stream

2.2.1 TREC Microblog Track

The Microblog track was first introduced in TREC 2011, and was still running in 2016. The
major goal of this task is to improve technologies for satisfying user information needs in mi-
croblog environments such as Twitter2. Users in the Twittersphere post messages (called tweets)
which are strictly limited to up to 140 characters. Some well-defined terminology is unique to
Twitter and tweets: the term “RT” is short for retweet, which means that a users has re-posted the
content of another user’s tweet with or without their own comments;the character ‘@’ in a tweet
followed by a user’s screen name is mentioning that user; the character ‘#’ followed by a word or
sequence of words (which may or may not be words appearing in dictionaries) is called a hash-
tag. Hashtags are created organically by users for marking keywords or topics in tweets [85].
Hastags typically appear as new topics emerge, and are then included in future tweetes on that
topic.

Figure 2.1 shows an example tweet from the user “@arjendevries”, which mentions the user
“@trecmicroblog”, with tags indicated that it is related to “#trec2010” and “#trec2011’. The
average length of tweets is around 10 words, which is much shorter than normal documents in
other information retrieval tasks. Also due to the hard length limitation, users are more likely
to use special terms such as abbreviations, shortened words and slang when generating tweets,
which leads to highly varied document quality. Traditional IR technologies often cannot be
directly applied to tweets successfully [52]. Thus, new methodologies for both searching and
evaluation are examined in the TREC Microblog Track.

2Twitter Statistics: http://www.statisticbrain.com/twitter-statistics/

15

http://www.statisticbrain.com/twitter-statistics/

Figure 2.1: A tweet example.

Microblog Adhoc Search Task

Tasks in the Microblog track are still evolving and improving. Since 2011, three tasks were
conducted: an adhoc search task, a filtering task and a tweet timeline generation task. The adhoc
search task ran between 2011 and 2014. In this task, a user’s information need was defined as a
query, along with a specific query time. Systems were required to search for the query and find
most relevant and recent tweets posted up to that time. An example of a TREC Microblog track
topic is as follows:

<top>

<num> Number: MB01 </num>

<title> Wael Ghonim </title>

<querytime> 25th February 2011 04:00:00 +000 </querytime>

<querytweettime> 3857291841983981 </querytweettime>

</top>

According to the task definition in the overview reports [96, 123, 140], the <querytweettime>
tag contains the timestamp of the query in both human and machine readable ISO standard for-
mats, while the <querytweettime> tag contains the timestamp of the query in terms of the
chronologically nearest tweet id in the corpus. The <title> tag indicates the information need
for the topic. Unlike for some TREC tasks, no narrative or description tags were provided in
these topics.

Corpora Most tweets are visible to the public on Twitter’s web site. Twitter also provides
friendly searching and streaming APIs that any Twitter user can access to read and write Twit-

16

ter data. Due to Twitter’s term of service, any reproduction of tweets is forbidden. There-
fore, the way of obtaining a corpus of tweets for the track is dramatically different from other
TREC tracks. There were two corpora provided by the microblog track organizers till now: the
Tweets2011 corpus (used in TREC 2011 and 2012) and the Tweets2013 corpus (used in TREC
2013 and 2014).

The Tweets2011 corpus contained a list of unique identifiers (tweet ids) of about 1% sample
of tweets from January 23, 2011 to February 7, 2011. The total number of tweet ids was ap-
proximately 16 million. Each tweet id can be mapped to a URL at twitter.com. Participants can
download a copy of the corpus by a given tool provided by TREC organizers. When download-
ing the corpus, each participated group might obtain different tweets since users might delete
their tweets or restrict their tweets to private only. The Tweets2013 corpus was crawled by the
organizers through Twitter public streaming API between February 1 and March 31, 2013. There
were approximately 243 million tweets.

Normal Process Typical steps for adhoc search on the Twittersphere are similar to those of
other traditional IR search tasks: 1) data pre-processing; 2) with a given text scoring function,
retrieve original tweets; 3) query expansion or document expansion; 4) re-search tweets by ex-
panded terms; and 5) re-rank the search results. The filtering task could be achieved by exploiting
the relevance score computed by the retrieval method and filtering out low relevance results with
thresholds. In 2014, groups who submitted experimental runs to the tweet timeline generation
task were also required to submit adhoc search task results, which meant that the TTG task also
included an adhoc search task. In this subsection, we introduce some approaches and models
used by top ranked research groups for these different steps.

Pre-processing Data By definition, retweets and tweets written in a language other than En-
glish are judged as not relevant for the Microblog Track. As a result, most groups removed
retweets and non-English tweets in a pre-processing step. Some groups removed retweets after
the first round of retrieval before query expansion. Retweets were easy to detect, since these
tweets were either started with ‘RT’ or returned a 302 status code when crawled by HTML
tool. Non-English tweets could also be filtered out after first retrieval or added as a feature in a
learning-to-rank re-ranking step. Groups such as PRIS [93] determined if a tweet was English or

17

non-English by applying an English vocabulary word list. If more than half the words in a tweet
were English words, the tweet would be kept as English tweet. Other groups like Clarity, HIT
and University of Indonesia [52, 61, 102] utilized language classifiers or identifier tools to detect
non-English tweets. Other typical NLP technologies popular in IR tasks were also attempted by
some groups, such as stopword removal and stemming.

Text scoring The difficulty of defining a function for measuring relevance between queries
and tweets is exacerbated by the shortness and varied quality of tweets. Some search engines’
built-in models were directly used for this task, such as the Markov random field (MRF) re-
trieval model [111], built into Indri3, which was used by several groups [93, 110, 178]. MRF can
combine text matching features from term, phrase, and proximity-based matching, measuring
dependencies between them. TF-IDF based methods have been widely demonstrated to be ef-
fective and efficient for many IR tasks. The Clarity group [52] modified the Okapi BM25 model
based on the short nature of tweets. They removed the penalty against longer documents from
the original BM25 model (equation 2.6)by setting the parameters k1 and b to 0. Here tft is either
0 or 1 representing absent or present in the tweet respectively.

Scorebm25(q, d) =
∑
t∈q

log(
N − dft + 0.5

dft + 0.5
) ∗ (k1 + 1)tft

k1((1− b)) + b dl
avdl

) + tft
(2.6)

The Kullback-Leibler divergence (KL-div) retrieval model is another typical language mod-
eling approach for retrieval tasks. K-L divergence measures the information distance between
two probability models. Group HIT [61] used this model to estimate the difference between a
query model and a document model. Similarly, group FUB, IASI-CNR, UNIVAQ [10] exploited
it as term-message weighting.

Query Expansion The most common approaches for dealing with vocabulary mismatch prob-
lems deriving from short documents are query expansions and document expansions. About one
tenth of the tweets contain at least one web link in its content. Thus, we might be able to use
web page contents from links appearing in tweets to expand tweet content, as used by group

3http://www.lemurproject.org/indri/

18

http://www.lemurproject.org/indri/

PRIS [93]. For query expansions, several different models were used by different groups, such
as the Latent Concept Expansion [110], parameter free Bo1 model built into Terrier [10], a word
activation force algorithm and term similarity metric based on electric resistance network [93],
top ranked snippets or titles from Google search results [102, 178], synonym of query terms
from WordNet [171] and pseudo-relevance feedback [52, 61]. Key parameters in this step were
the number of tweets selected to process query expansion (one to hundreds) and the number of
expanded terms (one to dozens).

Re-ranking After these processes, usually a re-ranking or re-weighting process would be per-
formed by the systems. Two kinds of methodologies were reported successfully when processing
this step: learning to rank methods and temporal-based methods. Widely used features for learn-
ing to rank methods can be categorized into three types: text-based features, temporal-based
features and non-text based features.

• Text-based features: tweet relevance scores, ratio of terms that are out-of-vocabulary, key
word ratio, expanded word ratio, named entities

• Non-text based features: has-url, has-hashtag, is-reply, retweet-count, tweet-length, user-
followers-count

• Temporal-based features: time difference from query time

Real-time Filtering Task

TREC 2012 A filtering task was first run at TREC 2012 as the reverse task to the adhoc search
task, which was modelled on the TREC 2002 adaptive filtering task. The information need
was also defined as a query and a specific time, with participating systems required to filter
relevant tweets in stream of tweets after that time. The organizers reused topics from the TREC
2011 microblog track and re-tagged the topic files. The original <querytweettime> from
the adhoc searching task was provided as the endpoint for the collection that systems receive
before the streaming started, which was named as <querynewesttweet>. An additional
<querytweettime> tag indicated the earliest known relevant tweet for each topic in the

19

corpus. Systems would judge relevance of each tweet from the query tweet time to the query
newest time one-by-one, and decide whether or not to show it to the user. If a system decided to
show a tweet to the user, it might be able to obtain an relevance feedback to improve subsequent
judgements.

Each topic in the task was represented by a query and a single start tweet. Since queries
consisted of several key words and tweet was much shorter than a typical document such as
news story, most participating groups followed a process similar to the first three steps of the
adhoc retrieval task: 1) pre-processing tweets, 2) building text-score function, and 3) expanding
queries and tweets. Instead of re-ranking as the fourth step, thresholds were set for adaptive
filtering.As it turned out, appropriate setting of these thresholds was a key to success in the task.

The HIT group [61] applied the same retrieval model as they used for their adhoc search
runs over the tweet collection ahead of the start tweet time for each topic. They retrieved the
top m tweets as their relevant set. The filtering threshold for determining whether an incoming
tweet was relevant or not was the retrieval score of the m-th tweet in the relevant set. They
tested different ways of setting the parameter m, such as fixed, dynamic or combined fixed
with dynamic ms. Manually adjustment of the thresholds also achieved success by the PRIS
group [171]. They manually initiated the threshold for each topic. While running the filtering
system, they manually label the correctness of automatic judgements. Later they would adjust
the threshold for each topic according to the ratio of the number of their correctly labeled or
wrongly labeled tweets. The University of Glasgow group [94] trained their filtering thresholds
and explored an approach to adjust them according to various features, such as whether the tweet
contained URLs and/or hashtags.

TREC 2015 TREC 2015 Microblog Track included a completely different task from previous
years, which was the real-time filtering task. The goal of this task was to monitor the real Twitter
streaming data and determine whether or not push each tweet to a user. Each user’s interest
profile was given in the format of a traditional TREC topic, as shown in the following example:

<top>

<num> Number: MB10001

<title> crossword puzzle tournaments

<desc> Description:

20

Return announcements of and commentary regarding

crossword puzzle tournaments.

<narr> Narrative:

The user likes to do crossword puzzles and intends to

participate in upcoming crossword puzzle tournaments.

She wants to see any Tweets that relate to a tournament:

Tweets that announce a tournament or give logistical

information; Tweets about a tournament from its participants

including Tweets that express anticipation of the tournament

or traveling to/from the tournament; Tweets that comment

on the quality of a tournament; etc.

</top>

Two task scenarios were studied:

• Scenario A: Push notifications on a mobile phone. Participating systems should identify
interesting tweets based on the user’s interest profile(topic), and determine whether or not
push a notification on the user’s mobile phone. Such notification is expected to be triggered
within 100 minutes after the tweet is created. A maximum of 10 tweets could be delivered
by a system to a single user per day.

• Scenario B: Periodic email digest. Participating Systems should identify tweets based
on the user’s interest profile, and aggregate them into an email. The email should be
periodically sent (i.e., every day) to the user.

Scenario A is a real-time filtering task, but it does not require on-line decision. It means that
participating systems do not need to decide whether or not push notification for a tweet before
seeing the subsequent tweets. A 100-minute latency time is allowable. Thus, in addition to the
normal retrieval processes, pushing strategy is also significant. However, Scenario B is more like
an adhoc retrieval task based on a one-day tweet collection.

TREC 2016 TREC 2016 Real-Time Summarization (RTS) Track 4 took place from August
2, 2016 00:00:00 UTC to August 11, 2016 23:59:59 UTC. Similarly to TREC 2015 Microblog

4http://trecrts.github.io/TREC2016-RTS-guidelines.html

21

http://trecrts.github.io/TREC2016-RTS-guidelines.html

Track, all participating systems were asked to listen to the Twitter sample stream using the Twit-
ter streaming API themselves and perform the evaluation tasks in real time. The user interest
profiles were designed in the same format as previous track. They were ad hoc style TREC
topics.

There were also two scenarios in 2016 RTS track: push notifications and periodic email
digest. The periodic email digest scenario (Scenario B) was almost the same as TREC 2015
Microblog track. Systems identified up to 100 ranked tweets per day per interest profile. It was
expected that systems computed the results in a relatively short amount of time after each day
ended. The final submission was uploaded to the evaluation platform after evaluation period
ended.

The push notification scenario (Scenario A) was designed differently from Scenario A in
TREC 2015 Microblog track. In this scenario, content that was identified as relevant by a system
based on the user’s interest profile would be pushed to the TREC RTS evaluation broker via
a REST API in real-time. These notifications were immediately routed to the mobile devices
of a group of human assessors. Two different evaluation judgments were made for the push
notifications: real human assessors with mobile devices and NIST assessors at the end of the
evaluation period.

2.2.2 Topic Tracking and Filtering in Twitter Streams(Beyond TREC)

Topic Tracking in Twitter Streams

Since Twitter has become a new type of news media, both news agents and readers read, tweet
and retweet news from Twitter. Thus, it is a straightforward idea to import topic tracking research
to the Twitter environment. Similar to traditional topic tracking, topic tracking in Twitter also
faces the problem of insufficient initial data, i.e. the cold start problem, as well as the chance
variation of topics, i.e. topic drift. In addition to these common issues, tweets also have their
own specific features that leads to more topic tracking issues. Due to the length limitation of a
single tweet (140 characters), it is more difficult to track topics in tweets than in traditional topic
tracking of news articles. Terms seldom repeat in a tweet, which often makes the traditional

22

family of TF-IDF weighting methods fail. Moreover, the quality of tweets vary based on different
user styles, which makes it even harder to extract topics from tweets.

Lin et al. [99] manually selected 10 hashtags based on popularity as topics, and built a topic-
specific language model for each topic. The language models were then exploited to compute
relevance scores of incoming tweets in tweet stream and filter out non-relevance tweets. Four
different smoothing methods were examined on topic-specific language models with background
models to solve the sparsity zero-probability problem. The selected topics were all stable, coher-
ent and non-advance topics over time, which means the topic drift problem was skipped in this
research.

Duan et al. [44] proposed a graph-based approach, in a graph optimization framework, for
classification of tweets into six broad topics: entertainment, politics, science and technology,
business, lifestyle, and sports. Related tweets, the ones that share either the same hashtag or
URL, were used to enrich the representation of each tweet and adaptively update the trained
model using the hashtags as a surrogate for user feedback.

Hong et al. [63] and Fei et al. [51] followed the work of Lin et al., with an additional consid-
eration of topic drift over time. Hong et al. developed a more complex background model with
a foreground model to handle the cold start problem They adapted semantic features and quality
features to build a content model, which enriched document content and measured the quality
of tweets. A fixed-width temporal sliding window was adopted to extract tweet features as well
as providing pseudo-relevance feedback. The feedback model was then proved by experiments
to effectively solve the topic drift issue. However, the size of the window was fixed which may
not portray the drift properly as the emerging of topic drift was unexpected and irregular. Fei et
al. [51] proposed a cluster-based subtopic detection algorithm to deal with topic drift over time.

Magdy et al. [107] proposed an unsupervised approach for tracking short messages from
Twitter that were relevant to broad and dynamic topics, which initially obtained a set of user-
defined fixed accurate (Boolean) queries that covered the most static part of the topic and updates
a binary classifier to adapt to dynamic nature of the tracked topic automatically. However, it was
not easy to find such user-defined queries to capture emerging subtopics of a broad topic.

Dan et al. [39] aimed at following tweets that are related to specific TV shows. They proposed
a bootstrapping approach that uses domain-knowledge and a two-stage semi-supervised training

23

of a classifier. Chen et al. [32] realized that keyword-based Boolean filtering was not effective for
tracking tweets that express customer opinions about commercial brands (e.g., Delta Airlines).
They leveraged crowd-sourcing resources to label tweets that satisfy predefined queries to train
a supervised binary classifier. Nishida et al. [122] detected changes in word probabilities over
time in a probabilistic classification approach. Hashtags on baseball teams or television networks
were used as labels for training the classifier.

Real-time Filtering in Twitter Streams

Phuvipadawat and Murata [126] focused on tracking and detection of breaking news using pre-
defined search queries, e.g., #breakingnews and “breaking news”. They adopted an unsupervised
filtering approach based on clustering similar incoming tweets with an emphasis on proper nouns,
and significant nouns and verbs, to track and adapt to developing stories. Sriram et al. [141] used
manually-labelled tweets to train a naive Bayes classifier to classify tweet streams into general
broad topics such as news, opinions, events, deals, and private messages.

Albakour et al. [2] proposed an effective approach to deal with the sparsity and drift for real-
time filtering in Twitter. In their approach, query expansion based on pseudo-relevance feedback
was used to enrich the representation of user profile which improved the filtering performance a
lot. Furthermore, a set of recent relevant tweets were utilized to represent the users’ short time
interests and tackle the drift issue. Three strategies were introduced to decide the size of tweets
set: arbitrary adjustments, daily adjustments and event detection strategy based on CombSum
voting technique and Grubb’s test. The event detection significantly improved recall at the cost
of a marginal decrease in the overall filtering performance.

Zhao and Tajima [175] considered the real-time filtering problem as a retweet recommenda-
tion problem. A special type of users, which were named as “Portal accounts”, on Twitter was
defined. Instead of posting original tweets, these accounts retweet tweets which were useful to
their followers. Portal accounts should retweet a certain number of tweets and could not cancel
the retweets. They considered the problem as a multi-choice secretary problem [78]. Four differ-
ent methods were proposed and tested: history-based threshold algorithm, stochastic threshold
algorithm, time-interval algorithm and every k-tweets algorithm.

24

Other Related Work

Comparison with other search Efron [47] defined two types of search in microblog systems:
asking for information and retrieving information, which were corresponding to online Q&A and
adhoc search in IR research problems respectively. Several key problems in microblog retrieval
were described, including sentiment analysis and opinion mining, entity search, user-generated
metadata, authority and influence, temporal issues. None of these problems was novel in IR
research area. Approaches for solving these problems in previous IR research, as well as initial
attempts to solve them in a microblog environment were reviewed. In the conclusion, possible
applications of geographical information in microblog search and important issues of microblog
search evaluation (relevance, corpora and recency) were presented. A text searching task is
defined as matching query against a set of documents (tweets in microblog search).

To better understand microblog search, Teevan et al. [149] and Zhao et al. [174] analyzed
characteristics of twitter queries and tweet collections respectively. Teevan et al. [149] compared
differences between motivation, behaviour and results of microblog search and web search. From
an analysis of a questionnaire study and millions of query logs, queries issued to twitter were
found to be seeking more temporally and personally related information. Users tended to search
shorter, more repeated and more popular queries to monitor content. Search results from twitter
search engines included information about more social content and events.

A Twitter corpus and a traditional news article corpus were compared by Zhao et al. [174].
They exploited topic models to discover that the distributions of different topic categories and
types were different between twitter corpus and traditional news corpus. The original tweets were
found to focus more on personal life and pop culture, rather than world events, especially more
celebrities and brands, while the retweets helped to spread important news and widely covered
world events.

Key Information Extraction Extracting key information from documents is crucial for re-
trieval tasks. Since the length of tweets is much shorter than traditional documents and not
every tweet contains useful informationand key information extraction is more challenging in a
microblog environment. Hashtags as user generated labels can be a type of natural keywords.

25

Efron [46] demonstrated that hashtags benefited from query expansion during the relevance feed-
back process, where hashtag retrieval was treated as entity search.

Keywords and key phrases extraction methods were proposed in the work of Zhao et al. [173].
Keywords were ranked by a modified topical PageRank method, and key phrases were ranked by
a principled probabilistic phrase ranking method. The natural language processing community
attempted to apply traditional NLP tasks to twitter dataset, such as Part of Speech tagging (POS)
and named entity recognition (NER) [101, 129]. Lacking sufficient context information, it is hard
to identify entities and entity types in tweets. Thus, traditional POS and NER tools performed
poorly on twitter corpora.

Liu et al. [101] combined a K-Nearest Neighbour classifier with a linear Conditional Random
Fields model under a semi-supervised learning framework. By testing on manually annotated
tweet dataset, their model outperformed the dictionary look-up baseline system.

Temporal and Geographical Information Utilizing temporal and geographical information
to improve relevance in microblog retrieval has been attempted by some groups during The
TREC microblog track. More research work outside TREC also discovered effective methods to
take advantage of these metadata from tweets.

Choi and Croft [33] exploited the temporal distribution of users’ retweet behaviour to pro-
pose a model for selecting a time period for query expansion. Experiments on TREC collections
indicated that the time-based relevance model contributed to improving retrieval performance.
This approach is derived from the temporal cluster hypothesis, which suggests that relevant doc-
uments tend to share similar temporal features,

Efron et al. [48] proposed methods to estimate temporal density of relevant documents and
explored temporal feedback to benefit tweet search. A language model based on query-likelihood
generated a ranked list of relevant documents. A log-linear model combined probability of rele-
vance given temporal features with the word-based probability of relevance.

Several research papers [62, 79, 80] demonstrated that geography-aware topic models can
discover patterns of language usage among different geographical locations. It has been found
that queries were often geographically contextualized. Taken into account a tweets’ geographical

26

context, vocabulary mismatch problems in microblog retrieval can be solved through expanding
tweets with related terms.

Hong et al. [62] assumed that each tweet was generated from three types of language models:
a background language model, a per-region language model and a topical language model. For
each tweet, latent region and location of this tweet was first chosen, then a topic was selected de-
pendent on both the region and the author of the tweet. Different topical patterns across different
geographical regions were observed from their experiments.

Kotov et al. [79, 80] expanded a geographically-aware extension of the Latent Variable Model
(LVM) and the Latent Dirichlet Allocation (LDA) topic modelling approach to generate geo-
graphically special topics on language model based retrieval framework respectively.

Other works, such as Yuan et al. [169, 170] and Ma et al. [105, 106] recommended and
searched hashtags for Twitter users.

2.3 Evaluation Methodology of Tracking and Filtering Tasks

2.3.1 TDT Evaluation

All five TDT tasks can be treated as detection tasks. In a detection task, a labelled target story
can be correctly detected as a system response target, or can be missed as an error called missed
detection. A labelled non-target story can be correctly detected as a system response non-target,
or can be falsely detected as an error called false alarm. A contingency matrix of detection
system responses is shown in Table 2.2 [55].

Reference Annotation
Target Non-Target

System YES (a Target) Correct False Alarm

Response NO (Not a Target) Missed Correct
Detection

Table 2.2: Contingency matrix of detection system responses

27

The performance of a TDT system is measured based on costs to missed detection and false
alarm errors exploiting two approaches: the detection cost function and the detection error trade-
off curve (DET). The detection cost function is defined as the following:

CDet = CMiss ∗ PMiss ∗ PTarget + CFA ∗ PFA ∗ PNon−Target (2.7)

Here, CMiss and CFA are the costs of a missed detection and a false alarm, respectively. They
are pre-defined parameters for the task. PMiss and PFA are the probabilities of a missed de-
tection and a false alarm respectively. They are determined by system performance, where
PMiss = #Missed Detections

#Labelled Targets
and PFA = #False Alarms

#Labelled Non−Targets . PTarget is a corpus statistical prior
probability, specified by the task. It represents the quantity of stories about a particular topic in
the training data. PNon−Target is also a prior probability, which equals to 1− PTarget. To visual-
ize the system’s tradeoff between PMiss and PFA, DET can be plotted by sweeping a threshold
through the system’s space of decision scores.

2.3.2 TREC 2012 Microblog Filtering Task Evaluation

TREC 2012 Microblog filtering task was built on the TREC 2002 adaptive filtering task [131],
and used the same evaluation metrics: linear utility and Van Rijsbergen’s F-measure. Filtering
systems are expected to make binary decisions (relevant or non-relevant) with respect to each
document in the filtered stream for each topic. Thus, the selected documents are considered as
an unrated set in these two filtering tasks.

F-measure is a trade-off measure between precision and recall, combining them with a param-
eter β controlling the emphasis weighting of precision and recall equation 2.8. Here, precision
denotes the number of documents retrieved from the collection, and recall is the total number
of relevant documents within the collection. β = 1 means precision and recall are balanced;
β = 0.5 corresponds to an emphasis on precision. A choice of β = 0.5 is used by previous
TREC and TREC 2012.

Fβ =
(1 + β2) ∗ precision ∗ recall
β2 ∗ precision+ recall

(2.8)

Linear utility scores all retrieved documents by giving two points of reward to relevant ones

28

and one point of penalty to the non-relevant ones:

T11U = 2 ∗ |relevant tweets retrieved| − 1 ∗ |non− relevant tweets retrieved| (2.9)

Filtering according to a linear utility function is equivalent to filtering by estimated probabil-
ity of relevance, i.e. to retrieve if P (rel) > 0.33 [140]. Since T11U is unbounded, sim-
ple averaging of values across all the topics is impossible. The topics with larger retrieved
sets will be weighted more than the ones with smaller retrieved sets. Hence, the utility value
of a topic is normalized by the theoretical maximum possible utility for this topic (MaxU =

2 ∗ |relevant tweets retrieved|) and bounded by an arbitrary minimum normalized utility value
(MinNU = −0.5). Therefore, we have:

NormU =
T11U

MaxU

T11SU =
max(NormU,MinNU)−MinNU

1−MinNU

2.3.3 TREC 2015 Microblog Filtering Task Evaluation

For TREC 2015, all submitted tweets by the participating groups were pooled and judged by
NIST assessors as in previous years. Tweets are judged based on a four-point scale information
need: spam/junk, not interesting, somewhat interesting, very interesting. The computation of
score for each participated system is an average of the scores across all the topics. Additionally,
the score of each topic is an average of the scores across all the evaluation days. Let T denotes
the topic set where each t ∈ T is a topic in the set and D is the date set of the evaluation period
where each d ∈ D is a day in the set. The final score for a system S is defined as the following:

Score(S) =
1

|T |
∑
t∈T

Score(t, S) =
1

|T |
∑
t∈T

1

|D|
∑
d∈D

Score(t, d, S) (2.10)

Evaluation of scenario A is based on an latency-discounted gain (LG) metric. It considers
both the push notification latency time and the degree of relevance. The maximum acceptable
delay is 100 minutes from the tweet creation time to the notification time that the tweet is con-

29

sidered to be pushed to the user. For a tweet t, the LG of t is defined as:

LG(t) = L(c(t), n(t)) ∗ g(t)

=
Max(0, 100− delay)

100
∗ g(t)

=
Max(0, 100− (n(t)− c(t)))

100
∗ g(t)

where c(t) denotes the created time of tweet t; n(t) denotes the participating system pushing
notification time of tweet t; g(t) is the relevance gain of t, i.e. 0 for judged spam/junk or not in-
teresting tweets, 0.5 for somewhat interesting tweets, 1 for very interesting tweets. For example,
if a participating system notified a very interesting tweet within a minute of the created time of
the tweet, the tweet adds 1 credit to the system. Another system delivered a somewhat interesting
tweet after 50 minutes of the tweet being created, the system receives only 0.25 credit.

The primary metric is expected latency-discounted gain (ELG) and the secondary metric is
normalized cumulative gain (nCG). The computation of ELG for a daily score of a topic is an
average of LG of all the tweets delivered (denoted as TD), which is the following:

1

|TD|
∗

∑
tweet∈TD

LG(tweet) (2.11)

The nCG metric is similar to ELG, only differing in averaging the LG of all the tweets delivered
per day by the maximum possible number of tweets delivered per day (which is 10 this year)
instead of the real number of tweets.

Scenario B is evaluated as a normal retrieval task. The tweets retrieved per day are considered
as a ranked list of tweets. Normalized discounted cumulative gain (nDCG) is computed for a
daily score of each topic:

DCG@k =
k∑
i=1

reli
log2(i+ 1)

nDCG@k =
DCG@k

Ideal DCG@k

where reli ∈ {0, 0.5, 1} is the relevance value of tweets; Ideal DCG@k is DCG@k value
computed under an ideal ordering of the retrieved list for the given topic.

30

Chapter 3

Data Collections

In this chapter, we describe the data collections we use for evaluating the algorithms in the re-
mainder of this thesis. These data collections are all text collections. In total, four different
collections are utilized in this thesis work: 1) the TREC 2015 microblog tweet collection, 2) a
Reuters news collection, 3) a larger tweet collection gathered specifically for this thesis work, and
4) a Wikipedia article collection. In the first section of this chapter, details about each collection
are provided. In the second section, we compare the lexical differences between Wikipedia col-
lection and tweet collection, to better illustrate the differences between social media collections
and collections of standard English text.

3.1 Collections

3.1.1 TREC 2015 Microblog Collection

The TREC 2015 Microblog Track required participating groups to collect tweets from the stan-
dard Twitter public streaming API from July 20, 2015 00:00:00 UTC to July 29, 2015 23:59:59
UTC. This API is available to all Twitter users. Any Twitter user can have a developer account
through which he or she can gain access to the public streaming API.

31

The collection was not distributed before the start of track experiments. It was generated in
real-time and gathered by each Twitter user account independently. The collection might appear
to be a personalized collection since each Twitter user is using their own account and connecting
to the public streaming API individually. However in the study of Paik and Lin [125], they
demonstrated that multiple listeners to the Twitter public streaming API receive effectively the
same tweets. They set up six independent listeners for three days in March 2015. The Jaccard
overlap across these six different tweet collections is 0.999.

During the 10 days of TREC 2015 Microblog Track official evaluation period, there were ap-
proximately 40 million tweets published through the Twitter public streaming API. These tweets
are in many languages. They include retweets and also tweets that have already been deleted
by the original posting users. In this thesis, we use this collection as the main experimental
collection for our real-time tracking and push notification algorithms.

3.1.2 Reuters News Collection

This news article collection was crawled and collected from Reuters1. Reuters is a large interna-
tional news agency owned by the Thomson Reuters company. On its website, it releases news
happening from all over the world every day.

We develop a web page crawler and HTML parser for Reuters news web pages. The news
articles in our collection start from October 20, 2006 and end on February 28, 2015. For each
day during the period, we first obtain the top news headlines and URLs. Then, we go to the web
page of each news article and parse the HTML code of the web page. The title, date and body of
each news article are recorded in our collection.

In total, we gathered 154,940 news articles. The overall vocabulary size of this collection is
264,811. This collection is used primarily as a background collection for our keyword extraction
methods.

1http://www.reuters.com

32

http://www.reuters.com

3.1.3 Tweet Collection

We gathered a larger tweet collection through the Twitter Streaming API between November
2013 to March 2015. The Twitter Streaming API allows Twitter user to obtain a sample of
approximately 1% of all public tweets. It also provides a language field for filtering tweets
with specific language(s). However, the language fields are mainly indicated by Twitter users
themselves, which may not be correct for each individual tweet. For example, a bilingual speaker
of English and Mandarin may post a tweet with a mixture of English and Chinese characters. As
a first step filter, we restrict tweets in our collection as English tweets on the basis of the language
field.

Each tweet is delivered in JSON format by the Twitter API. The JSON structure provides
information about tweet content, including the URLs contained in tweet text, and if the user is
posting or re-posting the tweet. If the tweet is a retweet, information about the original tweet is
also provided in the JSON structure.

3.1.4 Wikipedia Collection

The Wikipedia collection was downloaded from MediaWiki data dumps2. Wikipedia offers free
downloads of all available content from their website. The collection we downloaded is a copy
of all English-language Wikipedia pages available on March 04, 2015, i.e., it contains all the
Wikipedia English article pages current at that time.

The data downloaded from Wikipedia is an XML dump which contains all the HTML code
for each page. Along with the content text in UTF-8, each page includes additional elements,
indicating page structure, Wikipedia internal links, references, images, tables, and other mark
up. We developed a simple parser, based on regular expressions, to extract only the content text
from each page.

Both our tweet collection and Wikipedia collection were collected for use as large back-
ground collections for our keyword extraction methods. In the next section, we compare the
lexical usage and understanding for English terms between these two collections through the use

2https://dumps.wikimedia.org/enwiki/20150304/

33

https://dumps.wikimedia.org/enwiki/20150304/

of word embeddings. Along with providing insight into these individual collections, this work
uncovers differences in language usage between social media and standard English.

3.2 Lexical Comparison Between Wikipedia and Twitter Cor-
pora

Users of social media typically employ highly informal language, including slang, acronyms,
typos, deliberate misspellings, and interjections [59]. This heavy use of nonstandard language,
as well as the overall level of noise in social media, creates substantial problems when applying
standard NLP tools and techniques [50]. For example, [72] apply machine translation methods
to convert tweets to standard English in an attempt to ameliorate this problem. Similarly, [14]
and [60] address this problem by generating corrections for irregularly spelled words in social
media.

In this section, we continue this line of research, applying word embedding to the problem
of translating between the informal English of social media, specifically Twitter, and the formal
English of more carefully edited texts, such as those found in Wikipedia. Starting with a large
collection of Tweets and a copy of Wikipedia, we construct word embeddings for both corpora.
We then generate a transformation matrix, mapping one vector space into another. After applying
a normalization based on term frequency, we use distances in the transformed space as an indica-
tor of differences in word usage between the two corpora. This method identifies differences in
usage due to jargon, contractions, abbreviations, hashtags, and the influence of popular culture,
as well as other factors. As a method of validation, we examine the overlap in closely related
words, showing that distance after transformation and normalization correlates with the degree
of overlap.

3.2.1 Background

Mikolov et al. [115] proposed a novel neural network model to train continuous vector repre-
sentation for words. The high-quality word vectors obtained from large data sets achieve high
accuracy in both semantic and syntactic relationships [57, 92, 176, 177].

34

Some probabilistic similarity measures, based on Kullback-Leibler (KL) divergence (or rel-
ative entropy), give an inspection of relative divergence between two probability distributions of
corpus [81, 144]. For a given token, KL divergence measures the distribution divergence of this
word in different corpora according to its corresponding probability. Intuitively, the value for KL
divergence increases as two distributions become more different. Verspoor et al. [153] found that
KL divergence could be applied to analyze text in terms of two characteristics: the magnitude of
the differences, and the semantic nature of the characteristic words.

Subašić and Berendt [142] applied a symmetrical variant of KL divergence, the Jensen-
Shannon (JS) divergence [95], to compare various aspects of the corpora such as Language di-
vergence, headline divergence, named-entity divergence and sentiment divergence. As for the
applications derived from above methods, Tang et al. [148] studied the lexical semantics and
sentiment tendency of high frequency terms in each corpus by comparing microblog texts with
general articles. Baldwin et al. [14] analyzed non-standard language on social media in the as-
pects of lexical variants, acronyms, grammaticality and corpus similarity. Their results revealed
that social media text is less grammatical than edited text.

3.2.2 Methods of Lexical Comparison

Mikolov et al. [114] construct vector spaces for various languages, including English and Span-
ish, finding that the relative positions of semantically related words are preserved across lan-
guages. We adapt this result to explore differences between corpora written in a single lan-
guage, specifically to explore the contrast between the highly informal language used in English-
language social media with the more formal language used in Wikipedia. We assume that there
exists a linear transformation relationship between the vectors for the most frequent words from
each corpora. Working with these frequent terms, we learn a linear projection matrix that maps
source to target spaces. We hypothesize that usage of those words appearing far apart after this
transformation differs substantially between the two corpora.

Let a ∈ R1×d and b ∈ R1×d be the corresponding source and target word vector representa-
tion with dimension d. We construct a source matrix A = [aT1 , a

T
2 , ..., a

T
c]T and a target matrix

B = [bT1 , b
T
2 , ..., b

T
c]T , composed of vector pairs {ai, bi}ci=1, where c is the size of the vocabulary

common between the source and target corpora. We order these vectors according to frequency

35

in the target corpus, so that ai and bi correspond to the ith most common word in the target
corpus.

These vectors are used to learn a linear transformation matrix M ∈ Rd×d. Once this transfor-
mation matrix M is obtained, we can transform any ai to a′i = aiM in order to approximate bi.
The linear transformation can be depicted as:

AM = B (3.1)

Following the solution provided by Mikolov et al. [114], M can be approximately computed by
using stochastic gradient descent:

min
M

n∑
i=1

‖ aiM − bi ‖2 (3.2)

where we limit the training process to the top n terms.

After the generation of M , we calculate a′i = aiM for each word. For each ai where i > n,
we determine the distance between a′i and bi:

Sim(a′i, bi), n ≤ i ≤ c. (3.3)

Let Z be the set of these words ordered by distance, so that zj is the word with the jth greatest
distance between the corresponding a′ and b vectors. For the experiments reported in this section,
we used cosine distance to calculate this Sim metric.

3.2.3 Experiments

In this subsection, we describe the results of applying our method to Twitter and Wikipedia.

Experimental Settings

As mentioned in the above section, the Wikipedia dataset for our experiments consists of all
English Wikipedia articles downloaded from MediaWiki data dumps. The Twitter dataset was
collected through the Twitter Streaming API from November 2013 to March 2015. We restricted

36

the dataset to English-language tweets on the basis of the language field contained in each tweet.
To obtain distributed word representation for both corpora, we trained word vectors separately
by applying the word2vec3 tool, a well-known implementation of word embedding.

Before applying the tool, we cleaned Wikipedia and Twitter corpora. The clean version of
Wikipedia retains only normally visible article text on Wikipedia web pages. The Twitter clean
version removes HTML code, URL, user mention(@), the # symbol of hashtags, and all the
retweeted tweets. The sizes of document and vocabulary in both corpora are listed in Table 3.1.

Corpora # Documents # Vocabulary
Wikipedia 3,776,418 7,267,802
Twitter 263,572,856 13,622,411

Table 3.1: Corpora sizes

There are two major parameters that affect word2vec training quality: the dimensionality of
word vectors, and the size of the surrounding words window. We choose 300 for our word vector
dimensionality, which is typical for training large dataset with word2vec. We choose 10 words
for the window, since tweet sentence length is 9.2± 6.4 [14].

Visualization

In Figure 1, we visualize the vectors for the some of the most common English words by applying
principal component analysis (PCA) to the vector spaces. The words “and”, “is”, “was” and “by”
have similar geometric arrangements in Wikipedia and in Twitter, since these common words are
not key differentiators for these corpora. On the other hand, the pronouns “I” and “you”, are
heavily used in Twitter but rarely used in Wikipedia. Despite this difference in term frequency,
after transformation, the vectors for these terms appear close together.

3https://code.google.com/p/word2vec/

37

https://code.google.com/p/word2vec/

Figure 3.1: Word representations in Wikipedia, Twitter and transformed vectors after mapping
from Wikipedia to Twitter.

Results

As our primary goal, we hope to demonstrate that our transformation method reflects meaning-
ful lexical usage differences between Wikipedia and Twitter. To train our space transformation
matrix, we used the top n = 1, 000 more frequent words from the 505,121 words that appear in
both corpora. The transformation can be either from Twitter to Wikipedia (T2W) or the opposite
direction W2T. We observed that the two transformation matrices are not exactly the same, but
they produce similar results. [116] suggest that a simple vector offset method based on cosine
distance was remarkably effective to search both syntactic and semantic similar words. They also
report that cosine similarity preformed well, given that the embedding vectors are all normalized
to unit norm.

38

0 100 200 300 400 500
Twitter Frequency Rank (* 1000)

1.0

0.5

0.0

0.5

1.0
Tw

itt
er

 to
 W

ik
ip

ed
ia

 C
os

in
e

Si
m

ila
rit

y

Highest
Top 10%
Top 20%
Top 30%

Top 40%
Median
Top 60%
Top 70%

Top 80%
Top 90%
Lowest

Figure 3.2: T2W transformated similarity curves.

Figure 3.2 illustrates how T2W word vectors are similar to their original word vectors. Sim-
ilarly, Figure 3.3 shows how W2T word vectors are close to their original word vectors in
Wikipedia collection. For the purpose of explaining Figure 3.2 and Figure 3.3, we define new
notation as follows: Let T andW be the word sets of Twitter and Wikipedia respectively, and let
C = T ∩W . We denote the document frequency of a word t in the Twitter corpora as df(t). Sort-
ing the whole set C by df(t) in an ascending order, we obtain a sequence S̄ = {c0, · · · , cm−1},
where ci ∈ C; m = 505, 121; and df(ci) ≤ df(cj), ∀i < j. We partition the sequence S̄ into 506

buckets, with a bucket size b = 1000. Bi = {ci∗b, · · · , c(i+1)∗b−1} represents the i-th bucket. We
number the curves in Figure 3.2 and Figure 3.3 from the top to the bottom. The points on the i-th
curve demonstrates the cosine similarity of the (i− 1) ∗ 100-th word in each bucket. From these
figures, it is apparent that words with higher frequencies have higher average cosine similarity
than those words with lower frequencies. Since our goal is to find words with lower than average

39

similar, we apply the median curve of Figure 3.2 to adjust word distances.

0 100 200 300 400 500
Twitter Frequency Rank (* 1000)

1.0

0.5

0.0

0.5

1.0

W
ik

ip
ed

ia
 to

 T
w

itt
er

 C
os

in
e

Si
m

ila
rit

y

Highest
Top 10%
Top 20%
Top 30%

Top 40%
Median
Top 60%
Top 70%

Top 80%
Top 90%
Lowest

Figure 3.3: W2T transformated similarity curves.

Defining adjusted distance asDadjusted(t) of a given word t, we calculate the cosine distance
between t and the median point cmedian from its corresponding bucket Bi.

Dadjusted(t) = Sim(cmedian)− Sim(t) (3.4)

where the index of median point should be i ∗ b+ b/2. A negative adjusted distance value means
the word is more similar than at least half of words in its bucket. On the other hand, the words
that are less similar than at least half of words in their buckets have positive adjusted distance
values. The larger an adjusted distance, the less similar the word between the corpora.

40

Examples

In the following table, it provides some examples of common words with large adjusted distance,
suggesting that their usage in the two corpora are quite different. For each of these words, the
example shows the closest terms to that word in the two corpora. In Twitter, “bc” is frequently
an abbreviation for “because”, while in Wikipedia “bc” is more commonly used as part of dates,
e.g. 900 BC. Similarly, in Twitter “ill” is often a misspelling of the contraction “I’ll”, rather
than a synonym for sickness, as in Wikipedia. The other examples have explanations related to
popular culture, jargon, slang, and other factors.

Word Twitter Most Similar Wikipedia Most Similar
bc because bcus bcuz cuz cos bce macedon hellenistic euthydemus ptolemaic

ill ll imma ima will youll unwell sick frail fated bedridden

cameron cam nash followmecam camerons callmecam gillies duncan mckay mitchell bryce

mentions unfollow reply respond strangerswelcomed offend mentions mentioned mentioning reference attested

miss misss love missss missssss imiss pageant pageants titlehoder titlehoders pageantopolis

yup yep yupp yeah yea yepp chevak yupik gwaii tlingit nunivak

taurus capricorn sagittarius pisces gemini scorpio poniatovii scorpio subcompact sagittarius chevette

3.2.4 Validation

To validate our method of comparing lexical distinctions in the two corpora, we employ a ranking
similarity measurement. Within a single corpora, the most similar words to a word t can be
generated by ranking cosine distance to t. We then determine the overlap between the most
similar words to t from Twitter and Wikipedia. The more the two lists overlap, the greater the
similarity between the words in the two corpora. Our hypothesis is that larger rank similarity
correlates with smaller adjusted distance.

Rank biased overlap (RBO) a new rank similarity measure designed for comparisons between
top-weighted, incomplete and indefinite rankings. Given two ranked lists, A and B, let A1:k and
B1:k denote the top k items in A and B. RBO defines the overlap between A and B at depth k as
the size of the intersection between these lists at depth k and defines the agreement between A
and B at depth k as the overlap divided by the depth. [157] defines RBO as a weighted average
of agreement across depths, where the weights decay geometrically with depth, reflecting the

41

requirement for top weighting:

RBO = (1− ϕ)
∞∑
k=1

ϕk−1
|A1:k ∩B1:k|

k
(3.5)

Here, ϕ is a persistence parameter. As suggested in that paper, we set ϕ = 0.9, a typical choice.
In practice, RBO is computed down to some fixed depth K. We select K = 50 for our experi-
ments. For a word t, we compute RBO value between its top 50 similar words in Wikipedia and
top 50 similar words in Twitter.

In Figure 3.4, we validate consistency between results of our space transformation method
and RBO. For the top 5,000 terms in the Twitter corpora, we sort them by their adjusted distance
value. Due to properties of RBO, there are many zero RBO values. To illustrate the density of
these zero overlaps, we smooth our plot by sliding a 100-word window with a step of 10 words.
As shown sharply in the figure, RBO and adjusted distance is negatively correlated.

3.2.5 Conclusion

This section analyzed the lexical usage difference between Twitter microblog corpora and Wikipedia
corpora. A word-level comparison method based on word embedding is employed to find the
characterisic words that particularly discriminating corpora. In future work, we plan to introduce
this method to normalize the nonstandard language used in Twitter.

42

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4 0.5
Average T2W adjusted distance(Top 5000 in Twitter)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35
Av

er
ag

e
RB

O

0.4 0.3 0.2 0.1 0.0 0.1 0.2 0.3 0.4
Average W2T adjusted distance(Top 5000 in Twitter)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Av
er

ag
e

RB
O

Figure 3.4: T2W and W2T negative correlation between adjusted distance and RBO.
43

Chapter 4

Succinct Query Generation for Tracking
News

Given a news article of interest, we wish to create a succinct query reflecting its content, which
may be used to follow the news story over a period of days, or even weeks. Alternatively, after
reading a news article, or a similar source document, we may wish to find related material in
social media, or in a similar target resource. In part, the need for succinct queries is occasioned
by limitations of commercial social media search engines, which can perform poorly with longer
queries. The case is different from traditional topic tracking task, where an explicit query or a
set of terms are provided for tracking and there is no change of the tracking platform.

Prior research has approached this Query by Document problem [165] in a variety of ways.
As one approach, we might extract key words and phrases from the source document, forming
queries from these extracted terms. For example, given the news article “More than 100 Con-
golese refugees killed in boat accident, Uganda says1” we might extract the query “Lake Albert
boat accident”, which may produce higher precision results than querying with more general
terms, such as “Uganda” or “Congo”.

To query by document across blogs and other media, Yang et al. [165] employ a part-of-
speech tagger to identify candidate terms in the source document. They rank these terms using

1 http://www.cnn.com/2014/03/24/world/africa/uganda-boat-capsizes-death-toll

44

http://www.cnn.com/2014/03/24/world/africa/uganda-boat-capsizes-death-toll

TF-IDF and mutual information, supplementing them with associated terms from Wikipedia.
Similarly, Tsagkias et al. [151] explore query-by-document methods for linking news with social
media. They employ multiple methods for extracting query terms from the source document,
supplementing them with terms extracted from social media posts that explicitly reference the
news article. They then separately execute the queries from each method, generating multiple
ranked lists and merging them through late fusion.

Unfortunately, this approach can produce large and complex queries. For example, one
method employed by Tsagkias et al. simply uses the full document as the query. Perhaps un-
surprisingly, using full documents as queries produces the best results of any single method they
explore, and it also provides a challenging baseline for evaluating late fusion.

The execution and fusion of multiple large and complex queries may not be feasible to sup-
port casual queries to find related material. Even if this process can be justified, re-querying to
follow updates to an evolving news story requires the process to be repeated. Moreover, from a
practical standpoint, commercial social media search engines may provide poor external support
for long queries, requiring this approach to be built into the engine itself.

As an alternative, we present an approach for generating succinct queries from a candidate
set of extracted terms. These succinct queries (comprising perhaps four or five terms in total)
provide a lightweight way to follow the story over hours, days, or even weeks. Starting with the
candidate terms, we execute a series of probe queries over a sample of contemporaneous social
media. By analyzing the results of the probes, and comparing them to the language of the source
document, we rank the terms according to their ability to retrieve related material.

The problem of finding additional documents related to a given source document has been
a longstanding research topic within the information retrieval community [42, 112, 136, 158].
Generally these methods assume that the search engine will directly support a “find similar” fea-
ture, although Dandan et al. [40] consider the generation of queries for identifying near-duplicate
documents by querying against a search engine. In this chapter, rather than finding similar docu-
ments within a given collection, we create succinct queries to efficiently search across collections
and across time.

Other research considers the problem of trimming and re-weighting verbose queries, although
without probe queries. Bendersky and Croft [18] train a classifier to recognize key words and

45

Input: Primary source document A
Secondary source collection β = {B1, B2, ...}

Output: Ranked list of terms Q = {q1, ..., qn}

1) Extract initial candidate term set from A.
T = {t1, ..., tm}

2) Select subsets of T as probe queries.
P1, P2, ..., where each Pi ⊆ T

3) Apply each probe query to rank documents in β;
producing a probe ranking βi corresponding to each Pi.

4) Compute similarities between the source document A and each probe ranking βi.
si = similarity(A, βi)

5) Estimate the term ranking that best explains the similarity values.
Q = {q1, ..., qn}

Figure 4.1: Generating succinct queries. Any prefix of Q may be used as a succinct query.

46

phrases in queries consisting of a few sentences, as is typically seen in the topic descriptions
from older TREC topics. Bendersky et al. [19] extended this approach to incorporate pseudo-
relevance feedback and information derived from external sources. Lease et al. [89] re-weight
these terms using simple term features in a learning to rank framework. Xue et al. [159] use
conditional random fields to model query subset distributions and select the terms to keep.

Closer to our work, Kumaran and Carvalho [84] analyze term subsets from TREC topic
descriptions. They use various query quality features to rank subsets, with some features based
on the execution of subsets as probe queries. While we start with full documents and introduce a
post-probe analysis step, we intend to expand our work with their ideas, extending them to social
media.

Balasubramanian et al. [13] build on the work of Kumaran and Carvalho to improve the
performance of longer Web queries, i.e., those with five terms or more. They employ query
quality features to predict which term, if any, could be removed to improve the performance of
these longer queries. Datta and Varma [41] further extend this work by probing with randomly
selected subsets. Other related work includes methods for term select in pseudo-relevance feed-
back [23]. Jiang and Allan introduce the notion of necessary and frequent terms [68]. Kumaran
and Allan [83] examine interactive query reduction.

Figure 4.1 presents our succinct query generation algorithm. While we express the algorithm
in general terms, within this chapter the primary source document is a news article taken from
a mainstream news source, while the secondary source collection is sample of tweets from a
three-day window starting at the date of the news article. This secondary source collection is
used to execute probe queries. Tweets for the secondary source collection were gathered through
the Twitter Streaming API, which produces a maximum yield of 1% of the total tweet stream.
Twitter’s search engine cannot be used to execute probe queries, since it restricts the speed at
which it accepts queries from a particular user.

Output from the algorithm is a ranked list of query terms intended to find social media content
related to the news story. The term ranking is intended to reflect the expected value of the terms
for this purpose. For the experiments reported in this chapter, we form a succinct query from the
top five terms of Q, which are then executed on the main Twitter search service.

Each step of this algorithm could be implemented in numerous ways. In this chapter, we

47

explore different implementations of these steps. The algorithm could be further generalized
by repeating steps 2-5 multiple times, with the results of each iteration applied to suggest new
subsets for probing in the next iteration, and with each iteration improving the estimated ranking.
New terms might be extracted from the probe rankings through pseudo-relevance feedback and
added to the candidate set. Figure 4.2 is showing an overview of the algorithm as an implemented
system.

Figure 4.2: Overview of the succinct query generation system.

4.1 Extracting Candidate Terms

To extract an initial candidate term set (step 1) we apply multiple key phrase extraction methods
to the news article. Each news article was pre-processed by stop-word removal and tokenization.

48

4.1.1 Pointwise Kullback-Leibler Divergence

The Kullback-Leibler (K-L) divergence is a measure in information theory. It measures the
difference between two distributions: a posterior probability distribution or a observation distri-
bution P and a prior probability distribution or a precisely calculated theoretical distribution Q.
For discrete probability distributions P and Q, the K-L divergence of Q from P is defined as:∑

x

P (x) ∗ log(
P (x)

Q(x)
) (4.1)

For each news article, we use pointwise K-L divergence [108, 150] to rank terms appearing in
the article’s full contents, which is:

p(t) log(
p(t)

q(t)
), (4.2)

where p(t) is the relative frequency of term t in the article and q(t) is the relative frequency
of term t in the background model collection(cleaned Wikipedia collection described in Sec-
tion 3.1.4). Relative frequency is the term’s probability of occurrence according to the unigram
language model. The value of pointwise K-L divergence for each term is used to measure how
different the relative frequency of term t in the given article and the background model. The
larger the value is, the bigger difference is. By ranking the scores of all terms in the article
contents, a ranked list of article special terms is produced.

4.1.2 TextRank

The TextRank model [113] is a graph-based ranking model for determining the importance of text
pieces (denoted as vertices in the graph), where global information (eg. knowledge drawn from
an entire text) can be used for computing that importance, rather than only local information asso-
ciated with individual vertices. TextRank models can be derived from different graph-based rank-
ing models, such as Google’s PageRank [124] and the Hyperlink-Induced Topic Search(HITS)
algorithm [77]. Similar to the implementation of [113], in this chapter we rely on an algorithm
derived from PageRank.

A formally graph-based ranking algorithm considers a directed, unweighted graph G with a
set of vertives V and a set of edges E, where G = (V,E) and E is a subset of set V × V . The

49

score of a vertex Vi is defined as:

S(Vi) = (1− d) + d ∗
∑

j∈In(Vi)

1

|Out(Vj)|
S(Vj) (4.3)

Here, In(Vi) denotes the set of vertices that point to Vi and Out(Vi) is the set of vertices that
Vi points to. Let d be the damping factor which is the probability of randomly jumping from
a given vertex to another one in the graph. Computation starts from arbitrarily assigned initial
values to the vertices, and iterates until convergence under a given error rate. The error rate of
convergence is usually approximated by the difference between scores of two iterations, which
is SK+1(Vi)− Sk(Vi).

TextRank is built for natural language texts, and introduces a weight for indicating the
”strength” between two vertices. The score of vertex Vi with weighted edges in the graph is
defined as:

WS(Vi) = (1− d) + d ∗
∑

j∈In(Vi)

wji∑
Vk∈Out(Vj)wjk

WS(Vj) (4.4)

A typical application of TextRank model is to automatically extract keywords from documents.
It was suggested in [113] that the following steps would help ranking nature language texts:

1. Identify text units as vertices, such as words, phrases, sentences or paragraphs. Add the
vertices to the graph.

2. Assign initial values to all the vertices.

3. Identify relations that can be used as edges for linking the vertices in the graph. Edges can
be weighted or unweighted, directed or undirected.

4. Iterate the ranking algorithm until convergence.

5. Sort vertices based on their final scores.

For the purpose of extracting news article keywords, we first considered single words as units.
We used a sliding window size of 2 words to discover relationships between units. Weights were
set to the number of co-occurrence within a widow. The damping factor d was set to 0.85, a
value typically suggested in the research literature. The maximum number of iterations was set
to 1000 and the error rate was set to 0.00001.

50

4.1.3 Evaluation of Candidate Term Extraction

We compared the performance of the pointwise K-L divergence method and the TextRank method
for candidate term extraction purposes. The dataset we used for evaluating these key word ex-
traction methods was the SemEval2010 training set [76]. This training set contains 144 scientific
articles, with author-assigned and reader-assigned keyphrases. Traditionally, the performance of
a keyword/keyphrase extraction system is determined by computing the proportion of top k can-
didates that match exactly the gold standard keywords or keyphrases. Thus, we evaluate the K-L
divergence method and the TextRank method using this match evaluation metric. The following
table (Table 4.1) shows an example of ranked lists from K-L divergence, TextRank, and the gold
standard.

K-L divergence TextRank Gold Standard
svms
spam
online

detection
data

email
splog

performance
filtering

blog

spam
svms
online
data

performance
set

results
detection

email
cost

support vector machine
content-based filtering

spam filtering
blog
splog

link analysis
machine learning technique

link spam
content-based spam detection

bayesian method

Table 4.1: An example of key word ranking list of different methods.

The annotated key information are keyphrases in SemEval2010, while the output ranked
list of our two methods are key words ranking lists. Thus, we first change the gold standard
keyphrase set to a keyword set. We then calculate the average precision, recall and F-score(β=1),

51

which are defined as follows:

Precision@k =
#gold standard key words in top k candidates

k
(4.5)

Recall@k =
#gold standard key words in top k candidates

#all glod standard key words
(4.6)

F1@k =
2 ∗ Precision@k ∗Recall@k
Precision@k +Recall@k

(4.7)

0 20 40 60 80 100
k (depth of the ranking list)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F1

K-L divergence
TextRank

Figure 4.3: Average F1 scores of different depth of ranked lists.

Figure 4.3 shows F1 scores at different top k candidate key words averaged over articles.
For all the different depths k, K-L divergence method performs equal to or better than TextRank
method (p-value of a paired sign test is 0.02). The best F1 scores for both methods occurs at
depth 27, where the F1@27 of K-L divergence is 32.14% and the F1@27 of TextRank is 29.36%.

52

We also computed the average running time for both methods to evaluate their efficiency.
To give a sense of comparative performance, we compare the run times on a typical desktop
machine. The average run time of K-L divergence for each article is 0.16 seconds (including
the time spending on building the background model, which is only undertaken once), and the
average run time of TextRank is 2.51 seconds. Thus, we chose K-L divergence as our key word
extraction method for later experiments reported in this chapter.

Before doing the above comparison, we chose the top 20 terms based on preliminary ex-
periments over a set of pilot news articles. We manually selected ten news articles from CBC
news website 2, and employed a member of our research group to annotate the relevance in the
generated key word ranking list for each news article.

The top-20 terms from pointwise K-L divergence ranking method for each news article
formed a set L as our candidate term set for the following experiments. In later steps, we also
use L as a simple language model for the news story. As suggested by the results of Tsagkias et
al. [151], the non-stopword terms in the headline (term set denoted asH) provide a solid baseline
query for linking news to social media.

In our evaluation experiments, we used terms from H as a baseline to compare with our
succinct query generation algorithm. At the end of the first step of our algorithm, the initial
candidate term set we used is term set T , where T = L ∪H .

4.1.4 Key Phrases Extraction

Alternatively, we could use key phrase extraction methods to extract candidate phrases from the
news articles. Thus, we explored noun phrase chunking and named entity recognition to test the
performance of key phrase extraction methods.

Noun Phrase Chunking Yang et al. [165] identifies candidate key phrases for documents us-
ing noun phrase patterns. Following their approach, the extraction of candidate phrases is pre-
formed with the help of a part-of-speech (POS) tagger. We first split the original news article by
sentences. A tokenizer and POS tagger are then applied to each sentence. We use the Natural

2http://www.cbc.ca/

53

http://www.cbc.ca/

Language Toolkit (NLTK) package 3 for these purposes. NLTK is a Python package that provides
libraries for text processing, such as tokenization, stemming, classification, tagging and parsing.

Based on the POS tags, we extract all candidate noun phrases from each sentence. A set
of noun phrase patterns (NPP) were defined by Yang et al. Each noun phrase is a sequence
of terms whose POS tags match a NPP in the NPP set. Three types of terms are components
of NPPs: nouns(N), adjectives(J) and conjunctions(C). The following table shows all NPPs we
used, which originated from the work of Yang et al. which we partially modified by adding more
combinations:

N NCN NN NNCN NNN
NNNCN NNNN NNNNN JN JNN
JNNCN JNCNN JNCN JCJJN JJJJN

JJJN JJCJN NCNNN NCNN JNNN
JNNNN JJN JJNCN JJNN JJNNN
JCJNN JCJN

After all candidate noun phrases were extracted, we scored the candidate phrases using an
undirected weighted graph-based method. Each candidate phrase was treated as a node in the
graph. Weights between two nodes were counted by the frequency of co-occurrence in the same
sentence. The score of each node was defined as the sum of all weights of the node. We noticed
that using this method, shorter noun phrases, and especially single noun terms, would be ranked
higher. In addition, there were duplicates within the ranked lists. For example, a ranked list of
noun phrases for the article “Google sells Motorola to Lenovo for $2.9B” 4 is shown in Table 4.2:

We observed from the result lists that if multiple terms were contained in a high ranking
key phrase, each individual term was also ranked in high positions in key word ranking lists.
Additionally, since our final goal is to discover succinct queries, we prefer shorter length of
queries, which key word extraction methods tend to provide. Thus, we did not select the noun
phrase chunking method as our candidate term extraction method.

3http://www.nltk.org/
4http://www.cbc.ca/news/technology/google-sells-motorola-to-lenovo-for-2-9b-1.

2516744

54

http://www.cbc.ca/news/technology/google-sells-motorola-to-lenovo-for-2-9b-1.2516744
http://www.cbc.ca/news/technology/google-sells-motorola-to-lenovo-for-2-9b-1.2516744

Google sells Motorola to Lenovo for $2.9B Noun Phrases
An expensive mistake by Google could turn into a golden
opportunity for China’s Lenovo Group as it expands beyond
its success in the personal computer industry.

Google is ridding itself of a financial headache by selling
Motorola Mobility’s smartphone business to Lenovo for
$2.9 billion. The deal announced late Wednesday comes
less than two years after Google bought Motorola Mobility
for $12.4 billion in the biggest acquisition of Google’s
15-year history.

While Google Inc. is backpedaling, Lenovo Group Ltd.
is gearing up for a major expansion. Already the world’s
largest PC maker, Lenovo is now determined to become a
bigger player in smartphones as more people rely on them
instead of laptop and desktop computers to go online.

Lenovo already is among the smartphone leaders in its
home country, but ...

motorola
google
lenovo

inc
smartphones

company
companies

apple
product

apple inc
patents

mobility
motorola mobility
pcs smartphones

technology companie
lines

product lines
global product lines

...

Table 4.2: A noun phrase extraction example.

Named Entity Recognition Another candidate phrase extraction method we considered was
named entity recognition. Since an event was defined as ”something that happens at a specific
time and place along with all neccessary proconditions and unavoidable consequences by TDT
tasks, Nallapati et al. [121] concluded that key words/phrases extracted from a news story can be
categorized to that words answering the questions “who?”, “where?”, “what?” and “when?”.

We utilized the Stanford NER [53] which is a named entity recognizer5. It helps to label

5http://nlp.stanford.edu/software/CRF-NER.shtml

55

http://nlp.stanford.edu/software/CRF-NER.shtml

names of entities from sequences of words in a piece of text, such as persons, locations and
company names. The recognized named entities are not ranked or weighted by any score func-
tion. For example, the named entities recognized by Stanford NER for the example article above
(”Google sells Motorola to Lenovo for $2.9B”) are as follows:

DATE ORGANIZATION MONEY LOCATION PERSON

Wednesday
this month

2012
Thursday

fourth-quarter
2007

summer
this year

Google
Motorola
Lenovo

Lenovo Group
Motorola Mobility

Google Inc
Lenovo Group Ltd

BlackBerry Ltd
Associated Press

IBM Corp
Bebeto Matthews Asso-

ciated Press Google
Arris Group Inc

Arris
Apple Inc

Forrester Research

2.9 billion
2.3 billion

2.35 billion
1.65 billion

China
U.S.

Latin America
Mountain View Calif.

Yang Yuanqing
Frank Gillett

Gillett

However, lacking of information about the importance of each named entity, we can not rank
the named entities in each category. In addition, no explicit evidence indicates the significance of
different categories. The average length of named entities is also too long for the goal of succinct
queries. Therefore, we did not use this method for extracting candidate terms.

56

4.2 Selecting probe queries

Given that |T | ≥ 20, we do not probe with all 2|T | subsets. Instead, we first probe all pairs from
T, which provided reasonable performance in our preliminary experiments. Probing all subsets
of size three, four or five terms [84] is also feasible, especially given that probes queries are
executed over a subset of tweets. Random selection of subsets is another possibility [41].

We tested all subsets of one, two, three, four and five terms. Since these probe queries were
selected from the candidate term set, the terms in each probe query were not ordered. Different
size of subsets produced different numbers of potential probe queries. Some combinations of
the probe terms are meaningful and others are not. We then execute these probe queries on our
collection and re-rank the candidate terms based on the scores computed for each probe query.

4.3 Executing probes

We executed each probe query Pi over the secondary source collection to produce a ranking βi
corresponding to each probe (step 3). The secondary source collection is the tweet collection we
describe in 3.1.3.

We indexed our tweet collection using the Terrier IR Platform6. The Terrier IR Platform is an
open source research search engine developed by the Terrier team from University of Glasgow.
We rank tweets using the PL2 divergence from randomness formula, as implemented by Terrier,
with the restriction that all probe terms are required to appear in all the retrieved tweets.

Since tweets are edited by individual Twitter users, the quality of tweets are extremely di-
verse. Tweets about a news article can be categorized as:

• Tweets posted by mainstream news organizations, such as BBC, CNN and CBC. Tweets of
this type have a typical format, with a article’s title followed by a url of the news content
webpage. News organizations and news agents use Twitter as a platform to announce their
news publications. Although tweets of this type are highly related to the news article, they

6http://terrier.org

57

http://terrier.org

only repeat the title of the news article, and contain no additional information otherwise..
For users tracking a news event in Twitter, they may not want to see the same news article
title again and again.

• Retweets, i.e., re-posts of original tweets. Twitter users may be interested in the news
title or content, so they simply re-post the original tweets from news agents or other users.
Similarly to the above category, there is no extra information in this kind of tweet. As
retrieval results for tracking, we should not repeatedly display tweets from this category.

• Comments on the news article content. Some users may comment on the events, persons,
places and any part of the news article content. Sometimes they are providing additional
information along with the retweets, including or not a url for the original news article.

• Junk tweets. To be retrieved by hot topic searching queries, some users include special
terms or hashtags in their tweets. However, their tweets content may have no relationship
with the terms or hashtags they are using.

Each βi consists of up to the top-50 documents returned by Terrier, with the choice of 50 doc-
uments based on preliminary experimentation. Since retrieved tweets are required to contain all
probe terms, some probes produce less than 50 documents. Since we seek material related to the
news article, rather than re-tweets and re-postings of the article, we apply near-duplicate detec-
tion before computing similarities in the next step. We also assume that tweets containing all
terms from the headline merely repeat the original story, and these tweets are removed from the
βi rankings.

4.4 Computing similarities

We analyze the probes by computing the similarity between the source document A and each βi
ranking (step 4):

si = similarity(A, βi) (4.8)

The computation of this similarity is critical to the performance of the algorithm. In this section,
we compute similarity using two different methods: one supervised-learning method and one
unsupervised method.

58

4.4.1 SIM1+SIM2

For the unsupervised method, we compute similarity from two simple matching functions, both
based on the weighted language model provided by L. As defined in 4.1, L is the simple language
model extracted from the news story.

The first of these matching functions SIM1(L − Pi, βi) is a precision-like method. It counts
matches between terms in L − Pi (i.e., L with the probe terms excluded) and the tweets in βi
taken as a group. It returns the proportion of terms in L − Pi appearing in βi. The bigger score
from SIM1 function is, the more other candidate terms except probe terms appeared in the probe
ranking tweets (as shown in the following equation 4.9).

SIM1(L− Pi, βi) =
|terms in L− Pi appearing in βi|

|L− Pi|
(4.9)

The second matching function SIM2(L − Pi, βi) compares each individual tweet in βi to
L − Pi. The number of matching terms is used to estimate a probability of relevance for each
tweet. To compute these probabilities, we derived a mapping between the number of matching
terms and the estimated probability of relevance from the results of our preliminary experiments.

In our preliminary experiments, we chose 11 news articles. All the tweets that contain at least
one term from L− Pi were gathered together. Then we randomly selected 100 tweets from each
document. A member of our research group judged the relevance of each of these 1100 tweets.
The results of this preliminary experiments are listing in the following table. The probability of
number of matching terms in each document is shown in each cell of the table.

Match Doc1 Doc2 Doc3 Doc4 Doc5 Doc6 Doc7 Doc8 Doc9 Doc10 Doc11
1 0.7272 0.5952 0.2069 0.2333 0 0.4565 0.8033 0.9167 0.4839 0 0.7356
2 0.9189 0.9444 1 0.75 0 0.8 0.7308 0.9762 0.9524 0.2857 1
3 1 1 1 0.6364 1 1 1 1 0.9643 0.4667
4 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1
6 1 1 1 1 0.9091
7 1
8 1
9 1

10 1

59

Through these experiments, we then concluded the estimated probabilities as :

matching terms probability of relevance Prob(tj)

tweet with 1 term in L− Pi Prob(tj) = 0.5

tweet with 2 terms in L− Pi Prob(tj) = 0.75

tweet with 3 terms in L− Pi Prob(tj) = 0.9

tweet with more than 3 terms in L− Pi Prob(tj) = 1

Table 4.3: The estimated probabilities of matching terms in each tweet.

These estimates are then summed and divided by |βi| to return an overall precision estimate
for βi. Thus, SIM2(L− Pi, βi) is defined as :

SIM2(L− Pi, βi) =

∑
tj∈βi Prob(tj)

|βi|
(4.10)

To compute similarity, we take a weighted linear combination of these two functions:

si = α1SIM2(L− Pi, βi) + α2SIM2(L− Pi, βi). (4.11)

We exploited an unweighted linear combination, which equals to the case that α1 = α2 = 0.5

independent of later results. After collecting annotations as training data in the learning to rank
subsection, we did a parameter sweep on α1 and α2.

4.4.2 Learning to Rank

To improve our unsupervised SIM1+SIM2 method, we developed a data set for supervised learn-
ing to rank method. The purpose of computing the similarities between the source document and
the probe rankings is to rank the probe queries. Thus, we can consider the problem as a ranking
problem and utilize learning to rank methods.

The data set we used for training and testing the learning to rank method are taken from
the same news articles as we used for evaluating the SIM1+SIM2 method. From each article,

60

we chose 10 probe queries. The chosen probe queries must have at least 5 tweets in their probe
ranking and they must have SIM1+SIM2 scores greater than zero. To fairly sample from the probe
queries, we carefully select the 10 probe queries using the following steps:

1. Split the selected probe query list into two equal halves. If there is a tie in splitting, we add
the tie to the top half.

2. Randomly choose one probe query from the bottom half.

3. Drop the bottom half, and consider the top half as the selected probe query list.

We iterated the above steps until we have 10 selected probe queries. If there were not enough
10 selected probe queries, we randomly select the remainder from the whole set of remaining
unselected probe queries. From each of these 10 selected probe queries, we took the top 5 tweets
from each of the probe ranking lists. Therefore, 50 tweets were chosen from each news article.

A member of our research group was asked to judge relevance between each news article
story and the 50 tweets. The judgement for each tweet is a binary judgement: 1 for relevant
tweet and 0 for non-relevant tweet. To divide the 66 news articles into training and validation
data sets, 11-fold cross validation was used. For each round of training and testing, we train on
60 news articles and test on 6.

The probe queries we selected were all pairs of candidate terms, which means there were
exactly two terms in each probe query: term1 and term2. Considering the relatively small training
dataset (60 articles * 10 probe queries), we extracted a small set of features to achieve the probe
query ranking task. The extracted features were based on three different categories: news article
(N), probe query/probe ranking tweets(P denotes for this type, Q for probe query, pt for probe
ranking tweet list, pt20 for top 20 tweets in the probe ranking tweet list), the relationship between
news articles and probe query/probe ranking tweets (N-P). A news article was represented by its
language model, which was mentioned before as: T = L ∪ H , where L is the body content
language model of the news article and H is the non-stop words of the headline ranked by IDF
value.

We chose two learning methods: RankSVM [70] and Linear Regression. RankSVM is an
variant of the support vector machine algorithm. It employs pair-wise ranking method to solve

61

Category Feature Descrip-
tion

Meta Data Used Features

N Probe query qual-
ity: Term rank in
news article’s lan-
guage model

List of terms in
H are ranked by
IDF value gener-
ated from a back-
ground collection

term1’s rank in L
term1’s rank in H
term2’s rank in L
term2’s rank in H

P Probe ranking
tweets quality:
Statistics of tweet
length in top 20
tweets of probe
ranking

∑
t∈pt20 |t|

avgt∈pt20|t|
mint∈pt20|t|
maxt∈pt20|t|
vart∈pt20|t|

P Probe ranking
tweets quality:
Statistics of dis-
tinct stop word
numbers in top 20
tweets of probe
ranking

English stop word
list

∑
t∈pt20 |stop words in t|

avgt∈pt20|stop words in t|
mint∈pt20|stop words in t|
maxt∈pt20|stop words in t|
vart∈pt20|stop words in t|∑

t∈pt20
|stop words in t|

|t|

avgt∈pt20
|stop words in t|

|t|

mint∈pt20
|stop words in t|

|t|

maxt∈pt20
|stop words in t|

|t|

vart∈pt20
|stop words in t|

|t|

Table 4.4: Feature set description for learning to rank methods.

62

Category Feature Descrip-
tion

Meta Data Used Features

P Probe ranking
tweets quality:
Statistics of term
overlapping ra-
tio between two
tweets in top 20
tweets of probe
ranking

∑
ti,tj∈pt20

ti∩tj
ti∪tj

avgti,tj∈pt20
ti∩tj
ti∪tj

minti,tj∈pt20
ti∩tj
ti∪tj

maxti,tj∈pt20
ti∩tj
ti∪tj

varti,tj∈pt20
ti∩tj
ti∪tj

P Number of re-
turned tweets (cut
at 50)

|pt|

N-P Ratio of tweets
containing key
words from H

#t∈pt20 and |H∩t|=1
|pt20|

#t∈pt20 and |H∩t|=2
|pt20|

#t∈pt20 and |H∩t|>=3
|pt20|

N-P Ratio of covered
key words from H

|H∩
⋃

t∈pt20 t|
|H|

N-P Ratio of tweets
containing key
words from L

#t∈pt20 and |L∩t|=1
|pt20|

#t∈pt20 and |L∩t|=2
|pt20|

#t∈pt20 and |L∩t|>=3
|pt20|

N-P Ratio of covered
key words from L

|L∩
⋃

t∈pt20 t|
|L|

Table 4.5: Feature set description for learning to rank methods(Continue).

63

ranking problems. If we assume the relationship between our features and the ranking scores is
linear, we can format the learning problem as a linear regression problem. We utilized TreeR-
ankSVM package 7 to train our RankSVM model and later used the trained model to predict
ranking for each news article. The package for linear regression we used is from scikit-learn 8,
which is a machine learning package in Python. We used the Ordinary Least Squares estimator.

For training and testing, we first employed 11-fold cross validation on only selected probe
queries. We then trained on the entire selected probe query dataset and tested the trained model
on all the probe queries from all of our 66 news articles. We also did experiments on two dif-
ferent label sets for both RankSVM and linear regression method: nDCG@5 and precision@5.
When trained by linear regression, the predicted values were estimated nDCG@5 values or pre-
cision@5 values. The predicted values were then used for ranking the probe queries.

4.4.3 Evaluation of similarity computation

Kendall’s τ rank distance Kendall’s τ rank distance is a metric for measuring the similarity
of the ranking of items when ranked by different quantities. With respect to a list with n items,
we take each pair of items in the list that is ranked into consideration. If two quantities rank
them in the same order, the pair is accepted as a concordant pair. In contrast, if the pair is ranked
as different orders by two quantities, the pair is discordant. Here, nc denotes the number of
concordant pairs in two different rankings. Similarly, the number of discordant pairs in the two
rankings is denoted by nd. The total number of pairs of the n items is n0 = n(n − 1)/2. The
Kendall’s τ rank distance between two ranking results is defined as the equation in 4.12.

τ =
nc
n0

− nd
n0

=
nc − nd
n0

(4.12)

However, a big challenge with the original Kendall’s τ measurement is that it does not adjust
ties when the pair of items are ranked in the same position in one or both quantities.

Based on human judgements for each individual tweet from our selected probe ranking lists,
we can rank the selected probe queries by the nDCG@5 value or precision@5 value of their

7http://staff.cs.utu.fi/˜aatapa/software/RankSVM
8http://scikit-learn.org/stable/

64

http://staff.cs.utu.fi/~aatapa/software/RankSVM
http://scikit-learn.org/stable/

probe ranking lists. The limited number of values of nDCG@5 and precision@5 bring ties in
these selected probe query ranks. Thus, a extension of Kendall’s τ , Kendall’s τB appears to be
better for our coefficient measurement case.

Kendall’s τB The idea of Kendall’s τB is to consider the number of tied values in each quantity.
When computing the total number of item pairs, the tied value pairs are excluded from the total
number of pairs. There might be different number of tie groups in each quantity. The numbers
of tied values vary in different groups of ties. We can re-compute the total number of pairs from
either the first quantity or the second quantity. To generate a normalized average of these two
numbers, a geometric mean was computed. In the following equation, Kendall’s τB is defined
as:

τB =
nc − nd√

(n0 − n1)(n0 − n2)
(4.13)

Here denote several quantities as follows: n0 = n(n − 1)/2 is the same as the denominator
in τA; n1 =

∑
i ti(ti− 1)/2 is the number of tie pairs in the first quantity, where ti is the number

of tied values in the ith group of the first quantity; similarly, n2 =
∑

j uj(uj − 1)/2 denotes the
number of tie pairs in the second quantity, where uj is the number of tied values in the jth group
of the second quantity.

Difference between ranking by nDCG@5 and precision@5 We first computed the different
between rankings by nDCG@5 and precision@5 from human judgements. The Kendall’s τB
rank distance value is 0.9712 between the two rankings. They are highly coefficient when ranking
the probe queries.

Parameter sweep of SIM1 + SIM2 To test our blind choice of weights for SIM1 + SIM2

method, we swept values of α1 and α2 on averaged Kendall’s τB scores between SIM1 + SIM2

rankings and nDCG@5 or precision@5 rankings of the selected probe queries. We show the
results of parameter sweep on α1 of the two labels in Figure 4.4.

65

0.0 0.2 0.4 0.6 0.8 1.0
®1 values

0.35

0.40

0.45

0.50

0.55

0.60
Ke

nd
al

l's
 ¿ B

 v
al

ue
s

Sweep ®1 on Kendall's ¿B (labelled by nDCG@5)

0.0 0.2 0.4 0.6 0.8 1.0
®1 values

0.35

0.40

0.45

0.50

0.55

0.60

Ke
nd

al
l's

 ¿ B
 v

al
ue

s

Sweep ®1 on Kendall's ¿B (labelled by p@5)

Figure 4.4: Parameter sweep on α1 of SIM1 + SIM2.

66

SIM1 + SIM2 ranking result has higher rank coefficient with ranking labelled by precision@5
on Kendall’s τB values. The best combination of weights for both label methods is α1 = 0.66 and
α2 = 0.34. But the p value of a paired sign test is 0.7633, which means that the improvement
is not significant. Therefore, in the following experiments, we retained our blind choice of
α1 = α2 = 0.5.

Cross-Validation on selected probe queries In order to estimate the performance of different
similarity measurements, we executed cross-validation on our selected probe queries dateset. In
Table 4.6, we display the results of comparing different methods on ranking the selected probe
queries based on different labels.

The SIM1 + SIM2 method is not a learning method, which we simply computed the Kendall’s
τB value between ranking list from SIM1 + SIM2 with ranking lists based on either nDCG@5 or
precision@5 of human judgement. The distance between SIM1 + SIM2 method ranking list and
nDCG@5 based ranking list from human judgements is 0.5682, compared with 0.5823 computed
from the distance to precision@5 based ranking.

RankSVM method and Linear Regression(LR) method were trained by the corresponding
two label sets. Both two training method improved the corresponding Kendall’s τB values on
both label sets. Significant t-test scores were calculated based on SIM1 + SIM2 method results.
However, none of these improvements was significant.

Method τB labelled by nDCG@5 τB labelled by precision@5
SIM1 + SIM2 0.5682 0.5823
RankSVM 0.5739(p=0.8895) 0.5933(p=0.7814)
LR 0.6060(p=0.3472) 0.6116(p=0.4646)

Table 4.6: Kendall’s τB values between methods and human judgements.

Prediction on all probe queries We also tried to train our methods on all the selected probe
queries, and tested the trained models on the entire probe query set. Since we did not have human

67

judgements for individual tweets of all the probe queries, we measured the differences between
SIM1 + SIM2 method and the trained methods. The Kendall’s τB values are showing in table 4.7.

Method Kendall’s τB
RankSVM + nDCG@5 0.5744
RankSVM + precision@5 0.5909
LR + nDCG@5 0.6118
LR + precision@5 0.6137

Table 4.7: Comparison of the predictions on all the probe queries with SIM1+SIM2 method.

Although the RankSVM learning to rank method and Linear Regression learning method
improved the rank coefficients between predicted rankings and human judgement rankings, the
improvements were not significant, but had a dramatically increased calculation workload. As
a results, we did not choose the learning to rank method or linear regression method in later
evaluation experiments.

4.5 Ranking candidate terms

The similarity values (s1, s2, ...) essentially represent a system of equations, each parametrized
by a pair of probe terms. If we imagine a latent variable associated with each term, our goal is
to estimate values for these variables, ranking T according to these values to produce Q. Since
we need actual value for each probe query, the following approaches are based on SIM1 + SIM2

methods. For the learning methods, some methods can help us predict similarity values of the
probe queries, which we can use them for this step. We explored several approaches, which often
produced similar rankings.

4.5.1 PageRank-like

Our pagerank-like algorithm allows terms that produce high similarity value across many pairs
to be properly recognized. We basically reused the TextRank equations. We create a Markov

68

chain with each term in T represented by a state. Transition probabilities are derived from the
similarity values associated with each term pair. Let S(tx, ty) be the similarity value associated
with a term pair {tx, ty}. We set the transition probability to

trans(tx, ty) =
δ

|T |
+

(1− δ)S(tx, ty)∑
t∈T S(tx, t)

. (4.14)

Following the example of pagerank, δ is a jump or transportation probability, which we set to
0.01. We then apply the power method to determine the stationary distribution, which ranks the
terms in T .

4.5.2 Linear System

Linear system collects multiple linear equations involving the same set of variables. We treated
each term in T as a variable, and the similarity values S(tx, ty) as outputs of the linear equations.
To rank the terms in T , we need to solve the linear system and find a solution of assigning a
number for each variable. The linear system looks like:

t1 + t2 = S(t1, t2)

t2 + t3 = S(t2, t3)

. . .

tm + tn = S(tm, tn)

(4.15)

It is the simplest kind of linear system. For example of pair probe queries, each equation involves
exactly two variables. The coefficients or weights of the system are all one. Since the variable
set size are usually more than 20, there may not be a perfect solution for the linear system. We
apply least-squares to find a solution.

4.5.3 Average Scores

The average scores method is a simplified version of the linear system method and pagerank-like
method. We assume that within a probe query, each term contributes same value to the similarity

69

score S(tx, ty). It means that in the linear equation of the above system t1 + t2 = S(t1, t2), we
have t1 = t2 = S(t1,t2)

2
. For each linear equation, we have similar solutions. We then sum up all

the assigned values for each variable as the following:

ti =
∑
tj∈T

S(ti, tj)

2
(4.16)

Similarly, using the values of each term in T , we can sort these terms.

4.5.4 Comparison of Re-Ranking Methods

To measure the differences among methods, we utilized a rank correlation metric: Rank Biased
Overlap (RBO)[157]. RBO has already been introduced in Section 3.2.

RBO = (1− ϕ)
∞∑
k=1

ϕk−1
|A1:k ∩B1:k|

k
(4.17)

Here, ϕ is a persistence parameter, where we set ϕ = 0.9, a typical choice. Since we chose top
K = 20 key terms for news articles, we compute the RBO value between top 20 terms from each
pair of the three methods.

The following results (Table 4.8) are shown for each pair of the methods: PageRank-like vs.
linear system, PageRank-like vs. average scores, linear system vs. average scores. In each pair,
we computed the average, maximum, minimal and median value for RBO across 66 news articles
(dataset as described in subsection 4.6.1.

Average Minimal Maximal Median
PageRank-like vs. linear system 0.9867 0.8812 0.9999 0.9867

PageRank-like vs. average scores 0.9915 0.8812 0.9999 0.9915
Linear system vs. average scores 0.9939 0.9417 0.9999 0.9999

Table 4.8: Rank Biased Overla between each pair of the re-ranking methods.

70

Based on comparison results shown in each table, the ranking lists generated from the three
re-ranking methods were highly correlated. Thus, we chose one of them (PageRank-like) method
as the algorithm for our re-ranking step.

4.6 Evaluation

4.6.1 Data

We evaluated our approach using a collection of news articles taken from March and April 2014,
with the resulting succinct queries used to re-query social media one week later. As mentioned
above, we worked with a set of pilot news articles to conduct preliminary experiments during the
development of our succinct query generation algorithm. These articles were not re-used for the
experiments reported in this section.

We developed a fresh test set based on news articles linked from Wikipedia’s news pages for
March-April 2014. We use Wikipedia as a method for selecting articles to provide breadth and
to prevent our personal news preferences from unduly influencing the selection. For simplicity,
we restrict the selection to articles from six high-quality mainstream news sources: BBC, CNN,
Reuters, the Washington Post, the Guardian, and CBC. Together, these sources provide coverage
from a variety of perspectives across much of the English-speaking world. For some major
events (e.g., MH370 and Crimea) we removed all but one related article to avoid having these
events dominate the test set. A few other articles were removed for technical issues (e.g., parsing
problems). This process produced a test set of 66 articles.

4.6.2 Methods and the Baseline

Based on our pilot study and evaluation experiments in each step, the final succinct query gen-
eration methods we chose for each step were: 1) pointwise K-L divergence for extracting initial
candidate term set; 2) select pairs of terms as probe queries; 3) top-50 tweets returned from
our tweet collection as probe ranking for each probe query; 4) SIM1 + SIM2 as our similarity
comparison method; 5) PageRank-like method as our re-ranking method for candidate terms.

71

We applied our succinct query generation algorithm to each of the 66 articles, taking the top-
5 terms from Q as our succinct query. As a baseline for comparison, we ranked the terms from
article’s headline (H) according to their IDF values in β, again taking the top-5 terms. Tsagkias
et al. [151] identify the headline terms as providing a solid baseline for our task, outperformed
only by a small number of their methods, which were either based on full articles or on substantial
external resources. We executed the queries on Twitter’s commercial search service, restricted to
English-language tweets. If a query produced less than 25 tweets, we removed the lowest ranking
term and re-issued the query, ranking new tweets below existing tweets and repeating until 25
tweets were returned. We evaluated the relevance of these tweets by both in-house assessments
and crowdsourcing assessments.

4.6.3 In-house Assessment

In the in-house assessment experiment, a single member of our research group performed all
assessments. For each article, in total 50 tweets returned from both methods were merged and
placed in random order on the same page as well as a link to the original news article webpage
for relevance assessment.

The assessor first click on the link, open the original news article webpage, read the associated
article and formulated a brief statement describing material that could be considered relevant up
to one week later. The tweets were then judged one by one in terms of this statement. Judgements
were binary, relevant or not. Tweets considered to be borderline were judged as not relevant.

4.6.4 CrowdSourcing Assessment

Crowdsourcing assessment is used more and more frequently for evaluating retrieval methods
in IR community [58, 73]. Instead of relying on only well-trained expensive expert assessors,
crowdsoucing workers can achieve relevance assessments cheaper and faster. In this step, to
validate our single expert assessor judgements, as well as investigate the agreement between
the expert assessor and crowdsourcing workers, we designed a set of crowdsourcing jobs and
launched them on a crowdsourcing website: CrowdFlower 9.

9https://www.crowdflower.com/

72

News Article And Microblog Post Relevancy

Overview
Welcome to our news article and microblog post relevancy task. In this task, you
will be given an url of a news article and a list of microblog posts that may or may
not talk about the event described in the news article. You will then open the url
to read the article and determine whether each post in the list is related to the article.

We Provide
To complete this task we will provide:
• A URL of the news article
• A list of posts

Process
Here is how to perform this task:
1. Read the News Article
• Click on the URL, which will open a web page on your web browser.
• Read the main content of the opened web page, and try to understand what
happened.
2. Read the Microblog Post
• Read the content of each post. If there are URLs in the post, you may click on the
URL and open the corresponding page on your web browser if you wish, but you
are not required to do so.

Figure 4.5: The instruction of CrowdFlower assessment jobs.

73

3. Select a relevancy level
We provide two relevancy levels:
Related to the news article
Choose this level if the post refers to the events of the news article.
Not related to the news article
Choose this level if the post does not refer to the events of the news article. You
should also choose this level if you are unable to determine if the post is related to
the article.

Thank You!
Thank you for your hard work!

Figure 4.6: The instruction of CrowdFlower assessment jobs.(Continued)

CrowdFlower is a crowdsourcing company serving as a platform for both workers and data
scientists founded in 2007. Millions of workers, or so-called contributors, all over the world
discover online jobs through CrowdFlower’s job boards and work on the jobs they are interested
in. Data scientists, start-up companies, academic institutions, and others employ the platform to
create micro-tasks such as building training data sets for machine learning algorithms, evaluating
searching algorithms, and other tasks.

Task Design on CrowdFlower The jobs we designed on CrowdFlower platform were called
”News Article and Microblog Post Relevancy”. Before starting the task, we provided an instruc-
tion for the workers as the webpage shown in Figure 4.5.

After reading the instructions, for each job, 20 tweets were shown to the annotator together
with the title of the news article and its hyperlink. We also provided hyperlinks and highlighted
the links for the urls in tweets. Annotators were permitted to click on the urls for external infor-
mation related to the tweets, but they were not required to do so. An example of the judgement
task page is shown in Figure 4.7.

74

News Title: Sri Lanka war: UN council backs rights abuses inquiry

http://www.bbc.com/news/world-asia-26765503

Post:

#VOFNPaper Sri Lankas High Commissioner to Pakistan conferred Pres-
tigious Civil... http://ow.ly/2Fl2qb

Whether this post is related to the news article
© 1: Related to the news article
© 0: Not related to the news article

Post:

#cdnpoli #ndp NDP Welcomes UN Human Rights Council Resolution on
Sri Lanka http://t.co/sb1BzHAHYK

Whether this post is related to the news article
© 1: Related to the news article
© 0: Not related to the news article

...

Figure 4.7: An example of the task page of CrowdFlower workders.

75

http://www.bbc.com/news/world-asia-26765503
http://ow.ly/2Fl2qb
http://t.co/sb1BzHAHYK

For each news article, we selected the top 10 tweets from both methods and randomized the
order of tweet display. Thus, at most 20 tweets were judged by the CrowdFlower workers. We
required multiple judgements from different annotators for each new article.

Jobs Launched To control the quality of these assessments and to avoid random/junk assess-
ments, we used our in-house judgements as a baseline for comparison. Later we also wanted to
compute the inter-annotator agreement between in-house assessment and crowdsourcing assess-
ment. Crowdsourcing assessments with 75% of agreement against in-house assessments were
labelled as “agreed judgements”. At least 3 different “agreed judgements” were obtained for
each news article. To achieve this goal, we launched several rounds of the same tasks. Statistical
results of each round are showing in Table 4.9.

Round Paid # workers # judgement # agreed Average time Min time Max time
1 $0.15 26 198 83 1m18s 0m21s 7m5s
2 $0.4 56 186 133 3m28s 0m30s 14m6s
3 $0.4 16 26 14 2m57s 0m18s 14m17s

Table 4.9: Statistical results of CrowdFlower jobs.

Based on major goal, we successfully gathered three round of tasks on CrowdFlower. In
the first round, we launched all 66 news articles with 20 tweets of each. 3 different judgements
were obtained by paid $0.15 for each single judgement task. There were 26 different Crowd-
Flower workers contributed to this job. Among the 198 judgements, 83 of them had at least
75% agreement with our in-house assessment. And 4 out of 66 news articles obtained 3 “agreed
judgements”. The average finishing time was 78 seconds. The quickest annotator finished in 21
seconds, and the slowest one finished in 425 seconds. Therefore, we launched a second round of
the same tasks.

In the second round, 62 news articles with 20 tweets of each were annotated by the work-
ers. Again 3 different judgements were required. Due to the low quality from the first round,
we raised our payment to $0.4 for each judgement task in this round. More contributors were

76

attracted this time, the total number of contributors turned to be 56. Within the total 186 judge-
ments, 133 were “agreed judgements”. 49 more news articles obtained at least 3 trusted judge-
ments. The average finishing time was 208 seconds. The quickest annotator finished in 30
seconds, and the slowest one finished in 846 seconds.

In the third and last round, 13 news articles with their 20 tweets were judged twice by differ-
ent workers. The same amount of money for each judgement task as the second round was paid
to the contributors. Overall 16 different workers participated in this round of judgements. 14 of
26 judgements were tested as agreed judgements. The average finishing time was 177 seconds.
The quickest annotator finished in 18 seconds, and the slowest one finished in 857 seconds.

Inter-annotator Agreement We computed the inter-annotator agreement both among the crowd-
sourcing assessors and between the expert in-house assessor and the crowdsourcing annotators.
To summarize the overall agreed judgements we obtained for the news articles and tweets, we
created Table 4.10. Among the 66 news articles, 13(19.7%) obtained 5 different agreed judge-
ments; 19(28.8%) obtained 4; 26(39.4%) obtained 3 and 5(7.6%) of them obtained 2 agreed
judgements; 1 article obtained 1 agreed judgements and 2 articles didn’t obtain any agreed judge-
ments.

agreed judgements obtained # news articles # tweets
5 13 260
4 19 380
3 26 520

less than 3 8 160
total: 66 total: 1320

Table 4.10: Number of agreed judgements obtained among news articles and tweets.

In order to evaluate the agreement among crowdsourcing assessors, we listed the counts of
tweets for each agreement case in Table 4.11. Figure 4.8 and Figure 4.9 display the results in
graphical representation for both relevance decisions and non-relevance decisions. For example,
for a tweet of 5 agreed judgements obtained, we could expect ratio of relevant vs. non-relevant as:

77

5:0; 4:1; 3:2; 2:3; 1:4; 0:5. Case 5:0 and 0:5 achieved 100% agreement among the 5 annotations.
Similarly, 4:1 and 1:4 achieved 80% agreement.

agreed judgements obtained percentage agreement relevance(#/%) non-rel(#/%)

5 agreed judgements
100% agreement
80% agreement
60% agreement

116/44.6%
19/7.3%
12/4.6%

76/29.2%
33/12.7%
4/1.5%

4 agreed judgements
100% agreement
75% agreement
50% agreement

134/35.3%
30/7.9%
6/1.6%

188/49.5%
22/5.8%

0/0%

3 agreed judgements
100% agreement
67% agreement

174/33.5%
35/6.7%

275/52.9%
36/6.9%

Table 4.11: Percentage agreement among the crowdsourcing workers.

We also computed the agreement among workers on relevant and non-relevant judgements.
We consider the majority agreement, which means that the percentage agreement is greater than
50%. For the percentage agreement of 50%, we named it as ”tie” in the table displayed (Ta-
ble 4.12. The percentages are the number of majority agreed judgement tweets divided by the
total number of agreed judgement tweets.

Relevant Non-relevant Tie
44.8% 54.7% 0.5%

Table 4.12: Majority agreement on relevant and non-relevant judgements.

Although we exploited in-house assessor as comparative decision for selecting the agreed
judgements of crowdsourcing assessments, we also concern about the real agreement between
these two different kind of annotators. Table 4.13 shows the percentages of agreement and dis-
agreement judgements between the majority decision of all crowdsourcing assessors and the
expert assessor. 39.6% agreement on relevant judgement and 38.0% agreement on non-relevant
judgement, which means in total 77.6% agreement and 8.5% disagreement.

78

3 trusted 4 trusted 5 trusted

Agreed judgements obtained from crowdsourcing workers

0

50

100

150

200

250
#

 T
w

e
e
ts

Relevance percentage agreement of CrowdSourcing Judgements

100%

80%

75%

67%

60%

50%

Figure 4.8: Relevance percentage agreement of CrowdSourcing Judgements.

4.6.5 Results and Discussion

Evaluation results are shown in Figure 4.10, which gives average values for several standard ef-
fectiveness measures. Although ERR and NDCG are designed for graded relevance values, they
adapt naturally to binary values (i.e., two relevance grades). For the in-house assessment, NDCG
is computed down to depth 25 and normalized by assuming the collection contains an unlimited
number of relevant tweets. Similarly, the results of crowdsourcing assessment are displaying
in right side of the figure. The depth computed down of the metrics is 10 for crowdsourcing
assessment, since we only asked the workers to judge 20 tweets (top 10 from each method).
The results shown in the table are calculated using all the crowdsourcing assessments (including
agreed judgements and non-agreed judgements).

All improvements over the baseline are statistically significant (p < 0.01) under a two-sided

79

3 trusted 4 trusted 5 trusted

Agreed judgements obtained from crowdsourcing workers

0

50

100

150

200

250

300

350
#

 T
w

e
e
ts

Non-relevance percentage agreement of CrowdSourcing Judgements

100%

80%

75%

67%

60%

50%

Figure 4.9: Non-relevance percentage agreement of CrowdSourcing Judgements.

paired t-test. Beyond statistical significance, we would expect these improvements, e.g., more
than 50% in precision@5, to be practically significant, i.e., noticeable at the user level.

For the news article used as an example in the introduction of this chapter (“More than 100
Congolese refugees killed in boat accident, Uganda says”) the algorithm produced the ranked
query: Q = {“albert”,“boat”,“lake”,“accident”,“capsized”}. As with any query re-weighting
method, there were misses as well as hits. For an article on President Obama’s new health secre-
tary the query over-emphasizes the departing secretary
Q = {“kathleen”,“sebelius”,“secretary”,“obama”,“obamacare”}, although many tweets were
still relevant. In some cases, the generated query merely copied terms from the headline. And,
of course, in others the headline outperformed it.

80

In-house assessor

Crowdsourcing Workers
Relevance

Non-Relevance
Tie

Relevance
523(39.6%)

11(0.8%)
37(2.8%)

Non-Relevance
101(7.7%)

501(38.0%)
147(11.1%)

Table 4.13: Agreement and disagreement between the crowdsourcing assessor and in-house as-
sessor.

In-house assessment Crowdsourcing assessment
P@5 P@10 P@25 NDCG ERR P@5 P@10 NDCG ERR

Headline 0.391 0.323 0.259 0.298 0.353 0.461 0.389 0.431 0.413
Succinct query 0.594 0.542 0.462 0.489 0.481 0.661 0.612 0.640 0.521

Figure 4.10: Experimental results. All improvements over the baseline are significant (two-sided
paired t-test, p < .01).

4.7 Summary

In this chapter, we explore probe queries as a method for extracting succinct queries from full
documents. We apply our algorithm to the problem of linking mainstream news articles to social
media. Our evaluation shows statistically and practically significant improvements over base-
line queries derived from the headlines of the news articles from both in-house assessment and
crowdsourcing assessment.

In candidate term extraction step, we compared two different key word extraction method.
We also spent effect to try to improve the similarity function in Equation 4.8, which must recog-
nize related material while avoiding near-duplicate material. We experimented with a learning
to rank. We compared several simple methods for re-ranking the candidate terms based on their
similarity score with the news articles.

81

To evaluate our algorithms, both in-house expert assessor and crowdsourcing workers per-
formed judgements. When designing crowdsourcing tasks, we considered quality control strate-
gies. An analysis of inter-annotator agreement was also undertaken.

82

Chapter 5

Real-time Tracking and Push Notification

In Chapter 4, we discussed the succinct query generation problems for tracking news, which a
news article was given as the input. If the news event in the news article is a topical event, the
query terms can be used to track this topical event from social media streams, such as Twitter.
The tracking provides a means for users to keep up-to-date on topics of interest to them.

Except news articles, user profiles, user interest descriptions or even explicit sets of topic
terms are possible contents to express users’ information needs. If care is taken, these updates
may even be pushed directly to the user through notifications on mobile devices or desktops.
However, for push notifications to be successful, the user must be given means to control the
frequency and volume of updates, avoiding indiscriminate and unwanted notifications. This
frequency and volume depends both on the interests of the user, with topics of greater interest
updated in greater volume, and on the topics themselves, with some topics naturally receiving
updates more frequently than others.

We might update a user interested in polls for the 2016 U.S. presidential elections many
times a day during the election cycle itself, but with updates stopping altogether after November
8. We might update a user interested in California residential water restrictions only when these
restrictions change, perhaps a few times a year, but interest in the topic might persist for many
years, as long as the user is a resident of the state. For causal sports and entertainment topics
(cricket or the Kardashians), a user may not desire more than a few of the most significant

83

updates per day, regardless of events taking place. For topics of great personal importance (a
tornado warning or friend’s wedding), we might push all updates.

The pushing problem can be compared with the secretary problem [56]. The secretary prob-
lem is a famous online decision uncertainty problem. We are interviewing a known number of
candidates for hiring one secretary. After each interview, a decision has to be made immediately
and if rejected, the candidate will never come back. The goal of this problem is to maximize the
probability of getting the best candidate. A most straightforward extension of the classic secre-
tary problem is aiming to hire k secretaries, which is named as k choice secretary problem or
multiple-choice secretary problem [78, 175]. Up to k secretaries are allowed to be hired during
the interview period. A decision need not be made immediately after each interview. But it’s
better to be as fast as possible.

The hiring problem was introduced by Broder et al. [20] as another uncertainty problem. A
company wants to hire a fixed number of employees, where the number of employees can be from
one to up to any finite number. An unknown number of candidates are sequentially interviewed,
with immediately decision made by the company and ability no revoke that decision. In solving
this problem, we must make a tradeoff between hiring quality and hiring rate.

In this chapter, we view our pushing notification problem as being in the same category as
the above two problems, but as a separate problem. While monitoring a social media stream
(i.e. the tweet stream), which contains an unknown number of sequentially incoming tweets, a
pushing service system will push up to k interesting tweets to the user. The system may also
choose to mute itself to avoid annoying the user if nothing interesting is appears. The decision to
push a tweet may not have to be made immediately. Instead, systems can make decision within
an acceptable delay time interval.

Zhao and Tajima [175] frame a retweet recommendation problem as a multiple-choice sec-
retary problem. They examine Twitter “Portal accounts”, which retweet selected tweets for their
followers, and consider a number of strategies for tweet selection. They propose and compare
a number of online and near-online decision methods, including a history-based threshold al-
gorithm, a stochastic threshold algorithm, a time-interval algorithm and an “every k-tweets”
algorithm.

The remainder of the chapter is organized as follows. We introduce the TREC 2015 Mi-

84

Secretary Problem Hiring Problem Pushing Problem
candidates N unknown unknown

hires k k [1,) [0, k]
goal maximize proba-

bility of getting the
best k candidates

trade-off between
hiring quality and
hiring rate

maximize sum of
gain (and pain)

decision immediately; no
revocable

immediately; no
revocable

within acceptable
delay

Table 5.1: Comparisons among Secretary problem, hiring problem and pushing problem

croblog Track in Section 5.1, which provides an experimental and evaluation platform for the
real-time tracking and push notification problem, and frame the significant factors that lead to
successful solving of the problems. Section 5.2 discusses the understanding of TREC 2015 Mi-
croblog Track user interest profiles and tweets, as well as the algorithms for scoring the relevance
between tweets and the user profiles. Section 5.3 provide discussion of different pushing noti-
fication strategies: without any human involvement; with daily relevance feedback from human
assessment. Section 5.4 provide the evaluation results of different pushing strategies and analysis
on the performance of pushes. A brief summary and discussion are included in Section 5.5.

5.1 TREC 2015 Microblog Track

The TREC Microblog tracks provide an experimental forum for research groups working in real-
time tracking and retrieval of social media stream area. In 2015, the track [98] was a real-time
filtering task with the goal of pushing interesting and novel tweets to users with respect to their
interest profiles. The track required participating groups to monitor the live “spritzer” stream
provided by Twitter over a period of ten days in July (July 20, 2015, 00:00:00 UTC to July
29, 2015, 23:59:59 UTC), selecting tweets relevant to 225 pre-defined interest profiles, each
expressed through statements modelled after TREC ad hoc topics.

Topics provided to participants in the TREC 2015 Microblog Track include a short query-like

85

description of the information need, called in TREC jargon the “title”. For example, topic MB235
(shown in Figure 5.1) has the title “California residential water restrictions”. Other fields in a
topic elaborate on the information need, providing a more complete indication of what is and is
not relevant.

<top>

<num> Number: MB235

<title> California residential water restrictions

<desc> Description: Find descriptions of the effects of

residential water use restrictions due to the drought in

California.

<narr> Narrative: The user is looking for information on the

effect of residential water use restrictions in California

caused by the on-going drought. While official reports on the

efficacy of the restrictions are relevant, the user is also

looking for first-hand reports of how residents are complying

and coping with the restrictions.

</top>

Figure 5.1: TREC 2015 Microblog Track Topic MB235
.

Participants in the track filtered the live Twitter “sprinkler” stream over ten days, selecting
those related to the 225 interest profiles and recording their ids for submission to TREC. In
addition to the ids, a push time was recorded for each tweet, indicating the time the system
decides to push it to the user. A maximum number of 10 tweets per day, per interest profile can be
pushed to the users. Additional tweets beyond ten per day per interest profile are simply ignored
by the evaluation metrics. After experimental runs containing these tweets were submitted to
TREC, 51 of these profiles were chosen for judging. Tweets were pooled and judged on a three-
point scale.

The evaluation measures considered both the relevance of selected tweets and the time at
which they were putatively pushed. In addition, the measures accounted for retweets, near-
duplicate tweets, and other redundancies, reflecting an expectation that a user would not want to

86

receive notifications about the same thing over and over again. In evaluating a run, a tweet was
considered to be redundant, providing no gain, if it did not contain substantial new information
not found in previously pushed tweets. Retweets were given special handling, with a push of a
retweet treated exactly as if the original tweet were pushed instead.

Along with this mobile notification scenario (called “scenario A”) the evaluation supported
a daily digest scenario (called “scenario B”). At the end of each of the ten days, participating
systems returned a ranked list of tweets from that day, just as if a user was sent a summary of
the day’s events by email. For this second task, standard evaluation measures for ranked retrieval
can be applied, provided that they also appropriately account for redundant content.

The primary evaluation measure for scenario A is expected latency-discounted gain (ELG).

ELG =
1

N

N∑
i=1

GiDi (5.1)

For N pushed tweets, Gi is the gain associated with tweet i, as indicated by the assigned rele-
vance grade, after adjusting for redundancy. The discount applied to tweet i isDi = max(0, (100−
Li)/100), where Li is the latency in minutes between the time the tweet appears on the stream
and the time the system decides to push it. ELG is computed on a daily basis, over the tweets
pushed by a system that day, with the system’s overall score averaged across all topics and all
days.

The secondary evaluation measure for scenario A is normalized cumulative gain (nCG).

nCG =
1

Z

N∑
i=1

GiDi (5.2)

Z is the maximum possible gain in the pool, given the 10 tweet per day limit. The gain and
discount of each individual tweet is computed as ELG.

ELG and nCG have an interesting discontinuity when a system decides to push nothing. For
some topics on some days, when no relevant tweets appear on the stream, this is the correct thing
to do. On such days, a system pushing a large number of non-relevant tweets will receive a
score of zero. To reward systems that push nothing on such days, the values of ELG and nCG
are defined to be 1 (full score). On the other hand, for systems pushing nothing on days when

87

relevant tweets appear on the stream, the values of ELG and nCG are defined to be 0. Since no
relevant tweets appeared for many topics on many days, the “null” or “empty” strategy of never
pushing anything receives a positive score under ELG and nCG. Indeed, this strategy forms a
challenging baseline, which many participating systems failed to beat.

To achieve good results for scenario A, systems must successfully address three requirements
implicit in the task:

1. A requirement to score individual tweets with respect to relevance. As a simplification, the
evaluation focused on topical relevance. Social signals, such as the prominence of the source
or its connection to the user, were not considered, so that the relevance of a tweet is primarily
determined by its content.

2. A requirement for novelty, so that the system does not push redundant information. This
requirement was operationalized by the assessors considering tweets chronologically: if two
textually similar tweets arrive at different times, the later tweet is considered redundant if it
does not contain substantive information beyond that found in the earlier tweet [155]. Again,
only tweet content is considered, so that a duplicate tweet from a more prominent or authori-
tative source would still be considered redundant.

3. A requirement to avoid pushing non-relevant information altogether. The evaluation measures
for scenario A explicitly rewarded systems that avoided pushing non-relevant information.
Thus, appropriate selection of thresholds was critical to success. In some cases, the ideal
response for a given day was to push nothing, and the “empty” strategy of never pushing
anything formed a challenging baseline that many systems failed to beat.

Since the first two requirements are inherent in any ranking task, we focus on the third re-
quirement. After demonstrating the impact of ignoring the third requirement, we consider various
strategies for establishing and maintaining thresholds for pushing tweets. We examine strategies
under two assumptions: with and without user feedback. When feedback is not available, thresh-
olds are established from historical information. When feedback is provided, it is limited to
once-per-day judgements based on the scenario B output. Of particular importance is the estab-
lishment of a global score threshold, applied across all topics in the absence of feedback. Our
best technique takes advantage of daily feedback in a simple yet effective manner, achieving the
best known result reported in the literature to date.

88

5.2 Relevance between User Interest Profiles and Tweets

In this section, we focus on the discussion of computing relevance between user interest profiles
and the individual tweets. User interest profiles are the expression of user information needs.
We apply key word extraction methods to extract key words from descriptions in the interest
profiles and pseudo-relevance feedback methods to expand the query terms. Tweets are short
sentences with at most 140 characters. Words, hashtags, mis-spellings, URLs, emotions are
common components of tweets. Based on the evaluation rules of TREC Microblog Track, we
need to pre-filter the tweet streams and control the quality of candidate tweets for pushing to
the user. We propose a simple scoring function based on coordinate matching to calculation the
relevance score between each user interest profile and each individual tweet.

5.2.1 User Interest Profiles

The user interest profiles adopt the standard TREC topic format. There are three fields: title,
description and narrative. Titles contain several key words or key phrases; descriptions are one-
sentence statements of the users’ information needs; narratives are paragraph-length descriptions
of the tweets that the users want to receive. Track participants were permitted to use all these
fields for filtering purposes. To implement the filtering tasks, we built a feature (term) vector for
each interest profile, and assigned different weights to different types of terms.

Feature Vector

The feature vector representing for each interest profile consists 3 components: title features,
narrative and description features, expansion features.

< title features, narr + desc features, expansion features > (5.3)

The title features are extracted from title fields. Each title was tokenized by space and punc-
tuation. The stop words were removed from these tokens. Additionally, for noun tokens, we
derived both singular and plural forms of these noun tokens. We processed the title of each
interest profile, and added processed tokens to the feature vectors of this profile.

89

To extract important words from descriptions and narratives as narr+desc features, we applied
a pointwise K-L divergence method (the same method as described in Section 4.1.1), which was
also applied later in the process to generate expansion terms. As we discussed earlier in this
thesis, we can exploit the pointwise K-L divergence method using the following equation to rank
words:

p(t) log(
p(t)

q(t)
), (5.4)

where p(t) is the relative frequency of term t in the foreground model and q(t) is the relative
frequency of term t in the background model collection.

In the case of discovering top-ranked words in narrative and description for each interest
profile, we treat the narrative field and the description field in each individual interest profile as
the foreground model and all the narrative fields and all the description fields in all 225 interest
profiles as the background model. For each user profile, equal weights are assigned to each
sentence in both the narrative and description field. The sentences from these two fields are
combined together (order doesn’t mater) and tokenized as the title field by white space and
punctuation. Stop words removal and singular/plural stemming are treated the same as we did
for title fields.

By applying pointwise K-L divergence, special terms for each individual narrative and de-
scription are ranked higher. The terms that are commonly expressed in many interest profiles are
ranked lower. For example, in the interest profile shown in Figure 5.1, terms from narrative and
description fields are ranked as the following Table 5.2:

Rank Term Rank Term
1 drought
2 complying 19 user
3 residents 20 relevant
4 reports 21 information
... ... 22 find

Table 5.2: Term ranking of narrative and description fields of Topic MB235.

In this table, the terms “drought”, “complying”, “residents” and “reports” are top ranked

90

terms, while “user”, “relevant”, “information” and “find” are low ranking terms. The terms
that appear in title fields (both singular and plural format) are removed from the ranking list of
narrative and description features.

We take the top-10 ranked terms from this ranking to form a set of important narrative and
description terms. In the runs that used narratives and descriptions, these terms are added to the
feature vectors. Except the information we can extract from the interest profiles, we also expand
terms in the title fields using a pseudo-relevance feedback method.

Pseudo-Relevance Feedback

Since relevant tweets may not contain all, or even any, of the title terms we employed a pseudo-
relevance feedback step to expand the title terms. We take a large collection of historical tweets
as our background model. This collection was collected through the Twitter Streaming API from
November 2013 to March 2015. We restricted the collection to English-language tweets on the
basis of the language field associated with each tweet. There are in total approximately 291
million tweets in the collection.

To build a foreground model for each user profile, we take the title terms as query, and search
the query in Twitter search engine. The top 1000 tweets are crawled on the search result pages
as our foreground model. In the top retrieved tweets, URLs in each tweet are replaced by their
web page titles, if the ¡title¿ tag existed in the HTML source of the web pages.

The TREC evaluation lasts for 10 days. For some popular topics during this period, the
key words and sub-topics of the Twitter user discussion may change every day. To keep the
foreground models up-to-date, we re-built the foreground models at the end of every day during
the evaluation period. A ranking of terms for each user profile can be generated by the scores for
each term from pointwise K-L divergence equation. The top 5 hashtags and top 10 other terms
from the ranking are added to the feature vector of each profile.

5.2.2 Pre-processing Tweets

Tweets are relative short and informally written. As a requirement of the TREC evaluation,
only tweets understandable by English readers could be assessed as relevant. Thus, we need to

91

detect English tweets. We applied a simple method to remove non-English tweets and partially
kept retweets. To better understand the tweets, a tokenizer that is designed for English Twitter
text is used. No stemming or stop word removal was utilized on tweets, but tweet quality was
considered.

Language detection and Retweets

Tweets written in a language other than English would be judged as not relevant based on guide-
lines of Microblog Track. To obtain English-only tweets, we examined the language tag for each
tweet feed by the Twitter streaming API, and only keep the ones with ”en” value in their lan-
guage field. In addition, we remove all NON-ASCII characters from the tweets, which also helps
remove non-English tweets. We assume that after the removal, if a tweet can be understood by
English readers with only the ASCII characters, it should be considered as an English-language
tweet.

A retweet in Twitter slang means a tweet reposted or forwarded from another tweet posted by
another user. The assessments of retweets in the TREC 2015 Microblog Track is different from
the same tracks in previous years. In previous years, all retweets were automatically considered
as non-relevant tweets to all the topics, no matter what contents were included in the retweets.
In 2015, the retweets returned were replaced by the original tweets that were reposted. In this
case, all additional commentary in the tweets was still ignored, and the created time of each
retweet was considered as the creation time of the original tweet. Thus, there was still a high risk
associated with returning a retweet, given that the original tweets are older than the retweets. In
our submitted runs, we ignored all retweets in Scenario A and keep them in Scenario B. Since the
evaluation metric of Scenario A contains a latency penalty component, while no latency penalty
applied in metrics of Scenario B.

Tokenizer

Our tokenizer was based on Twokenize, which is a tokenizer designed specificly for English
tweet text. It is part of CMU’s Tweet NLP project 1. Twokenize uses various regular expressions

1www.ark.cs.cmu.edu/TweetNLP

92

www.ark.cs.cmu.edu/TweetNLP

to keep emoticons, numbers, emails, URLs, abbreviations, arrows etc. complete.

A hashtag in Twitter slang is a special word or phrase started with a hash symbol (#) to
identify tweets for special topics. For the hashtags, Twokenize can recognize the hashtags in
tweet contents. We modify Twokenize, to add the base term without the ’#’ symbol as a token,
as well as the hashtag itself.

Since tweets are short, usually each tweet is focuses on only one topic. As a result we place
no importance on terms repeated multiple times. Thus, we do not count the term frequencies of
the tokens generated from our tokenizer. We treat the tokens as token sets, which means each
token was only counted once in each tweet.

Tweet Quality

Each tweet is written by an individual Twitter user. Thus, the quality of tweets varies a lot.
Twitter users post tweets for different purposes. A large amount of tweets posted everyday are
meaningless, low quality, or junk tweets. With a tweet quality filter, we can filter out low quality
tweets and some of junk tweets. Based on previous experimental experience, our quality filter
uses a set of arbitrary thresholds to detect low quality tweets. Low quality tweets are ignored in
the tweet streams.

Length of tweet Although tweets are at most 140 characters, short tweets are hard to extract
topics from. The average length of tweets are 9-10 words. Tweets that are too short are even
harder to extract meaningful information from. Thus, we assume, any tweet that has fewer than
5 tokens is a low quality tweet.

Number of Hashtags Hashtags are used to identify topics for tweets. Each tweet is usually
talking about one topic. Thus, we believe that tweets with more than 3 hashtags are low quality
tweets. Tweets with multiply hashtags are usually advertisement tweets or junk tweets which try
to catch Twitter user’s attention.

93

5.2.3 Relevance Scoring

According to above description, user profiles are converted to term vectors and each individual
tweet is converted to a token set. In our system, only tweet content is considered for relevance
scoring. While this approach proves adequate for TREC evaluations, we recognize that a more
realistic system would also consider social signals and other non-content features. A simple vec-
tor space model (derived from coordinate matching method and developed through pilot testing)
is applied to calculate relevance score between each incoming tweet and each user profile.

Given the short length of tweets, many features typically used in relevance formulae, includ-
ing term and document frequency features, appear to have limited value for ranking and scoring
tweets. For content matching of tweets, query term occurrence appears to be the key feature,
with the occurrence of title terms having greater importance than the occurrence of expansion
terms.

There are three types of feature terms: title, narrative+description, expansion. We denote
types of feature terms by i = {t, n, e}, where t stands for title, n stands for narrative+description
and e stands for expansion.

rel = (
∑

i={t,n,e}

wi ∗Ni) ∗ (
Nt

|T |
) (5.5)

In this equation, wi denotes the weight for type i and Ni stands for the number of times type i
feature terms appeared in the tweet. We normalized the score by ratio of title terms appeared in
the tweet, where |T | denotes the total number of title terms of the user profile. We assumed that
the more title terms appeared in the tweet, the more relevant the tweet would be. Based on pilot
experiments, weights were set to wt = 3, wn = 2 and we = 1.

5.2.4 Novelty

We de-duplicated tweets by computing unigram overlap between each new tweet and the tweets
previously pushed for a given topic across all days. Tweets with 60% or more overlap between
previously pushed tweets were discarded and not further considered. As with other parameters,
we based this overlap limit of 60% on pilot experiments conducted prior to TREC 2015.

94

5.2.5 Thresholding

Thresholds for pushing tweets were based on the relevance score in Equation 5.5. Each day, a
threshold was selected, and only tweets exceeding this threshold were considered for pushing. In
addition, the track set a limit of k = 10 on the number of tweets that could be pushed each day.
Once k tweets are pushed, nothing further is pushed that day.

Because of its simplicity, Equation 5.5 has the interesting property that reasonable relevance
thresholds are approximately the same across queries. The rel score has nothing to do with
different topics or any single terms. Our simplest thresholding strategy is thus to select a single
static threshold (GT) across all queries and days. A simple dynamic strategy is to base on the
top k from the previous day, selecting as a threshold the score of the kth tweet. However, even
under this strategy, we do not lower the threshold below an global minimum, selecting as a
threshold max(GT, top-k yesterday).

For our TREC 2015 experiments, we used a global threshold of GT = 5. To better under-
stand the impact of this threshold, Figure 5.2 shows the performance of our system for these two
strategies across a range of global threshold values. The baseline for this plot is the performance
of the null or empty strategy, i.e., never pushing anything, with low threshold values underper-
forming it. A global threshold of GT = 6 slightly outperforms our default threshold of GT = 5,
which retain for the remainder of this paper.

The oracle run shown in the plot represents the performance achievable if we made an ideal
selection of the global threshold for each topic at the beginning of each day. Clearly substantial
performance improves could be achieved through improved threshold selection. In the next sec-
tion we explore a dynamic emission strategy that uses feedback from each day digest (Scenario
B) to improve threshold selection for the following day. We imagine a user glancing at this digest
once per day, indicating which tweets are relevant, and which are not.

5.3 Pushing Notification Strategies

Since in Scenario A setting, the pushing system has an upper bound of the number of tweets that
it can push to each user every day. There may be more relevant and non-redundant tweets than

95

ora
cle nu

ll
GT=

0
GT=

1
GT=

2
GT=

3
GT=

4
GT=

5
GT=

6
GT=

7
GT=

8
GT=

9
0.0

0.1

0.2

0.3

0.4

0.5
EL

G
ELG for different global thresholds

Oracle Run
Null Run
GT
max(GT, top k yesterday)

Figure 5.2: ELG for different global thresholds and oracle run.

the upper bound. They can’t be all pushed to the user. Thus, we need some strategies to choose
which portion of the candidate tweets that should be pushed to users.

During the TREC 2015 implementation period, we considered automatic strategies that did
not require any human interruption. Two automatic strategies are: fix time window pushing
and dynamic time window pushing. In posterior experiment period, we also simulate daily user
feedbacks to improve our automatic strategies.

96

5.3.1 Automatic Pushing Strategies

Fix Time Window Pushing

The maximum acceptable latency in the Scenario A evaluation metric is 100 minutes. Any tweet
that is pushed later than 100 minutes will not receive any credit, even though it might be highly
relevant to the user interest profile. Thus, we designed our fix time window pushing strategy
based on the length of this latency penalty.

The threshold of this strategy follows our thresholding method. A dynamic threshold which
is the score of the top 50th tweet from the previous day with a combination of the global
threshold 5. We never lower the threshold below the global minimum, with is annotated as
max(GT=5, top-50 yesterday).

Using this strategy, we push tweets periodically. To at least obtain some credit from the
latency penalty, we design our time window as 90 minutes. In every 90 minutes, we select the
highest score tweet whose score is also higher than the threshold, and the tweet has to be non-
redundant to any previously pushed tweets. If there is not any tweet during the 90 minute window
that meets our requirement, the slot will be carried to the next 90 minute window. Whenever we
have pushed 10 tweets for the user interest profile one day, we will stop pushing for the day.

The choice of 90 minute window size is arbitrary. In the posterior experimental period, we
swept the window size to get a best choice of our fix window size. However, surprisingly, the
ELG scores of different fix time window sizes almost decrease linearly from one minute to 100
minute. It means that the smaller window size is, the higher ELG score we will obtain. The
sweeping result is showing in Figure 5.3. Therefore, in later improvements with simulating user
feedback parts, our window size is set to one minute.

Dynamic Time Window Pushing

The dynamic time window pushing strategy starts and ends the time window dynamically. The
starting and ending points of each time window depends on previous tweets in the stream.

There are two thresholds for each user profile: in dynamic time window pushing strategy
k0, and k1, where k0 6 k1. k0 was the lower bound of relevant scores for the profile. Here we

97

0 20 40 60 80 100
0.25

0.26

0.27

0.28

0.29

0.30

0.31

0.32

Figure 5.3: Sweep of fix time window size on ELG score.

made several assumptions: any tweet that had score higher than k1 was relevant to the user’s
information need; tweets that were scored lower than k0 were not relevant; tweets with scores
between k0 and k1 were considered “potentially relevant”. The value of k0 and k1 were based
on the scores of returned tweet in the previous day, and would be updated every night. In our
submitted system, k0 was set to the top 10th tweet score in the previous day; k1 was set to the
top 5th tweet score in the previous day; the maximum waiting time was set to 80 minutes. A
dynamic k-minute window was used for this algorithm. Algorithm 21 shows the strategy we
applied.

5.3.2 Push with Relevance Feedback

Under Scenario B participants submitted a ranked list of tweets for each topic for each day,
providing a daily digest of events for the hypothetical user. In this thesis, we use each day’s
digest to provide relevance feedback for determining thresholds for the following day. Each day
during the evaluation period we saved a ranked list for submission to TREC. While these were
not judged until after evaluation period, we are assuming here that they are judged at the end of
each day, with relevance information available for immediate use. We imagine a user interacting

98

Algorithm 1 Dynamic Time Window Algorithm
Data and Result

1: Data: Streaming of tweets
2: Result: Relevant tweets to the user profile

Variables

1: max waiting ←− k mins

2: cur time←− now

3: last time←− cur time−max waiting
4: time out←− 0

5: k0 ←− score of top10 tweet yesterday

6: k1 ←− score of top5 tweet yesterday

7: candidate←− highest score tweet between cur time and last time with score > k0

Steps

1: while True do
2: curr ←− highest score tweet between now and last time with score > k0

3: curr time←− time of curr

4: if curr > k1 then . If a tweet has score greater than k1, report it immediately, and
restart the waiting window.

5: Report curr
6: last time←− curr time

7: time out←− 0

99

Algorithm 1 Dynamic Time Window Algorithm (continued)
8: else if curr > candidate then . If a tweet is better than the candidate tweet, replace the

candidate with the current tweet, and restart the waiting window.
9: candidate←− curr

10: last time←− curr time

11: time out←− 0

12: else . If a tweet is worse than the candidate tweet.
13: if time out < max waiting then
14: time out←− now − curr time
15: else . Report the candidate, which is the best one during the waiting window. Then

restart the waiting window.
16: Report candidate
17: last time←− now

18: time out←− 0

19: end if
20: end if
21: end while

100

with the results once per day, providing feedback as a way of adjusting the filter for the next
day. While in practice this daily interaction might not be practical, i.e., not something all users
will want to do, the results provide a sense of what gains could be achieved through ongoing
feedback.

For our purposes, we consider only the highest ranking 10 tweets from each of these day’s
digest, as they were included in the judgement pool that TREC used to evaluate Scenario B. To
maintain independence from any discrepancies in the replayed implementation, we use the top
10 results from our submission to the track. Furthermore, we only make use of the raw gain
assessment of tweets (i.e., not interesting (0), interesting(0.5), and very interesting (1)) and not
any cluster-associated redundancy, in order to more accurately model a user providing feedback
within reasonable levels of effort.

Tweetid Gain Score
623036642367029248 1.0 9.00
623132347995717632 0.5 6.67
623096759351259136 1.0 5.33
623103407314726913 1.0 5.33
623228158506958848 0.5 5.33
623117886035468288 0.5 4.67
623141164447731713 1.0 4.67
623192011995123712 0.5 4.67
623197900768706560 1.0 4.67
623030980060708864 1.0 4.00

Table 5.3: Exemplar tweets from topic MB243 on July 20th for Scenario B for the UWa-
terlooBTEK system. Note that scores based using the proposed relevance function fall into
“blocks”.

Equation 5.5 often assigns the same score to several tweets. We use the term “score block”
to denote a set of tweets with the same score. Accordingly, we say that for a score si, it has a
corresponding score block SBi. To determine a dynamic threshold using relevance feedback, we

101

begin by combining all relevance feedback received into a single list of score blocks. At the end
of day 1 for a particular topic, we have 10 tweets worth of feedback, on day 2, 20 tweets worth,
and so on.

There are two exceptional cases before the main calculation. In the first case, there are no
relevant tweets whatsoever in any score block, and we take the maximum of the global threshold
(GT) and the highest score seen so far plus wt, the weight assigned to a title term match. In the
second case, all tweets are relevant and so we take the minimum score seen so far.

If we have a mix of relevant and non-relevant tweets, we first compute the average gain for
each score as follows:

avg gain(si) =

∑
sj≥si

∑
t∈SBj

gain(t)∑
sj≥si
|SBj|

Selecting the score that has the maximum average gain would be one such threshold selection
strategy. Although, we have found that such a strategy is not particularly good. We then weight
score’s average gain by the proportion of relevant material provided by that score (i.e., the preci-
sion of that score).

weight(si) =
|{t|t ∈ SBi ∧ gain(t) > 0}|∑

sj

|SBj|

weighted avg gain(si) = avg gain(si) ∗ weight(si)

Selecting a threshold based upon this weighted average gain tends to work reasonably well,
but tends to introduce too much non-relevant material and thus dampens ELG. To focus on at-
taining the highest gain from the most relevant tweets, we use the relevance information to adjust
this threshold according to the ratio between relevant and non-relevant material.

cand score(si) =

∑
sj≥si
|{t|t ∈ SBj ∧ gain(t) = 0}|∑

sj≥si
|{t|t ∈ SBj ∧ gain(t) > 0}|

For use as a threshold, a score’s cand score must then be less than some cutoff, σ. We can vary
σ to be more or less permissive of non-relevant tweets, with σ = 1.75 achieving substantially
improved results on ELG (see Table 5.4). Note that if no score is able to achieve a cand score

102

greater than σ, we set the threshold for the next day to be the maximum of the global threshold
(GT) and the highest score seen so far, across all days.

Strategy ELG
GT=5 (baseline) 0.3191

GT=6 0.3303(p=0.3819)
FB:avg gain 0.3257(p=0.5664)

FB:weighted avg gain 0.3510(p=0.0004)
FB:weighted avg gain +cand score 0.3678(p=0.0000)

Table 5.4: Dynamic emission strategies (p-values are generated from a paired sign test with GT
= 5 (baseline)).

5.4 Results

Table 5.5 and Table 5.6 are showing the results of our TREC 2015 submitting systems. The
RunID UWaterlooATDK is the best performed automatic run within all 37 submitted runs. Only
title features are used in the run and the pushing strategy is the dynamic time window pushing
strategy.

Strategy RunID ELG nCG

Title+Dyn UWaterlooATDK 0.3150 (0.2366 - 0.3933) 0.2679 (0.1864 - 0.3494)
Title+Fix UWaterlooATEK 0.2654† (0.1892 - 0.3415) 0.2365† (0.1576 - 0.3154)

Title+Narr+Desc+Fix UWaterlooATNDEK 0.2470† (0.1796 - 0.3144) 0.2170† (0.1474 - 0.2865)

Table 5.5: Results for Scenario A (push notification) for submitted runs with 95% confidence
intervals. † denotes p < 0.01 in a paired t-test with run UWaterlooATDK.

However, when we preformed posterior experiments, we determined that the UWaterlooATDK
run’s performance did not benefit from the dynamic time window pushing strategy. In fact, the

103

Strategy RunID nDCG
Title only UWaterlooBT 0.2200 (0.1684 - 0.2716)

Title+Narrative+Description UWaterlooBTND 0.2196 (0.1682 - 0.2710)

Table 5.6: Results for Scenarion B (email digest) for submitted runs with 95% Confidence Inter-
vals.

proportion of pushed tweets that waited for the maximum time window size is only 0.2%. This
means that most tweets are pushed immediately. The only reason that this run performed well is
the k1 threshold in this strategy is high, i.e., the score of top 5th tweet from the previous day.

5.5 Summary

Simple formulae for content matching and novelty can provide good performance for microblog
filtering, provided that care is taken to set appropriate thresholds to avoid pushing non-relevant
information. With simple content matching it is even possible to use a fixed, static global thresh-
old across all queries, although the results fall short of what might be achieved if the optimal
threshold could be determined for each topic at the beginning of each day. While dynamic
thresholds can be set from the tweets of previous days, without feedback, this strategy provides
only very limited gains.

On the other hand, dynamic thresholding through feedback has the potential to produce sub-
stantial and significant gains. While we have explored only one approach to this idea, through
daily relevance judgments, we can imagine more realistic interfaces, which might for example,
allow up/down judgments as tweets are pushed. However, to a large extent, our ability to ex-
plore further is limited by the assumptions and data of the Microblog Track. Announced plans
for TREC 2016 include some level of ongoing judgments, which could provide an vehicle to
test other approaches. In addition, we hope to incorporate social signals and other non-content
features into the relevance and novelty components of our system, with the goal of retaining our
simple approach to thresholding, while improving overall performance.

104

Chapter 6

Evaluation of Real-time Tracking in Social
Media

This chapter explores the problem of evaluating push notification techniques on social media
streams in a filtering application. As described in last chapter, we assume a stream of social me-
dia posts such as Twitter, against which the user issues an arbitrary number of standing queries
representing “interest profiles”, analogous to topics in ad hoc retrieval. For example, the user
might be interested in poll results for the 2016 U.S. presidential elections and wishes to be noti-
fied whenever new results are published. The system’s task is to identify relevant tweets from the
stream and send these updates directly to the user’s mobile phone via a push notification. Since
such notifications are often associated with an auditory or visual cue upon arrival, each imposes
a non-trivial cognitive burden on the user. Thus, careful control of the volume of notifications is
critical to successful push strategies. This chapter explores evaluation metrics for such a task.

At a high level, push notifications should be relevant, timely (i.e., providing updates as soon
after the actual event occurrence as possible), and novel (i.e., users should not be pushed multiple
notifications that say the same thing). Accordingly, an evaluation metric should reward systems
for updates that satisfy these three main criteria. In this chapter, we focus on relevance and
timeliness, adopting existing notions of novelty.

We start with an analysis of metrics from the TREC 2015 Microblog track, which opera-
tionalizes such a push notification task, and then re-assess submitted runs after making a minor

105

tweak to reflect a different assumption about the user model. We then re-assess the submitted
runs using variants of a metric that has previously been applied in the same evaluations. Using
score and rank correlations, we compare system effectiveness as measured by each metric. Our
results are surprising: We find little correlation between the different metrics. This means that
the answer to “which system is better” depends on how you measure it, which is undesirable
from an evaluation perspective.

We then examine the effects of latency penalties by considering the impact of different metric
variants on runs submitted to TREC 2015. This evaluation forms the basis of the Real-Time
Summarization (RTS) track at TREC 2016. This work provides a basis on which the evaluation
metrics for the RTS track at TREC 2016 can be developed.

The contribution of this chapter is three-fold: First, we present the novel and surprising
finding discussed above: any number of reasonable evaluation metrics give rise to significantly
different system rankings. We discuss and analyze why, tracing the issue to the handling of days
for which there are no relevant tweets. Second, we argue that the different existing evaluation
metrics we applied can be generalized into a framework that uses the same underlying contin-
gency table, but places different weights and penalties. Although we do not propose “one true
metric”, we believe this framework can guide the future development of an evaluation metric
that more accurately models user needs. Third, we know systems should be punished by pushing
tweets late. Without an empirical user study of how real users respond to push notifications, we
cannot develop a good latency penalty metric.

6.1 TREC 2015 Microblog track Metrics

The application scenario described in Section 5.1 was operationalized in the TREC 2015 Mi-
croblog track as the so-called “Scenario A” variant of the real-time filtering task. Over the official
evaluation period, which spanned ten days during July 2015, participating systems “listened” to
Twitter’s live tweet sample stream to identify relevant tweets with respect to 225 topics, 51 of
which were later assessed. Each system identified up to ten tweets per day, which were putatively
delivered to a hypothetical user. In total, 14 groups submitted 37 runs to the evaluation. Data
from this evaluation provides the starting point for our analysis.

106

The assessment workflow for the track was as follows: first, tweets returned by the systems
were assessed for relevance using a traditional pooling process. Relevant documents were then
semantically clustered into groups containing tweets sharing substantively similar information.
We refer the reader to prior work for more details [155].

The two metrics used to evaluate system runs were expected latency-discounted gain (ELG)
and normalized cumulative gain (nCG). These two metrics are computed for each topic for each
day in the evaluation period (explained in detail below). The score of the topic is the average of
the daily scores in the evaluation period. The score of a run is the average of the scores across all
topics.

Expected latency-discounted gain (ELG) was adapted from the TREC Temporal Summariza-
tion track [11]:

1

N

∑
G(t) (6.1)

where N is the number of tweets returned and G(t) is the gain of each tweet: not relevant tweets
receive a gain of 0, relevant tweets receive a gain of 0.5, highly-relevant tweets receive a gain of
1.0.

A key aspect of this metric is its handling of redundancy and timeliness: A system only re-
ceives credit for returning one tweet from each cluster. Furthermore, a latency penalty is applied
to all tweets, computed as MAX(0, (100 − d)/100), where the delay d is the time elapsed (in
minutes, rounded down) between the tweet creation time and the putative time the tweet was de-
livered. That is, if the system delivers a relevant tweet within a minute of the tweet being posted,
the system receives full credit. Otherwise, credit decays linearly such that after 100 minutes, the
system receives no credit even if the tweet was relevant.

The second metric is normalized cumulative gain (nCG):

1

Z
∑

G(t) (6.2)

where Z is the maximum possible gain (given the 10 tweet per day limit). The gain of each
individual tweet is computed as above (with the latency penalty). Note that gain is not discounted
(as in nDCG) because the notion of document ranks is not meaningful in this context.

Due to the setup of the task and the nature of interest profiles, it is possible (and indeed
observed empirically) that for some days, no relevant tweets appear in the judgment pool. In

107

terms of evaluation metrics, a system should be rewarded for correctly identifying these cases
and not pushing non-relevant content. If there are no relevant tweets for a particular day and the
system returns zero tweets, it receives a score of one (i.e., perfect score) for that day; otherwise,
the system receives a score of zero for that day. Note that a day may be silent for a system if it
has previously pushed tweets in all clusters appearing on that day.

It is worth mentioning that despite superficial similarities, our task is very different from doc-
ument filtering in the context of topic detection and tracking (TDT) [4]. TDT is concerned with
identifying all documents related to a particular event—with an intelligence analyst in mind—
which requires keeping track of false alarms and missed detections. In contrast, we are focused
on identifying a small set of the most relevant updates to push to users, grounded in interactions
with mobile devices. Furthermore, in TDT, systems must make online decisions as soon as doc-
uments arrive, whereas in our case systems can choose to push older content (subjected to the
latency penalty), thus giving rise to the possibility of algorithms operating on bounded buffers.
For these various reasons, TDT evaluation tools such as the decision error tradeoff (DET) curve
and derivative metrics provide inspiration, but are not directly applicable.

6.2 Analysis of “Silent Days”

In Figure 6.1, we show a scatterplot of the official ELG scores (which we call ELG-1 for reasons
that will become clear shortly) vs. nCG. Although there is an overall correlation between ELG-
1 and nCG across all submitted runs, we do note that in particular cases ELG-1 and nCG are
capturing different aspects of effectiveness: for example, the top three runs (circled in blue) in
terms of ELG-1 exhibit relatively large differences in nCG. There are also cases in which systems
achieve high nCG relative to their ELG-1 scores (the runs circled in red in the figure).

One interesting aspect of ELG-1 is its handling of days in which there are no relevant doc-
uments: for rhetorical convenience, we call days in which there are no relevant tweets for a
particular topic (in the pool) “silent days”, in contrast with “eventful days” (where there are rel-
evant tweets). In the ELG-1 metric, for a “silent day”, the only two possible system scores are
one (if the system remained silent) or zero (if the system pushed any tweets). This means that an
empty run (a system that never returns anything) may have a non-zero score based on how many

108

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

nC
G

R2 =0.7166

ELG-1 vs nCG

Figure 6.1: ELG-1 (official metric) vs. nCG.

silent days there are in each topic. As it turns out, an empty run will score 0.2471 in ELG-1
and nCG, shown as dotted lines in Figure 6.1. Since this was the first year of the TREC eval-
uation, systems achieved high scores by simply returning few results, in many cases for totally
idiosyncratic reasons—for example, the misconfiguration of a score threshold.

As an alternative, what if we did not reward systems for remaining silent? That is, on a silent
day, all systems receive a zero score, no matter what they did. We call this variant metric ELG-0
(in contrast to ELG-1, the official metric). We can justify this from the user perspective in that for
a silent day, the user does not obtain any relevant information regardless of system output (since
there are no relevant documents). In this case, how would the user know to “reward” a system
for remaining silent? That is, properly determining a silent day requires global knowledge (e.g.,
from pooling), which no individual user has access to.

In Figure 6.2, we show a scatterplot of ELG-1 vs. ELG-0. We see no discernible relationship
between the two metrics, which suggests that the handling of silent days is the most critical
part of the metric, in that different (reasonable) formulations yield dramatically different results
and system rankings. In fact, we would go as far as saying that effectiveness under ELG-1 is
primarily dominated by a system’s ability to identify the silent days. Under ELG-1, systems do

109

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

EL
G-

0

R2 =0.0007

ELG-1 vs ELG-0

Figure 6.2: ELG-1 vs. ELG-0 for all submitted runs.

well by learning when to “shut up”.

This observation is further illustrated by the scatterplots in Figure 6.3, Figure 6.4 and Fig-
ure 6.5, where we show silence precision vs. ELG-1, silence recall vs. ELG-1, and silence preci-
sion vs. silence recall for all runs.

Silence precision and recall follow the usual definitions of precision and recall, but with
respect to identifying the silent days. Since each topic has an equal number of days, there is
no distinction between micro- and macro-averaging. Across all the topics, 24.7% of all days are
completely silent, while another 6.7% have relevant but redundant material. We see that there is a
slightly positive (but very weak) correlation between ELG-1 and silence precision. Figure 6.4, in
effect, shows that systems achieve a high ELG-1 by achieving a high silence recall—i.e., getting
a good score is dominated by a system knowing when to “shut up”. Although systems with
comparable silence recall can differ substantially in ELG-1, we were surprised at how much of
the variance in the official metric can be explained by silence recall alone.

Figure 6.5 shows the tradeoffs system make with respect to precision and recall. On the right
edge of the plot are cases where the systems are almost always quiet, achieving nearly perfect
recall; on the left lower corner is a system that never “shuts up”, and hence its precision and recall

110

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1

0.0

0.2

0.4

0.6

0.8

1.0

Si
le

nc
e

Pr
ec

is
io

n
R2 =0.02

ELG-1 vs Silence Precision

Figure 6.3: Characterizing the effects of “silent days”: Silence precision vs. ELG-1

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1

0.0

0.2

0.4

0.6

0.8

1.0

Si
le

nc
e

Re
ca

ll

R2 =0.6132

ELG-1 vs Silence Recall

Figure 6.4: Characterizing the effects of “silent days”: Silence recall vs. ELG-1

111

0.0 0.2 0.4 0.6 0.8 1.0
Silence Recall

0.0

0.2

0.4

0.6

0.8

1.0

Si
le

nc
e

Pr
ec

is
io

n

R2 =0.0002

Silence Precision vs Silence Recall

Figure 6.5: Characterizing the effects of “silent days”: Silence precision vs. silence recall

are both zero. It is interesting to note that some systems perform poorly in both precision and
recall—they don’t push content when there’s relevant content and don’t “shut up” when there’s
no relevant content.

To our knowledge, this is the first time the huge impact of silent vs. eventful days has been
understood in the evaluation of push notification. However, we withhold judgment as to whether
the current TREC metrics represent the “right” approach: from the user perspective, since push
notifications are associated with high cognitive effort, perhaps the metric is correct in forcing
systems to focus on learning when to “shut up”. On the other hand, having such highly binarized
scores on the silent days creates many issues for system tuning, since it creates discontinuities in
the objective—the same issue as with trying to optimize a metric such as precision at rank one in
a retrieval task.

6.3 Gain and Pain

What are other reasonable ways in which we can evaluate the push notification task? A simple
and intuitive utility-based metric would be to reward “gain” based on delivery of relevant infor-

112

mation and to deduct “pain” based on delivery of non-relevant information. In fact, the TREC
2012 Microblog track employed exactly such a metric, called T11U [140], itself derived from
the linear utility metrics used in the TREC filtering tracks.

We adopt a slightly different but mathematically equivalent formulation as follows:

T11U = α · G − (1− α) ·Nx (6.3)

where G is total gain, Nx is the number of non-relevant documents pushed, and α controls the
relative weight of gain vs. pain. Note that in T11U, the total gain factors in different relevance
grades, the latency penalty, and the treatment redundant tweets in exactly the same way as ELG.

In Figure 6.6, we show a scatterplot of ELG-1 vs. T11U with α = 0.66, which was the value
used in TREC 2012. This value can be understood as setting the gain of a relevant notification
(highest relevance grade, no temporal penalty, not redundant) equal to the pain of returning two
non-relevant updates. With this setting, we do see reasonable positive correlation between ELG-
1 and T11U overall, but this correlation is highly misleading. According to T11U, very few
systems achieve positive utility overall—that is, the gain from pushing relevant content is not
sufficient to offset the pain from pushing non-relevant content. Furthermore, the relatively large
cluster of runs which score around zero in T11U vary widely in ELG, from around 0.2 to over
0.3, with the highest T11U score being somewhere in the middle of this band. In other words,
poorly-performing systems score low in both ELG and T11U, but beyond that, T11U and ELG
exhibit a weak correlation at best.

Of course, absolute scores and relative system rankings depend on the α parameter that bal-
ances gain vs. pain, and the setting of α = 0.66 was arbitrary. What would the evaluation results
look like for different settings of α? The answer is shown in Figure 6.7, where we sweep the
α parameter and compute Kendall’s τ with respect to ELG-1 for each setting. The results show
that Kendall’s τ varies substantially, ranging from moderate correlation to non-existent and even
slightly negative correlation. We have shown above that high correlations can be misleading, and
this plot shows that α = 0.66 is around the highest Kendall’s τ we can obtain regardless. These
results suggest that T11U and ELG-1 are measuring quite different aspects of effectiveness.

113

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1

6

5

4

3

2

1

0

1

T1
1U

R2 =0.6913

ELG-1 vs T11U

Figure 6.6: T11U vs. ELG-1.

0.0 0.2 0.4 0.6 0.8 1.0
α

0.2

0.1

0.0

0.1

0.2

0.3

0.4

0.5

Ke
nd

al
l's

 τ

Sweep α on Kendall's τ for T11U

Figure 6.7: Kendall’s τ between T11U and ELG-1 as a function of α.

114

6.4 Effects of the Delay Penalty

The simplest way to quantify the impact of the latency penalty is to remove it altogether. This
analysis is shown in Figure 6.8, where for ELG-1 and ELG-0, we plot the score of each run with
and without the latency penalty. In both scatterplots we show the diagonal y = x (note, not the
best fit line) for reference.

In this and all scatterplots, R2 values report the results of linear regressions, and rank corre-
lations are shown in terms of Kendall’s τ . As expected, all points lie above the diagonal, since
without the latency penalty system scores increase. We were surprised, however, that the scores
of many systems were exactly the same, which meant that their algorithms made immediate de-
cisions with respect to each incoming tweet. In fact, there were only a few outlier systems whose
scores substantially changed, which meant that they pushed tweets posted in the past.

We are quick to caution, however, that past system behavior is not necessarily a good indi-
cation of system behavior in future evaluations. In particular, TREC 2015 represented the first
evaluation of push notifications, and it is entirely possible that participants focused on simple
algorithms that did not attempt to model the tradeoffs involved in pushing past tweets (i.e., ac-
cepting the latency penalty for perhaps better relevance scoring).

Another noteworthy aspect of ELG (both the ELG-1 and ELG-0 variants) is that the latency
penalty is computed with respect to the pushed tweet, as opposed to the first tweet in the cluster.
Recall that in the evaluation protocol, tweets are semantically clustered into “equivalence sets”
that contain substantively the same information.

Let’s consider the case where tweets A and B belong to the same cluster, but tweet B was
posted three hours after tweetA. Suppose system P pushed tweetA two hours after it was posted
and systemQ pushed tweetB immediately when it was posted. Under the official scoring metric,
system P would receive no credit whereas system Q would receive full credit; this doesn’t make
sense since system P conveyed the relevant information to the user before system Q did.

Recognizing this issue, it seems appropriate to compute the latency penalty with respect to
the first tweet in each cluster (which is essentially what the Temporal Summarization track does).
The effect of this change on system scores is shown in Figure 6.9, where the scatterplots show
each run under the official score definition and the alternate computation of the latency penalty

115

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1 (Official)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E
LG

-1
 (

N
o
 D

e
la

y
 P

e
n
a
lt

y
)

R2 =0.9611

Kendall's ¿ =0.9436

ELG-1: Impact of Removing Delay Penalty

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
ELG-0 (Official)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

E
LG

-0
 (

N
o
 D

e
la

y
 P

e
n
a
lt

y
)

R2 =0.9286

Kendall's ¿ =0.8448

ELG-0: Impact of Removing Delay Penalty

Figure 6.8: ELG-1(top) and ELG-0(bottom) of all runs submitted to TREC 2015, comparing the
official latency penalty definition with removing the latency penalty altogether. Green circles
indicate empty runs.

116

with respect to the first tweet in each cluster. In both scatterplots we show the diagonal y = x

for reference. As expected, all points lie below the diagonal since scores decrease, but system
rankings don’t change much.

From another perspective, in Figure 6.10 we show the mean (bars) and median (diamonds)
delay in pushing tweets by each system, according to the official metric, and with respect to the
first tweet in each cluster in Figure 6.11. In these plots, we only consider tweets that actually
contributed to a run’s score (i.e., yielded non-zero gain). Note that the y axis is on a logarithmic
scale in minutes. The bars are arranged in descending ELG-1 score, from left to right.

From the bar chart in Figure 6.10, we see that, indeed, most systems always push immediately
when a tweet is posted (if the system thinks the tweet is relevant). We also see a few teams that
pushed tweets with a large delay—however, these are systems that pushed very few results, and
so their ELG-1 scores are fairly close to that of the empty run.

One salient feature of the participating systems is that they vary quite a bit in the volume of
relevant tweets that they push. Because of the reward associated with “staying quiet”, systems
can achieve similar ELG scores with very different push volumes. This is shown in Figure 6.12,
where each bar shows the total number of relevant tweets that are pushed by each system. The
bars are arranged in decreasing ELG-1 score from left to right. The red portions of the bars
represent tweets that contribute non-zero gain, while the tan portions of the bars represent tweets
that did not contribute any gain. These are either redundant tweets or tweets pushed beyond the
maximum acceptable latency (100 minutes) to receive any credit.

We see that there are many cases where systems that pushed more relevant tweets actually
score lower than systems that pushed fewer relevant tweets. Many of these are systems that
always push tweets no matter what—in other words, they don’t know when to “shut up”. In the
range of middle-scoring runs, we see a number of systems that barely push any content, and so
their ELG-1 scores are very close to that of the empty run (which, recall, was a baseline that
actually beats most systems).

This effect is highlighted in Figure 6.13, where the runs are resorted in terms of ELG-0 (but
otherwise the bars are exactly the same). Under this metric, systems are not rewarded for staying
quiet, and therefore systems that push more relevant tweets tend to score higher.

As a final analysis, in Table 6.1 we tally the number of clusters for each topic, the number

117

0.00 0.05 0.10 0.15 0.20 0.25 0.30
ELG-1 (Official)

0.00

0.05

0.10

0.15

0.20

0.25

0.30
E
LG

-1
 (

F
ir

st
 T

w
e
e
t

in
 C

lu
st

e
r)

R2 =0.9769

Kendall's ¿ =0.9147

ELG-1: Impact of Penalty Origin

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18
ELG-0 (Official)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

E
LG

-0
 (

F
ir

st
 T

w
e
e
t

in
 C

lu
st

e
r)

R2 =0.9849

Kendall's ¿ =0.9209

ELG-0: Impact of Penalty Origin

Figure 6.9: ELG-1 (top) and ELG-0 (bottom) of all runs submitted to TREC 2015, comparing
the official latency penalty definition with computing the latency penalty with respect to the first
tweet in each cluster. Green circles indicate empty runs.

118

0

1

10

100

1000

10000

De
la

ye
d

M
in

ut
es

Delay of Submitted Runs: Official

Figure 6.10: Quantifying the delay of each run in pushing tweets, with respect to the posted
tweet. Runs are sorted in descending order of ELG-1.

of singleton clusters (with only a single relevant tweet), and singleton clusters expressed as a
percentage of all clusters. We see that most of the clusters are singletons, which helps explain
the results observed in Figure 6.10: for singleton clusters, the latency penalty is always computed
with respect to the same tweet.

Profile Clusters Singletons %

MB228 3 3 100%
MB236 97 40 41%
MB242 73 47 64%
MB243 119 70 59%
MB246 171 127 74%
MB253 3 3 100%
MB254 32 27 84%
MB255 15 12 80%
MB260 1 0 0%
MB262 67 48 72%
MB265 58 44 76%

119

MB267 39 29 74%
MB278 35 30 86%
MB284 51 42 82%
MB287 71 58 82%
MB298 8 7 88%
MB305 3 2 67%
MB324 3 3 100%
MB326 20 10 50%
MB331 25 8 32%
MB339 10 9 90%
MB344 818 594 73%
MB348 37 22 59%
MB353 10 9 90%
MB354 18 3 17%
MB357 7 7 100%
MB359 8 7 88%
MB362 55 49 89%
MB366 97 79 81%
MB371 103 64 62%
MB377 12 9 75%
MB379 28 15 54%
MB383 16 13 81%
MB384 14 11 79%
MB389 17 14 82%
MB391 75 61 81%
MB392 17 6 35%
MB400 87 81 93%
MB401 311 236 76%
MB405 5 5 100%
MB409 9 5 56%
MB416 8 6 75%

120

MB419 56 36 64%
MB432 44 41 93%
MB434 276 257 93%
MB439 67 63 94%
MB448 1 0 0%
Average 66 49 74%

Table 6.1: The total number of clusters and singleton clusters for each interest profile.

6.5 Toward A General Framework

Let us take stock of our findings so far: we have evaluated runs from the TREC 2015 Microblog
track using official as well as alternative metrics (nCG, ELG-1, ELG-0, and T11U). In compar-
ing the metrics, we observe many inconsistencies in terms of both system scores and relative
rankings. In other words, “which system is better” depends on what measure we use. From
an evaluation perspective, this is not desirable because researchers lack consistent guidance for
algorithm development.

To address this issue, we propose a general evaluation framework built around the contin-
gency table shown in Table 6.2. At the core, our framework is utility-based in that gain is
rewarded for pushing relevant content (+GE) and pain is deducted for pushing non-relevant
content (−PE and −P0). However, a key insight is the explicit separation of eventful and silent
days, which our ELG-1 vs. ELG-0 experiments have shown to be critical in system evaluations.

System action “eventful days” “silent days”

Pushed relevant +GE -
Pushed not-relevant −PE −P0

Stayed silent −SE +S0

Table 6.2: The contingency table for a general evaluation framework for push notifications.

Our evaluation framework is general in that the metrics we have examined in this chapter can
be viewed as specific instantiations of the parameters in Table 6.2. For example, T11U sets GE

121

0

1

10

100

1000

10000

De
la

ye
d

M
in

ut
es

Delay of Submitted Runs: First Tweet in Cluster

Figure 6.11: Quantifying the delay of each run in pushing tweets, with respect to the first tweet
in each cluster. Runs are sorted in descending order of ELG-1.

122

0

100

200

300

400

500

600

700

800

#
 T

w
ee

ts

Push Volume (Ordered by ELG-1)

Relevant tweet: contributed to gain
Relevant tweet: did not contribute to gain

Figure 6.12: The push volume of each system, showing the number of relevant tweets pushed
and the fraction that contributed to gain, in descending order of ELG-1.

0

100

200

300

400

500

600

700

800

#
 T

w
ee

ts

Push Volume (Ordered by ELG-0)

Relevant tweet: contributed to gain
Relevant tweet: did not contribute to gain

Figure 6.13: The push volume of each system, showing the number of relevant tweets pushed
and the fraction that contributed to gain, in descending order of ELG-0.

123

and PE (based on α) but ignores the final row, and furthermore does not make the distinction
between eventful and silent days. ELG-1 and ELG-0 make different choices on S0, how systems
should be rewarded for staying silent on silent days, but both set PE and P0 to zero. That is, no
pain is deducted for pushing non-relevant content.

Using the framework presented in Table 6.2 as a guide, we can imagine a family of metrics
beyond those already presented. For example, we might augment T11U by creating a distinction
between eventful and silent days, thus arriving at a metric that is closer to ELG-1 or ELG-0.
We might set PE differently from P0 to create more nuanced distinctions in a T11U-like metric.
Different ratios between these weights also give rise to emphasis on different aspects of the push
notification problem.

The question remains on how to properly set the gain and pain weights in the contingency
table—and we presently provide no concrete answer, expect to say that further studies in user
modeling are necessary. For example, we have presented two plausible scenario (ELG-1 and
ELG-0) on the treatment of silent systems on silent days: a user study is necessary to decide
which alternative (or neither) matches user preferences. Our framework contributes to a step
toward the goal of the development of the “one true metric”.

Push notifications should be relevant, novel, and timely. The focus of this work is the last
property. Intuitively, systems should be “punished” for returning tweets late, hence the latency
penalty implemented in ELG. There is, however, little empirical characterization of how real
users would respond to push notifications with increasing delay. Ultimately, user studies are
needed to ensure that metric definition and user needs actually align.

124

Chapter 7

Ranking Similarity Measurement

Even minor modifications to ranking algorithms, training data, or document collections may
cause unpredictable changes to the quality of search engine results. For any given query, docu-
ments may move up and down the ranked list. New documents may appear; others may disappear.

Traditionally, changes in search engine results are quantified by way of retrieval effectiveness
measures, such as normalized discounted cumulative gain (nDCG), average precision (AP), and
expected reciprocal rank (ERR) [30, 66]. These measures are computed over ranked lists before
and after a modification. The difference in their values — typically averaged over a number of
queries — indicates the magnitude of the change.

Unfortunately, the computation of these measures depends on the existence of explicit rel-
evance judgments. For a given query, we must know whether or not each ranked document is
relevant to the query, and for some measures we must also know the degree to which each doc-
ument is relevant to the query (e.g., definitive, excellent, good, fair, bad, or detrimental [120]).
These judgments may be created by direct human assessment of relevance or inferred indirectly
from clickthrough logs and other user interaction data [31, 45, 49, 64, 71, 139]. Creation of these
judgments involves either substantial effort on the part of assessors or large volumes of interac-
tion data, limiting the number of queries over which the measures may be computed. Moreover,
modifications may surface previously unseen and unjudged documents. While we might assess
these documents immediately, requiring additional assessment, or treat them as non-relevant, we
run the risk of compromising the accuracy of the effectiveness measures.

125

Alternatively, changes in search results may be quantified by way of rank correlation coef-
ficients and other rank similarity measures, avoiding the need for explicit relevance judgments.
For example, the providers of a search service might use such measures to estimate the impact of
a proposed change across large numbers of queries — perhaps millions of them — identifying
those where the potential impact is greatest. While standard rank correlation coefficients — such
as Spearman’s ρ or Kendall’s τ — might be applied for this purpose, several researchers have
proposed specialized rank similarity measures that better reflect the requirements of search.

Some of this prior work focuses primarily on the problem of comparing search result lists [21,
82, 109, 143], a problem which we directly address in this chapter. Most notably, Webber et
al. [157] carefully analyze the requirements for comparing ranked lists across a wide range of
applications, including search results. Other work focuses primarily on the distinct, but related,
problem of comparing system rankings under different effectiveness measures [27, 166], a prob-
lem which we do not directly address in this chapter. We note, however, that progress on one
problem may translate into progress on the other.

Webber et al. identify three key characteristics that particularly apply to comparisons between
search results. First, users tend to focus on the top-ranked results, and more rarely view results
deep in the list [65, 71]. Thus, a rank similarity measure for search results must be top-weighted,
placing greater emphasis on early results, and lesser emphasis on later results. A change in the
third result should have greater impact than a change in the 103rd. Second, for a given query,
search engines do not typically rank more than a tiny fraction of the collection. Thus, a similarity
measure for search results must handle incomplete rankings, where a document appearing in one
list may not appear in the other.

Finally, since users may stop at any point in a ranked list, either because their information
need is satisfied or because their patience is exhausted, a rank similarity measure for search
results must appropriately handle indefinite rankings. According to Webber et al. the measure
“should not arbitrarily assign a cutoff depth, but be consistent for whatever depth is available.”
Suppose the ranked lists are truncated at an arbitrary depth K and we compute the measure at
that depth. The value of the measure at K should allow us to make predictions about the value of
the measure if it were computed at depths greater than K, allowing us to compute bounds on the
amount it can change as the depth of computation is increased. For example, perhaps the measure
would only increase, or stay the same, as the depth increased (i.e., adding more documents could

126

not make the lists less similar).

To satisfy the requirements implied by these three characteristics, Webber et al. proposed a
new rank similarity measure, which they call rank biased overlap (RBO). Given two ranked lists,
A and B, let A1:k denote the top k documents in A, and let B1:k denote the top k documents in
B. Define the overlap between A and B at depth k as the size of the intersection between these
lists at depth k (i.e., |A1:k ∩B1:k|) and define the agreement between A and B at depth k as the
overlap divided by the depth. Webber et al. define RBO as a weighted average of agreement
across depths, where the weights decay geometrically with depth, reflecting the requirement for
top weighting:

RBO = (1− ψ)
∞∑
k=1

ψk−1
|A1:k ∩B1:k|

k
. (7.1)

In this equation, the parameter 0 < ψ < 1 represents user persistence, with larger values repre-
senting a more patient user. When computing RBO for the comparative experiments reported in
this chapter, we set ψ = 0.9, a typical choice in Webber et al. The normalization factor (1− ψ)

serves to map the value of RBO into the range [0 : 1]. In practice, RBO is computed down to
some fixed depth K, which replaces∞ in the equation, reflecting the indefinite and incomplete
nature of the ranked lists.

Webber et al. surveyed a large number of rank similarity measures, and argued that only RBO
fully satisfies the requirements of ranked search results. In creating RBO, Webber et al. drew
inspiration from the user model incorporated into the rank-bias precision (RBP) effectiveness
measure proposed by Moffat and Zobel [118]. This model imagines a user scanning a ranked list,
starting at the top. After scanning a result, the user proceeds to the next result with probability
ψ and stops with probability 1 − ψ. This simple user model provides the basis for the weights
appearing in both RBP and RBO.

This close connection with the RBP effectiveness measure helps to justify the application of
RBO to search results. In general, given the enormous effort made by the search community to
develop and validate effectiveness measures, it seems reasonable to exploit this existing work to
guide the creation of rank similarity measures targeted at search results. Taking this observation a
step further, we propose a family of distance measures, each directly derivable from an associated
effectiveness measure. The core idea is straightforward:

127

Given two ranked lists, A and B, what is the maximum difference in their effective-
ness scores possible under a specified effectiveness measure?

We call this family of distance measures Maximized Effectiveness Difference (MED). Since we
typically normalize MED into the range [0 : 1], the value 1−MED provides an corresponding
family of rank similarity measures.

Like RBO, MED is a metric in the strict mathematical sense of defining a distance between
two ranked lists (see Section 7.1). The value of this distance varies with the associated effective-
ness measure. Unlike most similarity measures, MED is not a dimensionless quantity, since its
value can be interpreted in terms of the associated effectiveness measure.

Like RBO, MED transfers understanding and assumptions about user behavior from an ex-
isting effectiveness measure to measure rank similarity. Unlike RBO, MED provides a method
for transforming any effectiveness measure into a rank similarity measure. Both MED and RBO
derive their approach to top weighting from their associated effectiveness measure, along with an
ability to handle incomplete rankings, satisfying the requirements of search. MED is monoton-
ically decreasing with increasing depth of evaluation, satisfying the requirements for indefinite
rankings. In addition, MED can take appropriate advantage of known relevance information
(see Section 7.1). By the definition of MED, the introduction of known relevance information
always decreases the MED distance between two ranked lists. Moreover, if complete relevance
information is known, MED reduces to a difference in effectiveness scores.

For an effectiveness measure normalized to the range [0 : 1], the value of MED will also
fall into the range [0 : 1]. As we discuss later in the chapter, for some effectiveness measures
this normalization requires knowledge of collection parameters, e.g., the total number of relevant
documents. Since such information cannot be known without complete relevance information,
we choose values for these parameters that normalize MED into the range [0 : 1].

To compute MED, we must determine an assignment of relevance values to the documents
appearing in the two lists that maximizes the difference in their scores under the specified ef-
fectiveness measure, an optimization process that will vary with the effectiveness measure. For
some measures, such as RBP, the computation of MED is straightforward (see Section 7.2). For
other measures, including AP and ERR, the computation of MED requires the solution of more
difficult optimization problems (see Sections 7.3 and 7.4). Either way, MED reflects meaningful

128

differences between ranked lists (see Section 7.5) and provides properties not found in other rank
similarity measures on search results (see Section 7.6). Finally, we consider how to extend MED
beyond ranked lists, to more other effectiveness measures (see Section 7.7).

7.1 Basic Notation and Properties

We compute MED by maximizing the effectiveness difference between two ranked lists, A and
B. If S(A) is the score for list A under some effectiveness measure, and S(B) is the score of list
B under the same measure, then we seek to assign relevance values to the documents in A and
B to maximize

MED(A,B) = |S(A)− S(B)| . (7.2)

In the remainder of the chapter, we assume that scores produced by effectiveness measures
are always non-negative (and we are not aware of any established effectiveness measure that can
produce negative values). Thus, without loss of generality, we present algorithms that maximize

S(A)− S(B). (7.3)

The overall maximum can be computed by swapping the lists and reapplying the algorithm.

For optimization purposes, we represent A as a vector of variables

A = 〈a1, a2, ..., aK〉, (7.4)

where ai,1 ≤ i ≤ K, represents the relevance value assigned to the document at rank i in list A.
Similarly, we represent B as a vector of variables

B = 〈b1, b2, ..., bK〉, (7.5)

where bj , 1 ≤ j ≤ K, represents the relevance value assigned to the document at rank j in list
B. Since a document may appear in both lists, we also have a set of constraints in the form

an ≡ bm, (7.6)

129

indicating that the same document appears at rank n in list A and at rank m in list B, so that the
same relevance value must be assigned to both variables. Since a document will appear at most
once in each list, a given variable will appear in at most one constraint.

We refer to a variable that appears in a constraint as a bound variable. If a variable does not
appear in any constraint — corresponding to a document that appears in only one list — we refer
to it as a free variable. In the case that relevance information for a document is known from
existing judgments, we assign this known value to its corresponding variable(s), which remain
unchanged during maximization. We refer to these variables as predetermined variables.

For all effectiveness measures we consider in this chapter, a relevance value is a number in the
range [0 : 1]. For some measures — such as average precision — relevance is a binary property
of a document, and relevance values are either 0 or 1. For graded relevance measures — such
as nDCG and ERR — relevance can be one of several values from 0 up to a maximum grade
rG (i.e., the possible relevance grades are 0 = r0 < r1 < r2 < ... < rG ≤ 1). These grades
indicate the level to which a document is judged relevant to the query (e.g., definitive, excellent,
good, fair, etc.). For simplicity, we treat binary relevance as a special case of graded relevance,
with two grades: r0 = 0 and rG = r1 = 1. To aid understanding, a relevance value may be
interpreted as the probability that a user viewing the corresponding document will consider it to
be relevant [30, 34, 37], but this interpretation is not explicitly required in this chapter.

Mathematically, MED is a metric, regardless of the associated effectiveness measure. Non-
negativity, identity and symmetry are straightforward. To demonstrate the triangle inequality,
consider three ranked lists A, B, and C. Let A′ and B′ represent the assignment of rele-
vance values that maximizes the effectiveness difference between A and B, i.e., MED(A,B) =

|S(A′)− S(B′)|. Let C ′ be any assignment of relevance values to C that is consistent with A′

and B′, such that documents are assigned the same relevance values in all three lists. Let A′′

and C ′′ represent the assignment of relevance values that maximizes the effectiveness difference
between A and C. Let B′′′ and C ′′′ represent the assignment of relevance values that maximizes

130

the effectiveness difference between B and C. Now,

MED(A,B) = |S(A′)− S(B′)| (7.7)

= |S(A′)− S(C ′) + S(C ′)− S(B′)|
≤ |S(A′)− S(C ′)|+ |S(C ′)− S(B′)|
≤ |S(A′′)− S(C ′′)|+ |S(C ′′′)− S(B′′′)|
= MED(A,C) + MED(C,B).

The second-last step holds by the definition of MED, as maximizing effectiveness difference.

The degree to which MED satisfies our requirements with respect to top-weighting, indef-
inite rankings, and incomplete rankings, depends upon the associated effectiveness measure.
While we are not aware of any established effectiveness measure that cannot handle incomplete
rankings, a few measures — such as precision@k —are not top weighted. Moreover, several
effectiveness measures — such as precision@k and nDCG@k — are parameterized by a depth
k. Changing the value of k effectively creates a new measure, in the sense that precision@5 is
a different measure than precision@10. For such effectiveness measures, extending the ranked
lists beyond k does not change the value of the measure, or the value of MED. For these mea-
sures, MED appropriately supports indefinite rankings only to depths less than or equal to k.
When K < k, we compute MED by filling ranks K + 1 to k with free variables in both lists.
Other measures —such as RBP and ERR — are not parameterized by depth and are notionally
computed to infinity, providing stronger support for indefinite rankings.

7.2 Simple Dot Product Measures

In this section, we maximize Equation 7.3 for a class of simple but widely used effectiveness
measures. These measures may be expressed as a normalized dot product between a vector of
relevance values and a vector of rank-based discount values. The class includes RBP and nDCG,
along with other measures [117].

Let C be a ranked list (which could be either A or B) represented by a vector C = 〈c1, c2, ...〉
of relevance values. Let D = 〈d1, d2, ...〉 be a vector of discount values, where the value of di

131

depends only on the rank, i. Effectiveness is computed as the normalized dot product of C and
D:

S(C) =
C ·D
N

, (7.8)

where the normalization factor N is a constant, which may depend on assumptions about the
user or on characteristics of the document collection, such as the number of relevant documents
it contains at each relevance grade. Generally, normalization serves to map the value of the
measure into the range [0 : 1]. To compute MED, we require N > 0 (and we are not aware of
any established effectiveness measure where this requirement does not hold).

Each di in the discount vector may be interpreted as the probability that a user scanning the
search results will reach rank i, and hence view the document at that rank [30, 34, 118], but this
interpretation is not explicitly required in this chapter. To compute MED, we require discount
values to be non-negative and to decrease monotonically with increasing rank, i.e., di ≥ dj if
i < j (and we are not aware of any established effectiveness measures where this requirement
does not hold).

Maximizing Equation 7.3 for simple dot product measures is straightforward. First, we set
all predetermined variables in both lists to their known values. Second, we set all free variables
in A to rG and all free variables in B to r0 = 0. If S(A) − S(B) is maximized, then all free
variables in A must have value rG, for otherwise we could increase S(A)− S(B) by increasing
the value of these free variables. Similarly, if S(A)− S(B) is maximized, then all free variables
in B must have value 0.

Finally, given a constraint an ≡ bm, the contribution of these variables to S(A)− S(B) is

andn − bmdm
N

. (7.9)

Since discount decreases monotonically with increasing rank, S(A) − S(B) is maximized by
setting an = bm = rG if n < m, or an = bm = 0 if n > m. If n = m then these variables
contribute nothing to the value of S(A)− S(B) and can be set to any value.

For example, we may express precision@k as a simple dot product measure using a vector
of binary relevance values, a normalization factor of k, and a discount with the first k values set
to one and the remaining values set to 0:

D = 〈d1 = 1, d2 = 1, ..., dk = 1, dk+1 = 0, ...〉. (7.10)

132

In the case that the ranked lists are not fully specified to depth k, we complete them with arbitrar-
ily chosen free variables. Applying the relevance assignment process above, we see that MED
for the precision@k effectiveness measure (which we call MED-precision@k) is just one minus
the overlap between A and B at depth k:

1− |A1:k ∩B1:k|
k

. (7.11)

7.2.1 Computing MED-RBP

Moffat and Zobel [118] define the formula for computing rank biased precision (RBP) as:

S(C) = (1− ψ)
∞∑
i=1

ciψ
i−1, (7.12)

where C = 〈c1, c2, ...〉 is a vector of graded relevance values, although the definition works
equally well for binary values. For the experiments reported in this chapter, we assume rG = 1.
As it does in RBO, the parameter 0 < ψ < 1 represents user persistence, with larger values
representing a more patient user. We may easily express this formula in the form of Equation 7.8,
making it straightforward to compute MED for the RBP measure (MED-RBP). When computing
MED-RBP for the experiments reported in this chapter, we set ψ = 0.9, a typical choice [157]

MED-RBP provides strong properties in support of indefinite rankings. For ranked lists spec-
ified only to depth K, we compute MED-RBP down to infinite depth by assuming arbitrary free
variables in both lists below K. To maximize S(A)− S(B), in list A we set these free variables
to 1, and in list B we set these free variable to 0, so that we maximize:

S(A)− S(B) = (1− ψ)

(
K∑
i=1

(ai − bi)ψi−1 +
∞∑

i=K+1

ψi−1

)

= (1− ψ)

(
K∑
i=1

(ai − bi)ψi−1
)

+ ψK . (7.13)

If the ranked lists are later specified to greater depth, increasing K and potentially introduc-
ing new bound and predetermined variables, MED cannot increase. Moreover, the MED-RBP
distance cannot decrease by more than 2ψK as the depth goes to infinity.

133

7.2.2 Computing MED-DCG and MED-nDCG

At the time Järvelin and Kekäläinen [66] created normalized discounted cumulative gain (nDCG)
no other established effectiveness measure accommodated graded relevance values. Since then,
nDCG has become widely used for Web-related research. In this chapter, we work with a version
of nDCG that has become standard in the research literature and through industry practice [30,
120]:

S(C) =

(
1

ideal DCG

) k∑
i=1

ci
log (i+ 1)

. (7.14)

C = 〈c1, c2, ...〉 is a vector of relevance values, where each ci is one of r0 ... rG. When computing
nDCG for our experiments, we set k = 20.

For nDCG@k, relevance values are computed using the formula [30]:

rj =
2j − 1

2G
, j = 0, ..., G. (7.15)

For our experiments, the test collection employs three relevance grades, so that r0 = 0, r1 = 1/4,
and r2 = rG = 3/4. These grades indicate documents that are judged to be non-relevant,
relevant, and highly relevant, respectively.

We may express Equation 7.14 in the form of Equation 7.8, with a discount vector of

D = 〈1, ..., 1/log (i+ 1), ...〉. (7.16)

Järvelin and Kekäläinen call the dot product C ·D discounted cumulative gain (DCG). DCG is
then normalized by ideal DCG to give nDCG.

DCG is a useful measure in and of itself [1], and we can apply the methods of this sections to
compute MED-DCG. On the other hand, the computation of MED-nDCG requires an value for
ideal DCG, which in turn requires knowledge about characteristics of the document collection,
specifically the number of relevant documents at each relevance grade. Since complete relevance
information will not be available (or else we would just compute actual differences) we must
make assumptions about these characteristics for normalization purposes.

134

7.2.3 Normalization for MED-nDCG

Ideal DCG is a constant, defined as the maximum DCG achievable over the collection, which
can be determined by ranking all the most relevant documents first, followed by the next most
relevant, and so on. In theory, determining ideal DCG may require exhaustive judging, which is
rarely feasible on realistically sized collections. In practice, ideal DCG is usually estimated from
the known relevant documents surfaced during an retrieval experiment. If changes to ranking
algorithms surface new relevant documents, the estimate of ideal DCG may grow and the value
of nDCG may drop, even when the changes improve the algorithm. When applying nDCG as an
effectiveness measure, care must be taken to account for this potential growth in ideal DCG.

When computing MED for the nDCG measure (MED-nDCG), we may have no judgments
at all. For MED-nDCG and other measures requiring a normalization computed from collection
characteristics, we adopt the convention of normalizing MED into the range [0 : 1], making the
assumption that the collection contains the necessary number of maximumly relevant documents
for this purpose. Following this convention, we define

ideal DCG = N =
k∑
i=1

rG
log (i+ 1)

. (7.17)

Using this normalization factor, the value of MED-nDCG will fall in the range [0 : 1], producing
a MED-nDCG value of 0 for identical lists and 1 for completely different lists. This convention
provides a standard method for extending MED to measures requiring knowledge of collection
characteristics, which we apply to MED-MAP in section 7.3.

Admittedly, we do lose one property of MED by adopting this convention. The calculation
of nDCG requires the estimation of a constant that depends solely on the collection, not on the
ranked lists being measured. With no relevance judgments available, we have no estimate for
the value of this constant. By normalizing it away, as we do above, we lose the property that
MED can be interpreted as an actual maximum difference in effectiveness values. MED-nDCG
continues to be a metric in the mathematical sense, able to measure distances between rankings,
but these distances are scaled by an unknown constant. In this regard, MED-nDCG is no different
than existing correlation coefficients, including RBO, which are also dimensionless quantities.

Alternatively, for some queries we may know, or be able to reasonably guess, properties of the

135

collection that would impact normalization. For example, we may known through the application
of a query type classifier that a given query is navigational, and we may know from experience
that a navigational query typically has one highly relevant document and a small number —
no more than a dozen, say — of marginally relevant documents. Under these assumptions the
computation of MED-nDCG would require a different normalization constant and additional
constraints on the optimization, limiting the values of variables. We leave the exploration of this
idea for future work.

7.3 Computing MED-AP

Average precision (AP) is defined over a vector C = 〈c1, c2, ...〉 of binary relevance values as:

S(C) =
1

R

k∑
i=1

(ci · precision@i) =
1

R

k∑
i=1

ci
i

i∑
j=1

cj, (7.18)

where R indicates the number of relevant documents in the collection, and k an arbitrary max-
imum depth for computation. Although it is rarely made explicit in the research literature as
AP@k, this maximum depth is as important for AP as it is for precision@k and nDCG@k.
Changing k effectively creates a different measure. When computing AP for our experiments,
we set k = 100.

Like ideal DCG, determining R theoretically requires exhaustive judging. However, as we
did for ideal DCG, when computing MED for the AP measure (MED-AP) we adopt the conven-
tion of normalizing MED into the range [0 : 1]. We replace R with k in Equation 7.18, producing
a MED-MAP value of 0 for identical lists and 1 for completely different lists.

S(C) =
1

k

k∑
i=1

ci
i

i∑
j=1

cj. (7.19)

Unfortunately, Equation 7.19 is quadratic in its relevance values and does not fit the simple
dot product form assumed in Section 7.2. Maximizing S(A)− S(B) requires a little more effort
than it does for those measures. Fortunately, this maximization problem can be re-expressed as

136

a quadratic 0-1 optimization problem, a heavily researched and well understood class of prob-
lems [128, 16]. Our goal is to assign relevance values to the documents in lists A and B that
maximizes

S(A)− S(B) =
1

k

(
k∑
i=1

ai
i

i∑
j=1

aj −
k∑
i=1

bi
i

i∑
j=1

bj

)
. (7.20)

If S(A)−S(B) is maximized, the free variables in A must be set to one, and the free variables in
B must be set to zero, since the value of AP increases with more relevant documents. Of course,
predetermined variables must be set to their known values.

After setting the values for free and predetermined variables, our next step is to replace each
pair of variables appearing in a constraint with a single variable. To do this, we create a combined
variable vector Z = 〈z1, z2, ..., zk′〉, where k′ ≤ k is the number of constraints. Each document
appearing in both inA andB corresponds to a single variable in Z. The ordering of Z is arbitrary.
Equation 7.20 can now be re-written in the form

ZTQZ + LTZ + F, (7.21)

where Q is a matrix of order k′, L is a vector of dimension k′, and F is a constant. Equation 7.21
is the standard form for quadratic 0-1 optimization, a heavily studied NP-complete problem.
Quadratic 0-1 optimization is equivalent to the weighted max-cut problem, one of Karp’s original
21 NP-complete problems.

To approximate MED-AP, we implemented a version of tabu search [16], a standard local
search method that creates and maintains a set of disallowed (or tabu) moves to avoid repeated
visits to suboptimal solutions. Unfortunately — while the computation of MED for dot product
measures is essentially instantaneous — the computation of MED-AP may require a second or
so on a typical desktop machine.

7.4 Computing MED-ERR

Expected reciprocal rank (ERR) is based on the cascade model of user browsing behavior over
search results [30, 37]. The model implicitly assumes that the user is seeking a single relevant
document. After entering a search query and receiving a result list, the user scans the list, starting

137

at the first result. With probability c1 the user finds the information she seeks and stops browsing.
Otherwise, with probability 1 − c1, she continues to the second result, and so on. In general, if
the user reaches the result at rank i, she finds the information she seeks with probability ci, or
continues on to the result at rank i+ 1 with probability 1− ci. Thus, the probability that the user
reaches rank i is

i−1∏
j=1

(1− cj). (7.22)

ERR is then defined as the expected reciprocal rank where the user’s information need is satisfied:

S(C) =
∞∑
i=1

ci
i

i−1∏
j=1

(1− cj). (7.23)

ERR uses the same relevance grades as nDCG, as defined by Equation 7.15. ERR is not normal-
ized; its value naturally falls into the range [0 : 1] (with a maximum value < 1.0).

The cascade model is closely related to the user model incorporated into RBO and RBP, as
described in the introduction. For RBO and RBP, the probability that the user will move from
rank i to i + 1 is constant (ψ). Under the cascade model, this inter-rank transition probability
depends on the relevance of the document at rank i, and the probability that the user will reach
rank i depends on the relevance of all the documents appearing before it. If a few highly relevant
documents appear above rank i, the probability of reaching that rank becomes relatively small.
For example, if rG = 3/4, it takes only four such documents for the probability in Equation 7.22
to drop below 1%. After viewing five such documents, less than one in a thousand users will
continue.

Under ERR, if S(A) − S(B) is maximized, then free variables in A must be set to rG and
free variables in B must be set to r0 = 0. To demonstrate this claim, first consider the variable

138

an from list A, and then let

α0 =
n−1∑
i=1

ai
i

i−1∏
j=1

(1− aj), (7.24)

α1 =
n−1∏
j=1

(1− aj), and

α2 =
∞∑

i=n+1

ai
i

i−1∏
j=n+1

(1− aj),

which are constants with respect to an, with 0 ≤ α0 ≤ 1, 0 ≤ α1 ≤ 1, and 0 ≤ α2 ≤ 1/(n+ 1).
We may now express S(A) as a linear function of an:

S(A) = (α0 + α1α2) + anα1(1/n− α2), (7.25)

where (1/n−α2) > 0. Thus, if an is a free variable, its value must be rG for S(A)−S(B) to be
maximized. Similarly we may express S(B) as a linear function of a variable bm from list B:

S(B) = (β0 + β1β2) + bmβ1(1/m− β2), (7.26)

where β0, β1, and β2 are constants with respect to bm. Thus, if bn is a free variable, its value must
be 0 for S(A)− S(B) to be maximized.

Moreover, if S(A) − S(B) is maximized, the value of bound variables may be set to either
rG or 0. To demonstrate this claim, we combine Equations 7.25 and 7.26 under the assumption
that an ≡ bm are bound variables, with an = bm = x, giving

S(A)− S(B) = (α0 + α1α2)− (β0 + β1β2) + xγ, (7.27)

where γ = α1(1/n − α2) − β1(1/m − β2). Depending on the sign of γ, the value of x must be
either rG or 0 for S(A)− S(B) to be maximized. If γ = 0, x may be set to either value.

Thus, in maximizing S(A)−S(B) we set free and bound variables to either rG or 0, allowing
us to ignore intermediate relevance grades. Unfortunately, maximizing S(A)−S(B) still requires
us to solve a highly non-linear optimization problem, with what are effectively 0-1 constraints.
Fortunately, we can take advantage of properties of ERR to efficiently approximate the solution.

139

In particular, as we noted previously, the value of ERR largely depends on the position of the first
few relevant documents. As the user views more and more relevant documents, the probability
she will continue to lower ranks drops exponentially.

Consider the calculation of S(A) for some assignment to the variables in A. We start calcu-
lating the summation at rank i = 1. Suppose at rank k we have encountered p variables with
value rG. The sum over the remaining ranks is bounded by

ε =
∞∑

i=k+1

ci
i

i−1∏
j=1

(1− cj) (7.28)

≤
∞∑

i=p+1

ci
i

i−1∏
j=1

(1− cj)

≤
∞∑

i=p+1

rG
i

i−1∏
j=1

(1− rG)

= (1− rG)p
∞∑

i=p+1

rG
i

i−1∏
j=p+1

(1− rG)

<
rG(1− rG)p

p+ 1

∞∑
i=0

(1− rG)i

=
(1− rG)p

p+ 1
.

If p = 5 and rG = 3/4 then ε < 0.0002. This bound on S(A) is also a bound on S(A) − S(B),
since setting variables in B to rG increases S(B) and decreases the difference.

Thus, to approximate MED-ERR, we adopt a brute force approach, trying all combinations
of up to p = 5 bound variables in A down to depth 30. We set each combination to the value
rG, compute the value of ERR, and take the maximum across the combinations. This brute force
approximation requires a dozen milliseconds or so on a typical desktop machine.

140

Figure 7.1: Intra-group MED-nDCG@20 values for selected TREC 2005 Robust Retrieval Track
participants.

141

7.5 Validation

To validate MED, we employ a set of experimental runs submitted to the TREC 2005 Robust Re-
trieval Track [154]. As our primary goal, we hope to demonstrate that MED reflects meaningful
differences between retrieval runs. The TREC Robust Track provides a particularly appropriate
dataset for this purpose because its retrieval topics were chosen for their anticipated difficulty,
with many standard retrieval algorithms performing poorly on them. As a result, track partic-
ipants applied an unusually wide variety of retrieval methods, including some entirely novel
methods, particularly in the area of query expansion.

A total of 17 groups participated in the track submitting a total of 74 runs. We start by
examining differences between runs submitted by the same group. If we assume that each group
used a core retrieval approach across all its runs, we hope to interpret MED values in terms of
meaningful changes between these runs. Among the groups who submitted multiple runs, we
selected the eight groups with the best overall performance. While we now focus our attention
on these eight groups, we note that results for the excluded groups exhibit consistent behavior,
with the general observations we make below applying to these groups as well.

We computed MED-nDCG between all pairs of runs within each group, averaging across the
50 topics used in the track. Figure 7.1 shows the results, with one chart for each group, appearing
in alphabetical order. Within each chart, pairs are ordered by increasing MED distance. Each bar
corresponds to a single pair of runs, with the value of MED-nDCG given on the y-axis.

Each run is identified by a code indicating the type of information used to automatically for-
mulate the query. Like many TREC tasks, retrieval topics for the Robust Track provide multiple
expressions of the associated information need, with each topic including:

• a title field (T), providing one to three keywords expressing the information need,

• a description field (D), providing a single sentence expressing the information need, and

• a narrative (N), providing a longer expression of the information need.

Run codes indicate the set of fields used for query formulation. For example, the codes TD1
and TD2 in the Arizona State University chart both indicate runs where the title and description

142

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l n

D
C

G
 d

iff
er

en
ce

 (
T

R
E

C
 m

et
ho

do
lo

gy
)

MED-nDCG@20

(a) No predetermined variables

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l n

D
C

G
 d

iff
er

en
ce

 (
T

R
E

C
 m

et
ho

do
lo

gy
)

MED-nDCG@20

(b) 25% of available TREC qrels

Figure 7.2: Actual nDCG differences vs. MED-nDCG@20 across all pairs of runs from the
TREC 2005 Robust Retrieval Track.

143

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l n

D
C

G
 d

iff
er

en
ce

 (
T

R
E

C
 m

et
ho

do
lo

gy
)

MED-nDCG@20

(a) 75% of available TREC qrels

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 0.2 0.4 0.6 0.8 1

A
ct

ua
l n

D
C

G
 d

iff
er

en
ce

 (
T

R
E

C
 m

et
ho

do
lo

gy
)

MED-nDCG@20

(b) 100% of available TREC qrels

Figure 7.3: Actual nDCG differences vs. MED-nDCG@20 across all pairs of runs from the
TREC 2005 Robust Retrieval Track.(Continued)

144

were used for query formulation. Within each set of codes, numbers are assigned arbitrarily.
In addition, IBM submitted a single manual run (M1) in which the query formulation process
included human assistance.

We indicate the types of queries in each pair using unique colors and shading. For example,
title vs. title runs are colored in strawberry, description vs. description runs are colored in lime,
and title vs. description runs are colored in tangerine. The charts for the Chinese Academy
of Science, Hummingbird, Illinois, and Massachusetts contain only pairs of these types. An
interesting trend is apparent in these four charts, with title vs. title pairs and description vs.
description pairs being noticeably closer than title vs. description pairs.

Digging deeper, we consider the runs from Arizona State University. From the chart, we see
that TD1, TD2, and D1 are all several times closer to each other than they are to the other two
runs. These two runs, T1 and TD3, are closer to each other than they are to any of the other runs.
The group’s workshop report provides an explanation [132]. Reading their report, we learn that
T1 and TD3 used the same query expansion model, which differed from the expansion model
used by the other runs. Digging to the other groups reveals similar relationships reflected in
MED-nDCG. For example, as shown in the chart from IBM, manual runs tend to be farther from
automatic runs than automatic runs are from each other.

The computation of MED does not depend on relevance judgments. However, we would hope
that MED distance provides some indication about actual effectiveness differences. Figure 7.2(a)
plots (the absolute value of) actual nDCG@20 differences against MED-nDCG@20 distances
across all pairs for the groups listed in Figure 7.1. The plot includes both intra-group pairs and
inter-group pairs, 703 pairs in total. The plot shows a clear correlation, although the MED-nDCG
distances have much higher values.

As relevance judgments become available, creating predetermined variables, MED-nDCG
distances become increasingly correlated with actual nDCG differences, moving closer and
closer to the actual differences. Figure 7.2(b) plots actual nDCG differences against MED-nDCG
after we set variables to predetermined values from the using 25% of available TREC relevance
judgments, randomly selected. Figure 7.3(a) provides an equivalent plot for 75% of available
TREC judgments, and Figure 7.3(b) provides an equivalent plot for 100% of available TREC
judgments. In this last plot, all of the MED-nDCG distances do not match actual differences

145

Figure 7.4: RBO vs. MED-RBP across all pairs of runs.

because TREC 2005 Robust Track runs were not fully judged down to depth 20, and TREC
assumes unjudged documents to be non-relevant.

Figure 7.5 provides comparisons between RBO, MED-nDCG, MED-RBP, MED-AP and
MED-ERR. In all plots, most of the points fall toward the upper right, indicating larger dif-
ferences in the pairs. The pairs appearing towards the lower left are generally from the same
groups, using the similar retrieval techniques.

Given that MED-RBP and RBO share a common user model, we would expect a high cor-
relation between them. Figure 7.5(a) shows the correlation. The strength of this correlation
suggests that other variants of MED may similarly reflect the user models underlying those mea-
sures. Interestingly, MED-RBP is even more highly correlated with MED-nDCG@20, as shown
in Figure 7.5(b). This correlation is related to the choice of persistence parameter (ψ = 0.9).
Lower and higher values for ψ produce weaker correlations. Figures 7.5(e) and 7.5(f) show how

146

values of MED-nDCG change for different values of k (5, 20, and 100).

7.6 Comparison with Prior Work

As discussed in the introduction, the RBO similarity measure of Webber et al. [157] directly
inspired our efforts. As part of that paper, Webber et al. provide a substantial review of related
research up to early 2010, when the final version of their paper was submitted and accepted. We
encourage readers who are interested in a thorough analysis of this prior work to consult that
paper. In this section, we touch only on the prior work that is most closely connected with our
efforts, including papers appearing since early 2010.

Working independently of Webber et al., and publishing at roughly the same time, Sun et
al. [143] identified a similar set of desiderata for rank similarity in the context of search. These
desiderata essentially include a requirement for top-weighting, and an ability to handle indefinite
and incomplete results. In addition, they suggest that measures should be symmetric, should be
computationally efficient, and should allow meaningful aggregation over multiple queries. To
address these desiderata, Sun et al. defined a similarity measure based on a weighted version of
the Hoeffding distance. They then applied this measure to visualize differences in search engines
through multidimensional scaling.

MED satisfies the additional desiderata of Sun et al. Symmetry is straightforward from the
definition of MED. The versions of MED detailed in this chapter satisfy the efficiency require-
ment to varying degrees, and all are reasonably efficient. Computation of MED for the dot
product measures is essentially instantaneous, with run times dominated by I/O and data conver-
sion. For members of the MED family not covered in this chapter, computational efficiency will
depend on the details of the associated effectiveness measure. MED also derives its approach to
aggregation from the associated effectiveness measure, where an arithmetic mean is typical, but
other approaches are possible [130].

Kumar and Vassilvitskii [82] proposed various extensions to the Kendall’s τ and Spearman’s
footrule correlation coefficients intended to address the requirements of search. These extensions
are intended to handle top weighting, known document relevance, and the similarity between

147

(a) MED-RBP vs. RBO (b) MED-RBP vs. MED-nDCG@20 (c) MED-AP vs. MED-nDCG@20

(d) MED-ERR vs. MED-nDCG@20 (e) MED-nDCG@5 vs. MED-
nDCG@20

(f) MED-nDCG@100 vs. MED-
nDCG@20

Figure 7.5: Comparisons between RBO, MED-nDCG, MED-RBP, MED-AP and MED-ERR for
all runs from the TREC 2005 Robust Retrieval Track.

148

documents. They demonstrated that these extensions maintain the Diaconis-Graham inequality,
which guarantees that Kendall’s τ and Spearman’s footrule differ by at most a constant factor.

Like Webber et al. [157] and Sun et al. [143], Kumar and Vassilvitskii suggest a list of desider-
ata for rank similarity in the context of search. These desiderata include support for top weighting
and the triangle inequality. While all their requirements are not precisely defined, MED appears
to satisfy them with one interesting exception. The family members of MED defined in this
chapter do not provide support for inter-document similarity. When comparing two rankings,
replacements or swaps of documents with similar content may not greatly impact the user, and
a similarity measure might reasonably reflect this consideration. From the perspective of MED,
we can trace this requirement back to the associated effectiveness measures, which also do not
appropriately handle documents with similar or duplicate content. As researchers begin to con-
sider these issues in the design of effectiveness measures [138], solutions will transfer naturally
to MED.

Several other researchers have also adapted existing rank similarity measures to the require-
ments of search, particularly the Kendall’s τ correlation coefficient [166, 27, 109]. These efforts
primarily address the issue of top weighting, paying less attention to incomplete and indefinite
rankings. Rather than measuring differences between result lists, much of this work focuses on
the problem of comparing system rankings for the purpose of validating newly proposed effec-
tiveness measures, and other evaluation methodologies. In our work, rather than adapting exist-
ing rank similarity measures to the requirements of search, we adapt existing search effectiveness
measures to the computation of rank similarity, inheriting properties of these effectiveness mea-
sures and cleanly accommodating known relevance information.

Rank similarity measures provide a method for comparing search results without the need for
relevance information. Numerous researchers have examined the related problem of estimating
effectiveness measures and comparing systems using limited relevance information. Most no-
tably, Carterette et al. [28, 29, 26] define algorithms for selecting minimal sets of documents for
judging, with the aim of ordering a group of retrieval systems at a given confidence level. Similar
in spirit to MED, and using equivalent methods, documents are selected to maximize differences
in retrieval effectiveness scores.

Interestingly, in his doctoral thesis Carterette [26, pages 156–157] notes the need for rank

149

similarity measures that incorporate top-weighting and an ability to handle incomplete rankings.
To address these shortcomings of traditional correlation coefficients, such as Kendall’s τ and
Spearman’s ρ, he proposes his own rank similarity measure based on differences in reciprocal
rank. He employs this measure to study properties of his judging algorithms and TREC runs.

We take his work a step further, recognizing and demonstrating that maximized effectiveness
difference itself can form the basis for measuring rank similarity. In addition, we extend the
idea of maximized effectiveness difference to effectiveness measures that did not exist at the
time of his thesis, including ERR and RBP. Some of our ideas could also be applied back to his
work, including our generalization for the dot-product measures, our formulation for AP, and our
formulation for ERR.

Apart from Webber et al. [157] and Carterette et al. [28, 29, 26], the work closest to ours is
the AnchorMap measure proposed by Buckley [21]. AnchorMap compares two ranked lists by
assuming that the top k documents from one list are relevant, and then computing AP for the
other list using this relevance information. While AnchorMap is not symmetric, and has other
limitations [157], the idea captures the essence of our proposal.

Several researchers have used rank similarity measures to monitor and compare commer-
cial search engines [157, 82, 25, 143]. Cardoso and Magalhães [25] applied RBO to compare
the behavior of two of the most heavily used commercial search engines. In addition, they ap-
plied Jensen-Shannon divergence to measure the similarity between search results based on the
contents of the top documents returned. They argue that this second approach provides deeper
insights into the differences between the search engines, a view that reflects some concerns of
Kumar and Vassilvitskii [82].

In other related work, Büttcher et al [22] trained a classifier to predict the relevance of un-
judged documents. Jensen et al. [67] combined limited manual judgments with automatically
generated pseudo-judgments to evaluate search results in dynamic environments. Yilmaz et
al. [167] developed sampling methods for estimating standard effectiveness measures. Sakai
and Kando [134] explored the impact of missing relevance judgments on standard effectiveness
measures across four large test collections.

150

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

A
ct

u
a
l
U

-M
e
a
su

re
 d

iff
e
re

n
ce

MED-U

Same group

(a) Pairs of retrieval results from the same group

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 500 1000 1500 2000 2500 3000

A
ct

u
a
l
U

-M
e
a
su

re
 d

iff
e
re

n
ce

MED-U

Different groups

(b) Pairs of retrieval results from different groups

Figure 7.6: Actual U-measure differences vs. MED-U@12000 across pairs of passage-oriented
runs on passage-oriented topics from the TREC 2004 HARD Track. We plot a 20% sample,
randomly selected, for visual clarity.

151

7.7 Beyond the Ranked List

MED may be extended to measure distances between search results beyond the ranked list. As
a simple example, we consider the U-measure proposed by Sakai et al.[133]. This measure
assumes that a retrieval result is not expressed as a ranked list of documents, but rather as a
trailtext, a concatenation of all text presented to (or seen by) the user. Given a trailtext of length
l, the U-measure is computed as

1

N

l∑
i=1

cidi. (7.29)

Just as Equation 7.1 sums over documents in the ranked list, the U-measure sums over character
offsets in the trailtext. The value ci represents the graded relevance value of the character at offset
k, and the value di represents a position-oriented discount. For their experiments, Sakai and Dou
use no normalization (N = 1) and a linear discount (di = 1 − i/l) but clearly the measure can
be generalized to other discounts and normalization values.

The U-measure provides one method for evaluating retrieval systems that attempt to return
sub-document components, such as text passages, to the user. For example, a system might
respond to a query by extracting relevant passages from books, and other longer documents,
placing them in order for reading by the user. Essentially this problem was addressed by a task
included as a option to the TREC 2004 HARD Track [3].

The 2004 HARD Track included 25 topics for which relevance judging was performed at the
sub-document level, by identifying offsets and lengths of relevant passages within documents.
The corpus for the track comprised more than a half-a-million news articles from the year 2003,
drawn from a variety of sources, including the Associated Press, the New York Times, and the
Washington Post. Participating systems returned a ranked list of passages for each of the passage-
level topics, where each passage consisted of a starting byte offset within a document and a length
in bytes.

Since characters within passages cannot be arbitrarily re-ordered, standard rank correlation
coefficients are not appropriate to compute similarities between these passage-oriented results.
However, we may apply apply MED for the U-measure (MED-U) for this purpose. Although we
have switched from documents to characters, the properties of MED from Section 7.1 continue
to hold; nothing in that section requires variables to represent documents.

152

The U-measure may be viewed as a type of dot-product measure, as discussed in Section 7.2.
We apply the methods of that section to compute MED-U over passage-oriented retrieval runs
submitted to the track. We compute the measure down to depth l = 12, 000, consistent with
HARD Track practice, and use binary values for ci, i.e, a character is either relevant or not.
Results are shown in Figure 7.6.

Figure 7.6 plots actual U-measure differences vs. U-MED across pairs of passage-oriented
topics taken from passage-oriented runs. For visual clarity, we plot a 20% sample, selected
randomly. Figure 7.6(a) plots intra-group pairs; Figure 7.6(b) plots inter-group pairs. In contrast
to Figure 7.2(a), retrieval results tend to be very different from one another, although runs from
the same group tend to be closer than runs from different groups. Many pairs from different
groups are completely different (with the maximum possible MED-U@12000 value of 2999.75).
These large differences may reflect the unusual nature of the task, as well as unfamiliarity with
passage retrieval. If passage retrieval was a better understood task, we might much expect closer
results, particularly for intra-group runs.

In other work, Smucker and Clarke [138, 137, 35] present a general effectiveness measure,
called time-biased gain, which may be applied to measure search results in many forms. For
example, retrieval results might be specified as summaries, snippets, or video clips. As the
user interacts with the results, the total benefit to the user is expressed as a function G(t), the
cumulative gain at time t ≥ 0. This gain is realized as relevant material is encountered by the
user, perhaps by reading relevant text or viewing relevant video. For a retrieval result X , with
associated cumulative gain function GX(t), time-biased gain is

S(C) =

∫ ∞
0

dGX

dt
D(t)dt. (7.30)

D(t) is a decay function, typically exponential, indicating the probability that the user interacts
with the material until time t. Given two retrieval results, A and B, we treat the material shared
by these results as bound material, material appearing in only one result as free material, and
material with known relevance as predetermined material. To compute MED(A,B), we must
assign relevance to bound and free material to maximize

S(A)− S(B) =

∫ ∞
0

d(GA −GB)

dt
D(t)dt . (7.31)

153

MED-RBP, MED-nDCG, MED-ERR, and even MED-AP are all specific examples of this gen-
eral equation, under appropriate list-oriented definitions for gain and decay [138, 35]. We leave
to future work the application of this equation to measure search-result distances beyond the
ranked list.

154

Chapter 8

Conclusion and Future Directions

In this thesis, we explore problems in tracking news events in social media streams, especially
Twitter streams. We examine several different tasks involving tracking. We learn an improved
understanding of word usage in social media, comparing it with word usage in other source plat-
forms. Given an interest source document, we propose a succinct query generation approach
by executing a series of probe queries selected from candidate extracted key words over a sam-
ple of target resource corpus. Given an explicit user interest profile, we develop an automatic
system for monitoring live social media streams and pushing relevant updates to users directly
on their mobile devices or desktops. Different pushing strategies and threshold setting methods
are examined through this system. Furthermore, multiple evaluation metrics are analyzed on
various similar real-time tracking and pushing notification systems. A framework with different
user model assumption is proposed towards the best evaluation measurement for the real-time
tracking and pushing notification scenario. Throughout the entire thesis, ranking similarity mea-
surement is a crucial tool for comparing intermediate results. In the last chapter, we propose
a family of distance measures, each directly derived from an associate information retrieval ef-
fectiveness measure, for computing the maximized effectiveness difference of two ranked lists
under the specified effectiveness measure

155

8.1 Improving Understanding of Word Usage in Social Media

We adapt machine translation methods across languages to explore differences between corpora
written in a single language. In prior research, it was found that the positions of semantically re-
lated words in different language vector spaces are relatively similar. Based on this background,
we derive a linear transformation relationship between vectors for the most frequent words from
both the highly informal language used in English-language Twitter corpus and the more formal
language used in Wikipedia corpus. We learn a liner projection matrix that maps one corpus to
the other one. We prove our hypothesis that usage of those words appearing far apart after this
transformation differs substantially between the two corpora.

After describing experiments, we list some common words with large different usage in the
two corpora as examples. These examples include words that are frequently used as abbreviations
in Twitter, but more commonly used as normal words with different meanings in Wikipedia;
words that are often misspelling of another word in Twitter but are common words in Wikipedia;
popular culture, jargon or slang words in Twitter, but different meanings in Wikipedia.

The results and findings of this work might be applied to methods that normalize the nonstan-
dard language usage in social media. If we can distinguish misspelling and abbreviations from
the social media vocabulary and translate different spellings of same meaning words into the
same spelling, the performance of using both natural language processing tool and information
retrieval techniques will be improved.

8.2 Succinct Query for Linking Different Resources

From a given source document, such as a news article, our approach generates succinct queries
from a candidate set of extracted terms, comprising perhaps four or five terms in total. Starting
from the candidate terms, we execute a series of probe queries over a sample of contemporaneous
social media collection. By analyzing the results of the probes, we build a formula to compare
the results of probes to the language of the source document, we rank the terms according to their
ability to retrieve related material.

156

For each step of this process, we examine different approaches and compare the intermediate
results. To extract the initial candidate term set, we compare pointwise kullback-leibler diver-
gence method with the TextRank model for extracting key words, which has been proved to be
an efficient key word extraction method in previous literatures. We have demonstrated that K-L
divergence method perform better than TextRank in both effective and efficient viewpoints. Sev-
eral other key phrase extraction methods are also utilized, however, they are more complex to be
ranked as well as longer average length which does not satisfy our succinct requirement.

We analyze the probe queries by computing the similarity between the source document and
the results of probe queries. An unsupervised method is proposed based on prior experiment re-
sults and a learning to rank method considering the similarity scores as measurement for ranking
the probe queries. When evaluating our experiments, we apply both in-house assessment and
crowdsourcing assessment. The two different source of assessments verify our results. We also
compare the agreement of both inter-annotator and among different assessment workers.

8.3 Real-Time Tracking in Social Media and Push Notifica-
tion

A push notification service provides a direct way to deliver relevant information generated from
real-time tracking systems to users. In our experiments, to filter and track social media posts,
simple formulae for content matching and novelty can achieve good performance. Appropriate
thresholds should be set to avoid pushing non-relevant information to annoy users. Together with
the simple content matching method, it is even possible to user a fixed, static global threshold
across all topics, all queries. Although better performance can be achieved by carefully select
dynamic thresholds based on previous days pushing performance for different topics different
days. With user feedback or daily relevance judgements of pushed tweets available, systems are
able to set more accurate thresholds for each topic and each day.

Push notifications should be relevant, novel, and timely. We analyze the official evaluation
metrics of TREC 2015 Microblog track which provided a platform of topics and evaluations for
real-time tracking of Twitter stream and push notification systems. There are some assumptions

157

in the official evaluation metric that are arbitrary. We modify the assumptions or remove the as-
sumptions. The performance ranking of systems are significantly different. Thus, we present the
novel and surprising find: any number of reasonable evaluation metrics give rise to significantly
different system rankings.

In TREC 2016 Real-time Summarization track, the organizers develop a user judgement
interface for the mobile users, allowing them to judge whether each tweet pushed to them is
relevant or non-relevant to the topics. This is helpful to provide real user judgements. However,
the feedbacks do not go back to the pushing systems directly. In the future, if real-time judgement
feedback can be made immediately available to the systems, such that they can use the feedback
to learn on the performance of their pushes to the users and improve their thresholds or even
algorithms. Moreover, a volume button in the user interface which indicates the users need more
or fewer updates about a particular topic will also help improve the push notification service.

In the future, we hope to incorporate social signals and other non-content features into the
relevance and novelty components of our system, with the goal of retaining our simple approach
to thresholding, while improving overall performance. For now, only the content of each post
is analyzed and compared with our topical events. More social signals, such as Twitter user
information, Twitter user friends information, the posts and counts of re-posting can be added
into our algorithm.

There is little empirical characterization of how real users would respond to push notifica-
tions. Ultimately, user studies are needed to help understand the push notification service better
as well as ensure that metric definition and user needs actually align. We leave this as a future
work.

8.4 Ranking Similarity Measurement

Rank similarity measures cannot replace traditional effectiveness measures for determining the
absolute performance of search engines. However, they are more easily applied over larger
numbers of queries, without the need for relevance judgements, providing an additional tool for
assessing the scope of a search engine change. The MED family of rank similarity measures,
satisfies various desiderata suggested in prior work for rank similarity measures in the context of

158

search. Unlike the rank similarity measures presented in this prior work, the MED family allows
us to translate our understanding and assumptions about user behavior from an existing effec-
tiveness measure to create a rank similarity measure. In addition, MED cleanly accommodates
partial relevance judgments, when this information is available, where adding relevance informa-
tion can only reduce the difference between lists. If complete relevance information is available,
MED reduces to a simple difference between effectiveness values. Software to compute MED
for various effectiveness measures is available at plg.uwaterloo.ca/˜claclark/med.

Differences between retrieval results might also be studied under conditions other than the
“worst case” assumption of MED. For example, we might assume that an unjudged document
is equally likely to be relevant or non-relevant. Under this assumption, we can compute a dis-
tribution of differences, perhaps treating the mean difference as a similarity measure, although
it may not be a metric in the mathematical sense. The probability of relevance for an unjudged
document could also be conditioned on rank, or computed by a classifier, with the goal of esti-
mating actual differences. Some of these ideas have been partially explored in related work, as
discussed. We leave additional exploration as future work.

Some newer proposals for effectiveness measures incorporate more complex user models,
creating interesting and challenging optimization problems, which we hope to examine in the
future. Several research groups have suggested measures that reward novelty and diversity in
search results [135, 30, 34]. Computing MED for these effectiveness measures may require the
explicit assignment of query interpretations to documents in order to maximize effectiveness
difference. Other proposals use time as the primary indicator of user effort, creating measures
that reflect the impact of snippets and other user interface features [15, 138]. Some of these
proposals employed simulation as a method for determining effectiveness [15, 137, 35], and
computing MED for these effectiveness measures may also require extensive simulation.

159

plg.uwaterloo.ca/~claclark/med

References

[1] Azzah Al-Maskari, Mark Sanderson, and Paul Clough. The relationship between IR ef-
fectiveness measures and user satisfaction. In Proceedings of 30th Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
773–774, 2007.

[2] M-Dyaa Albakour, Craig Macdonald, and Iadh Ounis. On sparsity and drift for effective
real-time filtering in microblogs. In Proceedings of the 22nd ACM International Confer-
ence on Information and Knowledge Management, pages 419–428. ACM, 2013.

[3] James Allan. HARD track overview in TREC 2004: High accuracy retrieval from docu-
ments. In Proceedings of 13th Text REtrieval Conference, 2004.

[4] James Allan. Topic detection and tracking: event-based information organization, vol-
ume 12. Springer Science and Business Media, 2012.

[5] James Allan, Jaime G Carbonell, George Doddington, Jonathan Yamron, and Yiming
Yang. Topic detection and tracking pilot study final report. In Proceedings of the Broad-
cast News Transcription and Understanding Workshop, 1998.

[6] James Allan, Victor Lavrenko, David Frey, and Vikas Khandelwal. Umass at tdt 2000. In
Proceedings of Topic Detection and Tracking Workshop, pages 109–115. Citeseer, 2000.

[7] James Allan, Victor Lavrenko, and Ramesh Nallapati. Umass at tdt 2002. In Proceedings
of Topic Detection and Tracking Workshop. Citeseer, 2002.

160

[8] James Allan, Ron Papka, and Victor Lavrenko. On-line new event detection and tracking.
In Proceedings of the 21st Annual International Conference on Research and Development
in Information Retrieval, pages 37–45. ACM, 1998.

[9] Loulwah AlSumait, Daniel Barbará, and Carlotta Domeniconi. On-line lda: Adaptive
topic models for mining text streams with applications to topic detection and tracking.
In Proceedings of the 8th IEEE International Conference on Data Mining, pages 3–12.
IEEE, 2008.

[10] Gianni Amati, Giuseppe Amodeo, Marco Bianchi, Giuseppe Marcone, Fondazione Ugo
Bordoni, Carlo Gaibisso, Giorgio Gambosi, Alessandro Celi, Cesidio Di Nicola, and
Michele Flammini. Fub, iasi-cnr, univaq at trec 2011 microblog track. In Proceedings
of the 20th Text REtrieval Conference, 2011.

[11] Javed Aslam, Fernando Diaz, Matthew Ekstrand-Abueg, Richard McCreadie, Virgil Pavlu,
and Tetsuya Sakai. Trec 2014 temporal summarization track overview. Technical report,
DTIC Document, 2014.

[12] AiTi Aw, Min Zhang, Juan Xiao, and Jian Su. A phrase-based statistical model for sms text
normalization. In Proceedings of the COLING-ACL on Main conference poster sessions,
pages 33–40. Association for Computational Linguistics, 2006.

[13] Niranjan Balasubramanian, Giridhar Kumaran, and Vitor R Carvalho. Exploring reduc-
tions for long web queries. In Proceedings of the 33rd International ACM Conference on
Research and Development in Information Retrieval, pages 571–578. ACM, 2010.

[14] Timothy Baldwin, Paul Cook, Marco Lui, Andrew MacKinlay, and Li Wang. How noisy
social media text, how diffrnt social media sources. In Proceedings of the 6th International
Joint Conference on Natural Language Processing, pages 356–364, 2013.

[15] Feza Baskaya, Heikki Keskustalo, and Kalervo Järvelin. Time drives interaction: Simulat-
ing sessions in diverse searching environments. In Proceedings of the 35th International
ACM Conference on Research and Development in Information Retrieval, pages 105–114,
2012.

161

[16] J. E. Beasley. Heuristic algorithms for the unconstrained binary quadratic programming
problem. Technical report, The Management School, Imperial College, London, Decem-
ber 1998.

[17] Hila Becker, Mor Naaman, and Luis Gravano. Learning similarity metrics for event iden-
tification in social media. In Proceedings of the Third ACM International Conference on
Web Search and Data Mining, WSDM ’10, pages 291–300, New York, NY, USA, 2010.
ACM.

[18] Michael Bendersky and W Bruce Croft. Discovering key concepts in verbose queries. In
Proceedings of the 31st Annual International ACM Conference on Research and Develop-
ment in Information Retrieval, pages 491–498. ACM, 2008.

[19] Michael Bendersky, Donald Metzler, and W Bruce Croft. Parameterized concept weight-
ing in verbose queries. In Proceedings of the 34th International ACM Conference on
Research and Development in Information Retrieval, pages 605–614. ACM, 2011.

[20] Andrei Z Broder, Adam Kirsch, Ravi Kumar, Michael Mitzenmacher, Eli Upfal, and
Sergei Vassilvitskii. The hiring problem and lake wobegon strategies. SIAM Journal
on Computing, 39(4):1233–1255, 2009.

[21] Chris Buckley. Topic prediction based on comparative retrieval rankings. In Proceed-
ings of the 27th Annual International SIGIR Conference on Research and Development in
Information Retrieval, pages 506–507, 2004.

[22] Stefan Büttcher, Charles L. A. Clarke, Peter C. K. Yeung, and Ian Soboroff. Reliable infor-
mation retrieval evaluation with incomplete and biased judgements. In Proceedings of the
30th Annual International ACM Conference on Research and Development in Information
Retrieval, pages 63–70, 2007.

[23] Guihong Cao, Jian-Yun Nie, Jianfeng Gao, and Stephen Robertson. Selecting good expan-
sion terms for pseudo-relevance feedback. In Proceedings of the 31st Annual International
ACM Conference on Research and Development in Information Retrieval, pages 243–250.
ACM, 2008.

162

[24] Jaime Carbonell, Yiming Yang, John Lafferty, Ralf D Brown, Tom Pierce, and Xin Liu.
Cmu report on tdt-2: Segmentation, detection and tracking. In Proceedings of the DARPA
Broadcast News Workshop, pages 117–120, 1999.

[25] Bruno Cardoso and João Magalhães. Google, Bing and a new perspective on ranking
similarity. In Proceedings of the 20th ACM International Conference on Information and
Knowledge Management, pages 1933–1936, 2011.

[26] Ben Carterette. Low-Cost and Robust Evaluation of Information Retrieval Systems. PhD
thesis, University of Massachusetts Amherst, 2008.

[27] Ben Carterette. On rank correlation and the distance between rankings. In Proceedings
of the 32nd International ACM Conference on Research and Development in Information
Retrieval, pages 436–443, 2009.

[28] Ben Carterette and James Allan. Incremental test collections. In Proceedings of the 14th
ACM International Conference on Information and Knowledge Management, pages 680–
687, 2005.

[29] Ben Carterette, James Allan, and Ramesh Sitaraman. Minimal test collections for retrieval
evaluation. In Proceedings of the 29th Annual International ACM Conference on Research
and Development in Information Retrieval, pages 268–275, 2006.

[30] Olivier Chapelle, Donald Metlzer, Ya Zhang, and Pierre Grinspan. Expected reciprocal
rank for graded relevance. In Proceedings of the 18th ACM Conference on Information
and Knowledge Management, pages 621–630, 2009.

[31] Olivier Chapelle and Ya Zhang. A dynamic Bayesian network click model for web search
ranking. In Proceedings of the 18th International World Wide Web Conference, pages
1–10, 2009.

[32] Jilin Chen, Allen Cypher, Clemens Drews, and Jeffrey Nichols. Crowde: Filtering tweets
for direct customer engagements. In Proceedings of the 7th International AAAI Confer-
ence on Weblogs and Social Media. Citeseer, 2013.

163

[33] Jaeho Choi and W Bruce Croft. Temporal models for microblogs. In Proceedings of the
21st ACM International Conference on Information and Knowledge Management, pages
2491–2494. ACM, 2012.

[34] Charles L.A. Clarke, Nick Craswell, Ian Soboroff, and Azin Ashkan. A comparative
analysis of cascade measures for novelty and diversity. In Proceedings of the 4th ACM
International Conference on Web Search and Data Mining, pages 75–84, 2011.

[35] Charles L.A. Clarke and Mark D. Smucker. Time well spent. In Proceedings of the
Information Interaction in Context Conference, 2014.

[36] Margaret Connell, Ao Feng, Giridhar Kumaran, Hema Raghavan, Chirag Shah, and James
Allan. Umass at tdt 2004. In Proceedings of Topic Detection and Tracking Workshop,
2004.

[37] Nick Craswell, Onno Zoeter, Michael Taylor, and Bill Ramsey. An experimental compar-
ison of click position-bias models. In Proceedings of the 1st International Conference on
Web Search and Data Mining, pages 87–94, 2008.

[38] Gabor Cselle, Keno Albrecht, and Rogert Wattenhofer. Buzztrack: Topic detection and
tracking in email. In Proceedings of the 12th International Conference on Intelligent User
Interfaces, IUI ’07, pages 190–197, New York, NY, USA, 2007. ACM.

[39] Ovidiu Dan, Junlan Feng, and Brian D Davison. A bootstrapping approach to identifying
relevant tweets for social tv. In Proceedings of the 5th International AAAI Conference on
Weblogs and Social Media, 2011.

[40] Ali Dasdan, Paolo D’Alberto, Santanu Kolay, and Chris Drome. Automatic retrieval of
similar content using search engine query interface. In Proceedings of the 18th ACM
Conference on Information and Knowledge Management, pages 701–710. ACM, 2009.

[41] Sudip Datta and Vasudeva Varma. Tossing coins to trim long queries. In Proceedings
of the 34th International ACM Conference on Research and Development in Information
Retrieval, pages 1255–1256. ACM, 2011.

164

[42] Jeffrey Dean and Monika R Henzinger. Finding related pages in the world wide web.
Computer Networks, 31(11):1467–1479, 1999.

[43] Patrick Drouin. Detection of domain specific terminology using corpora comparison. In
Proceedings of the 4th International Conference on Language Resources and Evaluation,
2004.

[44] Yajuan Duan, Furu Wei, Ming Zhou, and Heung-Yeung Shum. Graph-based collective
classification for tweets. In Proceedings of the 21st ACM International Conference on
Information and Knowledge Management, pages 2323–2326. ACM, 2012.

[45] Georges Dupret and Ciya Liao. A model to estimate intrinsic document relevance from the
clickthrough logs of a web search engine. In Proceedings of the 3rd ACM International
Conference on Web Search and Data Mining, pages 181–190, 2010.

[46] Miles Efron. Hashtag retrieval in a microblogging environment. In Proceedings of the
33rd International ACM Conference on Research and Development in Information Re-
trieval, pages 787–788. ACM, 2010.

[47] Miles Efron. Information search and retrieval in microblogs. Journal of the American
Society for Information Science and Technology, 62(6):996–1008, 2011.

[48] Miles Efron, Jimmy Lin, Jiyin He, and Arjen de Vries. Temporal feedback for tweet
search with non-parametric density estimation. In Proceedings of the 37th international
ACM Conference on Research and Development in Information Retrieval, pages 33–42.
ACM, 2014.

[49] Carsten Eickhoff, Christopher G. Harris, Arjen P. de Vries, and Padmini Srinivasan. Qual-
ity through flow and immersion: Gamifying crowdsourced relevance assessments. In Pro-
ceedings of the 35th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pages 871–880, 2012.

[50] Jacob Eisenstein. What to do about bad language on the internet. In Proceedings of the
12th Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages 359–369, 2013.

165

[51] Yue Fei, Yihong Hong, and Jianwu Yang. Handling topic drift for topic tracking in mi-
croblogs. In Advances in Information Retrieval, pages 477–488. Springer, 2015.

[52] Paul Ferguson, Neil OHare, James Lanagan, Alan F Smeaton, Owen Phelan, Kevin Mc-
Carthy, and Barry Smyth. Clarity at the trec 2011 microblog track. In Proceedings of the
20th Text REtrieval Conference, 2011.

[53] Jenny Rose Finkel, Trond Grenager, and Christopher Manning. Incorporating non-local
information into information extraction systems by gibbs sampling. In Proceedings of
the 43rd Annual Meeting on Association for Computational Linguistics, pages 363–370.
Association for Computational Linguistics, 2005.

[54] Jon Fiscus, George Doddington, John Garofolo, and Alvin Martin. Nists 1998 topic de-
tection and tracking evaluation (tdt2). In Proceedings of the 1999 DARPA Broadcast News
Workshop, pages 19–24, 1999.

[55] Jonathan G Fiscus and George R Doddington. Topic detection and tracking evaluation
overview. In Topic detection and tracking, pages 17–31. Springer, 2002.

[56] PR Freeman. The secretary problem and its extensions: A review. International Statistical
Review/Revue Internationale de Statistique, pages 189–206, 1983.

[57] Yoav Goldberg and Omer Levy. word2vec explained: deriving mikolov et al.’s negative-
sampling word-embedding method. arXiv preprint arXiv:1402.3722, 2014.

[58] Catherine Grady and Matthew Lease. Crowdsourcing document relevance assessment
with mechanical turk. In Proceedings of the NAACL HLT 2010 Workshop on Creating
Speech and Language Data with Amazon’s Mechanical Turk, pages 172–179. Association
for Computational Linguistics, 2010.

[59] Bo Han and Timothy Baldwin. Lexical normalisation of short text messages: Makn sens
a# twitter. In Proceedings of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, pages 368–378. Association for Com-
putational Linguistics, 2011.

166

[60] Bo Han, Paul Cook, and Timothy Baldwin. Automatically constructing a normalisation
dictionary for microblogs. In Proceedings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Computational Natural Language Learn-
ing, pages 421–432. Association for Computational Linguistics, 2012.

[61] Zhongyuan Han, Xuwei Li, Muyun Yang, Haoliang Qi, Sheng Li, and Tiejun Zhao. Hit at
trec 2012 microblog track. In Proceedings of the 21th Text REtrieval Conference, 2012.

[62] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J Smola, and Kostas Tsiout-
siouliklis. Discovering geographical topics in the twitter stream. In Proceedings of the
21st International Conference on World Wide Web, pages 769–778. ACM, 2012.

[63] Yihong Hong, Yue Fei, and Jianwu Yang. Exploiting topic tracking in real-time tweet
streams. In Proceedings of the 2013 International Workshop on Mining Unstructured Big
Data Using Natural Language Processing, pages 31–38. ACM, 2013.

[64] Botao Hu, Yuchen Zhang, Weizhu Chen, Gang Wang, and Qiang Yang. Characterizing
search intent diversity into click models. In Proceedings of the 20th International World
Wide Web Conference, pages 17–26, 2011.

[65] Bernard J. Jansen and Marc Resnick. An examination of searcher’s perceptions of non-
sponsored and sponsored links during ecommerce web searching. Journal of the American
Society for Information Science and Technology, 57(14):1949–1961, 2006.

[66] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of IR tech-
niques. ACM Transactions on Information Systems, 20(4):422–446, 2002.

[67] Eric C. Jensen, Steven M. Beitzel, Abdur Chowdhury, and Ophir Frieder. Repeatable
evaluation of search services in dynamic environments. ACM Transactions on Information
Systems, 26(1), November 2007.

[68] Jiepu Jiang and James Allan. Necessary and frequent terms in queries. In Proceedings of
the 37th International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 1167–1170. ACM, 2014.

167

[69] Yun Jin, Sung Hyon Myaeng, and Yuchul Jung. Use of place information for improved
event tracking. Information Processing & Management, 43(2):365 – 378, 2007. Special
issue on AIRS2005: Information Retrieval Research in Asia.

[70] Thorsten Joachims. Optimizing search engines using clickthrough data. In Proceedings
of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 133–142. ACM, 2002.

[71] Thorsten Joachims, Laura Granka, Bing Pan, Helene Hembrooke, and Geri Gay. Ac-
curately interpreting clickthrough data as implicit feedback. In Proceedings of the 28th
Annual International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pages 154–161, 2005.

[72] Max Kaufmann and Jugal Kalita. Syntactic normalization of twitter messages. In Pro-
ceedings of International Conference on Natural Language Processing, 2010.

[73] Gabriella Kazai, Jaap Kamps, and Natasa Milic-Frayling. An analysis of human fac-
tors and label accuracy in crowdsourcing relevance judgments. Information retrieval,
16(2):138–178, 2013.

[74] Adam Kilgarriff. Comparing corpora. International Journal of Corpus Linguistics,
6(1):97–133, 2001.

[75] Pyung Kim and Sung Hyon Myaeng. Usefulness of temporal information automatically
extracted from news articles for topic tracking. ACM Transactions on Asian Language
Information Processing, pages 227–242, 2004.

[76] Su Nam Kim, Olena Medelyan, Min-Yen Kan, and Timothy Baldwin. Semeval-2010 task
5: Automatic keyphrase extraction from scientific articles. In Proceedings of the 5th Inter-
national Workshop on Semantic Evaluation, pages 21–26. Association for Computational
Linguistics, 2010.

[77] Jon M Kleinberg. Authoritative sources in a hyperlinked environment. Journal of the
ACM (JACM), 46(5):604–632, 1999.

168

[78] Robert Kleinberg. A multiple-choice secretary algorithm with applications to online auc-
tions. In Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 630–631. Society for Industrial and Applied Mathematics, 2005.

[79] Alexander Kotov, Vineeth Rakesh, Eugene Agichtein, and Chandan K Reddy. Geograph-
ical latent variable models for microblog retrieval. In Advances in Information Retrieval,
pages 635–647. Springer, 2015.

[80] Alexander Kotov, Yu Wang, and Eugene Agichtein. Leveraging geographical metadata to
improve search over social media. In Proceedings of the 22nd International Conference on
World Wide Web Companion, pages 151–152. International World Wide Web Conferences
Steering Committee, 2013.

[81] Solomon Kullback and Richard A Leibler. On information and sufficiency. The Annals of
Mathematical Statistics, pages 79–86, 1951.

[82] Ravi Kumar and Sergei Vassilvitskii. Generalized distances between rankings. In Pro-
ceedings of the 19th International World Wide Web Conference, pages 571–580, 2010.

[83] Giridhar Kumaran and James Allan. A case for shorter queries, and helping users create
them. In Proceedings of Human Language Technologies: The Annual Conference of the
North American Chapter of the Association for Computational Linguistics, pages 220–
227, 2007.

[84] Giridhar Kumaran and Vitor R Carvalho. Reducing long queries using query quality pre-
dictors. In Proceedings of the 32nd International ACM Conference on Research and De-
velopment in Information Retrieval, pages 564–571. ACM, 2009.

[85] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social
network or a news media? In Proceedings of the 19th International Conference on World
Wide Web, pages 591–600. ACM, 2010.

[86] Leah S. Larkey, Fangfang Feng, Margaret Connell, and Victor Lavrenko. Language-
specific models in multilingual topic tracking. In Proceedings of the 27th Annual Inter-
national ACM SIGIR Conference on Research and Development in Information Retrieval,
SIGIR ’04, pages 402–409, New York, NY, USA, 2004. ACM.

169

[87] Victor Lavrenko, James Allan, Edward DeGuzman, Daniel LaFlamme, Veera Pollard, and
Stephen Thomas. Relevance models for topic detection and tracking. In Proceedings of the
2nd International Conference on Human Language Technology Research, pages 115–121.
Morgan Kaufmann Publishers Inc., 2002.

[88] Victor Lavrenko and W Bruce Croft. Relevance based language models. In Proceed-
ings of the 24th Annual International ACM Conference on Research and Development in
Information Retrieval, pages 120–127. ACM, 2001.

[89] Matthew Lease, James Allan, and W Bruce Croft. Regression rank: Learning to meet the
opportunity of descriptive queries. In Advances in Information Retrieval, pages 90–101.
Springer, 2009.

[90] Baoli Li, Wenjie Li, and Qin Lu. Enhancing topic tracking with temporal information. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’06, pages 667–668, New York, NY, USA,
2006. ACM.

[91] Changliang Li, Bo Xu, Gaowei Wu, Xiuying Wang, Wendong Ge, and Yan Li. Obtain-
ing better word representations via language transfer. In Computational Linguistics and
Intelligent Text Processing, pages 128–137. Springer, 2014.

[92] Chenliang Li, Haoran Wang, Zhiqian Zhang, Aixin Sun, and Zongyang Ma. Topic mod-
eling for short texts with auxiliary word embeddings. In Proceedings of the 39th Interna-
tional ACM Conference on Research and Development in Information Retrieval, SIGIR
’16, pages 165–174. ACM, 2016.

[93] Yan Li, Zhenhua Zhang, Wenlong Lv, Qianlong Xie, Yuhang Lin, Rao Xu, Weiran Xu,
Guang Chen, and Jun Guo. Pris at trec 2011 microblog track. In Proceedings of the 20th
Text REtrieval Conference, 2011.

[94] Nut Limsopatham, Richard McCreadie, M Albakour, Craig Macdonald, Rodrygo L San-
tos, Iadh Ounis, et al. University of glasgow at trec 2012: Experiments with terrier in
medical records, microblog, and web tracks. In Proceedings of the 21th Text REtrieval
Conference, 2012.

170

[95] Jianhua Lin. Divergence measures based on the shannon entropy. IEEE Transactions on
Information Theory, 37(1):145–151, 1991.

[96] Jimmy Lin and Miles Efron. Overview of the trec-2013 microblog track. In Proceedings
of the 22th Text REtrieval Conference, volume 2013, 2013.

[97] Jimmy Lin, Miles Efron, Yulu Wang, and Garrick Sherman. Overview of the trec-2014
microblog track. In Proceedings of the 23th Text REtrieval Conference, 2014.

[98] Jimmy Lin, Miles Efron, Yulu Wang, Garrick Sherman, and Ellen Voorhees. Overview of
the trec-2015 microblog track. Technical report, DTIC Document, 2014.

[99] Jimmy Lin, Rion Snow, and William Morgan. Smoothing techniques for adaptive on-
line language models: Topic tracking in tweet streams. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’11,
pages 422–429, New York, NY, USA, 2011. ACM.

[100] Lu Liu, Lifeng Sun, Yong Rui, Yao Shi, and Shiqiang Yang. Web video topic discovery
and tracking via bipartite graph reinforcement model. In Proceedings of the 17th Inter-
national Conference on World Wide Web, WWW ’08, pages 1009–1018, New York, NY,
USA, 2008. ACM.

[101] Xiaohua Liu, Shaodian Zhang, Furu Wei, and Ming Zhou. Recognizing named entities in
tweets. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies, pages 359–367. Association for Computa-
tional Linguistics, 2011.

[102] Samuel Louvan, Mochamad Ibrahim, Mirna Adriani, Clara Vania, Bayu Distiawan, and
Metti Z Wanagiri. University of indonesia at trec 2011 microblog track. In Proceedings
of the 20th Text REtrieval Conference, 2011.

[103] Marco Lui, Ned Letcher, Oliver Adams, Long Duong, Paul Cook, Timothy Baldwin, and
NICTA Victoria. Exploring methods and resources for discriminating similar languages.
In Proceedings of the 25th International Conference on Computational Linguistics, page
129, 2014.

171

[104] Thang Luong, Richard Socher, and Christopher Manning. Proceedings of the Seventeenth
Conference on Computational Natural Language Learning, chapter Better Word Repre-
sentations with Recursive Neural Networks for Morphology, pages 104–113. Association
for Computational Linguistics, 2013.

[105] Zongyang Ma, Aixin Sun, and Gao Cong. On predicting the popularity of newly emerging
hashtags in twitter. American Society for Information Science and Technology, pages
1399–1410, 2013.

[106] Zongyang Ma, Aixin Sun, Quan Yuan, and Gao Cong. Tagging your tweets: A proba-
bilistic modeling of hashtag annotation in twitter. In Proceedings of the 23rd ACM Inter-
national Conference on Conference on Information and Knowledge Management, pages
999–1008. ACM, 2014.

[107] Walid Magdy and Tamer Elsayed. Adaptive method for following dynamic topics on
twitter. In Proceedings of the 8th International Conference on Weblogs and Social Media,
2014.

[108] Juan Martinez-Romo and Lourdes Araujo. Updating broken web links: An automatic
recommendation system. Information Processing and Management, 48(2):183–203, 2012.

[109] Massimo Melucci. Weighted rank correlation in information retrieval evaluation. In Pro-
ceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Tech-
nology, pages 75–86, 2009.

[110] Donald Metzler and Congxing Cai. Usc/isi at trec 2011: Microblog track. In Proceedings
of the 20th Text REtrieval Conference. Citeseer, 2011.

[111] Donald Metzler and W Bruce Croft. A markov random field model for term dependen-
cies. In Proceedings of the 28th Annual International ACM Conference on Research and
Development in Information Retrieval, pages 472–479. ACM, 2005.

[112] Jun Miao, Jimmy Xiangji Huang, and Jiashu Zhao. Topprf: A probabilistic framework for
integrating topic space into pseudo relevance feedback. ACM Transactions on Information
Systems (TOIS), 34(4):22, 2016.

172

[113] Rada Mihalcea and Paul Tarau. Textrank: Bringing order into texts. In Proceedings of the
ACL Conference on Empirical Methods in Natural Language Processing, pages 404–411.
Association for Computational Linguistics, 2004.

[114] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities among languages
for machine translation. arXiv preprint arXiv:1309.4168, 2013.

[115] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural
Information Processing Systems, pages 3111–3119, 2013.

[116] Tomas Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous
space word representations. In Proceedings of the 12th Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technolo-
gies, pages 746–751, 2013.

[117] Alistair Moffat, Falk Scholer, and Paul Thomas. Models and metrics: IR evaluation as a
user process. In Proceedings of the 17th Australasian Document Computing Symposium,
pages 47–54, 2012.

[118] Alistair Moffat and Justin Zobel. Rank-biased precision for measurement of retrieval ef-
fectiveness. ACM Transactions on Information Systems, 27(1):2:1–2:27, December 2008.

[119] Masaki Mori, Takao Miura, and Isamu Shioya. Topic detection and tracking for news
web pages. In Proceedings of the 2006 IEEE/WIC/ACM International Conference on
Web Intelligence, WI ’06, pages 338–342, Washington, DC, USA, 2006. IEEE Computer
Society.

[120] Marc A. Najork. Comparing the effectiveness of HITS and SALSA. In Proceedings of
the 16th ACM Conference on Information and Knowledge Management, pages 157–164,
2007.

[121] Ramesh Nallapati, James Allan, and Sridhar Mahadevan. Extraction of key words from
news stories. Technical report, DTIC Document, 2004.

173

[122] Kyosuke Nishida, Takahide Hoshide, and Ko Fujimura. Improving tweet stream classifi-
cation by detecting changes in word probability. In Proceedings of the 35th international
ACM Conference on Research and Development in Information Retrieval, pages 971–980.
ACM, 2012.

[123] Iadh Ounis, Craig Macdonald, Jimmy Lin, and Ian Soboroff. Overview of the trec-2011
microblog track. In Proceedings of the 20th Text REtrieval Conference, 2011.

[124] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation
ranking: bringing order to the web. Technical report, Stanford University, 1999.

[125] Jiaul H Paik and Jimmy Lin. Do multiple listeners to the public twitter sample stream
receive the same tweets? In Proceedings of the SIGIR 2015 Workshop on Temporal,
Social and Spatially-Aware Information Access, 2015.

[126] Swit Phuvipadawat and Tsuyoshi Murata. Breaking news detection and tracking in twit-
ter. In Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), volume 3, pages 120–123. IEEE, 2010.

[127] Paul Rayson and Roger Garside. Comparing corpora using frequency profiling. In Pro-
ceedings of the Workshop on Comparing Corpor, WCC ’00, pages 1–6, Stroudsburg, PA,
USA, 2000. Association for Computational Linguistics.

[128] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to optimality
by intersecting semidefinite and polyhedral relaxations. Mathematical Programming,
121(2):307–335, July 2009.

[129] Alan Ritter, Sam Clark, Oren Etzioni, et al. Named entity recognition in tweets: an
experimental study. In Proceedings of the Conference on Empirical Methods in Natu-
ral Language Processing, pages 1524–1534. Association for Computational Linguistics,
2011.

[130] Stephen Robertson. On GMAP: and other transformations. In Proceedings of the 15th
ACM International Conference on Information and Knowledge Management, pages 78–
83, 2006.

174

[131] Stephen E Robertson and Ian Soboroff. The trec 2002 filtering track report. In Proceedings
of the 11th Text REtrieval Conference, 2002.

[132] Dmitri Roussinov, Michael Chau, Elena Filatova, and José Antonio Robles-Flores. Build-
ing on redundancy: Factoid question answering and the “other”. In Proceedings of the
14th Text REtrieval Conference, 2005.

[133] Tetsuya Sakai and Zhicheng Dou. Summaries, ranked retrieval and sessions: A unified
framework for information access evaluation. In Proceedings of the 36th International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
473–482, 2013.

[134] Tetsuya Sakai and Noriko Kando. On information retrieval metrics designed for evaluation
with incomplete relevance assessments. Information Retrieval, 11(5):447–470, October
2008.

[135] Tetsuya Sakai and Ruihua Song. Evaluating diversified search results using per-intent
graded relevance. In Proceedings of the 34th International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 1043–1052, 2011.

[136] Mark D Smucker and James Allan. Find-similar: similarity browsing as a search tool. In
Proceedings of the 29th Annual International ACM Conference on Research and Devel-
opment in Information Retrieval, pages 461–468. ACM, 2006.

[137] Mark D. Smucker and Charles L. A. Clarke. Stochastic simulation of time-biased gain.
In Proceedings of the 21st ACM International Conference on Information and Knowledge
Management, pages 2040–2044, 2012.

[138] Mark D. Smucker and Charles L.A. Clarke. Time-based calibration of effectiveness mea-
sures. In Proceedings of the 35th International ACM SIGIR Conference on Research and
Development in information retrieval, pages 95–104, 2012.

[139] Mark D. Smucker and Chandra Prakash Jethani. Human performance and retrieval pre-
cision revisited. In Proceedings of the 33rd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pages 595–602, 2010.

175

[140] Ian Soboroff, Iadh Ounis, J Lin, and I Soboroff. Overview of the trec-2012 microblog
track. In Proceedings of the 21th Text REtrieval Conference, volume 2012, 2012.

[141] Bharath Sriram, Dave Fuhry, Engin Demir, Hakan Ferhatosmanoglu, and Murat Demirbas.
Short text classification in twitter to improve information filtering. In Proceedings of
the 33rd International ACM Conference on Research and Development in Information
Retrieval, pages 841–842. ACM, 2010.

[142] Ilija Subašić and Bettina Berendt. Peddling or creating? investigating the role of twitter
in news reporting. In Advances in Information Retrieval, pages 207–213. Springer, 2011.

[143] Mingxuan Sun, Guy Lebanon, and Kevyn Collins-Thompson. Visualizing differences in
web search algorithms using the expected weighted Hoeffding distance. In Proceedings
of the 19th International World Wide Web Conference, pages 931–940, 2010.

[144] Luchen Tan and Charles L. A. Clarke. Succinct queries for linking and tracking news in
social media. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pages 1883–1886, 2014.

[145] Luchen Tan and Charles L. A. Clarke. A family of rank similarity measures based on max-
imized effectiveness difference. IEEE Transactions on Knowledge and Data Engineering,
pages 2865–2877, 2015.

[146] Luchen Tan, Adam Roegiest, and Charles L. A. Clarke. University of Waterloo at TREC
2015 Microblog Track. In Proceedings of The 24h Text REtrieval Conference, 2015.

[147] Luchen Tan, Haotian Zhang, Charles L. A. Clarke, and Mark D. Smucker. Lexical com-
parison between wikipedia and twitter corpora by using word embeddings. In Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing of the Asian Federation
of Natural Language Processing, pages 657–661, 2015.

[148] Yi-jie Tang, Chang-Ye Li, and Hsin-Hsi Chen. A comparison between microblog corpus
and balanced corpus from linguistic and sentimental perspectives. In Proceedings of the
5th AAAI Conference on Analyzing Microtext, pages 68–73, 2011.

176

[149] Jaime Teevan, Daniel Ramage, and Merredith Ringel Morris. # twittersearch: a compar-
ison of microblog search and web search. In Proceedings of the 4th ACM International
Conference on Web Search and Data Mining, pages 35–44. ACM, 2011.

[150] Takashi Tomokiyo and Matthew Hurst. A language model approach to keyphrase extrac-
tion. In Proceedings of the ACL 2003 Workshop on Multiword Expressions: Analysis, Ac-
quisition and Treatment, pages 33–40. Association for Computational Linguistics, 2003.

[151] Manos Tsagkias, Maarten De Rijke, and Wouter Weerkamp. Linking online news and
social media. In Proceedings of the 4th ACM International Conference on Web Search
and Data Mining, pages 565–574. ACM, 2011.

[152] Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: a simple and gen-
eral method for semi-supervised learning. In Proceedings of the 48th Annual Meeting of
the Association for Computational Linguistics, pages 384–394. Association for Computa-
tional Linguistics, 2010.

[153] Karin Verspoor, K Bretonnel Cohen, and Lawrence Hunter. The textual characteristics of
traditional and open access scientific journals are similar. BMC Bioinformatics, 10(1):183,
2009.

[154] Ellen M. Voorhees. Overview of the TREC 2005 robust retrieval track. In Proceedings of
the 14th Text REtrieval Conference, 2005.

[155] Yulu Wang, Garrick Sherman, Jimmy Lin, and Miles Efron. Assessor differences and
user preferences in tweet timeline generation. In Proceedings of the 38th International
ACM Conference on Research and Development in Information Retrieval, pages 615–624.
ACM, 2015.

[156] Charles L. Wayne. Multilingual topic detection and tracking: Successful research enabled
by corpora and evaluation. In Proceedings of the Second International Conference on
Language Resources and Evaluation, 2000.

[157] William Webber, Alistair Moffat, and Justin Zobel. A similarity measure for indefinite
rankings. ACM Transactions on Information Systems (TOIS), 28(4):20, 2010.

177

[158] W John Wilbur and Leona Coffee. The effectiveness of document neighboring in search
enhancement. Information Processing and Management, 30(2):253–266, 1994.

[159] Xiaobing Xue, Samuel Huston, and W Bruce Croft. Improving verbose queries using sub-
set distribution. In Proceedings of the 19th ACM International Conference on Information
and Knowledge Management, pages 1059–1068. ACM, 2010.

[160] J Yamron, I Carp, L Gillick, S Lowe, and P Van Mulbregt. Topic tracking in a news
stream. In Proceedings of DARPA Broadcast News Workshop, pages 133–136, 1999.

[161] Jonathan P Yamron, Ira Carp, Lawrence Gillick, Stewe Lowe, and Paul van Mulbregt. A
hidden markov model approach to text segmentation and event tracking. In Proceedings
of the 1998 IEEE International Conference on Acoustics, Speech and Signal, volume 1,
pages 333–336. IEEE, 1998.

[162] JP Yamron, S Knecht, and P Van Mulbregt. Dragons tracking and detection systems for
the tdt2000 evaluation. In Proceedings of Topic Detection and Tracking Workshop, pages
75–80. Citeseer, 2000.

[163] Yiming Yang, Tom Ault, Thomas Pierce, and Charles W Lattimer. Improving text cate-
gorization methods for event tracking. In Proceedings of the 23rd Annual International
ACM Conference on Research and Development in Information Retrieval, pages 65–72.
ACM, 2000.

[164] Yiming Yang, Jaime G Carbonell, Ralf D Brown, Thomas Pierce, Brian T Archibald, and
Xin Liu. Learning approaches for detecting and tracking news events. IEEE Intelligent
Systems, pages 32–43, 1999.

[165] Yin Yang, Nilesh Bansal, Wisam Dakka, Panagiotis Ipeirotis, Nick Koudas, and Dimitris
Papadias. Query by document. In Proceedings of the 2nd ACM International Conference
on Web Search and Data Mining, pages 34–43. ACM, 2009.

[166] Emine Yilmaz, Javed A. Aslam, and Stephen Robertson. A new rank correlation co-
efficient for information retrieval. In Proceedings of the 31st Annual International ACM
SIGIR Conference on Research and Development in information retrieval, pages 587–594,
2008.

178

[167] Emine Yilmaz, Evangelos Kanoulas, and Javed A. Aslam. A simple and efficient sampling
method for estimating AP and NDCG. In Proceedings of the 31st Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages
603–610, 2008.

[168] Hong Yu, Zhang Yu, T Liu, and S Li. Topic detection and tracking review. Journal of
Chinese Information Processing, 6(21):77–79, 2007.

[169] Quan Yuan, Gao Cong, Zongyang Ma, Aixin Sun, and Nadia Magnenat-Thalmann. Who,
where, when and what: discover spatio-temporal topics for twitter users. In Proceedings
of the 19th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pages
605–613, 2013.

[170] Quan Yuan, Gao Cong, Kaiqi Zhao, Zongyang Ma, and Aixin Sun. Who, where, when,
and what: A nonparametric bayesian approach to context-aware recommendation and
search for twitter users. ACM Transactions on Information Systems (TOIS) - Special Issue
on Contextual Search and Recommendation, 33(1):2:1–2:33, 2015.

[171] Jiayue Zhang, Sijia Chen, Yue Liu, Jie Yin, Qianqian Wang, Weiran Xu, and Jun Guo.
Pris at 2012 microblog track. In Proceedings of the 21th Text REtrieval Conference, 2012.

[172] Kai Zhao, Hany Hassan, and Michael Auli. Learning translation models from monolin-
gual continuous representations. In Proceedings of 14th Annual Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, 2015.

[173] Wayne Xin Zhao, Jing Jiang, Jing He, Yang Song, Palakorn Achananuparp, Ee-Peng
Lim, and Xiaoming Li. Topical keyphrase extraction from twitter. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human Language
Technologies, pages 379–388. Association for Computational Linguistics, 2011.

[174] Wayne Xin Zhao, Jing Jiang, Jianshu Weng, Jing He, Ee-Peng Lim, Hongfei Yan, and
Xiaoming Li. Comparing twitter and traditional media using topic models. In Advances
in Information Retrieval, pages 338–349. Springer, 2011.

179

[175] Xiaoqi Zhao and Keishi Tajima. Online retweet recommendation with item count limits.
In Proceedings of the 2014 IEEE/WIC/ACM International Joint Conferences on Web In-
telligence (WI) and Intelligent Agent Technologies (IAT), pages 282–289. IEEE Computer
Society, 2014.

[176] Guangyou Zhou, Zhiwen Xie, Jimmy Xiangji Huang, and Tingting He. Bi-transferring
deep neural networks for domain adaptation. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics. ACL, 2016.

[177] Guangyou Zhou, Zhao Zeng, Jimmy Xiangji Huang, and Tingting He. Transfer learning
for cross-lingual sentiment classification with weakly shared deep neural networks. In
Proceedings of the 39th International ACM Conference on Research and Development in
Information Retrieval, SIGIR ’16, pages 245–254. ACM, 2016.

[178] Bolong Zhu, Jinghua Gao, Xiao Han, Cunhui Shi, Shenghua Liu, Yue Liu, and Xueqi
Cheng. Ictnet at microblog track trec 2012. In Proceedings of the 21th Text REtrieval
Conference, 2012.

180

	List of Tables
	List of Figures
	Introduction
	Problem Statement
	Research Tasks and Contributions
	Improved Understanding of Word Usage in Social Media
	Succinct Query for Linking Different Resources
	Live Tracking and Pushing Notifications
	Ranking Push Notification Systems by Metrics
	Maximized Effectiveness Difference of Different Rankings

	Background and Related Work
	Topic Detection and Tracking
	TDT Tasks
	TDT Corpora
	Successful Techniques for Topic Tracking

	Topic Tracking and Filtering in Microblog Stream
	TREC Microblog Track
	Topic Tracking and Filtering in Twitter Streams(Beyond TREC)

	Evaluation Methodology of Tracking and Filtering Tasks
	TDT Evaluation
	TREC 2012 Microblog Filtering Task Evaluation
	TREC 2015 Microblog Filtering Task Evaluation

	Data Collections
	Collections
	TREC 2015 Microblog Collection
	Reuters News Collection
	Tweet Collection
	Wikipedia Collection

	Lexical Comparison Between Wikipedia and Twitter Corpora
	Background
	Methods of Lexical Comparison
	Experiments
	Validation
	Conclusion

	Succinct Query Generation for Tracking News
	Extracting Candidate Terms
	Pointwise Kullback-Leibler Divergence
	TextRank
	Evaluation of Candidate Term Extraction
	Key Phrases Extraction

	Selecting probe queries
	Executing probes
	Computing similarities
	SIM1+SIM2
	Learning to Rank
	Evaluation of similarity computation

	Ranking candidate terms
	PageRank-like
	Linear System
	Average Scores
	Comparison of Re-Ranking Methods

	Evaluation
	Data
	Methods and the Baseline
	In-house Assessment
	CrowdSourcing Assessment
	Results and Discussion

	Summary

	Real-time Tracking and Push Notification
	TREC 2015 Microblog Track
	Relevance between User Interest Profiles and Tweets
	User Interest Profiles
	Pre-processing Tweets
	Relevance Scoring
	Novelty
	Thresholding

	Pushing Notification Strategies
	Automatic Pushing Strategies
	Push with Relevance Feedback

	Results
	Summary

	Evaluation of Real-time Tracking in Social Media
	TREC 2015 Microblog track Metrics
	Analysis of ``Silent Days''
	Gain and Pain
	Effects of the Delay Penalty
	Toward A General Framework

	Ranking Similarity Measurement
	Basic Notation and Properties
	Simple Dot Product Measures
	Computing MED-RBP
	Computing MED-DCG and MED-nDCG
	Normalization for MED-nDCG

	Computing MED-AP
	Computing MED-ERR
	Validation
	Comparison with Prior Work
	Beyond the Ranked List

	Conclusion and Future Directions
	Improving Understanding of Word Usage in Social Media
	Succinct Query for Linking Different Resources
	Real-Time Tracking in Social Media and Push Notification
	Ranking Similarity Measurement

	References

