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Abstract

This thesis is divided into two parts. The first part proposes parsimonious models to

the vine copula. The second part is devoted to the index tracking problem.

Vine copulas provide a flexible tool to capture asymmetry in modelling multivariate

distributions. Nevertheless, the computational expense of its flexibility increases expo-

nentially as the dimension of the joint distribution grows. To alleviate this issue, the

simplifying assumption (SA) is commonly adopted in specific applications of vine copula

models. In order to relax SA, Chapter 2 proposes generalized linear models (GLMs) to

model parameters in conditional bivariate copulas. In the spirit of the principle of par-

simony, a regularization methodology is developed to control the number of parameters.

This leads to sparse vine copula models. The conventional vine copula with the SA, the

proposed GLM-based vine copula and the sparse vine copula are applied to several finan-

cial datasets. Empirical results show that the proposed models in this chapter outperform

the one with SA significantly in terms of the Bayesian information criterion.

Index tracking is a dominant method among passive investment strategies. It attempts

to reproduce the return of stock-market indices. Chapter 3 focuses on selecting stocks to

construct tracking portfolios. In order to do that, principal component analysis (PCA)

is applied via a two-step procedure. In the first step, the index return is expressed as

a function of the principal components (PCs) of stock returns, and a subset of PCs is

selected according to Sobol’s total sensitivity index. In the second step, a subset of stocks,

which is most “similar” to those selected PCs, is detected. This similarity is measured by

Yanai’s generalized coefficient of determination, the distance correlation, or Heller-Heller-

Gorfine test statistics. Given selected stocks, their weights in the tracking portfolio can

be determined by minimizing a specific tracking error. Compared with existing methods,

constructing tracking portfolios based on stocks selected by this PCA-based method is

more computationally efficient and comparably effective at minimizing the tracking error.

When the number of index components is large, it is too computationally demanding

to apply methods in Chapter 3 or most of existing methods, such as those relying on

mixed-integer quadratic programming. In Chapter 4, factor models are used to describe
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stock returns. Under this assumption, the tracking error is partitioned into two parts:

one depends on common economic factors, and the other depends on idiosyncratic risks.

According to this partition, a 2-stage method is introduced to construct tracking portfolios

by minimizing the tracking error. Stage 1 relies on a mixed-integer linear programming to

identify stocks that are able to reduce factors’ impacts on the tracking error, and Stage

2 determines weights of identified stocks by minimizing the tracking error. This 2-stage

method efficiently constructs tracking portfolios benchmarked to indices with thousands of

components. It reduces out-of-sample tracking errors significantly.

In Chapter 5, the index tracking problem is solved by repeatedly solving one-period

tracking problems. Each one-period tracking strategy is determined by a quadratic opti-

mization with the L1-regularization on asset weights. This formulation considers trans-

action costs and other practical constraints. Since the true joint distribution of financial

returns is usually unknown, we solve one-period tracking problems under empirical dis-

tributions. With the L1-regularization on asset weights, our one-period tracking strategy

enjoys persistent properties in the high-dimensional setting. More specifically, the variable

number d = d(n) = O(nα), where n is the sample size and α > 1. Simulation studies

are carried out to support our one-period tracking strategy’s performance with finite sam-

ples. Applications on real financial data provide evidence that, in dealing with one-period

tracking, this tracking strategy outperforms the Lq-penalty tracking method in terms of

tracking performance and computational efficiency. In terms of multi-period tracking, this

proposed method outperforms the full-replication strategy.
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Chapter 1

Motivations for Topics in this Thesis

Financial institutions usually hold myriad assets, and at the same time they undertake a

vast number of risks. In order to achieve excellent business performance, financial insti-

tutions need expertise to manage a great number of assets and the exposed risks. This is

also a requirement from their stakeholders.

Market regulators require financial institutions to model the dependence structure

among their risks. For example, since the second Basel Accord ([13, Part 2]), banks

are encouraged to maintain an economic capital which is calculated from their market

risk, credit risk, and operational risk. Since each of these three major risks consists of

many subcategorized risks, banks usually establish a high-dimensional joint distribution

to quantitatively model their risks, and then economic capital is derived from this joint

distribution.

From the shareholders’ point of view, financial institutions are expected to increase

companies’ values as much as possible. Asset management plays an important role for

financial institutions to meet that objective. Among different assets, such as commodities,

fixed-income products, equities, real estate, etc., this thesis focuses on equity investment

management which is one of the key components of institutional asset management ([89,

p.408]). A good equity investment relies on wise decisions on selecting stocks from numer-

ous international or domestic equities and allocating funds among selected stocks.
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However, it is neither worthwhile nor technically possible for financial institutions to

pay detailed attention to each of their risks or each equity in the world. Due to different

characteristics of their asset portfolios, financial institutions assign priorities to their major

or most risky assets. Traditionally, identifying important risk drivers is based on business

savvy, such as experts’ experience and acumen. Nowadays, the information explosion

makes these traditional methods too expensive and time-consuming. In response, financial

institutions turn to embrace data-driven or quantitative methods ([11]).

This thesis is devoted to establishing sparse models for dependence modelling and port-

folio management via data-driven methods. It helps financial institutions to efficiently (in

terms of time and accuracy) identify influential dependence structures and select valuable

equities in which to invest. More specifically, this thesis is divided into two parts. Chap-

ter 2 improves the vine copula, a flexible method to model high-dimensional dependence

structures. Chapters 3 - 5 focus on constructing tracking portfolios to reproduce returns of

stock-market indices, which is a dominant method of passive equity investment strategies

([89, p.410], [108]). In subsequent parts of this thesis, investment only refers to equity

investment, unless otherwise stated.

1.1 Sparse models in High-Dimensional Dependence

Modelling

Dependence modelling plays a pivotal role in risk management, for example calculating

economic capital. In most cases, the enterprise-level risk is aggregated from numerous

dependent risk factors, so that an accurate modelling of the inter-relationship among these

risk factors is the key to prudent risk management. The copula method is a popular ap-

proach to model dependence ([39]). One of its virtues is to model a joint distribution

via two separate steps. The first step determines appropriate marginal distributions. The

second step seeks an appropriate copula function to describe the dependence structure.

Techniques for bivariate copulas are relatively mature, but high dimensional copulas are

still under development. The multivariate Gaussian copula has been widely used in port-

folio selection, credit risk management as well as many other applications in finance; see,
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e.g., [25]. Despite its popularity, the Gaussian copula fails to capture some stylized facts of

financial data, such as the strong tail dependence or the asymmetric dependence structure

([39]). Other elliptical copulas, particularly the Student-t copula, have been proposed to

capture the tail dependence, but they still fail to capture asymmetric dependence struc-

tures.

The vine copula ([9], [1]) provides a flexible tool to capture asymmetry and tail depen-

dence in modelling multivariate distributions. Nevertheless, its flexibility is achieved at

the expense of exponentially increasing the model complexity. To alleviate this issue, the

simplifying assumption (SA), which is discussed later in Section 2.2, is commonly adopted

in specific applications of vine copula models. In order to relax the SA, Chapter 2 pro-

poses generalized linear models (GLMs) to describe parameters in conditional bivariate

copulas. In the spirit of the principle of parsimony, a regularization methodology is de-

veloped to control the number of parameters, leading to sparse vine copula models. The

conventional vine copula with the SA, the proposed GLM-based vine copula and the sparse

vine copula are applied to several financial datasets. Empirical results show that proposed

models in Chapter 2 outperform the one with the SA significantly in terms of the Bayesian

information criterion.

1.2 Sparse models in Index Tracking

1.2.1 The Virtue of Index Tracking

In general, investment strategies can be classified as active investment strategies and passive

investment strategies. Active fund managers use flexible methods to achieve high returns

with low risk. Most passively managed funds, such as index funds and exchange-traded

funds, aim at mimicking returns of benchmarked financial-market indices. This strategy

is called index tracking. Compared with active investment strategies, passive investment

strategies usually deliver higher risk-adjusted returns (in terms of Sharpe ratio or Jensen’s

alpha) and charge lower management fees. According to [129, p. 27], the average annual
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management fee for mutual funds is 1.67 percent, while the average is 0.40 percent for

exchange-traded funds.

The motivation for passive investment management originates from studies on evaluat-

ing mutual fund performance, and dates back to the introduction of Sharpe ratio ([110])

and Jensen’s alpha ([72]). Empirical studies in [110] show that Sharpe ratio of the return

of the Dow Jones Industrial Average is higher than the average Sharpe ratio of active

mutual fund returns (before transaction costs and management expenses) studied in that

paper. The outperformance of stock-market indices is reinforced in [72]. It points out

that the average Jensen’s alpha of active managed funds in the U.S. (both before and

after transaction costs and management expenses) is negative, when these fund returns

are regressed against the S&P 500 return. More granular empirical studies are carried

out in [111], which show that the studied actively managed mutual funds fail to deliver

significant positive relative returns on average, compared with their benchmark portfolios.

According to active managers’ investment style, the benchmark portfolio in [111] is a linear

combination of financial indices representing different asset classes.

Even though empirical studies in the 1960s ([110], [72]) point out that stock-market

indices beat the majority of active mutual funds in terms of risk-adjusted returns, stock-

market indices cannot be used as investment tools. This is because they are only published

numbers and do not generate any payoff themselves1. But ten years later, index funds came

to the market in the 1970s ([89, p.412]). Empirical studies on the U.S. market in [53] show

that (after expense) risk-adjusted returns of index funds tracking the S&P 500 index are

higher than the average risk-adjusted return of actively managed mutual funds.

The recent boom in exchange-traded funds (ETFs) also boosts the development of

index tracking methods. Due to attractive risk-adjusted returns, low management fees,

and transparent objectives (which are simply tracking an index return), ETF has gained

increasing popularity since it was first introduced in North America around the early 1990s

([57]). By June 2015, global ETF assets hit US$3 trillion, which has increased by 200%

since 2010 ([106], [112]). Thanks to various ETFs tracking different kinds of financial

1Even though trading index futures could obtain index returns, but behind index futures stands the
index fund to hedge them.
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market indices, the idea of Sharpe’s benchmark portfolios defined in [111] can be easily

realized ([10]).

Index tracking plays an important role for institutional investors. Take pension funds

as an example. In 2014, 50.7% of the assets managed by the Canadian Pension Plan was

invested passively ([28]), 42.1% of the assets managed by the French Pensions Reserve

Fund (Fonds de Reserve Pour Les Retraites) was invested passively in 2013 ([54]), and so

was 86.0% of the assets managed by the Janpenese Government Pension Investment Fund

in 2013 ([62]).

1.2.2 Constructing Tracking Portfolios via Partial Replication

Index tracking relies on a tracking portfolio to reproduce the return of a benchmark stock-

market index. In order to track stock-market indices, a simple strategy is the full repli-

cation. Since information of how to calculate a stock-market index is public, at the time

of construction a full replication strictly matches its asset weights to those in the index.

After that, numbers of asset shares in the full replication hold still until any rebalancing.

After construction, the full replication earning exactly the index return. However, there

is always a gap between the terminal wealth of a full-replication and the terminal wealth

given the initial wealth (before construction) earns exactly the index return. This gap is

caused by the transaction cost at construction, and a high transaction cost leads to a large

gap.

Some ETFs simply apply the full replication to track large-capitalization stock in-

dices, such as the methodology of SPDR S&P 500 ETF, which is one of the largest ETFs

benchmarked to the S&P 500 index ([119]). Stocks in the S&P 500 index are liquid large-

capitalization stocks ([118]), which are easy to trade. Hence, in this case, the tracking

gap of a full replication is negligible due to small transaction costs. However, small cap-

italization stocks are much less liquid ([80]), so that their high transaction costs usually

prevent ETF managers from applying the full replication ([71]). When the full-replication

is infeasible, in order to mimic an index return fund managers need to determine in which
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index components to buy and the fund allocation for each selected stock ([71]). In this

thesis, this methodology is called partial replication, which is the focus of Chapters 3-5.

Chapter 3 focuses on selecting stocks to construct tracking portfolios. Principal com-

ponent analysis (PCA) is applied to select stocks via a two-step procedure. In the first

step, the index return is expressed as a linear function of principal components (PCs) of

stock returns, and a subset of PCs is selected according to Sobol’s total sensitivity index.

In the second step, a subset of stocks, which is most similar to those selected PCs, is

detected. This similarity is measured by Yanai’s generalized coefficient of determination,

the distance correlation, or Heller-Heller-Gorfine test statistics. The weights of selected

stocks in the tracking portfolio can be determined by minimizing a specific tracking error.

Compared with existing methods, constructing tracking portfolios based on stocks selected

by this PCA-based method is more computationally efficient and comparably effective at

minimizing the tracking error.

The method of Chapter 3 is not so computationally efficient when the number of can-

didate stocks is very large. In order to deal with such cases, in Chapter 4 factor models

are used to describe stock returns. Under this assumption, the tracking error is partitioned

into two parts: one depends on common economic factors, and the other depends on id-

iosyncratic risks. According to this partition, a 2-stage method is introduced to construct

tracking portfolios by minimizing the tracking error. Stage 1 relies on a mixed-integer lin-

ear programming to identify stocks that are able to reduce factors’ impacts on the tracking

error, and Stage 2 determines weights of the identified stocks by minimizing the tracking

error. This 2-stage method efficiently constructs tracking portfolios benchmarked to indices

with thousands of components. It reduces out-of-sample tracking error significantly.

Aiming at reducing the gap between the tracking portfolio terminal wealth and the

terminal wealth given the initial wealth (before construction) earning exactly the index re-

turn, Chapter 5 solves the index tracking problem by repeatedly solving one-period tracking

problems. Each one-period tracking strategy is determined by a quadratic optimization

with the L1-regularization on asset weights. This formulation addresses the stock selec-

tion and fund allocation simultaneously, and it also considers transaction costs and other

practical constraints. Since the true joint distribution of financial returns is usually un-
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known, this chapter solves the one-period tracking problem under empirical distributions.

With the L1-regularization on asset weights, the one-period tracking strategy enjoys per-

sistent properties in the high-dimensional setting. More specifically, the variable number

d = d(n) = O(nα), where n is the sample size and α > 1. Simulation studies are carried out

to support this one-period tracking strategy’s performance with finite samples. Applica-

tions on real financial data provide evidence that, in dealing with one-period tracking, this

tracking strategy outperforms the Lq-penalty tracking method in terms of tracking perfor-

mance and computational efficiency. In terms of tracking small-capitalization stock-market

indices in multi-period cases, this method outperforms the full-replication strategy.
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Chapter 2

Vine Copula Models with GLM and

Sparsity

2.1 Introduction

Recently, vine copulas have been proposed as powerful alternatives to classical multivariate

copulas, such as multivariate elliptical copulas and Archimedean copulas. By decomposing

a multivariate copula density into a product of (conditional) bivariate copula densities,

the vine copula is flexible enough to capture asymmetric dependence structures as well as

strong tail dependence among financial risks. The idea of vine copulas, which dates back

to Joe [73] in 1996, is formally introduced by [8, 9] as a tool to organize the decomposition

of a multivariate copula. Other selected works which have made important contributions

to theoretical and practical aspects of vine copulas include [1] which develops a sequen-

tial estimation procedure for vine copulas; [32] which studies vine copulas in a Bayesian

framework; [122] which develops a time-dependent vine copula model; [113] which proposes

a vine-copula GARCH model with dynamic conditional dependence; [96] which discusses

the discrete vine copulas; [64] which studies the asymptotic properties of the sequential

estimators for vine copula models.
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Because of the complexity of vine copula models, the simplifying assumption (SA)

boosts parameter estimations of vine copulas in a more computationally efficient way. It

assumes that all bivariate conditional copulas depend on the corresponding conditioning

variables only through copula observations, but functional formulas of these bivariate cop-

ulas do not depend on the conditioning variables. Though some research works claim that,

under certain conditions, the SA will not deteriorate the overall performance of vine copu-

las in describing a multivariate joint distribution ([65, 121]), numerical studies conducted

by [4] suggest that SA can be too optimistic.

To relax the SA in vine copula modelling, one needs to specify a mechanism to de-

scribe the way the conditional bivariate copulas depend on those conditioning variables.

One natural way is to model the copula parameters as functions of the conditioning vari-

ables. This idea is exploited by [3], where a local polynomial estimation is proposed for

conditional copulas; see also [2] and [4]. Moreover, [61] estimates conditional copulas by

a purely nonparametric method. While these findings signify the important role of condi-

tioning variables, their proposed methods only work for univariate conditioning variables

and extensions to the high dimensional case can be challenging due to the curse of dimen-

sionality.

The primary objective of this chapter is to develop a parsimonious vine copula model

which relaxes the SA. To accomplish this, generalized linear models (GLM) are proposed

for each copula parameter to depend on the corresponding conditioning variables. Such

parametric GLM based models provide an explicit way to describe how the dependence in

each pair of conditioned variables relies on the conditioning variables, and the resulting

models remain computationally efficient for estimation.

The flexibility of the vine copula is achieved at the expense of an exponentially increas-

ing complexity of the resulting model. A d-dimensional vine copula consists of d(d− 1)/2

(conditional) bivariate copulas and thus contains a large number of parameters for high-

dimensional applications. The addition of GLM components inevitably will make a vine

copula model even more complex, and thus contradicts to the principle of parsimony in

statistical inference, if no further adjustment is provided.

To develop parsimonious vine copula models, this chapter develops a regularization
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method to control the number of parameters, leading to sparse vine copula models. The

regularization procedure relies on penalized maximum likelihood estimation (MLE) in such

a way that the insignificant bivariate dependence diminishes. In this chapter, we use the

penalty functions LASSO proposed by Tibshirani ([124]) and SCAD by Fan and Li ([45]),

although other penalty functions can similarly be applied.

Our resulting sparse vine copula has the same function as the truncated vine copula

introduced by [15], with both aiming to reduce the model complexity while retaining the

most significant dependencies in a multivariate distribution. In a truncated vine copula,

one needs to determine the level of tree on the vine from which the dependence is negligible

and thus it is critical to explore the “significant” tree level. In our sparse vine copula, the

model complexity is controlled by the tuning parameter which is associated with the penalty

function used in the estimation procedure. In the specific implementation, the selection of

tuning parameter can be conducted by cross-validation. As applications, the conventional

vine with SA (vine-SA), sparse vine-SA, and sparse GLM-based vine (sparse vine-GLM)

copulas are used to model several financial datasets. The results show that our proposed

models outperform the vine-SA significantly in terms of the Bayesian information criterion.

This chapter proceeds as follows. Section 2.2 provides a brief overview about vine

copulas. Section 2.3 introduces our proposed vine-GLM model and the regularization

method used for developing the sparse vine copulas. Section 2.4 presents applications of

the vine-SA, sparse vine-GLM, and sparse vine-SA models to several financial datasets.

Section 2.5 concludes the chapter.

2.2 Preliminaries

A copula is a multivariate distribution C with uniformly distributed marginals on (0, 1).

Sklar’s Theorem (e.g., [94]) states that every multivariate distribution H with univariate

marginals F1, . . . , Fd can be written as H(x1, . . . , xd) = C (F1(x1), . . . , Fd(xd)) for some

appropriate d-dimensional copula function C. If H is absolutely continuous and strictly

increasing with univariate marginal densities f1, . . . , fd, the chain rule implies the following
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expression for its joint density function

h(x1, . . . , xd) = c (F1(x1), . . . , Fd(xd)) ·
d∏
i=1

fi(xi), (2.1)

where c is the density of the copula C.

Equation (2.1) implies that the dependence structure for a random vector can be iso-

lated from its univariate margins, and dependence modelling for a random vector boils

down to specifying a joint copula function C (or equivalently copula density c) and the

appropriate forms for univariate margins. While the literature on the bivariate copula has

proliferated, the research on multivariate copulas is still developing. In particular, the

hierarchical copula-based structures have been recently proposed as a flexible alternative

to the standard copula model. One of the most promising structures is the regular vine

(R-vine) copula, of which the idea is originally proposed by Joe [73] and further explored

by [8, 9, 30, 84].

An R-vine distribution entails the specification of a number of hierarchical trees where

each edge is assigned with a bivariate copula. These bivariate copulas constitute the

building blocks of the joint R-vine distribution. According to Definition 4.4 given in [84],

an R-vine V on d variables consists of d − 1 trees. The w-th tree Tw has nodes Nw and

edges Ew, where Ew consists of unordered pairs of Nw with no circle, w = 1, . . . , d − 1,

satisfying three conditions:

(a) T1 has nodes N1 = {1, . . . , d} and edges E1;

(b) For w = 2, . . . , d− 1, Tw has nodes Nw = {Ew−1} and edges Ew;

(c) (proximity condition) For w = 2, . . . , d − 1 and {a, b} ∈ Ew with a = {a1, a2} and

b = {b1, b2}, it holds that #(a
⋂
b) = 1.

To construct an R-vine tree with node set N = {N1, . . . , Nd−1} and edge set E =

{E1, . . . , Ed−1}, one associates each edge e = {a(e), b(e);D(e)} in Ew with a bivariate

copula density ca(e),b(e);D(e), where nodes a(e) and b(e) are called the conditioned set, and
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D(e) is the conditioning set. An R-vine distribution is defined as the distribution of the

random vector X with conditional copula density of
(
Xa(e), Xb(e)

)
given the variables XD(e)

specified as ca(e),b(e);D(e) for the R-vine trees with node set N and edge set E . XD(e) denotes

the subvector of X determined by the indices in D(e). Formal definitions for conditioning

set and conditioned set are given in Definition 2.2 of [91].

A triplet (F,V ,B) is called an R-vine copula specification if F = (F1, . . . , Fd) is a vector

of continuous invertible univariate distribution functions, V is a d-dimensional R-vine and

B = {Be : e ∈ Ew, w = 1, . . . , d − 1} is a set of copulas with Be being a bivariate copula

assigned to an edge e on Ew. According to Theorem 4.2 of [84], the joint density h of X is

uniquely determined by an R-vine copula specification as follows:

h(x) =
d∏
i=1

fi(xi)
d−1∏
w=1

∏
e∈Ew

ca(e),b(e);D(e)

(
F (xa(e)|xD(e)), F (xb(e)|xD(e))

∣∣xD(e)

)
. (2.2)

Though the realized multivariate density h is uniquely determined by a given R-vine copula

specification, the representation of a multivariate density in terms of R-vine copula speci-

fication is not unique. The same multivariate density can be expressed by a large number

of different vine copulas with different tree structures and orderings of variables. This

follows from the fact that a multivariate distribution can be decomposed into a product

of conditional bivariate distributions in a number of distinct ways; see [1] for more details

and examples. Indeed, the number of possible representations increases exponentially with

the dimension of the copula, among which the C-vine and D-vine structures are two par-

ticularly interesting structures commonly studied in the literature. In a C-vine structure,

each tree has a root node which is linked to all the other nodes, and in a D-vine structure,

nodes in any tree level can at most have two neighbours and thus every tree is flat on the

vine.

As mentioned in the first section, the specific application of R-vine copula models is

often accompanied with the SA, which simplifies the decomposition for the joint density
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function h(x) in (2.2) into

h(x) =
d∏
i=1

fi(xi)
d−1∏
w=1

∏
e∈Ew

ca(e),b(e);D(e)

(
F (xa(e)|xD(e)), F (xb(e)|xD(e))

)
,

where the original conditional copula density ca(e),b(e)|D(e)(·, ·
∣∣xD(e)) in (2.2) is replaced by

an unconditional copula density.

It follows from the definition that the R-vine copula approach to dependence modelling

involves three aspects: (1) selecting vine structure, (2) selecting bivariate copula families,

and (3) estimating bivariate copula parameters. The selection of the vine structure is

concerned with determining the structure of each tree on the vine. This issue is discussed

in detail in [31]. In general, the basic idea is to choose an appropriate weight corresponding

to each edge that measures the contribution of the associated bivariate copula to the overall

dependency. A tree structure is said to be optimal if it is a maximum spanning tree in

that it has the maximum sum of weights. In this chapter, we follow [31] and choose the

absolute Kendall’s tau as the weight variable. The maximum spanning tree can be obtained

by Prim’s algorithm (e.g., [27]). To determine a bivariate copula on each edge of the tree,

it is common to fit the data with a set of bivariate copula candidates and choose the best

one according to certain model selection criterion. Many criteria for selecting bivariate

copulas in the context of vine copulas are discussed extensively in [16, Section 5.4]. The

key findings of the paper are that the Akaike Information Criterion (AIC), which is defined

as AIC = 2K−2 ln(L) with K being the number of parameters and L being the likelihood

of the model, is found to be a reliable criterion. The AIC has the highest accuracy in

the majority of cases, and it is even superior to the blanket goodness-of-fit test. For this

reason, this chapter similarly adopts the AIC criterion for selecting the bivariate copulas.

There exist several methods for estimating a copula model. First, the conventional

maximum likelihood (ML) method estimates the marginal parameters and the copula

parameters simultaneously. In theory, this method gives the most efficient estimators.

Nevertheless, it is commonly accompanied with a non-convex optimization over a large

dimension set, and thus computationally cumbersome. Second, the so-called inference for

margins (IFM) method proposed by [75] first estimates marginal parameters and then
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uses the resulting parameters to estimate the copula parameters. Third, the semipara-

metric (SP) estimation proposed by [59] applies univariate empirical distribution functions

(EDFs) to generate copula observations and then estimates copula parameters with the

generated observations. The second and third methods are a two-step procedure; they sep-

arate the estimation of the copula from the univariate marginal distributions, and hence

substantially reduce the computation.

In view of the complexity of a vine copula model, a two-step procedure for estimating

its parameters seems more computationally tractable. [1] develops a stepwise estimation,

which estimates the bivariate copulas on the same tree-level simultaneously and conducts

the estimation in a top-down manner. [64] proves that the stepwise estimation is consis-

tent and asymptotically normal, given that the copula observations are generated by the

univariate EDFs. [1] also proposes a sequential estimation procedure that estimates each

pair copula independently. If all the pair copulas do not share any common parameters,

the sequential ML estimation is equivalent to the stepwise ML estimation. In this chapter,

we will adopt the sequential ML estimation with the IFM method.

2.3 Vine copula with GLM and sparsity

By “vine-GLM copula” we denote as the vine copulas for which the associated conditional

copulas depend on conditioning variables only via their parameters, and each copula param-

eter is described by a generalized linear model. The specific setup of our vine-GLM copula

model is given in subsection 2.3.1, and the procedure for producing a sparse vine-GLM

copula model is described in subsection 2.3.2. Subsection 2.3.3 provides some simulation

studies to assess the relative efficiency of our proposed GLM-based copula models to other

existing copula models.

2.3.1 Conditional copula with GLM

While the copulas on a vine model are all bivariate, we consider a general d-dimensional

continuous response U = (U1, . . . , Ud) and a set of conditioning variables V = (V1, . . . , Vm).

14



Let H(u1, . . . , ud|v) = Pr(U1 ≤ u1, . . . , Ud ≤ ud|V = v), FUi(ui|v) = Pr(Ui ≤ ui|V = v),

i = 1, . . . , d be the joint distribution of U|V and marginal distribution of Ui|V, i = 1, . . . , d,

where v = (v1, . . . , vm). According to Sklar’s Theorem (e.g., [94, 97]), there exists a unique

d-dimensional conditional copula CU;V(·|·) such that

H(u1, . . . , ud|v) = CU;V (FU1(u1|v), . . . , FUd(ud|v)|v) , (u1, . . . , ud) ∈ Rd.

Our GLM-based model assumes that the conditional copula depends on the covariates

V via the copula parameters only, so that the joint distribution H(u1, . . . , ud|v) admits

the following representation

H(u1, . . . , ud|v) = CU;V(FU1|V(u1|v), . . . , FUd|V(ud|v);θ(v)),

where θ(v) = (θ1(v), . . . , θp(v)) is the conditional copula parameter vector with

θj(v) = g−1
j (ηj(v)).

Here gj(·) is a link function and ηj(·) is a calibration function for j = 1, . . . , p. For univariate

v, the parameter functions θ(v) can be estimated by a polynomial of v as proposed by [3]

(see also [4] and [2]). In our GLM-based conditional copulas, we consider a linear function

for ηj(v) with the following form

ηj(v) = β0,j + β1,jv1 + · · ·+ βm,jvm, for j = 1, . . . , p, (2.3)

where p denotes the number of parameters in the conditional copula and βj = (β0,j, . . . , βm,j)

is a vector of constant coefficients. The above linear calibration function has the capability

of capturing the influence of conditioning variables while still ensuring the tractability of

the model. To increase the model flexibility, other conditioning variables’ transformations,

such as the quadratic term v2
1, . . . , v

2
m, can be incorporated to the calibration function to

capture their nonlinear effects.

Let βj = (β0,j, β1,j, . . . , βm,j) for j = 1, . . . , p, and β = (β1, . . . ,βp) which collects all

the parameters in the conditional copula CU;V. Given a sample {(uk,vk), k = 1, . . . , N}
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for (U,V), the conditional copula model with GLM possesses a log-likelihood function of

l(β) +
N∑
k=1

d∑
i=1

log {fUi(ui,k|vk)} ,

where fUi(ui,k|vk) denotes the conditional density function of the ith marginal for i =

1, . . . , d,

l(β) =
N∑
k=1

log
{
cU;V

(
FU1|V(u1,k|vk), . . . , FUd|V(ud,k|vk); θ1(β1,vk), . . . , θp(βp,vk)

)}
, (2.4)

and θj(βj,vk) = g−1
j (β0,j +β1,jv1,k + · · ·+βm,jvm,k) for j = 1, . . . , p. In principle, the MLE

of β can be obtained by maximizing l(β). It is worth noting that p is usually smaller than

or equal to two in most bivariate copulas which are usually applied in vine copula models.

Each copula parameter has a specific domain and this implies that the link function is

supposed to be determined according to the same domain. Many popular bivariate copulas,

as well as their parameter domains, can be found in [94] and [74]. Table 2.1 shows the

choices of the link functions for the bivariate copulas that we will consider in our simulation

studies and real data examples. Recall that Gaussian and Frank copulas are symmetric

but without tail dependence. The Student-t copula is a tail dependent symmetric copula.

Clayton and Gumbel copulas have either lower or upper tail dependence. Following [95],

we also consider BB1, survival BB1(sBB1), and BB7 copulas, which exhibit asymmetric

tail dependence.

2.3.2 Sparse vine copula

Our proposed vine-GLM copula suffers from an over-fitting problem, since it has more

parameters than SA-based vine copulas. In order to ensure the model complexity is kept

at a reasonable level while still providing flexible dependence modelling structures, this

subsection describes how sparsity can be introduced to our proposed vine-GLM copulas to

attain these tradeoffs. Recall that the truncated vine copula of [15] is motivated by the
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Copula Parameter domain GLM link functions g−1(·)
Gaussian ρG ∈ [−1, 1] ρG = tanh

{
1
2(β0 + β1v1 + · · ·+ βmvm)

}
Student-t ρt ∈ [−1, 1] ρt = tanh

{
1
2(β0,ρ + β1,ρv1 + · · ·+ βm,ρvm)

}
ν ∈ (0,+∞) ν = exp {β0,ν + β1,νv1 + · · ·+ βm,νvm}

Clayton (strict) δ ∈ (0,+∞) δ = exp {β0 + β1v1 + · · ·+ βmvm}
Gumbel θ ∈ (1,+∞) θ = exp {β0 + β1v1 + · · ·+ βmvm}+ 1
Frank α ∈ (−∞,+∞)\ {0} α = β0 + β1v1 + · · ·+ βmvm
BB1/sBB1 θ ∈ (0,+∞) θ = exp {β0,θ + β1,θv1 + · · ·+ βm,θvm}

δ ∈ (1,+∞) δ = exp {β0,δ + β1,δv1 + · · ·+ βm,δvm}+ 1
BB7 θ ∈ (1,+∞) θ = exp {β0,θ + β1,θv1 + · · ·+ βm,θvm}+ 1

δ ∈ (0,+∞) δ = exp {β0,δ + β1,δv1 + · · ·+ βm,δvm}

Table 2.1: The link functions for some selected bivariate copulas. The parameter δ of BB1
copula is [1,+∞), but it reduces to a Clayton copula when δ = 1. Thus, only a range
of (1,+∞) is assigned for the parameter δ. For the same reason, a range of (1,+∞) is
considered for the parameter θ in the BB7 copula.

empirical observation that the bottom trees on a vine copula model are often negligible in

terms of their impact on dependence. This suggests that we can determine the “significant”

tree level below which independence can be assumed.

In contrast, our sparse vine copula does not simply focus on these less significant bottom

trees. Instead, it shrinks all the “insignificant” bivariate copulas on each tree-level to

independent copulas, and the determination of such “insignificance” bivariate copulas is

automatically carried out by a penalized estimation procedure.

The sequential estimation procedure proposed by [1] will similarly be used to de-

velop our sparse vine copula model. The procedure estimates each bivariate copula in-

dividually. Let {(U1i, U2i), i = 1, 2, . . . , N} be independent and identically distributed

(i.i.d.) observations of a bivariate copula C(u1, u2;θ) with copula density c(u1, u2;θ),

where θ = (θ1, . . . , θd) is the vector of copula parameters. The penalized MLE is given by

θ̂ = arg max
θ

{
N∑
k=1

`(U1k, U2k;θ)−N
d∑
j=1

p(θj)

}
, (2.5)

where `(U1k, U2k;θ) = ln {c(U1k, U2k;θ)} is the log-likelihood, and p(·) is a penalty function.
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Note that the above penalty function p(θj) is used to “detect” the insignificant parameter

by shrinking the estimator θ̂j to zero for each insignificant parameter θj in a linear model.

Equivalently, if the penalty function is expressed as p(θj − θ̃j) for some target value θ̃j,

then the estimator θ̂j is shrunk to θ̃j.

In our numerical examples, we will use the LASSO and SCAD penalties, which are two

of the most popular penalty functions in the statistical literature. The LASSO penalty is

introduced by [124] for developing sparse linear regression models in a high dimensional

setting. Its expression is given by

pL(θj) = λL|θj|,

where the tuning parameter λL > 0 is imposed to control the degree to which the estimator

is shrunk to zero. The SCAD penalty, which is proposed by [45], has the form

pS(θj) =


λS|θj|, |θj| ≤ λS,

−(θ2
j − 2aSλS|θj|+ λ2

S)/ [2(aS − 1)] , λS < |θj| ≤ aSλS,

(aS + 1)λ2
S/2, |θj| > aSλS,

(2.6)

where λS and aS are two tuning parameters with λS > 0 and aS > 2.

According to [45], LASSO is better than SCAD in situations where there is too much

randomness associated with the true model, while SCAD-penalized MLEs are less biased.

The SCAD possesses the so-called oracle property, which roughly says that the penalized

MLEs work as well as if the correct submodel were known in advance. A comprehensive

review of the commonly-used penalty functions is provided in [50]. It is also worth noting

that the penalized MLEs can be asymptotically normal under certain conditions as illus-

trated by [47]. However, in general the asymptotic normality does not apply (see [98]) and

hence in our application, we will use the bootstrap method to construct the confidence

intervals for the estimated parameters.

The efficiency of the penalized estimator critically depends on the choice of the tuning

parameter in a penalty function since it controls the severity of the shrinkage. For a specific
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application, the tuning parameters are usually determined by a cross-validation procedure,

nevertheless [45] recommends aS = 3.7 for the SCAD penalty. In our numerical examples,

we have conducted additional studies to infer the appropriate value of aS and we similarly

conclude the appropriateness of setting aS to 3.7. For this reason, we will continue to use

this value for our subsequent numerical work. For other tuning parameters λS or λL, we

follow [128] and choose the tuning parameter which gives the best Bayesian information

criterion (BIC) for the model. The BIC is computed by BIC = K ln(N) − 2 ln(L), where

N is the sample size, K is the number of parameters, and L is the likelihood. The BIC

rule leads to a more sparse structure than the general cross-validation procedure does. As

argued in [128], the general cross-validation procedure is not able to satisfactorily select the

tuning parameter while the BIC-based tuning parameter is able to identify the true model

consistently. For our implementations, we first conduct some pre-analysis to empirically

determine the plausible ranges of the tuning parameters. Then, we obtain the penalized

MLEs corresponding to each of a set of selected candidate values of λS or λL, which will

be clearly specified in each of the subsequent numerical studies. Finally, we choose λS

or λL that gives the best BIC. For a vine copula in a large dimension, choosing the set

of tuning parameters for each bivariate copula can be computationally intensive. A sub-

optimal solution is to consistently use the same set of tuning parameters for all the bivariate

copulas on the same level of tree.

Table 2.2 (also see Table 2.1) displays eight possible bivariate copulas which will be used

to develop sparse-based vine copulas in our subsequent numerical studies. While these are

not the exhaustive list of bivariate copulas, they are sufficiently representative in that they

exhibit distinct distributional shapes in terms of tail dependence and asymmetry. Table 2.2

also gives the situation under which the copula degenerates to the independence structure.

For example, when the target value of a copula parameter is zero, such as the Gaussian

copula’s ρ and Clayton copula’s δ, the penalty term in the log-likelihood objective of (2.5)

is simply p(θj). When the target value of a parameter is one, such as the BB1 copula’s δ

and Gumbel’s θ, the penalty term is replaced by p(θj − 1). For the Student-t copula, the

target value of ν is set to 31, a value which is large enough for the Student-t copula to be

close to a Gaussian copula.

To conclude this subsection, Table 2.3 summarizes the procedure for estimating sparse
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Copula Degeneration
Student-t Student t copula → Gaussian copula, as ν → +∞.
Gaussian Gaussian copula → independence copula, as ρG → 0.
Clayton Clayton copula → independence copula, as δ → 0.
Gumbel Gumbel copula → independence copula, as θ → 1.
Frank Frank copula → independence copula, as α→ 0.
BB1 BB1 copula → Clayton copula, as δ → 1.
sBB1 sBB1 copula → independence copula, as θ → 0 and δ → 1.
BB7 BB7 copula → Clayton copula, as θ → 1.

Table 2.2: Degeneration of candidate copulas.

vine-GLM copula models. As we have pointed out in Section 2.2, we use the absolute

Kendall’s tau as the weight measure and apply the Prim’s algorithm to obtain the max-

imum spanning tree at each level on the vine. Given copula observations, we apply the

method given in [58] to test the independence. If the observations reject the independence

assumption, we apply the AIC criterion to choose the best bivariate copula from the eight

candidates in Table 2.2 for each edge of the tree, and simultaneously obtain the estimation

for each selected bivariate copula by the penalized MLE procedure as outlined above.

Note that the algorithm also applies the penalized estimation scheme to a vine-GLM

copula model. We continue to rely on the AIC rule for the bivariate copula selection. To

compute the value of AIC, we have to estimate each candidate bivariate copula on each

edge with a GLM specification, and maximize a log-likelihood with an expression similar

to l(β) given in (2.4). When the penalized estimation is applied to a vine-GLM copula

model, leading to a sparse vine-GLM copula, we have two levels of shrinkage. First, we

target to shrink those insignificant coefficients βs for s = 1, . . . ,m in the GLM to be zeros

to reduce model complexity. Second, given that all the coefficients βs for s = 1, . . . ,m

are indeed zeros, the intercept coefficient β0 in the GLM is expected to be shrunk to a

corresponding target so that the resulting copula parameter is attracted to a boundary

value (see Table 2.2) and the underlying bivariate copula reduces to be an independent

one. The specific shrinkage rule for each conditional bivariate copula-GLM is described in

Table 2.4. In the table, a target value of β0 for quite many bivariate copulas to reduce

to the independence copula is −∞. In our specific implementation, we replace the target

value of −∞ by log(0.001). Similarly, for the degrees of freedom in the Student-t copula,
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we replace the target value of +∞ by log(31).

1: Input d-dimensional data.
2: Generate copula observations
3: For w = 1, . . . , d− 1 do
4: Check for proximity condition.
5: Compute empirical Kendall’s tau matrix.
6: Search for the maximum spanning tree.
7: For each bivariate copula in the w-th tree level do
8: If tested to be independent, go to Step 16.
9: Else try a certain bivariate copula family in Table 1.
10: For λL (or λS) in candidate collections do
11: Estimate pair copula parameters (or GLM coefficients) by the LASSO/SCAD estimators.
12: If possible, decay pair copulas according to the penalized MLEs.
13: End for
14: Choose λ with the lowest BIC, take corresponding penalized MLEs as the final estimation,

and compute AIC.
15: If all copula families have been tried, choose the one with lowest AIC, else go to Step 9.
16: End for
17: Compute pseudo observations.
18:End for
19:Return the density of the sparse vine-GLM specification.

Table 2.3: The algorithm for estimation of sparse vine-GLM copula models.

2.3.3 Simulation studies

In order to assess the efficiency of the proposed GLM-based sparse vine copula relative to

the SA-based vine copula, we consider the following carefully crafted experiments.

First we assume that the true underlying multivariate distribution is given by a five-

dimensional vine copula C with the corresponding tree structure depicted in Figure 2.1

and the bivariate copula families together with their parameters as shown in Table 2.5.

Note that the bivariate copulas of the above vine copula comprise of Student-t copulas and

Frank copulas. This is motivated by their ease in generating the random samples. The
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Copula Shrinkage targets
Gaussian βs → 0 for s = 0, 1, . . . ,m
Student-t βs,ρ → 0 for s = 0, 1, . . . ,m,

βs,ν → 0 for s = 1, . . . ,m, and β0,ν,0 → +∞
Clayton βs → 0 for s = 1, . . . ,m, and β0 → −∞
Gumbel βs → 0 for s = 1, . . . ,m, and β0 → −∞
Frank βs → 0 for s = 0, 1, . . . ,m

BB1/sBB1 βs,θ → 0 for s = 1, . . . ,m, and β0,θ → −∞,
βs,δ → 0 for s = 1, . . . ,m, and β0,δ → −∞

BB7 βs,θ → 0 for s = 1, . . . ,m, and β0,θ → −∞,
βs,δ → 0 for s = 1, . . . ,m, and β0,δ → −∞

Table 2.4: Shrinkage targets for bivariate copula-GLM.

joint copula density for (U1, · · · , U5), as a result, has the following representation:

c(u1, . . . , u4) = c12(u1, u2)c13(u1, u3)c34(u3, u4)c35(u3, u5)

×c23;1

(
F2|1(u2|u1), F3|1(u3|u1)|u1

)
c14;3

(
F1|3(u1|u3), F4|3(u4|u3)|u3

)
×c15;3

(
F1|3(u1|u3), F5|3(u5|u3)|u3

)
×c24;13

(
F2|13(u2|u1, u3), F4|13(u4|u1, u3)|u1, u3

)
×c25;13

(
F2|13(u2|u1, u3), F5|13(u5|u1, u3)|u1, u3

)
×c45;123

(
F4|123(u4|u1, u2, u3), F5|13(u5|u1, u2, u3)|u1, u2, u3

)
. (2.7)

A controlled data set of size 10,000 is then constructed by simulating the required

samples from the above copula density. Using the procedure as outlined earlier, the SA-

based vine copulas and GLM-based vine copulas are fitted to the controlled data set.

Since we have complete information about the controlled data set, the efficiency of the

fit can easily be gauged. The fitted tree structure is shown in Figure 2.2 and the fitted

bivariate copulas (together with their fitted parameter values) are given in Tables 2.6 and

2.7 for the vine-SA model and the sparse vine-GLM model, respectively. The candidate

bivariate copulas used in the estimation procedure correspond to those in Table 2.1. Note

that for the GLM-based copulas, we consider both LASSO and SCAD penalty functions.

Furthermore, our pre-analysis on possible tuning parameters indicates that the plausible

range for the LASSO’s tuning parameter λL is [10−6, 10−4] while SCAD’s tuning parameter
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λS is [0.05, 0.10]. After that, ten candidates of tuning parameters are evenly selected from

the respective ranges to produce ten fitted GLM-based sparse vine-copulas associated with

each penalty function. The fitted set that yields the best BIC is the one that is reported

in Table 2.7.
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Figure 2.1: Tree structure of the true vine copula for simulation studies.

Copula Family Parameters Copula Family Parameters
C12 t ρ12 = 0.45 C15;3 Frank θ15;3 = 0.70− 0.4U3

ν12 = 7.06
C13 t ρ12 = 0.56 C14;3 t ρ14;3 = tanh

{
1
2 (0.2254 + 0.5U3)

}
ν12 = 5.75 ν14;3 = exp {1.975 + 0U3}

C34 t ρ12 = 0.47 C25;13 Frank θ25;13 = 0.45 + 0.6U1 − 0.4U3
ν34 = 8.47

C35 Frank θ35 = 2.75 C24;13 Frank θ24;13 = 1.11 + 0U1 − 0U3
C23;1 Frank θ23;1 = 1.89− 0.6U1 C45;123 Frank θ45;123 = 1.35 + 0.3U1 + 0.4U2 − 0.5U3

Table 2.5: Families and parameters of the bivariate copulas for vine copula simulation.

Based on the fitted results, we make the following remarks:

• It is of interest to note that all the three fitted models consistently yield the same tree

structure as shown in Figure 2.2. The estimated tree structure, however, deviates

from the true tree structure as depicted in Figure 2.1. The misspecification is not

surprising since the method used to determine tree structures is not guaranteed to

provide the true structure.

• All the three fitted models have the identical first tree in terms of the same bivariate

copula families (compare Table 2.5 to Tables 2.6 and 2.7). Furthermore, the fitted

parameter values are very close to their true counterparts.
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Figure 2.2: Tree structure of the fitted vine-SA and sparse vine-GLM copula.

Copula Family Parameters Copula Family Parameters
C12 t ρ̂12 = 0.4460 C14;3 t ρ̂14;3 = 0.2417

ν̂12 = 7.4391 ν̂14;3 = 7.0054

C13 t ρ̂13 = 0.5482 C45;3 Frank θ̂45|3 = 1.5908
ν̂13 = 5.3925

C34 t ρ̂12 = 0.4563 C24;13 Frank θ̂24;13 = 1.0638
ν̂34 = 8.0040

C35 Frank θ̂35 = 2.7410 C15;34 Frank θ̂15;34 = 0.0472

C23;1 Frank θ̂23;1 = 1.5196 C25;134 Frank θ̂25;134 = 0.3474

Table 2.6: Vine-SA copula parameter estimations.

The criterion based on either AIC or BIC clearly supports the superiority of the GLM-

based sparse vine copulas over the SA-based vine copulas. According to [19], a difference

in AIC larger than 10 is a significant support in selecting better models, and a difference

between 4 and 7 provides considerable support. [79] shows that a difference in BIC larger

than 5 is significant. Therefore, Table 2.8, which reports the AICs and BICs of the three

fitted models, shows that both the AIC and BIC prefer our proposed model significantly to

the vine-SA model. The key difference between AIC and BIC is that the latter penalizes

the size of the sample data so that the larger the sample size, the heavier the penalty.

They disagree when AIC chooses a more complex model than BIC does. We use AIC to

select pair copulas, as a bivariate copula usually has at most two parameters. But in high-

dimensional cases, such as selecting vine copula models, we focus on BIC especially when

AIC and BIC prefer different models, because BIC favours a parsimonious model more

than AIC in high dimensions, while AIC is likely to lead to an overfitted model. According

to [34], BIC is a consistent selector that will select the true model with probability of 1 as
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Sparse vine-GLM (LASSO) Sparse vine-GLM (SCAD)
Copula Family Parameters Family Parameters
C12 t ρ̂12 = 0.4460, ν̂12 = 7.4391 t ρ̂12 = 0.4460, ν̂12 = 7.4391
C13 t ρ̂13 = 0.5482, ν̂13 = 5.3925 t ρ̂13 = 0.5482, ν̂13 = 5.3925
C34 t ρ̂34 = 0.4563, ν̂34 = 8.0040 t ρ̂34 = 0.4563, ν̂34 = 8.0040

C35 Frank θ̂35 = 2.7410 Frank θ̂35 = 2.7410

C23;1 Frank θ̂23;1 = 1.8802− 0.7187U1 Frank θ̂23;1 = 1.8802− 0.7187U1

C14;3 t ρ̂14;3 = tanh
{

1
2 (0.2821 + 0.4266U3)

}
t ρ̂14;3 = tanh

{
0.2803+0.4302U3

2

}
ν̂14;3 = exp {1.9812} ν̂14;3 = exp {1.9727}

C45;3 Frank θ̂45;3 = 1.7619− 0.3429U3 Frank θ̂45;3 = 1.7619− 0.3429U3

C24;13 Frank θ̂24;13 = 1.0697 Frank θ̂24;13 = 1.0689

C15;34 Frank θ̂15;34 = 0.6985− 0.8301U3 Frank θ̂15;34 = 0.6986− 0.8306U3

C25;134 Frank θ̂25;134 = 0.3348 Frank θ̂25;134 = 0.3371

Table 2.7: Sparse vine-GLM copula estimation.

the sample size goes to infinity, while AIC might not. The legitimacy of the BIC has also

been justified by [56].

Table 2.8 also shows the elapsed time of fitting the vine-SA, sparse vine-GLM with

LASSO and SCAD penalties to the simulated data. All fitting procedures in this chapter

are carried out with MATLAB (Version R2014a) on a PC with Intel Core i5-3210M CPU

at 2.5GHz and 6.00GB memory. Fitting sparse vine-GLM models needs more time than

fitting vine-SA, because 1)starting from the second tree GLM introduces more parameters

to each bivariate copula, and 2) each copula type is fitted 10 times for every bivariate

copula due to ten tuning parameter candidates.

In the rest of the section, we shall only focus on the LASSO penalty for fitting the

sparse vine-GLM model, as the results with the SCAD are similar and almost all the same

comments can be applied similarly. To provide additional insight on the fitted GLM-based

sparse vine copula model, let us now focus on the fitted bivariate copula C14;3 using the

LASSO penalty. Similar comments apply to that based on the SCAD penalty.

We first examine the accuracy of the fitted parameter values relative to the true pa-

rameter values. This can be accomplished by examining the confidence intervals of the

fitted values. As asymptotic normality may not apply to the present model, we resort

to the bootstrap method to construct the required confidence intervals. We resample the

25



original controlled data set with replacement and estimate the copula parameters based

on the resampled data. We repeat this procedure 1, 000 times so as to obtain 1, 000 sets

of parameter estimators. We view these 1, 000 estimators as sample of the parameter es-

timators and use their 2.5% and 97.5% empirical quantiles to construct a 95% confidence

interval. The results are shown in Table 2.9. Comparing to their true parameter values

(see Table 2.5), it is reassuring that the constructed 95% confidence intervals contain the

true parameter values.

Next, we are interested in the Kendall’s tau of the bivariate copula C14;3. More specif-

ically, we are interested in how the Kendall’s tau of variables U1 and U4 evolves along

with the value of U3 over the whole interval (0, 1) since for such a conditional copula, the

value of Kendall’s tau depends on the value of the conditioning variable U3. The Kendall’s

tau of the true model for each given value of U3 can be computed based on the specified

copula family and the GLM models for its parameters given in Table 2.5. The results

are demonstrated by the dotted curve in Figure 2.3. To develop an estimate for such a

true curve of Kendall’s tau, we first fit a sparse vine-GLM model using the previously

constructed data set and then compute the Kendall’s tau based on the fitted parameter

values for each value of U3 over the interval (0, 1). The results are demonstrated by the

solid curve in Figure 2.3, along with the confidence bands which are similarly estimated

using the bootstrap method. It is again reassuring that the true Kendall’s tau falls in the

95% confidence band estimated with a sparse vine-GLM copula. The graph also reports

the estimated Kendall’s tau based on a vine-SA copula. In this case, the Kendall’s tau is

a constant and is illustrated by the dash-dot flat line since the conditional copula does not

depend on the conditioning variable U3.

number of
log-likelihood AIC BIC

time
parameters (in seconds)

Vine-SA 14 6,665.6 -13,303 -13,202 120.95
Sparse vine-GLM (LASSO) 18 6,698.3 -13,361 -13,231 5,772.58
Sparse vine-GLM (SCAD) 18 6,696.9 -13,358 -13,228 4,614.88

Table 2.8: Model selection: vine-SA versus sparse vine-GLM.

A final comparison is based on calculating risk measures of an investment portfolio.
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β̂0,ρ β̂1,ρ β̂0,ν β̂1,ν

Fitted value 0.2821 0.4266 1.9812 0
95% CI (0.1931, 0.3651) (0.2803, 0.5731) (1.6693, 2.1516) (0, 0.5455)

Table 2.9: 95% confidence intervals of the GLM coefficients in C14;3.
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Figure 2.3: The 95% confidence band of the fitted C14;3’s Kendall’s tau. The dashed lines
indicate the 95% confidence band. The solid curve is the Kendall’s tau of C14;3 in the fitted
sparse vine-GLM copula, while the dash-dot line is the Kendall’s tau of C14;3 in the fitted
vine-SA copula. The dotted curve is the Kendall’s tau of the true model.

In particular, we are interested in Value-at-Risk (VaR) and Tail Value-at-Risk (TVaR).

The VaR and TVaR of a profit-and-loss random variable S at a confidence level α for

0 < α < 1 are defined as VaRα(S) = inf{s ∈ R : Pr(S ≤ s) ≥ α} and TVaRα(S) =

E[S|S ≤ VaRα(S)], respectively.

Suppose that a dollar is invested in each of five (correlated) assets at time t − 1 and

that rt,q denotes the daily log-return of the q-th asset at time t, q = 1, . . . , 5. Then, the

one-day profit-and-loss variable at time t of the investment portfolio is given by

St =
5∑
q=1

ert,q − 5. (2.8)

We are concerned with estimating the VaR and TVaR of the one-day profit-and-loss variable

St based on vine-SA and sparse vine-GLM (LASSO) copula models.
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The Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model is

widely applied for modelling the log-return data of financial time series. In our simulation

studies, each of the five daily log-return variables rt,q is assumed to follow a GARCH (1,1)

model

rt,q = µq + εt,q, εt,q = σt,qzt,q, σ
2
t,q = ωq + αqε

2
t−1,q + βqσ

2
t−1,q, for q = 1, . . . , 5, (2.9)

with parameter values given in Table 2.10, where each innovation zq,t is assumed to have a

Student-t distribution with degree of freedom specified in the table as well. We further as-

sume that the innovation vector (z1,t, z2,t, z3,t, z4,t, z5,t) is subject to a dependence structure

governed by the copula density (2.7) with the tree structure and bivariate copulas (both

families and parameters) specified in Figure 2.1 and Table 2.5 respectively.

r1,t r2,t r3,t r4,t r4,t

µi 0.0005 0.0002 0.0006 0.0005 0.006
ωi 2.67× 10−6 3.85× 10−6 1.98× 10−6 2.52× 10−6 3.74× 10−6

αi 0.0646 0.0623 0.0823 0.0767 0.0672
βi 0.9246 0.9346 0.9170 0.9103 0.9232

εi,t−1 0.0074 -0.0025 0.0160 0.0065 0.0079
σi,t−1 0.0088 0.0170 0.0108 0.0087 0.0126

νi 4.4923 6.1283 5.8661 7.1731 6.5837

Table 2.10: Parameters of simulated standard-GARCH(1,1) with t distributed innovation.
Here, νi is the degree-of-freedom of a Student-t distribution.

In order to evaluate the VaR and TVaR of the portfolio at time t, we simulate 100,000

samples of the log-return vector (r1,t, . . . , r5,t) from model (2.9) to obtain 100,000 samples of

the profit-and-loss variable St. The VaR and TVaR are then computed from these samples

assuming confidence levels of 97.5% and 99%, respectively. We replicate the simulation

50 times independently and compute the average and standard deviation over these 50

estimations to produce conference intervals of the risk measures. The resulting average

and the 95% confidence interval are assumed to be the correct values and are reported

under the row labelled “True model” in Table 2.11. These values will be the benchmarks

for the estimated VaR and TVaR from both the fitted vine-SA and sparse vine-GLM (with

LASSO) models.
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VaRα TVaRα
α 99% 97.5% 99% 97.5%

Vine-SA -0.0995 -0.0792 -0.1248 -0.1026
(-0.1005, -0.0984) (-0.0801, -0.0785) (-0.1266, -0.1228) (-0.1036, -0.1015)

Sparse vine-GLM (Lasso) -0.1006 -0.0799 -0.1260 -0.1036
( -0.1017, -0.0997) (-0.0806, -0.0793) (-0.1286, -0.1239) (-0.1051, -0.1026)

True model -0.1006 -0.0799 -0.1260 -0.1036
(-0.1021, -0.0994) (-0.0807, -0.0793) ( -0.1279, -0.1242) ( -0.1048, -0.1025)

Table 2.11: VaRα and TVaRα simulated from three models. Numbers in brackets show
95% confidence intervals.

An immediate conclusion that can be drawn from Table 2.11 is that the estimated

VaR and TVaR from the sparse vine-GLM are much closer to the true values than the

corresponding estimates from the vine-SA. More severely, the estimated risk measures

from the vine-SA are much less negative than the corresponding true values. This implies

that risk measures from the vine-SA consistently underestimate the underlying risk.

2.4 Application to financial data

In this section, we apply our proposed vine copula models to daily log-returns of some finan-

cial assets and compare their performance to the vine-SA copula model. We consistently

use the two-step method of IFM for the estimation. The first step focuses on modelling

the (parametric) univariate marginal distribution. By using the results from the first step,

the second step generates the resulting vine copula observations and estimates the vine

copula using the sequential estimation procedure. The general procedure of estimating the

univariate marginal distributions is described in the following subsection. Subsection 2.4.2

considers an application of the sparse vine-GLM copula model to a 5-dimensional financial

dataset. The impact of sparsity on vine-SA copula is illustrated in subsection 2.4.3.

2.4.1 Estimating univariate marginals

Determining proper univariate marginal distributions is the first and also a critical step in

the IFM method since any fitting error will be carried over to fitting copulas in the second
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step. We assume that the financial daily log-returns are described by the GARCH(1,1)-type

models. After calibrating each marginal distribution, we use the so-called GARCH filtered

transformed standardized residuals (TSRs) as the observations for vine copula estimation.

Brief introductions to the GARCH(1,1)-type models and TSRs are given in Appendix A. If

the univariate marginal distribution is properly estimated, we can expect that TSRs con-

stitute a sample for a uniform random variable over (0, 1). Therefore, checking uniformity

of the resulting TSRs provides a reasonable way of testing the performance of the fitted

univariate marginal model, as suggested by [33].

A general GARCH model consists of three components: conditional mean, conditional

variance, and innovation term. In addition to the standard specification for the conditional

mean and conditional variance, we consider some other more general models, as outlined

in Table 2.12. Moreover, four different innovation distributions are considered as shown in

Table 2.12. This setup gives 64 distinct combinations of the three components in fitting

each univariate marginal data set.

Conditional mean Conditional variance Innovation
standard standard-GARCH(1,1) normal

AR(1) E-GARCH(1,1) Student-t
MA(1) GJR-GARCH(1,1) skewed normal

ARMA(1,1) P-GARCH(1,1) skewed-t

Table 2.12: Candidates for the three components in GARCH(1,1)-type models.

The next immediate challenge is to identify the right marginal distribution among the

above 64 GARCH-type models in order to generate TSRs for estimating vine copula. Many

criteria can be used to overcome this challenge. In addition to the method proposed by

[33] of verifying the uniformity of the resulting TSRs, [92] suggests choosing a GARCH

model by comparing certain information criteria while [67] advocates using the best forecast

criterion.

In this chapter, we resort to a two-step procedure of selecting the best GARCH model.

The first step applies the method of [78] to verify the non-serial correlation of TSRs. By

letting {u1, . . . , uN} be the sequence of TSRs filtered from a GARCH(1,1)-type model and
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ū denotes its sample mean, we first calculate their autocorrelation coefficients up to 20

lags and then check whether zero falls into each of the 95% confidence intervals of these

autocorrelation coefficients. We also regress each (ui − ū)q against its own 20 lags for

q = 1, 2, 3, 4, and finally apply the so-called Lagrange multiplier test (see [78]) based on

the regression results. This implies that we have two different methods of testing the non-

serial correlation. While each of these tests has its own shortcomings in indicating the

non-serial correlation, the combined tests could potentially enhance their performances.

For the candidate models that have passed the tests from the first step, the second step

involves dividing all the TSRs into 20 bins and applying the Pearson’s Chi-square test to

check their uniformity. The best model is selected as the one which corresponds to the

smallest Chi-square test statistics. In the unlikely situation that none of these 64 candidate

GARCH models passes the non-serially correlated test in the first step, we compromise to

take the model that gives the best Lagrange multiplier test statistics.

Asset Marginal distribution
10TNote AR(1) - standard-GARCH(1,1) - skewed-t
10Bund ARMA(1,1) - E-GARCH(1,1) - skewed-t
Msci.world AR(1) - E-GARCH(1,1) - skewed-t
DAX ARMA(1,1) - GJR-GARCH(1,1) - skewed-t
S&P 500 standard - GJR-GARCH(1,1) - skewed-t

Table 2.13: Fitted marginal distributions for 10TNote, 10Bund, Msci.world, DAX, and
S&P 500.

2.4.2 Sparse vine-GLM copulas vs. vine-SA copulas

The two-step procedure described in preceding subsection is applied to the daily log-returns

of the 10-year Treasure Note (10TNote) yield rate, 10-year German Bund (10Bund) yield

rate, the Msci.world index, the DAX index, and the S&P 500 index for the period of January

1st, 2004 to March 4th, 2014. The data was obtained from Bloomberg. The fitted GARCH

model for each log-return series is depicted in Table 2.13. The empirical log-returns exhibit

asymmetric volatilities with skewed heavy tails, which are also reflected in the best fitted
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GARCH model. Base on these results, the second step of the IFM method fits the vine-

SA and the sparse vine-GLM copulas with LASSO and SCAD penalties. Note that this

requires fitting a five-dimensional vine copula. Our pre-analysis has suggested that the

reasonable ranges for the LASSO’s and SCAD’s tuning parameters are λL ∈ [10−6, 10−4]

and λS ∈ [0.03, 0.08], respectively. We then select ten tuning parameters that are evenly

distributed over the corresponding range and use these values, together with the BIC

criterion, to estimate each bivariate copula on the GLM-based vine copula model. The

resulting tree structure of the vine model is displayed in Figure 2.4. We first point out

that all three vine-copula models (i.e. vine-SA and sparse vine-GLM copulas with LASSO

and SCAD penalties) have the same tree structure. Second, the resulting structure is a

D-vine copula even though our estimation procedure is conducted for a general R-vine

copula.

1 3 542
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23;414;2

34 3524

35342412

45;3

14;2 45;323;4
13;24 25;34

13;24

15;234

25;34

T1

T2

T3

T4

Figure 2.4: Tree structure of the fitted vine-SA and sparse vine-GLM: nodes 1, 2, 3, 4,
and 5 respectively correspond to variables 10TNote, 10Bund, MSCI.world, DAX and S&P
500. Ti stands for the i-th tree, i = 1, . . . , 4.

The selected bivariate families, their parameter estimates as well as the resulting val-

ues of AICs and BICs are all reported in Tables 2.14-2.16. The comparative advantages

of both GLM-based vine copula models over the vine-SA model is clearly demonstrated in

the reported values of AIC and BIC in Table 2.16. Table 2.16 also shows the elapsed time

of fitting these three models, and as we explained in Section 2.3.3 fitting sparse vine-GLM

models needs more time. Although the vine structure is not designed for detecting eco-

nomic covariates and thus in general the vine structure cannot efficiently choose a covariate

with strong economic meanings, the relationship implied by the fitting results among the
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Vine-SA Sparse vine-GLM (LASSO)
Copula Family Parameters Family Parameters

C12 sBB1 θ̂12 = 0.2816, δ̂12 = 1.5539 sBB1 θ̂12 = 0.2816, δ̂12 = 1.5539
C24 t ρ̂t,24 = 0.3850, ν̂24 = 6.2217 t ρ̂t,24 = 0.3850, ν̂24 = 6.2217

C34 sBB1 θ̂34 = 0.4839, δ̂34 = 1.8012 sBB1 θ̂34 = 0.4839, δ̂34 = 1.8012

C35 BB1 θ̂35 = 0.7723, δ̂35 = 2.2154 BB1 θ̂35 = 0.7723, δ̂35 = 2.2154

C14;2 t ρ̂t,14;2 = 0.0850, Clayton δ̂14;2 = exp {−2.7377 + 0.8669U2}
ν̂14;2 = 16.2781

C23;4 t ρ̂t,23;4 = 0.0571, Clayton δ̂23;4 = exp {−1.0945− 6.8520U4}
ν̂23;4 = 10.3944

C45;3 Clayton δ̂45;3 = 1.45× 10−6 t ρ̂t,45;3 = tanh
{

1
2

(
− 0.5852 + 0.3403U3

)}
,

ν̂45;3 = exp {2.4115}
C13;24 t ρ̂t,13;24 = 0.1308, t ρ̂t,13;24 = tanh

{
0.6084−0.1991U2−0.4994U4

2

}
,

ν̂13;24 = 9.4413 ν̂13;24 = exp {2.3564}
C25;34 BB7 θ̂25;34 = 1.0273 Clayton δ̂25;34 = exp {−3.3445 + 2.1530U3 − 0.7386U4}

δ̂25;34 = 0.0668
C15;234 t ρ̂15;234 = 0.1971, t ρ̂t,15;234 = tanh

{
0.6184−0.2075U2−0.1576U3−0.0781U4

2

}
ν̂15;234 = 7.9043 ν̂15;234 = exp {2.1849}

Table 2.14: Fitted vine-SA and sparse vine-GLM (LASSO) models: t is short for Student-t.

three variables of 10Bund, MSCI.world and DAX is interesting. First, both the DAX in-

dex and the 10Bond yield rate are macroeconomic indicators for the German economy,

and thus they should be positively dependent. Second, as two globally important stock

indices, the DAX and MSCI.world are also expected to be positively dependent. Third,

based on the estimated copula C23;4 in all the vine copulas, the DAX is chosen as the

covariate. This choice makes sense since 10Bund and MSCI.world have no direct economic

relationships. Fourth, though the sparse vine-GLM models with the LASSO penalty and

SCAD penalty choose different bivariate copulas for the conditional pair (2|4, 3|4), both

models show the same effect on the dependence between the 10Bund and MSCI.world by

the performance of DAX. Generally, DAX inversely affects the strength of the positive

dependence between 10Bund and MSCI.world. The 10Bund and the MSCI.world exhibit

a strong positive dependence when DAX performs poorly, and they exhibit a week depen-

dence when DAX performs well. Such an observation is consistent with the asymmetric

dependence in financial data.

Using the same bootstrap method as described in subsection 2.3.3, the 95% confidence
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Sparse vine-GLM (SCAD)
Copula Family Parameters

C12 sBB1 θ̂12 = 0.2816, δ̂12 = 1.5539
C24 t ρ̂t,24 = 0.3850, ν̂24 = 6.2217

C34 sBB1 θ̂34 = 0.4839, δ̂34 = 1.8012

C35 BB1 θ̂35 = 0.7723, δ̂35 = 2.2154
C14;2 t ρ̂t,14;2 = tanh

{
1
2

(
0.2958U2

)}
,

ν̂14;2 = exp {3.0429− 0.4747U2}
C23;4 t δ̂t,23;4 = tanh

{
1
2

(
0.0842− 0.0660U4

)}
,

ν̂23;4 = exp {2.2363}
C45;3 t ρ̂t,45;3 = tanh

{
1
2

(
− 0.5844 + 0.3457U3

)}
,

ν̂45;3 = exp {2.3959}
C13;24 t ρ̂t,13;24 = tanh

{
1
2

(
0.5079− 0.5060U4

)}
,

ν̂13;24 = exp {2.3417}
C25;34 Clayton δ̂25;34 = exp {−3.0119 + 1.1817U3}
C15;234 sBB1 θ̂15;234 = exp {0.3835},

δ̂15;234 = exp {4.6892− 0.7126U2 − 1.8746U4}+ 1

Table 2.15: Fitted sparse vine-GLM (SCAD) models.

number of
log-likelihood AIC BIC

time
parameters (in seconds)

Vine-SA 19 4,011.0 -7,983.9 -7,873.1 46.91
Sparse vine-GLM (LASSO) 27 4,079.5 -8,105.0 -7,947.5 1,931.42
Sparse vine-GLM (SCAD) 26 4,073.0 -8,094.0 -7,942.3 1,494.82

Table 2.16: Estimation results of fitting vine-SA, and sparse vine-GLM copulas to the
dataset with variables 10TNote, 10Bund, Msci.world, DAX and S&P 500.

intervals of the fitted GLM-based C23;4 coefficients with the LASSO penalty are reported

in Table 2.17. The 95% confidence band of the Kendall’s tau is similarly demonstrated in

Figure 2.5. The results for SCAD are similar and hence are omitted. We also report the

Kendall’s tau obtained from the fitted vine-SA model, as shown by the flat line in Figure

2.5. The figure implies that the Kendall’s value based on the fitted vine-SA model falls

in the 95% confidence band only when the variable U4 (i.e., DAX) is within the range of

about (0.1, 0.4). When DAX behaves well or extremely poorly (i.e., U4 is either larger than

0.4 or below 0.1), there are significant difference in Kendall’s tau between the vine-SA and

the sparse vine-GLM models. For simplicity, only ranges of other conditional bivariate
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copulas’ Kendall’s taus are given in Table 2.18. Though some lower bounds of Kendall’s

taus are small, they do not indicate the independence from the whole point of view.

β̂0, β̂1

Fitted value -1.0945 -6.8520
95% CI (−1.7254,−0.4999) (−9.3520,−4.3520)

Table 2.17: 95% confidence intervals of fitted GLM coefficients for C23;4.
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Figure 2.5: The 95% confidence band of the fitted C23;4’s Kendall’s tau. The dashed lines
indicate the 95% confidence band. The solid curve is the Kendall’s tau of C23;4 in the fitted
sparse vine-GLM copula, while the dash-dot line is the Kendall’s tau of C23;4 in the fitted
vine-SA copula.

In order to increase the model flexibility, here quadratic terms and second-order inter-

action terms of conditioning variables are incorporated into the GLM calibration function.

The new calibration function is modelled as a linear combination of conditioning variables

and their second-order terms (quadratic and second-order interaction terms), then the 5-

dimensional financial data in this section is fitted to the sparse vine-GLM models with

new calibration functions. All conditioning variables are uniformly distributed on [0, 1],

but variances of second-order terms are different from variance of conditioning variables.

In this case, before estimating penalized MLEs, we follow suggestions in [125] and stan-

dardize these second-order terms. More specifically, we scale second-order terms so that

their empirical variances are equal to the variances of the conditioning variables, then the

scaled second-order terms are used as variables in the new calibration function.
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Copula Vine-SA Sparse vine-GLM (Lasso) Sparse vine-GLM (SCAD)
C14;2 0.0542 (0.0313, 0.0715) (0.0000, 0.0938)
C23;4 0.0364 (0.0002, 0.1434) (0.0058, 0.0268)
C45;3 7.250× 10−5 (-0.1837, -0.0778) (-0.1834, -0.0758)
C13;24 0.0835 (-0.0287, 0.1907) (0.0006, 0.1600)
C25;34 0.0468 (0.0084, 0.1319) (0.0240, 0.0742)
C15;234 0.1263 (0.0557, 0.1938) (0.2547, 0.2609)

Table 2.18: Ranges of Kendall’s taus of fitted conditional bivariate copulas.

The fitted tree structures with both LASSO and SCAD penalties are identical to the

one in Figure 2.4, but some of the fitted bivariate copula families are different from those

in Tables 2.14 and 2.15. Some other fitted results such as the number of parameters, the

corresponding log-likelihood, AIC, BIC, and the elapsed time of model-fitting are shown

in Table 2.19. Since sparse vine-GLM with only first-order terms in calibration functions

is nested within sparse vine-GLM considering second-order terms, the fitted log-likelihood,

AIC and BIC in Table 2.19 are improved compared to those in Table 2.16. However, fit-

ting calibration functions with second-order terms are more computationally expense. In

terms of this dataset, AIC and BIC in Table 2.19 are significantly better than those in

Table 2.16, which suggests that adding second-order terms in calibration functions signif-

icantly improves the sparse vine-GLM model. However, for each conditional copula with

m conditioning variables, there are (m+1)(m+2)
2

parameters to fit in each new calibration

function. Hence, considering all second-order terms in every calibration function is not

feasible for high-dimensional problems where m can be very large, though we carried it out

in a 5-dimensional case.

# of parameters log-likelihood AIC BIC time (in seconds)
Sparse vine-SA (LASSO) 31 4,096.8 -8,131.6 -7,950.7 4,745.96
Sparse vine-SA (SCAD) 30 4,094.5 -8,128.9 -7,953.9 3,672.52

Table 2.19: Estimation results of fitting sparse vine-GLM copulas, of which calibration
functions include second-order terms, to the dataset with variables 10TNote, 10Bund,
Msci.world, DAX and S&P 500.
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2.4.3 Sparsity’s impact on high-dimensional vine-SA copulas

In this subsection, we provide additional analysis on the impact of sparsity on vine copulas,

especially when the dimension of the underlying copula is high. We demonstrate this by

considering the log-returns of the DOW 30 companies, which make up the Dow Jones

industrial average index, covering the period from January 3rd, 2005 to February 22nd,

2013. There are 25 companies for the entire coverage period, so that this example involves

fitting a 25-dimensional vine copula.

We use exactly the same estimation procedure as that in the last subsection except

that for simplicity we only consider the SA-based vine copulas, with and without the

sparsity, and that LASSO and SCAD penalties are applied to vine-SA copulas with the

appropriate ranges for the tuning parameters predetermined to be λL ∈ [1×10−5, 5×10−4]

and λS ∈ [0.01, 0.15], respectively.

Because of the vast number of bivariate copulas and their parameter estimates, we

only list the number of parameters, the corresponding log-likelihood, AIC, BIC, and the

elapsed time of model-fitting in Table 2.20. The number of parameters of the sparse vine-

SA models has reduced from 338 to 301 and 312, respectively, for the LASSO and SCAD

penalty method. This represents at least 10% reduction in the number of parameters when

compared to the conventional vine-SA model. We also remark that a majority of the

bivariate copulas on the first level of tree are either the BB1 or the sBB1 copulas. Sparsity

rarely appears in the first three level of trees for both the LASSO and the SCAD penalties.

The sparsity becomes important at higher tree-levels. Compared with the truncated vine-

SA, our parameter number reduction is due to the degradation of bivariate copulas with

two parameters to those with a single parameter or even independent copulas. By using

the BIC criterion, the result in Table 2.20 significantly favours the vine-SA with sparsity.

As pointed at earlier, for high-dimensional model selection, it is preferred to use the BIC

criterion to the AIC criterion. Fitting sparse vine-SA models needs more time than fitting

vine-SA, because each copula type is fitted 10 times for every bivariate copula due to ten

tuning parameter candidates.

Finally, we point out that we have similarly applied the same studies to a Stoxx 50
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dataset over the period of July 8th, 2005 to December 4th, 2013. The results are similar

and hence are omitted for brevity.

# of parameters log-likelihood AIC BIC time (in seconds)
Vine-SA 338 15,667 -30,658 -28,756 775.34
Sparse vine-SA (LASSO) 301 15,543 -30,488 -28,791 7,267.08
Sparse vine-SA (SCAD) 312 15,575 -30,526 -28,771 7,231.11

Table 2.20: Model selection for dataset with 25 out of the Dow 30 companies.

2.5 Concluding remarks

The vine copula has been successfully applied in a variety of areas as a flexible tool of

dependence modelling. The major technical compromise in the specific applications of

vine copulas lies in the so-called simplifying assumption, which simplifies a vine model

such that all the bivariate conditional copulas depend on the corresponding conditioning

variables through the copula observations only, and the functional forms of these bivariate

copulas do not depend on the conditioning variables. In order to relax the SA while

maintaining a reasonable model complexity, we propose a generalized-linear-model-based

framework to capture the effect from conditioning variables on a bivariate dependency,

leading to the vine-GLM copula models. Moreover, we also develop a penalized-MLE-based

regularization estimation procedure to control the complexity of vine copula models, which

leads to the sparse vine copula models. Empirical studies we conducted on some financial

datasets show that our proposed models with GLM and/or sparsity significantly improve

the conventional vine copula model with the simplifying assumption using the criteria such

as the Bayesian information criterion. In this chapter, eight bivariate copulas are considered

as candidates in the specific estimation. Other bivariate copulas can be similarly analyzed

with our proposed models to increase the flexibility of dependence modelling. Moreover,

while the linear effect of the conditioning variables is focused on in our specific applications

of the vine-GLM copula models, other transformations of the conditioning variables, such

as quadratic terms, can easily be included to increase the model flexibility.
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Chapter 3

Index Tracking using Principal

Component Analysis

3.1 Introduction

Index tracking is a dominant method of the passive investment strategy. It constructs a

tracking portfolio to reproduce the return of a benchmark stock market index. Obviously, a

stock market index can be tracked by a full replication, which buys and holds all stocks that

make up the index with the same weights as those in the index. When the full replication is

infeasible (see more details in Section 1.2.2), many passively managed funds use a subset of

stocks to construct a tracking portfolio to mimic the benchmark index return (see evidence

in [71]). We refer to the problem of constructing partial replications as the index tracking

problem.

In general, the index tracking problem should be addressed in two steps. One is iden-

tifying stocks to hold in the tracking portfolio. The other one is to compute the fund

allocation to each selected stock. Focusing on minimizing the in-sample tracking error, [7]

formulates the index tracking problem as a mixed-integer quadratic programming prob-

lem, and solves the “two steps” simultaneously. This paper inspires numerous studies that
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explicitly exploit various mathematical optimization tools. For examples, [55] compares

several tracking errors. [22] introduces another tracking error from the regression point of

view, and formulates the index tracking problem as a mixed-integer linear programming

problem. [105] suggests solving the index tracking problem using a hybrid programming

method. For each given stock subset, stock weights are determined using quadratic pro-

gramming to minimize the tracking error. The best stock subset which leads to the small-

est tracking error is searched by a genetic algorithm. Most of the above methods focus

on minimizing the in-sample tracking error by solving a mixed-integer quadratic program-

ming problem, which is NP-hard (see [105]). However, it is challenging to obtain optimal

solutions of a mixed-integer quadratic programming problem in an efficient way, especially

when the number of index components is in the order of hundreds.

While the objective of the above-mentioned papers focuses on constructing a tracking

portfolio that minimizes in-sample tracking errors, other criteria have been advocated

to constructing the tracking portfolio. [102] studies the mean-variance performance of

a tracking portfolio in the Markowitz framework, and this study only discusses the full

replication. In terms of the partial replication, [5] studies the index tracking procedure

based on the cointegration between the index level and the value of the tracking portfolio,

suggesting that the value of the tracking portfolio should be cointegrated with the index

level. [51] applies the clustering analysis to the index tracking problem. After stocks are

clustered the authors of [51] suggest selecting one stock subjectively from each cluster. The

factor model is used in [26] to address the index tracking problem. The authors of [26]

suggest that the tracking portfolio should share the same factor structure with the index.

However, most of these methods assume that stocks in the tracking portfolio are given, or

only use naive or ad-hoc methods to select these stocks. For example, one ad-hoc approach

would be to select those stocks with largest market capital.

This chapter provides a more quantitative and theoretically supported method to select

stocks in tracking portfolios. In order to do so, the index return is modelled by a linear

combination of stock returns plus an independent random noise. A method to identify

dominant stocks is proposed based on the principal component analysis (PCA). We first

decompose the index return as a function of principal components (PCs) of stock returns.

According to Sobol’s total sensitivity index, some essential PCs are retained to approximate
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the index return, and the approximation error is controlled by Sobol’s total sensitivity

index. When stock returns follow a multivariate normal distribution, some analytical

properties are established.

In our proposed approach, the selection of dominant stocks to construct tracking port-

folios turns to be the question of choosing stocks which explain retained PCs. If the

number of stocks in a tracking portfolio is pre-determined, we suggest selecting stocks that

has the largest “similarity” with the retained PCs. In order to measure this similarity,

[21] suggests Yanai’s generalized coefficient of determination (GCD). In this chapter, we

additionally recommend the distance correlation and HHG test statistics.

Given the selected stocks, determining their weights by minimizing a specific tracking

error is computationally easy. When the mean square error (of the difference between

the index return and the tracking portfolio return) is used as a measure of tracking error,

weights are solved using quadratic programming. When the conditional value at risk (of

the difference between the index return and the tracking portfolio return) is used as a

measure of tracking error, weights are determined using linear programming.

The rest of this chapter is organized as follows. Section 3.2 sets up the mathematical

formulation of the index tracking problem. Section 3.3 discusses the methodology to retain

the significant PCs. In section 3.4, stocks in tracking portfolios are determined according

to the retained PCs. In Section 3.5, some applications on real financial data are presented

to support the tracking accuracy and the computational efficiency of our proposed method.

3.2 Formulation of the Index Tracking Problem

3.2.1 Introduction to Stock Market Indices

In general, a stock market index over a set of discrete times is defined as

It =
1

D

∑
i

aiSt,i, for t = 0, 1, . . . , (3.1)
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where St,i is the price of the ith stock at time t, D is the index divisor, and ai is the weight

for stock i. If ai = 1 for any i, this index is called a price-weighted index. Examples of

price-weighted indices include the Dow Jones Industrial Average (see [116]) and the Nikkei

225. If ai is the number of outstanding shares of stock i, the index is called a capitalization-

weighted index, such as the S&P 500 (see [117]). Based on (3.1), the index’s return over

the period [t− 1, t] is given by

Rt =
It − It−1

It−1

=
∑
i

aiSt,i − aiSt−1,i∑
i aiSt−1,i

=
∑
i

ai(St,i − St−1,i)∑
i aiSt−1,i

.

Let rt,i =
St,i−St−1,i

St−1,i
be the return of the ith stock over [t− 1, t], Rt can be rewritten as

Rt =
∑
i

aiSt−1,i∑
i aiSt−1,i

rt,i =
∑
i

qt,irt,i, (3.2)

where qt,i =
aiSt−1,i∑
i aiSt−1,i

is the weight for stock i’s return at time t.

For many capitalization-weighted stock-market indices such as the S&P 500 index,

when there is any company addition or deletion, special cash dividend payout, change

in outstanding shares, etc, the index value should not jump up or drop down. In order

to make the index level consistent before and after these changes, the index divisor is

adjusted ([117]). Usually, these stock-market indices which include the S&P 500 index are

not adjusted for ordinary cash dividends ([117]). Though the index divisor and outstanding

shares are adjusted occasionally, they usually remain constant in several months or even

one year (see [115]). In this chapter, we consider tracking a stock market index within an

investment period where the index is not revised. In other words, there is no company

addition/deletion, stock split, etc, so that D and ai’s do not change within the investment

period.

3.2.2 The Index Tracking Problem

In (3.2), Rt and the rt,i’s have a linear relationship, and the weights qt,i’s are time-varying.

However, based on data of five stock-market indices (the Hang Seng index, DAX index,
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FTSE index, S&P 100 index and the Nikkei 225 index) in Section 3.5, when the index

return is fitted to a linear combination of its components’ returns with nonnegative constant

coefficients, the fitted R-squared and adjusted R-squared (see Table 3.1) are close to one.

This suggests that a linear combination of stock returns with constant coefficients can

explain most of the index return variance. We limit the coefficients to be nonnegative

since all qt,i’s cannot be negative. In terms of the fitting procedure, constant coefficients

are estimated by least-square estimators, subject to constraints that all estimators are

nonnegative and sum to 1.

Index R-squared Adjusted R-squared
Hang Seng 0.9958 0.9952

DAX 0.9416 0.9172
FTSE 0.9923 0.9889

S&P100 0.9918 0.9875
Nikkei 225 0.9982 0.9917

Table 3.1: Fitted R-squared and Adjusted R-squared for five stock-market indices

This inspires us to approximate the index return by a linear model with constant weights

qt,i over time, but in order to compensate for the fluctuation in the original coefficients,

an independent noise term is introduced. In this chapter, let rt = (rt,1, . . . , rt,d)
′, and then

we assume samples (Rt, r
′
t) for t = 1, 2, . . . , T are independent and identically distributed.

Hence, in a generic investment period, the index return R is modelled by

R = q′r + ε, (3.3)

where the stock return vector r = (r1, . . . , rd)
′ has expectation µd and covariance matrix

Σ. The noise ε is independent of r and has 0 mean and finite second moment σ2
ε . Elements

of the coefficient vector q = (q1, . . . , qd)
′ are constants.

The index tracking problem can be formulated as choosing a k(� d)-dimensional subset

of r, that is rs, and determining weights for each selected stock. The cardinality constraint,

i.e. choosing k stocks, is sometimes required by investors due to their financial budget.
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The cardinality constraint is also preferred by portfolio managers, since it is impossible for

them to pay detailed attention to a large number of stocks. If selected stocks are relabelled

from 1 to k, we denote by wj, j = 1, . . . , k, their corresponding weights. In this chapter,

we do not allow short selling stocks, that is wj ∈ [0, 1] for j = 1, . . . , k and
∑

j wj = 1.

In the U.S., there is a margin requirement for short selling stocks. The margin for short

selling a stock is 50% of the market value of the borrowed stock1, and this is a significant

expense. Due to some restrictions on short-selling stocks, such as the alternative uptick

rule by the U.S. Securities and Exchange Commission2, under certain circumstances it is

not easy to short sell stocks. Moreover, losses of short selling stocks are unlimited, which

is too risky.

In this chapter, the selected stocks in the tracking portfolio aim at minimizing a ρ-

distance between the index return and the tracking portfolio return, which is given by

ρ(R,w′rs) =
√
E[(R−w′rs)2],

where w = (w1, . . . , wk)
′. The expectation of square loss function penalizes large devia-

tions. It is a commonly used prediction error and usually has nice analytic properties. In

the following sections, we call E[(R −w′rs)2] the mean square error (MSE) of a tracking

portfolio. Since ε is independent of r,

min
w

ρ(R,w′rs)⇔ min
w

ρ(E[R|r],w′rs)⇔ min
w

ρ(q′r,w′rs). (3.4)

3.3 Retain Essential Principal Components

Since the variance-covariance matrix of r, Σ, is positive semi-definite, there is a random

vector z = (z1, . . . , zd)
′ and a d × d orthogonal matrix A such that Σ = AΛA′ where Λ is

a diagonal matrix, and z = A′r. Here, z is called the principal components (PCs) of r,

1http://www.ecfr.gov/cgi-bin/text-idx?SID=7df35b15d3a9d087dc1fbe017048f723&mc=true&

node=se12.3.220_112&rgn=div8.
2http://www.sec.gov/news/press/2010/2010-26.htm.
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and the ith column of A is called the PC loading vector of zi, for i = 1, . . . , d. Diagonal

elements of Λ, i.e. Λ1, . . . ,Λd, are eigenvalues of Σ.

Note that we can rewrite (3.3) as R = (q′A)z + ε = (q∗)′z + ε. Hence,

min
w

ρ(R,w′rs)⇔ min
w

ρ(q′r,w′rs)⇔ min
w

ρ
(
(q∗)′z,w′rs

)
, (3.5)

where q∗ = q′A.

However, directly working on minw ρ
(
(q∗)′z,w′rs

)
with the cardinality constraint, i.e.

only choosing k stocks from d index components, is still a mixed-integer quadratic program-

ming problem that is challenging and computationally expensive to solve. Hence, before

identifying rs, we first search for a vector of some PCs, zs, which controls ρ((q∗)′z,b′szs)

as small as possible where bs is a coefficient vector of zs. The quantity ρ((q∗)′z,b′szs)

measures the distance between (q∗)′z and the best combination of the selected subset of

PCs. The selection of the subset of PCs is achieved by Sobol’s total sensitivity index.

Sobol’s total sensitivity index comes from the variance-based sensitivity analysis, and is

used to measure how sensitive the output is to input changes. Sobol’s total sensitivity index

is defined based on Sobol’s decomposition that is introduced in [114] with the assumption

of independent uniformly distributed inputs. Sobol’s decomposition is further generalized

to independent inputs with any distributions by [99].

Suppose η = η(x1, . . . , xd∗) is a function of independent inputs xi, i = 1, . . . , d∗. Sobol’s

decomposition states that, if η = η(x1, . . . , xd∗) has finite second moments, then η can be

uniquely decomposed as η = η(x1, . . . , xd∗) =
∑

v⊂{1,...,d∗} ηv(xv), such that

V ar(η) =
∑

v⊂{1,...,d∗}

V ar(ηv(xv)),

and the expectation of each summand, except for η0(= η∅), is zero. Sobol’s sensitivity

index for xv, v ⊂ {1, . . . , d∗}, is defined as

sv = V ar
(
ηv(xv)

)
/V ar(η),
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so that 0 ≤ sv ≤ 1 and
∑

v sv = 1. Sobol’s total sensitivity index for input xi is defined as

stotali =
∑
v:i∈v

sv =
∑
v:i∈v

V ar
(
ηv(xv)

)
/V ar(η).

Sobol’s total sensitivity index is useful to freeze unessential variables in a complicated

system (see [114]).

In order to apply Sobol’s total sensitivity index to search for a vector of some PCs, zs,

that controls ρ((q∗)′z,b′szs), we have Proposition 3.1.

Proposition 3.1. Suppose r = (r1, . . . , rd) follows a multivariate normal distribution, and

elements of z are principal components of r. Let η = η(z) = q′r = (q∗)′z. Then the

following results hold.

(a) Sobol’s decomposition of η is given by η = η0 +
∑d

i=1 ηi(zi), where η0 = E[η] and

ηi(zi) = q∗i zi + αi and αi = −q∗iE[zi] for i = 1, . . . , d.

(b) Write z = (z1, zs), and let stotalzs =
∑

j:zj∈zs s
total
j . The ρ-distance between (q∗)′z and

any linear combination of elements in z1 is larger than
√
stotalzs · V ar(η), that is

ρ
(
(q∗)′z, a′z1

)
≥
√
stotalzs · V ar(η),

where a is a column vector of constants.

(c) For any δ > 0,

Pr

{
η2
i (zi) <

V ar(η)

δ
stotali

}
≥ 1− δ, for i = 1, . . . , d.

Proof. (a) This is a special case of the result in [87].

(b) Let η = (q∗)′z = (q∗1)′z1 + (q∗s)
′zs. We have

E
[(

(q∗)′z− a′z1

)2
]

= E
[(

(q∗1)′z1 + (q∗s)
′zs − a′z1

)2
]

= E
[(

b′z1 + (q∗s)
′zs
)2
]
,
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where b = q∗1 − a. Let z̄i = zi − E[zi] for i = 1, s, and c = b′E[z1] + (q∗s)
′E[zs], then

E
[(

(q∗)′z− a′z1

)2
]

= E
[(

b′z̄1 + (q∗s)
′z̄s + c

)2
]

= E
[(

b′z̄1

)2
]

+ E
[(

(q∗s)
′z̄s
)2
]

+ c2.

The last equation is true since z1 and zs are independent under the assumptions of a

multivariate normal distribution for r, and E[z̄i] = 0 for i = 1, s. Hence,

ρ2
(
(q∗)′z, a′z1

)
= E

[(
(q∗)′z− a′z1

)2
]

≥ E
[(

(q∗s)
′z̄s
)2
]

=
∑
j:z̄j∈z̄s

(q∗j )
2V ar(z̄j)

=
∑
j:zj∈zs

(q∗j )
2V ar(zj).

Note that ηi(zi) = q∗i zi + αi and αi = −q∗iE[zi] for i = 1, . . . , d. We have

ρ2
(
(q∗)′z, a′z1

)
≥

∑
j:zj∈zs

V ar
(
ηj(zj)

)
V ar(η)

V ar(η)

= stotalzs · V ar(η).

(c) According to Markov’s inequality, for any constant g > 0,

Pr
{
η2
i (zi) ≥ g

}
≤ E [η2

i (zi)]

g
=
V ar

(
η2
i (zi)

)
g

.

That is Pr {η2
i (zi) < g} ≥ 1− V ar

(
η2i (zi)

)
g

. Let g =
V ar
(
ηi(zi)

)
δ

, we have

Pr

{
η2
i (zi) <

V ar(η)

δ
stotali

}
≥ 1− δ.

Remark 3.1. (a) According to part (a) of Proposition 3.1, Sobol’s sensitivity index of
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the PC zi is si =
(q∗i )2V ar(zi)

V ar(η)
. Since there are neither high-order terms nor intersection

terms among these summands, stotali = si for i = 1, 2, . . . , d.

(b) Part (b) of Proposition 3.1 suggests that if stotalzs is large, discarding zs and any linear

combination of PCs leaving zs out has a large deviation from (q∗)′z. Hence, PCs with

large Sobol’s total sensitivity indices should be retained to approximate (q∗)′z.

(c) According to part (c) of Proposition 3.1, V ar(ηi(zi)) is small if stotali is sufficiently

small. Note that E[ηi(zi)] = 0, hence ηi(zi) as well as zi is negligible in the system

(q∗)′z. In fact,

Pr

{
− 1

σηi

√
V ar(η)

δ
stotali <

ηi(zi)

σηi
<

1

σηi

√
V ar(η)

δ
stotali

}
> 1− δ,

where σ2
ηi

= V ar
(
ηi(zi)

)
.

Denote by α δ
2

the 1− δ
2

quantile of a standard normal distribution. According to part

(a) of Proposition 3.1, ηi(zi) follows a normal distribution with zero mean. Hence,

α δ
2
< 1

σηi

√
V ar(η)

δ
stotali , that is

V ar(ηi) <
V ar(η)

δ
(
α δ

2

)2 s
total
i .

(d) Proposition 3.1 relies on an assumption of the multivariate normal distribution. Even

though stock returns do not always follow a multivariate normal distribution, analytic

results in Proposition 3.1 are difficult to obtain for other more general settings. In this

chapter, we use the multivariate normal distribution model as a benchmark to sort

out a replicating strategy. The performance of such strategies is tested by real data in

Section 3.5.

Proposition 3.1 suggests that we should retain PCs with large Sobol’s total sensitivity

indices to approximate (q∗)′z, and PCs with small sensitivity indices can be ignored. These

retained PCs keep a large portion of (q∗)′z’s variance and the approximation error is
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controlled by Sobol’s total sensitivity index. Among applications in Section 3.5, we retain

PCs whose corresponding sensitivity indices are larger than a threshold such as 0.001.

3.4 Select Variables based on Retained PCs

Suppose some PCs zs are retained by comparing their Sobol’s total sensitivity indices as

explained in the last section. In order to identify k stocks based on zs, a natural idea

is to establish a relationship between ρ((q∗)′z,w′rs) and ρ((q∗)′z, (bs)
′zs), where bs is a

vector of weights for the retained PCs. However, such a relationship is rather challenging

to establish. Hence, based on the retained PCs, stocks in the tracking portfolio are selected

by comparing the dependence between zs and rs.

Research works on choosing variables according to some PCs dated back to [76, 77].

The motivation is the conjecture that a portion of PCs can be very well explained by a

portion of all variables that form all PCs. In [76, 77], many ad-hoc methods are compared

using both artificial and real data. However, it is pointed out in [21] that these ad-hoc

methods are potentially misleading in selecting subset variables to approximate retained

PCs. The authors of [21] suggest selecting the variable subset by optimizing some criteria,

such as Yanai’s generalized coefficient of determination (GCD). Inspired by [21], in our

research three criteria are considered in choosing stocks based on the retained PCs in this

chapter. They are Yanai’s GCD, the distance correlation and HGG test statistics.

Yanai’s generalized coefficient of determination (GCD) is introduced in [132]. It is a

type of the matrix correlation which is introduced in [100]. Suppose X is a n × d data

matrix of r, and the jth column of X includes samples of rj for j = 1, . . . , d. Let G be

a collection of subscripts of elements in zs. Here, the cardinality of G is denoted by m.

Define AG as a d×m sub-matrix of the PC loading matrix A. Particularly, AG is obtained

by retaining all the columns j of A for j ∈ G. We further denote the subspace spanned

by zs by G. For the space G, there is an corresponding orthogonal projection matrix

PG(X) = XAG(A
′
GX
′XAG)

−1A′GX
′. Similarly, we denote by K a collection of subscripts

of elements in rs. The data matrix of rs is XIK. Here, IK is an n × k sub-matrix of the
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identity matrix, and IK is obtained by keeping the jth column of the d× d identity matrix

for j ∈ K. These k variables span a subspace K with an orthogonal projection matrix

PK(X) = XIK(I ′KX
′XIK)−1I ′KX

′.

Yanai’s GCD of PG and PK, which is denoted by GCD(PG, PK), is used in [21] to

measure the “correlation” or similarity between subspaces G and K. It is shown in [21]

that

GCD(PG, PK) =
1√
mk

∑
j∈G

(r̃m)2
j ,

where (r̃m)j =
√

Λj

√
(aKj )′Σ−1

K aKj , for j ∈ G, Λj is the jth diagonal element of Λ which

is the eigenvalue matrix of r’s covariance matrix. Further, aKj is the sub-vector of the jth

column of the PC loading matrix A. The cardinality of aKj is k, and each of its element

corresponds to one variable in rs. The matrix ΣK is a sub matrix of the covariance matrix

Σ, involving only rows and columns corresponding to these k variables in rs. For simplicity,

we rewrite GCD(PG, PK) as GCD(G,K).

Yanai’s GCD is able to measure the similarity between two subspaces in different di-

mensions. The value of Yanai’s GCD is between 0 and 1. If GCD(G,K) = 1, subspaces

G and K coincide. That is any linear combination of data of zs can be rewritten as a

linear combination of data of rs. If GCD(G,K) = 0, subspaces G and K are mutually

orthogonal. This suggests that rs cannot explain any linear combinations of zs. Hence,

the k stocks that maximize GCD(G,K) should be selected to explain retained PCs.

Distance correlation (dCor), which is introduced in [123], is able to detect the de-

pendence between random vectors in different dimensions. Distance correlation is closely

linked to distance covariance. Suppose x is a p-dimensional random vector, and y is a q-

dimensional random vector. The distance covariance of x and y, V(x,y), is defined based

on characteristic functions, and it is the positive square root of

V2(x,y) = ||fxy − fxfy||2 =
1

cpcq

∫
Rp+q

|fxy(t, s)− fx(t)fy(s)|2

|t|1+p
p |s|1+q

q

dtds,

where fx, fy, and fxy denote characteristic functions of random vectors x, y, and (x,y)

respectively. Constants cp and cq are defined in [123], and |t|p is the Euclidean norm of t
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in Rp. Suppose (X,Y) = {(Xi, Yi), i = 1, . . . , n} is a collection of observed samples from

the joint distribution of (x,y), the empirical distance covariance Vn(X,Y) is the positive

square root of V2
n(X,Y) = 1

n2

∑
i,l=1 AilBil, where ail = |Xi − Xl|p, āi· = 1

n

∑n
l=1 ail,

ā·l = 1
n

∑n
j=1 ail, ā·· = 1

n2
1
n

∑n
i,l=1 ail, Ail = ail − āi· − ā·l + ā··. Replacing {Xi} by {Yi} in

the calculation of Ail leads to Bil. According to [123], limn→+∞ Vn(X,Y) = V(x,y) almost

surely, given both x and y have finite Euclidean norms.

Distance correlation dCor(x,y) and its empirical version dCorn(x,y) are defined by

dCor2(x,y) =


V2(x,y)√
V2(x)V2(y)

, V2(x)V2(y) > 0,

0, V2(x)V2(y) = 0,

dCor2
n(X,Y) =


V2
n(X,Y)√
V2
n(X)V2

n(Y)
, V2

n(X)V2
n(Y) > 0,

0, V2
n(X)V2

n(Y) = 0,

Both dCor and dCorn are between 0 and 1. The distance correlation equals 0 if and only

if x and y are independent. If dCorn(X,Y) = 1 then there exist a vector a, a nonzero real

number b and an orthogonal matrix C such that Y = a+ bXC. Returning to our variable

selection problems, in order to explain given PCs zs, we prefer the k-dimensional rs with

the largest dCorn(zs, r
s).

The HHG test, an independent test, is introduced in [70]. It can be used to describe the

dependence between two random vectors in different dimensions. The idea is inspired by

Pearson’s independence test. Suppose (Xi, Yi) for i = 1, . . . , N are observations of random

51



vectors x and y. For a specified distance d(·, ·) and i 6= j, i, j = 1, . . . , N , define

A11(i, j) =
N∑

k=1,k 6=i,j

I {d(Xi, Xk) ≤ d(Xi, Xj)} I {d(Yi, Yk) ≤ d(Yi, Yj)} ,

A12(i, j) =
N∑

k=1,k 6=i,j

I {d(Xi, Xk) ≤ d(Xi, Xj)} I {d(Yi, Yk) > d(Yi, Yj)} ,

A21(i, j) =
N∑

k=1,k 6=i,j

I {d(Xi, Xk) > d(Xi, Xj)} I {d(Yi, Yk) ≤ d(Yi, Yj)} ,

A22(i, j) =
N∑

k=1,k 6=i,j

I {d(Xi, Xk) > d(Xi, Xj)} I {d(Yi, Yk) > d(Yi, Yj)} ,

Am·(i, j) = Am1(i, j) + Am2(i, j) and A·m(i, j) = A1m(i, j) + A2m(i, j),

for m = 1, 2.

The HHG test statistics is defined as

T (x,y) =
N∑
i=1

N∑
j=1,j 6=i

S(i, j)

where

S(i, j) =
(N − 2) [A12(i, j)A21(i, j)− A11(i, j)A22(i, j)]2

A1·(i, j)A2·(i, j)A·1(i, j)A·2(i, j)

It is claimed in [70] that the larger the value of S(i, j), the stronger the dependence be-

tween I {d(xi, X) ≤ d(xi, xj)} and I {d(yi, Y ) ≤ d(yi, yj)}. Hence, a larger T (x,y) suggests

stronger dependence between x and y. Again, given PCs zs, it is better to select rs that

maximizes T (rs, zs) to explain zs.

A comparison of the above three criteria to select stocks is given as follows:

• Yanai’s GCD: Yanai’s GCD measures the similarity between the subspace generated

by the data of two random vectors. If GCD of two subspaces is 1, these two subspaces

coincide. Dimensions of these two vector can be different.
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• Distance correlation and HHG test statistics: Both of them can be applied to detect

linear or non-linear relationships between two random vectors in different dimensions.

Distance correlation has a simpler form.

Maximizing these criteria between retained PCs and k stocks can be formulated as

a binary programming problem. In very low dimensions, it is possible to search for the

global optimal solution. However, when the dimension is large, heuristic methods should

be applied to obtain a suboptimal solution.

In the end, the algorithm of our proposed variable selection for index tracking is outlined

in Table 3.2.

1: Input a n× (d+ 1) sample matrix of the random vector (R, r).

2:Obtain an estimator Σ̂ of the covariance matrix of r.

3:Determine PCs of r based on Σ̂, according to the eigenvalue decomposition of Σ̂.
4:Decompose R to PCs z using Sobol’s decomposition, which is given in the part (a) of Proposition 3.1.
5:Calculate Sobol’s total sensitivity index for each PC.
6:Retain m-dimensional PC subset zs with Sobol’s total sensitivity index larger than a certain threshold.
7:Select k-dimensional rs that maximizes GCD, dCorn, or HGG test statistics.

Table 3.2: The algorithm of variable selections for index tracking.

Given stocks to hold in the tracking portfolio, corresponding weights can be obtained

by existing methods, such at those in [105] or [5]. In this chapter, we follow [105] and

determine stock weights by minimizing specific tracking errors.

3.5 Applications to Financial Data

In this section, we apply our proposed variable selection method to real financial data. In

order to evaluate its performance, tracking portfolios should be constructed, i.e. weights

of chosen stocks should be determined, and then tracking errors should be compared.
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3.5.1 Estimation Issues in High Dimensions

In some applications, we need to address some high-dimensional estimation issues when

the sample size is smaller than the number of index components.

The estimation of the covariance matrix plays an important role in our proposed variable

selection method. The sample covariance matrix is an unbiased estimator for the covariance

matrix ([6]). However, in high-dimensional cases the sample covariance matrix is not of

full rank, so that it is not invertible. Moreover, according to [107] eigenvalues computed

from the sample covariance are not reliable in high dimensional cases. In order to overcome

these shortcomings, we use the shrinkage covariance matrix, which is introduced in [86], to

estimate the covariance matrix.

The shrinkage covariance matrix shrinks the sample covariance matrix towards a target

matrix. Denote by Σ̂ the shrinkage covariance matrix, Σ̂Sample the sample covariance

matrix, and Σ̂T the target matrix, the shrinkage covariance matrix is given by

Σ̂ = (1− λ)Σ̂Sample + λΣ̂T , (3.6)

where λ ∈ [0, 1]. Usually, Σ̂T should be of full rank and have a simple form. It is suggested

in [86] that λ should be determined by minimizing the Frobenius norm of (1−λ)Σ̂Sample +

λΣ̂T−Σ. Here, following [107] our target matrix is a diagonal matrix of which each diagonal

element is an unbiased sample variance for a corresponding stock return. The estimation

of the corresponding optimal λ is given in [107]. Given a nonzero estimation of λ, the

shrinkage covariance matrix we adopted is of full rank and positive semidefinite. It also

improves eigenvalue estimations (see [107]).

Another high-dimensional issue arises in estimating Sobol’s sensitivity index. According

to Proposition 3.1, Sobol’s total sensitivity index of PC zi is
(q∗i )2V ar(zi)

V ar(η)
. Here, we estimate

it by
(q̂∗i )2σ̂2

zi

σ̂2
η

, where σ̂2
x = 1

n−1

∑n
i=1

(
Xi − 1

n

∑n
i=1Xi

)2
for any random variable x with

samples {Xi}ni=1. When the sample matrix of z is of high dimension, we turn to Lasso

regression, introduced in [124], to estimate the q∗i ’s. Mathematically, estimators q̂∗i ’s of the
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Lasso regression are given by solving

min
q∗

T∑
t=1

(
Rt − (q∗)′Zt

)2
+ λL

d∑
i=1

|q∗i |, (3.7)

where Zt, a column vector, is the sample of z at time t which is inferred from the sample

matrix of r, λL is the Lasso tuning parameter which is determined by a 10-fold cross-

validation. The ordinary least square estimation (without penalty) is applied when the

sample size is larger than the number of index components.

3.5.2 Use MSE as Tracking Error

We use the data provided in the OR-library which is used in [7] and many other papers

on index tracking, and consider weekly levels of five stock market indices: the Hang Seng

index, DAX index, FTSE index, S&P 100 index and the Nikkei 225 index, as well as

weekly stock prices of their components. Numbers of components of Hang Seng index,

DAX index, FTSE index, S&P 100 index and the Nikkei 225 index are 31, 85, 89, 100

and 225 respectively. The weekly data cover the period March 1992 to September 1997,

including 291 observations.

In this section, the empirical MSE, 1
T

∑T
t=1

(
Rt−w′rst

)2
, is used to measure the tracking

error. This tracking error is also consistent with the distance ρ(·, ·) which is defined at the

end of Section 3.2. This tracking error is a standard loss function used in the industry

([53]). In order to investigate the performance of our proposed model, results reported in

[105] are used as benchmarks. The methodology of [105] is briefly reviewed in Section 3.1.

In order to make our results comparable with those in [105], we first obtain 290 weekly

discrete-time returns, and divide them into in-sample data and out-of-sample data. Both

the in-sample and the out-of-sample data include 145 weekly returns. The in-sample data

are used to construct tracking portfolios, and the out-of-sample data are used to check

the tracking accuracy. In dealing with the in-sample data, we use our proposed variable

selection algorithm described in Table 3.2 to select stocks in the tracking portfolio, and

consequently their weights are determined by minimizing the in-sample empirical MSE.
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The Nikkei 225 has 225 components of which the number is larger than the size of the

in-sample data (145 weekly returns). In this case, the covariance matrix is estimated by

the shrinkage covariance matrix in (3.6), and q∗i ’s in Sobol’s total sensitivity indices are

estimated by Lasso regression estimators in (3.7). For the other indices, we directly apply

sample covariance matrices and ordinary least square estimators. In terms of retaining

PCs, we select PCs for which Sobol’s total sensitivity indices are larger than 0.001.

In maximizing Yanai’s GCD, we use methods proposed in [20] which is coded in the R

package “subselect”. In dealing with the Hang Seng index, we obtain the optimal variable

subset by the function “eleaps”. For other indices, it is infeasible to obtain the optimal

solution, so we obtain sub-optimal solutions by a genetic algorithm that is carried out by

the function “genetic” in the R package “subselect”. Setting of the “genetic” function is

as follows: the size of population is the maximum of 100 and 2 times the number of index

components, the maximum generation number is 300, and we adopt other default settings.

In maximizing dCorn for the case of the Hang Seng index, we exclusively search for the

optimal solution. For the other indices, we use the Matlab built-in function “ga”, which is

a genetic algorithm solver. The size of population and the maximum generation number

are the same as the genetic algorithm settings for maximizing Yanai’s GCD, and we adopt

other default settings. In calculating HHG test statistics, we use the Euclidean distance,

and use the Matlab build-in function “ga” for all indices with the same settings as specified

above. All reported results are averaged over 5 executions of the genetic algorithm.

Once stocks in tracking portfolios are identified, their weights are determined by solving

min
w

1

T

T∑
t=1

(
Rt −w′rst

)2

s.t.

k∑
j=1

wj = 1,

0 ≤ wj ≤ 1, for j = 1, . . . , k,

where rst , a column vector, is a sample of rs at time t. This proposed method of constructing

tracking portfolios requires less computation than the hybrid programming method in [105],

since the most time-consuming part of our method is a 0-1 integer programming problem.
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Finally, in-sample and out-of-sample tracking errors (TEs) are reported in Table 3.3.

Table 3.3 shows results of tracking portfolios in which the cardinality of stock subsets

varies from 5 to 10. Out-of-sample TEs should be the focus, since we are interested in

the tracking ability of a tracking portfolio. According to out-of-sample TEs, our proposed

method is comparable to results in [105]. It leads to better out-of-sample TEs in many

scenarios, thought it does not outperform the benchmark uniformly.

3.5.3 Use Conditional Value at Risk as Tracking Error

Some other forms of tracking error may be used depending on fund managers’ objectives.

In this section, we study the index tracking problem by using the empirical conditional

value at risk (CVaR) of the tracking discrepancy R − w′rs as a tracking error. Suppose

that the loss x follows a continuous distribution, the CVaR of x at α%-level, CV aRα(x), is

defined as E [x|x > V aRα(x)], where V aRα(x) is short for the Value-at-Risk of x at α%-

level that is defined as the α% quantile of x. CVaR is used to describe the tail behavior

of the loss x. Compared to the empirical MSE, the CVaR tracking error leads to tracking

portfolios which control the tail risk of the tracking discrepancy.

If R−w′rs is not required to be as close to zero as possible, a negative value is preferred

since it means that the tracking portfolio has a higher return than the index return. Using

the empirical CVaR of R−w′rs as a tracking error provides information about worse case

scenarios. It helps to figure out how poorly a tracking portfolio might perform, and the

resulting tracking portfolio aims at optimizing the average performance over those worse

case scenarios.

Firstly, our variable selection method is applied to identify stocks in tracking portfolios.

Given a set of stocks, their weights are determined by minimizing the empirical CVaR of
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R−w′rs, which according to [101], can be equivalently formulated as follows

min
(w,ζ)

ζ +
1

1− α
1

T

T∑
t=1

[(Rt −w′rst)− ζ]
+

(3.8)

s.t.

k∑
j=1

wj = 1,

0 ≤ wj ≤ 1, for j = 1, . . . , k,

where ζ is an auxiliary variable, α is the risk tolerance and set to be 0.95, k is the fixed

cardinality of the stock subset to hold in a tracking portfolio. Problem (3.8) can be solved

using linear programming. The minimized value of the objective function is the empirical

95% CVaR of R−w′rs.

In order to compare the performance of our variable selection method with this tracking

error, a benchmark is required. Analogous to the case where the empirical MSE is used

as the tracking error, the benchmark here is the tracking portfolio that is obtained by

solving the variable selection and fund allocation simultaneously by minimizing the in-

sample empirical 95% CVaR of R−w′rs. Following [7], the benchmark tracking portfolio

is obtained by solving

min
(w,ζ,y)

ζ +
1

1− α
1

T

T∑
t=1

[(Rt −w′rt)− ζ]
+

(3.9)

s.t.
d∑
j=1

wj = 1,

wεyj ≤ wj ≤ yj, for j = 1, . . . , d,

yj ∈ {0, 1} for j = 1, . . . , d,
d∑
j=1

yj = k,

where y = (y1, . . . , yd). Again, ζ is an auxiliary variable, α = 0.95, k is the fixed cardinality

of the stock subset. In the second constraint, wε is a positive small number to ensure that

there are exactly k positive elements in w, and in this chapter we let wε = 10−3. The
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problem (3.9) can be cast as a mixed-integer linear programming problem of which the

optimal solution is attainable efficiently by standard methods (see [22]).

Using the same data as in Section 3.5.2, given fixed subset cardinality, in-sample and

out-of-sample tracking errors are obtained by our proposed method and the benchmark

method respectively. Results are shown in Table 3.4.

In our specific implementation, problem (3.8) is solved by the Matlab build-in function

“linprog” with default settings. The mixed-integer linear program (3.9) is solved by the

Matlab built-in function “intlinprog”. Settings of using this function are as follows: we use

the branch-and-bound algorithm, the heuristic to a find feasible point is set to “rss”, the

termination criteria are TolCapRel=1e-4 and MaxTime=1500 (seconds). Both programs

are run on a PC with Intel Core i5-3210M CPU at 2.5GHz and 6.00GB memory. With

these termination criteria, the optimal solution to (3.9) is found in the case of the Hang

Seng index. For the other indices, the program always stops at a sub-optimal solution

when the maximum running time (1,500 seconds) is reached.

As shown in Table 3.4, the benchmark method leads to smaller in-sample tracking

errors. However, in terms of the out-of-sample tracking errors, our method behaves com-

parably to the benchmark method. This suggests that our variable selection also works

for controlling the tail of tracking discrepancy. Moreover, our method works much faster

than the benchmark method. It takes 33.11 seconds for our method with GCD criteria to

track Nikkei 225 with 10 stocks. Using dCor or HHG test statistics as the criteria takes

slightly more time, but the running time is as the same magnitude as that of using the

GCD criteria. This is the most complicated case in Table 3.4, less time is required in other

cases.

3.6 Discussion

In this chapter, we introduce a variable selection method for index tracking. Based on

Sobol’s total sensitivity index, we first select some significant PCs that well approximate

the index return and explain a large portion of the index return variance. Then we search
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for variables that maximize the similarity between the retained PCs and subset stocks. This

similarity is measured by Yanai’s GCD, distance correlation, or the HHG test statistics.

Given the selected stocks, corresponding weights can be obtained by minimizing a specified

tracking error. We apply our proposed variable selection to five stock-market indices. Using

empirical MSE and CVaR as tracking errors, results suggest that our method is comparable

with heuristic “one-step” methods in terms of out-of-sample performance, and our proposed

method is more computationally efficient.

GCD dCor HHG Benchmark
Card.(k) MSEin MSEout MSEin MSEout MSEin MSEout MSEin MSEout

Hang Seng 5 1.3E-04 1.2E-04 2.2E-04 3.5E-04 1.4E-04 1.4E-04 4.1E-05 7.2E-05
(d=31) 6 1.4E-04 9.5E-05 1.3E-04 1.7E-04 1.1E-04 7.7E-05 3.0E-05 4.7E-05

7 8.8E-05 9.4E-05 1.3E-04 1.6E-04 6.0E-05 7.6E-05 2.3E-05 3.8E-05
8 7.1E-05 6.4E-05 1.3E-04 1.6E-04 5.3E-05 6.6E-05 1.9E-05 2.8E-05
9 7.4E-05 5.2E-05 1.1E-04 1.2E-04 5.8E-05 4.5E-05 1.6E-05 2.5E-05
10 4.4E-05 5.5E-05 4.8E-05 6.6E-05 4.2E-05 5.0E-05 1.3E-05 2.0E-05

DAX 5 8.8E-05 1.7E-04 2.3E-05 1.0E-04 2.9E-05 1.1E-04 2.2E-05 1.0E-04
(d=85) 6 6.9E-05 1.3E-04 2.3E-05 9.0E-05 2.1E-05 9.0E-05 1.7E-05 8.9E-05

7 6.4E-05 1.4E-04 2.0E-05 9.4E-05 2.5E-05 1.0E-04 1.3E-05 8.4E-05
8 6.5E-05 1.3E-04 2.1E-05 8.6E-05 2.0E-05 1.0E-04 1.1E-05 7.9E-05
9 6.3E-05 1.2E-04 1.7E-05 8.5E-05 1.3E-05 8.1E-05 9.2E-05 7.7E-05
10 2.9E-05 1.2E-04 1.1E-05 7.7E-05 1.9E-05 9.1E-05 8.0E-05 7.4E-05

FTSE 5 2.3E-04 1.3E-04 1.1E-04 1.2E-04 1.0E-04 1.1E-04 6.4E-05 1.5E-04
(d=89) 6 1.7E-04 1.2E-04 1.1E-04 1.2E-04 1.0E-04 1.2E-04 4.9E-05 1.1E-04

7 1.3E-04 1.0E-04 1.1E-04 9.3E-05 1.2E-04 1.3E-04 3.8E-05 9.0E-05
8 1.3E-04 9.2E-05 8.6E-05 8.4E-05 8.6E-05 8.1E-05 2.9E-05 9.6E-05
9 1.2E-04 7.4E-05 6.8E-05 9.1E-05 6.8E-05 9.2E-05 2.4E-05 8.5E-05
10 1.2E-04 6.6E-05 5.6E-05 6.3E-05 8.4E-04 6.1E-05 2.1E-05 8.0E-05

S&P100 5 1.0E-04 1.2E-04 1.4E-04 1.4E-04 2.0E-04 1.9E-06 4.4E-05 1.1E-04
(d=100) 6 1.2E-04 1.6E-04 1.5E-04 1.2E-04 1.5E-04 2.0E-04 3.3E-05 1.0E-04

7 1.4E-04 1.2E-04 1.5E-04 1.4E-04 8.2E-05 1.0E-04 2.7E-05 7.7E-05
8 1.1E-04 9.0E-05 9.4E-05 1.0E-04 1.0E-04 1.1E-04 2.2E-05 6.7E-05
9 1.0E-04 9.4E-05 8.1E-05 8.1E-05 8.7E-05 8.8E-05 1.9E-05 5.9E-05
10 9.0E-05 7.8E-05 8.6E-05 8.8E-05 7.0E-05 1.0E-04 1.6E-05 5.5E-05

Nikkei 5 9.0E-05 1.4E-04 1.5E-04 2.6E-04 1.0E-04 1.6E-04 5.4E-05 1.6E-04
(d=225) 6 6.2E-05 1.4E-04 1.4E-04 1.9E-04 9.0E-05 1.7E-04 4.0E-05 1.4E-04

7 6.0E-05 1.1E-04 1.1E-04 1.6E-04 7.9E-05 2.2E-04 3.3E-05 1.3E-04
8 5.2E-05 1.1E-04 6.6E-05 1.1E-04 9.0E-05 1.9E-04 2.6E-05 1.1E-04
9 4.8E-05 9.6E-05 5.4E-05 1.0E-04 7.8E-05 1.7E-04 2.1E-05 9.8E-05
10 4.7E-05 7.2E-05 6.5E-05 9.4E-05 6.7E-05 1.3E-04 1.7E-05 6.4E-05

Table 3.3: In-sample empirical MSE (MSEin) and out-of sample empirical MSE (MSEout). “GCD” refers
to our method using Yanai’s GCD criterion to select stocks. Similarly, “dCor” and “HHG” represent
using the distance correlation and HHG test statistics to select stocks respectively. The last column shows
published results in [105].
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GCD dCor HHG Benchmark
Card.(k) CVaRin CVaRout CVaRin CVaRout CVaRin CVaRout CVaRin CVaRout

Hang Seng 5 0.0239 0.0275 0.0317 0.0344 0.0261 0.0265 0.0121 0.0221
(d=31) 6 0.0188 0.0211 0.0241 0.0287 0.0251 0.0222 0.0100 0.0144

7 0.0144 0.0211 0.0200 0.0282 0.0142 0.0212 0.0083 0.0159
8 0.0137 0.0248 0.0213 0.0281 0.0136 0.0165 0.0065 0.0148
9 0.0156 0.0161 0.0181 0.0260 0.0165 0.0190 0.0055 0.0136
10 0.0124 0.0163 0.0155 0.0196 0.0136 0.0173 0.0050 0.0125

DAX 5 0.0221 0.0324 0.0128 0.0223 0.0121 0.0242 0.0085 0.0231
(d=85) 6 0.0166 0.0250 0.0112 0.0228 0.0097 0.0204 0.0073 0.0229

7 0.0181 0.0242 0.0112 0.0233 0.0109 0.0273 0.0061 0.0208
8 0.0152 0.0245 0.0101 0.0217 0.0107 0.0213 0.0055 0.0209
9 0.0136 0.0232 0.0098 0.0207 0.0087 0.0204 0.0047 0.0186
10 0.0149 0.0242 0.0082 0.0186 0.0101 0.0228 0.0046 0.0199

FTSE 5 0.0233 0.0263 0.0197 0.0272 0.0210 0.0212 0.0126 0.0213
(d=89) 6 0.0197 0.0280 0.0202 0.0267 0.0211 0.0289 0.0119 0.0226

7 0.0214 0.0224 0.0194 0.0220 0.0200 0.0191 0.0107 0.0175
8 0.0181 0.0211 0.0178 0.0218 0.0178 0.0192 0.0090 0.0163
9 0.0166 0.0186 0.0153 0.0212 0.0172 0.0244 0.0087 0.0152
10 0.0158 0.0175 0.0141 0.0164 0.0194 0.0191 0.0076 0.0158

S&P100 5 0.0269 0.0259 0.0200 0.0235 0.0232 0.0317 0.0110 0.0213
(d=100) 6 0.0293 0.0320 0.0231 0.0272 0.0231 0.0300 0.0099 0.0226

7 0.0266 0.0316 0.0191 0.0255 0.0191 0.0233 0.0079 0.0175
8 0.0269 0.0294 0.0168 0.0279 0.0192 0.0253 0.0078 0.0163
9 0.0191 0.0216 0.0157 0.0178 0.0143 0.0209 0.0064 0.0152
10 0.0164 0.0246 0.0186 0.0190 0.0135 0.0234 0.0058 0.0158

Nikkei 5 0.0178 0.0278 0.0250 0.0396 0.0217 0.0323 0.0133 0.0350
(d=225) 6 0.0151 0.0249 0.0173 0.0370 0.0216 0.0276 0.0112 0.0252

7 0.0148 0.0272 0.0194 0.0293 0.0169 0.0294 0.0100 0.0233
8 0.0142 0.0223 0.0175 0.0282 0.0166 0.0261 0.0100 0.0229
9 0.0119 0.0242 0.0162 0.0216 0.0180 0.0253 0.0090 0.0253
10 0.0106 0.0269 0.0150 0.0242 0.0137 0.0215 0.0084 0.0233

Table 3.4: In-sample empirical 95% CVaR (CVaRin) and out-of sample empirical 95% CVaR (CVaRout).
“GCD” refers to our method using Yanai’s GCD criterion to select stocks. Similarly, “dCor” and “HHG”
represent using the distance correlation and HHG test statistics to select stocks respectively. Here, “Bench-
mark” refers to results given by solving (3.9) using the Matlab built-in function “intlinprog”.
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Chapter 4

Index Tracking with Factor Models

4.1 Introduction

A simple way to track a benchmark index is full replication, which constructs a tracking

portfolio strictly following the composition formula of the index (See Section 3.2.1 for

examples). However, some small-cap stocks are only lightly traded in the stock market.

Due to such liquidity issues, it is challenging to purchase enough quantity of small-cap

stocks. This sometimes makes full replication infeasible, and many tracking portfolios

use a portion of the index components to approximate the index return ([71]). How to

construct such a partial replication is called the index tracking problem.

Denote by R the index return in a generic period and rtp the return of a tracking

portfolio. In this chapter, tracking portfolios are constructed to minimize the mean square

error (MSE), which is E[(R − rtp)2]. This is a widely accepted tracking error (see [102],

[7], [105], [26]). The square loss function, (R− rtp)2, penalizes large deviations of rtp from

the index return R. According to [53], it is a standard loss function used in the industry.

In order to solve the index tracking problem, many methods such as those in [7], [82],

and [105] formulate it as a mixed-integer quadratic programming problem. In this formula-

62



tion, stocks and corresponding weights in the tracking portfolio are determined by minimiz-

ing the in-sample empirical MSE subject to certain constraints. However, mixed-integer

quadratic programming is NP-hard (see [105]), and so its optimal solution is challenging

to obtain efficiently. In response, heuristic algorithms are proposed in [7], [82], and [105] to

solve this mixed-integer quadratic program. Hereafter, we generally refer to these methods

as heuristic methods.

When the number of index components is high, say several thousands, it is not fea-

sible to use existing heuristic methods to construct tracking portfolios. Firstly, although

tracking portfolios constructed by these heuristic methods usually lead to small in-sample

tracking errors, they sometimes lead to volatile out-of-sample empirical MSEs especially

when the number of index components is large. Secondly, these heuristic methods are

too computationally demanding to construct tracking portfolios when the number of index

components is large.

One reason of the volatile out-of-sample performance of these heuristic methods is

the accumulation of estimator errors when the number of index components is high. Many

important stock-market indices are composed of a large number of stocks, such as the MSCI

World index (1,642 components), Russell 2000 index (2,000 components), and the Russell

3000 index (3,000 components), etc. For these stock-market indices, the number of index

components d is usually much larger than the sample size n of available data. Take the

Russell 3000 index as an example, we need 58 years to gather more than 3,000 weekly data.

However, 58 years ago, lots of these 3,000 stocks did not even exist. Hence, it is impossible

to gather more than 3,000 weekly data for all these 3,000 stocks. This is a typical problem

for high-dimensional data (d > n), which accumulates estimation errors ([44]). As a result,

without any control on estimation errors, the tracking strategy obtained by minimizing

the empirical tracking error might result in a tracking error which substantially deviates

from the minimum true tracking error. As far as we know, controlling this accumulation

of estimation errors is seldom discussed in the existing literature on index tracking. In

this chapter, we develop some theoretical foundations to assure that with some conditions

the tracking strategy obtained by minimizing the empirical tracking error still leads to a

tracking error which converges to the minimum true tracking error in a certain asymptotic

sense.
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In terms of computational issues, heuristic methods focusing on minimizing the in-

sample empirical E[(R − rtp)2] are not practical to track indices of which the number of

index components is very large. This is because they usually spend unacceptable amounts

of time in practice ([22]). In response, a new tracking error in [22] is defined based on

regressing the tracking portfolio return against the index return. Aiming at reducing the

fitted intercept to 0 and shifting the fitted coefficient (of the index return) to 1, the index

tracking problem is formulated as a mixed-integer linear programming problem. Though

the authors of [22] claim that the optimal solution to a mixed-integer linear program can be

obtained efficiently by some standard solvers, they do not provide sound economic reasons

to support their proposed tracking error. It is also reported in [22] that the tracking

portfolios constructed by this method fail to reduce the tracking error E[(R− rtp)2].

In this chapter, factor models are applied to describe stock returns. In general, factor

models assume that each stock return is explained by a linear combination of common

economic factors plus an extra idiosyncratic risk. Factor models are powerful at explaining

stock returns, and they are also simple due to their linear forms. Hence, factor models are

widely applied in portfolio management ([109], [103],[42], [6]).

Factor models have been applied to index tracking in [26]. Factors in that work are

estimated by a portion of principal components derived from all index components. How-

ever, when the number of selected principal components is larger than that of stocks held

in the tracking portfolio, the method in [26] fails to construct any tracking portfolio.

In this chapter, we consider factor models with a small number of common factors,

such as Sharpe’s single-index model, the characteristic line of three-moment CAPM, and

the Fama-French three factor model. When stock returns are described by factor models,

the MSE of a tracking portfolio can be partitioned into two parts: one only depending on

common economic factors and the other depending on idiosyncratic risks from individual

stocks. Based on such findings, a 2-stage method is proposed to construct tracking port-

folios. Inspired by the work in [22], the first stage relies on a mixed-integer linear program

to reduce factors’ impacts on MSEs of tracking portfolios, and the second stage constructs

a tracking portfolio that minimizes the empirical MSE based on stocks identified in Stage

1. The 2-stage method successfully and efficiently tracks stock-market indices with a large
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number of components.

The organization of this chapter is as follows. Section 4.2 formulates the index tracking

problem. Section 4.3 introduces factor models which are commonly applied in portfolio

analysis. Section 4.4 discusses the 2-stage method to construct tracking portfolios. In

Section 4.5, the 2-stage method is applied to track two stock-market indices which are made

up of thousands of stocks. Empirical studies suggest that the 2-stage method significantly

reduces the out-of-sample empirical MSE, and is more computationally efficient. Section

4.6 concludes this chapter.

4.2 Formulation of the Index Tracking Problem

Suppose a stock-market index is composed of d stocks, and denote the return of the ith

component by ri for i = 1, 2, . . . , d. Let w = (w1, . . . , wd) where wi is the weight of the ith

index component in the tracking portfolio for i = 1, 2, . . . , d. Hence, the tracking portfolio

return rtp is given by

rtp =
d∑
i=1

wiri.

Over one generic period, the index tracking problem can be formulated as

min
w∈U

E

[(
R−

d∑
i=1

wiri
)2

]
, (4.1)

where R is the index return and U is a certain feasible set. In this chapter, U is defined

by the following three constraints, which are usually adopted in the literature of index

tracking ([7], [22], [105]).

(a) The no short-selling constraint. In the U.S., there is a margin requirement for short

selling stocks. The margin for short selling a stock is 50% of the market value of the
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borrowed stock1, and this is a significant expense. Due to some restrictions on short-

selling stocks, such as the alternative uptick rule by the U.S. Securities and Exchange

Commission2, under certain circumstances it is not easy to short sell stocks. Moreover,

losses of short selling stocks are unlimited, which is too risky. Thus, we assume that

all stock weights in the tracking portfolio are non-negative, that is

wi ≥ 0 for i = 1, . . . , d. (4.2)

(b) The budget constraint. Since the tracking portfolio only consists of stocks, all stock

weights must sum up to 1, that is

d∑
i=1

wi = 1. (4.3)

(c) The cardinality constraint. Due to their financial budget, sometimes investors are only

willing to invest into at most k(� d) index components. The cardinality constraint is

sometimes preferred by portfolio managers, since it is impossible for them to pay de-

tailed attention to a large number of stocks. Mathematically speaking, the cardinality

constraint is expressed as
d∑
i=1

I{wi 6= 0} ≤ k, (4.4)

where I{·} is the indicator function.

Let w∗ be the optimal solution to (4.1) subject to (4.2)-(4.4). Then, positive elements

of w∗ indicate stocks to hold in the tracking portfolio and their corresponding weights.

However, the joint distribution of (R, r′) is usually unknown, where r = (r1, . . . , rd)
′.

Thus, w∗ cannot be solved directly. Instead, most literature on index tracking searches for

the tracking strategy ŵ∗ which minimizes the empirical tracking error while subject to

(4.2)-(4.4).

1http://www.ecfr.gov/cgi-bin/text-idx?SID=7df35b15d3a9d087dc1fbe017048f723&mc=true&

node=se12.3.220_112&rgn=div8.
2http://www.sec.gov/news/press/2010/2010-26.htm.
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Before presenting a quantitative description of the empirical tracking error, it is nec-

essary to introduce an assumption on the relationship between the sample size n and the

number of index components d. As discussed in Section 4.1, in this chapter we focus on

tracking stock-market indices for which d is usually larger than n. In order to derive some

theoretical results which are friendly to such high-dimensional datasets where d > n, we

posit the following assumption.

Assumption 4.1 Let d = d(n) = O(nα) as n→∞, where α > 1.

This order of d(n) in Assumption 4.1 is inherited from [63] to prove Proposition 4.1 in

the following. With Assumptions 4.1, the empirical tracking error is given by

1

n

n∑
t=1

(
Rt −

d(n)∑
i=1

wirt,i

)2

, (4.5)

where (Rt, rt,1, . . . , rt,d(n)) are samples of (R, r′) at time t for t = 1, . . . , n. Note that in the

high-dimensional setting w = (w1, . . . , wd(n)). Let

LF (n)(w) = E

(R− d(n)∑
i=1

wiri

)2
 and LF̂ (n)(w) =

1

n

n∑
t=1

(
Rt −

d(n)∑
i=1

wirt,i

)2

, (4.6)

where F (n) is the joint distribution of (R, r1, . . . , rd(n)). Hence, w∗ and ŵ∗ can be rewritten

as

w∗ = arg min
w∈U(n)

LF (n)(w) and ŵ∗ = arg min
w∈U(n)

LF̂ (n)(w), (4.7)

where, according to (4.2)-(4.4),

U (n) =

{
w = (w1, . . . , wd(n)) : 0 ≤ wi ≤ 1, for i = 1, . . . , d(n),

d(n)∑
i=1

wi = 1,

d(n)∑
i=1

I{wi 6= 0} ≤ k

}
, (4.8)
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and k(� d(n)) is a fixed positive integer.

In general, there is no direct relationship between w∗ and ŵ∗, since they are op-

timal solutions to minimize different objective functions. However, the performance of

the tracking strategy w∗ must be evaluated by LF (n)(ŵ∗). In order to quantify the gap

between LF (n)(ŵ∗) and LF (n)(w∗), Proposition 4.1 shows that under certain conditions

LF (n)(ŵ∗)− LF (n)(w∗) converges to 0 in probability as n→∞.

Proposition 4.1. In addition to Assumptions 4.1, let us further assume that

(a) random vectors (Rt, rt,1, . . . , rt,d(n)) at different time t for t = 1, 2, . . . , n are indepen-

dent and identically distributed (i.i.d.) samples of the random vector (Rt, r1, . . . , rd(n)),

which follows a joint distribution F (n).

(b)

E

[(
max

1≤i,j≤d(n)
|rirj − σij|

)2
]
≤ M̃ <∞ and E

[(
max

1≤i≤d(n)
|Rri − σi|

)2
]
≤ M̃ <∞,

where σij = E [rirj], σi = E [Rri], and M̃ is a constant.

Then

LF (n)(ŵ∗)− LF (n)(w∗)
p→ 0, as n→∞,

where LF (n)(w) is defined in (4.6), w∗ and ŵ∗ are defined in (4.7).

Proof. In general, let us define

w∗B = arg min
w∈B

LF (n)(w),

ŵ∗B = arg min
w∈B

LF̂ (n)(w),

where B is a general feasible set. Further, let ||x||1 =
∑

i |xi| for any vector x = (x1, . . . , xd(n)).

According to Theorem 3 in [63], under the assumptions stated in this proposition, as long

as

B ⊂ Bn
b(n) =

{
w : ||w||1 ≤ b(n)

}
,
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where b(n) = o
(
( n

log(n)
)1/4
)
, we have

LF (n)(ŵ∗B)− LF (n)(w∗B)
p→ 0 as n→∞.

In order to finish this proof, it suffices to show that U (n) ⊂ Bn
b(n) where U (n) is defined

in (4.8). Note that for any w ∈ U (n), it holds that
∑d(n)

i=1 wi = 1 and 0 ≤ wi ≤ 1 for

i = 1, . . . , d(n). Hence,

||w||1 =

d(n)∑
i=1

|wi| =
d(n)∑
i=1

wi = 1 ≤ b(n) = o
(
(

n

log(n)
)1/4
)

for any sufficiently large n. Hence, U (n) ⊂ Bn
b(n), and this completes the proof.

Although financial data might demonstrate serial dependence, we use Assumption (a)

in Proposition 4.1 as a benchmark. Due to the complexity of our index tracking formulation

in the high-dimensional setting, it is challenging to develop any meaningful theory without

this i.i.d assumption.

Proposition 4.1 provides a motivation to search for ŵ∗ that minimizes the empirical

tracking error. Under the assumptions in Proposition 4.1, ŵ∗ leads to a tracking error

LF (n)(ŵ∗) which is close to the true minimum tracking error LF (n)(w∗) when the sample

size n is sufficiently large, even d = d(n) = O(nα). As far as we know, such a motivation

is seldom discussed in the existing literature on index tracking.

However, ŵ∗ defined in (4.7) is a solution to a mixed-integer quadratic program ([7]).

In practice, when the number of index components d is large, it is challenging to obtain ŵ∗

efficiently. Rather than directly solving a mixed-integer quadratic program to obtain ŵ∗,

in this chapter we describe ri for i = 1, . . . , d by factor models. Under this assumption,

a 2-stage method is introduced to construct tracking portfolios. The 2-stage method is

computationally efficient, and it significantly reduces out-of-sample empirical MSEs.
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4.3 Factor Models in Portfolio Analysis

Factor models assume that a stock return is determined by common economic factors

as well as the company’s individual business performance, or idiosyncratic risk, which is

independent of economic factors. Specifically, in a factor model the return of stock i, ri, is

given by

ri = αi +
∑
j

γijFj + εi, for i = 1, . . . , d,

where αi is a constant, Fj is the j-th factor, the weight of j-th factor for stock i is γij

for all i, j. The idiosyncratic risk of stock i is εi, and this is a random variable with zero

mean and finite variance σ2
εi

for all i. Idiosyncratic risks are independent of factors, and

cov(εi1 , εi2) = 0 for i1 6= i2.

One of the simplest factor models in portfolio analysis is Sharpe’s single-index model

introduced in [109]. In this model, the stock return only depends on one factor, which is

the return of a stock-market index. Specifically, the single-index model is given by

ri = αi + βiR + εi, for i = 1, . . . , d, (4.9)

where R is a stock-market index return, and βi is a constant coefficient for stock i. The

relationship in (4.9) is attractive in the mean-variance framework, since it simplifies the

mathematical and computational analysis but also explains a large portion of stock return

variations (see [109]).

The quadratic characteristic line of three-moment CAPM, which is introduced in [81],

is another factor model in portfolio analysis. In addition to the market portfolio return rM ,

the quadratic characteristic line includes r2
M as another factor in the model. [81] assumes

that the investor’s expected utility is defined over the first three moments of the probability

distribution of end of period wealth, and the return of a portfolio that consists of risky

assets is asymmetric. Also, under a series of other assumptions, the authors of [81] derive

the three-moment CAPM, and the quadratic characteristic line of three-moment CAPM is
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given by

ri − rf = c0i + c1i(rM − rf ) + c2i(rM − E[rM ])2 + εi, for i = 1, . . . , d, (4.10)

where rf is the return of the risk-free asset, and c0i, c1i, and c2i are constant coefficients.

After some algebra, equation (4.10) can be rewritten as

ri = c̃0i + c̃1irM + c̃2ir
2
M + εi, for i = 1, . . . , d,

where c̃0i, c̃1i, and c̃2i are constant coefficients. In practice, the market portfolio return

in the three-moment CAPM is usually replaced by a stock-market index ([81] and [68]).

Replacing the market portfolio by the stock-market index, the characteristic line of the

three-moment CAPM is given by

ri = c̃0i + c̃1iR + c̃2iR
2 + εi, for i = 1, . . . , d. (4.11)

Empirical tests in [81] suggest that the three-moment CAPM explains stock return varia-

tions well.

Another popular factor model in portfolio analysis is the Fama-French three factor

model in [42]. The authors of [42] emphasize the importance of a company’s size (or

equivalently the market capitalization) and book-to-market ratio in explaining its stock

return, and suggest that stock returns can be well explained by the stock-market index

return, the size factor, and the book-to-market ratio factor. The size factor is mimicked

by the return of a portfolio which longs small size stocks and shorts large size stocks,

and the book-to-market ratio factor is mimicked by the return of a portfolio which longs

high book-to-market ratio stocks and shorts low book-to-market ratio stocks. Denoting by

SMB the size factor and HML the book-to-market ratio factor, the Fama-French three

factor model is given by

ri = αi + βiR + γi1SMB + γi2HML+ εi, for i = 1, . . . , d. (4.12)

Many empirical studies that support the Fama-French three factor model are carried out in

[42]. According to [43], the Fama-French three factor is widely used in empirical research.
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Since all of (4.9), (4.11) and (4.12) have the factor R, in this chapter the general form

of factor models is rewritten as

ri = αi + βiR +

q∑
j=1

γijFj + εi, for i = 1, . . . , d, (4.13)

where q is a fixed positive integer.

4.4 A 2-Stage Method to Construct Tracking Portfo-

lios

4.4.1 Decomposition of The Tracking Error

Assume that stock returns are explained by (4.13). Note that rtp =
∑d

i=1wiri. In a generic

period, the difference between the index return and the portfolio return, R − rtp, is given

by

R− rtp = −

[
d∑
i=1

wiαi +R
( d∑
i=1

wiβi − 1
)

+

q∑
j=1

Fj

( d∑
i=1

wiγij

)
+

d∑
i=1

wiεi

]
.

Therefore, the tracking error can be written as

E[(R− rtp)2] = MSEF +MSEI , (4.14)

where

MSEF = E

[( d∑
i=1

wiαi +R
( d∑
i=1

wiβi − 1
)

+

q∑
j=1

Fj
( d∑
i=1

wiγij
))2

]
, (4.15)

MSEI =
d∑
i=1

w2
i σ

2
εi
. (4.16)

Again, the joint distribution of the R, Fj’s, and εi’s for all i, j is usually unknown,
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so that we cannot directly obtain the tracking strategy w∗ by minimizing E[(R − rtp)
2]

in (4.14) subject to U (n) in (4.8). Instead, we turn to search for ŵ∗ by minimizing the

empirical tracking error under factor models subject to U (n).

In order to present the empirical tracking error within the setting of high-dimensional

data, we still posit Assumption 4.1 with factor models. Hence, in this chapter the empirical

tracking error, or empirical MSE, with factor models is given by

1

n

n∑
t=1

( d(n)∑
i=1

wiα̂i +Rt

( d(n)∑
i=1

wiβ̂i − 1
)

+

q∑
j=1

Ft,j
( d(n)∑
i=1

wiγ̂ij
))2

+
d∑
i=1

w2
i σ̂

2
εi
, (4.17)

where (Rt, Ft,1, . . . , Ft,q) are samples of (R,F1, . . . , Fq) observed at time t for t = 1, . . . , n,

quantities α̂i, β̂i, γ̂ij, σ̂
2
εi

are ordinary least square (OLS) estimators of their counterparts

in (4.15) and (4.16) for all i, j.

Analogous to Proposition 4.1, we quantify the gap between LF (n)(ŵ∗) and LF (n)(w∗)

under the assumption of factor models in Proposition 4.2. Before doing that, it is necessary

to simplify some notations.

Suppose the number of Fj’s, i.e. q, is a fixed finite number. Let rd(n)+1 = R, r̃ =

(r1, . . . , rd(n)+1)′, wd(n)+1 = −1, ξ = (w1, . . . , wd(n)+1)′, and f = (1, R, F1, . . . , Fq)
′. For

simplicity, the general factor model in (4.13) is rewritten as

r̃ = Bf + ε, (4.18)

where B = (b1, . . . ,bd(n)+1)′, bi = (αi, βi, γi1, . . . , γiq)
′ for i = 1, . . . , d(n), bd(n)+1 =

(0, 1, 0, . . . , 0)′, and ε = (ε1, . . . , εd(n), 0)′. Consequently, we can rewrite LF (n)(w) defined

in (4.6) as

LF (n)(w) = E

(R− d(n)∑
i=1

wiri

)2
 = E

( d(n)+1∑
i=1

wiri

)2


= ξ′E [r̃r̃′] ξ

= ξ′(BΣfB
′ + Σε)ξ, (4.19)
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where F (n) is the joint distribution of (R,F1, . . . , Fq, r1, . . . , rd(n)), ξ = (w1, . . . , wd(n),−1),

Σf = E[ff ′], Σε = E[εε′].

Denote the sample matrix of r̃ by Y = (Y1, . . . , Yd(n)+1) and Yi = (Y1i, . . . , Yni)
′ for

i = 1, . . . , d(n) + 1. Let the sample matrix of f be X, where X = (e,R,F1, . . . ,Fq), e is

a n-column vector of 1’s, R = (R1, . . . , Rn)′, Fj = (F1,j, . . . ,Fn,j)
′ for j = 1, . . . , q. With

factor models, according to (4.17), LF̂ (n)(w) defined in (4.6) can be rewritten as

LF̂ (n)(w) = ξ′(B̂Σ̂f B̂
′ + Σ̂ε)ξ, (4.20)

where Σ̂f = 1
n
X ′X, B̂ = (b̂1, . . . , b̂d(n)+1)′, and Σ̂ε is a diagonal matrix with diagonal

elements σ̂2
ε1
, . . . , σ̂2

εd(n)+1
. For i = 1, . . . , d(n)+1, the vector of OLS estimators b̂i is defined

by b̂i = (X ′X)−1X ′Yi, and the OLS estimator of σ2
εi

is σ̂2
εi

= 1
n−(q+1)−1

(Yi−Xb̂i)
′(Yi−Xb̂i).

We note that the above formulas for OLS estimators are also valid for i = d(n)+1 because

Yd(n)+1 = R = Xbd(n)+1,

so that b̂d(n)+1 = bd(n)+1 and σ̂2
εd(n)+1

= σ2
εd(n)+1

= 0.

Under the factor model assumption, suppose w∗ and ŵ∗ follow the definition in (4.7).

In order to measure the gap between LF (n)(ŵ∗) and LF (n)(w∗), Proposition 4.2 show that

under some assumptions

LF (n)(ŵ∗)− LF (n)(w∗)
p→ 0 as n→∞.

Proposition 4.2. In addition to Assumption 4.1, let us further assume that

(a) random vectors (Rt, Ft,1, . . . , Ft,q, rt,1, . . . , rt,d(n)) at time t for t = 1, . . . , n are i.i.d.

samples from the random vector (R,F1, . . . , Fq, r1, . . . , rd(n)), which follows a joint dis-

tribution F (n).

(b) stock returns follows the factor model (4.18),

(c) there exists a constant M̃ > 0, such that E[r2
i ] < M̃ for any i = 1, . . . , d(n) and
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E[f 2
j ] < M̃ for any fj ∈ f , each element in bi is less than or equal to M̃ for i =

1, . . . , d(n). The matrix Σf = E[ff ′] is positive definite,

(d) there exist constants ψ1 > 0 and φ1 > 0 such that for any δ > 0 and any fj ∈ f ,

Pr(|fj| > δ) ≤ exp
(
− (δ/φ1)ψ1

)
,

(e) E[εi] = 0, σ2
εi

= V ar(εi) <∞, the random noise εi is independent of common factors

for i = 1, . . . , d(n), and cov(εi, εj)=0 for i 6= j,

(f) there exist ψ2 > 0 and φ2 > 0, such that for any δ > 0

Pr(|εi| > δ) ≤ exp
(
− (δ/φ2)ψ2

)
, for i = 1, . . . , d(n),

(g) ordinary least square (OLS) estimators are used to estimate b̂i and σ̂εi for i = 1, 2, . . . , d(n)+

1.

(h) || 1
d(n)

B′B−Ω|| = o(1) for some q×q positive definite matrix Ω, where ||A|| = λ
1/2
max(A′A)

and λmax(D) denotes the largest eigenvalue of a matrix D.

Suppose that LF (n)(w) and LF̂ (n)(w) are defined in (4.19) and (4.20) respectively, and w∗

and ŵ∗ are defined in (4.7). Then, ∀ε > 0,

Pr {|LF (n)(ŵ∗)− LF (n)(w∗)| > 2ε} ≤ O

(
1

n2α
+

1

n2

)
,

which implies

LF (n)(ŵ∗)− LF (n)(w∗)
p→ 0 as n→∞.

Proof. Note that, by definition, LF̂n(ŵ∗) − LF̂n(w∗) < 0. Let Σ = BΣfB
′ + Σε and
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Σ̂ = B̂Σ̂f B̂
′ + Σ̂ε. We have

0 ≤ LFn(ŵ∗)− LFn(w∗)

= LFn(ŵ∗)− LF̂n(ŵ∗) + LF̂n(ŵ∗)− LF̂n(w∗) + LF̂n(w∗)− LFn(w∗)

≤ |LFn(ŵ∗)− LF̂n(ŵ∗)|+ |LF̂n(w∗)− LFn(w∗)|
≤ 2 sup

w∈U(n)

|LFn(w)− LF̂n(w)|

= 2 sup
w∈U(n)

|ξ′(Σ− Σ̂)ξ|

≤ 2||Σ− Σ̂||max sup
w∈U(n)

|
∑
i,j

ξiξj|

≤ 2||Σ− Σ̂||max sup
w∈U(n)

||ξ||21,

where ||A||max = maxi,j{aij} for any matrix A = (aij)i,j. Then for any ε > 0, we have

Pr {|LFn(ŵ∗)− LFn(w∗)| > 2ε} ≤ Pr

{
||Σ− Σ̂||max sup

w∈U(n)

||ξ||21 > ε

}
. (4.21)

Given any constant ψ ∈ (0, 1
2
), we have ε > 1

nψ
for sufficiently large n, so that

Pr

{
||Σ− Σ̂||max sup

w∈U(n)

||ξ||21 > ε

}
≤ Pr

{
||Σ− Σ̂||max sup

w∈U(n)

||ξ||21 >
1

nψ

}
. (4.22)

With the assumptions in this proposition, we can apply Theorem 3.2 from [46], in

conjunction with the assumption d(n) = O(nα) where α > 1, to obtain

Pr

{
||Σ− Σ̂||max ≥

(
C(α log(n) + q2 log(n))

n

)1/2
}

= O

(
1

n2α
+

1

n2

)
,

where C > 0 is a constant. Hence, as long as supw∈U(n) ||ξ||1 ≤
(

n1−2ψ

C(α log(n)+q2 log(n))

)1/4

for
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sufficiently large n, we have

Pr

{
||Σ− Σ̂||max sup

w∈U(n)

||ξ||21 >
1

nψ

}
≤ Pr

{
||Σ− Σ̂||max

(
n1−2ψ

C(α log(n) + q2 log(n))

)1/2

>
1

nψ

}

= Pr

{
||Σ− Σ̂||max ≥

(
C(α log(n) + q2 log(n))

n

)1/2
}

= O

(
1

n2α
+

1

n2

)
. (4.23)

According to (4.21), (4.22), and (4.23), as long as supw∈U(n) ||ξ||1 ≤
(

n1−2ψ

C(α log(n)+q2 log(n))

)1/4

,

we have

Pr {|LFn(ŵ∗)− LFn(w∗)| > 2ε} → 0, as n→∞.

Hence, in order to complete the proof, it suffices to show that

sup
w∈U(n)

||ξ||1 ≤
(

n1−2ψ

C(α log(n) + q2log(n))

)1/4

.

By the definition of ξ, we have ||ξ||1 = 1 +
∑d(n)

i=1 |wi|. According to the definition of U (n)

in (4.8), for any w ∈ U (n),

||ξ||1 = 1 +

d(n)∑
i=1

|wi| = 1 +

d(n)∑
i=1

wi = 2,

so that

sup
w∈U(n)

||ξ||1 ≤
(

n1−2ψ

C(α log(n) + q2 log(n))

)1/4

,

for any sufficiently large n. This completes the proof.

Proposition 4.2 points out that, under the assumptions of factor models, ŵ∗ leads to a
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tracking error LF (n)(ŵ∗) which is close to the true minimum tracking error LF (n)(w∗) when

the sample size n is sufficiently large, even though d = d(n) = O(nα). However, ŵ∗ defined

in (4.7) with factor models is also a solution to a mixed-integer quadratic programming.

In practice, it is challenging to obtain ŵ∗ in an efficient way when the number of index

component is large.

Nevertheless, the decomposition of MSE in (4.14) inspires our 2-stage method that

is described later in Section 4.4.2. According to (4.14), the tracking error is partitioned

into two parts: MSEF which only depends on common economic factors, and MSEI that

only depends on idiosyncratic risks. Rather than searching for w∗ (or ŵ∗) by directly

minimizing the tracking error (or the empirical tracking error), we control MSEF and

MSEI individually by our 2-stage method.

In the 2-stage method, we focus on controlling MSEF in (4.15). There are some relevant

studies to support that MSEF contributes the majority of E[(R− rtp)2]. Empirical studies

in [22] provide evidence that MSEF explains a large portion of E[(R− rtp)2]. Some studies

also show that large portfolios significantly reduce the idiosyncratic risk, which suggests

that MSEI is less important in our case. It is observed in [41] that the standard deviation

of an equally weighted portfolio return, of which stocks are randomly selected, decreases

rapidly to a positive asymptote as the number of stocks in the portfolio increases. More-

over, 10 randomly selected stocks are usually able to construct a well diversified portfolio,

and adding extra stocks does not have significant improvement on reducing the portfolio

return’s standard deviation. Studies in [38], [126], and [120] suggest that more stocks are

needed to diversify a portfolio, but all these studies imply that 30 to 40 stocks are necessary

to construct a well-diversified portfolio. In the framework of factor models, diversifiable

risk in a portfolio is MSEI (see [41]). Note that this chapter aims at tracking stock-market

indices with a large number of components, usually larger than 40 (see examples in [22]).

Hence, MSEI of a tracking portfolio is small if the tracking portfolio is benchmarked to an

index with a large number of components.

Our 2-stage method relies on an upper bound of MSEF . Applying Minkowski’s inequal-
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ity to MSEF leads to

√
MSEF ≤

∣∣∣∣ d(n)∑
i=1

wiαi

∣∣∣∣+

∣∣∣∣ d(n)∑
i=1

wiβi − 1

∣∣∣∣√E[R2] +

q∑
j=1

∣∣∣∣ d(n)∑
i=1

wiγij

∣∣∣∣√E[F 2
j ]. (4.24)

In Stage 1, MSEF is controlled by minimizing a generalized form of the right hand side of

(4.24) by a mixed-integer linear program. The optimal solution to a mixed-integer linear

program can be obtained in an efficient way by standard solvers ([22]). Based on the stocks

identified in Stage 1, Stage 2 determines weights of the selected stocks by minimizing the

structured empirical MSE in (4.17) via a standard quadratic program. In practice, when the

number of index components is large, this 2-stage method is more computationally efficient

than constructing a tracking portfolio by solving a mixed-integer quadratic program.

4.4.2 2-Stage Method

Based on analysis from Section 4.4.1, a 2-stage method is introduced to construct tracking

portfolios in this section.

Stage 1

We avoid controlling MSEF via a mixed-integer quadratic program, because it is com-

putationally difficult. Inspired by (4.24), one way to control MSEF is to minimize the

upper bound on MSEF in (4.24), which is linear with respect to (w1, . . . , wd(n)). However,

the true values of E[R2] and the E[F 2
j ]’s are unknown in general. Plugging any estimators

of E[R2] and the E[F 2
j ]’s into the right hand side of (4.24) and minimizing it usually leads

to suboptimal solutions. Inspired by [22], we control a generalized form of the right hand
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side of (4.24) by a tracking strategy w∗f1(λ), which is a solution to the following problem:

min
w,y

λα

∣∣∣∣ d(n)∑
i=1

wiαi

∣∣∣∣+ λβ

∣∣∣∣ d(n)∑
i=1

wiβi − 1

∣∣∣∣+

q∑
j=1

λj

∣∣∣∣ d(n)∑
i=1

wiγij

∣∣∣∣, (4.25)

s.t. 0 ≤ wi ≤ yi, for i = 1, . . . , d(n), (4.26)
d(n)∑
i=1

wi = 1, (4.27)

yi ∈ {0, 1}, for i = 1, . . . , d(n), (4.28)
d(n)∑
i=1

yi = k, (4.29)

where λα, λβ, and the λj’s are positive numbers given exogenously as tuning parameters, λ

is the vector of these tuning parameters, and y = (y1, . . . , yd(n)). Constraints (4.26)-(4.29)

is a reformulation of the feasible set U (n) in (4.8) ([7]). Working with empirical data, it is

necessary to replace αi’s, βi’s, and γij’s for all i, j by their OLS estimators. Hence, we can

obtain ŵ∗f1(λ) which is given by

min
w,y

λα

∣∣∣∣ d(n)∑
i=1

wiα̂i

∣∣∣∣+ λβ

∣∣∣∣ d(n)∑
i=1

wiβ̂i − 1

∣∣∣∣+

q∑
j=1

λj

∣∣∣∣ d(n)∑
i=1

wiγ̂ij

∣∣∣∣, (4.30)

subject to (4.26)-(4.29). This is a mixed-integer linear program, of which the optimal

solution can be obtained by standard solvers in an efficient way ([22]).

Details on how to determine tuning parameters are discussed later in Section 4.4.3.

Stage 2

The most important contribution of Stage 1 is that the positive weights in ŵ∗f1(λ)

identify a subset of stocks that are capable of controlling MSEF . Hence, we can use these

identified stocks to construct a tracking portfolio, and their final weights in the tracking

portfolio are determined in Stage 2 by minimizing the empirical structured MSE (4.17)

subject to (4.2) and (4.3). This is just a quadratic program.
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Specifically, suppose that there are k′(≤ k) positive weights in ŵ∗f1(λ), that is k′ stocks

are identified in Stage 1. We relabel those identified k′ stocks as 1, . . . , k′, and their final

weights in the tracking portfolio should be determined by

min
w

1

n

n∑
t=1

( k′∑
i=1

wiα̂i +Rt
( k′∑
i=1

wiβ̂i − 1
)

+

q∑
j=1

Ft,j(

k′∑
i=1

wiγ̂ij)

)2

+

k′∑
i=1

w2
i σ̂

2
εi , (4.31)

s.t. 0 ≤ wi ≤ 1, for i = 1, . . . , k′,
k′∑
i=1

wi = 1.

4.4.3 Determine Tuning Parameters

Tuning parameters in (4.30) play a critical role in the 2-stage method. One choice for the

tuning parameter values is to let λα = 1 and λβ, λj’s be the sample means of R2 and the

F 2
j ’s that are denoted by Ê[R2] and Ê[F 2

j ] for j = 1, 2, . . . , q. This set of values corresponds

to the right hand side of (4.24). However, our empirical studies suggest that these choices,

compared to tuning parameters given by the following method, do not lead to smaller

tracking errors. Our empirical studies show that the range and magnitudes of {α̂}di=1 are

much smaller than those of
{
β̂i − 1

}d
i=1

and {γ̂ij}di=1. Hence, the choice λα = 1 falsely

puts too much weights on

∣∣∣∣∑d(n)
i=1 wiα̂i

∣∣∣∣ in the objective function (4.30), while λβ = Ê[R2]

and λj = Ê[F 2
j ] for all j, which are around 0.0001, assign overly small weights to other

summands in the objective function. This suggests that, in order to control MSEF and the

structured MSE (4.14) in a better way, λα in (4.30) should be small compared to λβ and

λj for j = 1, 2, . . . , q. This argument is also supported by our empirical studies.

With different λ, the 2-stage method can identify different stocks. In terms of model

selection, it is suggested in [35] that the in-sample MSE underestimates the MSE calculated

from out-of-sample data, but the cross-validation error is a good substitution. Hence,

ideally the tuning of λ should be carried out by minimizing the cross validation error which
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is given later in (4.32). However, when there is more than one tuning parameter in (4.30),

it is too computationally expensive to determine their values by the the cross-validation

method. In order to simplify this problem and make it implementable, we propose to let

these tuning parameters sum up to 1, and let λβ and the λj’s be proportional to the sample

means of the corresponding factors with the same rate, i.e.,

λβ = (1− λα)

√
Ê[R2]√

Ê[R2] +
∑

j

√
Ê[F 2

j ]
, and λj = (1− λα)

√
Ê[F 2

j ]√
Ê[R2] +

∑
j

√
Ê[F 2

j ]
for all j.

Hence, given observed samples of R and the Fj’s, all these tuning parameters are deter-

mined by the value of λα. This tuning procedure is ad-hoc, but it has the advantage

of reducing the number of tuning parameters in (4.30) to one, and a cross-validation for

determining a single tuning parameter is easy to carry out. It also leads to acceptable

in-sample and out-of-sample MSEs as confirmed by results from the real data applications

in Section 4.5.

The tuning parameter λα is determined by an M -fold cross validation. More specifically,

we randomly partition {(Rt, F1t, F2t, . . . )}nt=1 into M equal parts, D1, . . . , DM . For m =

1, . . . ,M , choose Dm as the validation data, and use the remaining M − 1 parts as the

training data. Given a value of λα, applying the 2-stage method to the training data leads

to a tracking portfolio. When the constructed tracking portfolio is applied to the validation

data Dm, we can compute CVm(λα), which is given by

∑
t:(Rt,rt,1,...,rt,d)∈Dm

(
Rt −

k′∑
i=1

wirt,i

)2

.

Define the M -fold cross validation error as

CV (λα) =
1

n

∑
m

CVm(λα), (4.32)

and take arg minλα CV (λα) as the tuning parameter. In this chapter, we do not search for

λα by directly minimizing the cross-validation error. Instead, we always consider a set of
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candidate values of λα and choose the value that gives the smallest cross-validation error.

4.5 Application

4.5.1 Data

In this section, the 2-stage method is applied to track two capitalization-weighted stock-

market indices, the Russell 2000 and the Russell 3000. The Russell 3000 index consists of

3,000 publicly held US companies, which represent 98% of the investable US equity market.

The Russell 2000 index is comprised of 2,000 small-cap stocks that are the bottom 2,000

components of the Russell 3000. Weekly levels of the Russell 2000 and Russell 3000, as

well as their components’ weekly prices, are downloaded from Bloomberg. The weekly data

cover the period from October 2nd, 2009 to April 24th, 2015, and include 291 observations

for each index level and the stock price of each component. Corresponding weekly data of

the Fama-French factors SMB and HML are obtained from the Fama-French Data Library3.

Since there are missing data for many index components, we construct and track syn-

thetic Russell 2000 and Russell 3000 indices. In doing that, stocks (listed as an index

components on April 24th, 2015) with any missing weekly data are deleted, so that the

synthetic Russell 2000 consists of 1,306 stocks and the synthetic Russell 3000 consists of

2,137 stocks. Synthetic capitalization-weighted stock-market indices are constructed ac-

cording to

I =
1

D

d∑
i=1

aiSi,

where I is the index level, Si is the stock price for stock i, ai is the number of outstanding

shares for stock i, and D is the index divisor. Over the whole discussed period, the number

of outstanding shares for each stock remains the same as that on April 24th, 2015, and the

index divisor of the Russell 2000 (3000) is the number at which the synthetic index level

on April 24th, 2015 equals to the real Russell 2000 (3000) level observed on that day.

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Weekly discrete-time returns of stocks and synthetic indices are calculated and par-

titioned into the in-sample data, including 145 weekly returns, and out-of-sample data,

including 145 weekly returns. In the rest of this section, we always refer to the synthetic

Russell 2000 (3000) index as the Russell 2000 (3000) index.

4.5.2 Results

In these applications, each of the Russell 2000 and Russell 3000 is tracked by at most 50,

100, and 150 index components respectively, using our 2-stage method. Sharpe’s single-

index model (SIM), the characteristic line of the three-moment CAPM (3CAPM), and the

Fama-French 3 factor (FF3F) model are used to describe asset returns. OLS estimators

are used to estimate αi, βi, γij, and σ2
εi

for all i, j in the general factor model (4.13).

The mixed-integer linear program (4.30) is solved by the Matlab built-in function “intlin-

prog”. Settings of using this function are as follows: the branch-and-bound algorithm is

used, the heuristic to find a feasible point is set to “rss”, and the termination criteria are

TolCapRel=1e-4 and MaxTime=1500. With those termination criteria, optimal solutions

to (4.30) are found for all cases. The quadratic program (4.31) is solved by the Matlab

built-in function “quadprog” with default settings.

In terms of tuning in (4.30), the tuning parameter λα is determined by a 5-fold cross

validation. Based on some pre-analysis (see Section 4.4.3), we find that λα should be a

small number for both the Russell 2000 and Russell 3000. A candidate set of λα, that is

{10−5, 5 × 10−5, 10−4, 5 × 10−4, 10−3, 5 × 10−3, 10−2, 5 × 10−2, 10−1}, is proposed, and the

tuning parameter λα is the value which gives the smallest 5-fold cross-validation error as

defined in (4.32). Figure 4.1 shows ranks (by magnitude) of cross-validation errors, out-

of-sample empirical MSEs (4.5) and out-of-sample empirical structured MSEs (4.17), at

different values of λα, in the case that Russell 3000 is tracked by at most 50 stocks with

the FF3F model. Though focusing on tuning λα is ad-hoc, Figure 4.1 suggests that this

tuning method can lead to small out-of-sample MSEs. Also, out-of-sample MSEs have a

similar trend with the cross-validation error. Similar trends among cross-validation errors

and empirical MSEs can also be observed while tracking the Russell 2000 and Russell 3000

by other factor models.
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Table 4.1 shows the in-sample and out-of-sample empirical structured MSEs (4.17) of

tracking the Russell 2000 and Russell 3000 indices with at most 50, 100, and 150 stocks.

In all applications, the number of selected stocks k′ always equals to the upper bound

k. This is because, in each generic period, the index return is a linear combination of

all components. Moreover, since the transaction cost is not considered, the more stocks

included in the tracking portfolio, the smaller the MSE should be. Table 4.1 suggests that

the tracking procedure with FF3F leads to the best in-sample and out-of-sample structured

MSE, and the tracking procedure with 3CAPM improves that with SIM.
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Figure 4.1: Ranks, by magnitude, of the cross-validation (CV) error, out-of-sample struc-
tured (Struc.) MSE, and out-of-sample empirical (Emp.) MSE at different values of λα.

In Table 4.2, we report the cross-validation error, and in-sample and out-of-sample

empirical MSEs (4.5) of each tracking portfolio in Table 4.1. By investigating out-of-

sample empirical MSE, we can compare the 2-stage method with heuristic methods which

directly minimize the in-sample empirical MSE. In doing so, the method in [66] is used as a

benchmark. More specifically, the benchmark uses the GCD criterion to select stocks, and

these stocks construct a tracking portfolio that minimizes the empirical in-sample tracking

error. This GCD method usually leads to comparable out-of-sample empirical MSEs with
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Index
Number Factor In-sample Out-of-sample
of stocks Model Struc. MSE Struc. MSE

Russell 2000 50 SIM 3.8373E-05 3.7015E-05
3CAPM 3.7635E-05 3.2631E-05
FF3F 3.1372E-05 3.0178E-05

100 SIM 1.8051E-05 1.7695E-05
3CAPM 1.7480E-05 1.6909E-05
FF3F 1.7101E-05 1.6558E-05

150 SIM 1.4929E-05 1.4818E-05
3CAPM 1.4643E-05 1.4501E-05
FF3F 1.3391E-05 1.2845E-05

Rusell 3000 50 SIM 1.9520E-05 1.9515E-05
3CAPM 1.5869E-05 1.5606E-05
FF3F 1.5195E-05 1.4980E-05

100 SIM 9.5698E-06 9.3923E-06
3CAPM 8.1331E-06 7.9520E-06
FF3F 6.8338E-06 6.7810E-06

150 SIM 5.5745E-06 5.5592E-06
3CAPM 5.4059E-06 5.3568E-06
FF3F 4.3777E-06 4.3622E-06

Table 4.1: In-sample structured (Struc.) MSEs and out-of sample structured MSEs of
tracking the Russell 2000 and Russell 3000 by at most 50, 100, and 150 stocks.

those of heuristic methods on index tracking (see [66]).

In order to compare how significant the difference between out-of-sample empirical

MSEs is, we carry out an asymptotic Z-test. Let gs = (R−w′sr)2 be the squared tracking

discrepancy evaluated at ws, for s = 1, 2. Because of the assumption that (Rt, r
′
t) for

t = 1, . . . , n are i.i.d samples, squared tracking discrepancies, gs,t = (Rt − w′srt)
2 for

s = 1, 2, at different times are i.i.d. Let e = g1 − g2, µe = E[e], and σ2
e = Var(e). Then

due to the central limit theorem we have

ē− µ√
σ2
e/n
→ N(0, 1), as n→∞,

where ē is the sample mean of {et}nt=1. In our applications, the out-of-sample size is
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145 and σ2
e is replace by its unbiased sample estimate. For each 2-stage method with

either SIM, 3CAPM, or FF3F factor model, let e be its squared tracking discrepancy

less the squared tracking discrepancy given by the GCD method. A Z-test with the null

hypothesis H0 : E[e] = 0 and alternative hypothesis H1 : E[e] < 0 is carried out to evaluate

how significant the difference between out-of-sample MSEs is, and the p-values are given

in the 6th column in Table 4.2.

According to the results in Table 4.2, the GCD method leads to small in-sample em-

pirical MSEs, but out-of-sample empirical MSEs are relatively large. Focusing on the out-

of-sample performance, the 2-stage method can significantly reduce the empirical MSE (in

terms of reported p-value), and the method with FF3F usually yields the smallest out-of-

sample empirical MSE. The last column shows the running time of each method when it

is carried out on a PC with Intel Core i5-3210M CPU at 2.5GHz and 6.00GB memory. It

provides evidence that the 2-stage method is much more computationally efficient.

4.6 Discussion

In this chapter, factor models are introduced to construct tracking portfolios. With the

assumption of factor models, the tracking error can be partitioned into two parts. One

only depends on economic factors, and the other depends on idiosyncratic risks. A 2-stage

method is proposed to construct tracking portfolios. The first stage identifies stocks that

are capable of reducing factors’ impact on the tracking error. The second stage determines

stock weights by exactly minimizing the tracking error with the selected stocks.

If the number of index components is large, compared with existing heuristic methods

used in the index tracking literature, the 2-stage method significantly reduces the out-of-

sample tracking error, and it is more computationally efficient.
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Index
Number

Method CV error
In-sample Out-of-sample

p-value Time
of stocks Emp. MSE Emp. MSE

Russell 2000 50 GCD - 5.41E-05 7.67E-05 - 1.21h.
SIM 7.80E-05 9.37E-05 8.39E-05 0.74 25.73 s.
3CAPM 5.68E-05 7.57E-05 5.82E-05 0.02 31.65 s.
FF3F 6.49E-05 5.85E-05 6.65E-05 0.13 51.19 s.

100 GCD - 4.71E-05 6.31E-05 - 3.27 h.
SIM 6.98E-05 8.46E-05 6.77E-05 0.71 34.07 s.
3CAPM 5.10E-05 6.06E-05 4.93E-05 0.03 41.87 s.
FF3F 4.61E-05 5.66E-05 4.66E-05 0.00 61.34 s.

150 GCD - 2.34E-05 6.98E-05 - 5.25 h.
SIM 6.13E-05 6.28E-05 4.76E-05 0.00 40.15 s.
3CAPM 4.80E-05 5.92E-05 4.66E-05 0.00 105.70 s.
FF3F 4.51E-05 5.12E-05 4.36E-05 0.00 312.38 s.

Russell 3000 50 GCD - 5.31E-05 5.32E-05 - 1.94 h.
SIM 3.29E-05 4.09E-05 3.37E-05 0.01 36.53 s.
3CAPM 2.87E-05 3.73E-05 2.85E-05 0.00 46.35 s.
FF3F 2.18E-05 1.91E-05 2.17E-05 0.00 54.60 s.

100 GCD - 1.91E-05 3.17E-05 - 4.47 h.
SIM 2.80E-05 3.20E-05 2.75E-05 0.18 61.20 s.
3CAPM 2.69E-05 2.88E-05 2.53E-05 0.09 64.17 s.
FF3F 1.31E-05 1.30E-05 1.43E-05 0.00 76.48 s.

150 GCD - 8.86E-06 4.02E-05 - 6.07 h.
SIM 2.33E-05 2.78E-05 2.28E-05 0.01 93.67 s.
3CAPM 2.01E-05 2.45E-05 2.08E-05 0.00 102.48 s.
FF3F 1.04E-05 1.19E-05 1.26E-05 0.00 316.17 s.

Table 4.2: In-sample empirical MSE (Emp. MSE), out-of sample empirical MSE, and
cross-validation (CV) errors of tracking the Russell 2000 and Russell 3000 by at most 50,
100, and 150 stocks. In the last column, h. is short for hours, and s. is short for seconds.
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Chapter 5

L1-regularization for Index Tracking

with Transaction Costs

5.1 Introduction

In order to track stock-market indices, a simple strategy is the full replication. At the time

of construction, a full replication strictly follows the composition formula of the index (see

Section 3.2.1 for examples.). After that, numbers of asset shares in the full replication

remain constant until any rebalancing. A mathematical formulation of full replication can

be found in Section 5.5.3. Starting from any time after construction, the full replication

earns exactly the index return. However, there is always a gap between the terminal wealth

of a full-replication and the terminal wealth given the initial wealth (before construction)

earns exactly the index return. This gap is caused by the transaction cost at construction,

and a high transaction cost leads to a large gap.

Transaction costs primarily consist of explicit costs and implicit costs ([80]). Explicit

costs usually refer to broker commissions, which brokers charge for their executions of

trading orders. Implicit costs usually refer to the deviation of the transaction price from

the unperturbed price, which is observed before the trade. Findings in [80] show that,
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in general, stock transaction costs are inversely related to stocks’ market capitalizations.

For the exchange-listed stocks studied in [80], the ratio of transaction costs to the traded

wealth (excluding transaction costs) varies from 0.31% for large-capitalization stocks to

2.35% for small-capitalization stocks..

Some exchange traded funds (ETFs) simply apply the full replication to track large-

capitalization stock indices, such as the methodology of SPDR S&P 500 ETF, which is

one of the largest ETF benchmarked to the S&P 500 index. In this case, the gap of a full

replication is negligible due to small transaction costs of trading large-capitalization stocks

([119]). However, small capitalization stocks are more illiquid, and their high transaction

costs usually prevent ETF managers from applying full replication ([71]). When the full-

replication is infeasible, in order to mimic an index return fund managers need to determine

which index components to invest and how to allocate assets to each selected stock ([71]).

This methodology is called the partial replication.

There is a rich literature on partial replication. Many methods such as those in [7],

[82], and [105] formulate partial replication problem as a mixed-integer quadratic program.

These methods determine stocks and corresponding weights in the tracking portfolio si-

multaneously. However, mixed-integer quadratic programming is NP-hard (see [105]), so

the optimal solution is challenging to obtain efficiently. Heuristic methods are proposed

in [7], [82], [105], and [49] to solve this optimization problem, but they usually lead to

suboptimal solutions. These methods usually require an upper bound of the number of

selected stocks, but different upper bounds drastically impact the tracking performance

([22]). Due to the computational complexity of these heuristic methods, it is challenging

to efficiently determine the “right” upper bound which leads to a small tracking error. So

these methods cannot address the stock selection problem efficiently, especially when the

number of index components is large.

Statistical regularization methods, such as [52], [124], become popular in portfolio man-

agement to select stocks. The L1-regularization is one of the most popular regularization

methods, due to its computational efficiency and capability to generate sparse structures.

Empirical results in [18] show that adding L1-regularization to Markowitz’s framework

improves Sharpe’s ratio. The L1-regularization is applied in [48] to construct minimum-
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variance portfolios, and it is found that imposing L1-regularization reduces the estimation

error. In terms of applying statistical regularizations to index tracking, [17] briefly dis-

cusses constructing a tracking portfolio by minimizing the tracking error plus a Lq penalty,

where q is a positive number close to 0. The non-negative Lasso was applied to index

tracking in [130], and some properties on non-negative Lasso are discussed. However, in

[130] portfolio weights are not required to sum up to 1, so that the method provides little

guide on constructing tracking portfolios.

Index tracking with Lq-penalty (0 < q < 1) is revisited by [49] and [131]. With a no-

short-selling constraint, the L1-norm of stock weights is always 1, so that authors of [49]

advocate the Lq-penalty method to promote sparsity. Because the Lq-penalized tracking

error is a non-convex function, authors of [49] introduce a hybrid heuristic method to

minimize the objective function. The optimal number of selected stocks in a tracking

portfolio is also discussed in [49]. The authors of [131] focus on developing algorithms to

solve for tracking strategies with the L1/2-regularization.

Aiming at reducing the gap between the tracking portfolio terminal wealth and the ter-

minal wealth given the initial wealth (before construction) earns exactly the index return,

we formulate the index tracking problem into an optimization problem. In general, this

is a multi-period tracking problem. In this chapter, the multi-period tracking problem is

tackled by repeatedly solving one-period tracking problems with the L1-regularization on

asset weights as a sub-optimal solution. Our formulation takes into account transaction

costs and other practical issues, such as the budget constraint, no-short-selling stock con-

straint, etc.. Besides index components, in the tracking portfolio we also include a money

market account which earns an interest rate. Including one more asset is expected to im-

prove the tracking performance, and we allow borrowing money from the money market

to invest into stocks. Another motivation of including the money market account is to

vitalize the L1-regularization on stock weights with the no-short-selling stock constraint.

The L1-norm on stock weights can be adjusted by changing the money market account

weight. Moreover, the L1-norm on asset weights is more flexible and it is not the constant

1 any more, when a negative position in the money market account is allowed.

Since the true joint distribution of financial returns is usually unknown, in this chapter
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the index tracking problem is solved by minimizing the empirical tracking error. This

analysis is carried out in a high-dimensional statistical setting. More specifically, the

number of parameters d is larger than the sample size n and also grows with n. In the

stock market, there are usually too many stocks to gather enough historical data for a

classical statistical analysis, which requires d < n. For example, the U.S. stock-market

index Russell 3,000 consists of 3,000 components. In order to gather more than 3,000

weekly data, we need 58 years. However, 58 years ago, only a few of these 3,000 stocks

existed, so that it is impossible to gather more than 3,000 weekly data for all these 3,000

stocks. For such a big d small n dataset, it is more suitable to apply the high-dimensional

statistical inference setting where d is viewed as a function of n, and the inference is based

on asymptotic results as n→∞.

A tracking strategy obtained by minimizing the empirical tracking error is not necessar-

ily relevant to a tracking strategy that minimizes the true tracking error. However, under

some assumptions, our L1-regularization tracking strategy obtained by minimizing the em-

pirical tracking error is persistent. The definition of persistent is introduced in [63] and can

be found in Section 5.3 of this chapter. The persistent property guarantees that our track-

ing strategy obtained by minimizing the empirical tracking error leads to a tracking error

which asymptotically converges to the minimum true tracking error. The persistence is an

asymptotic property. In oder to verify the performance of our L1-regularization tracking

strategy with finite samples, we carry out a simulation study. It shows that the tracking

error of our strategy gets more stable and approaches to the minimized true tracking error

as n gets larger. When it is applied to real financial data in Section 5.5, Our tracking strat-

egy outperforms other methods from the relevant literature in terms of tracking accuracy

and computational efficiency.

The organization of this chapter is as follows. Section 5.2 formulates the index tracking

problem with transaction costs and basic practical constraints. In Section 5.3 the L1-

regularization and the persistence property of our one-step tracking strategy is discussed.

Simulation studies in Section 5.4 verify the performance of our one-step L1-regularization

tracking method with finite samples. In Section 5.5, applications with financial data pro-

vide evidence that our L1-regularization tracking method has better tracking performance

than other methods, such as the Lq-penalty method and full-replication. Section 5.6 con-
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cludes this chapter.

5.2 Formulations of Index Tracking with Transaction

Costs

In this section, a tracking strategy is introduced to reduce the gap between the tracking

portfolio terminal wealth and the terminal wealth accumulated by the index return from

the same initial investment as the tracking portfolio.

Following [80], we assume that the transaction cost is proportional to the traded stock

wealth throughout this chapter. The proportional rate is denoted by θ(≥ 0) which is the

same for both buying and selling stocks. We further assume that there is no transaction

cost for trading over money market accounts.

5.2.1 Some Notation

The following notation is necessary to proceed to our formulation of the index tracking

problem.

• Denote by d the number of index components, and the money market account is

labelled as the 0-th asset in the tracking portfolio.

• For t = 1, 2, 3, . . . , the index return from time t− 1 to t, Rt, is given by

Rt =
It − It−1

It−1

,

where It is the index level at time t.
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• Similarly, the return of the i-th asset from time t− 1 to time t, rt,i, is given by

rt,i =
St,i − St−1,i

St−1,i

,

where St,i is the i-th asset price at time t for i = 0, 1, . . . , d.

• For t = 1, 2, 3, . . . , the time before rebalancing at time t− 1 is denoted by (t− 1)−,

and the time after rebalancing is denoted by (t− 1)+.

• For i = 0, 1, . . . , d, denote by x
(t−1)−

i (or x
(t−1)+

i ) the dollar value of the i-th asset in

the tracking portfolio before (or after) rebalancing at time t− 1.

• At time (t− 1)−, denote the tracking portfolio wealth by W(t−1)− , so that

W(t−1)− =
d∑
i=0

x
(t−1)−

i .

• Further, let

x(t−1)− =

(
x

(t−1)−

0 , x
(t−1)−

1 , . . . , x
(t−1)−

d

)′
, and x(t−1)+ =

(
x

(t−1)+

0 , x
(t−1)+

1 , . . . , x
(t−1)+

d

)′
.

• At time (t)− for t = 1, 2, . . . , T , given x(t−1)+ , the wealth of the tracking portfolio

can be written as

W(t)− =
d∑
i=0

(1 + rt,i)x
(t−1)+

i . (5.1)

• Suppose the investment horizon is T , which is a positive integer. Let W I
(T )− be the

terminal wealth if a portfolio starts from an initial investment of W(0)− and earns the

index return over the period [0, T ], so that

W I
(T )− =

(
W(0)−

) T∏
s=1

(1 +Rs).

After time T , the tracking portfolio can be sold and converted to cash, kept in the
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trading account, or merged to other portfolios. In order to avoid discussing transaction

costs (if any) charged at time T , in this chapter we only focus on the terminal wealth up

to time (T )−.

5.2.2 Formulations of the Index Tracking Problem

Aiming at reducing the gap between the tracking portfolio terminal wealth and the terminal

wealth accumulated by the index return from the same initial investment as the tracking

portfolio, in general the index tracking problem can be formulated as

min
x
E
[(
W I

(T )− −W(T )−
)2∣∣x(0)−

]
(5.2)

s.t. x ∈ U , (5.3)

where x = (x(0)+ ,x(1)+ , . . . ,x(T−1)+), and U is a certain feasible set due to some practical

considerations. The objective function (5.2) adopts the square-loss
(
W I

(T )−−W(T )−
)2

, since

the square-loss penalizes large deviations between W I
(T )− and W(T )− . Also, the square loss

is a popular loss-function in practice ([53]).

However, it is challenging to solve such a multi-period index tracking problem (5.2),

even when U in (5.3) is formed by basic practical constraints, such as the budget, no-

short-selling, or transaction costs constraints ([29]). Instead, in this chapter the multi-

period index tracking problem is tackled by repeatedly solving one-period index tracking

problems through time 0 to T−1 as a sub-optimal solution. Our formulation of a one-period

index tracking problem is presented as follows.

Consider the period from time t− 1 to t for t = 1, 2, . . . , T . If W(t−1)− earns the index

return Rt throughout this period, at time (t)− the wealth W(t−1)− grows to (1+Rt)W(t−1)− .

Meanwhile, at time (t)−, the tracking portfolio wealth W(t)− is given in (5.1). In a one-

period index tracking problem, the tracking portfolio is rebalanced at time (t − 1)+ to

minimize the expectation of the squared discrepancy between W(t)− in (5.1) and (1 +

Rt)W(t−1)− . Hence, the optimal tracking strategy at time (t− 1)+, which is determined by

solving a one-period index tracking problem, is supposed to be
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x̃(t−1)+ = arg min
x(t−1)+

E

[(
(1 +Rt)(W(t−1)−)−W(t)−

)2∣∣∣∣x(t−1)−

]

= arg min
x(t−1)+

E

[(
(1 +Rt)(W(t−1)−)−

d∑
i=0

(1 + rt,i)x
(t−1)+

i

)2∣∣∣∣x(t−1)−

]
, (5.4)

s.t. x(t−1)+ =
(
x

(t−1)+

0 , . . . , x
(t−1)+

d

)′ ∈ Ut−1,

where Ut−1 is a certain feasible set of x(t−1)+ . In this chapter, four basic practical constraints

are considered to define Ut−1. They are:

(a) The budget constraint. Once investors have initially invested an amount of money,

they are reluctant or sometimes unable to raise addition funds to enlarge their portfolio

wealth1 during subsequent portfolio rebalancings. Hence, we assume that there is no

money injected into the portfolio during the rebalancing.

Also, a portfolio is supposed to utilize investments at hand as much as possible. Thus,

the ideal budget constraint should be self-financing, which requires that the portfo-

lio wealth after rebalancing plus transaction costs at rebalancing equals the portfolio

wealth before rebalancing, i .e.

d∑
i=0

x
(t−1)+

i +
d∑
i=1

θ
∣∣∣x(t−1)−

i − x(t−1)+

i

∣∣∣ = W(t−1)− .

However, the above self-financing constraint with transaction costs usually leads to a

non-convex feasible set and thus complicates the optimization procedure for a solution.

In order to avoid a non-convex feasible set, we follow [88] to relax the self-financing

constraint as
d∑
i=0

x
(t−1)+

i +
d∑
i=1

θ
∣∣∣x(t−1)−

i − x(t−1)+

i

∣∣∣ ≤ W(t−1)− . (5.5)

The inequality in (5.5) usually results in a convex feasible set, for which optimal solu-

1Buying stock via borrowed money does not increase the portfolio wealth, so that this is different from
raising money to enlarge the portfolio total amount.
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tions can be obtained efficiently. If a solution leaves the constraint (5.5) non-binding,

it leads to a withdrawal of some money from the portfolio during the rebalancing.

Empirical applications in Section 5.5.3 show that, even though withdrawing money is

allowed via an inequality such as (5.5), it accounts for only a small portion (around

0.1% on average) of the total wealth before rebalancing. Since this tiny amount of

money contributes little to any returns, the withdrawn money (if any) is not rein-

vested in following periods.

(b) No-shorting-selling stocks. In the U.S., there is a margin requirement for short sell-

ing stocks. The margin for short selling a stock is 50% of the market value of the

borrowed stock2, and this is a significant expense. Due to some restrictions on short-

selling stocks, such as the alternative uptick rule by the U.S. Securities and Exchange

Commission3, under certain circumstances it is not easy to short sell stocks. More-

over, losses of short selling stocks are unlimited, which is too risky. Thus, we assume

that tracking portfolios do not have short positions in any stocks. Specifically, the

no-short-selling constraint is given by

x
(t−1)+

i ≥ 0, for i = 1, . . . , d. (5.6)

However, we allow borrowing money to buy stocks which may result in a negative

position in the money market account.

(c) Limit on borrowed money. In our formulation, x
(t−1)+

0 is allowed to be negative for

t = 1, 2, . . . , which allows investors to borrow money to invest into stocks. However, in

practice, the amount of borrowed money is seldom too large compared with the total

portfolio wealth W(t−1)− before rebalancing. Some studies such as [93] and [85] also

warn of the disadvantages of a high leverage ratio, defined as the ratio of debt to total

asset. Hence, in our formulation it is always required that

− cW(t−1)− ≤ x
(t−1)+

0 , (5.7)

2http://www.ecfr.gov/cgi-bin/text-idx?SID=7df35b15d3a9d087dc1fbe017048f723&mc=true&

node=se12.3.220_112&rgn=div8.
3http://www.sec.gov/news/press/2010/2010-26.htm.
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where c is a constant parameter. In order to control the amount of borrowed money, c

should be non-negative and the quantity cW(t−1)− puts an upper bound on the amount

of borrowed money. A sufficiently large c could disqualify the constraint (5.7). When c

is negative, |cW(t−1)− | puts a lower bound on the wealth invested in the money market

account. According to (5.5) and (5.6), if negative, c cannot be smaller than −1.

(d) Limit on the total transaction cost. Under some circumstances, investors prefer to

limit their transaction costs spent on constructing or rebalancing their portfolios. In

order to meet this requirement, an upper bound is introduced to restrict the total

transaction cost. Its mathematical formulation is given by

d∑
i=1

θ
∣∣∣x(t−1)−

i − x(t−1)+

i

∣∣∣ ≤ γW(t−1)− (5.8)

where θ is the proportional rate of transaction costs, γ(≥ 0) controls this upper bound.

A sufficiently large γ could disqualify the constraint (5.8). The constraint (5.8) controls

the upper bound of how much the wealth allocation can be adjusted in each stock

during rebalancing, so that the constraint (5.8) is capable of stabilizing the tracking

portfolio during rebalancing.

In summary, a heuristic method is introduced to solve the multi-period tracking port-

folio problem (5.2) subject to the budget and no-short-selling constraints, as well as limits

on borrowed money and transaction costs. In this heuristic method, the tracking portfolio

is rebalanced at each time (t−1) for t = 1, . . . , T , in a way that the tracking strategy after

each rebalancing x̃(t−1)+ is derived by solving a one-period index tracking problem. More

specifically, the vector x̃(t−1)+ is given by (5.4) subject to (5.5)-(5.8) for t = 1, . . . , T .

For convenience, we rewrite the one-period index tracking problem (5.4) subject to

(5.5)-(5.8) in the following way. Let

Yt = (1 +Rt), Xt,i = 1 + rt,i for i = 0, 1, . . . , d, (5.9)
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and Xt = (Xt,0, Xt,1, . . . , Xt,d)
′ for t = 1, . . . , T . Assume that

(
W(t−1)−

)
> 0, and let

β(t−1)− =
x(t−1)−

W(t−1)−
, β(t−1)+ =

x(t−1)+

W(t−1)−
.

Then the one-period index tracking formulation (5.4) subject to (5.5)-(5.8), can be simpli-

fied to

β̃(t−1)+ = arg min
β(t−1)+

E

[(
Yt −

(
β(t−1)+

)′
Xt

)2

∣∣∣∣β(t−1)−
]

(5.10)

s.t.
d∑
i=0

β
(t−1)+

i +
d∑
i=1

θ
∣∣∣β(t−1)−

i − β(t−1)+

i

∣∣∣ ≤ 1 , (5.11)

β
(t−1)+

i ≥ 0, for i = 1, . . . , d, (5.12)

−c ≤ β
(t−1)+

0 , (5.13)
d∑
i=1

θ
∣∣∣β(t−1)−

i − β(t−1)+

i

∣∣∣ ≤ γ, (5.14)

for t = 1, . . . , T .

In this chapter, at the time of construction, i.e. time 0, the tracking portfolio is always

assumed to be constructed from a pure cash position. That is x
(0)−

0 = W(0)− and x
(0)−

i = 0

for i = 1, . . . , d. Correspondingly, β
(0)−

0 = 1 and β
(0)−

i = 0 for i = 1, . . . , d.

For t = 1, . . . , T − 1, suppose that at time (t − 1)+ a tracking strategy β̃(t−1)+ (or

equivalently x̃(t−1)+) has been determined by (5.10)-(5.14). In the next period, the same

procedure in (5.10)-(5.14) is repeated for the rebalancing at time t. Note that before

rebalancing at time t it is necessary to figure out β
(t)−

i (or equivalently the dollar amount

of the ith asset x
(t)−

i ) for i = 0, 1, . . . , d. In fact, x
(t)−

i is given by

x
(t)−

i = (1 + rt,i)x̃
(t−1)+

i = (1 + rt,i)β̃
(t−1)+

i W(t−1)− , for i = 0, 1, . . . , d.
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Thus, the portfolio value W(t)− at time t before rebalancing is given by

W(t)− =
d∑
i=0

x
(t)−

i =
(
W(t−1)−

) d∑
i=0

(1 + rt,i)β̃
(t−1)+

i , (5.15)

and then

β
(t)−

i =
x

(t)−

i

W(t)−
=

(1 + rt,i)β̃
(t−1)+

i∑d
i=0(1 + rt,i)β̃

(t−1)+

i

, for i = 0, 1, . . . , d. (5.16)

Repeating the one-period method (5.10)-(5.14) may not be the optimal strategy to

(5.2) subject to the budget, no-short-selling stocks, borrowed money limit, and transaction

costs limit constraints. However, it provides one computationally feasible solution to the

multi-period index tracking problem. Some empirical implementations of repeating the

one-period method in Section 5.5.3 show evidence that this strategy works better than the

full-replication under some circumstance.

5.3 The L1-regularization and Persistence

In this chapter, we assume that the random vectors (Rt, rt,0, rt,1, . . . , rt,d)
′ are indepen-

dent and identically distributed (i.i.d.) at different times t for t = 1, 2, . . . . Although

financial data might demonstrate serial dependence, we use such an i.i.d. assumption

as a benchmark. Due to the complexity of the model, it is challenging to develop any

meaningful theory without such an i.i.d assumption. Correspondingly, the random vector

(Yt, Xt,0, Xt,1, . . . , Xt,d)
′, of which elements are defined in (5.9), at different times t are i.i.d.

samples from a random vector (Y,X0, X1, . . . , Xd)
′. Under this assumption, properties of

the one period index tracking problem (5.10)-(5.14) are homogeneous for t = 1, 2, . . . , ex-

cept for different parameters β(t−1)− . Hence, in this section, we only focus on properties

of rebalancing at time 0. Properties discussed in this section still hold for the rebalancing

at time t = 1, 2, . . . , T − 1.

If the true joint distribution of the vector (Y,X′)′ with X = (X0, X1, . . . , Xd)
′ is given,

at time 0 the problem (5.10)-(5.14) is a quadratic programming problem. However, the
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true joint distribution is usually unknown, so that it is impossible to solve (5.10)-(5.14)

directly. In this chapter, we minimize empirical tracking errors. Specifically, at time 0 the

tracking strategy after rebalancing β̂
(0)+

n is given by

β̂(0)+

n = arg min
β=(β0,...,βd)′

Ê

[(
Y − β′X

)2

∣∣∣∣β(0)−
]

(5.17)

s.t. (5.11), (5.12), (5.13), (5.14),

where

Ê

[(
Y − β′X

)2

∣∣∣∣β(0)−
]

=
1

n

n∑
s=1

(Ys − β′Xs)
2,

and Xs = (Xs,0, Xs,1, . . . , Xs,d)
′ for s = 1, . . . , n, and n is the number of available samples

of (Y,X′)′ at time 0. For simplicity, in (5.17) and the following parts of this chapter, we

use β to replace the original decision variables β(0)+ .

As discussed in Section 5.1, in order to derive some statistical properties which are

suitable to high-dimensional data where d > n, we posit the problem in a setting where

the number of index components d grows as the sample size n. More specifically, we let

d = d(n) = O(nα) with α > 1. This order of d(n) is inherited from [63] to prove the

following Theorem 5.1.

Denote the true distribution of (Y,X0, X1, . . . , Xd(n))
′ by Fn, and its empirical distri-

bution by F̂n. Let

LFn(β) = E

[(
Y − β′X

)2

∣∣∣∣β(0)−
]

and LF̂n(β) = Ê

[(
Y − β′X

)2

∣∣∣∣β(0)−
]
.

Suppose at time 0, a feasible set U0(n) is defined by (5.11)-(5.14). More specifically, U0(n)
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is given by

U0(n) =

{
β = (β0, β1, . . . , βd(n))

′ :

d(n)∑
i=0

βi +

d(n)∑
i=1

θ
∣∣∣β(0)−

i − βi
∣∣∣ ≤ 1,

βi ≥ 0, for i = 1, . . . , d(n),

−c ≤ β0,
d(n)∑
i=1

θ
∣∣∣β(0)−

i − βi
∣∣∣ ≤ γ

}
. (5.18)

Let

β̃(0)+

n = arg min
β∈U0(n)

LFn(β), and β̂(0)+

n = arg min
β∈U0(n)

LF̂n(β).

In general, β̂
(0)+

n has no obvious relationship with β̃
(0)+

n , since they are optimal solutions

to minimize different objective functions. However, it is investigated in the following that

as long as U0(n) satisfies some conditions (which are discussed later), it leads to

LFn(β̂(0+)
n )− LFn(β̃(0+)

n )
p→ 0 as n→∞, (5.19)

where
p→ stands for convergence in probability. If the relationship in (5.19) holds, then

β̂
(0+)
n is called persistent with respect to (w.r.t.) U0(n) in [63]. Suppose that the index

tracking strategy β̂
(0)+

n is persistent, then it leads to an actual risk LFn(β̂
(0)+

n ) which is

close to the minimum true risk (or true tracking error) LFn(β̃(0+)) for sufficiently large n.

In the following, we show that as long as c in (5.7) satisfies |c| = |cn| = o
((

n
log(n)

)1/4)
then U0(n) defined in (5.18) leads to the persistence of β̂

(0)+

n . This discussion relies on the

following theorem in [63].

Theorem 5.1 (Greenshtein and Ritov (2004)). Assume that

(a) d = d(n) = O(nα) where α > 1,

(b) (Ys, Xs,0, Xs,1, . . . , Xs,d(n))
′ for s = 1, . . . , n are independent and identically distributed

samples of the random vector (Y,X0, X1, . . . , Xd(n))
′ which follows a joint distribution

Fn.
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(c) E
[(

max0≤i,j≤d(n) |XiXj − σij|
)2
]
≤ M < ∞ and E

[(
max0≤i≤d(n) |Y Xi − σi|

)2
]
≤

M <∞, where σij = E [XiXj], σi = E [Y Xi], and M is a constant.

Let

β̃n = arg min
β∈B(n)

LFn(β), and β̂n = arg min
β∈B(n)

LF̂n(β),

where B(n) is a certain feasible set, then

(1) ∀δ > 0,

PFn

{
LFn(β̂n)− LFn(β̃n) ≥ δ

}
≤ C

δ
sup

β∈B(n)

||β||21

√
log(n)

n
, (5.20)

where C is a positive constant, and

(2) for any sequence

B
(n)
b(n) =

{
β : ||β||1 ≤ bn = o

(( n

log(n)

)1/4
)}

, (5.21)

where ||β||1 is the L1-norm of β, i.e. ||β||1 =
∑d(n)

i=0 |βi|, there exists a persistent

sequence indexed by n. One persistent sequence is given by

β̂n = arg min
β∈Bn

b(n)

LF̂n(β).

Proof. See [63].

Theorem 5.1 implies that, under assumptions (a)-(c) in Theorem 5.1, if the feasible set

U0(n) is L1-regulated at the order of o
(

( n
log(n)

)1/4
)

, in other words U0(n) ⊂ B
(n)
b(n) which is

defined in (5.21), then β̂
(0)+

n is persistent w.r.t. U0(n). Actually, by its definition (5.18),

U0(n) is L1-regulated at the order of o
((

n
log(n)

)1/4)
, as long as the quantity c in (5.13)

satisfies |c| = |cn| = o
((

n
log(n)

)1/4)
. In fact, for any β ∈ U0(n),

(i) if β0 ≥ 0, ||β||1 must be less than or equal to 1 due to (5.11) and (5.12). Hence, ||β||1
is L1-regulated at the order of o

((
n

log(n)

)1/4)
,
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(ii) if β0 < 0, then (5.13) implies c > 0, and further (5.11) and (5.12) lead to

||β||1 =

d(n)∑
i=0

|βi| = |β0|+
d(n)∑
i=1

βi

≤ |β0|+ 1− θ
d(n)∑
i=1

∣∣∣β(0)−

i − βi
∣∣∣− β0

≤ |β0|+ 1 + |β0|
≤ 2c+ 1.

Given c = cn = o
((

n
log(n)

)1/4)
, we have ||β||1 = o

((
n

log(n)

)1/4)
.

In summary, as discussed in Section 5.2.2 c = cn > −1, so that as long as |c| = |cn| =

o
((

n
log(n)

)1/4)
, β̂

(0)+

n is persistent to β̃
(0)+

n .

It is worth echoing the significant role that the constraint (5.7) plays in our one-step

index tracking method. Besides avoiding a high leverage ratio described in Section 5.2.2,

it induces an L1-regularization on the feasible set to make the solution β̂
(0)+

n persistent. In

practice, it is sufficient to trigger the persistence by controlling the amount of borrowed

money at a fixed level or allowing it to increase at a certain rate of the sample size at

hand. However, the above theoretical analysis does not point out a way to determine any

accurate value of c. In applications, we follow [48] to determine c by data-driven methods,

such as cross-validation or bootstrapping methods (see Section 5.5).

5.4 Simulation Study

The persistence property of β̂
(0)+

n in (5.17) holds asymptotically. However, it is impossible

to obtain infinite samples in reality. In this section, we carry out simulation studies to

investigate how LFn(β̂
(0+)
n ) is close to LFn(β̃

(0+)
n ) with finite samples.
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5.4.1 Simulation Methodology

In this simulation study, we first design a joint distribution of a large number of stocks. The

number of stocks d is designed to be an increasing function of the number of simulated

scenarios n. More specifically, we let d = d(n) = bnαc with α > 1 and b·c is the floor

function of any real number. Then, these stocks construct an equally weighted stock-

market index. An equally weighted stock-market index is used since it is easy to construct

and analyze. Given the true joint distribution of stock returns and the index return, an

analytical form of LFn(β) can be obtained. The performance of our index tracking method

with β̂
(0)+

n can be investigated by comparing the gap between LFn(β̂
(0)+

n ) and the minimized

true risk LFn(β̃
(0)+

n ).

For simplicity, from time 0 to time 1 we assume stock returns, as well as the return on

the money market account (0-th asset), follow Sharpe’s single-index model ([109]) which

is given by

r = a + bRM + ε, (5.22)

where r = (r0, r1, . . . , rd(n))
′ is the vector of asset returns, a = (a0, a1, . . . , ad(n))

′ and

b = (b0, b1, . . . , bd(n))
′ are vectors of constant coefficients. We assume that RM is a market

portfolio return which follows a normal distribution with mean µRM and variance σ2
RM . The

vector of random noises ε = (ε0, ε1, . . . , εd(n))
′ follows a multivariate normal distribution

(MVN) with mean 0 and covariance matrix Dε, which is denoted by MVN(0, Dε). The

matrix Dε is diagonal with positive diagonal elements σ2
εi

for i = 0, 1, . . . , d(n). Hence, r

follows MVN
(
a + (µRM )b, σ2

RMbb′ +Dε

)
.

Let e0 = (0, 1, . . . , 1)′ be a (1 + d(n))-column vector. Then the return of an equally-

weighted index R, which consists of r1, r2, . . . , rd(n), is given by

R =
e′0r

d(n)
,

then

Y =
e′0X

d(n)
, (5.23)

where according to (5.9) X = e + r and e = (1, . . . , 1)′ is a (1 + d(n)) column vector.

105



Given initial wealth W(0)− and dollar amounts for each asset x
(0)−

i or equivalently β
(0)−

i

for i = 0, 1, . . . , d(n) at time 0, we have LFn(β) = E
[(
Y − β′X

)2|β(0)−
]

= E
[(
Y − β′X

)2
]
.

Hence, the true risk (or true tracking error) of β is given by

LFn(β) = E
[(
Y − β′X

)2
]

= (−1,β′)E

[(
Y

X

)
(Y ′,X′)

](
−1

β

)

= (−1,β′)

(
E[Y Y ′] E[YX′]

E[XY ′] E[XX′]

)(
−1

β

)
= β′E[XX′]β − 2E[YX′]β + E[Y Y ′], (5.24)

where

E[Y Y ′] = V ar(Y ) + E[Y ]2 =
1(

d(n)
)2 e′0ΣXe0 + µ2

Y ,

E[XY ′] = Cov(X, Y ) + E[X]E[Y ]′ =
1

d(n)
ΣXe0 + µXµY ,

E[XX′] = Cov(X,X) + E[X]E[X]′ = ΣX + µXµ
′
X ,

and ΣX = σ2
RMbb′ + Dε, µY = 1

d(n)
µ′Xe0, µX = e + a + (µRM )b. Since ΣX is positive

definite, so is E[XX′]. Hence, given any fixed cn, we can efficiently obtain the optimal

solution β̃
(0)+

n defined in (5.10)-(5.14) via quadratic programming solvers.

Given n and the parameters in (5.22), we can simulate samples of
{

(RM
s , εs)

}n
s=0

, and

then generate an in-sample dataset

T Sim =
{

(Ys, Xs,0, Xs,1, . . . , Xs,d(n))
′ : s = 1, 2, . . . , n

}
according to (5.22) and (5.23). Based on T Sim, the one-period index tracking strategy

β̂
(0)+

n at time (0)+ is given by (5.17) subject to (5.11)-(5.14). The actual risk LFn(β̂
(0)+

n )

can be computed by plugging β̂
(0)+

n into (5.24).

The performance of our tracking strategy β̂
(0)+

n in finite samples can be investigated

by repeating the simulation S times. Based on sufficiently many repetitions, we can con-

struct a confidence interval of LFn(β̂
(0)+

n ) to evaluate how stable LFn(β̂
(0)+

n ) is. The gap

106



between the averaged LFn(β̂
(0)+

n ) and LFn(β̃
(0)+

n ) shows on average how close LFn(β̂
(0)+

n ) is

to LFn(β̃
(0)+

n ).

5.4.2 An Implementation of the Simulation Study

In order to simulate samples, we let α = 1.25, and let µRM and σ2
RM be the sample mean

and sample variance of the Russell 3000 index weekly returns described in Section 5.5. For

i = 1, 2, . . . , d(n), coefficients ai, bi, and σ2
εi

are ordinary least square (OLS) estimators of

regressing the i-th Russell 3000 component weekly return on the Russell 3000 index return.

Parameters a0, b0, and σ2
ε0

are OLS estimators of regressing weekly interest rates against

the Russell 3000 index return. All these parameter estimators are obtained from data in

the recovery environment described in Section 5.5.

Based on T Sim, we construct a tracking portfolio at time 0 given β
(0)−

0 = 1 and β
(0)−

i = 0

for i = 1, . . . , d(n). In this implementation, we assume the proportional rate of transaction

cost is around the middle of the range [0.31%, 2.35%] described in Section 5.1, and let

θ = 1%. Further, let the transaction cost limit γ be 1%. We increase the value of n

from 100 to 200, and then 450 to evaluate how the tracking strategy behaves as n grows.

Results are summarized in Figures 5.1-5.3 respectively. Each of Figures 5.1-5.3 shows the

true risk (solid line) LFn(β̃
(0)+

n ) i.e. true mean square error (MSE), the average of actual

risks LFn(β̂
(0)+

n )’s (dash-dot line) and corresponding 90% confidence band of LFn(β̂
(0)+

n )’s

(dashed lines) which are obtained from 30 repetitions of simulations.

In all Figures 5.1-5.3, cn varies from −1 to 3, and the minimized true risk LFn(β̃
(0)+

n )

decreases as cn gets larger, which results from enlarged feasible sets. Once cn is sufficiently

large, the true risk does not change. This is because cn is large enough to disqualify the

constraint (5.7). Moreover, the minimized true risk is uniformly smaller than the actual

risk LFn(β̂
(0)+

n ), which is true by definition.

Figures 5.1-5.3 show that as n increases the confidence band gets narrower, and the

averaged actual risk approaches to the true risk. This verifies the persistence result
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Figure 5.1: Minimized True Risk vs. Actual Risk: n = 100, #stock=316.

in Theorem 5.1. Moreover, for any fixed n, the confidence band gets wider as cn in-

creases. This verifies the result (5.20) in Theorem 5.1, which says that the upper bound of

PFn

{
LFn(β̂n)− LFn(β∗n) ≥ δ

}
becomes larger as supβ∈B(n) ||β||1 gets bigger.

All Figures 5.1-5.3 indicate a tradeoff between the magnitude of the actual risk LFn(β̂
(0)+

n )

and its stableness. When cn is small, the averaged actual risk is close to the minimized true

risk LFn(β̃
(0)+

n ) and the confidence band is narrow, but the minimized true risk is relatively

large. When cn is large, the minimized true risk is small, but the averaged actual risk

deviates from the minimized true risk due to larger estimation errors, which is suggested

by wider confidence intervals. In practice, it is necessary to choose a cn to implement the

tracking strategy. In this chapter, we follow the suggestion in [69, p.221] and choose the

value of cn which leads to the minimum of the averaged actual risk.

5.5 Application with Financial Data

In this section, our index-tracking method with L1-regularization, which is repeatedly solv-

ing (5.17) subject to (5.11)-(5.14), is applied to real financial data. Firstlly, we consider a
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Figure 5.2: Minimized True Risk vs. Actual Risk, n = 200, #stock=752.

one-period problem, where the Lq-penalty (0 < q < 1) method in [49] is used as a bench-

mark. In this case, our method with L1-regularization has better tracking performance.

Secondly, our one-period tracking method is repeated to solve a multi-period tracking

problem. More specifically, the one-period method is rebalanced period by period in a

rolling window setting. Compared to the full-replication strategy, our method has a better

tracking performance.

5.5.1 Data

We consider two U.S. capitalization-weighted stock-market indices, the Russell 2000 and

Russell 3000, of which the majority of index components are small-cap stocks. Weekly

levels of Russell 2000 (3000), as well as their components’ weekly prices, are downloaded

from the Bloomberg terminal. We study weekly data in two economic environments, the

recession environment from March 5th, 2004 to September 25th, 2009 (which covers the

2008 financial crisis) and the recovery environment from October 2nd, 2009 to April 24th,

2015. Each recession/recovery environment includes 291 weekly observations of both index

levels and stock prices. Corresponding weekly interest rates are calibrated from the 1-
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Figure 5.3: Minimized True Risk vs. Actual Risk, n = 450, #stock=2,072.

month T-bill discount rate. More specifically, suppose ytb is the annual discount rate of a

1-month T-bill, then r0 =
[
(1 + ytb)

1/12 − 1
]
/4.

Since there are missing data for many index components, we construct and track syn-

thetic versions of the Russell 2000 (3000). In doing that, stocks (listed as index components

on April 24th, 2015) with any missing weekly data deleted. Numbers of components of

synthetic Russell 2000 (3000) in the recession and recovery environments are illustrated in

Table 5.1. Synthetic capitalization-weighted stock-market indices are constructed accord-

ing to

It =
1

D

d∑
i=1

aiSt,i, for t = 1, 2, . . . , (5.25)

where It is the index level at time t, St,i is the stock price for stock i at time t, ai is the

number of outstanding shares for stock i, and D is the index divisor. Over the recession

environment, the ai’s in the synthetic Russell 2000 (3000) remain the same as those on

September 25th, 2009, and the index divisor of the Russell 2000 (3000) is the number
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that equals the synthetic index level on September 25th, 2009 to the real Russell 2000

(3000) level observed on that day. A similar procedure is used for the case of the recovery

environment, and the ai’s and index divisor are determined by the outstanding shares and

the index level on April 24th, 2015.

Table 5.1: The number of components of synthetic indicies

Synthetic indicies
Russell 2000 Russell 3000 Russell 2000 Russell 3000
(Recession) (Recession) (Recovery) (Recovery)

Number of components 907 1,601 1,306 2,137

Weekly discrete-time returns of stocks and synthetic indices in the recession (or recov-

ery) environment are partitioned into the in-sample data TRecession (or TRecovery) with 200

weekly returns, and out-of-sample data VRecession (or VRecovery) with 90 weekly returns. In

the following, we always refer to the synthetic Russell 2000 (3000) as the Russell 2000

(3000).

Since the majority of Russell 2000 (3000) components are small-capitalization stocks, in

all applications in this section we let θ = 1% which is around the middle of the transaction

cost range [0.31%, 2.35%] discussed in Section 5.1. We also let γ = 1%.

5.5.2 One Period Performance

In this subsection, we only show results on tracking the Russell 2000 index in the recov-

ery environment, since tracking the Russell 2000 in the recession environment, as well as

tracking the Russell 3000 index in the recession and recovery environments, yields similar

results. Based on Trecovery, our one-period L1-regularization tracking method is applied to

determine a tracking strategy β̂
(0)+

n , given β
(0)−

0 = 1 and β
(0)−

i = 0 for i = 1, . . . , d.

In order to investigate the performance of β̂
(0)+

n , we use the Lq-penalty method in [49]

as a benchmark. A brief description of this method can be found in Section 5.1. The
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Lq-penalty tracking method is formulated into an optimization problem with a non-convex

objective function, which is given by

β̂qn = arg min
β
Ê
[(
Y − β′X

)2∣∣β(0)+
]

+ λ
( d∑
i=0

|β|q
)1/q

(5.26)

s.t.
d∑
i=0

βi +
d∑
i=1

θ|β(0)−

i − βi| ≤ 1

βi ≥ 0, for i = 1, . . . , d,

θ
d∑
i=1

|β(0)−

i − βi| ≤ γ.

In the above formulation, the constraint −c ≤ β0 is ignored since the Lq penalty in the

objective function is able to generate sparsity. Further, the persistency is not discussed in

the Lq-penalty method in [49], so that it is not necessary to force the constraint −c ≤ β0.

This relaxation expands the feasible set.

Following [49], we let q = 0.5 in our implementation. Following algorithms in [50]

and [49], we carry out the hybrid heuristic algorithm to solve (5.26) with corresponding

constraints. This takes around 2 hours for each implementation. All applications in this

chapter are carried out on a PC with Intel Core i5-3210M CPU at 2.5GHz and 6.00GB

memory. Since the hybrid heuristic algorithm usually leads to suboptimal solutions, we

always repeat it three times with the same inputs and report the averaged result.

Results of Lq-penalty methods are sensitive to λ in (5.26), so that tuning λ is important

to this Lq-penalty method. Due to the computational burden, we cannot try too many

different λ’s. Instead, we vary λ in a carefully chosen candidate set {1.00E-9, 1.00E-7,

1.00E-6, 5.00E-6, 1.00E-5, 1.00E-4}, which covers a sufficiently large range (see discussions

of Table 5.2).

Since the true joint distribution is unknown in real applications, we cannot evaluate

the tracking performance by comparing the actual risk LFn(β̂
(0)+

n ). However, it can be

estimated by the out-of-sample MSE, i.e. 1
Nout

∑Nout

s=1 (Ys−
(
β̂

(0)+

n

)′
n
Xs)

2, where (Ys,X
′
s)
′ ∈

Vrecovery andN out is the sample size of Vrecovery. According to the weak law of large numbers,
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the out-of-sample MSE converges to LFn(β̂
(0)+

n ) in probability under the assumption of

i.i.d. data. Thus, the out-of-sample MSE is used as a criterion to evaluate the tracking

performance of β̂
(0)+

n , which is obtained from Trecovery.

Actually, in order to evaluate the tracking performance with finite in-sample data, it

is more suitable to compare an estimator of the expectation E
[
LFn(β̂

(0)+

n )
]

with that of

E
[
LFn(β̂qn)

]
. Suggested by [69, p.254], they can be estimated by a K-fold cross-validation

or the averaged out-of-sample MSE given by bootstrapped in-sample data. However, the

bootstrapping and K-fold cross-validation methods require extra computational efforts.

Even though they can be applied to our L1-regularization method due to the efficiency of

solving a quadratic program, they are too computationally expensive for the Lq-penalty

method. For the Lq-penalty method, each implementation of a K-fold cross-validation

requires (K + 1)×#λ× 3× 2 hours, and each implementation of a bootstrapping method

takes around B ×#λ× 3× 2 hours where B is the number of bootstrapped scenarios and

#λ is the number of candidate λ’s. Hence, we only compare the L1-regularization method

with the Lq-penalty method according to the out-of-sample MSE based on Trecovery.

Figure 5.4 summaries the results of our L1-regularization tracking method. The solid

line is the out-of-sample MSE based on the original Trecovery. In order to evaluate how

stable the out-of-sample MSE is, we bootstrapped the in-sample data 1,000 times. Dashed

lines show the 90% confidence band given by the bootstrapping percentile method ([37]),

and the dash-dot line represents the averaged out-of-sample MSE given by bootstrapped

in-sample data.

Figure 5.4 shows that both the original out-of-sample MSE and the averaged out-of-

sample MSE decrease as cn increases at the beginning. After they reach their minima,

they curve up until they turn flat. When cn is small, the out-of-sample MSE is quite stable

since the confidence band is narrow. However, when cn is large the confidence band is

much wider, so that the out-of-sample MSE is not stable, and it is enlarged by estimation

errors. A sufficiently large cn disqualifies the constraint (5.6), so the curves turn flat.

The value of cn, to be applied in the L1-regularization tracking strategy, is the number

where the solid curve reaches its minimum. At that point, the out-of-sample MSE based
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on Trecovery is 1.2238E-4. At this value of cn, the L1-regularization strategy selects 265 out

of 1,306 components to construct a tracking portfolio.

Table 5.2 shows results of the Lq-regularization tracking strategy based on Trecovery.
Each result in the second and third columns is an averaged result of three implementa-

tions. The last column shows the total elapsed time to obtain averaged results. Table 5.2

shows that the out-of-sample MSE gets smaller when λ decreases from 1.00E-4. After it

reaches the minimum at λ =1.00E-07, it gets larger due to estimation errors. The range of

candidate λ’s appears to be large enough since the number of selected stocks (column three

in Table 5.2) varies from 12 to 1, 035 which almost reaches the total number of Russell

2000 components in the recovery environment.

According to the out-of-sample MSE, the L1-regularization tracking method outper-

forms the Lq-penalty method. In Figure 5.4, the minimum value of the solid curve is

1.2238E-4, while Table 5.2 shows that the minimum out-of-sample MSE of the latter one

is 1.2330E-04. Moreover, the L1-regularization method is much more computationally effi-

cient. Generating each path of the out-of-sample MSE (such as the solid curve) in Figure

5.4 takes around 20 minutes, while generating Table 5.2 takes 36 hours. Another advan-

tage of the L1-regularization method is its persistent property. As far as we know, whether

the Lq-penalty method is persistent or not is still an open question in the large d small n

setting.

Table 5.2: Results of applying the Lq-penalty method to track the Russell 2000

λ
Out-of-sample

# stocks Time (seconds)
MSE

1.00E-9 1.2522E-04 1,035 22,890
1.00E-7 1.2330E-04 518 22,293
1.00E-6 1.7049E-04 77 22,431
5.00E-6 2.0231E-04 21 22,515
1.00E-5 2.0845E-04 19 22,536
1.00E-4 2.7722E-04 12 22,488
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Figure 5.4: Results of the L1-regularization method to track the Russell 2000

5.5.3 Multiple Period Performance

The one-period L1-regularization tracking method is repeated period by period to solve a

multi-period tracking problem. More specifically, we carry out a rolling-window method.

In the first period, starting with initial wealth W(0)− , a tracking portfolio is constructed

from a pure cash position based on the first 200 in-sample data. Using the 201st data

point, we compute (W I
(1)− −W(1)−)2. In the next period, the in-sample window is moved

one-step further, and the tracking portfolio is rebalanced based on the 2nd to the 201st

data points. Using the 202nd data point, we compute (W I
(2)− − W(2)−)2, and so on. In

this subsection, the Russell 2000 and the Russell 3000 are tracked by a 30-period rolling

window method.

In each period, we need to determine the tuning parameter cn, and this is carried out

by a 5-fold cross validations. The 5-fold cross validation is adopted, since computing the

bootstrapped averaged out-of-sample MSE is too computationally expensive in a rolling

window setting. Implementing the L1-regularization tracking method in each period takes

around 1 hour.

The multi-period tracking performance is evaluated by the normalized tracking error
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at time T , TE(T ), which is given by

TE(T ) =

(
W I

(T )− −W(T )−
)2

(W(0)−)2
.

We further compare TE(T ) of different tracking methods in tracking different indices. The

full-replication strategy is used as the benchmark in multi-period cases. We give up using

the Lq-penalty method as a benchmark since it is too computationally expensive in the

rolling window setting. Repeating the Lq-penalty method to solve a 30-period problem

requires 30 ×K ×#λ × 3 × 2 hours, when a K-fold cross-validation is applied to tune λ

in each period.

The methodology of a full-replication strategy is as follows. At time 0, W(0)− in cash

is used to construct a tracking portfolio according to the full replication strategy. For

i = 1, . . . , d, denote by N tp
i the number of shares for each stock bought at time 0, and S0,i

the stock price at time 0. Suppose N tp
i can be fractions, then

∑d
i=1 N

tp
i S0,i +

∑d
i=1 θ|N

tp
i S0,i| = W(0)− .

N tp
i ≥ 0, for i = 1, . . . , d.

Thus,
∑d

i=1 N
tp
i S0i = 1

1+θ
W(0)− . Since stock weights of the full-replication match those in

the index, we have
N tp
i S0i

1
1+θ

W(0)−
=

ai
D
S0i

I0

, for i = 1, . . . , d,

where I0 =
∑d

i=1
ai
D
S0i. Then N tp

i = 1
1+θ
· W(0)−

I0
· ai
D

. At time (t)− for t = 1, . . . , T , note the

definition of It in (5.25), then the tracking portfolio value W full
(t)− is

W full
(t)− =

d∑
i=1

N tp
i St,i =

1

1 + θ
·
W(0)−

I0

d∑
i=1

aiSt,i
D

=
1

1 + θ
·W(0)−

It
I0

=
1

1 + θ
W I

(t)− .
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The normalized tracking error of a full replication portfolio at time (T )− is given by

(∣∣W I
(T )− −W

full
(T )−

∣∣
W(0)−

)2

=
( θ

1 + θ

|IT |
I0

)2

=
( θ

1 + θ

)2
T∏
s=1

(
1 +Rs

)2
.

Hence, the normalized tracking error of a full-replication strategy depends on the magni-

tude of θ. It is expected that the (normalized) tracking error of a full-replication is small

when it tracks a large-capitalization stock-market index, in which case the transaction costs

are small. However, the full-replication strategy could suffer a large (normalized) tracking

error when it is benchmarked to a small-capitalization stock-market index, in which case

the transaction costs are large.

Figure 5.5 shows paths of tracking portfolio values benchmarked to the synthetic Russell

2000 and Russell 3000 indices in both the recession and recovery environments, as well as

the corresponding index level paths. We assume that both the initial index level and initial

portfolio wealth start from 1. All four sub-figures in Figure 5.5 indicate that the wealth of

full replication is uniformly below the synthetic index level but exactly follows the trend

of the index level since time 1. The gap between the synthetic index level and the full-

replication portfolio value is induced by transaction costs at construction. Overall, the

tracking portfolio constructed by repeating the L1-regularization method is closer to the

index level. Figure 5.6 provides more convincing evidence. It shows normalized tracking

errors of the full replication and the portfolio constructed by repeating the L1-regularization

method from time 1 to 30. In most cases, repeating the L1-regularization method leads to

smaller normalized tracking errors.

In tracking both the Russell 2000 and the Russell 3000, the number of selected stocks

is small at the first several rebalancings for the L1-regularization tracking strategy. For

example, in the recovery environment, the L1-regularization tracking strategy selects 118

(161) stocks to track the Russell 2000 (3000) in the first period. In general, this number

increases gradually at each rebalancing. Eventually, all Russell 2000 (3000) components

are included within 30 rebalancings. Due to the nature of stock-market indices, a good

tracking portfolio is expected to include as many components as possible. Similar changes

can be found in the recession environment.
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(c) Russell 2000 (Recovery)

0 5 10 15 20 25 30
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

1.12

Time t

P
o

rt
fo

lio
 V

a
lu

e

 

 

Earning Index Return

Full replication with transaction cost

Repeating One−period

(d) Russell 3000 (Recovery)

Figure 5.5: Tracking portfolio values vs. index level

As discussed in Section 5.2.2, it is possible to withdraw money from W(t−1)− while

rebalancing the L1-regularization tracking strategy at time t − 1 for t = 1, 2, . . . . During

30 rebalancings of tracking the Russell 2000 in the recovery environments, the ratios of

withdrawn money to W(t−1)− vary from 8.20E-08 to 2.53E-3, and the average ratio is 1.52E-

3. During 30 rebalancings of tracking the Russell 3000 in the recovery environments, ratios

vary from 6.65E-7 to 1.68E-3 with an average of 1.14E-3. In all cases, the withdrawn

money takes a little portion of the portfolio wealth before rebalancing. Similar magnitudes

of withdraw money can be observed in the recession environment.
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Figure 5.6: Normalized tracking errors of tracking portfolios

Among 30 rebalancings to track the Russell 2000 or Russell 3000 in both the recession

and recovery environments, transaction costs of the L1-regularization method decrease

quickly at the beginning and remain stable thereafter. This is because constructing tracking

portfolios with a pure cash position spends a large initial transaction cost compared with

transaction costs spent at following rebalancings.
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5.6 Conclusion

In this chapter, aiming at reducing the gap between the tracking portfolio terminal wealth

and the terminal wealth given the initial wealth (before construction) earns exactly the

index return, a multi-period index tracking problem is solved by repeatedly solving one-

period index tracking problems. Transaction costs and other practical constraints are

considered in our index tracking formulation. Since the true distribution of financial returns

is usually unknown, the one-period index tracking strategy is obtained by minimizing

the empirical tracking error. With an L1-regularization on asset weights, our one-period

tracking strategy enjoys persistent properties in the high-dimensional setting. Simulation

studies are carried out to support our one-period tracking strategy’s performance with

finite samples. Applications on real financial data provide evidence that, under certain

circumstances, our tracking strategy outperforms benchmark methods in the one-period

and multi-period cases.

In this chapter, we estimate the true covariance matrix by the sample covariance ma-

trix. Improved covariance matrix estimators, such as shrinkage methods in [86] and [104],

are very likely to improve the tracking performance. It is interesting to investigate the

persistence property with improved covariance matrix estimators, and the order of the L1-

regularization might be extended. Inspired by results in [48], the sample covariance matrix,

obtained from the assumption that stock returns follow factor models, is very likely to im-

prove the tracking performance, especially when the number of index component is large.

More interesting future works include generalizing the i.i.d. assumption of financial

returns to the world of jointly stationary and ergodic processes. Following studies in [127]

and [24], it is possible to prove persistency of L1-regularization under that assumption.

Another direction of future work, in the time series setting, is to construct co-integration

systems ([40]) to reproduce the index level. Even though some studies have been carried out

in this direction ([5]), it would be exciting if some results on co-integration were obtained

in the high-dimensional setting.
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Chapter 6

Future Works

This chapter states some potential directions for future research about sparse models on

vine copula and index tracking.

6.1 Potential Directions for Vine Copulas

The vine copula is a flexible tool to describe multivariate dependence structures. Unfor-

tunately, its complexity grows exponentially along with the number of variables in the

model. In addition to the sparse vine introduced in Chapter 2, another promising method

for simplifying vine copulas is the factor copula model proposed in [83], where the random

variables of interest are assumed to depend on several common latent factors, and their

dependence can be modelled by a vine copula truncated at several levels. We are inter-

ested in the applications of factor copula models for modelling financial asset returns with

observable factor variables. In the literature, there are a lot of works searching for what

factors (mostly macro-economic variables rather than latent factors) are most important

to explain stock returns. If a few macro-economic variables are chosen as factors, vine

copulas used to describe dependence among stock returns can be truncated at several lev-

els. Since factor models are very successful in explaining stock returns, such a factor-based
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vine copula is concise and promising for describing the dependence structure among stock

returns. Compared with linear factor models described in Section 4.3, factor-based vine

copulas are more flexible at describing dependence structures. In terms of searching for

important factors among numerous macro-economic variables, variable selection methods

such as Lasso provide many helpful tools.

6.2 Potential Directions for Index Tracking

In Chapters 4 and 5, most tracking strategies are obtained by minimizing the empirical

tracking error, such as the mean square error. Properties of those tracking strategies

are closely related to properties of linear regression estimators. Recently, the Dantzig

selector is introduced in [23] to obtain linear regression estimators in the high-dimensional

statistical setting. The Dantzig selector can be expressed as minimizing a linear objective

function subject to the L1 regularization on estimators ([36]). The authors of [23] claim

that, under some conditions, using the Dantzig selector it “is possible nearly to select the

best subset of variables”. It is proved in [12] that, under some assumptions, the Dantzig

selector estimator is persistent to the optimal parameters with respect to minimizing the

true mean square error.

As one can see from the previous chapters, minimizing the empirical mean square error

(MSE) in an index tracking problem with the cardinality constraint usually relies on mixed-

integer quadratic programming. This is what we try to avoid in Chapters 3-5, especially

when the number of index components is large. An idea we can borrow from the Dantzig

selector to control the mean square tracking error is to construct tracking strategies by

minimizing the Dantzig selector linear objective function. With such a linear objective

function, it is computationally tractable even considering the cardinality constraint. In

this case, the index tracking problem boils down to a mixed-integer linear program which

can be solved efficiently. By minimizing the Dantzig selector linear objective function

subject to the cardinality constraint, it is very likely to obtain a tracking strategy which

leads to a tracking error (or MSE) that is close to the true minimum tracking error (or

MSE). A recent working paper ([90]) discusses some relevant theoretical properties of the
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linear regression estimators, which are obtained by minimizing the Dantzig selector linear

objective function subject to the L0-regularization.

All theoretical results in Chapters 3-5 rely on the assumptions that financial asset

returns at different time are independent and identically distributed. However, it is more

realistic to assume that financial returns are stationary. Even though it is more challenging

to derive theoretical results in a setting with serial dependence, some works have been done

in this direction to investigate properties of linear model parameter estimators in the high-

dimensional statistical setting.

Persistent or consistent properties of tracking strategies play a key role in index tracking

methods, given that tracking strategies are derived by minimizing the empirical tracking

error. In Chapters 4 and 5, persistent properties of tracking strategies that minimize the

empirical mean square error are derived under the assumption of i.i.d. financial returns.

However, some relevant theoretical results are obtained in [24] with the assumption of

serial dependence. The authors of [24] prove that the ridge regression estimators are

consistent in a high-dimensional statistical setting under the assumption of stationarity.

Even though the consistency or persistency of Lasso estimators is not discussed in [24], it

is very likely to prove the persistency (with respect to MSE) of Lasso estimators under

the same assumptions. Persistency of Lasso estimators, if obtained, directly applies to

tracking strategies that minimize the empirical tracking error with L1 regularizations on

asset weights.

Another direction of future research, still in the time series setting, is to reproduce

index levels by co-integration systems ([40]). Chapters 3-5 concentrate on mimicking one-

period index returns. In a one-period problem, mimicking index returns is equivalent to

matching index levels. However, they are not equivalent in a multi-period tracking problem.

Co-integration methods provide a tool to directly approximate index levels, which is an

intuitive multi-period tracking target. Some studies on index tracking have been carried out

along this direction ([5]). However, it could be of interest if some results on co-integration

are obtained in the high-dimensional setting.
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[122] Stöeber, J. and C. Czado (2011). Detecting regime switches in the dependence

structure of high dimensional financial data. Forthcoming in Computational Statistics

and Data Analysis.
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Appendix A

GARCH(1,1)-Type Models

A.1 GARCH model

A general GARCH model consists of three components: conditional mean, conditional

variance, and innovation term. A standard GARCH(1,1) model for a discrete time series

{rt, t = 0, 1 . . .} is given by

rt = µ+ εt , (A.1)

εt = σtzt , (A.2)

σ2
t = ω + αε2

t−1 + βσ2
t−1 , (A.3)

where µ is the drift term, εt is the diffusion term, σt is the volatility at time t, and zt is the

innovation at time t. Here, ω, α and β are model parameters. Popular innovation distribu-

tions used in GARCH models for modelling financial data include the normal, Student-t,

generalized error distribution, skewed normal and skewed Student-t distributions.

A common extension of the conditional mean equation (A.1) is to replace (A.1) by an

AutoRegressive-Moving-Average (ARMA) model, leading to the so-called ARMA-GARCH

model. The ARMA(1,1) is one of the most popular models for the conditional mean in
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modelling financial time series. It admits the following formulation:

rt = µ+ art−1 + εt + bεt−1, t = 1, 2, . . . , (A.4)

where a and b are parameters. The AutoRegressive process of order one AR(1) is retrieved

if we set a 6= 0 and b = 0, and the Moving-Average of order one MA(1) is obtained if we

let a = 0 and b 6= 0.

One common feature with financial log-return data is called the “leverage effect”, which

refers to the generally negative correlation between an asset return and its changes of

volatility. In other words, a negative shock leads to a higher volatility than a positive shock

on average. To capture the leverage effect, some asymmetric conditional variance models

are proposed in the literature to replace equation (A.3), where the volatility responds

symmetrically to both positive and negative shocks. Three prominent examples are as

follows.

• Exponential-GARCH (E-GARCH):

ln(σ2
t ) = ω + α1

|εt−1|+ γ1εt−1

σt−1

+ β1 ln(σ2
t−1).

• Glosten-Jagannathan-Runkle GARCH (GJR-GARCH):

σ2
t = ω + α1ε

2
t−1 + γ1I {εt−1 < 0} ε2

t−1 + β1σ
2
t−1.

• Power-GARCH (P-GARCH):

σδt = ω + α1(|εt−1| − γ1εt−1)δ + β1σ
δ
t−1, δ > 0.

More details about these generalized GARCH models can be found in [60].
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A.2 Transformed standardized residuals

Following [14, section 4.1], the transformed standardized residuals (TSRs) are obtained by

filtering and normalizing the original data with the model estimation for a time series. We

take the standard GARCH(1,1) as an example and the TSRs can be obtained in a similar

way for the other models. Let µ̂, ω̂, α̂ and β̂ denote the estimators for GARCH(1,1)

parameters fitted with time series data {rt, t ≥ 0}. We first calculate residuals ε̂t = rt− µ̂,

and estimate volatilities

σ̂t =

√
ω̂ + α̂ε̂2t−1 + β̂σ̂2

t−1, t = 1, 2, . . . ,

where ε̂0 = 0 and σ̂0 is equal to the standard deviation of squared sample residuals. The

standardized residuals are subsequently obtained as

ẑt =
ε̂t
σ̂t
, t = 0, 1, . . . .

In the end, the TSRs are obtained as the values of the EDF of ẑt evaluated at each point

of {ẑt, t ≥ 0}.
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